Stochastic Calculus - part 3

ISEG

2016

(ISEG)

Stochastic Calculus - part 3

2016 1 / 21

Martingales in discrete time

Martingales in discrete time

• Consider a probab. space (Ω, \mathcal{F}, P) and a sequence of σ -algebras $\{\mathcal{F}_n, n \geq 0\}$ such that

 $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots \subset \mathcal{F}_n \subset \cdots \subset \mathcal{F}$

The sequence $\{\mathcal{F}_n, n \geq 0\}$ is called a filtration.

• Filtration \approx information flow.

Definition

A s.p. $M = \{M_n; n \ge 0\}$ in discrete time is a martingale with respect to $\{\mathcal{F}_n, n \ge 0\}$ if

- 1) For each *n*, M_n is a \mathcal{F}_n -measurable r.v. (i.e., *M* is a s.p. adapted to the filtration $\{\mathcal{F}_n, n \ge 0\}$).
- 2 For each *n*, $E[|M_n|] < \infty$.
- 3 For each *n*, we have

$$E\left[M_{n+1}|\mathcal{F}_n\right]=M_n.$$

- The s.p. M = {M_n; n ≥ 0} is a supermartingale (resp. submartingale) if satisfies conditions 1 and 2 of the previous difinitions and condition 3 is replaced by E [M_{n+1}|𝒫_n] ≤ M_n (resp. E [M_{n+1}|𝒫_n] ≥ M_n).
- Cond. (3) $\implies E[M_n] = E[M_0]$ for all $n \ge 1$. (Homework: prove this
- Cond (3) $\iff E[\Delta M_n | \mathcal{F}_{n-1}] = 0$ for all $n \ge 1$, where $\Delta M_n := M_n M_{n-1}$.
- Cond. 3 \approx "Given the information \mathcal{F}_n , the best estimate for M_{n+1} is M_n ."

(ISEG)

Stochastic Calculus - part 3

2016 3 / 21

Martingales in discrete time

Example

(Random walk): Let $\{Z_n; n \ge 0\}$ be a seq. of integrable and independent r.v. with zero expected value. Let $M = \{M_n; n \ge 0\}$ with

 $M_n=Z_0+Z_1+\cdots+Z_n.$

Consider the natural filtration generated by $\{Z_n; n \ge 0\}$, i.e.,

$$\mathcal{F}_n := \sigma \{Z_0, Z_1, \ldots, Z_n\}$$
.

Since M_0, M_1, \ldots, M_n and Z_0, Z_1, \ldots, Z_n generate the same information, they generate the same σ -algebra \mathcal{F}_n . Let us prove that M is a martingale: 1. M is adapted to the filtration $\{\mathcal{F}_n, n \ge 0\}$ since M_n is \mathcal{F}_n -measurable $(M_n$ is one of the r.v. that generates \mathcal{F}_n). 2. $E[|M_n|] < \infty$, because all the r.v. Z_n are integrable (i.e. $E[|Z_n|] < \infty$ for all n).

3. By the basic properties of conditional expectation:

$$E[M_{n+1}|\mathcal{F}_n] = E[M_n + Z_{n+1}|\mathcal{F}_n]$$
$$= M_n + E[Z_{n+1}|\mathcal{F}_n]$$
$$= M_n + E[Z_{n+1}]$$
$$= M_n.$$

 Note: the σ-algebra σ (X₁, X₂,..., X_n) generated by the r.v. (X₁, X₂,..., X_n) contains all the "essential information" about the "structure" of the random vector (X₁, X₂,..., X_n) (as a map of ω ∈ Ω).

()	SEG	:)

Stochastic Calculus - part 3

5 2016 5 / 21

Martingales in discrete time

Lemma

Let $M = \{M_n; n \ge 0\}$ be a martingale with respect to the filtration $\{\mathcal{G}_n, n \ge 0\}$ and $\mathcal{F}_n = \sigma \{M_0, M_1, \dots, M_n\} \subset \mathcal{G}_n$ is the natural filtration generated by M. Then M is a martingale with respect to $\{\mathcal{F}_n, n \ge 0\}$.

Proof.

By property 6 of the conditional expectation and by the martingale property:

$$E[M_{n+1}|\mathcal{F}_n] = E[E[M_{n+1}|\mathcal{G}_n]|\mathcal{F}_n]$$
$$= E[M_n|\mathcal{F}_n]$$
$$= M_n.$$

• Some martingale properties:

1 Let
$$M = \{M_n; n \ge 0\}$$
 be a $\{\mathcal{F}_n\}$ -martingale. Then, for $m \ge n$:

$$E[M_m|\mathcal{F}_n] = M_n.$$
 (Exerc.: prove this)

- 2 $\{M_n; n \ge 0\}$ is a submartingale iff $\{-M_n; n \ge 0\}$ is a supermartingale.
- 3 If $\{M_n; n \ge 0\}$ is a martingale and φ is a convex function such that $E[|\varphi(M_n)|] < \infty \quad \forall n \ge 0$, then $\{\varphi(M_n), n \ge 0\}$ is a submartingale.
- Poperty 3. is a consequence of the Jensen inequality and has the corollary: if {M_n; n ≥ 0} is a martingale and E [|M_n|^p] < ∞ ∀n ≥ 0 for some p ≥ 1, then {|M_n|^p, n ≥ 0} is a submartingale.

(ISEG)

Stochastic Calculus - part 3

2016 7 / 21

Martingale transform or discrete stochastic integral

Let $\{\mathcal{F}_n, n \geq 0\}$ be a filtration on (Ω, \mathcal{F}, P) .

Definition

The s.p. $\{H_n, n \ge 1\}$ is called a predictable process if H_n is \mathcal{F}_{n-1} -measurable (i.e., if H_n is "known" at time n-1).

Definition

Given a $\{\mathcal{F}_n\}$ -martingale $M = \{M_n; n \ge 0\}$ and a predictable process $\{H_n, n \ge 1\}$, the process $\{(H \cdot M)_n, n \ge 1\}$, defined by

$$(H \cdot M)_n = M_0 + \sum_{j=1}^n H_j \Delta M_j$$

is called the martingale transform of M by $\{H_n, n \ge 1\}$ or the discrete stochastic integral of H with respect to M.

• The martingale transform by a predictable process is the discrete version of the stochastic integral:

$$(H \cdot M)_n - M_0 = \sum_{j=1}^n H_j \Delta M_j \approx \int_0^n H_s dM_s.$$

Theorem

If $M = \{M_n; n \ge 0\}$ is a martingale and $\{H_n, n \ge 0\}$ is a predictable process with bounded random variables, then the martingale transform (or discrete stochastic integral) $\{(H \cdot M)_n, n \ge 1\}$ is a martingale.

(ISEG)

Stochastic Calculus - part 3

9 2016 9 / 21

Martingale transform or discrete stochastic integral

Proof.

- 1. $(H \cdot M)_n$ is $\{\mathcal{F}_n\}$ -measurable since $\sum_{j=1}^n H_j \Delta M_j$ is \mathcal{F}_n -measurable.
- 2. $(H \cdot M)_n$ is integrable because the r.v. M_n are integrable and the r.v. H_n are bounded.

3. By the properties of conditional expectation:

$$E\left[\left(H\cdot M\right)_{n+1} - \left(H\cdot M\right)_{n} |\mathcal{F}_{n}\right] = E\left[H_{n+1}\left(M_{n+1} - M_{n}\right) |\mathcal{F}_{n}\right]$$
$$= H_{n+1}E\left[M_{n+1} - M_{n} |\mathcal{F}_{n}\right]$$
$$= 0.$$

Game and betting system:Let H_n be the amount of the bet by a player on time n; $\Delta M_n = M_n - M_{n-1}$ is the amount won on time n; M_n : total amount accumulated by player at time n; $(H \cdot M)_n$: is the total amount accumulated by player at time n if he uses the betting system $\{H_n, n \ge 1\}$. If $\{M_n; n \ge 0\}$ is a martingale we say that the game is fair. Then $(H \cdot M)_n$ is also a martingale - that is, the game remains a "fair game", for any betting system used by the player such that $\{H_n, n \ge 0\}$ satisfies the conditions of the previous theorem.

(ISEG)

Stochastic Calculus - part 3

2016 11 / 21

Martingale transform or discrete stochastic integral

Example

(doubling bet system): Assume that $M_n = M_0 + Z_1 + \cdots + Z_n$, where $\{Z_n; n \ge 1\}$ are indep. r.v. that represent "heads" (+1) or "tails" (-1) in a flipping coin: $P(Z_i = 1) = P(Z_i = -1) = \frac{1}{2}$. The player initially bets one Euro and he doubles his bet if the result is "tails" (-1) (doubles his bet when he loses) and ends the game whenever he gets "heads" (+1). That is, $H_1 = 1$, $H_n = 2H_{n-1}$ if $Z_{n-1} = -1$ and $H_n = 0$ if $Z_{n-1} = +1$. If the player loses k times and wins at time k + 1, he gets:

$$(H \cdot M)_k = -1 - 2 - 4 - \dots - 2^{k-1} + 2^k = 1.$$

It seems that the strategy is always a winning strategy. But be carefull, in order to be a winning strategy (with probability 1) the player needs unbounded resources (infinite amount of money) - unbounded r.v. for the betting system - and unbounded time.

Application to Finance

Example

Let $S_n := \{S_n^0, S_n^1, n \ge 1\}$ be adapted processes that represent the price of two assets. $S_n^0 = (1+r)^n$ is the price of the riskless asset (riskless bond), where r is the interest rate (S_n^0 is deterministic). A portfolio is a predictable process $\phi_n := \{\phi_n^0, \phi_n^1, n \ge 1\}$ and the value of the portfolio at time n is

$$V_n = \phi_n^0 S_n^0 + \phi_n^1 S_n^1 = \phi_n \cdot S_n$$

The portfolio is said to be self-financing if, for all n,

$$V_n = V_0 + \sum_{j=1}^n \phi_j \Delta S_j.$$

This condition is equivalent to

$$\phi_n \cdot S_n = \phi_{n+1} \cdot S_n$$

(ISEG)

Stochastic Calculus - part 3

2016 13 / 21

Martingale transform or discrete stochastic integral

Example

Define the discounted prices

$$\widetilde{S}_n = (1+r)^{-n} S_n = \left(1, (1+r)^{-n} S_n^1\right)$$

Clearly, we have

$$\widetilde{V}_n = (1+r)^{-n} V_n = \phi_n \cdot \widetilde{S}_n,$$

 $\phi_n \cdot \widetilde{S}_n = \phi_{n+1} \cdot \widetilde{S}_n,$
 $\widetilde{V}_n = V_0 + \sum_{j=1}^n \phi_j \Delta \widetilde{S}_j$

 $\widetilde{V}_n = \left(\phi_n^1 \cdot \widetilde{S}^1\right)_n$ is the martingale transform of $\left\{\widetilde{S}_n^1\right\}$ by the process $\left\{\phi_n^1\right\}$. Then, if $\left\{\widetilde{S}_n^1\right\}$ is a martingale and $\left\{\phi_n^1\right\}$ is a bounded sequence (bounded r.v.), then $\left\{\widetilde{V}_n\right\}$ is also a martingale (by the previous theorem).

A probability measure Q equivalent to P is a risk neutral probability measure if on the proab. space (Ω, \mathcal{F}, Q) , the process $\{\widetilde{S}_n^1\}$ is a $\{\mathcal{F}_n\}$ -martingale. In that case, if $\{\phi_n^1\}$ is bounded, $\{\widetilde{V}_n\}$ is also a martingale.

In the binomial model, we assume that the r.v.

$$T_n=\frac{S_n}{S_{n-1}}$$

are independent and can have the values 1 + a and 1 + b with probabilities p and 1 - p, resp., with a < r < b.

(ISEG)

Stochastic Calculus - part 3

15 2016 15 / 21

Martingale transform or discrete stochastic integral

Example

Let us find p (or the probab. measure Q) in such a way that $\{\widetilde{S}_n^1\}$ is a martingale.

$$E\left[\widetilde{S}_{n+1}|\mathcal{F}_n\right] = (1+r)^{-n-1} E\left[S_n T_{n+1}|\mathcal{F}_n\right]$$
$$= \widetilde{S}_n (1+r)^{-1} E\left[T_{n+1}|\mathcal{F}_n\right]$$
$$= \widetilde{S}_n (1+r)^{-1} E\left[T_{n+1}\right]$$

Therefore, $\left\{\widetilde{S}_{n}^{1}\right\}$ is a martingale iff $E\left[T_{n+1}\right] = (1+r)$. That is,

$$E[T_{n+1}] = p(1+a) + (1-p)(1+b) = 1+r$$

and therefore

$$p=\frac{b-r}{b-a}.$$

Consider now a r.v.. H which is $\{\mathcal{F}_N\}$ -measurable and represents the payoff of an option or financial derivative on the asset 1 with maturity at time N. For example, a "call" option has payoff $H = (S_T - K)^+$. The derivative is said to be replicable if exists a self-financing portfolio such that

 $V_N = H$.

The price of the derivative is the value of this portfolio. Since $\{\widetilde{V}_n\}$ is a Q-martingale, we have

$$egin{aligned} V_n &= (1+r)^n \, \widetilde{V}_n = (1+r)^n \, E_Q \left[\widetilde{V}_N | \mathcal{F}_n
ight] \ &= (1+r)^{-(N-n)} \, E_Q \left[\mathcal{H} | \mathcal{F}_n
ight] \end{aligned}$$

If n=0, we have $\mathcal{F}_0=\{\Omega, arnothing\}$ and

$$V_0 = (1+r)^{-N} E_Q [H].$$

(ISEG)

Stochastic Calculus - part 3

2016 17 / 21

Martingale in continuous time

Martingales in continuous time

- Martingales in continuous time are defined in analogous way as in discrete time and most properties remain in continuous time.
- Probab. space (Ω, \mathcal{F}, P) and a family of σ -algebras $\{\mathcal{F}_t, t \ge 0\}$ such that

$$\mathcal{F}_s \subset \mathcal{F}_t$$
, $0 \leq s \leq t$.

The sequence $\{\mathcal{F}_t, t \geq 0\}$ is called a filtration.

- Let *F*^X_t be a *σ*-algebra generated by process X on the interval [0, t], i.e. *F*^X_t = σ (X_s, 0 ≤ s ≤ t). Then *F*^X_t is the "information generated by X on interval [0, t]".
- $A \in \mathcal{F}_t^X$ means that it is possible to decide if event A has occured or not, based on the observation of trajectories of X on [0, t].
- Example: If $A = \{ \omega : X(5) > 1 \}$ then $A \in \mathcal{F}_5^X$ but $A \notin \mathcal{F}_4^X$.

Definition

A s.p. $M = \{M_t; t \ge 0\}$ is said to be a martingale with respect to $\{\mathcal{F}_t, t \ge 0\}$ if:

- 1 For each $t \ge 0$, M_t is a r.v. which is \mathcal{F}_t -measurable (i.e., M is a s.p. adapted to $\{\mathcal{F}_t, t \ge 0\}$).
- 2 For each $t \ge 0$, $E[|M_t|] < \infty$.
- 3 For each $s \leq t$,

$$E[M_t|\mathcal{F}_s]=M_s.$$

(ISEG)

Stochastic Calculus - part 3

19 2016 19 / 21

- Cond (3) $\iff E[M_t M_s | \mathcal{F}_s] = 0.$
- If $t \in [0, T]$ then $M_t = E[M_T | \mathcal{F}_t]$.
- The definitons of supermartingale and submartingale are similar to the definitions for discrete time.
- As in the discrete time case, Cond. (3) $\implies E[M_t] = E[M_0]$ for all t.

We have the following generalization of the Chebyshev inequality (analogous to the discrete time version).

Theorem

(Maximal inequality (or martingale inequality) of Doob): If $M = \{M_t; t \ge 0\}$ is a martingale with continuous trajectories then, for all $p \ge 1, T \ge 0$ and $\lambda > 0$,

$$P\left[\sup_{0\leq t\leq T}|M_t|\geq \lambda\right]\leq \frac{1}{\lambda^p}\left[E|M_T|^p\right]$$

For a proof of this theorem in discrete time (based on the optional stopping theorem) see the lecture notes "Stochastic Calculus" by D. Nualart.

(ISEG)

Stochastic Calculus - part 3

21 2016 21 / 21