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1. Vectors

The linear space Rn.

DEFINITION (The linear space Rn). Consider the set Rn, with n a positive integer, consisting of all se-

quences of n real numbers:

Rn = {(x1, x2, . . . , xn)|x1, x2, . . . , xn ∈ R}.

We use the short notation x̄ = (x1, x2, . . . , xn) for elements of Rn. In the present context, we call the

elements of Rn vectors, and the individual numbers xi (i = 1, 2, . . . , n) the vector components.

We define two operations involving vectors. Let (x1, x2, . . . , xn), (y1, y2, . . . , yn) be arbitrary vectors in

Rn, and a an arbitrary real number (which, in this context, we call a scalar).

(1) Addition of vectors: (x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn);

(2) Scalar multiplication: a(x1, x2, . . . , xn) = (ax1, ax2, . . . , axn).

The set of vectors Rn together with the above operations is called the real linear space (or the real vector

space) Rn.

THEOREM 1.1. Given vectors x̄, ȳ, z̄, and scalars a, b, the following properties hold:

(1) Associativity of addition: x̄+ (ȳ + z̄) = (x̄+ ȳ) + z̄;

(2) Commutativity of addition: x̄+ ȳ = ȳ + x̄;

(3) Identity element of addition: There exists a unique vector, called the zero vector and denoted by 0̄,

such that x̄+ 0̄ = x̄ for all x̄ ∈ Rn;

(4) Inverse elements of addition: For every vector x̄ ∈ Rn, there exists a unique vector, called the

additive inverse of x̄ or the negative of x̄ and denoted by −x̄, such that x̄+ (−x̄) = 0̄;

(5) Distributivity of scalar multiplication with respect to vector addition: a(x̄+ ȳ) = ax̄+ aȳ;

(6) Distributivity of scalar multiplication with respect to addition of scalars: (a+ b)x̄ = ax̄+ bx̄;

(7) Compatibility of scalar multiplication with multiplication of scalars: a(bx̄) = (ab)x̄;

(8) Identity element of scalar multiplication: 1x̄ = x̄.
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6 1. VECTORS

Clearly, the identity element of addition is the vector 0̄ = (0, 0, . . . , 0), and the negative of a vector

x̄ = (x1, x2, . . . , xn) is the vector −x̄ = (−x1,−x2, . . . ,−xn).

The subtraction of vectors is defined by

x̄− ȳ = x̄+ (−ȳ).

Let us consider the particular cases of the real linear spaces R, R2, and R3. We want to obtain a geometric

representation of vectors x ∈ R, (x, y) ∈ R2, and (x, y, z) ∈ R3. For this, we follow the procedure:

• Set appropriate Cartesian coordinate systems: one-, two-, and three-dimensional Cartesian coordi-

nate systems, respectively for the cases of R, R2, and R3.

• Consider the oriented line segments (graphically, arrows) connecting the terminal points with coor-

dinates x, (x, y), and (x, y, z) with the respective coordinate system origin.

• These line segments are the position vectors of points x, (x, y), and (x, y, z), and represent geomet-

rically the vectors x, (x, y), and (x, y, z) (see Figure 1.1).

(a) Oriented line (b) Plane (c) Space

Figure 1.1. Geometric representation of vectors in Cartesian coordinate systems.

Note that, once appropriate Cartesian coordinate systems are set, we can establish a one-to-one correspon-

dence between points of the oriented line, the plane, and the space, and vectors in R, R2, and R3, respectively.

Therefore, vectors can be uniquely represented by the position vectors of those points.

Note also that the above definitions of the operations addition of vectors and scalar multiplication are clearly

consistent with the corresponding well-known geometric rules for adding vectors and multiplying a vector by

a scalar.



DOT PRODUCT, NORM, DISTANCE, AND ORTHOGONAL VECTORS. 7

Dot product, norm, distance, and orthogonal vectors.

DEFINITION (Dot product, norm, and distance). Let x̄ = (x1, x2, . . . , xn), ȳ = (y1, y2, . . . , yn) be vectors

in Rn.

(1) The dot product (or the scalar product) of the vectors x̄ and ȳ, denoted by x̄ · ȳ, is defined as

x̄ · ȳ =
n∑
i=1

xiyi = x1y1 + x2y2 + · · ·+ xnyn.

(2) The norm of the vector x̄, denoted by ‖x̄‖, is

‖x̄‖ =
√
x̄ · x̄ =

√√√√ n∑
i=1

x2i =
√
x21 + x22 + · · ·+ x2n.

(3) Taking x̄ and ȳ as position vectors in a n-dimensional Cartesian coordinate system, the distance

between the corresponding points x̄ = (x1, x2, . . . , xn) and ȳ = (y1, y2, . . . , yn) is denoted by

d(x̄, ȳ), and defined as

d(x̄, ȳ) = d(ȳ, x̄) = ‖x̄− ȳ‖ =
√

(x̄− ȳ) · (x̄− ȳ) =

√√√√ n∑
i=1

(xi − yi)2

=
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2.

The above norm is called Euclidean norm, and the linear space Rn endowed with the dot product and norm

as defined is called Euclidean space. Also, the above distance is called Euclidean distance, and we refer to

the space of points in a Cartesian coordinate system associated with the linear space Rn, together with the

Euclidean distance, as an affine Euclidean space.

Note that the norm of a vector x̄ can be geometrically interpreted as its length.

Example. Consider the vectors in R3: x̄ = (1, 3,−5) and ȳ = (4,−2,−1). The dot product x̄ · ȳ is

x̄ · ȳ =
3∑
i=1

xiyi = 1× 4 + 3× (−2) + (−5)× (−1) = 3.

The norm of x̄ is

‖x̄‖ =
√
x̄ · x̄ =

√√√√ 3∑
i=1

x2i =
√

12 + 32 + (−5)2 =
√

35.

The distance between the corresponding points x̄ = (1, 3,−5) and ȳ = (4,−2,−1) is

d(x̄, ȳ) =

√√√√ 3∑
i=1

(xi − yi)2 =
√

(1− 4)2 + (3− (−2))2 + (−5− (−1))2 =
√

50.
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Note that the vector
1

‖x̄‖
x̄ =

1√
35

(1, 3,−5) =

(
1√
35
,

3√
35
,− 5√

35

)
has norm 1:∥∥∥∥ 1

‖x̄‖
x̄

∥∥∥∥ ==

∥∥∥∥( 1√
35
,

3√
35
,− 5√

35

)∥∥∥∥ =

√(
1√
35

)2

+

(
3√
35

)2

+

(
− 5√

35

)2

= 1.

Such a vector is called a unit vector.

DEFINITION (Angle between two vectors, orthogonal vectors). Let x̄ = (x1, x2, . . . , xn),

ȳ = (y1, y2, . . . , yn) be vectors in Rn, with n ≥ 2.

(1) The angle θ between the vectors x̄ and ȳ is the least nonnegative value of θ satisfying

x̄ · ȳ = ‖x̄‖ ‖ȳ‖ cos θ.

(2) The vectors x̄ and ȳ are said to be orthogonal if

x̄ · ȳ = 0.

Note that if x̄, ȳ 6= 0̄ then

• θ = arccos

(
x̄ · ȳ
‖x̄‖ ‖ȳ‖

)
;

• x̄ · ȳ = 0⇔ θ = π/2;

• x̄, ȳ collinear⇔ |x̄ · ȳ| = ‖x̄‖ ‖ȳ‖. (Two vectors x̄, ȳ are said to be collinear if there exists a scalar

a such that x̄ = aȳ.)

Example. Consider the vectors in R3: x̄ = (1, 2,−2), ȳ = (−2, 1, 0), z̄ = (−2,−4, 4), and w̄ = (1, 0, 1).

The vectors x̄ and ȳ are orthogonal as

x̄ · ȳ = 1× (−2) + 2× 1 + (−2)× 0 = 0.

The vectors x̄ and z̄ are collinear as z̄ = −2x̄, and we have

|x̄ · z̄| = ‖x̄‖ ‖z̄‖ = 18.

The angle between the vectors x̄ and z̄ is

θ = arccos

(
x̄ · z̄
‖x̄‖ ‖z̄‖

)
= arccos

(
−18

3× 6

)
= arccos(−1) = π,

meaning that the vectors have opposite directions.
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The vectors x̄ and w̄ are neither orthogonal nor collinear. The angle defined by these vectors is

γ = arccos

(
x̄ · w̄
‖x̄‖ ‖w̄‖

)
= arccos

(
−1

3×
√

2

)
= arccos

(
−
√

2

6

)
' 1.8087375.

Linear combination and independence.

DEFINITION (Linear combination). Let

S = {x̄1, x̄2, . . . , x̄p}

be a subset of the linear space Rn. A vector x̄ in Rn of the form

x̄ =

p∑
i=1

aix̄i = a1x̄1 + a2x̄2 + · · ·+ apx̄p,

where a1, a2, . . . , ap are scalars, is called a linear combination of the elements of S.

Example. Consider the set of vectors in R3

S = {(1, 2, 1), (−1, 0, π), (0, 0, 0), (2, 4, 2)} .

The following vectors are linear combination of the elements of S:

(2, 2, 1− π) = (1, 2, 1) − (−1, 0, π) + 2(0, 0, 0) + 0(2, 4, 2);

(3, 6, 3) = 3(1, 2, 1) + 0(−1, 0, π) − (0, 0, 0) + 0(2, 4, 2);

(−1, 0, π) = 0(1, 2, 1) + (−1, 0, π) + 2(0, 0, 0) + 0(2, 4, 2);

(0, 0, 0) = 0(1, 2, 1) + 0(−1, 0, π) + 3(0, 0, 0) + 0(2, 4, 2).

On the contrary, the vector (0, 0, 1) is not a linear combination of vectors of S as the equation

(0, 0, 1) = a1(1, 2, 1) + a2(−1, 0, π) + a3(0, 0, 0) + a4(2, 4, 2)

is inconsistent. In fact, solving the above equation can be reduce to solve the system
a1 − a2 + 2a4 = 0

2a1 + 4a4 = 0

a1 + πa2 + 2a4 = 1

⇔


a2 = 0

a1 = − 2a4

0 = 1

,

that is clearly impossible.
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DEFINITION (Linear independence). A set S = {x̄1, x̄2, . . . , x̄p} of vectors in Rn is said to be linearly

independent if the equation
p∑
i=1

aix̄i = a1x̄1 + a2x̄2 + · · ·+ apx̄p = 0̄

has the unique solution

a1 = a2 = · · · = ap = 0.

If S is not linearly independent then it is linearly dependent.

THEOREM 1.2. A set S = {x̄1, x̄2, . . . , x̄p} of vectors in Rn, with p ≥ 2, is linearly dependent if and only

if one of its vectors x̄i is a linear combination of the remaining vectors in S.

THEOREM 1.3. Let S = {x̄1, x̄2, . . . , x̄p} be a set of vectors in Rn.

(1) If one of the vectors x̄i ∈ S is the zero vector then S is linearly dependent.

(2) If one of the vectors x̄i ∈ S is the product of a scalar by some other vector x̄j ∈ S then S is linearly

dependent.

THEOREM 1.4. Let S = {x̄1, x̄2, . . . , x̄p} be a set of vectors in Rn, and x̄ ∈ Rn a linear combination of

the vectors in S

x̄ =

p∑
i=1

aix̄i = a1x̄1 + a2x̄2 + · · ·+ apx̄p.

The scalars a1, a2, . . . , ap satisfying the equation are unique if and only if S is linearly independent.

Examples.

(a) Consider the set of vectors S = {(−2, 0, 1), (2, 1,−1)} ⊆ R3. The set is linearly independent as the

equation

a1(−2, 0, 1) + a2(2, 1,−1) = (0, 0, 0)

has unique solution 
−2a1 + 2a2 = 0

+ a2 = 0

a1 − a2 = 0

⇔

{
a1 = 0

a2 = 0
.

(b) Consider the set of vectors T = {(−2, 2), (0, 1), (1,−1)} ⊆ R2. The set is linearly dependent as the

equation

a1(−2, 2) + a2(0, 1) + a3(1,−1) = (0, 0)
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is equivalent to {
−2a1 + a3 = 0

2a1 + a2 − a3 = 0
⇔

{
a2 = 0

a3 = 2a1
,

existing solutions other than the null solution a1 = a2 = a3 = 0 (for example, a1 = 1, a2 = 0, a3 = 2). Note

that there exist vectors in T that are linear combination of the remaining vectors in T , such as

(−2, 2) = 0(0, 1)− 2(1,−1).

(c) Consider the set of vectors U = {(−2, 2, 5), (0, 0, 0), (1,−1, 2)} ⊆ R3. The set is linearly dependent as

in contains the zero vector of R3.

(d) Consider the set of vectors V = {(−2, 2), (0, 1)} ⊆ R2. The vector x̄ = (2, 2) is a linear combination

of the vectors in V

a1(−2, 2) + a2(0, 1) = (2, 2).

In fact, the corresponding system{
−2a1 = 2

2a1 + a2 = 2
⇔

{
a1 = −1

a2 = 4

is consistent. Note the values we obtained for a1, a2 are unique. Hence, V is linearly independent. This can

be checked by observing that the equation

a1(−2, 2) + a2(0, 1) = (0, 0)

has the unique solution a1 = a2 = 0:{
−2a1 = 0

2a1 + a2 = 0
⇔

{
a1 = 0

a2 = 0
.

Exercises.

(1) Prove Theorem 1.1.

(2) Consider the vectors in R3

ū = (1,−1,−1), v̄ = (1, 1, 2), w̄ = (1, 0, 1), x̄ = (0, 0, 0), ȳ = (2, 2, 4), z̄ = (−1, 0, 0).

a) Determine the dot product ū · v̄, and also the norms of the vectors ū and v̄.

b) Are the vectors ū and v̄ orthogonal? And the vectors ū and w̄? And w̄ and x̄?

c) Determine the angle between the vectors v̄ and ȳ, and also between the vectors w̄ and z̄.
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d) Determine the distances d(ū, x̄) and d(ȳ, z̄).

(3) Determine if the following sets of vectors are linearly independent:

a) {(3, 1), (4, 2)} ⊆ R2;

b) {(3, 1), (4,−2), (7, 2)} ⊆ R2;

c) {(0,−3, 1), (2, 4, 1), (−2, 8, 5)} ⊆ R3;

d) {(0, 3, 1), (2, 1, 1), (4, 2, 2)} ⊆ R3;

e) {(0, 3, 1), (2, 1, 1), (0, 0, 0)} ⊆ R3;

f) {(0, 3, 1), (1, 1, 1), (−2, 1,−1)} ⊆ R3;

g) {(−1, 2, 0, 2), (5, 0, 1, 1), (8,−6, 1,−5)} ⊆ R4.

(4) Consider the vectors in R3

v̄ = (2, 0, 0), w̄ = (1, 1, 1), x̄ = (−1, 0, 0), ȳ = (1, 0, 1), z̄ = (0, 1, 1).

a) Write, if possible, ȳ and z̄ as linear combinations of the vectors v̄, w̄, and x̄. What can you

conclude about the linear independence of the set {v̄, w̄, x̄}?

b) Write, if possible, z̄ as a linear combination of the vectors v̄ and w̄, and draw the appropriate

conclusions about the linear independence of the set {v̄, w̄}.

(5) Discuss the linear independence of the set {(1,−2), (α,−1)} ⊆ R2 depending on the value of the real

parameter α.

(6) Prove Theorems 1.2 to 1.4.



2. Matrices

Matrix algebra.

DEFINITION (Matrix). Given positive integers p and n, a matrix A of size p × n or a p × n matrix A is a

rectangular array of pn (real) numbers in a boxed display, consisting of p horizontal lines with n numbers

each (the rows of the matrix) and n vertical lines with p numbers each (the columns of the matrix), written

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...

ap1 ap2 · · · apn

 .
In the above display the first index gives the row and the second index the column, so that aij appears at

the intersection of the i-th row and the j-th column. Sometimes, we express that matrix A is of size p× n
by writing

Ap×n.

When convenient, we write

A = [aij ]p×n,

and refer to aij as the (i, j)-th element or the (i, j)-th entry of the matrix.

Example. The matrix

A =


−2 0 0 1

3

1 −5 1 0

π −3 0 −1


has size 3× 4. The second row is the sequence of elements (1,−5, 1, 0) and the first column is the sequence

(−2, 1, π). The element with row index 3 and column index 2 is a32 = −3.

13



14 2. MATRICES

DEFINITION (Diagonal elements). Given a matrix A of size n× n, the elements aii, i = 1, 2, . . . , n, are

called diagonal elements. The collection of the diagonal elements is called the main diagonal or simply

the diagonal.

Example. Consider the 4× 4 matrix

A =


−2 0 0 1

3

1 −5 1 0

11 −3 0 −1

0 3 1 −1

 .
The diagonal elements are: a11 = −2, a22 = −5, a33 = 0 e a44 = −1. Jointly, these elements are the main

diagonal of matrix A.

DEFINITION (Types of matrices).

(1) A matrix of size p × n is said to be a square matrix if p = n, and rectangular if p 6= n. A square

matrix A of size n× n if often referred to as square matrix of order n denoted by A(n) or An.

(2) A matrix of size 1× n is said to be a row matrix, and matrix of size p× 1 a column matrix.

(3) A p× n matrix where all elements are zero is called the null matrix or the zero matrix of size p× n,

and is denoted by 0p×n.

(4) A square matrix A is said to be triangular if all entries above or below the main diagonal are zero. In

particular, A is called lower triangular if the entries above the diagonal are zero (that is if aij = 0 for

i < j), and upper triangular if the entries below the diagonal are zero (that is if aij = 0 for i > j).

(5) A square matrix is called diagonal if all entries outside the main diagonal are zero, that is, if aij = 0

for i 6= j.

(6) A diagonal matrix whose diagonal elements all contain the same number is called scalar.

(7) A scalar matrix of order n whose diagonal elements are all equal to 1 is called the identity matrix of

order n, and is denoted by I(n) or In.

Example. Consider the matrices

A =


−2 0 0 1

3

1 −5 1 0

−4 −3 0 −1

 , B =


0 0 0

1 0 −2

1 3 2

 , C =
[

12 0 0 −5
]
, D =


0

1

−2

 ,
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E =

[
0 0 0

0 0 0

]
, F =


1 0 2

0 −5 0

0 0 0

 , G =


1 0 0

0 −5 0

0 0 0

 , H =


3 0 0

0 3 0

0 0 3

 ,

I =

[
1 0

0 1

]
, J =

[
1
]
.

A, B, C, and D are, respectively, a rectangular matrix of size 3× 4, a square matrix of order 3, a row matrix

of size 1 × 4, and a column matrix of size 3 × 1. E is the null matrix of size 2 × 3. F , G, and H are square

matrices of order 3: F is upper triangular, G and H are diagonal, being H scalar. I e J , scalar matrices, are,

respectively, the identity matrices of order 2 and 1.

DEFINITION (Equality of matrices). Given two matrices Ap×n and Bq×m, we say that A and B are equal

and write A = B if

(1) p = q and n = m, that is, matrices A and B have the same size;

(2) aij = bij , for all i = 1, 2, . . . , p, j = 1, 2, . . . , n, that is, the corresponding elements are equal.

Example. Consider the matrices

A =

[
−2 0

1 −5

]
, B =


0 0

1 0

−1 3

 . C =

[
0 0

1 0

]
, D =


0 0

1 0

−1 3

 .
It is only interesting to check a possible equality for matrices of the same size: A, C, on one hand, and B, D,

on the other hand. By simple inspection we see that A 6= C and B = D.

DEFINITION (Addition of matrices). Given matrices A and B of size p× n, the sum A+B is a matrix of

the same size, with elements aij + bij , i = 1, 2, . . . , p, j = 1, 2, . . . , n. This may be abbreviated as

A+B = [aij + bij ]p×n.

Example. Given the matrices

A =


−2 0 0 1

1 −5 1 0

0 −3 0 −1

 , B =


0 0 0 −5

1 0 −2 1

−1 3 2 0

 .
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we have

A+B =


−2 + 0 0 + 0 0 + 0 1− 5

1 + 1 −5 + 0 1− 2 0 + 1

0− 1 −3 + 3 0 + 2 −1 + 0

 =


−2 0 0 −4

2 −5 −1 1

−1 0 2 −1

 .

DEFINITION (Negative of a matrix). The negative (or the additive inverse) of a matrix A, of size p× n, is

a matrix of the same size, denoted by−A, whose elements are the negatives of the corresponding elements

of A. In abbreviate form,

−A = [−aij ]p×n.

Note that the difference of matrices A and B of the same size is defined as

A−B = A+ (−B).

Example. Consider the matrices

A =


−2 0 0 1

1 −5 1 0

0 −3 0 −1

 , B =


−2 0 0 1

0 0 0 0

1 1 1 1

 .
The negative of the matrix A is

−A =


2 0 0 −1

−1 5 −1 0

0 3 0 1

 .
We also have

B −A = B + (−A) =


0 0 0 0

−1 5 −1 0

1 4 1 2

 .

THEOREM 2.1. Given matrices A, B, and C, of size p× n, and denoting by 0 the null matrix of the same

size,

(1) (A+B) + C = A+ (B + C);

(2) A+B = B +A;

(3) A+ 0 = 0 +A = A;

(4) A+ (−A) = (−A) +A = 0.
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DEFINITION (Multiplication of a matrix by a scalar). Given a real number (or scalar) λ and a matrix A of

size p× n the product λA (or λ ·A) is a matrix of size p× n, whose elements are obtained by multiplying

each element of A by λ. In abbreviate form,

λA = [λaij ]p×n.

Example. Given the matrix

A =


−2 0

1 −5

0 −3

 ,
we have

3A =


−6 0

3 −15

0 −9

 , 1A =


−2 0

1 −5

0 −3

 = A, −1A =


2 0

−1 5

0 3

 = −A, 0A =


0 0

0 0

0 0

 = 0.

THEOREM 2.2. Given matrices A and B of size p× n, and real numbers λ and µ, we have

(1) λ(A+B) = λA+ λB;

(2) (λ+ µ)A = λA+ µA;

(3) λ(µA) = (λµ)A;

(4) 1A = A.

DEFINITION (Multiplication of matrices). Given matricesA of size p×n, andB of size n×q, the product

AB (or A ·B) is a matrix of size p× q with elements

[AB]ij = ai1b1j + ai2b2j + · · ·+ ainbnj =
n∑
k=1

aikbkj , i = 1, 2, . . . , p, j = 1, 2, . . . , q.

This may be abbreviated as

AB =

[
n∑
k=1

aikbkj

]
p×q

.

Example. Given the matrices

A =


−1 0

3 0

0 1

 , B =

[
−2 0 1 0

1 −5 0 −1

]
,
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of sizes 3× 2 and 2× 4, respectively, the product AB is the matrix of size 3× 4

AB =


2 0 −1 0

−6 0 3 0

1 −5 0 −1

 .

THEOREM 2.3. Let A and A∗ be matrices of size p × n, B and B∗ matrices of size n × q, C a matrix of

size q × r, and λ a real number. Then

(1) (AB)C = A(BC);

(2) (A+A∗)B = AB +A∗B;

(3) A(B +B∗) = AB +AB∗;

(4) λ(AB) = (λA)B = A(λB);

(5) IpA = A = AIn.

The multiplication of matrices is not commutative, that is, given two matrices A and B, of the sizes p×n and

n× q, respectively, it cannot be assured that AB = BA (even if both products exist and are of the same size).

DEFINITION (Commuting matrices). Given two matrices A and B, if AB = BA the matrices A and B

are said to commute.

Example. Consider the matrices

A =

[
−1 0

0 3

]
, B =

[
−1 1

3 2

]
, C =

[
1 0

0 2

]
, D =

[
−2 0 1

1 −5 0

]
, E =


−2 0

1 −5

0 1

 .
The matrices A and E do not commute as, although the product EA exists, the product AE does not.

The products DE and ED both exist but the first is a 2× 2 matrix whereas the second a 3× 3 matrix, so that

D and E do not commute.

The products AB and BA are both matrices of size 2× 2 matrices, but distinct:

AB =

[
−1 0

0 3

][
−1 1

3 2

]
=

[
1 −1

9 6

]
6= BA =

[
−1 1

3 2

][
−1 0

0 3

]
=

[
1 3

−3 6

]
.

Therefore, the matrices A and B do not commute.

The matrices A and C commute:

AC =

[
−1 0

0 3

][
1 0

0 2

]
=

[
−1 0

0 6

]
=

[
1 0

0 2

][
−1 0

0 3

]
= CA.
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DEFINITION (Exponentiation of matrices). Given a square matrix A of order n, and a positive integer k,

the power Ak is the product of k factors of A

Ak = AA · · ·A.

Example. Consider the matrix

A =

[
−1 1

3 2

]
.

Then

A2 =

[
−1 1

3 2

][
−1 1

3 2

]
=

[
4 1

3 7

]
.

DEFINITION (Transposition). Given a matrix A of size p × n, the transpose of A, denoted by A′, is a

matrix of size n× p, with elements aji, j = 1, 2, . . . , n, i = 1, 2, . . . , p. In abbreviate form,

A′ = [aji]n×p.

Example. Consider the matrix of size 3× 4

A =


−2 0 0 3

1 −5 1 0

−1 −3 5 −1

 .
The transpose of A is the matrix obtained from A by “turning rows into columns and vice versa”:

A′ =


−2 1 −1

0 −5 −3

0 1 5

3 0 −1

 .
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THEOREM 2.4. Given matrices A and A∗ of size p × n, a matrix B of size n × q, a square matrix C of

order n, and a positive integer k,

(1) (A+A∗)′ = A′ + (A∗)′;

(2) (AB)′ = B′A′;

(3)
(
Ck
)′

= (C ′)k;

(4) I ′n = In;

(5) (A′)′ = A;

(6) (λA)′ = λA′.

DEFINITION (Symmetric and skew-symmetric matrices). A matrix A satisfying A′ = A is said to be

symmetric. If A′ = −A, A is called skew-symmetric.

It is clear that both symmetric and skew-symmetric matrices are necessarily square.

Example. Consider the matrices

A =


2 1 3

1 4 −1

3 −1 0

 , B =


0 −1 −3

1 0 1

3 −1 0

 .
Matrix A is clearly symmetric, and B skew-symmetric.

Invertible matrices.

DEFINITION (Invertible matrix). A matrix A is said to be invertible if there exists a matrix A−1, called

inverse of A, such that

AA−1 = A−1A = I.

Obviously, if A is invertible then A and A−1 are square matrices of the same order.

THEOREM 2.5. If a matrix A is invertible, its inverse A−1 is unique.

Examples.

(a) The inverse B of matrix

A =

[
1 0

1 1

]
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if it exists, satisfies both the equalities AB = I2 and BA = I2. For the first equality we have

AB = I2 ⇔

[
1 0

1 1

][
a b

c d

]
=

[
1 0

0 1

]
,

where a, b, c, and d are the elements to be determined of the matrix B. Multiplying the matrices on the

left-hand side of the equality, we obtain[
a b

a+ c b+ d

]
=

[
1 0

0 1

]
.

Solving the above equation amounts to solve the system of equations
a = 1

b = 0

a+ c = 0

b+ d = 1

⇔


a = 1

b = 0

c = −1

d = 1

.

Using the obtained matrix

B =

[
1 0

−1 1

]
in the second equality, we can check that this equality is also satisfied

BA =

[
1 0

−1 1

][
1 0

1 1

]
=

[
1 0

0 1

]
= I2.

We conclude that A is invertible and that its inverse is the matrix B obtained above: A−1 = B.

(b) Consider now the matrix

C =

[
1 2

2 4

]
.

Following the same steps as in the previous example, we obtain

CD = I2 ⇔

[
1 2

2 4

][
a b

c d

]
=

[
1 0

0 1

]
⇔

[
a+ 2c b+ 2d

2a+ 4c 2b+ 4d

]
=

[
1 0

0 1

]
.

Writing the corresponding system of equations
a+ 2c = 1

b+ 2d = 0

2a+ 4c = 0

2b+ 4d = 1

⇔


a+ 2c = 1

b+ 2d = 0

a+ 2c = 0

b+ 2d = 1
2

,
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we observe immediately that the system is inconsistent. Therefore, the matrix C is not invertible.

THEOREM 2.6. Given square matrices A and B of order n, invertible, and a positive integer k, we have

(1) (AB)−1 = B−1A−1;

(2)
(
Ak
)−1

=
(
A−1

)k;

(3) (A′)−1 =
(
A−1

)′;
(4)

(
A−1

)−1
= A.

Example. We can use the properties of matrix algebra and of invertible matrices to solve in order to X the

matrix equation

A+B′X ′ −X ′ = 2A−B′.

We assume that all the matrices involved have the proper sizes so that the relevant operations are allowed. We

assume also that matrix B′ − I is invertible. We then have

A+B′X ′ −X ′ = 2A−B′ ⇔ (B′ − I)X ′ = A−B′ ⇔ X ′ = (B′ − I)−1(A−B′)

⇔ X = ((B′ − I)−1(A−B′))′

⇔ X = (A−B′)′((B′ − I)−1)′

⇔ X = (A−B′)′((B′ − I)′)−1

⇔ X = (A′ −B)(B − I)−1.

Rank.

Consider matrix A of size p× n

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...

ap1 ap2 · · · apn

 .
We now interpret the rows of a matrix A as row matrices

Ai =
[
ai1 ai2 · · · ain

]
, i = 1, 2, . . . , p,
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and the columns as column matrices

aj =


a1j

a2j
...

apj

 , j = 1, 2, . . . , n.

Moreover, these row and column matrices can be viewed as vectors in Rn and Rp, respectively. Assuming

this point of view, the notions and results presented in Chapter 1 for vectors, still hold for rows and columns

of a matrix (in particular, the definitions and results concerning linear combination and dependency hold).

Examples.

(a) Consider the 2× 3 matrix

A =

[
2 0 1

1 3 −1

]
.

The row matrix [
1 15 −5

]
is not a linear combination of the rows of A, as there are not real numbers λ1 and λ2 such that[

1 15 −5
]

= λ1

[
2 0 1

]
+ λ2

[
1 3 −1

]
.

In fact, solving the above equation can be reduce to solve the system
2λ1 + λ2 = 1

3λ2 = 15

λ1 − λ2 = −5

,

which is clearly inconsistent. But the column matrix[
4

5

]
is a linear combination of the columns of matrix A as[

4

5

]
= 2

[
2

1

]
+

[
0

3

]
+ 0

[
1

−1

]
.

(b) Consider the 2× 3 matrix

B =

[
−2 0 1

2 1 −1

]
.
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The rows are linearly independent as the equation

λ1

[
−2 0 1

]
+ λ2

[
2 1 −1

]
=
[

0 0 0
]

has solution 
−2λ1 + 2λ2 = 0

λ2 = 0

λ1 − 2λ2 = 0

⇔


λ1 = 0

λ2 = 0

.

But the columns are dependent as

λ1

[
−2

2

]
+ λ2

[
0

1

]
+ λ3

[
1

−1

]
=

[
0

0

]
is equivalent to {

−2λ1 + λ3 = 0

2λ1 + λ2 − λ3 = 0
⇔

{
λ2 = 0

λ3 = 2λ1
,

existing solutions other than λ1 = λ2 = λ3 = 0 (for example, λ1 = 1, λ2 = 0, λ3 = 2). Notice that there

exist columns that are linear combination of the remaining columns. For example,[
−2

2

]
= 0

[
0

1

]
− 2

[
1

−1

]
.

(c) Consider the matrix

C =


−2 0 1

2 0 −1

5 0 2

 .
As the second column is null, the columns are linearly dependent. The rows are also dependent as the first

row equals the product of −1 and the second row: C1 = −1C2.

(d) Consider the 2× 2 matrix

D =

[
−2 0

2 1

]
.

The column [
2

2

]
is a linear combination of the columns of D since

λ1

[
−2

2

]
+ λ2

[
0

1

]
=

[
2

2

]
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if and only if {
−2λ1 = 2

2λ1 + λ2 = 2
⇔

{
λ1 = −1

λ2 = 4
.

Notice the values we obtained for λ1, λ2 are unique. Hence, the columns of D are independent. In fact, the

zero linear combination of the columns of D has the unique solution λ1 = λ2 = 0:

λ1

[
−2

2

]
+ λ2

[
0

1

]
=

[
0

0

]
if and only if {

−2λ1 = 0

2λ1 + λ2 = 0
⇔

{
λ1 = 0

λ2 = 0
.

DEFINITION (Row and column rank). Given a matrix A, the maximum number of linearly independent

rows (columns) of A is called the row (column) rank of A.

THEOREM 2.7. Given a matrix A, the row and column ranks of A are the same.

DEFINITION (Rank). The common value of the row and column ranks of a matrix A is called the rank of

A, denoted by r(A).

DEFINITION (Equivalent matrices). Two p × n matrices are said to be equivalent if they have the same

rank.

We want to develop a procedure in order to determine the rank of any given matrix.

DEFINITION (Elementary row and column operations). Given a matrix, we designate elementary row

(column) operations:

(1) Swapping positions of two rows (columns);

(2) Multiplying a row (column) by a number different from zero;

(3) Adding one row (column) to another.

DEFINITION (Elementary matrices). An elementary matrix of size m ×m is a matrix obtained from the

identity matrix Im by applying to it a single elementary operation.

Example. The matrices below are the elementary matrices obtained from I3 by applying, respectively, the

elementary operations “interchanging the second and third columns”, “multiplying the first row by 2”, and



26 2. MATRICES

“adding the third row to the first”:
1 0 0

0 0 1

0 1 0

 ,


2 0 0

0 1 0

0 0 1

 ,


1 0 1

0 1 0

0 0 1

 .

THEOREM 2.8. An elementary row (column) operation on a p × n matrix A can be achieved by pre-

multiplying (post-multiplying) A by the elementary matrix obtained from Ip (In) by applying to Ip (In)

precisely the same row (column) operations.

THEOREM 2.9. If a matrix B is obtained from a matrix A by means of a finite sequence of elementary row

or column operations then r(A) = r(B) (and matrices A and B are equivalent).

Example. Let

A =


1 3 1

0 1 −1

3 0 0

0 2 1


We want to consecutively apply to A the elementary operations “interchanging the first and third columns”,

“multiplying the first row by−1”, and “adding the third column to the first”. This can be achieved by pre- and

post-multiplying A by suitable elementary matrices:

P1AQ1Q2 =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

·


1 3 1

0 1 −1

3 0 0

0 2 1

·


0 0 1

0 1 0

1 0 0

·


1 0 0

0 1 0

1 0 1

 =


−2 −3 −1

−1 1 0

3 0 3

1 2 0

 = B.

Alternatively, we can apply the elementary operations directly to matrix A:

A =


1 3 1

0 1 −1

3 0 0

0 2 1

−→


1 3 1

−1 1 0

0 0 3

1 2 0

−→

−1 −3 −1

−1 1 0

0 0 3

1 2 0

−→

−2 −3 −1

−1 1 0

3 0 3

1 2 0

 = B.

By applying elementary operations to matrix A, no matter what is the algorithm used, we obtained an equiva-

lent matrix, the matrix B.
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DEFINITION (Upper triangular form). A p× n matrix A is said to be in upper triangular form if it writes

A =

[
Tm Q

0 0

]
,

where Tm designates an upper triangular submatrix of order m (m ≤ min(p, n)) with nonzero diagonal

elements, Q any submatrix, and 0 null submatrices (withQ and the submatrices 0 of the appropriate sizes).

Example. The matrices below are in upper triangular form:

A =


−2 3 1

0 1 −1

0 0 0

0 0 0

 , B =


2 1 1

0 1 −1

0 0 3

0 0 0

 , C =


3 3 1

0 1 −1

0 0 1

 , D =


3 3 1 0

0 1 −1 1

0 0 1 0

 .
is in upper triangular form.

THEOREM 2.10. Any nonzero matrix can be reduced to upper triangular form by using elementary row

and column operations.

Note that to obtain an upper triangular form it suffices to use row operations, with possible interchanging of

columns.

THEOREM 2.11. The rank of a matrix in upper triangular form is the order m of the upper triangular

submatrix Tm.

Example. To determine the rank of the matrix

A =


1 3 1

0 0 −1

3 0 0

0 2 1
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we reduce the matrix,
1 3 1

0 0 −1

3 0 0

0 2 1


−−−−−→
r3−3r1


1 3 1

0 0 −1

0 −9 −3

0 2 1


−−−−→
c2↔c3


1 1 3

0 −1 0

0 −3 −9

0 1 2


−−−−−→
r3−3r2

r4+r2


1 1 3

0 −1 0

0 0 −9

0 0 2



−−−−−→
− 1

9
r3


1 1 3

0 −1 0

0 0 1

0 0 2


−−−−−→
r4−2r3


1 1 3

0 −1 0

0 0 1

0 0 0

 .
As the upper triangular submatrix we obtained is of order 3 we have that r(A) = 3.

THEOREM 2.12. A square matrix A of order n is invertible if and only if r(A) = n.

THEOREM 2.13. Given a matrix A, r(A′) = r(A).

Exercises.

(1) Consider the matrices

A =


−2 0 0

1 −5 1

−4 −3 0

 , B =


0 0 0 1

1 0 −2 −5

1 3 2 0

 , C =
[

1 0 −1
]
, D =

[
0

1

]
,

E =
[

0 0 0
]
, F =


1 −1 2

0 3 0

0 0 0

 , G =


1 0 0

0 1 0

0 0 0

 ,

H =


2 0 0

0 2 0

0 0 2

 , I =

[
1 0

0 1

]
, J =


1 0 0

0 1 0

0 0 1

 .
a) Determine the type of each one of the above matrices.

b) Determine the negative of matrix B.

c) Determine the diagonal elements of matrix F .

d) With respect to the matrices G e H , determine the pairs of corresponding elements.
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(2) Determine, if possible:

a)

[
1 2 −3 4

0 −5 1 −1

]
+

[
3 −5 6 1

2 0 −2 −3

]
;

b)

[
0 2 2

0 −5 1

]
−

[
−3 −5

1 0

]
;

c) −2 ·

[
1 −2 2

0 −5 3
5

]
;

d)
[

0 2 −3
]

+
[
−3 −5 0

]
.

(3) Consider the matrices

A =

[
−2 0 0

1 −5 1

]
, B =


0 0 0

1 0 −2

1 3 2

 , C =
[

1 0 −1
]
, D =

[
0

1

]
,

E =
[

0 0 0
]
, F =

[
1 −1 2

0 3 0

]
, G =

[
1 0 0

0 1 0

]
, H =


2 0 0

0 2 0

0 0 2

 .
Determine, if possible:

a) 0A− F + 2G;

b) C + 0D;

c) 2(B +H);

d) 3(2C + E)− C.

(4) Consider the matrices

A =

[
−2 0 0

1 −5 1

]
, B =

[
0 0 0

1 0 −2

]
, C =

[
1 0 −1

3 0 0

]
.

Determine the matrix X that satisfies the equation

3(A− 2X) = (−B −X) + C.
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(5) Determine, is possible, the products:

a)


1 2

0 −1

0 0

 ·
[

2 −5

1 0

]
; b)

[
0 0 2

1 −1 1

]
·


−3

1

0

 ;

c)

[
1 −2 2

0 −5 3
5

]
·
[

1 −2 2
]

; d)
[

0 2 −2
]
·


−1

1

0

 ;

e)


−1

1

0

 · [ 0 2 −2
]
.

(6) Let

A =


1 2 −3

5 0 2

1 −1 1

 , B =


3 −1 2

4 2 5

2 0 3

 , C =


4 1 2

0 3 2

1 −2 3

 .
Determine the matrices:

a) A+B;

b) A−B;

c) AB;

d) BA;

e) (AB)C.

(7) Consider the matrices

A =

[
−2 0 0

1 −1 1

]
, B =

[
0 0 0

1 0 −2

]
, C =

[
3 0

]
, D =


1 0 1

−1 0 0

0 1 2

 ,

I =

[
1 0

0 1

]
.

Determine, if possible, C(A+ 3IB)D.
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(8) Given the matrices A e B, determine under what conditions we have

(A+B)(A−B) = A2 −B2.

(9) Consider the matrices

A =

[
−2 0 0

1 −5 1

]
, B =

[
0 3

1 0

]
, C =


1 2 −1

2 0 −1

−1 −1 −3

 , D =

[
1 0

0 −2

]
,

E =

[
0

1

]
, F =

[
0 −2

2 0

]
.

a) Determine the transposes of the given matrices.

b) Which of the above matrices are symmetric? And skew-symmetric?

(10) Determine the values of the real parameter a for which the following matrix is symmetric
a a2 − 1 −3

a+ 1 2 a2 + 4

−3 4a −1


(11) Let A, B be square matrices of order n.

a) Show that AA′ is symmetric.

b) Show that if the matrices A, B, and AB are symmetric then A and B commute.

(12) Consider the matrices

A =

[
3 0

2 −1

]
, B =

[
1
3 0
2
3 −1

]
, C =


1 1 −3

2 1 −3

2 2 1

 , D =


−1 1 0

8
7 −1 3

7

−2
7 0 1

7

 .
Show that A−1 = B and that C−1 = D.

(13) Consider the matrices

A =


2 −1 −1

a 1
4 b

1
8

1
8 −1

8

 , B =


1 2 4

0 1 6

1 3 2

 .
Determine the values of a and b such that A = B−1.
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(14) Consider the matrices

A =

[
1 2

1 1

]
, B =

[
−1 2

1 −1

]
, C =

[
1 0

−1 1

]
, D =

[
−1 1

2 −2

]
.

a) Check that A−1 = B. Without making any further computations, determine B−1.

b) Check that C−1 6= D.

c) Does D−1 exist?

(15) Consider the diagonal matrices

A =


1 0 0

0 −3 0

0 0 1
2

 , B =


1 0 0

0 −1
3 0

0 0 2

 .
Check that A−1 = B. More generally, determine the inverse of a diagonal matrix whose diagonal

contains no element equal to zero.

(16) Let A, B, C, D be square matrices of order n, with A, C invertible. Solve in order to X the equation

A(B +X)C = D.

(17) Let A, B, C, D be square matrices of the same order, with A, C invertible. Solve the matrix equation

A−1(B +X ′)(2CA′)′ = D′C ′.

(18) Prove Theorem 2.5.

(19) Consider the matrix

A =


1 2 1 0

0 −1 0 0

0 0 1 1

 .
a) Determine the row linear combination 2A1 −A2 + 3A3.

b) Determine the column linear combination a1 + a2 − 3a4.

c) Are the rows linearly independent? And the columns?

d) What is the rank of the matrix A?
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(20) Consider the matrices

A =

[
1 2

8 16

]
, B =

[
1 3 4

2 0 1

]
, C =

[
−2 1 3

1 −1 1

]
,

D =


0 −2

0 0

0 1

 , E =


3 0 0

1 1 0

2 0 0

 , F =


1 2 −1 3

2 4 −4 7

−1 −2 −1 −2

 ,

G =


1 3 0 0

2 4 0 −1

1 −1 2 2

 , H =


0 3 0 0

2 4 0 −1

0 −1 2 2

 , I =


1 0 1 2

−1 0 1 −2

0 1 2 0

0 1 1 0

 ,

J =


1 −2 −1 1

2 1 1 2

−1 1 −1 −3

−2 −5 −2 0

 .
Reduce the given matrices to upper triangular form and determine their ranks.

(21) Discuss the rank of the following matrices depending on the values of the relevant real parameters:

a)


x 0 x2 − 2

0 1 1

−1 x x− 1

 ; b)


t+ 3 5 6

−1 t− 3 −6

1 1 t+ 4

 ; c)


1 x y 0

0 z w 1

1 x y 1

0 z w 1

 .

(22) Find an example, for the particular case of matrices of size 2 × 2, illustrating the fact that, in general,

r(AB) 6= r(BA).
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Definitions.

Consider the set Pn of all permutations of {1, 2, . . . , n}, that is, the set of all one-to-one mappings of

{1, 2, . . . , n} onto itself. It is useful to write a permutation σ ∈ Pn as

σ =

(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
.

If we assume that the elements 1, 2, . . . , n in the domain of the permutation are always written in this order,

the permutation σ may be represented by simply listing the images

(σ1, σ2, . . . , σn),

where σi denotes σ(i) for i = 1, 2, . . . , n.

In a permutation (σ1, σ2, . . . , σn) we say that the pair (σi, σj) is an inversion if i < j and σi > σj . The

number of inversions in σ is denoted by I(σ), and σ is said to be even or odd depending on the parity of I(σ).

DEFINITION (Signum of a permutation). For every permutation σ the signum of σ, εσ, is defined by

εσ = (−1)I(σ) =

{
1 if σ is even

−1 if σ is odd
.

Example. Consider the permutation

σ =

(
1 2 3 4 5

2 4 1 5 3

)
or, with a simpler notation,

(2, 4, 1, 5, 3).

The inversions in σ are (2, 1), (4, 1), (4, 3), and (5, 3). Their number is I(σ) = 4, σ is even, and its signum is

εσ = (−1)I(σ) = (−1)4 = 1.

35
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DEFINITION (Elementary product). Given a square matrix A of order n, we call elementary product to

any product of n of its elements choosing exactly one for each row with no repetition of columns

a1σ1a2σ2 · · · anσn .

Example. If A is a matrix of order 3 the following are elementary products

a11a22a33 and a13a22a31.

Let us assign to each elementary product in An the signum of the permutation of the column indices

εσa1σ1a2σ2 · · · anσn .

The sum of all such products is called the determinant of matrix A.

DEFINITION (Determinant). Let A be a square matrix of order n. The determinant of A, denoted by |A|
or det(A) is the real number defined by

|A| =
∑
σ∈Pn

εσa1σ1a2σ2 · · · anσn .

In the particular, for the cases where n = 1, 2, 3 we have:

(1) If n = 1,

|A| = |a11| = a11;

(2) If n = 2,

|A| =

∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣ = a11a22 − a12a21;

(3) If n = 3,

|A| =

∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣
= a11a22a33 + a13a21a32 + a12a23a31

−a13a22a31 − a11a23a32 − a12a21a33.

Example. Let us compute the determinants of the matrices

A =
[
−1

]
, B =

[
−1 −3

4 2

]
, C =


1 0 3

0 1 2

1 1 −1

 .
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We have

|A| = | − 1| = −1, |B| =

∣∣∣∣∣ −1 −3

4 2

∣∣∣∣∣ = −1 · 2− (−3 · 4) = 10,

e

|C| =

∣∣∣∣∣∣∣∣
1 0 3

0 1 2

1 1 −1

∣∣∣∣∣∣∣∣
= 1 · 1 · (−1) + 3 · 0 · 1 + 1 · 0 · 2

−3 · 1 · 1− 1 · 2 · 1− (−1) · 0 · 0 = −6.

Properties of the determinants.

THEOREM 3.1. Let A and B be square matrices of order n, α a real number, and p a natural number. The

following holds:

(1) If A has a null row (column) or two equal or proportional rows (columns) or if, more generally, a

row (column) is a linear combination of the remaining rows (columns) then |A| = 0;

(2) If A is a (upper or lower) triangular matrix then the determinant |A| is the product of the diagonal

elements of A;

(3) If row i in matrix A is written[
ai1 ai2 · · · ain

]
=
[
a′i1 + a′′i1 a′i2 + a′′i2 · · · a′in + a′′in

]
then

|A| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n
...

...
...

...

a′i1 a′i2 · · · a′in
...

...
...

...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n
...

...
...

...

a′′i1 a′′i2 · · · a′′in
...

...
...

...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
;

Mutatis mutantis the same holds for columns;

(4) |A′| = |A|;

(5) |αA| = αn|A|;

(6) |AB| = |A| · |B|;

(7) |Ap| = |A|p.
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Examples. Consider the matrices

A =

[
−1 2

3 −6

]
, B =


1 0 2

0 −1 −1

0 0 5

 , C =

[
1 −1

1 1

]
, D =

[
1 0

3 −1

]
.

(a) As the columns of matrix A are proportional, we have

|A| =

∣∣∣∣∣ −1 2

3 −6

∣∣∣∣∣ = 0.

(b) As matrix B is (upper) triangular, we have

|B| =

∣∣∣∣∣∣∣∣
1 0 2

0 −1 −1

0 0 5

∣∣∣∣∣∣∣∣ = 1 · (−1) · 5 = −5.

(c) Writing the second column of matrix A as the sum of two rows we obtain

|A| =

∣∣∣∣∣ −1 1 + 1

3 −5− 1

∣∣∣∣∣ =

∣∣∣∣∣ −1 1

3 −5

∣∣∣∣∣+

∣∣∣∣∣ −1 1

3 −1

∣∣∣∣∣ = 2− 2 = 0.

(d) Noting that

|C| =

∣∣∣∣∣ 1 −1

1 1

∣∣∣∣∣ = 1 · 1− (−1 · 1) = 2

we have ∣∣C ′∣∣ =

∣∣∣∣∣ 1 1

−1 1

∣∣∣∣∣ = 1 · 1− (1 · (−1)) = 2 = |C|.

(e) |3C| =

∣∣∣∣∣ 3 −3

3 3

∣∣∣∣∣ = 3 · 3− (−3 · 3) = 18 = 32|C|.

(f) Noting that |C| = 2 and that

|D| =

∣∣∣∣∣ 1 0

3 −1

∣∣∣∣∣ = 1 · (−1)− (0 · 3) = −1

we have |CD| =

∣∣∣∣∣ −2 1

4 −1

∣∣∣∣∣ = −2 · (−1)− (1 · 4) = −2 = |C| · |D|.

(g) |C2| =

∣∣∣∣∣ 0 −2

2 0

∣∣∣∣∣ = 0 · 0− (−2 · 2) = 4 = |C|2.
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THEOREM 3.2. Let A be a square matrix of order n. The following statements are equivalent:

(1) A is invertible;

(2) |A| 6= 0;

(3) r(A) = n.

Example. Consider the matrices

A =

[
0 −1

1 1

]
and B =

[
−1 1

1 −1

]
.

The determinants of A and B are, respectively,

|A| =

∣∣∣∣∣ 0 −1

1 1

∣∣∣∣∣ = 0 · 1− (−1 · 1) = 1 and |B| =

∣∣∣∣∣ −1 1

1 −1

∣∣∣∣∣ = −1 · (−1)− (1 · 1) = 0.

As |A| = 1 6= 0 we conclude that r(A) = 2 (andA is invertible). Also, as |B| = 0 6= 0 we have that r(B) < 2

(and B is not invertible).

THEOREM 3.3. Let A be a square matrix of order n. If A is invertible then∣∣A−1∣∣ = |A|−1 =
1

|A|
.

Example. Consider the matrix

A =

[
1 −1

1 1

]
.

Note that |A| = 2 6= 0 so that A is invertible. It can be seen that the inverse of matrix A is

A−1 =

[
1
2

1
2

−1
2

1
2

]
and then ∣∣A−1∣∣ =

∣∣∣∣∣ 1
2

1
2

−1
2

1
2

∣∣∣∣∣ =
1

2
· 1

2
−
(

1

2
·
(
−1

2

))
=

1

2
=

1

|A|
.

Next result establishes what is the effect on the determinant |A| when elementary row or column operations

are applied to matrix A.
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THEOREM 3.4. Let A be a square matrix of order n. The following holds:

(1) If B is obtained from A by swapping positions of two rows (columns) then |B| = −|A|;

(2) If B is obtained from A by multiplying a row (column) by a real number λ then |B| = λ|A|;

(3) If B is obtained from A by adding to one row (column) the product of another row (column) by a

real number then |B| = |A|.

Since a (non-null) square matrix can be always reduced to an upper triangular matrix by applying elementary

row and column operations, we have just obtained a simple method to compute a general determinant (recall

that the determinant of an upper triangular matrix is just the product of its diagonal elements).

Example. Let us compute the determinant of matrix

A =


1 3 1 0

0 0 −1 1

3 0 0 1

0 2 1 0

 .
We have ∣∣∣∣∣∣∣∣∣∣

1 3 1 0

0 0 −1 1

3 0 0 1

0 2 1 0

∣∣∣∣∣∣∣∣∣∣
=

r3−3r1

∣∣∣∣∣∣∣∣∣∣
1 3 1 0

0 0 −1 1

0 −9 −3 1

0 2 1 0

∣∣∣∣∣∣∣∣∣∣
=

c2↔c4

−

∣∣∣∣∣∣∣∣∣∣
1 0 1 3

0 1 −1 0

0 1 −3 −9

0 0 1 2

∣∣∣∣∣∣∣∣∣∣

=

r3−r2

−

∣∣∣∣∣∣∣∣∣∣
1 0 1 3

0 1 −1 0

0 0 −2 −9

0 0 1 2

∣∣∣∣∣∣∣∣∣∣
=
1
2
r3

−2

∣∣∣∣∣∣∣∣∣∣∣

1 0 1 3

0 1 −1 0

0 0 −1 −9
2

0 0 1 2

∣∣∣∣∣∣∣∣∣∣∣

=

r4+r3

−2

∣∣∣∣∣∣∣∣∣∣
1 0 1 3

0 1 −1 0

0 0 −1 −9
2

0 0 0 −5
2

∣∣∣∣∣∣∣∣∣∣
= −5.
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Laplace’s expansion.

DEFINITION (Minor and cofactor). Let A be a square matrix of order n.

(1) The minor of A associated to the element aij or the (i, j) minor of A, denoted by Mij , is the deter-

minant of the (n− 1)× (n− 1) matrix that results from deleting the i-th row and the j-th column of

matrix A.

(2) The cofactor of A associated to the element aij or the (i, j) cofactor of A is the number

Aij = (−1)i+jMij .

Example. Let

A =


4 2 −1

0 1 −2

−2 0 1

 .
We have, for example,

M12 =

∣∣∣∣∣ 0 −2

−2 1

∣∣∣∣∣ = 0 · 1− (−2 · (−2)) = −4

and

A12 = (−1)1+2 ·M12 = (−1)1+2 ·

∣∣∣∣∣ 0 −2

−2 1

∣∣∣∣∣ = (−1) · (−4) = 4.

THEOREM 3.5 (Laplace’s expansion). Let A be a square matrix of order n. The determinant of A is the

weighted sum of the elements of any row or column, with the weights being the corresponding cofactors:

(1) |A| =
∑n

k=1 aikAik = ai1Ai1 + ai2Ai2 + · · ·+ ainAin (expansion along row i),

(2) |A| =
∑n

k=1 akjAkj = a1jA1j + a2jA2j + · · ·+ anjAnj (expansion along column j).

Example. Consider the matrix

A =


1 1 1

1 2 1

2 1 1

 .
Let us proceed to the expansion of |A| along, for example, the second column:

|A| = 1(−1)1+2 ·

∣∣∣∣∣ 1 1

2 1

∣∣∣∣∣+ 2(−1)2+2 ·

∣∣∣∣∣ 1 1

2 1

∣∣∣∣∣+ 1(−1)3+2 ·

∣∣∣∣∣ 1 1

1 1

∣∣∣∣∣ = −1.
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Adjugate and inverse of a square matrix.

DEFINITION (Cofactor and adjugate matrices). Let A be a square matrix of order n.

(1) The cofactor matrix of A is the matrix Â = [Aij ] whose elements are the cofactors of the corre-

sponding elements of A.

(2) The transpose of Â is called the adjugate matrix of A or the classical adjoint of A, and is denoted by

adjA. That is

adjA = Â′.

THEOREM 3.6 (Inverse of a square matrix). Let A be a square matrix of order n, invertible. Then

A−1 =
1

|A|
· adjA.

Example. Consider the matrix

A =

[
1 1

−1 2

]
.

To determine the cofactor matrix Â and then the adjugate matrix adjA we have to determine the cofactors of

each element of A:

A11 = (−1)1+1 ·2 = 2, A12 = (−1)1+2 ·(−1) = 1, A21 = (−1)2+1 ·1 = −1, A22 = (−1)2+2 ·1 = 1.

Hence,

Â =

[
2 1

−1 1

]
and adjA = Â′ =

[
2 −1

1 1

]
.

As |A| = 3, we have

A−1 =
1

|A|
· adjA =

1

3
·

[
2 −1

1 1

]
=

[
2
3 −1

3
1
3

1
3

]
.
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Exercises.

(1) Compute the following determinants (a, b, c, and d are real numbers):

a)

∣∣∣∣∣ −2 4

1 −2

∣∣∣∣∣ b)

∣∣∣∣∣ 2 −2

1 −1

∣∣∣∣∣ c)

∣∣∣∣∣ 2 0

1 −5

∣∣∣∣∣
d)

∣∣∣∣∣ 2 0

1 0

∣∣∣∣∣ e)

∣∣∣∣∣ 2 −1

1 −2

∣∣∣∣∣ f)

∣∣∣∣∣∣∣∣
2 1 −1

1 2 −2

2 1 −1

∣∣∣∣∣∣∣∣
g)

∣∣∣∣∣∣∣∣
2 1 3

1 2 3

2 1 3

∣∣∣∣∣∣∣∣ h)

∣∣∣∣∣∣∣∣
3 2 1

0 0 0

0 2 1

∣∣∣∣∣∣∣∣ i)

∣∣∣∣∣∣∣∣
1 2 0

0 0 1

0 0 −1

∣∣∣∣∣∣∣∣

j)

∣∣∣∣∣∣∣∣
1 3 −2

2 0 2

1 1 1

∣∣∣∣∣∣∣∣ k)

∣∣∣∣∣∣∣∣∣∣
1 0 0 0

0 1 0 0

0 −1 1 0
3
2

1
2 0 3

∣∣∣∣∣∣∣∣∣∣
l)

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 −1 0

0 −1 2 −1 1

0 0 2 1 10

0 0 0 1 −5

0 0 0 0 3

∣∣∣∣∣∣∣∣∣∣∣∣∣

m)

∣∣∣∣∣∣∣∣
0 0 a

0 b 0

c 0 0

∣∣∣∣∣∣∣∣ n)

∣∣∣∣∣∣∣∣∣∣
0 0 0 a

0 0 b 0

0 c 0 0

d 0 0 0

∣∣∣∣∣∣∣∣∣∣
0)

∣∣∣∣∣∣∣∣∣∣
2 0 3 −1

0 4 0 0

0 1 −1 2

3 2 5 −3

∣∣∣∣∣∣∣∣∣∣

p)

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 1

0 0 0 5 1

0 0 3 1 2

0 4 0 3 4

6 2 3 1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2) Compute the following determinants by using Laplace’s expansion (a, b, c, and d are real numbers):

a)

∣∣∣∣∣∣∣∣∣∣
1 2 1 3

2 1 3 0

0 0 1 4

0 0 4 2

∣∣∣∣∣∣∣∣∣∣
b)

∣∣∣∣∣∣∣∣∣∣
1 1 1 1

0 −1 1 1

0 1 −1 1

1 1 1 −1

∣∣∣∣∣∣∣∣∣∣
c)

∣∣∣∣∣∣∣∣∣∣
a 3 0 5

0 b 0 2

1 2 c 3

0 0 0 d

∣∣∣∣∣∣∣∣∣∣
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(3) Show that the following determinants are zero (a, b, and c are real numbers):

a)

∣∣∣∣∣∣∣∣
1 2 3

2 4 5

3 6 8

∣∣∣∣∣∣∣∣ b)

∣∣∣∣∣∣∣∣
1 a b+ c

1 b c+ a

1 c a+ b

∣∣∣∣∣∣∣∣ c)

∣∣∣∣∣∣∣∣
a− b a− b a2 − b2

1 1 a+ b

b 1 a

∣∣∣∣∣∣∣∣
(4) Show that the following equalities are satisfied (xi, yi, for i = 1, 2, 3, are real numbers):

a)

∣∣∣∣∣∣∣∣
1 x1 x2

1 y1 x2

1 y1 y2

∣∣∣∣∣∣∣∣ = (y1 − x1)(y2 − x2)

b)

∣∣∣∣∣∣∣∣∣∣
1 x1 x2 x3

1 y1 x2 x3

1 y1 y2 x3

1 y1 y2 y3

∣∣∣∣∣∣∣∣∣∣
= (y1 − x1)(y2 − x2)(y3 − x3)

(5) Consider the matrices

A =

[
2 1 0

1 2 5

]
, B =

[
0 2 0

2 1 1

]

Compute |A′B|.

(6) Let

A =

[
1 0 0

0 2 1

]
, B =


2 3

0 1

1 0


Compute the determinant of the matrix C = (BA)′.

(7) Determine the adjugate and, if possible, the inverse of each one of the following matrices:

A =

[
−1 2

1 3

]
, B =

[
1 −2

1 −2

]
, C =


1 2 3

1 3 4

1 4 3

 , D =


−4 −3 −3

1 0 1

4 4 3

 ,

E =


1 1 0

1 0 2

2 0 3

 , F =


1 0 1

2 3 0

2 0 2

 , G =


3 0 0

0 −2 0

0 0 1

 .
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(8) Consider the matrix

A =


a+ 1 a a

a a+ 1 a

a a a+ 1

 .
Find the values of the real parameter a such that matrix A is invertible. For a = 1 determine A−1.





4. Systems of linear equations

Matrix form and solvability.

Let us consider the system of linear equations (or the linear system) with p equations and n unknowns
a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

. . .

ap1x1 + ap2x2 + . . .+ apnxn = bp

,

where the aij , i = 1, . . . , p, j = 1, . . . , n, are the system coefficients, the bi, i = 1, . . . , p, the free terms, and

the xj , j = 1, . . . , n, the variables (or unknowns).

The system can be represented by the matrix equation

Ax = b,

where A is the coefficient matrix of the system (of size p× n)

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...

ap1 ap2 . . . apn

 ,
x is the column matrix of the unknowns (of size n × 1), and b the column matrix of the free terms (of size

p× 1)

x =


x1

x2
...

xn

 , b =


b1

b2
...

bp

 .
We call a solution to the system to any vector in Rn(

x01, x
0
2, . . . , x

0
n

)
47
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satisfying the system. The set of all solutions is called the general solution to the system.

Example. Consider the system {
x − 2y = 1

−2x + 4y = −2
.

We see that the vector (x, y) = (1, 0) solves the system. Therefore (1, 0) is a (particular) solution to the

system.

To find the general solution we use the usual equivalence rules for systems of equations{
x − 2y = 1

−2x + 4y = −2
⇔

{
x = 2y + 1

−2x + 4y = −2
⇔

{
x = 2y + 1

−2 = −2

and obtain

(x, y) = (2y + 1, y) for all y ∈ Rn.

Note that the particular solution (1, 0) above is obtained from the general solution by making y = 0.

A linear system is said to be consistent if it has, at least one solution. Otherwise, that is, if there is no solution

to the system, the system is called inconsistent.

Moreover, a consistent system is said to be independent if its solution is unique and dependent if the system

admits more than one solution.

Notice that the system can also be written

x1


a11

a21
...

ap1

+ x2


a12

a22
...

ap2

+ · · ·+ xn


a1n

a2n
...

apn

 =


b1

b2
...

bp

 .
This last representation suggests the following interpretation:

• The system is solvable if and only if the column b is a linear combination of the columns of A;

• The system has a unique solution if and only if the column b writes as a unique linear combination

of the columns of A.

The above conditions can be easily checked by computing the ranks of appropriate matrices.
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THEOREM 4.1. Let Ax = b be a system of linear equations, and [A|b] its so-called augmented matrix

[A|b] =


a11 a12 . . . a1n b1

a21 a22 . . . a2n b2
...

...
...

...
...

ap1 ap2 . . . apn bp

 .

(1) If r(A) = r([A|b]), the system is consistent. Otherwise, that is, if r(A) < r([A|b]), the system is

inconsistent.

(2) If the system is consistent and also r(A) = n, then it is independent. Otherwise, that is, if r(A) < n,

the system is dependent (and d = n− r(A) is the number of degrees of freedom of the system).

The following scheme summarizes the above:



r(A) = r([A|B]) — consistent system



r(A) = n — independent system

r(A) < n — dependent system (with d = n− r(A)

the number of degrees of freedom)

r(A) < r([A|B]) — inconsistent system

DEFINITION (Homogeneous system). If in a system Ax = b we have b = 0, the system is called homoge-

neous. Otherwise, that is, if b 6= 0, the system is called nonhomogeneous or inhomogeneous.

THEOREM 4.2. A homogeneous system is always consistent.
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Gaussian elimination.

Classifying and solving linear systems.

Let [A|b] be the augmented matrix representing a linear system.

(1) Gaussian elimination: By using elementary row operations, with possible interchanging of columns

of A, we reduce matrix [A|b] to a rank-equivalent matrix [A∗|b∗], where A∗ is in upper triangular

form (this procedure is nothing else than the well-known method of elimination of variables for

solving linear systems).

(2) We evaluate the consistency of the system by checking if r(A) = r([A|b]).

(3) If the system is consistent, the independence is evaluated by checking if r(A) = n.

(4) Finally, in the case the system is consistent, we carry on further Gaussian elimination on matrix

[A∗|b∗] in order to obtain an identity matrix in the place of the upper triangular submatrix of A∗. The

system’s solution can then be immediately found.

Examples.

(a) Consider the system 
x + 2y = 1

3x + y + z = 0

y + z = −3

.

We construct the system’s augmented matrix [A|b] and, by Gaussian elimination,
1 2 0 1

3 1 1 0

0 1 1 −3


−−−−−→
r2−3r1


1 2 0 1

0 −5 1 −3

0 1 1 −3


−−−−→
r2↔r3


1 2 0 1

0 1 1 −3

0 −5 1 −3


−−−−−→
r3+5r2


1 2 0 1

0 1 1 −3

0 0 6 −18

 .
As r(A) = r([A|b]) = n = 3, we have that the system is consistent and independent. To obtain the solution,

we carry on Gaussian elimination until the upper triangular submatrix is transformed into an identity matrix
1 2 0 1

0 1 1 −3

0 0 6 −18


−−−→

1
6
r3


1 2 0 1

0 1 1 −3

0 0 1 −3


−−−−→
r2−r3


1 2 0 1

0 1 0 0

0 0 1 −3


−−−−−→
r1−2r2


1 0 0 1

0 1 0 0

0 0 1 −3

 .
The solution is (x, y, z) = (1, 0,−3).
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(b) Consider the linear system {
x + 2y + 3z = 3

y + 2z = 2
,

with augmented matrix

[A|b] =

[
1 2 3 3

0 1 2 2

]
.

The matrix A is in an upper triangular form, and r(A) = r([A|b]) = 2, so that the system is consistent. As

n = 3 > 2 = r(A), the system is dependent with d = n− r(A) = 3− 2 = 1 degrees of freedom. In order to

obtain the solution we carry on further Gaussian elimination[
1 2 3 3

0 1 2 2

]−−−−−→
r1−2r2

[
1 0 −1 −1

0 1 2 2

]
.

We finally obtain {
x − z = −1

y + 2z = 2
⇔

{
x = z − 1

y = −2z + 2
,

and the solution to the system is (x, y, z) = (z − 1,−2z + 2, z), with z taking any real value.

Application: invertibility of a matrix and determining the inverse.

We know that a square matrix An is invertible if the matrix equation
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...

an1 an2 . . . ann




x11 x12 . . . x1n

x21 x22 . . . x2n
...

...
...

...

xn1 xn2 . . . xnn

 =


1 0 . . . 0

0 1 . . . 0
...

...
...

...

0 0 . . . 1


is solvable, that is, if there are real numbers xij , with i, j = 1, 2, . . . , p, satisfying the equation.

Also, evaluating the solvability of and solving, if possible, the equation amounts to evaluating the solvability

of and solving the uncoupled matrix equations
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a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...

an1 an2 . . . ann




x11

x21
...

xn1

 =


1

0
...

0



a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...

an1 an2 . . . ann




x12

x22
...

xn2

 =


0

1
...

0


...

...
...

...
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...

an1 an2 . . . ann




x1n

x2n
...

xnn

 =


0

0
...

1



.

As each one of the above equations has the same coefficient matrix, and noticing that the algorithm for Gauss-

ian elimination does not depend on the free term column, the following procedure is available for evaluating

the invertibility of a matrix and, if possible, for finding its inverse.

Invertibility of a matrix and determining the inverse

(1) The matrix A is augmented with the identity matrix of the same order: [A|I].

(2) The matrix A is reduced to upper triangular form by using row elementary operations on matrix

[A|I].

(3) If r(A) = n, matrix A is invertible. Otherwise, A has no inverse.

(4) In the case that A is invertible, we carry on further Gaussian elimination (still using only row opera-

tions) until matrix [I|A−1] is obtained.

Example. Consider the matrix

A =

[
1 −1

1 1

]
.

To determine if the matrix is invertible and, if it is, to compute its inverse A−1, we use Gaussian elimination

on matrix [A|I] (performing exclusively elementary row operations)
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[
1 −1 1 0

1 1 0 1

]−−−−→
r2−r1

[
1 −1 1 0

0 2 −1 1

]−−−−→
1
2
r2

[
1 −1 1 0

0 1 −1
2

1
2

]−−−−→
r1+r2

[
1 0 1

2
1
2

0 1 −1
2

1
2

]
.

We then have

A−1 =

[
1
2

1
2

−1
2

1
2

]
.

Cramer’s rule.

DEFINITION (Cramer’s system). A linear system Ax = b is said to be a Cramer’s system if

(1) A is a square matrix (that is, the number of equations equals the number of unknowns);

(2) |A| 6= 0.

Note that a Cramer’s system is always consistent and independent.

The following theorem gives the Cramer’s rule for solving linear systems.

THEOREM 4.3. Given a Cramer’s system, with matrix form
a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .

an1 an2 . . . ann



x1

x2

. . .

xn

 =


b1

b2

. . .

bn

 ,
the solution is given by

x1 =

∣∣∣∣∣∣∣∣∣∣
b1 a12 . . . a1n

b2 a22 . . . a2n

. . . . . . . . . . . .

bn an2 . . . ann

∣∣∣∣∣∣∣∣∣∣
|A|

, x2 =

∣∣∣∣∣∣∣∣∣∣
a11 b1 . . . a1n

a21 b2 . . . a2n

. . . . . . . . . . . .

an1 bn . . . ann

∣∣∣∣∣∣∣∣∣∣
|A|

, . . . , xn =

∣∣∣∣∣∣∣∣∣∣
a11 a12 . . . b1

a21 a22 . . . b2

. . . . . . . . . . . .

an1 an2 . . . bn

∣∣∣∣∣∣∣∣∣∣
|A|

.

Example. Let us consider the system
x + y + z = 1

x + 2y + 3z = 2

2x + y − z = 1

.



54 4. SYSTEMS OF LINEAR EQUATIONS

It is a Cramer’s system, as the coefficient matrix A is a square matrix and

|A| =

∣∣∣∣∣∣∣∣
1 1 1

1 2 3

2 1 −1

∣∣∣∣∣∣∣∣ = −1 6= 0.

The solution to the system is

x =

∣∣∣∣∣∣∣∣
1 1 1

2 2 3

1 1 −1

∣∣∣∣∣∣∣∣
−1

= 0, y =

∣∣∣∣∣∣∣∣
1 1 1

1 2 3

2 1 −1

∣∣∣∣∣∣∣∣
−1

= 1, z =

∣∣∣∣∣∣∣∣
1 1 1

1 2 2

2 1 1

∣∣∣∣∣∣∣∣
−1

= 0.

If the system Ax = b is consistent but dependent, the Cramer’s rule can still be adapted for finding the

solution.

For this, we consider a square submatrix of A of the largest size such that its determinant is different from

zero. The system is then rewritten in order to the variables corresponding to columns of the chosen submatrix.

Example. Let us consider the system {
x + 2y + z = 1

−x + y + z = 2
.

The coefficient matrix

A =

[
1 2 1

−1 1 1

]
has rank r(A) = 2. The determinant of the submatrix containing the first two columns of A is different from

zero: ∣∣∣∣∣ 1 2

−1 1

∣∣∣∣∣ = 3 6= 0.

Rewriting the system, we obtain the Cramer’s system{
x + 2y = 1− z
−x + y = 2− z

,

with solution

x =

∣∣∣∣∣ 1− z 2

2− z 1

∣∣∣∣∣
3

= −1 +
1

3
z, y =

∣∣∣∣∣ 1 1− z
−1 2− z

∣∣∣∣∣
3

= 1− 2

3
z,

with z taking any real value.
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Exercises.

(1) Classify the systems of equations, and solve them, when possible:

a)


x + y = 0

2x + 2y = 4

3x + 3y = 1

b)

{
x + y = 1

2x + 2y = 2

c)


x + y + z = 2

2x + 2y + 2z = 4

3x + 3y + 3z = 6

d)


x + y + z = 1

2x + 2y + 2z = 4

3x + 3z = −1

e)


x + y + z = 1

x + y + 2z = −1

x − 2y = 2

f)


x + y + z = 0

x + y + 2z = 0

x − 2y = 0

g)


x + y + z + w = 2

x + 2z − w = 1

x + 2y + 3w = 3

h)


x + 2y + z = 0

x − y + z = 1

−x − z = 2

(2) Classify the systems:

a)

{
−2x − 3y + z = 3

4x + 6y − 2z = 1
b)


x − y + 2z = 1

2x + y − z = 3

x + 5y − 8z = 1

4x + 5y − 7z = 7

c)


x + y − z = 1

x − y + z = 0

x + 2y − z = 0

x − y − 2z = 1

d)


x − y + 2z = 1

3x + 2z = 2

2x + y = 1

x + 8y − 10z = −2
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(3) Discuss the solvability of the systems, depending on the values of the real parameters a, b, and c:

a)


x + y + z = 3

x − y + z = 1

x − y − z = a

b)


x + y + z = 3

x − y + z = 1

2x − 2y + az = 2

c)


y + az = 0

x + by = 0

by + az = 1

d)


x + y + z = 1

x − y + 2z = a

2x + bz = 2

e)


2x + y = b

3x + 2y + z = 0

x + ay + z = 2

f)


ax + y + (a+ 1)z = b

x + ay + z = 1

ax + y − z = 0

(4) Solve the matrix equation AX = B, where

A =


1 −1 0

1 0 2

2 0 6

 , B =


1 0 1

2 3 0

1 2 3

 .
(5) Consider the system of equations in the matrix form

1 1 0

−1 −2 1

2 1 2



x

y

z

 =


1

2

3

 .
Compute the inverse of the coefficient matrix and use it to solve the system.
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(6) Solve, if possible, the following systems by using the Cramer’s rule:

a)


x + 2y + z = 1

−x + 2y = 0

−x + y + z = 2

b)


x + 2y − z = 1

x + z = 2

x + 2y − 3z = 0

c)

{
x + 2y + z − u = 1

3x + 6y + 2z − 2u = 0
d)


x + 2y − z = −5

2x − y + z = 6

x − y − 3z = −3

e)


x + y = 3

x + z = 2

y + z + u = 6

y + u = 1

(7) Show that the following system has a unique solution for all real values of b1, b2, b3, and find that

solution: 
3x1 + x2 = b1

x1 − x2 + 2x3 = b2

2x1 + 3x2 − x3 = b3

(8) Show that the homogeneous system 
ax+ by + cz = 0

bx+ cy + az = 0

cx+ ay + bz = 0

has nontrivial solutions if and only if a3 + b3 + c3 − 3abc = 0.

(9) Discuss the solvability of the linear system
x + 2y + 3z = 1

−x + ay − 21z = 2

3x + 7y + az = b

depending on the real parameters a and b.
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(10) Consider the system 
x1 + x2 + x3 = 2q

2x1 − 3x2 + 2x3 = 4q

3x1 − 2x2 + px3 = q

,

where p and q are arbitrary real constants. Determine the values of p and q such that the system is

a) Consistent and independent;

b) Consistent and dependent;

c) Inconsistent.

(11) Show that the system {
2x + 3y = k

x + cy = 1

has a unique solution except for a particular value c∗ of the parameter c. Determine that solution. Show

also that for c = c∗ the system is inconsistent except for a particular value k∗ of k. Find the solution for

k = k∗.

(12) Determine the values of the real parameters a and b such that the linear system
3x − y − z = 0

−x + 2y − z = 0

−x − y + az = b− 3

is consistent and dependent.

(13) Discuss the solvability of the following system depending on the real parameter α:
x + 2y + z + w = 0

2x + 4y + 2z + 3w = 1

x + 2y + z + 2w = α
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5. The real number system

Basic concepts of set theory.

We briefly review basic concepts and language of set theory.

Informally, a set is a collection of objects viewed as a single entity. The individual objects in a set are called

elements or members of the set, and are said to belong or to be contained in the set. The set is said to contain

or to be composed of its elements.

Sets are usually denoted by upper case letters of the English alphabet,A,B,C, . . . ,X, Y, Z and their elements

by lower case letters, a, b, c, . . . , x, y, z. To state that the object x belongs to the set S we write x ∈ S and to

sate that it does not we write x /∈ S.

The simplest way to describe a set is to list its elements inside a pair of curly braces (the roster notation for a

set). For example, the set containing the elements a, b, and c can be represented by

{a, b, c}.

Notice that the above representation is only possible if the set has a finite number of elements or in the case

the set in infinite when it is clear from the context which are the elements omitted from the list. For example,

the set of all positive integers can be written

{1, 2, 3, . . .}

if it not ambiguous what the three dots stand for.

DEFINITION (Equality). Two sets A and B are said to be equal if they are composed of exactly the same

elements, and we write

A = B.

If A and B are not equal we write

A 6= B.

61
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DEFINITION (Subset). A set A is said to be a subset of a set B, and we write

A ⊆ B,

if all elements ofA also belong toB. A is also said to be contained inB or thatB containsA. The relation

⊆ is referred to as set inclusion. A is said to be a proper subset of B if A ⊆ B and A 6= B. In this case we

write A ⊂ B.

Note that A ⊆ B can also be written B ⊇ A and A ⊂ B, B ⊃ A.

THEOREM 5.1. Two sets A and B satisfy A = B if and only if A ⊆ B and B ⊆ A.

The set inclusion is transitive (A, B, and C designate arbitrary sets):

• Transitive law: If A ⊆ B and B ⊆ C then A ⊆ C.

In the usual applications, it is clear that there is a definite set, called the universal set, to which all elements of

interest belong.

Examples.

(a) If the variable of interest is firm profits, the universal set is S = R.

(b) If our interest goes to the number of employees in a firm, the universal set is S = N ∪ {0}.

(c) If our problem concerns stock prices, then S = [0,+∞).

This suggests another way to define a set. If we set the universal set S, a set A can be defined as containing

all elements in S satisfying a given property p. Symbolically,

A = {x |x ∈ S and x satisfies p},

or, if is is clear which is the universal set S,

A = {x |x satisfies p},

or even,

A = {x | p(x)}.

Examples.

(a) A = {x |x ∈ N and x < 4} = {1, 2, 3}.

(b) B = {x |x ∈ R and x < 4} = (−∞, 4).

(c) In the set of the real numbers,

C = {x |x3 = −8} = {−2}.
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One special set is the empty set or the void set, denoted by ∅, that is the set containing no elements. Also, if

a set contains only one element it called elementary set. For example, the set C in the above example is an

elementary set. On the other hand, if its universal set was the set N of the positive integers, the set C would

then be the empty set: C = ∅.
We can use operations to construct new sets from given sets.

DEFINITION (Set operations). Let A and B be arbitrary subsets of the universal set S.

(1) The union of A and B, denoted by A ∪ B, is the set of all elements of S which are in A, in B, or in

both. Symbolically,

A ∪B = {x |x ∈ A or x ∈ B}.

(2) The intersection of A and B, denoted by A ∩ B, is the set of all elements of S common to both A

and B. Symbolically,

A ∩B = {x |x ∈ A and x ∈ B}.

(3) The difference A−B, or the complement of B relative to A, is the set of all elements of A which do

not belong to B. Symbolically,

A−B = {x |x ∈ A and x /∈ B}.

In particular, the complement of B, denoted by Bc, is the complement of B relative to the universal

set S. Symbolically,

S −B = {x |x /∈ B}.

If the intersection of two sets A and B is the empty set (symbolically, A ∩ B = ∅), the sets are said to be

disjoint.

We list next some well-known properties of the set operations (A, B, and C designate arbitrary subsets of the

universal set S).

• Commutative laws: A ∪B = B ∪A, A ∩B = B ∩A.

• Associative laws: A ∪ (B ∪ C) = (A ∪B) ∪ C, A ∩ (B ∩ C) = (A ∩B) ∩ C.

• Distributive laws: A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C), A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

• A ∪A = A, A ∩A = A.

• A ∪ ∅ = A, A ∩ ∅ = ∅.

• A ∪ S = S, A ∩ S = A.
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Axioms of the real number system. Basic results.

The set R of the real numbers is the set, together with two operations (+ and ·) and an order relation (<),

whose elements satisfy a set of 10 axioms. We begin by setting the operations of addition and multiplication,

respectively,

(x, y)→ x+ y and (x, y)→ x · y,

where the sum x+ y and the product xy are uniquely determined.

Note that x · y can also be written xy.

Let a, b, c . . . , x, y, z be arbitrary numbers. We first give a set of axioms which define the set R as a field.

FIELD AXIOMS.

Axiom 1 (Commutative laws). x+ y = y + x, xy = yx;

Axiom 2 (Associative laws). x+ (y + z) = (x+ y) + z, x(yz) = (xy)z;

Axiom 3 (Distributive law). x(y + z) = xy + xz;

Axiom 4 (Existence of identity elements). There exist two distinct and unique numbers 0 and 1 such that

x+ 0 = 0 + x = x and 1 · x = x · 1 = x;

Axiom 5 (Existence of negatives). For every x there exists a number −x satisfying

x+ (−x) = −x+ x = 0;

Axiom 6 (Existence of reciprocals). For every x 6= 0 there exists a number x−1 such that

xx−1 = x−1x = 1.

The properties stated in the next theorem can be obtained form the above axioms.

For example, from Axioms 1, 3, and 4 we obtain

0 · a = (0 + 0) · a = 0 · a+ 0 · a

so that, using additionally Axiom 5,

0 · a = 0 · a+ 0 · a⇔ 0 · a+ (−(0 · a)) = 0 · a⇔ 0 = 0 · a,

and, taking again into account Axiom 1, statement (5) below is proved.
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THEOREM 5.2.

(1) (Cancellation law of addition) If a+ b = a+ c then b = c;

(2) (Possibility of subtraction) Given a and b, there is exactly one x such that a+x = b (x is denoted by

b− a; in particular, 0− a is written −a and is the negative of a);

(3) b− a = b+ (−a);

(4) −(−a) = a;

(5) 0 · a = a · 0 = 0;

(6) (Cancellation law for multiplication) If ab = ac and a 6= 0 then b = c;

(7) (Possibility of division) Given a and b with a 6= 0, there is exactly one x such that ax = b (x is

denoted by b/a or by b
a ; in particular, 1/a is also written a−1 and is the reciprocal of a);

(8) If a 6= 0 then b/a = b · a−1;

(9) If ab = 0 then a = 0 or b = 0;

(10)
a

b
+
c

d
=
ad+ bc

bd
if b, d 6= 0;

(11)
a

b
· c
d

=
ac

bd
if b, d 6= 0;

(12)
a/b

c/d
=
ad

bc
if b, c, d 6= 0.

Let us characterise the set N of the positive integers.

DEFINITION (Inductive set). A set of real numbers is called an inductive set if

(1) The number 1 is in the set;

(2) For every x in the set, x+ 1 is also in the set.

DEFINITION (Positive integers). A real number is called a positive integer if it belongs to every inductive

set.

We can then say that the set N of the positive integers is the smallest inductive set. Note that the set of the

positive integers can also be denoted by Z+.

The set Z− of the negative integers is the set of the negatives of the elements of Z+. Finally, the set Z of the

integers is Z = Z+ ∪ Z− ∪ {0}.
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The set Q of the rational numbers is defined by{
x |x =

a

b
, a, b ∈ Z and b 6= 0

}
.

Notice that the set Q is also a field.

Assume now that there exists a set R+ ⊆ R, called the set of positive numbers, which satisfies a set of axioms

which we give below. This set of axioms together with the first 6 axioms define the R as an ordered field.

ORDER AXIOMS.

Axiom 7. If x, y ∈ R+ then x+ y ∈ R+ and xy ∈ R+;

Axiom 8. For every x 6= 0 either x ∈ R+ or −x ∈ R+ but not both;

Axiom 9. 0 6∈ R+.

We give meaning to the symbols <, >, ≤, and ≥:

• x < y means that y − x ∈ R+;

• y > x means that x < y;

• x ≤ y means that either x < y or x = y;

• y ≥ x means that x ≤ y.

Notice that

x > 0⇔ 0 < x⇔ x− 0 ∈ R+ ⇔ x ∈ R+

so that x > 0 if and only if x ∈ R+. If x < 0 we say that x is negative.

THEOREM 5.3.

(1) (Trichotomy law) One and exactly one of the relations holds: a < b, b < a, a = b;

(2) (Transitive law) If a < b and b < c then a < c;

(3) If a < b then a+ c < b+ c;

(4) If a < b and c > 0 then ac < bc;

(5) If a < b and c < 0 then ac > bc;

(6) If a 6= 0 then a2 > 0;

(7) 1 > 0;

(8) If a < b then −a > −b;

(9) If ab > 0 then either a, b > 0 or a, b < 0;

(10) If a < c and b < d then a+ b < c+ d.
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Let us prove, for example, (6) in the above theorem. If a > 0, from (4) in Theorem 5.3 and (5) in Theorem

5.2 we obtain

a > 0⇒ a · a > 0 · a⇔ a2 > 0

and if a < 0, from (5) in Theorem 5.3 and (5) in Theorem 5.2,

a < 0⇒ a · a > 0 · a⇔ a2 > 0,

so that (6) Theorem 5.3 in is proved.

Notice also that (7) in Theorem 5.3 is an immediate consequence of statement (6) of the same Theorem.

We can now set the geometric interpretation of the real numbers (see Figure 5.1). We draw a straight line and

mark the point 0 freely. Then we mark the point 1 to the right of 0. The length of the segment with endpoints

0 and 1 determines the scale. In general, the points to the right of 0 represent the positive numbers and the

points to the left of 0, the negative numbers. Also, given any two numbers x and y, if x < y then y is marked

to the right of x.

Figure 5.1

The set Q of the rational numbers satisfies the Axioms 1 − 9 so that it is an ordered field. We will present a

new axiom which the rational numbers do not satisfy: it separates the rational numbers from the real numbers.

We first show that there are numbers which are not rational.

We say that an integer n is even if n = 2m, with m an integer. We say that n+ 1 is an odd integer if n is even.

THEOREM 5.4. Let m and n be integers.

(1) If n2 is even then n is even;

(2) If m2 = 2n2 then m and n are even.

Using the above theorem we can show that
√

2 is not rational. If is was, it could be written as a quotient a/b,

where a and b are integers, b 6= 0, and at least one of the integers a and b is odd. Then

√
2 =

a

b
⇔ 2 =

a2

b2
⇔ a2 = 2b2

and from (2) in Theorem 5.4 we conclude that both a and b are even, which is a contradiction. Consequently,
√

2 is not rational: it is irrational. We proved the result stated next.



68 5. THE REAL NUMBER SYSTEM

THEOREM 5.5.
√

2 is an irrational number.

Thus, we have

R = Q ∪ {irrationals},

where the set of the irrational numbers is not empty.

To move in the direction of the 10th axiom, we introduce a few preliminary notions.

DEFINITION (Upper bound). Let S be a nonempty set. If there is a number b such that x ≤ b for every

x ∈ S, S is said to be bounded above by b and b is said to be an upper bound for S. If b ∈ S than b is

called the maximum element of S and we write

b = maxS.

If S has no upper bound, it is said to be unbounded above.

DEFINITION (Least upper bound). A number b is called least upper bound or supremum of a nonempty

set S if

(1) b is an upper bound of S;

(2) No number less than b is an upper bound of S.

Suppose that a nonempty set S has two least upper bounds b1 and b2. Then, for any upper bound b of S,

b1 ≤ b and b2 ≤ b.

In particular,

b1 ≤ b2 and b2 ≤ b1.

Consequently, b1 = b2, and we proved the result we state below.

THEOREM 5.6. If a nonempty set S has a least upper bound b then it is unique, and we write

b = supS.

The notions of lower bound and of greatest lower bound (also called the infimum) are obtained from the

notions of upper bound and least upper bound given above. b′ is a lower bound of a nonempty set S if −b′

is an upper bound of the set −S of the negatives of the elements of S (if b′ is an element of S it is called the

minimum of S). b′ is the greatest lower bound of S if −b′ is the least upper bound of −S:

inf S = − sup{−S}.

Now we state the last axiom.
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SUPREMUM AXIOM.

Axiom 10. Every nonempty set S of real numbers which is bounded above has a supremum.

THEOREM 5.7. Every nonempty set S of real numbers which is bounded below has an infimum.

Example. Consider the set

A = {x |x ∈ Q and x <
√

2}.

The set is bounded above in Q (2, for example, is an upper bound of A). But it has no least upper bound in Q.

On the other hand, the set has a least upper bound in R:

sup
R
A =

√
2.

We now approach a few topics concerning the real number system.

Roots. We define the square root of a real number a ≥ 0 as the solution of the equation

x2 = a.

THEOREM 5.8. Every nonnegative real number a as a unique nonnegative square root.

Note that if a ≥ 0, a1/2 or
√
a denotes the nonnegative square root of a. If a > 0, −a1/2 or −

√
a is the

negative square root of a.

In general, the n-th root of a real number a, with n ≥ 2 an integer, is the solution of the equation

xn = a,

if it exists. If n is odd, the solution, denoted by a1/n or n
√
a, exists and is unique. If n is even and a ≥ 0, a1/n

or n
√
a denotes the unique nonnegative n-th root of a. If a > 0, −a1/n or − n

√
a is the unique negative n-th

root of a. If n is even and a < 0 the equation xn = a has no solution.

We consider now the case of powers of rational exponent. Let r = m/n, with m and n positive integers. The

power ar, with a a real number, is defined by

ar = a
m
n = (am)

1
n = n

√
am

if n is odd or if am ≥ 0 if n is even. The power of negative rational exponent exists under the same conditions

for a 6= 0, and is defined by

a−r =
1

ar
.

Let a and b be real numbers and r and s rational numbers. The following operation rules hold, supposing that

all powers involved exist:
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• ar · as = ar+s;

• ar · br = (ab)r;

• (ar)s = ars.

Method of proof by induction.

PRINCIPLE OF MATHEMATICAL INDUCTION.

Let S be a set of positive integers such that

(1) The number 1 is in S;

(2) If an integer k is in S then k + 1 is also in S.

Then every positive integer is in S.

The following method for proving a result, called method of proof by induction, is based on the principle of

mathematical induction. The idea is to prove that the set of the solutions of an assertion is the set N of the

positive integers (more generally, the set of all integers greater than or equal to a certain integer n1).

METHOD OF PROOF BY INDUCTION.

Let A(n) be an assertion depending on an integer n. A(n) is true for all n ≥ n1 if

(1) The basis: A(n1) is true;

(2) The inductive step: If A(k) is true for k ≥ n1 then A(k + 1) is also true.

Example. Let us prove that if x > 1 then xn > x for every integer n ≥ 2.

• The basis: x > 1⇒ x2 > x;

• The inductive step: If xk > x for k ≥ 2 then xk+1 > x2 > x.

We can conclude that the assertion holds for all n ≥ 2.
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Absolute values. The absolute value of a real number x is defined by

|x| =

 x if x ≥ 0

−x if x < 0
.

THEOREM 5.9. If x is a real number then −|x| ≤ x ≤ |x|.

THEOREM 5.10. Let a and x be real numbers. Then

(1) |x| ≥ a⇔ x ≤ −a or x ≥ a;

(2) |x| ≤ a⇔ −a ≤ x ≤ a;

(3) |x| = a⇔ x = −a or x = a if a ≥ 0.

THEOREM 5.11. Let x and y be real numbers. Then

(1) Positive homogeneity: |xy| = |x| · |y|.

(2) Triangle inequality: |x+ y| ≤ |x|+ |y|.

THEOREM 5.12 (Cauchy-Schwarz inequality). Let x1, x2, . . . , xn and y1, y2, . . . , yn be real numbers.

Then (
n∑
k=1

xkyk

)2

≤

(
n∑
k=1

x2k

)
·

(
n∑
k=1

y2k

)
.

Moreover, the equality holds if and only if there is a real number a such that xk = ayk, for k = 1, 2, . . . , n.

The metric space R.

Let x and y be real numbers. We define the distance d between x and y as

d(x, y) = |x− y|.

This distance d satisfies the following properties (x, y, and z are arbitrary be real numbers):

• d(x, y) ≥ 0 and d(x, y) = 0 if and only of x = y;

• d(x, y) = d(y, x);

• d(x, y) ≤ d(x, z) + d(z, y).

The set R endowed with d is a metric space.

Note that the absolute value of a number represents geometrically its distance to the origin:

|x| = |x− 0| = d(x, 0).
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Some sets of real numbers are very frequently used: the intervals. We have the following types of bounded in-

tervals (the endpoints a and b, with a < b, are real numbers) (see Figure 5.2 for their geometric representation

as segment lines):

• The closed interval [a, b], representing the set {x | a ≤ x ≤ b};

• The open interval (a, b) (or ]a, b[), representing the set {x | a < x < b};

• The half-open intervals [a, b) (or [a, b[) and (a, b] (or ]a, b]) representing, respectively, the sets

{x | a ≤ x < b} and {x | a < x ≤ b}.

ba

(a) [a, b]

ba

(b) (a, b)

ba

(c) [a, b)

ba

(d) (a, b]

Figure 5.2. Bounded intervals.

Independently of the type, the center or midpoint of a bounded interval with endpoints a and b (a < b) is the

point

c =
a+ b

2
.

We consider now the types of unbounded intervals (see Figure 5.3 for their geometric representation as semi-

straight lines):

• The closed intervals [a,+∞) (or [a,+∞[) and (−∞, b] (or ]−∞, b]), representing the sets {x |x ≥
a} and {x |x ≤ b}, respectively;

• The open intervals (a,+∞) (or ]a,+∞[) and (−∞, b) (or ]−∞, b[), representing the sets {x |x > a}
and {x |x < b}, respectively.

+∞a

(a) [a,+∞)

−∞ b

(b) (−∞, b]

+∞a

(c) (a,+∞)

b−∞

(d) (−∞, b)

Figure 5.3. Unbounded intervals.
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Finally, the straight line itself can be represented by the unbounded interval (−∞,+∞) (or ]−∞,+∞[), that

is, the set R of the real numbers (see Figure 5.4).

−∞ +∞

Figure 5.4. The set R.

We finish the chapter by presenting basic topological concepts.

DEFINITION. Let E be a subset of R.

(1) A neighbourhood of p ∈ R is a set

Nr(p) = {q | q ∈ R and d(p, q) < r}.

(r > 0 is the radius of Nr(p)).

(2) p ∈ R is a limit point of the set E if every neighbourhood N of p contains a point q 6= p such that

q ∈ E. The set of all limit points of E is denoted by E′.

(3) If p ∈ E and p is not a limit point of E, p is called an isolated point of E.

(4) E is closed if every limit point of E is a point of E.

(5) The closure E of the set E is the set E = E ∪ E′.

(6) A point p is an interior point of E if there is a neighbourhood N of p such that N ⊆ E. The set of

all interior points of E is denoted
◦
E.

(7) E is open if every point of E is an interior point of E.

(8) The complement Ec of E is the set of all points p ∈ R such that p /∈ E.

(9) E is bounded if there are real numbers q and M such that d(p, q) < M for all p ∈ E.

The geometrical representation of a neighbourhood Nr(p) can be found in Figure 5.5.

p−r p+rp

Figure 5.5. Neighbourhood.
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Note also that a set E is bounded if and only if there is a real number M > 0 such that d(p, 0) ≤ M for all

p ∈ E.

THEOREM 5.13.

(1) Every neighbourhood of p ∈ R is an open set.

(2) If p is a limit point of a set E then every neighbourhood of p contains infinitely many points of E.

(3) A finite set has no limit points.

(4) A set E is open if and only if Ec is closed.

(5) A set E is closed if and only if Ec is open.

(6) The closure E of a set E is closed.

(7) E = E if and only if E is closed.

Example. Consider the set

A = (−3, 0) ∪
{
x |x ∈ R and x = 1 +

1

n
, n ∈ N

}
.

Noting that

supA = maxA = 2 and inf A = −3,

we see that d(p, 0) ≤ 3 for all p ∈ A. Therefore, the set A is bounded. The set of all limit points of A is

A′ = [−3, 0] ∪ {1}

and that the closure of A is

A = A ∪A′ = [−3, 0] ∪ {1} ∪
{

1 +
1

n
, n ∈ N

}
.

Since A 6= A, A is not closed. The set of all isolated points of A is{
1 +

1

n
, n ∈ N

}
.

The interior of A is
◦
A = (−3, 0),

and, since A *
◦
A, A is not open.
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Exercises.

(1) Prove, by using the induction principle:

a) 1 + 2 + 3 + . . .+ n = n(n+1)
2 for all integers n such that n ≥ 1;

b) Partial sum of the arithmetic progression:
n∑
k=1

a+ d(k − 1) =
n

2
(2a+ d(n− 1))

for all positive integers n, with a and d real constants;

c) Partial sum of the geometric progression:
n∑
k=1

ark−1 = a
1− rn

1− r

for all positive integers n, with a and r 6= 1 real constants;

d) Bernoulli’s inequality: (1 + a)n ≥ 1 + na if a > −1 and n ∈ N;

e) 2n < n! for all integers n such that n ≥ 4;

f) 8n − 3n is divisible by 5 for all positive integers n.

(2) Obtain a law from the equalities

1 = 1; 1− 4 = −(1 + 2), 1− 4 + 9 = 1 + 2 + 3, 1− 4 + 9− 16 = −(1 + 2 + 3 + 4),

and prove it by induction.

(3) Interpret geometrically the following sets:

a) {x : |x| < 1}; b) {x : |x| < 0}; c) {x : |x− a| < ε} (ε > 0);

d) {x : |x| > 0}; e) {x : (x− a)(x− b) < 0, a < b}; f) {x : x3 > x};

g) {x : |x− 1| ≥ |x|}.

(4) Solve the equations:

a) x+ 2 =
√

4x+ 13; b) |x+ 2| =
√

4− x; c) x2 − 2|x| − 3 = 0.
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(5) Let A and B be two subsets of R such that A ⊂ B, A is nonempty, and B is bounded above by a real

number. Explain why supA and supB exist, and show that supA ≤ supB.

(6) Show that, for all real numbers x and y,

a) |x+ y| ≤ |x|+ |y|; b) ||x| − |y|| ≤ |x− y|.

(7) Solve the following inequalities, and give their solution sets:

a) |3− 2x| < 1; b) |1 + 2x| ≤ 1; c) |x− 1| > 2; d) |x+ 2| ≥ 5;

e) |5− x−1| < 1; f) |x− 5| < |x+ 1|; g) |x2 − 2| < 1; h) |2− 3x| ≤ 1;

i) |x− 3| > 2; j) |x− 1| > 2; k) |3− x−1| < 1; l) |x− 4| < |x+ 2| ;

m) |x2 − 5| ≤ 2; n) x < x2 − 12 < 4x; o) |2x− 1| − x ≥ 2; p)
x

1 + |x|
≤ 2;

q) x− 2 ≥ (|x| − 1)2 ; r)
∣∣∣∣x2 − x1 + x

∣∣∣∣ > x.

(8) Determine in R the sets of all upper and lower bounds, the supremum and the infimum, and the maximum

and the minimum (if they exist) for each one of the following sets:

a)
{

1, sin
π

4
, sin

3π

4

}
; b)

{
(−1)n

1

n
: n ∈ N

}
;

c)
{
m+

1

n
: m,n ∈ N

}
; d)

{
1

n
+

1

m
: m,n ∈ N

}
.

(9) Determine the interior, the set of all limit points, the closure, the sets of all upper and lower bounds, the

supremum and the infimum, and the maximimum and the minimum (if they exist) of each one of the

following sets:

a) A = [2, 3[∪[4, 10[; b) B =]5, 7[∪{15}; c) C = [0, 1]−Q; d) D = [2, 3] ∩Q.

(10) Determine the interior, the set of all limit points, and the closure of the following sets:

a) A = {x ∈ R : x2 < 49}; b) B = {x : x is irrational and x2 < 49}.
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(11) Consider the set

A =

{
x ∈ R : x = 1 +

(−1)n

n
, n ∈ N

}
.

a) Determine the interior, the set of all limit points, and the closure of A.

b) Check if the set A is open or closed.

(12) Determine the interior, and the set of all limit points of the set

A = {x ∈ Q : |x+ 3| < 5} ∪
{
x : x is irrational and −

√
2 ≤ x ≤

√
13
}
.

(13) Let the set

A =

{
x ∈ R :

∣∣∣∣ x2

x− 2

∣∣∣∣ ≤ 1

}
.

Determine
◦
A and A′.





6. Sequences

Definitions.

DEFINITION (Sequence). A function a : N −→ R is called a sequence of real numbers. To designate the

sequence value at n it is customary to use the notation an instead of a(n); and the sequence itself is in this

case denoted by {an}n∈N or simply by {an}. The elements an are called the terms of the sequence and

the indices n their order.

Example. Consider the following sequence, the arithmetic progression

{an}, an = a+ (n− 1)d,

with a and d real constants. The first four terms of the sequence are

a1 = a+ (1− 1)d = a,

a2 = a+ (2− 1)d = a+ d,

a3 = a+ (3− 1)d = a+ 2d,

a4 = a+ (4− 1)d = a+ 3d.

Alternatively to defining the sequence {an} by giving its general term, that is, the term of order n, the sequence

can be defined by recursion: {
a1 = a

an+1 = an + d, if n ≥ 1.

Now, the first term of the sequence is given and the remaining terms can be obtained from the recursion

formula. We exemplify by determining the next three terms

a2 = a1 + d = a+ d,

a3 = a2 + d = a+ d+ d = a+ 2d,

a4 = a3 + d = a+ 2d+ d = a+ 3d.

The two ways of defining the sequence are obviously equivalent and this can be proved by induction.

79
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DEFINITION (Convergent sequence). Let {an} be a sequence of real numbers. We say that {an} converges

and has limit L ∈ R, and write

lim
n→+∞

an = L or an → L as n→ +∞,

if for every real number ε > 0 there exists an integer N such that

|an − L| < ε whenever n ≥ N.

If {an} does not converge, it is said to diverge.

Example. Consider the sequence

{an}, with an =
1

n
.

We want to prove that the sequence converges to 0. For this, given an arbitrary real number ε > 0, we need to

find an order N such that ∣∣∣∣ 1n − 0

∣∣∣∣ < ε if n ≥ N.

First notice that ∣∣∣∣ 1n − 0

∣∣∣∣ =

∣∣∣∣ 1n
∣∣∣∣ =

1

n

so that
1

n
< ε⇒

∣∣∣∣ 1n − 0

∣∣∣∣ < ε.

As
1

n
< ε⇔ n >

1

ε
,

if we chose N such that

N >
1

ε

then we obtain, as needed,

n ≥ N ⇒
∣∣∣∣ 1n − 0

∣∣∣∣ < ε.

We proved that
1

n
→ 0 as n→ +∞.

DEFINITION (Monotonic sequence). We say that a sequence {an} is monotonically increasing if

an+1 ≥ an for every n ∈ N, and monotonically decreasing if an+1 ≥ an for every n ∈ N. The class

of the monotonic sequences consists of the increasing and the decreasing sequences.



DEFINITIONS. 81

Examples.

(a) Consider, again, the arithmetic progression

{an}, an = a+ (n− 1)d,

with a and d real constants. As for a general sequence {cn}

cn+1 ≥ cn ⇔ cn+1 − cn ≥ 0 and cn+1 ≤ cn ⇔ cn+1 − cn ≤ 0,

to check the possible monotonicity of the sequence we just need to check the sign of the difference cn+1− cn.

In the particular case in study, we have

an+1 − an = a+ (n+ 1− 1)d− (a+ (n− 1)d) = nd− (n− 1)d = d.

Then, the monotonicity of {an} depends on the signal of d: increasing if d ≥ 0; decreasing if d ≤ 0.

(b) Consider the sequence

{bn}, with bn = 3n.

Notice that for a general sequence {cn} if cn > 0 for all n ∈ N we have

cn+1 ≥ cn ⇔
cn+1

cn
≥ 1 and cn+1 ≤ cn ⇔

cn+1

cn
≤ 1.

Therefore, we can check the possible monotonicity of a sequence by comparing the quotient cn+1/cn with 1.

As, in our case, bn = 3n > 0 for all n ∈ N, and

bn+1

bn
≥ 1 =

3n+1

3n
= 3 > 1,

we conclude that {bn} is an increasing sequence.

Recall that a set A ⊆ R is bounded if there exists a real number M such that |a| ≤M for every a ∈ A.

DEFINITION (Bounded sequence). We say a sequence {an} of real numbers is bounded if there exists a

real number M such that |an| ≤M for all n ∈ N, i.e., if the range of {an} is a bounded set.

Examples.

(a) Let {an} be the sequence with general term an = (−1)n. As

|an| = |(−1)n| = 1,

we see that |an| is bounded above by any real number M such that M ≥ 1. Then {an} is bounded.
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(b) Consider the sequence

{bn}, with bn = − 1

2n
.

We have that

|bn| =
∣∣∣∣− 1

2n

∣∣∣∣ =
1

2n
,

and also that ∣∣∣∣− 1

2n

∣∣∣∣ ≤M ⇔ 1

2n
≤M ⇔ n ≥ 1

2M
.

As the inequality

n ≥ 1

2M

is satisfied for all n if M ≥ 1/2, we conclude that {bn} is a bounded sequence.

DEFINITION (Subsequence). Let {an} be a sequence, and suppose that {nk} is a sequence of positive

integers, such that

n1 < n2 < n3 < · · ·

The sequence {ank} is called a subsequence of {an}. If {ank} converges, its limit is called a subsequential

limit of {an}.

Example. Let {an} be the sequence with general term

an = (−1)n.

The subsequences of the terms with even and odd indices are, respectively,

a2n = (−1)2n = 1 and a2n−1 = (−1)2n−1 = −1,

for all n ∈ N. As

lim
n→+∞

a2n = lim
n→+∞

1 = 1 and lim
n→+∞

a2n−1 = lim
n→+∞

−1 = −1,

1 and −1 are subsequential limits of {an}.

Basic results.

THEOREM 6.1. If L and L′ are real numbers, and if {xn} is a sequence in R converging to L and to L′,

then L = L′.

THEOREM 6.2. Suppose that {xn} is a convergent sequence of real numbers. Then for every real number

ε > 0 there exists an integer N such that

m,n > N implies that |xn − xm| < ε.
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THEOREM 6.3. Suppose that {xn} is a convergent sequence of real numbers with xn → L as n → +∞.

Then any subsequence {xnk} converges and xnk → L as n→ +∞.

THEOREM 6.4. If {xn} is a convergent sequence of real numbers, then {xn} is bounded.

THEOREM 6.5. Suppose {xn} is a monotonic sequence of real numbers. Then {xn} converges if and only

if it is bounded.

THEOREM 6.6. Suppose that {xn} and {yn} are sequences in R such that xn → 0 as n→ +∞ and yn is

bounded. Then the sequence {xnyn} converges and xnyn → 0 as n→ +∞.

THEOREM 6.7. Suppose that {xn} and {xn} are convergent sequences in R with L = lim
n→+∞

xn and

M = lim
n→+∞

yn. Then the following holds:

(1) The sequence {xn + yn} converges and

lim
n→+∞

(xn + yn) = L+M ;

(2) For any real number α, the sequences {αxn} and {α+ xn} converge and

lim
n→+∞

(αxn) = αL and lim
n→+∞

(α+ xn) = α+ L;

(3) The sequence {xnyn} converges and

lim
n→+∞

(xnyn) = LM ;

(4) If yn 6= 0 for all n ∈ N and M 6= 0, then the sequence {xn/yn} converges and

lim
n→+∞

xn
yn

=
L

M
;

(5) The sequence {|xn|} converges and

lim
n→+∞

|xn| = |L|;

(6) The sequence {(xn)p}, with p a positive integer, converges and

lim
n→+∞

(xn)p = Lp;

(7) If xn ≥ 0 for all n ∈ N, then the sequence { p√xn}, with p ≥ 2 an integer, converges and

lim
n→+∞

p
√
xn =

p
√
L;

(8) If xn ≥ 0 for all n ∈ N, then L ≥ 0;

(9) If xn ≥ yn for all n ∈ N, then L ≥M .



84 6. SEQUENCES

THEOREM 6.8. Suppose that {xn}, {yn}, and {zn} are sequences in R such that yn ≤ xn ≤ zn for all

n ∈ N. Suppose further that the sequences {yn} and {zn} are convergent, with lim
n→+∞

yn = lim
n→+∞

zn =

L. Then the sequence {xn} converges and lim
n→+∞

xn = L.

THEOREM 6.9.

(1) If p is a positive real number, then lim
n→+∞

1

np
= 0.

(2) If p is a positive real number, then lim
n→+∞

n
√
p = 1.

(3) lim
n→+∞

n
√
n = 1.

(4) If p and α are real numbers, with p > 0, then lim
n→+∞

nα

(1 + p)n
= 0.

(5) If x is a real number such that |x| < 1, then lim
n→+∞

xn = 0.

Examples.

(a) Consider the sequence {(−1)n}. As the subsequences {(−1)2n} and {(−1)2n−1} do not converge to the

same number (they converge to 1 and −1, respectively), {(−1)n} diverges.

(b) Consider the bounded sequence {(−1)n}, and the sequence {1/n} converging to 0 as n→ +∞. Then

lim
n→+∞

(−1)n · 1

n
= 0.

(c) From the knowledge that

1

n
→ 0,

2n+ 1

n+ 2
→ 2 and

3n+ 1

n
→ 3,

we can conclude that

lim
n→+∞

(
5 · 1

n
· 2n+ 1

n+ 2
− 2 ·

(
3n+ 1

n

)2
)

= 5 · 0 · 2− 2 · 32 = −18.
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Extended real numbers.

DEFINITION (Infinite limits). Let {an} be a sequence of real numbers. If for every real number M there

exists an integer N such that an > M whenever n ≥ N , then we say the sequence {an} diverges to

positive infinity, denoted by

lim
n→+∞

an = +∞.

Similarly, if for every real number M there exists an integer N such that an < M whenever n ≥ N , then

we say the sequence {an} diverges to negative infinity, denoted by

lim
n→+∞

an = −∞.

If lim
n→+∞

|an| = +∞, we say the sequence {an} diverges to infinity, and write

lim
n→+∞

an =∞.

THEOREM 6.10. Let {xn} and {yn} be sequences in R such that xn is unbounded and yn is bounded, with

yn 6= 0 for all n ∈ N. Then the sequence {xn/yn} is unbounded. In particular,

(1) If lim
n→+∞

xn = +∞ and lim
n→+∞

yn = 0,

lim
n→+∞

xn
yn

= +∞ if yn > 0 for all n ∈ N

lim
n→+∞

xn
yn

= −∞ if yn < 0 for all n ∈ N;

(2) If lim
n→+∞

xn = −∞ and lim
n→+∞

yn = 0,

lim
n→+∞

xn
yn

= −∞ if yn > 0 for all n ∈ N

lim
n→+∞

xn
yn

= +∞ if yn < 0 for all n ∈ N.

DEFINITION (Extended real numbers).

The extended real number system, denoted R, consists of the real field R and two symbols, −∞ and +∞.

We preserve the original order in R, and define

−∞ < r < +∞,

for every real number r.
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Every subset of R is bounded above by +∞. Moreover, every nonempty subset S of real numbers has always

a supremum in R: if S is bounded above in R, the supremum is real; if S is not bounded above in R,

sup(S) = +∞ in R. The same remarks apply to lower bounds.

The extended real number system does not constitute a field, but it is customary to make the following opera-

tion conventions:

(1) For any real number r,

r + (+∞) = r − (−∞) = r +∞ = +∞;

r + (−∞) = r − (+∞) = r −∞ = −∞;

r

±∞
= 0.

(2) For any real number r > 0, r · (+∞) = +∞ and r · (−∞) = −∞.

(3) For any real number r < 0, r · (+∞) = −∞ and r · (−∞) = +∞.

(4) ±∞±∞ = ±∞, ±∞ · (±∞) = +∞, and ±∞ · (∓∞) = −∞.

(5) If p is an odd positive integer, (±∞)p = ±∞ and p
√
±∞ = ±∞.

(6) If p is an even positive integer, (±∞)p = +∞ and p
√

+∞ = +∞.

Note that the symbols

±∞∓∞, 0 · (±∞),
±∞
±∞

,
±∞
∓∞

,
0

0
, 1±∞, (±∞)0, 00

are not defined.

To distinguish the real numbers from−∞ and +∞we call the former finite real numbers and the latter infinite

real numbers.

Note also that in the extended real number system R, a sequence which diverges to +∞ (to −∞) is said to

converge to +∞ (to −∞).

THEOREM 6.11. If xn is a sequence such that xn → +∞ as n→ +∞ and a is a real number, then

lim
n→+∞

(
1 +

a

xn

)xn
= ea.



EXERCISES. 87

Examples.

(a) By using the limit theorems we can determine the following limit

lim
n→+∞

n2

n4 + 1
= lim

n→+∞

n2

n4
(
1 + 1

n4

) = lim
n→+∞

1

n2
(
1 + 1

n4

) =
1

(+∞)2
(

1 + 1
(+∞)4

) =
1

+∞
(

1 + 1
+∞

)
=

1

+∞(1 + 0)
=

1

+∞
= 0.

(b) By using Theorem 6.11,

lim
n→+∞

(
1− 2

n

)n
= e−2.

Exercises.

(1) Determine, if it exists, the limit of each one of the following sequences:

a)
{

1

n

}
; b)

{
1

n2

}
; c)

{
n

n+ 1

}
; d)

{
2n− 1

3n+ 2

}
; e)

{
n2

n4 + 1

}
; f)

{
(−1)n

n

}
.

(2) Let{xn} be a sequence of real numbers with xn → +∞, and P and Q the polynomial functions

P (x) = a0x
p + . . .+ ap−1x+ ap, Q(x) = b0x

q + . . .+ bq−1x+ bq,

with real coefficients (a0, b0 6= 0). Show that

a) lim
n→+∞

P (xn) = lim
n→+∞

a0x
p
n.

b) lim
n→+∞

P (xn)

Q(xn)
= lim

n→+∞

a0x
p
n

b0x
q
n

=


a0
b0

if p = q,

a0
b0
· (+∞) if p > q,

0 if p < q.

(3) Determine, if they exist, the limits of the sequences with general elements:

a) an =
1− n
4n+ 3

; b) bn =
2n+ 3

3n− 1
; c) cn =

n2 + 2

3n+ 1
;

d) dn =
n2 − 1

n4 + 3
; e) en =

3n

4n3 + 1
; f) fn =

2n + 1

2n+1 − 1
;

g) gn =
−n3 + 2

4n3 − 7
; h) hn =

n3 + 1

n2 + 2n− 1
; i) in =

n2 + 3n

n+ 2
− n2 − 1

n
;

j) jn =
(−1)nn3

n2 + 2
; k) kn =

n(n− 1)(n− 2)

(n+ 1)(n+ 2)
.
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(4) Determine, if they exist, the limits:

a) lim
n→+∞

cos2(n) sin

(
1

n

)
;

b) lim
n→+∞

n(n− 1)(n− 2)(n− 3)

(n+ 1)(n+ 2)(n+ 3)
;

c) lim
n→+∞

(cos(x))n, x ∈ R;

d) lim
n→+∞

(
1√
n

+
1√
n+ 1

+ · · ·+ 1√
2n

)
;

e) lim
n→+∞

(
1√

n2 + 1
+

1√
n2 + 2

+ · · ·+ 1√
n2 + 2n+ 1

)
;

f) lim
n→+∞

(
1

n2
+

1

(n+ 1)2
+ · · ·+ 1

(2n)2

)
;

g) lim
n→+∞

(
n√

n4 + 1
+

n√
n4 + 2

+ · · ·+ n√
n4 + n

)
;

h) lim
n→+∞

(√
n+ 1−

√
n
)
.

(5) Determine, if they exist, the limits of the sequences with general elements:

a) un =

(
n+ 3

n+ 1

)2n

; b) vn =

(
n+ 5

2n+ 1

)n
; c) wn =

(
1− 3

n2

)n
.



7. Series

Definitions and basic results.

DEFINITION (Series). Given a sequence {an} of real numbers, we use the notation

q∑
n=p

an for p ≤ q

to denote ap + ap+1 + · · ·+ aq. With {an} we associate a sequence {sn} where

sn =
n∑
k=1

ak.

For {sn} we use also the symbolic expression

a1 + a2 + a3 + · · ·

or, more concisely,
+∞∑
n=1

an,

which we call an infinite series, or just a series. The numbers sn are called the partial sums of the series.

If {sn} converges to a number s, called the sum of the series, we say that the series converges, and write

+∞∑
n=1

an = s.

Otherwise, the series is said to diverge.

When convenient, we shall consider series of the form
∑+∞

n=n∗ an, with n∗ ∈ N0. Also, when there is no

possible ambiguity, or when the distinction is immaterial, we shall simply write
∑
an.

Example. Consider the series
∑
an, where {an} is the arithmetic progression with general term

an = a+ (n− 1)d.

89
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As a1 = a, the sequence’s general term can be written

an = a1 + (n− 1)d.

The partial sums sn can be written in the following two different ways

sn = a1 + (a1 + d) + (a1 + 2d) + · · ·+ (a1 + (n− 2)d) + (a1 + (n− 1)d)

sn = (an − (n− 1)d) + (an − (n− 2)d) + · · ·+ (an − 2d) + (an − d) + an.

Adding both sides of the two equations, the terms involving d cancel, and we obtain

2sn = n(a1 + an).

Dividing both sides by 2 gives

sn =
n

2
(a1 + an).

As an = a1 + (n− 1)d, the partial sums can also be written

sn =
n

2
(2a1 + (n− 1)d) =

d

2
n2 +

(
a1 −

d

2

)
n.

We can see that sn converges if and only if a1 = d = 0, in which case an = 0 for all n. We then have that∑
(a1 + (n− 1)d) diverges if a1 6= 0 or d 6= 0 and converges if a1 = d = 0 (with

∑
(a1 + (n− 1)d) = 0).

THEOREM 7.1. If
∑
an converges then limn→+∞ an = 0.

Note that Theorem 7.1 gives just a necessary condition for convergence of a series. In fact, only from an → 0

nothing can be concluded about the convergence of
∑
an.

Examples.

(a) Consider the series ∑
an, with an =

n

2n+ 1
.

As

lim
n→+∞

an = lim
n→+∞

n

2n+ 1
= lim

n→+∞

n

2n
=

1

2
6= 0,

we conclude that
∑
an diverges.

(b) Consider again the arithmetic progression {bn}, with

bn = b+ (n− 1)d.

As bn → 0 if and only if b = d = 0 we can conclude that for b 6= 0 or d 6= 0 the series
∑

(b+ (n− 1)d)

diverges.
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THEOREM 7.2. Let
∑
an and

∑
bn be convergent series such that∑

an = a and
∑

bn = b.

Then the series
∑

(an + bn) and
∑
can, with c a fixed real number, converge and∑

(an + bn) = a+ b,
∑

can = ca.

THEOREM 7.3. If
∑
an converges and

∑
bn diverges then

∑
(an + bn) diverges.

THEOREM 7.4. If
∑
an diverges and c 6= 0 then

∑
can diverges.

DEFINITION (Absolute convergence). The series
∑
an is said to be absolutely convergent if

∑
|an| con-

verges.

THEOREM 7.5. If
∑
an converges absolutely then

∑
an converges.

Geometric series.

DEFINITION (Geometric series). The series generated by successive addition of the terms of a geometric

progression,
∑+∞

n=0 x
n, with x a fixed real number, is called a geometric series.

THEOREM 7.6. Consider the geometric series
∑+∞

n=0 x
n. If |x| < 1, the series converges and

+∞∑
n=0

xn =
1

1− x
.

If |x| ≥ 1, the series diverges.

Examples.

(a) The geometric series
∑

(−1)n,
∑

2n, and
∑

(−2)n diverge.

(b) The geometric series
∑+∞

n=0

(
1
2

)n converges, and

+∞∑
n=0

(
1

2

)n
=

1

1− 1
2

= 2.

As
∣∣(−1

2

)n∣∣ =
(
1
2

)n, the series
∑+∞

n=0

(
−1

2

)n converges (absolutely). Its sum is

+∞∑
n=0

(
−1

2

)n
=

1

1 + 1
2

=
2

3
.
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(c) The series
∑ n

n+1 diverges since n
n+1 9 0 as n → +∞, and

∑(
1
3

)n is a convergent geometric series.

Thus the series
∑(

n
n+1 +

(
1
3

)n) diverges.

(d) The series
∑+∞

n=0

((
−2

3

)n − 2
(
1
3

)n) converges, since both
∑+∞

n=0

(
−2

3

)n and
∑+∞

n=0

(
1
3

)n are convergent

geometric series. The sum is

+∞∑
n=0

((
−2

3

)n
− 2

(
1

3

)n)
=

+∞∑
n=0

(
−2

3

)n
− 2

+∞∑
n=0

(
1

3

)n
=

1

1 + 2
3

− 2
1

1− 1
3

=
3

5
− 2

3

2
= −12

5
.

Power series.

DEFINITION (Power series). Given a sequence {cn} of real numbers, the series

+∞∑
n=0

cnx
n,

where x is real, is called a (real) power series. The numbers cn are called the coefficients of the series.

Example. The following series are power series:

+∞∑
n=0

n!xn,
+∞∑
n=0

1

n
x2n, and

+∞∑
n=0

2n(x− 1)n.

With every power series there is an interval associated, the interval of convergence, such that the series con-

verges absolutely if x is in the interior of the interval and diverges if x is in the exterior (we consider the real

line as the interior of an interval of infinite length, and a point as an interval of length zero). The behaviour on

the boundary of the interval of convergence is varied.

THEOREM 7.7. Given the power series
∑
cnx

n, suppose that limn→+∞
n
√
|cn| exists, and put

α = lim
n→+∞

n
√
|cn|, R =

1

α
.

(If α = 0, R = +∞; if α = +∞, R = 0). Then

(1)
∑
cnx

n converges absolutely if |x| < R;

(2)
∑
cnx

n diverges if |x| > R.
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THEOREM 7.8. Given the power series
∑
cnx

n, suppose that limn→+∞

∣∣∣ cn+1

cn

∣∣∣ exists, and put

α = lim
n→+∞

∣∣∣∣cn+1

cn

∣∣∣∣ , R =
1

α
.

(If α = 0, R = +∞; if α = +∞, R = 0). Then

(1)
∑
cnx

n converges absolutely if |x| < R;

(2)
∑
cnx

n diverges if |x| > R.

Examples.

(a) Consider the series
∑
nnxn. As

lim
n→+∞

n
√
|nn| = lim

n→+∞
n = +∞, and then R = 0,

the interior of the interval of convergence is empty, so nothing can be concluded with the help of Theorem

7.7. But, observing that for x = 0 the series is just the zero series, we obtain that the series converges if and

only if x = 0.

(b) Consider the series
∑ xn

n! . As

lim
n→+∞

∣∣∣∣∣
1

(n+1)!

1
n!

∣∣∣∣∣ = lim
n→+∞

∣∣∣∣ n!

(n+ 1)!

∣∣∣∣ = lim
n→+∞

1

n+ 1
= 0, and then R = +∞,

the series converges (absolutely) for all real x.

(c) Consider now the series
∑ xn

n2 . As

lim
n→+∞

∣∣∣∣∣
1

(n+1)2

1
n2

∣∣∣∣∣ = lim
n→+∞

∣∣∣∣ n2

(n+ 1)2

∣∣∣∣ = lim
n→+∞

n2

n2
= 1, and then R = 1,

the series converges (absolutely) for all x such that

|x| < 1⇔ −1 < x < 1.

Exercises.

(1) Determine if following series are convergent, and when they are, compute the sum:

a)
∑
n≥0

(
1

2

)n
; b)

∑
n≥1

3n; c)
∑
n≥0

(
2

3

)n+2

; d)
∑
n≥3

(
1

4

)n
; e)

∑
n≥0

5n.
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(2) Determine the values of x for which the following series converge, and, when possible, compute their

sum:

a)
+∞∑
n=0

(
x

x+ 1

)n
; b)

+∞∑
n=0

(
2

x

)n
; c)

+∞∑
n=0

(1− |x|)n; d)
+∞∑
n=0

(x+ 1)2n;

e)
+∞∑
n=0

xn

n!
; f)

+∞∑
n=0

(
xn

n!
+

(
2

x

)n+2
)

; g)
+∞∑
n=0

(1− |x|)n

n!
; h)

+∞∑
n=0

(x+ 1)2n+6

(n+ 3)
;

i)
+∞∑
n=2

(x− 2)n+3

n
.

(3) Use the theory of geometric series to determine the rational numbers corresponding to the following

decimals:

a) 3.666 . . .

b) 1.571428571428571428 . . .

c) 1.181818 . . .

d) 0.999 . . .

(4) Determine the radius of convergence, and the largest open set where the following power series are

absolutely convergent:

a)
+∞∑
n=1

xn

n(n+ 1)
; b)

+∞∑
n=1

(2x+ 1)2n+1

√
n

; c)
+∞∑
n=1

n(x+ 1)2n

3n
; d)

+∞∑
n=1

n!n−nxn.



8. One-variable functions

Generalities.

DEFINITION (Function (informal)). Given two setsX and Y , we call function (or mapping) the correspon-

dence f of X in Y , symbolically

f : X −→ Y,

which associates to each element of X one and only one element of Y , and we say that f maps X into Y .

The set X is called the domain of the function. The elements of Y associated to the elements of X form a

set called the range of the function.

Functions are usually represented by lower and upper case letters of the English and Greek alphabets. The

lower case letters f, g and h, the upper case letters F,G and H , and the lower case Greek letters ϕ (phi) and

ψ (psi) are particularly used. It is also usual to denote the domain by the letter D, and the range by R (with

R ⊆ Y ).

Given the function f , if x is an element of its domain, the notation f(x) is used to designate the element in

the range associated to x by the function f . This element f(x) in the range of f is called the value of f at

x or the image of x under f , and is read “f of x”. To represent the correspondence of x and its image f(x)

sometimes we write

x 7−→ f(x).

By abuse of language, we say indistinctly “the function f” or “the function f(x)”. Note that the range R is

the set of the images of all elements of the domain D under f , so that we write R = f(D).

In Figure 8.1 shows different ways to represent schematically a function: with the use of Venn diagrams

(Figure 1(a)); and with an input/output scheme (1(b)).

We also observe that x may be seen as a variable taking values in the domain of the function, and f(x)

as a variable taking the corresponding values in the range of the function (sometimes this variable f(x) is

represented by another letter, for example y). As the values of the variable f(x) depend on the values assigned

to the variable x, x is called the independent variable, and y = f(x) the dependent variable.

A function can be classified with respect to injectivity and to surjectivity.
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x f(x)

D Y

(a)

x f(x)f

(b)

Figure 8.1. Schematic representation of a function.

DEFINITION (Injective and surjective function). Let f be a function

f : D −→ Y,

and set y = f(x) for all x ∈ D.

(1) Function f is said to be injective (or one-to-one or an injection) if any two distinct elements in D have

distinct images. Symbolically,

∀x1, x2 ∈ D,x1 6= x2 ⇒ f(x1) 6= f(x2).

(2) Function f is said to be surjective (or a surjection) if the range coincides with Y (R = Y ). Symboli-

cally,

∀y ∈ Y ∃x ∈ D : y = f(x),

and we say that f maps D onto Y .

(3) If f is injective and surjective it is called bijective (or one-to-one and onto or a one-to-one correspon-

dence or a bijection) and, symbolically, we write

∀y ∈ Y ∃1x ∈ D : y = f(x).

In Figure 8.2 we represent examples for the different possibilities of classification of a function with respect

to injectivity and surjectivity.
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DEFINITION (Inverse). Let f be a bijective function defined by f : D −→ Y , and set y = f(x) for all

x ∈ D. The inverse of f is the function, denoted by f−1,

f−1 : Y −→ D

such that

x = f−1(y)⇔ y = f(x), ∀x ∈ D ∀y ∈ Y.

If f is injective but not surjective there exist elements in Y (the elements in Y − R) which are not images of

any element in D. In this case, the one-to-one correspondence exists but only between the elements in D and

the elements in R ⊂ Y , and the inverse of f is the function

f−1 : R −→ D

such that

x = f−1(y)⇔ y = f(x), ∀x ∈ D ∀y ∈ R.

Examples.

(a) In Figure 2(d) we represent the bijection j : {a, b, c} −→ {u, v, w} such that j(a) = u, j(b) = v, and

j(c) = w. The inverse of j is the function j−1 : {u, v, w} −→ {a, b, c} such that j−1(u) = a, j−1(v) = b,

and j−1(w) = c.

(b) Figure 2(c) represents the injection h : {a, b} −→ {u, v, w} such that h(a) = u and h(b) = v. the range

of h is the set R = {u, v}. The inverse of h is the function h−1 : {u, v} −→ {a, b} such that h−1(u) = a and

h−1(v) = b.

DEFINITION (Composite function). Consider the functions f : X −→ Y and g : Y −→ Z. The composi-

tion of g and f is the function, denoted by g ◦ f ,

g ◦ f : X −→ Z

such that (g ◦ f)(x) = g(f(x)) for all x ∈ X .

Example. Consider the real functions f(x) = 5x − 1 and g(x) = x2 + 1, with domain R. The composition

of f and g is the function f ◦ g defined by

(f ◦ g)(x) = f(g(x)) = 5(x2 + 1)− 1 = 5x2 − 4

for all x ∈ R.

The following definition of function does not make use of the undefined notion of correspondence.
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v
f(D)
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f

(a) f not injective and not surjective.

a u

D Y =g(D)

b

vc

g

(b) g not injective and surjective.

a u

D Y

b

w

v
h(D)

h

(c) h injective and not surjective.

a u

D Y = j(D)

b

c w

v

j

(d) j bijective.

Figure 8.2. Injectivity and surjectivity.

DEFINITION (Function). A function f is a set of ordered pairs (x, y) such that there are not two distinct

pairs with the same first element. The set X of all first elements x of the pairs (x, y) of f is called the

domain of f . The set Y of the second elements y is called the range of f . The notation y = f(x) is

customarily used to indicate that (x, y) is an element of f .

A function is here understood as the subset of the Cartesian productX×Y which includes all distinct ordered

pairs such that the first element is not the same.

Example. Let us consider the sets X = {1, 2, 3} and Y = {1, 2}. The Cartesian product of X and Y is

X × Y = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)}.
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The set X ×Y is not a function since, for example, to the first element 1 there correspond two distinct second

elements, 1 and 2. For the same reason, the subset of X × Y

f = {(1, 1), (1, 2), (2, 2), (3, 1)}

is not a function. But the following subsets of X × Y are functions

g = {(1, 1), (2, 2), (3, 1)}, h = {(1, 1), (2, 2), (3, 2)}, and j = {(1, 2), (2, 1), (3, 1)}.

Geometric representation of real functions.

We are interested in a particular class of functions: the real functions of a real variable, that is, functions f

with domain D ⊆ R and range R ⊆ R, symbolically,

f : D ⊆ R −→ R.

Example. The functions g, h, and j in the previous example are real functions of a real variable, with domain

{1, 2, 3} ⊆ R and range {1, 2} ⊆ R.

For the geometric representation of a function f , we mark on the Cartesian plane the points corresponding

to the ordered pairs (x, f(x)) (the values of the independent variable x are marked on the first axis, and the

values of the dependent variable y = f(x) on the second axis). The geometric representation of f is the set

of all those points, and we call it the graph of f .

Examples.

(a) The function g = {(1, 1), (2, 2), (3, 1)} is represented in Figure 3(a).

(b) Consider the function i : R −→ R, with i(x) = x for all x ∈ R. This function, is designated the identity

function. The respective graph is sketched in Figure 3(b).

(c) Consider the function k : R −→ R, defined by k(x) = k for all x ∈ R, with k ∈ R a constant. A

function of this kind is called constant function (see Figure 3(c)).

(d) Consider also the function u : N −→ R, with u(n) = 2n−6 for all n ∈ N. Note that it is a particular case

of the real-valued functions of a real variable, where the function’s domain is the set of all positive integers N.

It is the sequence with geometric representation sketched in Figure 3(d).
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(a) (b)

(c) (d)

Figure 8.3

Operations on functions.

From given functions new functions can be obtained by using elementary operations.
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DEFINITION (Operations on functions). Let f and g be real functions with the domain D ⊆ R, k a real

number, and n a positive integer. We define the following operations on functions:

(1) Multiplication by a real number: The function kf , the product of k and f , is defined by (kf)(x) =

kf(x) if x ∈ D.

(2) Addition: The function f + g, the sum of f and g, is defined by (f + g)(x) = f(x) + g(x) if x ∈ D.

(3) Multiplication: The function fg, the product of f and g, is defined by (fg)(x) = f(x)g(x) if x ∈ D.

(4) Division: The function f/g, the quotient obtained by dividing f by g, is defined by (f/g)(x) =

f(x)/g(x) if x ∈ D and g(x) 6= 0.

(5) Exponentiation: The function fn, f raised to the n-th power, is defined by (fn)(x) = (f(x))n if

x ∈ D.

(6) Radiciation: The function n
√
f , the n-th root of f , is defined by ( n

√
f)(x) = n

√
f(x) if x ∈ D, in the

case n is odd, and if x ∈ D and f(x) ≥ 0 ∀x ∈ D, in the case n is even.

Examples. Consider the real functions f(x) = 2x and g(x) = x2 + 1, with domain R. We are going to

construct new functions by using the operations above mentioned.

(a) (5f)(x) = 5f(x) = 10x if x ∈ R.

(b) (f + g)(x) = f(x) + g(x) = 2x+ x2 + 1 if x ∈ R.

(c) (fg)(x) = f(x)g(x) = 2x(x2 + 1) = 2x3 + 2x if x ∈ R.

(d) (f/g)(x) = f(x)/g(x) = 2x/(x2 + 1) if x ∈ R. Note that g(x) 6= 0 ∀x ∈ R.

(e) (f4)(x) = (f(x))4 = (2x)4 = 16x4 if x ∈ R.

(f) (
√
g)(x) =

√
g(x) =

√
x2 + 1 if x ∈ R. Observe that g(x) ≥ 0∀x ∈ R.

Boundedness. Monotonicity. Parity. Zeros.

In the behaviour of a function there are certain properties which are particularly relevant.

DEFINITION (Boundedness). Let f be a real functions with the domain D ⊆ R and range R ⊆ R. The

function f is said to be bounded if its range R is a bounded set.
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DEFINITION (Monotonicity). Let f be a real functions with the domain D ⊆ R. The function f is said to

be an increasing function if

∀x1, x2 ∈ D, x2 > x1 ⇒ f(x2) ≥ f(x1),

and strictly increasing if, additionally,

∀x1, x2 ∈ D, x2 > x1 ⇒ f(x2) > f(x1).

If

∀x1, x2 ∈ D, x2 > x1 ⇒ f(x2) ≤ f(x1),

the function is said to be a decreasing function, and if, additionally,

∀x1, x2 ∈ D, x2 > x1 ⇒ f(x2) < f(x1),

the function is called strictly decreasing. If f is an increasing or decreasing function, it is said to be

monotonic; if f is strictly increasing or strictly, it is said to be strictly monotonic.

Examples. Consider the real functions of real variable f , g, h, and j, with the same domainD = {−3,−1, 1, 3}.

(a) If f is defined by f = {(−3,−2), (−1,−1), (0, 0), (1, 1), (3, 2)} (see Figure 4(a)) then it is strictly

increasing, since f(3) > f(1) > f(0) > f(−1) > f(−3).

(b) If g is defined by g = {(−3, 2), (−1, 1), (0, 0), (1,−1), (3,−2)} (see Figure 4(b)) then g is strictly

decreasing, as g(3) < g(1) < g(0) < g(−1) < g(−3).

(c) If function h is defined by h = {(−3,−2), (−1, 0), (0, 0), (1, 1), (3, 1)} (see Figure 4(c)) then it is

increasing (but not in the strict sense), since h(3) = h(1) > h(0) = h(−1) > h(−3).

(d) If j is defined by j = {(−3, 2), (−1,−1), (0, 1), (1,−1), (3, 2)} (see Figure 4(d)) then j is not mono-

tonic, since, for example, j(3) > j(1) and j(1) < j(0).

Another important property concerning a function respects its parity.

DEFINITION (Parity). A real function f with domain D ⊆ R is said to be even if

∀x ∈ D, −x ∈ D ∧ f(x) = f(−x),

and odd if

∀x ∈ D, −x ∈ D ∧ f(x) = −f(−x).

Note that the graph corresponding to an even function is symmetric about the y-axis, and the graph of an odd

function is symmetric about the origin of the axes.
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(a) (b)

(c) (d)

Figure 8.4

Example. Consider the functions f , g, h, and j of the previous example. The functions f and g are odd (see

as Figures 4(a) and 4(b)), j is even (Figure 4(d)), and h is neither even nor odd (Figure 4(c)).

Finally, we refer to the existence of zeros.

DEFINITION (Zeros). A real function f with domain D ⊆ R is said to have a zero at the point x0 ∈ D if

f(x0) = 0.

Example. The functions f and g of the previous examples (Figures 4(a) and 4(b)) have only one zero for

x = 0, the function h (Figure 4(c)) has zero for x = −1 and x = 0, and j (Figure 4(d)) has no zeros.
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Main types of real functions.

We shall present the main types of real functions of a real variable, focusing on some very common elementary

functions.

Polynomial functions. Consider the function p : R −→ R defined by

p(x) =
n∑
k=0

akx
k = a0 + a1x+ a2x

2 + · · ·+ an−1x
n−1 + anx

n,

where n is a positive integer, and ak, with k = 0, 1, 2, . . . , n, are constants (called coefficients). the expression

a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1 + anx
n

is called a polynomial, and the function p, whose analytic expression is a polynomial, is called a polynomial

function. If an 6= 0 the polynomial is said to be of degree n, and p a polynomial function of degree n. The

polynomial functions are the simplest type of so-called algebraic functions.

Examples.

(a) The function q : R −→ R, defined by q(x) = x4 − 5x2 − 10x+
√

2, is polynomial of degree 4.

(b) The real functions of a real variable r and s, defined, respectively, by r(x) = −2x + 1 and s(x) = 3x,

are polynomial functions of degree 1.

(c) The function t : R −→ R, with t(x) = 2x2 − 2x+ 1, is a polynomial function of degree 2.

(d) The constant function k : R −→ R, defined by k(x) = 7, is a polynomial function of degree 0.

We shall consider first the particular case of the polynomial functions of degree 0 or 1, called linear functions.

We begin by the notion of slope of a line segment. Choose two distinct points in the plane, (x1, y1) and

(x2, y2), with x1 6= x2, (follow the explanation with Figure 8.5). The slope (or gradient or angular coefficient)

of the line segment with endpoints (x1, y1) and (x2, y2) is given by

m =
y2 − y1
x2 − x1

.

As m is obtained by dividing the lengths of the segments CB and AC, we see that the slope is the tangent of

angle α, where α is the inclination of segment AB):

m = tanα =
y2 − y1
x2 − x1

.

Note that the slope does not depend on the order in which the coordinates are taken, as long as the order is the

same for both terms of the fraction:

m =
y2 − y1
x2 − x1

=
y1 − y2
x1 − x2

.
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Figure 8.5. Angular coefficient.

Consider also the segment AD, containing the segment AB (see Figure 8.5). This new segment AD has the

same slope as segment AB

m = tanα =
y3 − y1
x3 − x1

=
y2 − y1
x2 − x1

,

as the numerators and the denominators of the fractions are the lengths of the corresponding sides of the

similar triangles ABC, ADE.

In fact, the slope is the same for any segment containing or being contained in segment AB. Thus, the notion

of slope is also meaningful for a straight line: it is the slope of any segment contained in the line.

Take now the following points of the straight line: (x1, y1), a fixed point, and (x, y), a moving point taking

any position on the straight line. As the slope m is constant for any two distinct points of the line, we have

m =
y − y1
x− x1

⇒ y − y1 = m(x− x1)⇔ y = m(x− x1) + y1.

The last equation above,

y = m(x− x1) + y1,

is the equation of the straight line with slope m and containing the point (x1, y1).

Note that a straight line is not defined uniquely by its slope: we need also to know a point of the line. In Figure

8.6 there are represented distinct straight line with the same slope: the lines are parallel.

Then, we can characterise a straight line as the set of points such that
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Figure 8.6. Parallel straight lines.

• the slope m of the segments defined by any two distinct points of the set is constant;

• the set contains a given point (x1, y1).

For a given straight line, the choice of the point (x1, y1) is arbitrary. Nevertheless, it is customary to choose

the point (0, b), the intersection of the straight line and the y-axis (b is called the y-intercept). We than have

y = m(x− 0) + b⇔ y = mx+ b,

where the last equation,

y = mx+ b,

is called the slope-intercept equation of the straight line with slope m and y-intercept b (Figure 8.7).

Summarising, the linear functions have analytic expressions of the form f(x) = mx + b with m and b real

constants, and are geometrically represented by slant (or oblique) straight lines if m 6= 0 or by horizontal

straight lines if m = 0. The slope m depends on the inclination of the straight line, and b is the y-intercept.

Linear functions are monotonic: strictly increasing if m > 0, strictly decreasing if m < 0, and constant if

m = 0. This can be be easily checked. For example, for the case where m > 0, with x1 and x2 arbitrary real

numbers, we have

x2 > x1 ⇒ mx2 > mx1 ⇒ mx2 + b > mx1 + b
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Figure 8.7. Straight line: slope-intercept equation.

and, consequently, x2 > x1 ⇒ f(x2) > f(x1), what sows that f is strictly increasing. The absolute value of

m determines “how steep” the straight line is. In fact, from

|f(x2)− f(x1)| = |(mx2 + b)− (mx1 + b)| = |m| · |x1 − x2|

we see that the distance between the images of x1 and x2 (fixed) under function f increases with |m|.
The relation between the inclination of a straight line and both the sign and the absolute value of its slope can

be observed in Figure 8.8.

With respect to the range and the existence of zeros, we have two distinct situations. If m 6= 0, the linear

function linear has range R and only one zero:

f(x) = 0⇔ mx+ b = 0⇔ x = − b

m
.

If m = 0, that is, if the function is constant, its range is the singular set {b}. There exist zeros only if b = 0

and, in this case, all real values of x are zeros of f .

Finally, a linear function is odd if its analytic expression is of the form f(x) = mx, that is, if b = 0:

f(−x) = m(−x) = −mx = −f(x), ∀x ∈ R.
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Figure 8.8. Straight lines with various slopes.

The function is even if m = 0:

f(−x) = b = f(x), ∀x ∈ R.

In the study above, we did not find vertical straight lines as geometric representation of linear functions. In

fact, vertical straight lines do not represent functions. These lines are the representation of formulas of the

type x = a, with a ∈ R, where to the value x = a there correspond an infinite number of images.

Examples. The illustration for the following examples can be found in Figure 8.9.

(a) The function f : R −→ R defined by f(x) = x + 2 has range R. Solving x + 2 = 0 ⇔ x = −2, we

obtain the zero: x = −2. The y-intercept is b = 2 (it is the function value for x = 0: f(0) = 0 + 2 = 2). As

m = 2 > 0, the line slants uphill.

(b) The function g : R −→ R defined by g(x) = −2x−4 has range R and the zero x = −2. The y-intercept

is b = −4. As the slope is negative (m = −4 < 0), the straight line slants downhill.

(c) The functions of a real variable h and j defined by the expressions h(x) = 4 and j(x) = 0 are constant

functions with range {4} and {0}, respectively. The function h has no zeros, and the function j has an infinite

number of zeros: j(x) = 0 ∀x ∈ R). The y-intercepts of h and j are b = 4 and b = 0, respectively. Note that

the geometrical representation of the function j is the x-axis.
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(d) The formulas x = −6 and x = 0 are geometrically represented by vertical straight lines. The formula

x = 0 corresponds to the y-axis.

Figure 8.9

We now review briefly the particular case of the polynomial functions of degree 2, designated quadratic

functions, and corresponding geometric representation.

Firstly, we consider the particular case of the quadratic functions f : R −→ R, with analytic expression

f(x) = ax2,

where a 6= 0 is a constant.

The function is represented geometrically by a parabola, with graphs of the type shown in Figure 8.10, de-

pending on a > 0 or a < 0. The vertical straight line e marked in the figure is the axis of symmetry (the

function f is even since f(x) = f(−x) for all real value of x), and the point V is the vertex of the parabola.

The graph of f opens upward if a > 0 and downward if a < 0. Also, the parabola is thinner if the absolute

value of a is larger. Notice that the parabola differs from the straight line one fundamental aspect:



110 8. ONE-VARIABLE FUNCTIONS

Figure 8.10. Parabola.

• In a straight line the slope is constant, so that to a variation of the independent variable x there

corresponds a proportional variation of the dependent variable y (with constant of proportionality

m). In absolute value, we have

|y2 − y1| = |(mx2 + b)− (mx1 + b)| = |m| · |x1 − x2|.

• For a parabola, the absolute value of the variation

|y2 − y1| = |(a(x2)
2 − (a(x1)

2)| = |a| · |(x1)2 − (x2)
2| = |a| · |x1 + x2| · |x1 − x2|

depends not only on the coefficient a but also on the factor |x1 + x2|, that is, on the values of x.

The function f is not monotonic: it as an increasing section and a decreasing one. For example, if a > 0, for

x1, x2 > 0 we have

x2 > x1 ⇒ (x2)
2 > (x1)

2 ⇒ a(x2)
2 > a(x1)

2 ⇒ f(x2) > f(x1),

what shows that f is strictly increasing in the interval (0,+∞). If x1, x2 < 0,

x2 > x1 ⇒ (x2)
2 < (x1)

2 ⇒ a(x2)
2 < a(x1)

2 ⇒ f(x2) < f(x1)
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and we have that f is strictly decreasing in the interval (−∞, 0). If a < 0, the conclusions with respect to

monotonicity are the opposite to the ones above. In Figure 8.11 we represent some parabolas with equation

y = ax2 for various values of a.

Figure 8.11

So we have that quadratic functions of the form f(x) = ax2 are geometrically represented by parabolas. In

fact, any quadratic function f(x) = ax2 + bx+ c is represented by a parabola (the equation y = ax2 + bx+ c

is called the standard form equation of the parabola).

Example. Consider the equation

y = x2 − 12x+ 38.

We have

y = x2 − 12x+ 38⇔ y =
(
x2 − 12x+ 36

)
− 36 + 38⇔ y = (x− 6)2 + 2⇔ y − 2 = (x− 6)2,

and, after the change of variables X = x− 6, Y = y − 2, we obtain the equation

Y = X2.

Geometrically, this means that the parabola equation y = x2 − 12x + 38 can be obtained from the parabola

y = x2 by translation: 6 units to the right and 2 units upward (see the Figura 8.12). Note also the symmetry
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axis of the parabola y = x2− 12x+ 38 is the vertical straight line with equation x = 6, and that the vertex of

this parabola is the point (6, 2).

Figure 8.12

Generically, for a parabola with equation y = ax2 + bx+ c, the vertex is the point defined as

V =

(
− b

2a
,−b

2 − 4ac

4a

)
.

The range of the function f(x) = ax2+bx+c can be visualised immediately from its geometric representation:

[−(b2 − 4ac)/(4a),+∞) if a > 0 or (−∞,−(b2 − 4ac)/(4a)] if a < 0.

Finally, we study the intersections with the axes. The possible zeros of the quadratic equation are obtained by

solving the equation ax2 + bx+ c = 0: the function has 2 zeros, 1 zero or none depending on the coefficient’s

values.

• If b2 − 4ac > 0, there are 2 zeros:

x =
−b−

√
b2 − 4ac

2a
and x =

−b+
√
b2 − 4ac

2a
;

• If b2 − 4ac = 0, it has one zero:

x = − b

2a
;

• If b2 − 4ac < 0 the function has no real zeros.
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The y-intercept is c (it is obtained from f(0) = a× 0 + b× 0 + c = c).

Examples. The following examples are represented in Figure 8.13.

(a) The function f : R −→ R, defined by f(x) = x2 + 1, has for geometric representation a parabola

opening upward (since a = 1 > 0), with vertex

V =

(
− 0

2× 1
,
4× 1× 1− 0

4× 1

)
= (0, 1) ,

and y-intercept c = 1 (it is the value of the function at x = 0: f(0) = 0 + 1 = 1). The range of the function

is [1,+∞), and there are no zeros as

b2 − 4ac = 0− 4× 1× 1 = −4 < 0.

Note that the y-intercept could obtained directly from the vertex coordinates (0, 1),

(b) The function g : R −→ R, defined by g(x) = −2x2, is geometrically represented ny a parabola opening

downward (a = −2 < 0), with vertex

V =

(
− 0

2× (−2)
,
4× (−2)× 0− 0

4× (−2)

)
= (0, 0) ,

and y-intercept c = 0. The function has range (−∞, 0], and a unique zero:

x =
0±

√
0− 4× (−2)× 0

2× (−2)
= 0.

Notice that the values for the zero and the y-intercept can be obtained from the coordinates of the vertex:

(0, 0),

(c) Consider the function h : R −→ R, defined by h(x) = −x2 + 10x− 21. The function is geometrically

represented by a parabola opening downward (a = −1 < 0), with vertex

V =

(
− 10

2× (−1)
,
4× (−1)× (−21)− 102

4× (−1)

)
= (5, 4) ,

and y-intercept c = h(0) = 0 + 0− 21 = −21. The function’s range is (−∞, 4], and there are 2 zeros:

−x2 + 10x− 21 = 0⇔ x =
−10±

√
102 − 4× (−1)× (−21)

2× (−1)

⇔ x =
−10±

√
16

−2
⇔ x =

−10± 4

−2
⇔ x = 3 ∨ x = 7.
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Note that, by rearranging the function’s analytic expression, we have

h(x) = −x2 + 10x− 21 = −(x2 − 10x+ 21) = −(x2 − 2× 1× 5x+ 25− 25 + 21)

= −(x− 5)2 + 4,

what makes clear that the graphic of the function h can be obtained from the graphic of y = −x2 by translation:

5 units to the right and 4 upward. The parabola’s vertex can be obtained directly from this last form of the

function’s analytic expression.

(d) Consider the function j : R −→ R, defined by j(x) = (1/2)x2−5x+21/2. The graphic of the function

is a parabola opening upwards (a = 1/2 > 0), with vertex

V =

(
− −5

2× 1
2

,
4× 1

2 ×
21
2 − (−5)2

4× 1
2

)
= (5,−2) ,

and y-intercept c = j(0) = 0 + 0 + 21 = 21. The function has range [−2,+∞), and 2 zeros:

(1/2)x2 − 5x+ 21/2 = 0⇔ x =
5±

√
(−5)2 − 4× 1

2 ×
21
2

2× 1
2

⇔ x = 3 ∨ x = 7.

Following the same steps as for the previous example, we obtain a different form for the function’s analytic

expression

j(x) =
1

2
x2 − 5x+

21

2
=

1

2
(x2 − 10x+ 21) =

1

2
(x2 − 2× 1× 5x+ 25− 25 + 21)

=
1

2
(x− 5)2 − 2,

what makes clear that the graphic of j can be obtained from the graphic of y = (1/2)x2 by translation: 5 units

to the right and and 2 units downward.

Finally, we refer briefly to the so called power functions, that is, functions fR −→ R defined by

f(x) = xp,

with p a positive integer. As particular cases, we have the linear function f(x) = x and the quadratic function

f(x) = x2.

Power functions have a unique zero zero for x = 0. If p is odd, the range is R, and the function is odd:

f(−x) = (−x)p = −xp = −f(x), ∀x ∈ R.

If p is even, the range is the set [0,+∞), and the function is even:

f(−x) = (−x)p = xp = f(x), ∀x ∈ R.
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Figure 8.13

The graphic of the power functions depends on the value of the parameter p. If p = 1, the function is

geometrically represented by a straight line bisecting the odd quadrants. If p > 1, the graphics can by grouped

in two sets by generic similitude of shape, depending on p being even or odd. In Figure 8.14 we can find the

graphics of power functions for a few values of p.

Rational functions. Consider the real function of a real variable r, defined by

r(x) =
p(x)

q(x)
,

where p(x) and q(x) are polynomials, and q(x) is not the zero polynomial. A function of this type, that is, a

function whose analytic expression can be written as a quotient of polynomials, is called rational. The domain

of r is the set

D = {x ∈ R : q(x) 6= 0}.

Note that polynomial functions are a particular case of the rational functions: they are obtained from r taking

q as a zero degree polynomial (q(x) = k, with k a real constant).

Examples. The following functions are rational:

(a) The function r : R− {1} −→ R, defined by r(x) = (x4 − 10x+ 2)/(x− 1).

(b) The function s : R −→ R, defined by s(x) = (2x2 − 2x+ 1)/(x2 + 1).
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(a) y = xp with p odd.

(b) y = xp with p even.

Figure 8.14. Power functions.
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(c) The function t : R− {−1, 1} −→ R, defined by t(x) = 3/(1− x2).

(d) The polynomial function u : R −→ R, defined by u(x) = 7x− 1.

(e) The function v : R−{2} −→ R, with analytic expression v(x) = (x+ 1)2 − 2/(2− x). Note that v(x)

can be written as the quotient of polynomials:

v(x) = (x+ 1)2 − 2

2− x
=

(x+ 1)2(2− x)− 2

2− x
=

3x− x3

2− x
.

The shape of the graphic of a rational function varies very much with the particular analytic expression of the

function. We study two very simple cases.

Firstly, we consider the real function of a real variable r, defined by

r(x) =
1

x
.

This function is not defined for x = 0 : its domain is the set D = R− {0}. The function is odd, since

r(−x) =
1

−x
= −1

x
= −r(x), ∀x ∈ D,

has no zeros, and takes positive values if x > 0 and negative values if x < 0.

The function r is not monotonic: it suffices to see that the images of −1, 1, and 2 are, respectively, r(−1) =

−1, r(1) = 1, and r(2) = 1/2, and that r(−1) < r(1) > r(2). Nevertheless, r is strictly decreasing in the

intervals (−∞, 0) and (0,+∞). This is very simple to check: for x1, x2 > 0, for example, we have

x2 > x1 ⇒
1

x2
<

1

x1
⇒ r(x2) < r(x1),

what shows that r is strictly decreasing in (0,+∞).

We can determine the behaviour of the function when x approaches zero and infinity. If x > 0, the function

approaches zero when x grows to infinity, and grows to infinity when x approaches zero. If x < 0, the function

approaches zero when x moves away from zero and decreases without limit when x approaches zero.

The geometric representation of r can be found in Figure 8.15(a). Note that the graphic of the function

approaches the y-axis (the vertical straight line with equation x = 0) when x approaches zero: the straight

line x = 0 is said to be a vertical asymptote of the graph of the function at x = 0. Finally, we can see what is

the range of the function by simple observation of its graph: r(D) = R− {0}.
Note also that the graph of the real function of a real variable s, defined by

s(x) =
1

x− 1

can be obtained by translation of the graph of r one unit to the right (see Figure 8.15(b)). The domain of s is

the set R− {1}, and the function’s graph has the vertical asymptote vertical x = 1. The function s is neither

even nor odd.
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(a) (b)

Figure 8.15

Consider now the real function of a real variable t, defined by

t(x) =
1

x2
.

The function has domain D = R− {0}, is even since

t(−x) =
1

(−x)2
=

1

x2
= t(x), ∀x ∈ D,

has no zeros, and takes only positive values. The function t is not monotonic: it is strictly increasing in

(−∞, 0), and strictly decreasing in (0,+∞). For example, for x1, x2 > 0,

x2 > x1 ⇒
1

x2
<

1

x1
⇒
(

1

x2

)2

<

(
1

x1

)2

⇒ 1

(x2)2
<

1

(x1)2
⇒ t(x2) < t(x1),

what proves that t is strictly decreasing in (0,+∞). t approaches zero when x grows in absolute value, and

increases without limit when x approaches zero: the y-axis is an asymptote of the function’s graph.

The geometric representation of t can be found in Figure 8.16(a). The Figure 8.16(b) represents geometrically

the function with analytic expression

u(x) =
1

(x− 1)2
.

The graph of u can be obtained from the graph of t translating it to the right by one unit.
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(a) (b)

Figure 8.16

Irrational functions. Executing elementary operations (addition, subtraction, multiplication, division, taking

powers roots) on polynomial functions we obtain new functions called algebraic. Naturally, rational function

are algebraic. Algebraic functions which are not rational are designated irrational.

Examples.

The following functions are algebraic.

(a) The function a(x) =
√
x2 − 1, with domain

D = {x ∈ R : x2 − 1 ≥ 0} = (−∞,−1) ∪ (1,+∞).

(b) The functions b(x) = (x+ 2)/
√
x− 1, with domain

D = {x ∈ R :
√
x− 1 6= 0 ∧ x− 1 ≥ 0} = (1,+∞).

(c) The function c(x) = 3
√

(x4 − 10x+ 2)/(x− 1), whose domain is the set

D = {x ∈ R : x− 1 6= 0} = R− {1}.

(d) The function d(x) = 2
√

(x2 + 1)/(1− x2), with domain

D =

{
x ∈ R :

x2 + 1

1− x2
≥ 0 ∧ 1− x2 6= 0

}
= (−1, 1).

(e) The function e(x) = 3
√

1−
√
x+ 1, whose domain is the set

D = {x ∈ R : x+ 1 ≥ 0} = [−1,+∞).

(f) The polynomial function f(x) = x4 − x+ 3, with D = R.
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Next, we shall consider some very simple algebraic functions.

We begin by considering the absolute value function, defined by

f(x) = |x|.

It is an irrational function as |x| =
√
x2.

The brief study of the function can be done easily, given that

f(x) = |x| =

{
x, x ≥ 0

−x, x < 0.

Observe that the absolute value function has domain R, and also that it is an even function:

f(−x) = | − x| = |x| = f(x), ∀x ∈ R.

Figure 8.17 shows the geometric representation of the function. This figure shows also the graphs of some

other functions whose graphs can be obtained form the graph of y = |x| by translation and, in the case of

y = −|x− 4|, additionally by symmetry about the x-axis.

Figure 8.17. Functions involving the absolute value.
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We can find irrational algebraic functions in a current situation. The locus of all points (x, y) in the plane

whose distance to a fixed point (a, b) is constant and equal to r > 0 is defined by the condition:

d((x, y), (a, b)) =
√

(x− a)2 + (y − b)2 = r.

This is nothing elese that the well-known equation of the circle with center C = (a, b) and radius r, which

write, equivalently,

(x− a)2 + (y − b)2 = r2.

The corresponding geometric representation can be found in Figure 8.18(a).

This formula establishes a correspondence between the variables y and x, but does not define y as a function

of x since the correspondence is not univoque. Observe that, for example, the vertical straight line x = a

intersects the circle at two distinct points (see Figure 8.18(b)): x = a has two distinct images (b−r and b+r).

(a) (b)

Figure 8.18. Circle.

But, if we consider separately the two semicircles defined by the straight line y = b then y can bow be

expressed as a function of x. We illustrate the procedure with an example.

Consider the circle (represented in Figure 8.19) with center C = (6, 2) and radius 4, so that its equation is

(x− 6)2 + (y − 2)2 = 16.

To isolate y in the first member of the equation, we follow the usual procedures:

(x− 6)2 + (y − 2)2 = 16⇔ (y − 2)2 = 16− (x− 6)2

⇔ y − 2 = −
√

16− (x− 6)2 ∨ y − 2 =
√

16− (x− 6)2

⇔ y = 2−
√

16− (x− 6)2 − 3 ∨ y = 2 +
√

16− (x− 6)2.
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Figure 8.19

Thus, the semicircles below and above the straight line y = 2 are defined, respectively, by the irrational

algebraic functions with analytic expressions

f(x) = 2−
√

16− (x− 6)2 − 3 and g(x) = 2 +
√

16− (x− 6)2,

as shown in Figure 8.19.

Finally, we consider the case of parabolas with horizontal symmetry axis. These lines correspond, generically,

to equations of the form

x = ay2 + by + c,

with a, b, andc constants, and a 6= 0. If a > 0 the parabola opens to the right, and if a < 0 it opens to the left

(see Figure 8.20).

As for the circles, these equations do not define the variable y as a function of x: there are values of x to which

there correspond two different values of y. But each one of the “half-parabolas” defined by the symmetry axis

is the graph of a function. We illustrate with an example.

Consider the line represented in Figure 8.21, corresponding to the equation

x = 2y2.
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Figure 8.20

Figure 8.21
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Isolating y in the left-hand side of the equation, we obtain

x = 2y2 ⇔ y2 =
x

2
⇔ y = −

√
x

2
∨ y =

√
x

2
.

The “half-parabolas” below and above the symmetry axis y = 0 represent, respectively, the irrational algebraic

functions with analytic expressions

f(x) = −
√
x

2
and g(x) =

√
x

2
,

as shown in Figure 8.21.

Transcendental functions. As seen above, a function is algebraic if it is obtained by elementary operations on

polynomial functions. The real functions of a real variable which are not algebraic are called transcendental.

The following are examples of transcendental functions:

• The exponential function expx;

• The logarithmic function lnx;

• The trigonometric functions sinx, cosx, tanx, and cotx;

• The inverse trigonometric functions arcsinx, arccosx, arctanx and arccotx.

We shall make very brief comments on a few basic types of transcendental functions.

Consider the exponential function f , defined by

f(x) = expx = ex,

where e ' 2.718281828459045235360287 is the Euler number. The corresponding geometric representation

can be found in Figure 8.22(a).

(a) (b)

Figure 8.22
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The function has domain R, and range (0,+∞) (therefore, having no zeros). It is a strictly increasing function,

with y-intercept f(0) = e0 = 1.

From its graph, we van observe the behaviour of the function when x approaches infinity: the function grows

to infinity if x > 0, and approaches zero if x < 0.

The geometric representation of the function g, related to f , and defined by

g(x) = exp(−x) = e−x,

can be found in Figure 8.22(b).

Functions with analytic expression of the form ax, with a > 0 and a 6= 1, have geometric representation with

shape similar to those of the functions f(x) = expx or g(x) = exp(−x), respectively if a > 1 or 0 < a < 1

(in Figure 8.23 we can find the geometric representation of functions in each of these cases).

(a) (b)

Figure 8.23

Note that

g(x) = exp(−x) = e−x =
1

ex
=

(
1

e

)x
,

so that the analytic expression of g is just a particular case of ax with 0 < a < 1.

Exponential functions with basis a, with a > 0 and a 6= 1, are strictly monotonic, thus injective. Then, we

can define their inverse functions, designated logarithmic with basis a. In general, if f(x) = ax we write

f−1(x) = loga x,

having the logarithmic function domain (0,+∞), and range R. One particular case is the logarithmic function

with basis e (the logarithms with basis e are called natural, and are denoted by loge x = lnx). Then, for all

x ∈ R and y ∈ (0,+∞),

y = ax ⇔ x = loga y,
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with a > 0, a 6= 1. For example,

8 = 23 ⇔ 3 = log2 8.

In Figure 8.24, we present the geometric representation of a few logarithmic functions, for various bases.

(a) (b)

(c) (d)

Figure 8.24

We let to the reader to see what is the behaviour of the the logarithmic function when x approaches zero and

infinity, depending on the value of the basis a: a > 1 or 0 < a < 1.

Finally, we recall the rules for operating with logarithms. Let x, y, z, and a be arbitrary real numbers, with x,

y, and a positive, and a 6= 1. Then

• loga(xy) = loga x+ loga y,

• loga

(
x
y

)
= loga x− loga y,

• loga(x
z) = z loga x.

The following equation establishes the correspondence between logarithms with distinct bases. Let x, a, and

b be arbitrary real numbers, with x, a, and b positive, and a, b 6= 1. Then

• loga(x) = logb(x)
logb(a)

.
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Consider now the trigonometric functions and their inverses.

The values and the behaviour of the trigonometric functions can be learnt by using the unit circle (with radius

1) (see Figure 8.25).

Figure 8.25. The unit circle.

In particular, we give the values of the trigonometric functions for some particular values of the variable x:

x 0 π/6 π/4 π/3 π/2

sinx 0 1/2
√

2/2
√

3/2 1

cosx 1
√

3/2
√

2/2 1/2 0

tanx 0
√

3/3 1
√

3 ∞
cotx ∞

√
3 1

√
3/3 0

The functions sinx and cosx have domain R, and range [−1, 1]. The functions tanx and cotx are not defined

for x = π/2 + kπ and x = kπ, respectively, with k ∈ Z, both having range R. With respect to parity, cos is

even, and the remaining trigonometric functions are odd.

It is, however, one other attribute that distinguishes the trigonometric functions from the previous ones we

considered: their periodicity. In fact, These functions satisfy the condition

f(x+ p) = f(x),
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for any value of x in the domain of the function, and for a fixed real number p. p is called the function’s

period, and has value 2π for the functions sinx and cosx, and π for the functions tanx and cotx.

In Figure 8.26 we can find the geometric representation of the trigonometric functions.

(a) (b)

(c) (d)

Figure 8.26. Trigonometric functions.

The trigonometric functions are not injective. Therefore, we can only obtain inverses by restricting the func-

tions to subsets of their domains where there is injectivity. The standard domain restrictions are

• [−π/2, π/2] for the function sinx,

• [0, π] for the function cosx,

• (−π/2, π/2) for the function tanx,

• (0, π) for the function cotx.

Inverting the trigonometric functions restricted to the above sets we obtain the so called inverse trigonometric

functions, respectively, the functions arcsinx, arccosx, arctanx, and arccotx. For example, for the function

sinx, if x ∈ [−π/2, π/2] and y ∈ [−1, 1],

y = sinx⇔ x = arcsin y.
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If, for example, x = π/4 and y =
√

2/2, we obtain
√

2

2
= sin

π

4
⇔ π

4
= arcsin

√
2

2
.

The geometric representation of the inverse trigonometric functions can be found in Figure 8.27.

(a) (b)

(c) (d)

Figure 8.27. Inverse trigonometric functions.
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Exercises.

(1) Determine the domain of the functions with analytic expressions:

a)
√
x+ 1; b) ln(1− x); c)

1√
x2 − 4

; d)
√

9− x2;

e)
√
ex2 − 1; f) ln(x2 − 16); g)

√
|x− 2| − 4; h) ln(lnx);

i)
1

ln(lnx)− 1
; j)

2√
2− |x− 1|

; k) 4

√
|1−
√
x|; l)

1

1− tan x
2

;

m)
1

1− cotx
; n) log2

(
4−
√

25− x
)

; o)
3
√
x2 − 2x− 3

ln |x+ 5|
.

(2) Determine the domain, range, zeros, monotonicity, and parity of the following real functions, and sketch

their geometric representation:

a) a(x) = x+ 2; b) b(x) = −2x+ 1; c) c(x) = −1

2
x− 1;

d) d(x) = x2 − 1; e) e(x) = x2 − 4x+ 3; f) f(x) = −2x2 +
3

2
x− 1;

g) g(x) = x2 + 1; h) h(x) = −x2 − 2; i) i(x) =
1

x− 2
;

j) j(x) = − 1

x+ 2
; k) k(x) =

1

(x− 2)2
; l) l(x) = 1 +

1

x
;

m) m(x) = |x− 2|; n) n(x) = −|x− 2|; o) o(x) = 2 + |x+ 1|.

(3) Determine the zeros and the y-intercepts of the real functions:

a) f(x) = −x+ 5; b) g(x) = 2− x2 + x;

c) h(x) = −x2(3x− 1)(1− x2); d) i(x) =
x2 − 16

(x2 − 5x+ 4)(x2 + 3)
;

e) j(x) = log2(2x− 4); f) k(x) =
4e2x − 4ex − 3

ex + 5
.

(4) Solve the following equations:

a) 2 cos(2x) = 1; b) tan
x

2
=
√

3; c) arcsin(3x) = π; d) 2x = 16;

e) 22x = 4; f) e3x+1 = 1; g) e3x+1 = ex−1.
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(5) Solve the following inequalities:

a) 2x ≥ 16; b)
(

1

2

)x+1

< 16; c) e3x+1 > 1;

d) ln(3x+ 1) > 1; e) log10(4x− 3) > log10
(
x2
)

; f)
log 1

2

(
x2 + x

)
log 1

2
x

< 0.





9. Limits and continuity

The notion of limit.

The notion of limit of a function plays a central role in Calculus.

Informally, the notion of limit regards the behaviour of a function f when the independent variable x “ap-

proaches” a certain point a. To make the notion meaningful we will assume that the point a is a limit point of

the domain of f (so that any neighbourhood of a contains points in the domain of f , distinct from a).

DEFINITION (Limit of a function). Let f be a real function of a real variable, a a limit point of D, the

domain of f , and L a real number. We say that the limit of f as x approaches a is L (or that “f goes to L

when x goes to a”) and write

lim
x→a

f(x) = L

if for each ε > 0 there exists δ > 0 such that

|f(x)− L| < ε

for all points x ∈ D with x 6= a for which

|x− a| < δ.

Note that, in the definition above,

|x− a| < δ ⇔ x ∈ Nδ(a) and |f(x)− L| < ε⇔ f(x) ∈ Nε(L).

Figure 9.1(a) illustrates the definition of limit. Notice that whatever is the neighbourhood of L we consider (in

the sense that however small is the radius ε of the neighbourhood) it is always possible to find a neighbourhood

of a with radius δ such that for points of the domain of f ,

f (Nδ(a)− {a}) ⊆ Nε(L).

In Figure 9.1(b) we can find a different illustration of the notion of limit: the second coordinate of a point

moving along the graph of f approaches L when its first coordinate approaches a. This interpretation is

related to the following theorem.

133
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(a)

(b)

Figure 9.1. Limit of a function.
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THEOREM 9.1. Let f be a real function of a real variable, a a limit point of D, the domain of f , and L a

real number. Then

lim
x→a

f(x) = L

if and only if

lim
n→+∞

f(an) = L

for every sequence {an} in D such that

an 6= a ∀n ∈ N and lim
n→+∞

an = a.

An important property of the limit is that it is unique. We can show this by reductio ad absurdum. Assume

that a function f has two distinct limits, L1 and L2, when x approaches a. According to the definition of limit,

for each ε > 0 there exist δ1 > 0 and δ2 > 0 such that

|f(x)− L1| < ε and |f(x)− L2| < ε

for all points x ∈ D with x 6= a for which, respectively,

|x− a| < δ1 and |x− a| < δ2.

Since the radius ε of the neighbourhoods ofL1 andL2 is arbitrary, we can choose it so that the neighbourhoods

Nε(L1) and Nε(L2) are disjoint:

Nε(L1) ∩Nε(L2) = ∅.

But this means that a point x (in D and distinct from a) belonging both to Nδ1(a) and Nδ2(a) has its image

f(x) contained in both the sets Nε(L1) and Nε(L2), what is impossible (see Figure 9.2). Consequently, the

limit, if it exists, is unique.

THEOREM 9.2. Let f be a real function of a real variable, a a limit point of the domain of f , and L1 and

L2 real numbers. If

lim
x→a

f(x) = L1 and lim
x→a

f(x) = L2

then

L1 = L2.

Example. Consider the real function of a real variable f defined by

f(x) =

{
1
2x+ 1, x 6= 4

2, x = 4.
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Figure 9.2

The function (with graph sketched in Figure 9.3) has domainD = R. We want to prove that limx→4 f(x) = 3.

According to definition of limit, we need to establish a relation between the radiuses ε and δ of the neighbour-

hoods Nε(3) and Nδ(4) so that for x 6= 4,

x ∈ Nδ(4)⇒ f(x) ∈ Nε(3)

or, equivalently,

|x− 4| < δ ⇒ |f(x)− 3| < ε.

Since, for x 6= 4,

|f(x)− 3| =
∣∣∣∣(1

2
x+ 1

)
− 3

∣∣∣∣ =

∣∣∣∣12x− 2

∣∣∣∣ =
1

2
· |x− 4|

and
1

2
· |x− 4| < ε⇔ |x− 4| < 2ε

we have that for each ε > 0 if δ ≤ 2ε,

|f(x)− 3| < ε

for all points x 6= 4 for which

|x− 4| < δ.

We proved that limx→4 f(x) = 3.
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Figure 9.3

Consider now the case of the piecewise function

f(x) =

{
x+ 1, x ≤ 1

x2, x > 1.

To study the limit of f when x approaches 1, we have to consider both the analytic expressions x+ 1 and x2

(depending on the variable x to be, respectively, to the left or to right of point 1). Cases like this one motivate

the following definition.
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DEFINITION (One-sided limits). Let f be a real function of a real variable with domain D, and L and M

real numbers. If a is a limit point of D ∩ (−∞, a), we say that the limit of f as x approaches a from the

left (or from below) is L, and write

lim
x→a−

f(x) = L

if for each ε > 0 there exists δ > 0 such that

|f(x)− L| < ε

for all points x ∈ D for which

a− δ < x < a.

If a is a limit point of D ∩ (a,+∞), we say that the limit of f as x approaches a from the right (or from

above) is M , and write

lim
x→a+

f(x) = M

if for each ε > 0 there exists δ > 0 such that

|f(x)− L| < ε

for all points x ∈ D for which

a < x < a+ δ.

The following theorem establishes the connection between the limit of a function and the one-sided limits.

THEOREM 9.3. Let f be a real function of real variable with domain D, and L a real number. Assume

that a is a limit point of both D ∩ (−∞, a) and D ∩ (a,+∞). Then

lim
x→a

f(x) = L

if and only if both the one-sided limits of f as x approaches a exist and

lim
x→a−

f(x) = lim
x→a+

f(x) = L.

Algebra of limits.

We can, by using the definition and with some computations, show if the limit of a function at a certain point is

a certain real number. However, this procedure does not allow the computation of limit: it supposes a previous

“hint” about the possible value of the limit. The following theorems, which can be deduced from the definition

of the limit of a function, give the instruments needed for the computation of limits.



ALGEBRA OF LIMITS. 139

THEOREM 9.4.

(1) If f is a real function with domain R and analytic expression f(x) = c, with c a constant, and a is a

real number, then

lim
x→a

f(x) = c,

also written: limx→a c = c.

(2) If g is a real function with domain R and analytic expression g(x) = x, and a is a real number, then

lim
x→a

g(x) = a,

also written: limx→a x = a.

THEOREM 9.5. Let f and g be real functions with the same domain D ⊆ R, a a limit point of D, k a real

number, and p a positive integer. If there exist real numbers F and G such that limx→a f(x) = F and

limx→a g(x) = G then

(1) limx→a(f + g)(x) = limx→a f(x) + limx→a g(x) = F +G;

(2) limx→a(kf)(x) = k limx→a f(x) = kF ;

(3) limx→a(f · g)(x) = limx→a f(x) · limx→a g(x) = F ·G;

(4) limx→a(f/g)(x) = limx→a f(x)/ limx→a g(x) = F/G if G 6= 0;

(5) limx→a(f
p)(x) = (limx→a f(x))p = F p.

If, additionally, a is a limit point of the domain of p
√
f then

(6) limx→a(
p
√
f)(x) = p

√
limx→a f(x) = p

√
F .

We have now the instruments to determine the limits of the constant function f(x) = c, the identity function

g(x) = x, and the functions obtained from these by addition, multiplication by a real number, multiplication,

division, exponentiation (with natural exponent), and radiciation. Notice that this class of functions is the

class of the algebraic functions, including the polynomial, rational and irrational functions.

Examples. Consider the real functions of a real variable f , g, h, and i, with analytic expressions

f(x) = 2x3 − 2x+ 1, g(x) =
1− 2x

2 + x2
, h(x) =

(
1− 3
√

2x− 1
)2
,

and

i(x) =


x2 + 1, x < 2

3, x = 2

1− x, x > 2.
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(a) We want to compute limx→−1 f(x). Using (1)-(2) in Theorem 9.4, and (1)-(3) and (5) in Theorem 9.5,

we have

lim
x→−1

f(x) = lim
x→−1

(2x3 − 2x+ 1) = lim
x→−1

2 · ( lim
x→−1

x)3 − lim
x→−1

2 · ( lim
x→−1

x) + lim
x→−1

1

= 2 · (−1)3 − 2 · (−1) + 1 = −2 + 2 + 1 = 1.

(b) To compute limx→0 g(x), additionally using (4) in Theorem 9.5, we obtain

lim
x→0

g(x) = lim
x→0

1− x
2 + x2

=
1− 2 · 0
2 + 02

=
1

2
.

(c) To determine limx→1 h(x) we use (6) in Theorem 9.5:

lim
x→1

h(x) = lim
x→1

(
1− 3
√

2x− 1
)2

=
(

1− 3
√

2 · 1− 1
)2

=
(

1− 3
√

1
)2

= 0.

(d) We now compute limx→1 i(x). Close to x = 1, the function i is given by i(x) = x2 + 1. Then

lim
x→1

i(x) = lim
x→1

(x2 + 1) = 12 + 1 = 2.

(e) If we want to determine limx→2 i(x), we are in a situation different from the point right above: the

function i is defined by distinct expressions to the left and to right of x = 2 (see the Figure 9.4). We then have

to compute the one-sided limits:

lim
x→2−

i(x) = lim
x→2−

(x2 + 1) = 22 + 1 = 5

and

lim
x→2+

i(x) = lim
x→2+

(1− x) = 1− 2 = −1.

Since limx→2− i(x) 6= limx→2+ i(x), we conclude that limx→2 i(x) does not exist.

(a) (b)

Figure 9.4
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Infinite limits and limits at infinity.

We are interested in extending the notion of limit to the cases where a or L (or both) in

lim
x→a

f(x) = L

take the values −∞ or +∞. This extension arises very naturally.

We begin with the case where a = +∞.

DEFINITION (Limit at infinity). Let f be a real function, with domain D ⊆ R, such that any interval

(l,+∞) contains points in D, and L a real number. We say the the limit of f as x goes to +∞ is L, and

write

lim
x→+∞

f(x) = L,

if for each ε > 0 there exists an A ∈ R such that

|f(x)− L| < ε

for all points x ∈ D for which

x > A.

The limit of f as x tends to−∞, limx→−∞ f(x), is defined similarly. The case where L = +∞ is considered

in the following definition.

DEFINITION (Infinite limit). Let f be a real function with domain D ⊆ R, and a a limit point of D. We

say that the limit of f as x approaches a is +∞, and write

lim
x→a

f(x) = +∞,

if for each B ∈ R there exists a δ > 0 such that

f(x) > B

for all points x ∈ D with x 6= a for which

|x− a| < δ.

The limit −∞ of f as x approaches a is defined in a similar way. The cases where both a and L are infinite

(−∞ or +∞) are defined combining the two previous definitions.
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Example. Consider the real function, with domain D = R − {0}, defined by f(x) = 2/x. We want to show

that limx→+∞ f(x) = 0. We have that

|f(x)− 0| =
∣∣∣2
x
− 0
∣∣∣ =

2

|x|
,

and since
2

|x|
< ε⇔ |x| > 2

ε
⇔ x < −2

ε
∨ x > 2

ε
,

we have that for each ε > 0 if A ≥ 2
ε

|f(x)− 0| < ε

for all points x ∈ D for which

x > A.

We showed that limx→+∞ f(x) = 0.

The notion of one-sided limit, and the result relating the limit of a function with the one-sided limits are

extended naturally to the case of infinite limits. Also, the algebra of limits when the limits are infinite makes

use of results extending partially the results presented for finite limits. At the outset, we have that

lim
x→+∞

x = +∞, lim
x→−∞

x = −∞, lim
x→+∞

c = c, and lim
x→−∞

c = c,

with c a real constant. Let a be a real number, and p a positive integer. The following rules for operating with

limits hold:

Addition
• a+∞ = +∞+ a = +∞;

• a−∞ = −∞+ a = −∞;

• +∞+∞ = +∞ and −∞−∞ = −∞;

In the above expressions, a +∞ includes also the case a − (−∞), a − ∞ includes also the case

a + (−∞), +∞ +∞ includes also the case +∞ − (−∞), and −∞ −∞ includes also the case

−∞+ (−∞).

Multiplication
• a · (+∞) = +∞ · a = +∞ and a · (−∞) = −∞ · a = −∞ if a > 0;

• a · (+∞) = +∞ · a = −∞ and a · (−∞) = −∞ · a =∞ if a < 0;

• +∞ · (+∞) = −∞ · (−∞) = +∞ and +∞ · (−∞) = −∞ · (+∞) = −∞;

Division

• a

+∞
=

a

−∞
= 0;
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• +∞
a

= +∞ and
−∞
a

= −∞ if a > 0;

• +∞
a

= −∞ and
−∞
a

= +∞ if a < 0;

Exponentiation
• (+∞)p = +∞

• (−∞)p = +∞ if p is even;

• (−∞)p = −∞ if p is odd;

p-th Roots
• p
√

+∞ = +∞;

• p
√
−∞ = −∞ if p is odd.

The expressions +∞−∞, −∞ +∞, 0 · (+∞), 0 · (−∞), +∞ · 0, −∞ · 0, (+∞)/(+∞), (+∞)/(−∞),

(−∞)/(+∞), and (−∞)/(−∞) are undefined, and are called indeterminate forms.

Examples.

(a) Consider the real function f , with domain R− {1}, and analytic expression f(x) = 2− |x− 1| (see the

Figure 9.5(a)). Let us compute some limits:

lim
x→1

f(x) = lim
x→1

(2− |x− 1|) = 2− |1− 1| = 2,

lim
x→−∞

f(x) = lim
x→−∞

(2− |x− 1|) = 2− | −∞− 1| = 2− | −∞| = 2−∞ = −∞,

lim
x→+∞

f(x) = lim
x→+∞

(2− |x− 1|) = 2− |+∞− 1| = 2− |+∞| = 2−∞ = −∞.

(b) Consider the real function g, with domain R, and defined by

g(x) =

{
x− 2, x < 1

−(x− 1)2 + 2, x ≥ 1.

(See the Figure 9.5(b)). To study the limit of g as x approaches 1 we have to study the one-sided limits. Since

lim
x→1−

g(x) = lim
x→1−

(x− 2) = 1− 2 = −1,

and

lim
x→1+

g(x) = lim
x→1+

(−(x− 1)2 + 2) = −(1− 1)2 + 2 = 2,

we obtain limx→1− g(x) 6= limx→1+ g(x), and conclude that limx→1 g(x) does not exist.
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(a) (b)

Figure 9.5

(c) Consider the real function h, with domain R, given by the rational expression

h(x) =
2x2 − 2x+ 2

x2 + 1
.

(See the Figure 9.6). When we compute the limits limx→+∞ h(x) e limx→−∞ h(x) we obtain

lim
x→+∞

h(x) = lim
x→+∞

2x2 − 2x+ 2

x2 + 1
=

2 · (+∞)2 − 2 · (+∞) + 2

(+∞)2 + 1
=

2 · (+∞)− 2 · (+∞) + 2

+∞+ 1
=

+∞−∞
+∞

,

and

lim
x→−∞

h(x) = lim
x→−∞

2x2 − 2x+ 2

x2 + 1
=

2 · (−∞)2 − 2 · (−∞) + 2

(−∞)2 + 1
=

2 · (+∞)− 2 · (−∞) + 2

+∞+ 1

=
+∞+∞

+∞
=

+∞
+∞

,

expressions which involve indeterminate forms. In either of the cases above, the limit can be found by follow-

ing the procedure:

• To factor in both the numerator and the denominator the terms of higher degree;

• To simplify the fraction;

• To take the simplified fraction to the limit.

Thus,

lim
x→+∞

h(x) = lim
x→+∞

2x2 − 2x+ 2

x2 + 1
= lim

x→+∞

2x2
(
1 + −2x

2x2
+ 2

2x2

)
x2
(
1 + 1

x2

)
= lim

x→+∞

2 ·
(
1 + −2

2x + 2
2x2

)
1 + 1

x2

=
2 ·
(

1 + −2
+∞ + 2

+∞

)
1 + 1

+∞
=

2 · (1 + 0 + 0)

1 + 0
= 2,
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and

lim
x→−∞

h(x) = lim
x→−∞

2x2 − 2x+ 2

x2 + 1
= lim

x→−∞

2 ·
(
1 + −2

2x + 2
2x2

)
1 + 1

x2

=
2 ·
(

1 + −2
−∞ + 2

+∞

)
1 + 1

+∞

=
2 · (1 + 0 + 0)

1 + 0
= 2.

We then have that the horizontal straight line with equation y = 2 is an asymptote to the graph of the function

close to both +∞ and −∞.

Figure 9.6

We have not yet considered the case where the computation of the limit involves a division by zero. If the

result obtained is of the form 0/0, it is considered undefined (0/0 is a new indeterminate form). To a result

of the type a/0, with a ∈ R − {0} or a ∈ {−∞,+∞} it seems natural to assign an infinite value: when the

denominator goes to zero the quotient goes to infinity. But what should be sign of infinity?

We illustrate the matter with an example. Consider the real functions of a real variable f , g, and h, defined,

respectively, by f(x) = 1/x2, g(x) = 1/(−x2), and h(x) = 1/x (see the Figures 9.7(a), 9.7(b), and 9.7(c)).

If we compute the limits of these functions as x approaches zero we obtain, in every case, the expression 1/0.

But the behaviour of each one of the functions when x is close to zero is quite distinct.

The function f goes to +∞ when x goes to zero, since the denominator of 1/x2 goes to zero assuming only

positive values. We express this fact by writing 1/0+ = +∞.

The denominator of 1/(−x2) goes to zero taking only negative values when x goes to zero. Hence, the

function g goes to −∞. We write, in this case, 1/0− = −∞.
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(a) (b)

(c) (d)

Figure 9.7

In general, we have (a is a real number):

• a

0+
= +∞ and

a

0−
= −∞ if a > 0;

• a

0+
= −∞ and

a

0−
= +∞ if a < 0;

• +∞
0+

= +∞,
−∞
0+

= −∞,
+∞
0−

= −∞, and
−∞
0−

= +∞.

The behaviour of function hwhen x is close to zero differs from the one of the functions f and g: h approaches

“simultaneously” +∞ and −∞. Observe that the situation where a function is unbounded above and below

close to a point does not occur only because of a division by zero, as illustrated in Figure 9.7(d).
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Examples.

(a) Consider the real function f , with domain R, and defined by

f(x) =

 x− 1, x ≤ 2
1

(x− 2)2
, x > 2.

(See Figure 9.8(a)). We want to determine the limit of f as x approaches 2. For this, let us determine the

one-sided limits:

lim
x→2−

f(x) = lim
x→2−

(x− 1) = 2− 1 = 1

and

lim
x→2+

f(x) = lim
x→2+

1

(x− 2)2
=

1

(2+ − 2)2
=

1

(0+)2
=

1

0+
= +∞.

Since these limits are distinct, the limit of f as x approaches 2 does not exist.

(b) Let g be a real function, with domain R− {−1}, and analytic expression

g(x) =
(2x2 + 1)(x+ 1)

x2 + 2x+ 1
.

(see Figure 9.8(b)). We compute limx→−1 g, and obtain

lim
x→−1

g(x) = lim
x→−1

(2x2 + 1)(x+ 1)

x2 + 2x+ 1
=

0

0
,

what is an indeterminate form. But, as both the polynomials in the numerator and the denominator of g are

null at x = −1, they are divisible by x+ 1. Thus,

lim
x→−1

g(x) = lim
x→−1

(2x2 + 1)(x+ 1)

x2 + 2x+ 1
= lim

x→−1

(2x2 + 1)(x+ 1)

(x+ 1)2
= lim

x→−1

2x2 + 1

x+ 1
=

3

0
.

To conclude whether the limit exists in {−∞,+∞}, we have to determine the one-sided limits

lim
x→−1−

g(x) = lim
x→−1−

(2x2 + 1)(x+ 1)

x2 + 2x+ 1
= lim

x→−1−
2x2 + 1

x+ 1
=

3

−1− + 1
=

3

0−
= −∞.

and

lim
x→−1+

g(x) = lim
x→−1+

(2x2 + 1)(x+ 1)

x2 + 2x+ 1
= lim

x→−1+
2x2 + 1

x+ 1
=

3

−1+ + 1
=

3

0+
= +∞.

As the one-sided limits do not coincide, g has no limit when x goes to −1. We can, however, conclude that

the graphic of the function has a vertical asymptote with equation x = −1.
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(a) (b)

Figure 9.8

Continuous functions.

We begin by defining continuity of a function.

DEFINITION (Continuity). Let f be a real function of a real variable, with domain D, and a ∈ D. f is

said to be continuous at the point a if for each ε > 0 there exists δ > 0 such that

|f(x)− f(a)| < ε

for all points x ∈ D for which

|x− a| < δ.

If f is not continuous at a ∈ D, we say that it is discontinuous at a. If f is continuous at every point of

E ⊆ D, we say that f is continuous in E.

Note that, according to the above definition, a function is always continuous at isolated points of the domain.

THEOREM 9.6. Let f be a real function of a real variable, with domain D, and a ∈ D. If a is a limit point

of D then f is continuous at a if and only if

lim
x→a

f(x) = f(a).

The notion of continuity is illustrated in Figure 9.9

Example. Consider the real function of real variable f , defined by

f(x) =

{
x− 1, 2 < x < 4 ∨ x > 4

2, x = 4.
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Figure 9.9. Continuity.

The function (with graph sketched in Figure 9.10) has domain D = (2,+∞). We study the continuity of the

function at certain points of D. f is continuous at x = 3 since limx→3 f(x) = f(3) = 2. At x = 4 the

function is discontinuous since limx→4 f(x) 6= f(4) (limx→4 f(x) = 3 and f(4) = 2).

The notion of one-sided continuity is particularly relevant for the case of piecewise functions.

DEFINITION (One-sided continuity). Let f be a real function of a real variable, with domainD, and a ∈ D.

We say that f is left-continuous at a if for each ε > 0 there exists δ > 0 such that

|f(x)− f(a)| < ε

for all points x ∈ D for which

a− δ < x ≤ a.

We say that f is right-continuous at a if for each ε > 0 there exists δ > 0 such that

|f(x)− f(a)| < ε

for all points x ∈ D for which

a ≤ x < a+ δ.
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Figure 9.10

THEOREM 9.7. Let f be a real function of a real variable, with domain D, and a ∈ D. If a is a limit point

of D ∩ (−∞, a] then f is left-continuous at a if and only if

lim
x→a−

f(x) = f(a).

If a is a limit point of D ∩ [a,+∞) then f is right-continuous at a if and only if

lim
x→a+

f(x) = f(a).

THEOREM 9.8. A real function of a real variable f is continuous at a point a of its domain if and only if

f is left- and right-continuous at a.

Examples.

(a) Consider the real function f , with domain D = R, defined by

f(x) =

{
x2 − 4, x < 2

x, x ≥ 2.



CONTINUOUS FUNCTIONS. 151

The graph of the function is sketched in Figure 9.11(a). To determine the continuity of f at 2, which is a limit

point of the domain, we study the one-sided continuity at 2. The function is right-continuous, since

lim
x→2+

f(x) = lim
x→2+

x = 2 = f(2).

As

lim
x→2−

f(x) = lim
x→2+

(x2 − 4) = 0 6= f(2),

we conclude that the function is not left-continuous at x = 2, thus it is discontinuous at the point.

(b) Consider now the real function of a real variable g, with domain D = R, defined by

g(x) =

{
x2 − 4, x < 2

x− 2, x ≥ 2.

In Figure 9.11(b) we can find the sketch of function’s graph. Let us study the continuity of g at the point

x = 2. The function is right-continuous, since

lim
x→2+

g(x) = lim
x→2+

(x− 2) = 0 = g(2),

and left-continuous

lim
x→2−

g(x) = lim
x→2+

(x2 − 4) = 0 = g(2).

Consequently, the function g is continuous at x = 2.

(a) (b)

Figure 9.11

From the knowledge that some given functions are continuous at a fixed point, we can deduce the continuity

at that point of new functions, obtained by executing elementary operations.
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THEOREM 9.9. Let f and g be real functions of a real variable, with the same domain D, a ∈ D, k a

real number, and p a positive integer. If f and g are continuous at a then the following functions are also

continuous at a:

(1) f + g;

(2) kf ;

(3) f · g;

(4) f/g if g(a) 6= 0;

(5) fp;

(6) p
√
f if f(a) ≥ 0 when p even.

Next, we present a result on the continuity of the composite function.

THEOREM 9.10. Let f and g be real functions of a real variable, with domains D and E, respectively,

such that a ∈ D and f(a) ∈ E. If f is continuous at the point a and g is continuous at the point f(a) then

the function g ◦ f is continuous at a.

The previous two results together with the next one give the instruments to determine the continuity of a

function in a practical manner.

THEOREM 9.11.

(1) If f is a real function with domain R, and analytic expression f(x) = c, with c a constant, then f is

continuous in R.

(2) If g is a real function with domain R, and analytic expression g(x) = x, then g is continuous in R.

So we have that the constant function f(x) = c and the identity function g(x) = x are continuous in their

domains, and so are the functions obtained from these by using elementary operations. Therefore, the polyno-

mial functions, the rational functions, and, more generally, the algebraic functions are continuous functions.

Examples.

(a) Consider the real function f , with domain R, defined by f(x) = x3 − 4x (see Figure 9.12(a)). It is a

polynomial function, thus continuous in its domain.

(b) The real function g, with domain R − {1}, and defined by g(x) = x/(x − 1) (see Figure 9.12(b)), is

continuous in its domain since it is a rational function.

(c) Let h be the real function, with domain R, defined by h(x) = |x| − 2 (see Figure 9.13(a)). h is an

irrational function, since it can be written h(x) =
√
x2 − 2. Consequently, h is continuous in its domain.
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(d) Consider the function i with domain R, defined by

i(x) =

 x− 1, x ≤ 2
1

(x− 2)2
, x > 2.

(See Figure 9.13(b)). The function is continuous in the intervals (−∞, 2) and (2,+∞), since it is defined for

the first interval by a polynomial, and for the second by a quotient of polynomials. Let us study the continuity

of i at x = 2. We have

lim
x→2+

i(x) = lim
x→2+

1

(x− 2)2
=

1

(2+ − 2)2
=

1

(0+)2
=

1

0+
= +∞,

so that i does not have a finite limit as x approaches 2 and, consequently, i is discontinuous at the point.

However, it is left-continuous at x = 2:

lim
x→2−

i(x) = lim
x→2−

(x− 1) = 2− 1 = 1 = j(2).

(a) (b)

Figure 9.12

Together with the algebraic functions, the exponential and the logarithmic functions, and the trigonometric

and the inverse trigonometric functions, are also continuous functions. As they are the functions obtained

from the above by composition.

THEOREM 9.12. The following functions are continuous in their domains:

(1) The exponential and the logarithmic functions, with analytic expressions ax e loga x, respectively

(a > 0, a 6= 1);

(2) The trigonometric functions, with analytic expressions sinx, cosx, tanx, and cotx;

(3) The inverse trigonometric functions, with analytic expressions arcsinx, arccosx, arctanx, and

arccotx.
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(a) (b)

Figure 9.13

Theorems about continuous functions.

We conclude the current topic with the presentation of a few important results on continuous functions.

THEOREM 9.13 (Bolzano’s Theorem). Let f be a real function of a real variable with domain D, [a, b] ⊆
D, and f(a) · f(b) < 0. If f is continuous in [a, b] then there is at least a number c in the open interval

(a, b) such that f(c) = 0.

Next result in an immediate consequence of Theorem 9.13.

THEOREM 9.14 (Intermediate-Value Theorem). Let f be a real function of a real variable with domain D,

[a, b] ⊆ D, and C a number such that f(a) < C < f(b) or f(b) < C < f(a). If f is continuous in [a, b]

then there is at least a number c ∈ (a, b) such that f(c) = C.

Example. Consider the real function of a real variable f , with analytic expression

f(x) = x5 − 2x4 − x3 + 3x2 − x− 1

The sketch of the graph of f can be found in Figure 9.14. Even for simple functions as this one, the exact

computation of the zeros may be difficult. Theorem 9.13 gives us instruments to both conclude about the

existence of zeros, and to approximate them if they exist. We exemplify by searching for possible zeros of f

in the interval (−1, 1). The function is continuous in its domain D = R. As

f(−1) = 1 > 0 and f(1) = −1 < 0,
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we have that the function has at least one zero in the interval (−1, 1). We can improve the approximation. The

value of f at the midpoint of the interval (−1, 1) is

f(0) = −1 < 0,

and, since f(−1) and f(0) have opposite signs, we conclude that there exists a zero in the interval (−1, 0).

We repeat the procedure and evaluate the function now at the midpoint of the interval (−1, 0):

f(−0.5) = 0.2188 > 0.

As f(−0.5) and f(0) have opposite signs, we know that there is a zero in the interval (−0.5, 0). By repeating

the procedure, we can approximate the zero with any level of accuracy. For example, after 10 further iterations

we obtain the interval

(−0.43603515625,−0.435546875).

Figure 9.14

THEOREM 9.15 ( Bolzano-Weierstrass Theorem). Let f be a real function of a real variable with domain

D, and [a, b] ⊆ D. If f is continuous in [a, b] then f attains a maximum and a minimum, each at least

once, that is,there exist numbers c and d in [a, b] such that f(c) ≥ f(x) ≥ f(d) for all x ∈ [a, b].
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Examples.

(a) The function f(x) = x3 + x− 1 is continuous in the whole domain R. Thus, it attains a maximum and

a minimum in any interval [a, b], with a and b real numbers.

(b) The function g(x) = x defined in (−∞,+∞) is not bounded;

(c) The function h(x) = 1/(1 + x) defined in [0,+∞) is bounded but does not attain a minimum;

(d) The function i(x) = 1/x defined in (0, 1] is not bounded from above;

(e) The following function is bounded, but does not attain a maximum (it is not continuous at x = 0):

j(x) =

{
1− x, 0 < x ≤ 1

0, x = 0
.

Exercises.

(1) Determine the following limits, if they exist:

a) limx→−1(x
2 − 3x+ 1);

b) limx→−∞(x2 − 3x+ 1);

c) limx→−∞
x2−16

(x2−5x+4)(x2+3)
;

d) limx→+∞
x2+x−1
x−3x2+4

;

e) limx→−∞
4x3−5x+1
2x2−3x+5

;

f) limx→+∞
x(x2−1)
x2(2x+3)

;

g) limx→−3
x2+3x
x2+6x+9

;

h) limx→2
x2−4
x3−8 ;

i) limx→2

√
x+2−

√
3x−2

x−2 ;

j) limx→1

√
x−1
x−1 ;

k) limx→+∞ log2(2x− 4);

l) limx→−1
x−1

ln(x+1) ;

m) limx→+∞
4ex−4e−x−3

ex+5 ;

n) limx→0+(x+ lnx);

o) limx→0 xcosx;

p) limx→+∞ x arctanx.
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(2) Study the continuity of the following functions at the indicated points:

a) a(x) = 2− x2 + x, at x = 0;

b) b(x) = x2−16
(x2−5x+4)(x2+3)

, at x = 1 and x = 4;

c) c(x) = log2(2x− 4), at x = 3 and x = 0.

(3) Study the continuity of the following functions in their domains:

a) f(x) = x2 − 3x+ 1;

b) g(x) = x2−16
(x2−5x+4)(x2+3)

;

c) h(x) = x−1
ln(x+1) ;

d) i(x) = 4ex−4e−x−3
ex+5 ;

e) j(x) = (x+ lnx);

f) k(x) = cosx;

g) l(x) = x arctanx.

(4) Compute, if they exist:

a) limx→0 sin 1
x ;

b) limx→0

(
x sin 1

x

)
;

c) limx→+∞
(
x sin 1

x

)
;

d) limx→0
ex

2−1
x ,

(5) Consider the real function of a real variable defined by:

h(x) =


2x+ arccos(x), 0 ≤ x < 1

2, x = 1
x+ 5

3
, 1 < x ≤ 4

a) Show that h is continuous in its domain.

b) By using Bolzano’s theorem, show that: ∃c ∈ (2, 4) : h(c) = c.

(6) Consider in R− {0} the function

f(x) =
1− e3x

5x
.

Let g be a continuous extension of f to R. What is value of g at x = 0?
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(7) Consider the real function f(x) = 1 − x sin
(
1
x

)
defined in R − {0}. Let g be an extension of f to R.

Determine g(0) such that g is continuous at x = 0.

(8) Determine the values of a and b for each one of the following function such that they are continuous at

the indicated points:

a) f1(x) =

{
3x− 7, x ≥ 3

ax+ 3, x < 3
, at x = 3;

b) f2(x) =


x+ a, x < −2

3ax+ b, −2 ≤ x ≤ 1

ax+ 3, x > 1

, at x = −2 and x = 1;

c) f3(x) =

{
sinx, x ≤ 0

ax+ b, x > 0
, at x = 0.

(9) Let f be a continuous mapping of [a, b] into [a, b]. Show that there exists c ∈ [a, b] such that f(c) = c.

(10) Show that any polynomial of odd degree is null at at least one point.



10. Differentiation

The notion of derivative. Geometric interpretation.

Let f be a real function function defined in an open interval (a, b). For a fixed point x in the interval, define

the difference quotient
f(x+ h)− f(x)

h
,

where h is a nonzero real number such that x + h lies also in the interval (a, b). The difference quotient

measures the average rate of change of f when x changes from x to x + h. If the limit of the difference

quotient when h approaches zero exists, we call it the derivative of f at the point x.

DEFINITION (Derivative). Suppose that f is a real function function defined in an open interval (a, b), and

x a point in the interval. The derivative f ′(x) is defined by

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
,

provided that the limit exists in R = R ∪ {−∞,+∞}. If f ′(x) is finite we say that the function f is

differentiable at the point x.

Geometrically, the difference quotient
f(x+ h)− f(x)

h

is the slope of the secant to the graph of the function through the points (x, f(x)) and (x + h, f(x + h))

(see Figure 10.1). As h goes to zero, the point (x + h, f(x + h)) moves along the curve in the direction of

(x, f(x)), and the corresponding secant lines approach a line we call the tangent to the graph of the function

at the point (x, f(x)). Therefore, we can interpret the derivative as the slope of the tangent to the graph at the

point (x, f(x)), that is, the trigonometric tangent of the angle α that the tangent line makes with the horizontal.

This slope is referred to as the slope of the graph of the function at (x, f(x)). The equation of the tangent line

containing the point (x0, f(x0)) is, if f ′(x0) is finite,

y = f ′(x0)(x− x0) + f(x0),

159
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and, if it is infinite,

x = x0.

Figure 10.1. Derivative.

The limit process which gives the (finite) derivative f ′(x) from f(x) allows us to obtain a new function f ′

from the given function f . This new function f ′ is called the (first) derivative function, and the process for

producing it, differentiation. If the function f ′ is defined in an open interval we can still differentiate it, and

obtain the second derivative f ′′; the third derivative f ′′′ is obtained from the differentiation of f ′′. Sometimes,

we write f (1) instead of f ′, f (2) instead of f ′′, f (3) instead of f ′′′. Using this notation, we have that, in general,

f (n) is obtained from the differentiation of f (n−1) (by convention, f (0) = f ).

We mention that other notations are frequently used for derivatives, such as:

df

dx
,
d2f

dx2
, . . . ,

dnf

dxn
or Df, D2f, . . . , Dnf.
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Examples.

(a) Let us determine the derivative of the real function of a real variable f , defined by f(x) = x2, at x = 1.

We have

f ′(1) = lim
h→0

f(1 + h)− f(1)

h
= lim

h→0

(1 + h)2 − 12

h
= lim

h→0

h2 + 2h

h
= lim

h→0
(h+ 2) = 2.

More generally, the derivative function f ′ is given by

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

(x+ h)2 − x2

h
= lim

h→0

h2 + 2hx

h
= lim

h→0
(h+ 2x) = 2x,

for all x ∈ R.

(b) To differentiate the real function g, with domain R− {0}, defined by g(x) = 1/x we compute the limit

g′(x) = lim
h→0

g(x+ h)− g(x)

h
= lim

h→0

1
x+h −

1
x

h
= lim

h→0

x− (x+ h)

x(x+ h)h
= lim

h→0

−1

x(x+ h)
= − 1

x2
,

for all x ∈ R− {0}.

(c) Consider the function j : R→ R defined by

j(x) = |x| =

{
x, x ≥ 0

−x, x < 0
.

The function is not differentiable at x = 0 as the limit

lim
h→0

j(h)− j(0)

h

does not exist. In fact, the one-sided limits at x = 0 are distinct:

lim
h→0−

j(h)− j(0)

h
= lim

h→0

−h
h

= −1 and lim
h→0+

j(h)− j(0)

h
= lim

h→0

h

h
= 1.

These limits are the one-sided derivatives at x = 0 denoted, respectively, j′(0−) and j′(0+).

Now note that f(x+ h) can be written

f(x+ h) = f(x) + h
f(x+ h)− f(x)

h
,

with h 6= 0. If we assume that f ′(x) exists and is finite, and let h→ 0, we obtain

lim
x→0

f(x+ h) = lim
x→0

(
f(x) + h

f(x+ h)− f(x)

h

)
= f(x) + 0 · f ′(x) = f(x).

This shows that f is continuous at x. We proved the theorem stated next.
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THEOREM 10.1. Let f be a real function defined in an open interval (a, b), and x a point in (a, b). If f is

differentiable at x then it is continuous at x.

The algebra of derivatives. Derivatives of elementary functions.

We can, by using the definition, determine the derivative of a function at a given point or even the derivative

function. However, this procedure, involving the computation of a limit, takes some effort and is, sometimes,

difficult. The following results, which can be deduced from the definition of derivative, give practical rules

for the computation of derivatives.

THEOREM 10.2 (Chain rule). Let f and g be real functions of a real variable. Suppose that g is dif-

ferentiable at the point x and that f is differentiable at y = g(x). Then the composition f ◦ g is also

differentiable at the point x and

(f ◦ g)′(x) = f ′(y) · g′(x) = f ′(g(x)) · g′(x).

Example. We want to determine the derivative of the function f(x) = 1/x2. We have that

f = u ◦ v,

with u(x) = 1/x and v(x) = x2. As u′(x) = −1/x2 and v′(x) = 2x, we obtain

f ′(x) = (u ◦ v)′(x) = u′(v(x)) · v′(x) = − 1

(x2)2
· 2x = − 2

x3
.

THEOREM 10.3. Let f and g be real functions defined in the same interval. If f and g have a (finite)

derivative at a point x in the interval, then the same is true for the functions f + g, f − g, f · g, and f/g if

g(x) 6= 0. The derivatives of these functions are given by

(1) (f + g)′(x) = f ′(x) + g′(x);

(2) (f − g)′(x) = f ′(x)− g′(x);

(3) (f · g)′(x) = f ′(x)g(x) + f(x)g′(x);

(4)
(
f

g

)′
(x) =

g(x)f ′(x)− g′(x)f(x)

(g(x))2
.

These and other rules are listed in the following table.
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Derivation rules

Notation: u and v designate differentiable functions, a and α real numbers, and n a positive integer.

(1) a′ = 0 (2) x′ = 1 (3) (au)′ = au′

(4) (u+ v)′ = u′ + v′ (5) (uv)′ = u′v + uv′ (6) (uα)′ = αuα−1u′ (α 6= 0)

(7)
(u
v

)′
=
vu′ − v′u

v2
(8)

(
1

u

)′
= − u

′

u2
(9) (eu)′ = euu′

(10) (au)′ = au ln a u′ (a > 0, a 6= 1) (11) (uv)′ = vuv−1u′ + uv lnu v′ (12) (lnu)′ =
u′

u

(13) (loga u)
′ =

u′

u ln a
(a > 0, a 6= 1) (14) (sinu)′ = cosu u′ (15) (cosu)′ = − sinu u′

(16) (tanu)′ =
u′

cos2 u
(17) (cotu)′ = − u′

sin2 u
(18) (arcsinu)′ =

u′√
1− u2

(19) (arccosu)′ = − u′√
1− u2

(20) (arctanu)′ =
u′

1 + u2
(21) (arccotu)′ = − u′

1 + u2

Examples. Consider the real functions of a real variable

f(x) =

(
2x− 1

3− x3

)5

; g(x) =
3

√
ex2+1 − log2 x; h(x) =

3

lnx
.

(a) We want to determine the derivative of f . Using rules (1)− (4), (6), and (7), we obtain

f ′(x) =

((
2x− 1

3− x3

)5
)′

= 5

(
2x− 1

3− x3

)4

·
(

2x− 1

3− x3

)′
= 5

(
2x− 1

x− x3

)4

·
(
3− x3

)
· 2−

(
−3x2

)
(2x− 1)

(3− x3)2

= 5

(
2x− 1

3− x3

)4

· 4x3 − 3x2 + 6

(3− x3)2
.
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(b) The derivative of g can be determined by using rules (1)− (4), (6), (9), and (13),

g′(x) =

(
3
√
ex2+1 − log2 x

)′
=

((
ex

2+1 − log2 x
) 1

3

)′
=

1

3

(
ex

2+1 − log2 x
)− 2

3 ·
(
ex

2+1 − log2 x
)′

=
1

3

(
ex

2+1 − log2 x
)− 2

3 ·
(
ex

2+1 · 2x− 1

x ln 2

)
.

(c) For the derivative of h, by using rules (3), (8), and (12),

h′(x) =

(
3

lnx

)′
= 3 ·

(
−

1
x

(lnx)2

)
= − 3

x(lnx)2
.

Theorems about differentiable functions.

THEOREM 10.4 (Rolle’s theorem). Let f be a real function which is continuous in the closed interval

[a, b] and differentiable in the open interval (a, b). Suppose that f(a) = f(b). Then there exists a point

c ∈ (a, b) such that f ′(c) = 0.

Figure 10.2 illustrates the above theorem.

Figure 10.2
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Example. Consider the real function of real variable f defined by f(x) = 4−x2. The function is differentiable

in R and is null for x = −2 and x = 2. We can then guarantee that the derivative f ′ has a zero in the interval

(−2, 2). In fact, as in this case the derivative function is very simple, f ′(x) = −2x, we can easily see that f ′

it is null for x = 0.

We next state the Lagrange’s mean-value theorem, a generalisation of the Rolle’s theorem.

THEOREM 10.5 (Lagrange’s theorem). Let f be a real function which is continuous in the closed interval

[a, b] and differentiable in the open interval (a, b). Then there exists a point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Figure 10.3 illustrates Lagrange’s theorem.

Figure 10.3

Example. Consider the real function of a real variable f , differentiable in R, defined by f(x) = −x2+4x−3.

The values of f at x = 0 and at x = 2 are f(0) = −3 and f(2) = 1, respectively. Then there exists a point c

in the interval (0, 2) such that

f ′(c) =
f(2)− f(0)

2− 0
=

1 + 3

2
= 2.

As for the previous example, we can determine the value of c: from f ′(x) = −2x+ 4 = 2 we obtain c = 1.
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The following two results are useful for the evaluation of indeterminate forms. The first considers the case

where the limit is taken when x approaches an endpoint of an open interval, whereas in the second x ap-

proaches an interior point of an open interval.

THEOREM 10.6 (Cauchy’s rule). Let f and g be differentiable real functions defined in the interval (a, b)

(with a, b ∈ R = R ∪ {−∞,+∞} and a < b). Suppose that the following conditions are satisfied

(1) g′(x) 6= 0 for all x ∈ (a, b);

(2) lim
x→a

f = lim
x→a

g = 0 or lim
x→a

f = lim
x→a

g = +∞.

Then, if the limit

lim
x→a

f ′(x)

g′(x)

exists in R so exists the limit

lim
x→a

f(x)

g(x)

and

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Note that the cases where the limits of f and g are both −∞ or infinity of opposite signs can be reduced to

the one above by a simple change of signs. Note also that the result still holds when the limits are taken as

x goes to the upper endpoint b. Finally, the the same result is obtained if we replace condition (2) simply by

limx→a g(x) = +∞ or by limx→a g(x) = −∞.

COROLLARY 10.7. Let I be an open interval, c a point of I , and f and g two differentiable real functions

in I − {c}. Suppose that the following conditions are satisfied

(1) g′(x) 6= 0 for all x ∈ I − {c};

(2) lim
x→c

f = lim
x→c

g = 0 or lim
x→c

f = lim
x→c

g = +∞.

Then

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)

if the second limit exists in R = R ∪ {−∞,+∞}.

As for Theorem 10.6, Corollary 10.7 can be easily adapted to the cases where the limits of f and g are both

−∞ or infinity of opposite signs.

The Cauchy’s rule can still be applied for the evaluation of the indeterminate forms 0 · (+∞), 0 · (−∞),

+∞−∞, and also 1+∞, 1−∞, 00, and (+∞)0. The transformation of these forms into indeterminate forms

of the types considered in Theorem 10.6 and Corollary 10.7 can be obtained by using the equalities:
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• f(x)g(x) =
f(x)

1

g(x)

or f(x)g(x) =
g(x)

1

f(x)

if the limit of f(x)g(x) gives 0 · (+∞) or 0 · (−∞);

• f(x) + g(x) =

1

f(x)
+

1

g(x)
1

f(x)g(x)

if the limit of f(x) + g(x) gives +∞−∞;

• f(x)g(x) = eg(x) ln f(x) if the limit of f(x)g(x) gives 1+∞, 1−∞, 00, or (+∞)0.

Examples.

(a) When computing the limit

lim
x→0

ex − 1

x

we obtain the indeterminate form 0/0. Observe also that both the numerator and the denominator of the

fraction, f(x) = ex − 1 and g(x) = x, respectively, are differentiable in R, with g 6= 0 for all x 6= 0. As

lim
x→0

ex

1
= e0 = 1,

we conclude that

lim
x→0

ex − 1

x
= 1.

(b) The computation of the limit

lim
x→+∞

lnx

x

produces the indeterminate form +∞/+∞. As

lim
x→+∞

1
x

1
=

1

+∞
= 0,

we have that

lim
x→+∞

lnx

x
= 0.

(c) The computation of

lim
x→+∞

x ln

(
1 +

1

x

)
leads to the indeterminate form (+∞) · 0. As

x ln

(
1 +

1

x

)
=

ln
(
1 + 1

x

)
1
x

,

and

lim
x→+∞

ln
(
1 + 1

x

)
1
x
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gives the indeterminate form 0/0, we can now apply the Cauchy’s rule to this second limit. We obtain

lim
x→+∞

− 1
x2

1+ 1
x

− 1
x2

= lim
x→+∞

1

1 + 1
x

=
1

1 + 1
+∞

=
1

1 + 0
= 1,

and, finally,

lim
x→+∞

x ln

(
1 +

1

x

)
= 1.

(d) We want to determine

lim
x→+∞

(
1 +

1

x

)x
.

The computation of the limit produces the indeterminate form 1+∞. As(
1 +

1

x

)x
= eln(1+

1
x)
x

= ex ln(1+
1
x),

and, by item c),

lim
x→+∞

x ln

(
1 +

1

x

)
= 1,

we have that

lim
x→+∞

(
1 +

1

x

)x
= lim

x→+∞
eln(1+

1
x)
x

= elimx→+∞ ln(1+ 1
x)
x

= e1 = e.

Polynomial approximations.

Consider a real function of a real variable f , differentiable up to the order n at the point x = 0 (n ≥ 1). We

want to a find a polynomial P approximating f in a neighbourhood of x = 0. More precisely, we want to a

find a polynomial P such that P and f agree at x = 0 as well as their first n derivatives, that is,

P (0) = f(0), P ′(0) = f ′(0), P ′′(0) = f ′′(0), . . . , P (n−1)(0) = f (n−1)(0), P (n)(0) = f (n)(0).

If P is a polynomial of degree not greater than n,

P (x) = cnx
n + cn−1x

n−1 + · · ·+ c2x
2 + c1x+ c0,

the derivatives of P up to the order n evaluated at x = 0 are

P (0) = c0, P ′(0) = c1, P ′′(0) = 2c2, . . . , P (n−1)(0) = (n− 1)!cn−1, P (n)(0) = n!cn.

Then, the matching conditions give

c0 = f(0), c1 = f ′(0), 2c2 = f ′′(0), . . . , (n− 1)!cn−1 = f (n−1)(0), n!cn = f (n)(0),
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and then the polynomial’s coefficients are

c0 = f(0), c1 = f ′(0), c2 =
f ′′(0)

2
, . . . , cn−1 =

f (n−1)(0)

(n− 1)!
, cn =

f (n)(0)

n!
.

Summarising, we have

ck =
f (k)(0)

k!
,

with k = 0, 1, . . . , n.

THEOREM 10.8. Let f be a real function, differentiable up to the order n at x = 0 (n ≥ 1). Then there

exists a unique polynomial P of degree not greater than n satisfying the conditions

P (0) = f(0), P ′(0) = f ′(0), P ′′(0) = f ′′(0), . . . , P (n−1)(0) = f (n−1)(0), P (n)(0) = f (n)(0).

This polynomial is called the Taylor polynomial of degree n generated by f at the point 0, and is given by

P (x) =

n∑
k=0

f (k)(0)

k!
xk.

More generally, the Taylor polynomial of degree n generated by f at the point a is

P (x) =

n∑
k=0

f (k)(a)

k!
(x− a)k.

Notice that if n = 1, P (x) is just the equation of the tangent to the graph of f at x = a.

Example. Consider the exponential function f(x) = ex. As f (n)(0) = e0 = 1 for any nonnegative integer n,

the Taylor polynomial of degree n generated by f at x = 0 is

P (x) =
n∑
k=0

1

k!
xk.

For example, for n = 1, 2, 3 we obtain, respectively,

P1(x) = 1 + x, P2(x) = 1 + x+
1

2
x2, P3(x) = 1 + x+

1

2
x2 +

1

6
x3.

The approximation of f by these Taylor polynomials is illustrated in Figure 10.4. Notice that the approxima-

tion is more accurate if the degree of the polynomial is higher.

The following theorem, which is a generalisation of the Lagrange’s mean-value theorem, gives an estimate for

the approximation error.
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Figure 10.4

THEOREM 10.9 (Taylor’s theorem). Suppose that f is a real function in [α, β], n a nonnegative integer,

f (n) is continuous in [α, β], and f (n+1)(t) exists and is finite for every t ∈ (α, β). Let a and x be distinct

points of [α, β]. Then there exists a point c between x and a, such that

f(x) =
n∑
k=0

f (k)(a)

k!
(x− a)k +Rn(x), (Taylor’s formula)

where the remainder Rn(x) is given by

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1. (Lagrange form of the remainder)

Example. Consider the logarithmic function f(x) = lnx. The n-th order derivative is

f (n)(x) = (−1)n−1
(n− 1)!

xn

for any positive integer n, and, in particular,

f (n)(1) = (−1)n−1(n− 1)!.
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The Taylor formula of order n of f about x = 1, with the remainder in the Lagrange form, is given by

f(x) =
n∑
k=1

(−1)k−1

k
(x− 1)k +

(−1)n

(n+ 1)cn+1
(x− 1)n+1

= (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 + · · ·+ (−1)n−1

n
(x− 1)n +

(−1)n

(n+ 1)cn+1
(x− 1)n+1,

where c is a number between x and 1. If, for example, n = 3, we obtain

f(x) = (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 − 1

4c4
(x− 1)4.

The approximation of f by the Taylor polynomial of degree 3 generated by f at x = 1 is represented in Figure

10.5.

Figure 10.5

Exercises.

(1) Determine the derivatives of the following real functions of a real variable:

a) f(x) = x2; b) f(x) = 2x+ 2;

c) f(x) = 1
2x

2; d) f(x) = 2x2 + 4x+ 4;

e) f(x) = c (c ∈ R); f) f(x) = 1
x2

+ 3x
1
3 ;

g) f(x) = 3
x4
− 4
√
x+ x; h) f(x) = 6x1/3 − x0.4 + 9

x2
;
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i) f(x) = 1
3√x +

√
x; j) f(x) =

(
x4 + 4x+ 2

)
(2x+ 3);

k) f(x) = (2x− 1)
(
3x2 + 2

)
; l) f(x) =

(
x3 − 12x

) (
3x2 + 2x

)
;

m) f(x) =
(
2x5 − x

)
(3x+ 1); n) f(x) = 2x+1

x+5 ;

o) f(x) = 3x4+2x+2
3x2+1

; p) f(x) = x
3
2+1
x+2 ;

q) f(x) = x2+x
2x−1 ; r) f(x) = (x+ 5)2;

s) f(x) =
(
x3 − 2x+ 5

)2
; t) f(x) =

√
1− x2;

u) f(x) = (2x+4)3

4x3+1
; v) f(x) = (2x+ 1)

√
2x+ 2;

w) f(x) = 2x+1√
2x+2

; x) f(x) =
√

2x2 + 1
(
3x4 + 2x

)2
;

y) f(x) = 2x+3
(x4+4x+2)2

; z) f(x) =
√
x3 + 1

(
x2 − 1

)
;

a′) f(x) =
(
(2x+ 3)4 + 4(2x+ 3) + 2

)2
; b′) f(x) =

√
1 + x2;

c′) f(x) =
(
3x2 + e

)
e2x; d′) f(x) = e2x

2+3x;

e′) f(x) = ee
2x2+1; f′) f(x) = 2x−3

√
x3 − 2 + lnx;

g′) f(x) = lnx− 2ex +
√
x; h′) f(x) = ln

(
ln
(
x3(x+ 1)

))
;

i′) f(x) = ln
(
2x2 + 3x

)
; j′) f(x) = ln4 x+ lnx4 + 4 lnx;

k′) f(x) = ln(sinx); l′) f(x) = ln 1+x
1−x ;

m′) f(x) = ln
√
x2 + 1; n′) f(x) = x2 log4 x;

o′) f(x) = 3ex − 4 cosx− 1
4 lnx; p′) f(x) = arctanx+ tanx;

q′) f(x) = arcsin x
2 ; r′) f(x) = arccos

(
2x2
)

;

s′) f(x) = sin(2x)− sin2 x+ 2 cotx; t′) f(x) = sinx+cosx
sinx−cosx ;

u′) f(x) = ex(sinx+ cosx); v′) f(x) = eax sin(ax) (a ∈ R).

(2) Determine:

a) d
dxe

x2 ; b) d
dxe

2x ; c) d
dx arctan

(
x4
)

;

d) d
dx arctan(2x+ 4); e) d

dx ln
(
x4
)

; f) d
dx ln(2x+ 4);

g) d
dx

1
1+x4

; h) d
dx

1
2x+4 ; i) d

dx arctan ex.
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(3) Consider the real functions of a real variable and the points in R2:

f(x) =
x3

3
+ x2 + 5, (3, 23)

g(x) = x3 − 3x+ 1, (1,−1)

h(x) = (x2 + 1)(2− x), (2, 0)

a) For each one of the above functions, determine the values of x for which the tangent to its graph

is horizontal.

b) For each one of the functions f , g, and h, write the equation of the tangent to its graph at the given

point.

(4) Check whether the Rolle’s theorem is applicable to:

a) f(x) = x2 − 3x+ 2 in the interval [1, 2];

b) g(x) = |x− 1| in the interval [0, 2].

(5) Let f and g be real functions of a real variable, differentiable in [a, b], such that f(a) = g(a) and

f(b) = g(b). Show that there exists a point c ∈ (a, b) such that f ′(c) = g′(c).

(6) Prove that ex ≥ 1 + x by using the Lagrange’s mean value theorem.

(7) Compute the following limits:

a) lim
x→0

xx; b) lim
x→0

ex − e−x − 2x

x− sinx
; c) lim

x→+∞

lnx
3
√
x

;

d) lim
x→0

(
1

x
− 1

sinx

)
; e) lim

x→+∞
x sin

1

x
; f) lim

x→3

(
1

x− 3
− 5

x2 − x− 6

)
.

(8) Write the Taylor’s formula with Lagrange’s remainder of order n for each one of the following functions:

a) f(x) = ex about x = 0;

b) g(x) = lnx about x = 1;

c) h(x) = 1
1−x about x = 0;

d) i(x) = ln(1 + x) about x = 0.

e) j(x) = 1
x2

about x = −1.





11. Optimisation

Extreme values of functions.

DEFINITION (Maximum of a function). Let f be a real function defined in a set S ⊆ R. f is said to have

an absolute maximum in S if there is a point c ∈ S such that

f(x) ≤ f(c)

for all x ∈ S. f is said to have a relative maximum at a point c′ ∈ S if there is an open interval (a, b)

containing c′ such that

f(x) ≤ f(c′)

for all x ∈ (a, b) ∩ S.

Absolute and relative minima of f can be defined, respectively, as the negatives of absolute and relative

maxima of −f . Maxima and minima are called extrema.

THEOREM 11.1. Let f be a real function defined in an open interval (a, b), and suppose that f has a

relative maximum or a relative minimum at a point c ∈ (a, b). If the derivative f ′(c) exists and is finite,

then f ′(c) = 0.

Examples.

(a) Consider the real function of a real variable f defined by f(x) = 1− x2 (see Figure 11.1). The function

has a relative (and absolute) maximum for x = 0. Since f is differentiable at 0, the derivative f ′ is null for

x = 0. In fact, f ′(x) = −2x, and f ′(0) = 0.

175
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Figure 11.1

(b) Let g be the real function of a real variable given by g(x) = |x| (see Figure 11.2(a)). The derivative of g

is never null but g has a relative (and absolute) minimum at 0. Note that the derivative of g for x = 0 does not

exist.

(c) Consider the real function of a real variable h defined h(x) = x3 (see Figure 11.2(b)). The derivative of

h, h′(x) = 3x2, is null for x = 0. But h has no extremum at 0.

(a) (b)

Figure 11.2
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Geometric properties of functions.

The following theorem is a consequence of the Lagrange’s mean-value theorem.

THEOREM 11.2. Let f be a real function which is continuous in a closed interval [a, b] and differentiable

at every point of the open interval (a, b). Then

(1) If f ′(x) > 0 for every x ∈ (a, b), f is strictly increasing in [a, b];

(2) If f ′(x) < 0 for every x ∈ (a, b), f is strictly decreasing in [a, b];

(3) If f ′(x) = 0 for every x ∈ (a, b), f is constant in [a, b].

THEOREM 11.3. Let f be a real function which is continuous in a closed interval [a, b], and differentiable

at every point of the open interval (a, b), except possibly at a point c in the interval.

(1) If f ′(x) > 0 for all x < c and f ′(x) < 0 for all x > c, then f has a relative maximum at c;

(2) If f ′(x) < 0 for all x < c and f ′(x) > 0 for all x > c, then f has a relative minimum at c.

Examples.

(a) Consider the real function of a real variable f defined by f(x) = x3 + 3
2x

2 + 1 (see Figure 11.3(a)). The

derivative f ′(x) = 3x2 + 3x is positive in (−∞,−1) ∪ (0,+∞), negative in (−1, 0), and null for x = −1 or

x = 0. We than have that f is strictly increasing in (−∞,−1) and in (0,+∞), strictly decreasing in (−1, 0),

and attains a relative maximum at −1 and a relative minimum at 0.

(b) Consider the real function of a real variable g defined by g(x) = |x + 1| (see Figure 11.3(b)). The

function is continuous in R and although is not differentiable for x = −1, the derivative changes sign at this

point. Therefore g has an extremum (a minimum) for x = −1.

(a) (b)
Figure 11.3
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Second derivative test for extrema.

Let f be a real function which is continuous in a closed interval [a, b]. It is clear that f attains an absolute

maximum and an absolute minimum in the interval. Moreover, if f is differentiable at every point of (a, b),

relative and absolute extrema can only occur at:

• The endpoints of the interval;

• The points of (a, b) for which the derivative is null.

These latter points for which the derivative is null are called critical points.

THEOREM 11.4. Let f be a real function which is continuous in a closed interval [a, b], and differentiable

at every point of the open interval (a, b). Assume that c ∈ (a, b) is a critical point of f . Assume also that

f ′′ exists and is finite in (a, b). Then

(1) If f ′′(x) < 0 for all x ∈ (a, b), f has a relative maximum at c;

(2) If f ′′(x) > 0 for all x ∈ (a, b), f has a relative minimum at c.

In the above theorem, if f ′′ is continuous in a neighbourhood of the critical point c it suffices to have f ′′(c) < 0

(f ′′(c) > 0) to conclude that f has a relative maximum (minimum) at c.

Recall that a function is convex if the chord joining any two points of its graph lies above the graph, and

concave if it lies below the graph.

THEOREM 11.5. Let f be a real function which is continuous in a closed interval [a, b], and differentiable

at every point of the open interval (a, b). If f ′ is increasing in (a, b) then f is convex in [a, b]. In particular,

f is convex if f ′′ exists, is finite and nonnegative in (a, b).

The discussion of the concave case can be reduced to the convex case by noting that a function f is concave

if −f is convex.

Examples.

(a) Consider the real function of a real variable f defined by f(x) = 1
6x

3 (see Figure 11.4(a)). Its second

derivative is the function f(x) = x. Since f ′′ < 0 for x < 0 and f ′′ > 0 for x > 0, f is concave in (−∞, 0]

and convex in [0,+∞). The point 0, at which the function f is continuous and the second derivative changes

sign is called a point of inflection.

(b) Consider the real function of a real variable g defined by g(x) = 1− (x− 1)2 (see Figure 11.4(b)). The

function has only one critical point: the point 1. As g′′(1) < 0, g attains a maximum for x = 1.
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(a) (b)

Figure 11.4

Sketching the graph of a function.

In order to sketch the graph of a function, we have to study the following aspects:

• Domain, parity, and intercepts;

• Continuity and asymptotes;

• Monotonicity and local extrema;

• Convexity and points of inflection;

• Range.

Example. Consider the real function of a real variable f defined by f(x) = x− 1
x . The function has domain

R − {0}, and is odd as f(−x) = −f(x) for all x 6= 0. Also, the function f is continuous in the whole

domain since it is the difference and the quotient of continuous functions. It does not intercept the y-axis and,

to determine the zeros, we solve the equation

f(x) = 0⇔ x− 1

x
= 0⇔ x2 − 1

x
= 0⇔ x2 − 1 = 0 ∧ x 6= 0⇔ (x = −1 ∨ x = 1) ∧ x 6= 0

⇔ x = −1 ∨ x = 1.

To look for an asymptote near +∞, we compute the limit

lim
x→+∞

f(x)

x
= lim

x→+∞

x− 1
x

x
= lim

x→+∞

(
1− 1

x2

)
= 1.

We found the slope m = 1 of the possible asymptote. Now we compute

lim
x→+∞

(f(x)−mx) = lim
x→+∞

(
x− 1

x
− x
)

= lim
x→+∞

(
−1

x

)
= 0.
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We found the intercept of the asymptote, so that the asymptote’s equation is y = x. Near −∞, and repeating

the same computations we obtain the same asymptote y = x. We now check the existence of a vertical

asymptote at x = 0. We determine

lim
x→0−

f(x) = lim
x→0−

(
x− 1

x

)
=

(
0− 1

0−

)
= +∞.

By performing the same computations we obtain

lim
x→0+

f(x) = −∞.

The derivative function

f ′(x) =

(
x− 1

x

)′
= 1 +

1

x2
=
x2 + 1

x2

is positive for all x 6= 0. Thus, f is strictly increasing in (−∞, 0) and in (0,+∞), and has no extreme values.

The second derivative

f ′′(x) =

(
1 +

1

x2

)′
= − 2

x3

is positive if x < 0 and negative if x > 0. Therefore, f is convex for x < 0 and concave for x > 0. The

function has no points of inflection. The graph of f is sketched in Figure 11.5. From the graph, it is clear that

the range of the function is R.

Figure 11.5
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Exercises.

(1) Find the local extrema of the following functions:

a) f(x) = x4 − 2x2 + 3;

b) g(x) = −4x3 + 36x2 + 3000;

c) h(x) = 4x3 − 4x;

d) i(x) = x2

x2+1
;

e) j(x) = (2x− 1)5;

f) k(x) = x
x+2 ;

g) l(x) = sin2 x, for 0 < x < 2π;

h) m(x) = 1
2x− sinx, for 0 < x < 2π.

(2) Study each one of the following functions (domain, continuity, parity, intercepts, asymptotes, mono-

tonicity and local extrema, convexity and points of inflection, and range), and sketch the corresponding

graphs:

a) a(x) = x4 + x2 − 2;

b) b(x) = x4 − 5x2 + 4;

c) c(x) = x−1
x+1 ;

d) d(x) =
√
x2 − 1;

e) e(x) = e
1

ln x ;

f) f(x) = x
lnx ;

g) g(x) = e−
1
x ;

h) h(x) = e−x
2
;

i) i(x) = x2 lnx.





12. Antidifferentiation

Definitions and basic results.

The present topic can be motivated by the problem: “Which are the functions whose derivative is f(x) = 2x?”.

DEFINITION (Antidifferentiable function). Let f be a real function defined in an interval I . f is said to be

antidifferentiable if there exists a real differentiable function g in I such that

g′ = f.

If this is the case, we say that g is an antiderivative (or an indefinite integral or a primitive) of f in I . The

process of solving for antiderivatives is called antidifferentiation (or indefinite integration or primitivation).

For the above definition to be meaningful when the interval I is not open, we have to make clear what is the

meaning of g to be differentiable at an endpoint of the interval where it is closed. If we consider, for example,

the interval I = [a, b), we define the derivative of g at a as g′(a) = g′(a+). The same is assumed if the

interval is closed at the right endpoint.

Note also that g is obviously continuous in I .

It should be clear that if g is an antiderivative of f then any function g + c, with c a constant, is also an

antiderivative of f , since

(g + c)′ = g′ + c′ = f.

Moreover, all antiderivatives of f are written as g + c. To see this, assume that h is also an antiderivative of

f . Then

(h− g)′ = h′ − g′ = f − f = 0,

which allows us to conclude that h− g is a constant function, that is,

h− g = c⇔ h = g + c.

183
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THEOREM 12.1. Let f be a real function defined in an interval I , x0 ∈ I , and y0 ∈ R. If f is antidiffer-

entiable in I there exists a unique antiderivative g such that

g(x0) = y0.

The problem for which the above theorem guaranties the existence of a unique solution can be written

y′ = f(x) in I, y(x0) = y0,

and is called the Cauchy problem or the initial value problem for the differential equation y′ = f(x).

We now fix some notation. If f is an antidifferentiable function, we denote the family of antiderivatives of f

by ∫
f,

∫
f(x) dx or

∫
f dx.

If g is an antiderivative of f we then write∫
f = g + c,

∫
f(x) dx = g(x) + c or

∫
f dx = g + c,

with c a constant.

Examples.

(a) Let us determine the antiderivatives of the real function f in R defined by f(x) = 2x (see Figure 12.1(a)).

The function F (x) = x2 is an antiderivative of f(x) since

F ′(x) =
(
x2
)′

= 2x.

Thus, ∫
f(x) dx = x2 + c,

with c a real constant.

(b) Consider the problem of determining the antiderivative F (x) of f(x) = 2x satisfying the condition

F (2) = 3 (see Figure 12.1(b)). We have{
F (x) = x2 + c

F (2) = 3
⇔

{
F (x) = x2 + c

22 + c = 3
⇔

{
F (x) = x2 + c

c = −1
⇒ F (x) = x2 − 1.



DEFINITIONS AND BASIC RESULTS. 185

(a) (b)

Figure 12.1

The following theorem gives some properties of algebra of antiderivatives.

THEOREM 12.2. Let u and v be antidifferentiable real functions in an interval I , and a a real number.

Then

(1) The function au is antidifferentiable in I , and∫
au = a

∫
u;

(2) The function u+ v is antidifferentiable in I , and∫
u+ v =

∫
u+

∫
v.

By simple inversion of the derivative rules, the following antidifferentiation formulas can be obtained.

(1)

∫
0 = c (2)

∫
1 = x+ c (3)

∫
a = ax+ c

(4)

∫
uαu′ =

uα+1

α+ 1
+ c (α 6= −1) (5)

∫
u′

u
= ln |u|+ c (6)

∫
euu′ = eu + c

(7)

∫
auu′ =

au

ln a
+ c (a > 0, a 6= 1) (8)

∫
sinu u′ = − cosu+ c (9)

∫
cosu u′ = sinu+ c

(10)

∫
u′

cos2 u
= tanu+ c (11)

∫
u′

sin2 u
= − cotu+ c (12)

∫
u′√

1− u2
= arcsinu+ c

(13)

∫
u′√

a2 − u2
= arcsin

u

a
+ c (a > 0) (14)

∫
u′

1 + u2
= arctanu+ c (15)

∫
u′

a2 + u2
=

1

a
arctan

u

a
+ c (a > 0)

Notation: u designates a differentiable function, a, α, and c real numbers.
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Since arcsinx = π/2− arccosx and arctanx = π/2− arccotx for all real x, the formulas (12), (13), (14),

and (15) can also be written

(12′)

∫
u′√
1−u2 = − arccosu+ c,

(13′)

∫
u′√
a2−u2 = − arccos ua + c,

(14′)

∫
u′

1+u2
= − arccotu+ c,

(15′)

∫
u′

a2+u2
= − 1

a arccot ua + c.

Examples.

(a)
∫

3 dx = 3x+ c. (Using formula (2) and Theorem 12.2(1)).

(b)
∫
x3 dx = x4

4 + c. (Using formula (4)).

(c) Using formula (4) and Theorem 12.2(1),∫
(3x+ 1)4 dx =

∫
(3x+ 1)4 · 3 · 1

3
dx =

1

3

∫
(3x+ 1)4 · 3 dx =

1

3
· (3x+ 1)5

5
+ c =

(3x+ 1)5

15
+ c.

(d) Using formula (4) and Theorem 12.2(1),∫ √
3x+ 1 dx =

1

3

∫
(3x+ 1)

1
2 · 3 dx =

1

3
· (3x+ 1)

3
2

3
2

+ c =
2

9
(3x+ 1)

3
2 + c.

(e)
∫

sinx cosx dx = sin2 x
2 + c. (Using formula (4)).

(f)
∫

x
1+x2

dx = 1
2

∫
2x

1+x2
dx = 1

2 ln |1 + x2| + c = ln
√

1 + x2 + c. (Using formula (5) and Theorem

12.2(1)).

(g)
∫

tanx dx = −
∫
− sinx
cosx dx = − ln | cosx|+ c. (Using formula (5) and Theorem 12.2(1)).

(h)
∫
ex

2
x dx = 1

2

∫
ex

2
2x dx = 1

2e
x2 + c. (Using formula (6) and Theorem 12.2(1)).

(i)
∫

2x dx = 2x

ln 2 + c. (Using formula (7)).
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(j)
∫

sin(3x) dx = 1
3

∫
sin(3x) · 3 dx = 1

3(− cos(3x)) + c = −1
3 cos(3x) + c. (Using formula (8) and

Theorem 12.2(1)).

(k)
∫

ex

cos2(ex)
dx = tan ex + c. (Using formula (10)).

(l)
∫

x√
1−x4 dx = 1

2

∫
2x√

1−(x2)2
dx = 1

2 arcsinx2 + c. (Using formula (12) and Theorem 12.2(1)).

(m)
∫

x
1+x4

dx = 1
2

∫
2x

1+(x2)2
dx = 1

2 arctanx2 + c. (Using formula (14) and Theorem 12.2(1)).

(n)
∫

1
5+x2

dx =

∫
1

(
√
5)2+x2

dx = 1√
5

arctan x√
5

+ c. (Using formula (25)).

Methods of antidifferentiation.

In general, the antiderivative of a given function cannot be found by using the basic antiderivative formulas

presented above. This is the case, for example, of the function f(x) = xex.

We introduce the so-called methods of antidifferentiation. We begin with the method of antidifferentiation by

parts, which is derived from the rule for differentiating of the product of two functions

(uv)′ = u′v + uv′ ⇔ u′v = (uv)′ − uv′.

Now, if we antidifferentiate both members of the second equation above,∫
u′v = uv −

∫
uv′.

Note that
∫
u′v exists if and only if

∫
uv′ does. Note also that the method is useful if the second integral is

easier to compute than the first.

THEOREM 12.3 (Antidifferentiation by parts). If u and v are differentiable real functions in an interval I ,

the product u′v is antidifferentiable if and only if the product uv′ is. If this is the case, we have∫
u′v = uv −

∫
uv′.

Examples.

(a)
∫

(exx) dx = exx−
∫

(ex · 1) dx = exx− ex + c = ex(x− 1) + c.

(b)
∫

lnx dx =

∫
(1·lnx) dx = x lnx−

∫ (
x · 1x

)
fx = x lnx−

∫
1 dx = x lnx−x+c = x(lnx−1)+c.
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(c) To determine
∫

sin2 x dx we antidifferentiate by parts,∫
sin2 x dx =

∫
sinx · sinx dx = − cosx · sinx−

∫
− cosx · cosx dx

= − cosx · sinx+

∫
cos2 x dx

= − cosx · sinx+

∫
1− sin2 x dx

= − cosx · sinx+ x−
∫

sin2 x dx.

We then have∫
sin2 x dx = − cosx · sinx+ x−

∫
sin2 x dx+ c⇔ 2

∫
sin2 x dx = − cosx · sinx+ x+ c

⇔
∫

sin2 x dx =
− cosx · sinx+ x

2
+ c.

As Theorem 12.3 states the existence of the first antiderivative in
∫
u′v = uv −

∫
uv′ only in the case the

second exists, we have, for the present problem, to check that the functions F (x) = − cosx·sinx+x
2 + c are, in

fact, the antiderivatives of f(x) = sin2 x:(
− cosx · sinx+ x

2
+ c

)′
=

sinx · sinx− cosx · cosx+ 1

2
=

2 sin2 x

2
= sin2 x.

To motivate the method of antidifferentiation by substitution or by change of variable consider the following.

Let I and J be real intervals, and assume that f : I → R is an antidifferentiable function, and ϕ : J → I a

differentiable bijection. If g is an antiderivative of f in I , then

ψ(t) = (g ◦ ϕ)(t) = g (ϕ(t))

is differentiable in J and

ψ′(t) = g′ (ϕ(t)) · ϕ′(t) = f (ϕ(t)) · ϕ′(t).

Thus, the family of the antiderivatives of ψ′ can be written∫
f (ϕ(t)) · ϕ′(t) dt

and the aimed antiderivatives of f can be obtained from ψ by simply undoing the change of variable∫
f(x) dx =

[∫
f (ϕ(t)) · ϕ′(t) dt

]
t=ϕ−1(x)

.

THEOREM 12.4 (Antidifferentiation by substitution). Let I and J be intervals in R, f : I → R an

antidifferentiable function, and ϕ : J → I a differentiable bijection. Then (f ◦ ϕ)ϕ′ is antidifferentiable

and, denoting an antiderivative by ψ, ψ ◦ ϕ−1 is an antiderivative of f .
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The above theorem gives the previously mentioned formula for antidifferentiation by substitution∫
f(x) dx =

[∫
f(ϕ(t))ϕ′(t) dt

]
t=ϕ−1(x)

.

Examples.

(a) We want to antidifferentiate the real function f(x) = e3x

e2x+1
in R. Let us consider the real differentiable

function ϕ(t) = ln t, which maps one-to-one (0,+∞) onto R. Changing variable x = ϕ(t) = ln t, and noting

that

x′ = ϕ′(t) =
1

t
and t = ϕ−1(x) = ex,

we have∫
f(x) dx =

[∫
f(ϕ(t))ϕ′(t) dt

]
t=ϕ−1(x)

=

[∫
f(ln t) · (ln t)′ dt

]
t=ex

=

[∫
t3

t2 + 1
· 1

t
dt

]
t=ex

=

[∫
t2

t2 + 1
dt

]
t=ex

=

[∫
t2 + 1− 1

t2 + 1
dt

]
t=ex

=

[∫ (
1− 1

t2 + 1
dt

)]
t=ex

= [t− arctan t+ c]t=ex = ex − arctan ex + c.

(b) The antiderivatives of the real function f(x) = lnx
x(1+ln2 x)

in (0,+∞) can be determined by considering

the change of variable x = ϕ(t) = et, a one-to-one differentiable mapping from R onto (0,+∞). We have

x′ = ϕ′(t) = et and t = ϕ−1(x) = lnx,

and∫
f(x) dx =

[∫
f(ϕ(t))ϕ′(t) dt

]
t=ϕ−1(x)

=

[∫
f
(
et
)
·
(
et
)′
dt

]
t=lnx

=

[∫
t

et(1 + t2)
· et dt

]
t=lnx

=

[∫
t

1 + t2
dt

]
t=lnx

=

[
1

2

∫
2t

1 + t2
dt

]
t=lnx

=

[
1

2
ln
∣∣1 + t2

∣∣+ c

]
t=lnx

=
1

2
ln
∣∣1 + ln2 x

∣∣+ c = ln
√

1 + ln2 x+ c.

(c) To determine the antiderivatives of the real function f in (0,+∞), defined by f(x) = 1√
x(1+x)

, we

consider the change of variable x = ϕ(t) = t2, a one-to-one differentiable mapping from (0,+∞) onto

(0,+∞). We have

x′ = ϕ′(t) = 2t and t = ϕ−1(x) =
√
x.
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Thus,∫
f(x) dx =

[∫
f(ϕ(t))ϕ′(t) dt

]
t=ϕ−1(x)

=

[∫
f
(
t2
)
·
(
t2
)′
dt

]
t=
√
x

=

[∫
1

t(1 + t2)
· 2t dt

]
t=
√
x

=

[
2

∫
1

1 + t2
dt

]
t=
√
x

= [2 arctan t+ c]t=
√
x = 2 arctan

√
x+ c.

(d) We want to find the antiderivatives of the real function f in (0,+∞), defined by f(x) = 1√
x+ 3√x .

Consider the differentiable bijection ϕ : (0,+∞) → (0,+∞) defined by ϕ(t) = t6, and the change of

variable x = ϕ(t). We have

x′ = ϕ′(t) = 6t5 and t = ϕ−1(x) = 6
√
x.

Thus,∫
f(x) dx =

[∫
f(ϕ(t))ϕ′(t) dt

]
t=ϕ−1(x)

=

[∫
f
(
t6
)
·
(
t6
)′
dt

]
t= 6√x

=

[∫
1

t3 + t2
· 6t5 dt

]
t= 6√x

=

[
6

∫
t3

t+ 1
dt

]
t= 6√x

=

[
6

∫
t2 − t+ 1− 1

t+ 1
dt

]
t= 6√x

=

[
6

(
t3

3
− t2

2
+ t− ln |t+ 1|

)
+ c

]
t= 6√x

= 2
√
x− 3 3

√
x+ 6 6

√
x− ln

(
6
√
x+ 1

)6
+ c.

Partial fractions.

In the examples we gave above for the substitution method, the antidifferentiation problem was reduced the

antidifferentiation of a rational function, that is, a function whose analytical expression is a quotient of poly-

nomials. In fact, this is a frequent result obtained with the use of the substitution method. This is a strong

reason to study the antidifferentiation of rational functions. Consider the following:

• A rational expression can always be written as a sum

Q(x) +
N(x)

D(x)
,

where Q, N , and D are polynomials, with the degree of N less than the degree of D (the fraction
N(x)
D(x) is called a proper rational fraction);

• The coefficient of the term of the highest degree in D can be assumed to be 1, with no loss of

generality (this can be easily obtained if we factor the coefficient).

It can be shown that a proper rational fraction N(x)
D(x) , where the coefficient of the term of the highest degree in

D is 1, can be written as a sum of partial fractions of the types
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• A

(x− a)r
, with r = 1, 2, . . . ,m,

• Bx+ C

((x− p)2 + q2)s
, with s = 1, 2, . . . , n,

where, A, B, C, a, p, and q are real constants, and m and n positive integers. The types of partial fraction in

the sum depend on the factorisation of the polynomial D. The main point is that partial fractions are easily

antidifferentiated.

Examples.

(a) We want to antidifferentiate the real function of a real variable f defined by

f(x) =
4x2 + x+ 1

x3 − x
.

As the denominator of the rational fraction can be decomposed

x3 − x = x(x+ 1)(x− 1),

the fraction can be written as s sum

4x2 + x+ 1

x3 − x
=
A

x
+

B

x+ 1
+

C

x− 1
.

The constants A, B, and C can be determined by solving the equation

4x2 + x+ 1 = A(x2 − 1) +Bx(x− 1) + Cx(x+ 1)

⇔ 4x2 + x+ 1 = (A+B + C)x2 + (−B + C)x−A⇔


A+B + C = 4

−B + C = 1

−A = 1

⇔


A = −1

B = 2

C = 3

.

We then have
4x2 + x+ 1

x3 − x
= −1

x
+

2

x+ 1
+

3

x− 1
,

so that ∫
4x2 + x+ 1

x3 − x
dx =

∫
−1

x
+

2

x+ 1
+

3

x− 1
dx = − ln |x|+ 2 ln |x+ 1|+ 3 ln |x− 1|+ c

= ln

∣∣∣∣(x+ 1)2(x− 1)3

x

∣∣∣∣+ c.

(b) To find the antiderivatives of the real function of a real variable g defined by

g(x) =
2x3 + 5x2 + 6x+ 2

x(x+ 1)3
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we write the rational fraction a the sum

2x3 + 5x2 + 6x+ 2

x(x+ 1)3
=
A

x
+

B

x+ 1
+

C

(x+ 1)2
+

D

(x+ 1)3
.

Note that in the above decomposition there are as many terms with denominator (x + 1)r as the multiplicity

of the root −1 of the polynomial x(x+ 1)3. The constants A, B, C, and D are determined by solving

2x3 + 5x2 + 6x+ 2 = A(x+ 1)3 +Bx(x+ 1)2 + Cx(x+ 1) +Dx

⇔ 2x3 + 5x2 + 6x+ 2 = (A+B)x3 + (3A+ 2B + C)x2 + (3A+B + C +D)x+A

⇔


A+B = 2

3A+ 2B + C = 5

3A+B + C +D = 6

A = 2

⇔


A = 2

B = 0

C = −1

D = 1

.

We then have
2x3 + 5x2 + 6x+ 2

x(x+ 1)3
=

2

x
− 1

(x+ 1)2
+

1

(x+ 1)3
,

and∫
2x3 + 5x2 + 6x+ 2

x(x+ 1)3
dx =

∫
2

x
− 1

(x+ 1)2
+

1

(x+ 1)3
dx = 2 ln |x| − (x+ 1)−1

−1
+

(x+ 1)−2

−2
+ c

= lnx2 +
1

x+ 1
− 1

2(x+ 1)2
+ c.

(c) To determine the antiderivatives of the real function of a real variable

h(x) =
x+ 2

(x− 1)(x2 + 1)

we consider de decomposition

x+ 2

(x− 1)(x2 + 1)
=

A

x− 1
+
Bx+ C

x2 + 1
.

Note the denominator of the last partial fraction is an irreducible polynomial of second degree. The corre-

spondent numerator is then of degree up to 1. The constants A, B, and C are determined in the usual way

x+ 2 = A(x2 + 1) + (Bx+ C)(x− 1)

⇔ x+ 2 = (A+B)x2 + (2A−B + C)x+ (A− C)⇔


A+B = 0

2A−B + C = 1

A− C = 2

⇔


A = 3

2

B = −3
2

C = −1
2

.
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The decomposition we have obtained is

x+ 2

(x− 1)(x2 + 1)
=

3
2

x− 1
+
−3

2x−
1
2

x2 + 1
,

and∫
x+ 2

(x− 1)(x2 + 1)
dx =

∫ 3
2

x− 1
+
−3

2x−
1
2

x2 + 1
dx =

3

2

∫
1

x− 1
dx− 3

4

∫
2x

x2 + 1
dx− 1

2

∫
1

x2 + 1
dx

=
3

2
ln |x− 1| − 3

4
ln
∣∣x2 + 1

∣∣− 1

2
arctanx+ c

= ln 4

√
(x− 1)6

(x2 + 1)3
− 1

2
arctanx+ c.

Exercises.

(1) Determine the family of antiderivatives of each one of the following real functions of a real variable:

a) f(x) = x2;

b) f(x) = 2x+ 2;

c) f(x) = 1
2x

2;

d) f(x) = 2x2 + 4x+ 4;

e) f(x) = c, with c a real constant;

f) f(x) = 2x2 + 4;

g) f(x) = 2x5 + 8x2 + x− 78;

h) f(x) = 1
x2

+ 3x
1
3 ;

i) f(x) = 3
x4
− 4
√
x+ x;

j) f(x) = 6x1/3 − x0.4 + 9
x2

;

k) f(x) = 1
3√x +

√
x;

l) f(x) = (x4 + 4x+ 2)(2x+ 3);

m) f(x) = (2x− 1)(3x2 + 2);

n) f(x) = (x3 − 12x)(3x2 + 2x);

o) f(x) = (a+ bx3)2, with a and b real constants;
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p) f(x) =
√

2ax, with a a real constant;

q) f(x) = 1√
x

;

r) f(x) = cos 5x sin 5x;

s) f(x) = sin5 4x cos 4x;

t) f(x) = 4e5x;

u) f(x) = xe4x
2
;

v) f(x) = (x+ 5)2e(x+5)3 ;

w) f(x) = 1
1+x ; f(x) = 1

1+x2
; f(x) = x

1+x2
; f(x) = x

(1+x2)2
;

x) f(x) = ex

1+ex ; f(x) = ex

1+e2x
; f(x) = ex

(1+ex)2
;

y) f(x) = cosx
1+sinx ; f(x) = cosx

1+sin2 x
; f(x) = cosx

(1+sinx)2
; f(x) = cosx(1 + sinx)2;

z) f(x) = lnx
x ; f(x) = ln5 x

x ; f(x) = 1
x(1+lnx) ; f(x) = 1

x(1+ln2 x)
.

(2) Antidifferentiate the following rational functions:

a) f(x) = 1
(x+1)(x+2) ;

b) f(x) = x
x+1 ;

c) f(x) = 1
x(x+1) ;

d) f(x) = x2−5x+1
x2−5x+8

;

e) f(x) = x2

x2+1
;

f) f(x) = x2+2x
x2−1 ;

g) f(x) = x
x4+4

;

h) f(x) = 2x3

x4−1 .

(3) Antidifferentiate by parts the functions:

a) f(x) = xex; f(x) = x2ex; f(x) = x2e3x;

b) f(x) = lnx; f(x) = arctanx;

c) f(x) = x sinx;

d) f(x) = x cos 3x;

e) f(x) = x
ex ;
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f) f(x) = x2 lnx;

g) f(x) = x arctanx;

h) f(x) = sin 2x cos 3x;

i) f(x) = x sinx cosx.

(4) Antidifferentiate by substitution the following functions:

a) f(x) = x+
√
x

x−
√
x

;

b) f(x) = x2√
2−x2 ;

c) f(x) =
√
x−1

3√x+1
;

d) f(x) = e3x

1−e2x ;

e) f(x) = cosx
sin2 x−2 ;

f) f(x) = 2 +
√

1− x2;

g) f(x) = e2x√
1+ex

.

(5) Antidifferentiate the following functions:

a) f(x) = (−2x+ 5)e−x;

b) f(x) = x√
x+1

;

c) f(x) = e
√
x;

d) f(x) = xe−x
2
;

e) f(x) = x(x2 + 1)20;

f) f(x) = x cosx;

g) f(x) = 1
e2x−3ex ;

h) f(x) =

√
1+
√
x√

x
;

i) f(x) = x6+1
x+1 ;

j) f(x) = sinx
1+sinx .





13. Integration

Definite integral.

We give the notion of definite integral. Consider a closed interval [a, b], with a and b real numbers such that

a ≤ b, and points

a = x0 ≤ x1 ≤ · · · ≤ xn−1 ≤ xn = b.

The set P = {x0, x1, . . . , xn−1, xn} is called a partition of the interval [a, b]. Denote

∆xi = xi − xi−1 for i = 1, 2, . . . , n.

Let f be a bounded real function in [a, b]. For a given partition P of [a, b] we set

Mi = sup f(x), mi = inf f(x), with xi−1 ≤ x ≤ xi,

and define the upper and lower Darboux sums (see Figure 13.1), respectively,

U(P, f) =
n∑
i=1

Mi∆xi and L(P, f) =
n∑
i=1

mi∆xi.

(a) Upper Darboux sum. (b) Lower Darboux sum.

Figure 13.1. Darboux sums.

197
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Now, the upper and lower Riemann integrals are defined, respectively, as,∫ b

a
f(x) dx = inf U(P, f) and

∫ b

a
f(x) dx = supL(P, f),

where inf U(P, f) and supL(P, f) are taken over all partitions P of [a, b].

Finally, if ∫ b

a
f(x) dx =

∫ b

a
f(x) dx,

the function f is said to be Riemann-integrable (or just integrable) in [a, b], and we denote the common value

of the upper and lower integrals by ∫ b

a
f(x) dx or just by

∫ b

a
f dx,

the Riemann-integral (or simply the integral) of f over the interval [a, b].

There is some terminology we give now: the symbol
∫

is called the integral sign; the notation dx is used

to indicate that the integration is taken over the variable x, and x is called the variable of integration; the

numbers a and b are called, respectively, the lower and the upper limits of the integral, and [a, b] is called

interval of integration; finally, the function f(x) to be integrated is called the integrand.

We gave the notion of Riemann integral for bounded real functions in a closed and bounded interval. An

important issue is to know what types of functions are integrable. The three theorems we state next give

some important classes of integrable functions. Unless otherwise stated, we shall assume in the sequel that

integrands are bounded in the interval of integration.

THEOREM 13.1. If the real function f is continuous in [a, b] then f is integrable in [a, b].

THEOREM 13.2. If the real function f has only finitely many points of discontinuity in [a, b] then f is

integrable in [a, b].

THEOREM 13.3. If the real function f is monotonic in [a, b] then f is integrable in [a, b].

We then have that the continuous functions, the monotonic functions, and also the functions which are discon-

tinuous at a finite number of points are integrable. Next theorem states that the composition of a continuous

function and an integrable function is integrable.
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THEOREM 13.4. Let f be a real function of a real variable in an interval [a, b]. Suppose that

(1) f is integrable in [a, b];

(2) There exist numbers m and M such that m ≤ f ≤M for all x ∈ [a, b];

(3) ϕ is a real continuous function in [m,M ].

Then the composite function h(x) = (ϕ ◦ f)(x) = ϕ (f(x)) is integrable in [a, b].

Examples. Consider the real functions of a real variable

f(x) = 2x2 − 1, g(x) =
x− 1

x+ 1
, h(x) =

{
x, x < 1

2

1, x ≥ 1
2

, i(x) =

{
x2 + 1, x 6= 1

2

1, x = 1
2

.

Let us evaluate the integrability of the above functions, and also of the function f ◦ h in the interval [0, 1].

(a) f and g are continuous functions in [0, 1], thus integrable in [0, 1].

(b) h is a monotonically increasing function in [0, 1], thus integrable in [0, 1].

(c) i is not monotonic in [0, 1] but it is continuous in the interval except for x = 1
2 . Therefore it is integrable

in [0, 1].

(d) Since h is integrable in [0, 1] with 0 ≤ h(x) ≤ 1 for all x ∈ [0, 1] and f is continuous in R, the

composition f ◦ h defined by

(f ◦ h)(x) = f (h(x)) =

{
2x2 − 1, x < 1

2

1, x ≥ 1
2

is integrable in [0, 1].

The following theorems give some practical properties for computing integrals.

THEOREM 13.5. If f(x) = M in [a, b], with M a constant, then∫ b

a
f dx = M(b− a).

In particular, if f(x) = 0 in [a, b] then ∫ b

a
f dx = 0.

Examples.

(a)
∫ 4

2
3 dx = 3 · (4− 2) = 6.

(b)
∫ 4

2
1 dx = 4− 2 = 2.

(c)
∫ 5

1
0 dx = 0.
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It is clear that if the upper and lower limits of the integral coincide,∫ a

a
f dx = 0,

for any function f . Also, by convention, ∫ b

a
f dx = −

∫ a

b
f dx.

Example. We saw that ∫ 4

2
3 dx = 3 · (4− 2) = 6.

Then ∫ 2

4
3 dx = −

∫ 4

2
3 dx = −6.

Note that the integral
∫ 2
4 3 dx could have been computed by extending Theorem 13.5 to the case where the

integral upper and lower limits are reversed∫ 2

4
3 dx = 3 · (2− 4) = −6.

THEOREM 13.6. Let f and g be integrable functions in [a, b]. Then

(1) The function f + g is integrable in [a, b] and∫ b

a
f + g dx =

∫ b

a
f dx+

∫ b

a
g dx;

(2) The function cf , with c a real constant, is integrable in [a, b] and∫ b

a
cf dx = c

∫ b

a
f dx;

(3) If f(x) ≤ g(x) for each x ∈ [a, b] then∫ b

a
f dx ≤

∫ b

a
g dx;

(4) The function |f | is integrable in [a, b] and∣∣∣∣∫ b

a
f dx

∣∣∣∣ ≤ ∫ b

a
|f | dx;

(5) If a < c < b, then f is integrable in [a, c] and in [c, b] and∫ b

a
f dx =

∫ c

a
f dx+

∫ b

c
f dx;

(6) The function fg is integrable in [a, b].
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Note that, owing to the above mentioned convention∫ a

b
f dx = −

∫ b

a
f dx,

(5) in Theorem 13.6 can be rewritten, for example,∫ b

a
f dx =

∫ c

a
f dx−

∫ c

b
f dx.

The fundamental theorem of calculus.

We now consider the integral as a function of the upper limit∫ x

a
f(t) dt for a ≤ x ≤ b.

Next results establish the connection between integration and differentiation. In particular, they give the

conditions under which the technique of antidifferentiation can be used to compute integrals.

THEOREM 13.7. Assume that f is an integrable real function in [a, b]. Put

F (x) =

∫ x

a
f(t) dt for a ≤ x ≤ b.

Then F is continuous in [a, b]. Furthermore, if f is continuous at a point x0 ∈ [a, b] then F is differentiable

at x0 and

F ′(x0) = f(x0).

Note that from the above theorem we learn that if f is continuous in [a, b] then F is an antiderivative of f in

[a, b]. Since

F (a) =

∫ a

a
f dx = 0,

F is the unique antiderivative of f which is null for x = a.

THEOREM 13.8 (Fundamental theorem of calculus). Suppose that the real function f is integrable in [a, b],

and that there exists a differentiable real function F in [a, b] such that F ′ = f . Then∫ b

a
f dx = F (b)− F (a).

We shall use the notation

[F (x)]ba = F (b)− F (a).
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Example. As the real function f defined by f(x) = x is continuous in the interval [1, 2], to integrate f over

[1, 2] we just have to find an antiderivative F of f and compute the difference F (2)− F (1):∫ 2

1
x dx =

[
x2

2

]2
1

=
22

2
− 12

2
=

3

2
.

Methods of integration.

THEOREM 13.9 (Integration by parts). Suppose that u and v are real differentiable functions in [a, b], and

that u′ and v′ are integrable functions in [a, b]. Then∫ b

a
u′v dx = [uv]ba −

∫ b

a
uv′ dx.

Example. We want to compute ∫ 2

1
exx dx.

We set u′ = ex and v = x so that u = ex and v′ = 1. Note that u′ and v′ are continuous functions, therefore

integrable. By integrating by parts we obtain∫ 2

1
exx dx = [exx]21 −

∫ 2

1
ex · 1 dx = [exx]21 − [ex]21 = 2e2 − e−

(
e2 − e

)
= e2.

Note that, alternatively, we can antidifferentiate by parts∫
exx dx = exx−

∫
ex · 1 dx = exx− ex + c = ex(x− 1) + c,

and then compute the definite integral∫ 2

1
exx dx = [ex(x− 1)]21 = e2(2− 1)− e(1− 1) = e2.

THEOREM 13.10 (Integration by substitution). Let f be an integrable function in [a, b], and ϕ a strictly

increasing differentiable function mapping [A,B] onto [a, b] such that ϕ′ is integrable in [a, b]. Then∫ b

a
f(x) dx =

∫ B

A
f(ϕ(t))ϕ′(t) dt.

Note that in the above theorem, A = ϕ−1(a) and B = ϕ−1(b).

Example. We want to determine ∫ 2

1

lnx

x(1 + lnx)
dx.
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We consider the strictly increasing differentiable function ϕ(t) = et mapping [0, ln 2] onto [1, 2], and change

variable x = ϕ(t) = et (consequently, t = ϕ−1(x) = lnx, and x′ = ϕ′(t) = et). Note that f and ϕ′ are

continuous functions, therefore integrable. Integrating by substitution,∫ 2

1

lnx

x(1 + lnx)
dx =

∫ ln 2

0

t

et(1 + t)
· et dt =

∫ ln 2

0

t

1 + t
dt =

∫ ln 2

0
1− 1

1 + t
dt

=

∫ ln 2

0
1 dt−

∫ ln 2

0

1

1 + t
dt = [t]ln 2

0 − [ln |1 + t|]ln 2
0

= ln 2− 0− (ln |1 + ln 2| − ln |1 + 0|) = ln 2− ln(1 + ln 2) = ln
2

1 + ln 2
.

Alternatively, since ϕ(t) maps one-to-one [0, ln 2] onto [1, 2], we can antidifferentiate by substitution

∫
lnx

x(1 + lnx)
dx =

[∫
t

et(1 + t)
· et dt

]
t=lnx

=

[∫
t

1 + t
dt

]
t=lnx

=

[∫
1− 1

1 + t
dt

]
t=lnx

= [t− ln |1 + t|+ c]t=lnx = lnx− ln |1 + lnx|+ c,

and then compute the definite integral∫ 2

1

lnx

x(1 + lnx)
dx = [lnx− ln |1 + lnx|]21 = ln 2− ln |1 + ln 2| − (ln 1− ln |1 + ln 1|)

= ln 2− ln (1 + ln 2) = ln
2

1 + ln 2
.

Improper integrals.

We introduced the definite integral ∫ b

a
f dx

under the hypotheses

• The interval [a, b] is bounded;

• The function f is bounded in [a, b].

We extend the notion of definite integral by relaxing each one of the hypotheses above, giving rise to the

so-called improper integrals.

Improper integrals of the first kind. The improper integrals of the first kind are obtained by relaxing the

hypothesis concerning the boundedness of [a, b].
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Let f be a real function in [a,+∞), and suppose that f is integrable in every bounded interval [a, x], with

x > a. We define ∫ +∞

a
f(x) dx = lim

x→+∞

∫ x

a
f(t) dt

if the limit exists and is finite. In this case, we say that the integral
∫ +∞
a f(x) dx converges. If not, we say

that it diverges.

The case where it is the lower limit of the integral that is infinite is defined similarly:∫ a

−∞
f(x) dx = lim

x→−∞

∫ a

x
f(t) dt

if the limit exists and is finite.

Examples.

(a) In order to evaluate the improper integral ∫ +∞

0
e−x dx

we compute

lim
x→+∞

∫ x

0
e−t dt = lim

x→+∞

(
−
∫ x

0
e−t · (−1)dt

)
= − lim

x→+∞

[
e−t
]x
0

= − lim
x→+∞

(
e−x − e0

)
= −(0−1) = 1.

Since the above limit exists and is a finite number, we conclude that the improper integral converges and∫ +∞

0
e−x dx = 1.

(b) We want to evaluate the improper integral ∫ +∞

1

1

x
dx.

We determine

lim
x→+∞

∫ x

1

1

t
dt = lim

x→+∞
[ln |t|]x1 = lim

x→+∞
(ln |x| − ln |1|) = +∞− 0 = +∞.

As the above limit is not finite, we conclude that the improper integral diverges.

(c) We evaluate the improper integral ∫ −1
−∞

1

x2
dx
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by computing

lim
x→−∞

∫ −1
x

1

t2
dt = lim

x→−∞

∫ −1
x

t−2 dt = lim
x→−∞

[
t−1

−1

]−1
x

= lim
x→−∞

[
−1

t

]−1
x

= lim
x→−∞

(
− 1

−1
−
(
−1

x

))

= lim
x→−∞

(
1 +

1

x

)
= 1 + 0 = 1.

We then conclude that the improper integral converges and∫ −1
−∞

1

x2
dx = 1.

We now consider the case where both the lower and the upper limits of the integral are infinite. Let f be a real

function in R, and suppose that f is integrable in every bounded interval [x1, x2], with x2 > x1. We say that

the improper integral ∫ +∞

−∞
f(x) dx

converges if for a ∈ R both
∫ +∞
a f(x) dx and

∫ a
−∞ f(x) dx converge. In this case, we define∫ +∞

−∞
f(x) dx =

∫ +∞

a
f(x) dx+

∫ a

−∞
f(x) dx.

The improper integral diverges if at least one of the integrals
∫ +∞
a f(x) dx and

∫ a
−∞ f(x) dx diverges.

Example. We want to evaluate the improper integral∫ +∞

−∞
ex dx.

Since

lim
x→+∞

∫ x

0
et dt = lim

x→+∞

[
et
]x
0

= lim
x→+∞

(
ex − e0

)
= +∞− 1 = +∞,

the integral
∫ +∞
0 ex dx diverges. Consequently, the integral

∫ +∞
−∞ ex dx also diverges.

Improper integrals of the second kind. An improper integral is said to be of the second kind if the integrand

is unbounded at a point of the bounded interval [a, b].

Suppose that the real function f is integrable in every interval [x, b], with a < x ≤ b, but not bounded in

(a, b]. We define ∫ b

a
f(x) dx = lim

x→a+

∫ b

x
f(t) dt

if the limit exists and is finite. In this case, we say that the integral
∫ b
a f(x) dx converges. Otherwise, we say

that it diverges.
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The case where the unboundedness of f occurs near the upper limit of the integral is defined similarly:∫ b

a
f(x) dx = lim

x→b−

∫ x

a
f(t) dt

if the limit exists and is finite.

If f is bounded in [a, b] except near a point c ∈ (a, b) we say that the improper integral∫ b

a
f(x) dx

converges if both
∫ c
a f(x) dx and

∫ b
c f(x) dx converge. In this case, we define∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx.

The improper integral diverges if at least one of the integrals
∫ c
a f(x) dx and

∫ b
c f(x) dx diverges.

Examples.

(a) We want to evaluate the improper integral ∫ 1

0

1

x
dx.

We determine

lim
x→0+

∫ 1

x

1

t
dt = lim

x→0+
[ln |t|]1x = lim

x→0+
(ln |1| − ln |x|) = 0− (−∞) = +∞.

As the above limit is infinite, we conclude that the improper integral diverges.

(b) In order to evaluate the improper integral ∫ 1

−1

1

x
dx

we begin by computing

lim
x→0+

∫ 1

x

1

t
dt = +∞,

so that the integral
∫ 1
0

1
x dx diverges. Consequently, the integral

∫ 1
−1

1
x dx also diverges.

The improper integrals where both the integrand is unbounded near a point of the interval of integration and

the interval is unbounded are sometimes referred to as improper integrals of the third kind. Their evaluation

is obtained by combining the procedures given for the improper integrals of the first and second kinds.

Application to the computation of areas.

One interesting application of the integration concerns the computation of the area of a region of the plane.
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Suppose that f and g are integrable real functions in [a, b], and that g(x) ≤ f(x) for each x ∈ [a, b]. Then the

area of the region

Z = {(x, y) : a ≤ x ≤ b, g(x) ≤ y ≤ f(x)}

is given by

α(Z) =

∫ b

a
f(x)− g(x) dx.

Examples.

(a) We want to determine the area of the region bounded by the curves y = x2 + 2x+ 1, y = x2− 2, y = 0,

x = 0, and x = 2 (see Figure 13.2(a)). The area is given by∫ √2
0

x2 + 2x+ 1− 0 dx+

∫ 2

√
2
x2 + 2x+ 1−

(
x2 − 2

)
dx =

∫ √2
0

x2 + 2x+ 1 dx+

∫ 2

√
2

2x+ 3 dx

=

[
x3

3
+ x2 + x

]√2
0

+
[
x2 + 3x

]2√
2

=
30− 4

√
2

3
.

(b) The area of the region defined by the conditions
y ≤ 1

x2

y ≤ x
y ≥ 0

is (see Figure 13.2(b))∫ 1

0
x− 0 dx+

∫ +∞

1

1

x2
− 0 dx =

∫ 1

0
x dx+ lim

x→+∞

∫ x

1

1

t2
dt

=

[
x2

2

]1
0

+ lim
x→+∞

[
t−1

−1

]x
1

=
1

2
− lim
x→+∞

(
1

x
− 1

)
=

1

2
− (0− 1) =

3

2
.
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(a) (b)

Figure 13.2

Exercises.

(1) Determine the value of the integrals:

a)
∫ 2
1 x

2 − 2x+ 3 dx;

b)
∫ 8
0

√
2x+ 3

√
x dx;

c)
∫ 4
1

1+
√
x

x2
dx;

d)
∫ π/4
0 cos2 x dx;

e)
∫ e2
e

1
x lnx dx;

f)
∫ −3
0

1√
25+3x

dx.

(2) Determine the area of the region bounded by the parabola with equation y = x2

2 and the straight lines

defined by x = 1, x = 3, and y = 0.

(3) Determine the area of the region bounded by the curves with equations:

a) y = x3 + 1 and y = 2x2 + x− 1;

b) y = 2− x2 and y3 = x2.

(4) Study the convergence of each one of the following improper integrals, and determine the value of the

integral in the case of convergence:

a)
∫ +∞
0

1
1+x2

dx;

b)
∫ +∞
1

1
x2
dx;
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c)
∫ −1
−∞

1
x2
dx;

d)
∫ 1
0

1√
x
dx;

e)
∫ +∞
0

arctanx
x2+1

dx;

f)
∫ 1
0 lnx dx.

(5) Compute the derivatives of the following functions:

a) f(x) =
∫ x
0 t

4 dt;

b) g(x) =
∫ x2
0 et

2
dt.

(6) Compute the following limits:

a) limx→0

∫ x
0 cos t dt

x ;

b) limx→0

∫ x
0 sin2 t dt

x3
.





Solutions to exercises

Chapter 1. Vectors: 2a) ū · v̄ = 2, ‖ū‖ =
√

3, ‖v̄‖ =
√

6; 2b) No & No & Yes; 2c) ^(v̄, ȳ) = arccos
(√

2
3

)
,

^(w̄, z̄) = 3π
4 ; 2d) d(ū, v̄) =

√
3, d(ȳ, z̄) =

√
29; 3a) Linearly independent, 3b) Linearly dependent,

3c) Linearly independent, 3d) Linearly dependent, 3e) Linearly dependent, 3f) Linearly dependent, 3g) Lin-

early dependent; 4a) ȳ cannot be written as a linear combination of v̄, w̄ and x̄, z̄ = v̄ + w̄ + 3x̄ for example,

the set {v̄, w̄, x̄} is linearly dependent, 4b) z̄ = −1
2 v̄ + w̄, the set {v̄, w̄} is linearly independent; 5) The set is

linearly independent if and only if α 6= 1
2 .

Chapter 2. Matrices: 1a) A3×3 square matrix, B3×4 rectangular matrix, C1×3 row matrix, D2×1 column

matrix, E1×3 null row matrix, F3×3 square matrix, G3×3 diagonal matrix, H3×3 diagonal matrix, I2×2 iden-

tity matrix, J3×3 identity matrix; 1b) −B =


0 0 0 −1

−1 0 2 5

−1 −3 −2 0

 1c) Diagonal elements of F: 1, 3, 0;

2a)

[
4 −3 3 5

2 −5 −1 −4

]
, 2b) Not possible, 2c)

[
−2 4 −4

0 10 −6
5

]
, 2d)

[
−3 −3 −3

]
;

3a) 0A − F + 2G =

[
1 1 −2

0 −1 0

]
, 3b) Not possible, 3c) 2(B + H) =


4 0 0

2 4 −4

−2 6 8

,

3d) 3(2C + E)− C =
[

5 0 −5
]
; 4) X = B−C+3A

5 ; 5a)


4 −5

−1 0

0 0

, 5b)

[
0

−4

]
, 5c) Not possible,

5d)
[

2
]
, 5e)


0 −2 2

0 2 −2

0 0 0

; 6a) A + B =


4 1 −1

9 2 7

3 −1 4

, 6b) A − B =


−2 2 −5

1 −2 −3

−1 −1 −2

,

6c) AB =


5 3 3

19 −5 16

1 −3 0

, 6d) BA =


0 4 −9

19 3 −3

5 1 −3

, 6e) (AB)C =


23 8 25

92 −28 76

4 −8 −4

;

211
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7) C(A+ 3IB)D =
[
−6 0 −6

]
; 8) (A+B)(A−B) = A2 −B2 if A and B are commuting matrices;

10) a = 2; 13) a = −3
4 and = 3

4 ; 14b) Notice that CD 6= I , 14c) No since |D| = 0; 16)X = A−1DC−1−B;

17) X = 1
2(A

′
)−1DA

′
+ B′; 19a) 2A1 − A2 + 3A3 =

[
2 5 5 3

]
, 19b) a1 + a2 − 3a4 =


3

−1

−3

,

19c) Yes & no, 19d) r(A) = 3; 21a) If x = −1 ∨ x = 2 then r(A) = 2, if x 6= −1 ∧ x 6= 2 then r(A) = 3,

21b) If t = ±2 ∨ t = −4 then r(A) = 2, if t 6= −4 ∧ t 6= 2 ∧ t 6= −2) then r(A) = 3, 21c) If z = 0 ∧ w = 0

then r(A) = 2, if z 6= 0 ∨ w 6= 0 then r(A) = 3.

Chapter 3. Determinants: 1a) 0, 1b) 0, 1c) −10, 1d) 0, 1e) −3, 1f) 0, 1g) 0, 1h) 0, 1i) 0, 1j) −6,

1k) 3, 1l) 0, 1m) −abc, 1n) abcd, 1o) 4, 1p) 360; 2a) 42, 2b) 0, 2c) abcd; 5) |A′B| = 0; 6) |C| = 0;

7) adj(A) =

[
3 −2

−1 −1

]
, A−1 = −1

5

[
3 −2

−1 −1

]
, adj(B) =

[
−2 2

−1 1

]
, B−1 does not exist, adj(C) =

−7 6 −1

1 0 −1

1 −2 1

, C−1 = −1
2


−7 6 −1

1 0 −1

1 −2 1

, adj(D) = D−1 = D, adj(E) =


0 −3 2

1 3 −2

0 2 −1

,

E−1 =


0 −3 2

1 3 −2

0 2 −1

, adj(F ) =


6 0 −3

−4 0 2

−6 0 3

, F−1 does not exist, adj(G) =


−2 0 0

0 3 0

0 0 −6

,

G−1 = −1
6


2 0 0

0 3 0

0 0 −6

; 8) A is invertible if a 6= −1
3 & for a = 1, A−1 = 1

4


3 −1 −1

−1 3 −1

−1 −1 3

.

Chapter 4: Systems of linear equations: 4) X =


5 7 −3

4 7 −4

−3
2 −2 3

2

; 5) M−1 =


5 2 −1

−4 −2 1

−3 −1 1

 and


x

y

z

 =


6

−5

−2

; 6a)


x

y

z

 =


−2

5

−1
5

−9
5

, 6b)


x

y

z

 =


3
2

0
1
2

, 6c)


x

y

z

u

 =


−2− y

y

3 + u

u

 , y, u ∈ R,

6d)


x

y

z

 =


1

−2

2

, 6e)


x

y

z

u

 =


−3

6

5

−5

; 7) Unique solution if |M | = −10 and (x1, x2, x3) =

(
1
2b1 −

1
10b2 −

1
5b3,

3
10b2 −

1
2b1 + 3

5b3,
2
5b3 −

1
2b1 + 7

10b2
)
, b1, b2, b3 ∈ R; 9) If a = 0 ∧ b = 9

2 the system
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is consistent and dependent, if a = 0 ∧ b 6= 9
2 the system is inconsistent, if a = 7 ∧ b = 10

3 the system

is consistent and dependent, if a = 7 ∧ b 6= 10
3 the system is inconsistent, if a 6= 0 ∧ a 6= 7 the system is

consistent and independent ∀b; 10a) p 6= 3∀q, 10b) p = 3 ∧ q = 0, p = 3 ∧ q 6= 0; 11) c∗ = 3
2 , k∗ = 2;

12) a = 7
5 ∧ b = 3; 13) If α = 1 the system is consistent and dependent, otherwise the system is inconsistent.

Chapter 5. The real number system: 4a) x = 3, 4b) x = 0 ∨ x = −5, 4c) x = ±3; 7a) 1 < x < 2,

7b)−1 ≤ x ≤ 0 7c) x < −1∨x > 3, 7d) x ≤ −7∨x ≥ 3, 7e) 1
6 < x < 1

4 , 7f) x > 2, 7g)
(
−
√

3 < x < −1
)
∨(

1 < x <
√

3
)
, 7h) 1

3 ≤ x ≤ 1, 7i) x < 1 ∨ x > 5, 7j) x < −1 ∨ x > 3, 7k) 1
4 < x < 1

2 , 7l) x > 1,

7m)
(
−
√

7 ≤ x ≤ −
√

3
)
∨
(√

3 ≤ x ≤
√

7
)
, 7n) 4 < x < 6, 7o) −1

2 ≤ x ∨ x ≥ −3
2 , 7p) x ∈ R,

7q) x = ∅, 7r) x < −1 ∨ −1 < x < 0; 8a) UB = [1,+∞), LB = (−∞,
√
2
2 ], sup = 1, inf =

√
2
2 ,

max = 1, min =
√
2
2 , 8b) UB = [12 ,+∞), LB = (−∞,−1], sup = 1

2 , inf = −1, max = 1
2 , min = −1,

8c) UB = ∅, LB = (−∞, 1], the supremum does not exist, inf = 1, the maximum does not exist, the mini-

mum does not exist, 8d) UB = (2,+∞), LB = (−∞, 0], sup = 2, inf = 0, max = 2; the minumum does

not exist; 9a)
◦
A = (2, 3)∪(4, 10), A′ = [2, 3]∪ [4, 10], A = [2, 3]∪ [4, 10], UB = [10,+∞), LB = (−∞, 2],

supA = 10, infA = 2, the maximum does not exist, minA = 2, 9b)
◦
B = (5, 7),B′ = [5, 7],B = [5, 7]∪{15},

UB = [15,+∞), LB = (−∞, 5], supB = 15, infB = 5, maxB = 15, the minimum does not exist,

9c)
◦
C = ∅, C ′ = [0, 1], C = [0, 1], UB = [1,+∞), LB = (−∞, 0], supC = 1, infC = 0, the maxi-

mum does not exist, the minimum does not exist, 9d)
◦
D = ∅, D′ = [2, 3], D = [2, 3], UB = [3,+∞),

LB = (−∞, 2], supD = 3, infD = 2, maxD = 3, minD = 2; 10a)
◦
A = (−7, 7), A

′
= [−7, 7], A = [−7, 7],

10b)
◦
B = ∅, B′ = [−7, 7], B = [−7, 7]; 11a)

◦
A = ∅, A′ = {1}, A = A ∪ {1}, 11b) A is neither open nor

closed; 12)
◦
A = (−

√
2, 2), A

′
= [−8,

√
13]; 13)

◦
A = (−2, 1), A

′
= A.

Chapter 6: Sequences: 1a) 0, 1b) 0, 1c) 1, 1d) 2
3 , 1e) 0, 1f) 0; 3a) −1

4 , 3b) 2
3 , 3c) ∞, 3d) 0, 3e) 0, 3f) 1

2 ,

3g) −1
4 , 3h)∞, 3i) 1, 3j) Does not exit 3k)∞; 4a) 0, 4b)∞, 4c) Does not exist 4d)∞, 4e) 2, 4f) 0, 4g) 0,

4h) 0; 5a) e4, 5b) 0, 5c) 1.

Chapter 7. Series: 1a) 2, 1b) Diverges, 1c) 4
3 , 1d) 1

48 , 1e) Diverges; 2a) x ∈ (−1
2 ,+∞), S = x + 1,

2b) x ∈ (−∞,−2) ∪ (2,+∞), S = x
x−2 , 2c) x ∈ (−2, 0) ∪ (0, 2), S = 1

|x| , 2d) x ∈ (−2, 0), S = − 1
x(x+2) ,

2e) x ∈ R, 2f) x ∈ (−∞,−2) ∪ (2,+∞), 2g) x ∈ R, 2h) x ∈ R, 2i) x ∈ R; 3a) 11
3 , 3b) 1571427

999999 , 3c) 13
11 , 3d)

1; 4a) R = 1, −1 < x < 1, 4b) R = 1, −1 < x < 0, 4c) R = 3, −1 −
√

3 < x <
√

3 − 1, 4d) R = e,

−e < x < e.

Chapter 8: One-variable functions: 1a) [−1,+∞), 1b) (−∞, 1), 1c) (−∞,−2) ∪ (2,+∞), 1d) [−3, 3],

1e) R, 1f) (−∞,−4) ∪ (4,+∞), 1g) (−∞,−2] ∪ [6,+∞), 1h) (1,+∞), 1i) (1,+∞) \ {ee}, 1j) (−1, 3),

1k) R+, 1l) R\
{
π
2 + 2kπ ∈ Z

}
, 1m) R\

{
π
4 + k ∈ Z

}
, 1n) (9, 25], 1o) R\{−6,−4}; 3a) x ∈ {5}, y ∈ {5},

3b) x ∈ {−1, 2}, y ∈ {2}, 3c) x ∈
{

0, 13 ,−1, 1
}

, y ∈ {0}, 3d) x ∈ {−4}, y ∈
{
−4

3

}
, 3e) x ∈

{
5
2

}
,

y ∈ {}, 3f) x ∈
{

ln 3
2

}
, y ∈

{
−1

2

}
; 4a) x ∈

{
±π

6 + kπ, k ∈ Z
}

, 4b) x ∈
{
2π
3 + 2kπ, k ∈ Z

}
, 4c) x = ∅,
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4d) x = 4, 4e) x = 1, 4f) x = −1
3 , 4g) x = −1; 5a) x ∈ [4,+∞), 5b) x ∈ (−5,+∞), 5c) x ∈ (−1

3 ,+∞),

5d) x ∈ ( e−13 ,+∞), 5e) x ∈ (1, 3), 5f) x ∈ (
√
5−1
2 , 1).

Chapter 9. Limits and continuity: 1a) 5, 1b) +∞, 1c) 0, 1d)−1/3, 1e)−∞, 1f) 1/2, 1g) The limit does not

exist, 1h) 1/3, 1i) −1/2, 1j) +∞, 1k) +∞, 1l) 0, 1m) 4, 1n) −∞, 1o) 0 1p) +∞; 2a) Continuous at x = 0,

2b) Not defined at both x = 1 and x = 4, 2c) Not defined at x = 0 and continuous at x = 3; 3a) Continuous

in R, 3b) Continuous in R−{1, 4}, 3c) Continuous in (−1,+∞)−{0}, 3d) Continuous in R, 3e) Continuous

in (0,+∞), 3f) Continuous in R; 3g) Continuous in R; 4a) The limit does not exist, 4b) 0, 4c) 1, 4d) 0; 6)

g(0) = −3/5; 7) g(0) = 1; 8a) a = −1/3, 8b) a = 5/9, b = 17/9, 8c) a ∈ R, b = 0.

Chapter 10: Differentiation: 1a) 2x, 1b) 2, 1c) x, 1d) 4x+ 4, 1e) 0, 1f) − 2
x3

+ 1
3√
x2

, 1g) − 12
x5
− 1

4
4√
x3

+ 1,

1h) 2
3√
x5− 4

10
10√

x6
− 18
x

, 1i) 1

3
3√
x2+ 1

2
√
x

, 1j) 10x4 + 12x3 + 16x + 16, 1k) 18x2 − 6x + 4,

1l) 15x4 + 8x3 − 108x2 − 48x, 1m) 36x5 + 10x4 − 6x − 1, 1n) 4
(x+5)2

, 1o) 18x5+12x3−6x−12x+2
(3x2+1)2

,

1p) x
3
2+6
√
x−2

2(x+2)2
, 1q) 2x2−2x−1

(2x−1)2 , 1r) 2(x+5), 1s) 6x5−16x3+30x2+8x−20, 1t)− x√
1−x2 , 1u) 24(x+2)2+(8x2−1)

(4x3+1)2
,

1v) 6x+5√
2
√
x+1

, 1w) 1− 2x+1√
2x+2

, 1x) 4x(3x4+2x)2

2
√
2x2+1

+2(3x4+2x)(12x3+2)
√

2x2 + 1, 1y) 2
(x4+4x+2)2

−2(2x+3)(4x3+4)
(x4+4x+2)3

,

1z) 7x4−3x2+4x
2
√
x3+1

, 1a′) 16((2x + 3)4 + 8x + 14)((2x + 3)3 + 1), 1b′) x√
1+x2

,

1c′) 2e2x(3x2 + 6x + e), 1d′) (4x + 3)e2x
2+3x, 1e′) 4xe2x

2+1, 1f′) 2x−3 ln 2
√
x3 − 2 + 2x−4∗3x2√

x3−2 + 1
x ,

1g′) 1
x − 2ex + 1

2
√
x

, 1h′) 4x+3
(x2+x) lnx3(x+1)

, 1i′) 4x+3
2x2+3x

, 1j′) 4
x

(
ln3 x+ 2

)
, 1k′) 1

tanx , 1l′) 2
1−x2 , 1m′) x

x2+1
,

1n′) x + 2x log4 x, 1o′) 3ex + 4 sinx − 1
4x , 1p′) 1

x2+1
+ sec2 x, 1q′) 1

2

√
1−x2

4

, 1r′) − 4x√
1−4x4 ,

1s′) 2(cos 2x− cosx sinx+ csc2 x), 1t′) −2
(sinx−cosx)2 , 1u′) 2ex cosx, 1v′) ex(sin ax+ a cos ax); 2a) 2xex

2
,

2b) ln (2)2xe2
x
, 2c) 4x3

1+x8
, 2d) 2

4x2+16x+17
, 2e) 4

x , 2f) 1
x+2 , 2g) − 4x3

1+2x4+x8
, 2h) − 1

2x2+8x+8
, 2i) ex

1+e2x
;

3a) f ′(x) = 0 iff x = 0 ∨ x = −2, g′(x) = 0 iff x = 1 ∨ x = −1, h′(x) = 0 iff x = 1 ∨ x = 1
3 ,

3b) y = 15x− 22, y = −1, y = 10− 5x; 4a) Yes, 4b) No; 7a) 1, 7b) 2, 7c) 0, 7d) 0, 7e) 1, 7f) 1
5 .

Chapter 11: Optimisation: 1a) Minimum: 2 at x = −1∨x = 1, 1b) Maximum: 3432 at x = 6 & minimum:

3000 at x = 0, 1c) Maximum: 8
3
√
3

at x = − 1√
3

& minimum: − 8
3
√
3

at x = 1√
3
, 1d) No maximum &

minimum: 0 at x = 0, 1e) No maximum & no minimum, 1f) No maximum & no minimum, 1g) Maximum:

1 at x = π
2 ∨ x = 3π

2 & minimum: 0 at x = π, 1h) Maximum: 5π
6 +

√
3
2 at x = 5π

3 & minimum: π
6 −

√
3
2 at

x = π
3 .

Chapter 12: Antidifferentiation: 1a) F (x) = x3

3 + K, 1b) F (x) = x2 + 2x + K, 1c) x3

6 + K,

1d) F (x) = 2x3

3 + 2x2 + 4x+K, 1e) F (x) = cx+K, 1f) 2x3

3 + 4x+K, 1g) x6

3 + 8x3

3 + x2

2 − 78x+K,

1h) F (x) = − 1
x + 9x

4
3

4 + K, 1i) F (x) = −4x
5
4

5 −
1
x3

+ x2

2 + K, 1j) F (x) = 9x
4
3

2 −
5x

7
5

7 + − 9
x + K,

1k) F (x) = 2x
3
2

3 + 3x
2
3

2 + K, 1l) F (x) = x6

3 + 3x5

5 + 8x3

3 + 8x2 + 6x + x + K, 1m) F (x) = 3x4

2 − x
3 +

2x2 − 2x + K, 1n) F (x) = x6

2 + 2x5

5 − 9x4 − 8x3 + K, 1o) F (x) = ax2 + 1
2abx

4 + 1
7b

2x7 + K, 1p)

F (x) = 2
3

√
2ax3 + K, 1q) F (x) =

√
4x + K, 1r) F (x) = − 1

20 cos(10x) + K, 1s) F (x) = sin6(4x)
24 + K,
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1t) F (x) = 4
5e

5x + K, 1u) F (x) = 1
8e

4x2 + K, 1v) F (x) = 1
3e

(x+5)3 + K, 1w) F (x) = ln (1 + x) + K,

F (x) = arctan(x) + K, F (x) = 1
2 ln(1 + x2) + K, F (x) = − 1

2(1+x2)
+ K, 1x) F (x) = ln(1 + ex) + K,

F (x) = 1
2 ln(1 + e2x) +K, F (x) = 1

1+ex +K, 1y) F (x) = ln(1 + sinx) +K, F (x) = arctan(sinx) +K,

F (x) = − 1
1+sinx + K, F (x) = (1+sinx)3

3 + K, 1z) F (x) = (lnx)2

2 + K, F (x) = (lnx)6

6 + K, F (x) =

ln(1+lnx)+K, F (x) = arctan(lnx)+K; 2a) F (x) = ln x+1
x+2 , 2b) F (x) = x−ln(x+1), 2c) F (x) = ln x

x+1 ,

2d) F (x) = x − 2
√

7 arctan 2x−5√
7

, 2e) F (x) = x − arctanx, 2f) F (x) = x + 3
2 ln(1 − x) − 1

2 ln(x +

1), 2g) F (x) = 1
4 arctan x2

2 , 2h) F (x) = 1
2 ln(x4 − 1); 3a) F (x) = ex(x − 1), F (x) = ex(x2 −

2x + 2), F (x) = 1
27e

3x(9x2 − 6x + 2), 3b) F (x) = x lnx − x, F (x) = x arctanx − 1
2 ln(x2 + 1),

3c) F (x) = sinx−x cosx, 3d) F (x) = 1
9(3x sin 3x+ cos 3x), 3e) F (x) = ex(−x− 1), 3f) 1

9x
3(3 lnx− 1),

3g) F (x) = 1
2(x2 + 1) arctanx− 1

2x, 3h) F (x) = 1
10(5 cosx− cos 5x), 3i) F (x) = 1

8(sin 2x− 2x cos 2x);

4a) F (x) = x+ 4
√
x+ 4 ln(

√
x− 1) (make x = t2), 4b) F (x) = −1

3

√
2− x2(x2 + 4) (make x2 = 2− t2),

4c) F (x) = 6x 6√x
7 − 6

6√
x5

5 − 3
3√
x2

2 + 2
√
x+ 3 3

√
x− 6 6

√
x− 3 ln( 3

√
x+ 1) + 6 arctan( 6

√
x) (make x = t6),

4d) F (x) = 1
2(ln(ex + 1) − ln(1 − ex)) − ex (make ex = t), 4e) F (x) = ln(

√
2−sinx)−ln(sinx+

√
2)

2
√
2

(make

sinx = t), 4f) F (x) = 2x + x
2

√
1− x2 + 1

2 arcsinx) (make x = sin t), 4g) 2
3(ex − 2)

√
ex + 1 (make

ex = t2 − 1); 5a) F (x) = e−x(2x − 3), 5b) F (x) = 2
3

√
(x+ 1)3 − 2

√
x+ 1, 5c) F (x) = 2e

√
x(
√
x − 1),

5d) F (x) = − e−x
2

2 , 5e) F (x) = (x2+1)21

42 , 5f) F (x) = x sinx+cosx, 5g) F (x) = −1
9x+ 1

3e
−x+ 1

9 ln(ex−3),

5h) F (x) = 4
3(
√
x + 1)3/2, 5i) F (x) = 1

60(10x6 − 12x5 − 20x3 + 30x2 − 60x − 147) + 2 ln(x + 1),

5j) F (x) = arcsin(1 + sinx) + 1
2 ln(

√
1− (1 + sinx)2 + 1)− 1

2 ln(
√

1− (1 + sinx)2 − 1).

Chapter 13: Integration: 1a) 7
3 , 1b) 100

3 , 1c) 7
4 , 1d) 2+π

8 , 1e) ln 2, 1f) −2
3 ; 2)

∫ 3
1
x2

2 dx = 13
3 ; 3a) 10− 4

√
2

9 ,

3b) 37
12 ; 4a) π2 , 4b) 1, 4c) 1, 4d) π

2

8 , 4f) −1; 5a) x4, 5b) 2xex
4
; 6a) 1, 6b) 1

3 .
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