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Martingales in discrete time

Martingales in discrete time
Consider a probab. space (Ω,F ,P) and a sequence of σ-algebras
{Fn, n ≥ 0} such that

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ · · · ⊂ F

The sequence {Fn, n ≥ 0} is called a filtration.
Filtration ≈ information flow.

Definition
A s.p. M = {Mn; n ≥ 0} in discrete time is a martingale with respect to
{Fn, n ≥ 0} if

1 For each n, Mn is a Fn-measurable r.v. (i.e., M is a s.p. adapted to
the filtration {Fn, n ≥ 0}).

2 For each n, E [|Mn |] < ∞.
3 For each n, we have

E [Mn+1|Fn ] = Mn.
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Martingales in discrete time

The s.p. M = {Mn; n ≥ 0} is a supermartingale (resp.
submartingale) if satisfies conditions 1 and 2 of the previous
difinitions and condition 3 is replaced by E [Mn+1|Fn ] ≤ Mn (resp.
E [Mn+1|Fn ] ≥ Mn).

Cond. (3) =⇒ E [Mn ] = E [M0] for all n ≥ 1. (Homework: prove this
Cond (3) ⇐⇒ E [∆Mn |Fn−1] = 0 for all n ≥ 1, where
∆Mn := Mn −Mn−1.

Cond. 3 ≈ “Given the information Fn, the best estimate for Mn+1 is
Mn.”
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Martingales in discrete time

Example
(Random walk): Let {Zn; n ≥ 0} be a seq. of integrable and independent
r.v. with zero expected value. Let M = {Mn; n ≥ 0} with

Mn = Z0 + Z1 + · · ·+ Zn.

Consider the natural filtration generated by {Zn; n ≥ 0}, i.e.,

Fn := σ {Z0,Z1, . . . ,Zn} .

Since M0,M1, . . . ,Mn and Z0,Z1, . . . ,Zn generate the same information,
they generate the same σ-algebra Fn. Let us prove that M is a martingale:
1. M is adapted to the filtration {Fn, n ≥ 0} since Mn is Fn-measurable
(Mn is one of the r.v. that generates Fn).
2. E [|Mn |] < ∞, because all the r.v. Zn are integrable (i.e. E [|Zn |] < ∞
for all n).
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Martingales in discrete time

Example
3. By the basic properties of conditional expectation:

E [Mn+1|Fn ] = E [Mn + Zn+1|Fn ]
= Mn + E [Zn+1|Fn ]
= Mn + E [Zn+1]

= Mn.

Note: the σ-algebra σ (X1,X2, . . . ,Xn) generated by the r.v.
(X1,X2, . . . ,Xn) contains all the “essential information”about the
“structure”of the random vector (X1,X2, . . . ,Xn) (as a map of
ω ∈ Ω).
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Martingales in discrete time

Lemma
Let M = {Mn; n ≥ 0} be a martingale with respect to the filtration
{Gn, n ≥ 0} and Fn = σ {M0,M1, . . . ,Mn} ⊂ Gn is the natural filtration
generated by M. Then M is a martingale with respect to {Fn, n ≥ 0} .

Proof.
By property 6 of the conditional expectation and by the martingale
property:

E [Mn+1|Fn ] = E [E [Mn+1|Gn ] |Fn ]
= E [Mn |Fn ]
= Mn.
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Martingales in discrete time

Some martingale properties:
1 Let M = {Mn ; n ≥ 0} be a {Fn}-martingale. Then, for m ≥ n:

E [Mm |Fn ] = Mn . (Exerc.: prove this)

2 {Mn ; n ≥ 0} is a submartingale iff {−Mn ; n ≥ 0} is a supermartingale.
3 If {Mn ; n ≥ 0} is a martingale and ϕ is a convex function such that
E [|ϕ (Mn)|] < ∞ ∀n ≥ 0, then {ϕ (Mn) , n ≥ 0} is a submartingale.

Poperty 3. is a consequence of the Jensen inequality and has the
corollary: if {Mn; n ≥ 0} is a martingale and E [|Mn |p ] < ∞ ∀n ≥ 0
for some p ≥ 1, then {|Mn |p , n ≥ 0} is a submartingale.
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Martingale transform or discrete stochastic integral

Let {Fn, n ≥ 0} be a filtration on (Ω,F ,P).

Definition
The s.p. {Hn, n ≥ 1} is called a predictable process if Hn is
Fn−1-measurable (i.e., if Hn is "known" at time n− 1).

Definition
Given a {Fn}-martingale M = {Mn; n ≥ 0} and a predictable process
{Hn, n ≥ 1}, the process {(H ·M)n , n ≥ 1}, defined by

(H ·M)n = M0 +
n

∑
j=1
Hj∆Mj

is called the martingale transform of M by {Hn, n ≥ 1} or the discrete
stochastic integral of H with respect to M.
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Martingale transform or discrete stochastic integral

The martingale transform by a predictable process is the discrete
version of the stochastic integral:

(H ·M)n −M0 =
n

∑
j=1
Hj∆Mj ≈

∫ n

0
HsdMs .

Theorem
If M = {Mn; n ≥ 0} is a martingale and {Hn, n ≥ 0} is a predictable
process with bounded random variables, then the martingale transform (or
discrete stochastic integral) {(H ·M)n , n ≥ 1} is a martingale.
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Martingale transform or discrete stochastic integral

Proof.
1. (H ·M)n is {Fn}-measurable since ∑n

j=1 Hj∆Mj is Fn- measurable.
2. (H ·M)n is integrable because the r.v. Mn are integrable and the r.v.
Hn are bounded.
3. By the properties of conditional expectation:

E
[
(H ·M)n+1 − (H ·M)n |Fn

]
= E [Hn+1 (Mn+1 −Mn) |Fn ]
= Hn+1E [Mn+1 −Mn |Fn ]
= 0.
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Martingale transform or discrete stochastic integral

Example
Game and betting system:Let Hn be the amount of the bet by a player on
time n; ∆Mn = Mn −Mn−1 is the amount won on time n; Mn: total
amount accumulated by player at time n; (H ·M)n: is the total amount
accumulated by player at time n if he uses the betting system {Hn, n ≥ 1}.
If {Mn; n ≥ 0} is a martingale we say that the game is fair. Then
(H ·M)n is also a martingale - that is, the game remains a "fair game",
for any betting system used by the player such that {Hn, n ≥ 0} satisfies
the conditions of the previous theorem.
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Martingale transform or discrete stochastic integral

Example
(doubling bet system): Assume that Mn = M0 + Z1 + · · ·+ Zn, where
{Zn; n ≥ 1} are indep. r.v. that represent “heads” (+1) or “tails” (−1)
in a flipping coin: P(Zi = 1) = P(Zi = −1) = 1

2 . The player initially bets
one Euro and he doubles his bet if the result is “tails” (−1) (doubles his
bet when he loses) and ends the game whenever he gets “heads” (+1).
That is, H1 = 1, Hn = 2Hn−1 if Zn−1 = −1 and Hn = 0 if Zn−1 = +1.
If the player loses k times and wins at time k + 1, he gets:

(H ·M)k = −1− 2− 4− · · · − 2k−1 + 2k = 1.

It seems that the strategy is always a winning strategy. But be carefull, in
order to be a winning strategy (with probability 1) the player needs
unbounded resources (infinite amount of money) - unbounded r.v. for the
betting system - and unbounded time.
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Martingale transform or discrete stochastic integral

Application to Finance

Example

Let Sn :=
{
S0n ,S

1
n , n ≥ 1

}
be adapted processes that represent the price

of two assets. S0n = (1+ r)
n is the price of the riskless asset (riskless

bond), where r is the interest rate (S0n is deterministic). A portfolio is a
predictable process φn :=

{
φ0n, φ

1
n, n ≥ 1

}
and the value of the portfolio at

time n is
Vn = φ0nS

0
n + φ1nS

1
n = φn · Sn

The portfolio is said to be self-financing if, for all n,

Vn = V0 +
n

∑
j=1

φj∆Sj .

This condition is equivalent to

φn · Sn = φn+1 · Sn
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Martingale transform or discrete stochastic integral

Example
Define the discounted prices

S̃n = (1+ r)
−n Sn =

(
1, (1+ r)−n S1n

)
Clearly, we have

Ṽn = (1+ r)
−n Vn = φn · S̃n,

φn · S̃n = φn+1 · S̃n,

Ṽn = V0 +
n

∑
j=1

φj∆S̃j

Ṽn =
(

φ1n · S̃1
)
n
is the martingale transform of

{
S̃1n
}
by the process{

φ1n
}
. Then, if

{
S̃1n
}
is a martingale and

{
φ1n
}
is a bounded sequence

(bounded r.v.), then
{
Ṽn
}
is also a martingale (by the previous theorem).
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Martingale transform or discrete stochastic integral

Example
A probability measure Q equivalent to P is a risk neutral probability
measure if on the proab. space (Ω,F ,Q), the process

{
S̃1n
}
is a

{Fn}-martingale. In that case, if
{

φ1n
}
is bounded,

{
Ṽn
}
is also a

martingale.
In the binomial model, we assume that the r.v.

Tn =
Sn
Sn−1

are independent and can have the values 1+ a and 1+ b with probabilities
p and 1− p, resp., with a < r < b.
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Martingale transform or discrete stochastic integral

Example

Let us find p (or the probab. measure Q) in such a way that
{
S̃1n
}
is a

martingale.

E
[
S̃n+1|Fn

]
= (1+ r)−n−1 E [SnTn+1|Fn ]

= S̃n (1+ r)
−1 E [Tn+1|Fn ]

= S̃n (1+ r)
−1 E [Tn+1]

Therefore,
{
S̃1n
}
is a martingale iff E [Tn+1] = (1+ r). That is,

E [Tn+1] = p (1+ a) + (1− p) (1+ b) = 1+ r

and therefore

p =
b− r
b− a .
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Martingale transform or discrete stochastic integral

Example
Consider now a r.v.. H which is {FN}-measurable and represents the
payoff of an option or financial derivative on the asset 1 with maturity at
time N. For example, a "call" option has payoff H = (ST −K )+. The
derivative is said to be replicable if exists a self-financing portfolio such
that

VN = H.

The price of the derivative is the value of this portfolio. Since
{
Ṽn
}
is a

Q-martingale, we have

Vn = (1+ r)
n Ṽn = (1+ r)

n EQ
[
ṼN |Fn

]
= (1+ r)−(N−n) EQ [H |Fn ]

If n = 0, we have F0 = {Ω,∅} and

V0 = (1+ r)
−N EQ [H ] .
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Martingale in continuous time

Martingales in continuous time

Martingales in continuous time are defined in analogous way as in
discrete time and most properties remain in continuous time.

Probab. space (Ω,F ,P) and a family of σ-algebras {Ft , t ≥ 0} such
that

Fs ⊂ Ft , 0 ≤ s ≤ t.
The sequence {Ft , t ≥ 0} is called a filtration.
Let FXt be a σ-algebra generated by process X on the interval [0, t],
i.e. FXt = σ (Xs , 0 ≤ s ≤ t). Then FXt is the “information generated
by X on interval [0, t]”.

A ∈ FXt means that it is possible to decide if event A has occured or
not, based on the observation of trajectories of X on [0, t].

Example: If A = {ω : X (5) > 1} then A ∈ FX5 but A /∈ FX4 .
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Martingale in continuous time

Definition
A s.p. M = {Mt ; t ≥ 0} is said to be a martingale with respect to
{Ft , t ≥ 0} if:

1 For each t ≥ 0, Mt is a r.v. which is Ft -measurable (i.e., M is a s.p.
adapted to {Ft , t ≥ 0}).

2 For each t ≥ 0, E [|Mt |] < ∞.
3 For each s ≤ t,

E [Mt |Fs ] = Ms .
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Martingale in continuous time

Cond (3) ⇐⇒ E [Mt −Ms |Fs ] = 0.
If t ∈ [0,T ] then Mt = E [MT |Ft ].
The definitons of supermartingale and submartingale are similar to
the definitions for discrete time.

As in the discrete time case, Cond. (3) =⇒ E [Mt ] = E [M0] for all t.
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Martingale in continuous time

We have the following generalization of the Chebyshev inequality
(analogous to the discrete time version).

Theorem
(Maximal inequality (or martingale inequality) of Doob): If
M = {Mt ; t ≥ 0} is a martingale with continuous trajectories then, for all
p ≥ 1, T ≥ 0 and λ > 0,

P
[
sup

0≤t≤T
|Mt | ≥ λ

]
≤ 1

λp
[E |MT |p ]

For a proof of this theorem in discrete time (based on the optional stopping
theorem) see the lecture notes "Stochastic Calculus" by D. Nualart.
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