ANÁLISE MATEMÁTICA I

Ficha N°3

- 1. Considere uma família de conjuntos $\{A_i \subset \mathbb{R}, i \in I\}$.
 - (a) Prove que se todos os A_i forem fechados, então o conjunto $\bigcap_{i \in I} A_i$ é fechado.
 - (b) Apresente um exemplo em que todos os A_i são fechados mas $\bigcup_{i \in I} A_i$ não é fechado.
- 2. Para cada um dos seguintes conjuntos, determine o respectivo interior, exterior, fronteira e fecho.

(a)
$$\bigcup_{n=1}^{\infty} \left\{ x \in \mathbb{R} : \frac{1}{2n+1} < |x| < \frac{1}{2n} \right\};$$

(b) $[0,1[\cup\{2\};$

(c)
$$\bigcup_{n=1}^{\infty} \left\{ x = n + \frac{1}{k} : k \in \mathbb{N} \right\}.$$

(d)
$$\bigcap_{n=1}^{\infty} \left\{ x = \in \mathbb{R} : \sin(x + \frac{1}{n}) \ge 0 \right\}.$$

- 3. Quando possível, dê um exemplo de um subconjunto de $\mathbb R$ com as seguintes propriedades:
 - (a) Um conjunto finito, não vazio e aberto;
 - (b) Um conjunto fechado não limitado;
 - (c) Um conjunto igual à sua fronteira;
 - (d) Um conjunto finito mas não majorado;
 - (e) Um conjunto cujo exterior é um intervalo limitado.
- 4. Represente os seguintes conjuntos sobre a recta real:
 - (a) $\{x \in \mathbb{R} : x(x^2 2) \ge 0\};$
 - (b) $\{x \in \mathbb{R} : \sin(1+x^2) > 0\};$
 - (c) $\{x \in \mathbb{R} : |x+1| \ge ||x|-2|\};$
 - (d) $\left\{ x \in \mathbb{R} : \frac{x^2 1}{x} < |x 2| \right\};$
- 5. para cada um dos seguintes conjuntos indique aqueles que são majorados, minorados ou limitados. Indique ainda (se existirem) o supremo, o ínfimo, o máximo e o mínimo de cada conjunto.

1

- (a) $[0,2[\cup]3,5[\cup\{6,7\};$
- (b) $\{x \in \mathbb{R} : x 1 \ge x\};$
- (c) $\{x \in \mathbb{R} : x^2 < 9\};$
- (d) $\{x \in \mathbb{R} : |x 1| \ge |x|\};$
- (e) $\{x \in \mathbb{R} : |x 3| \le 5\};$
- (f) $\left\{ x \in \mathbb{R} : \frac{x-1}{x+3} > \frac{x}{x-2} \right\};$
- (g) $[1,2] \cap \mathbb{Q}$;
- (h) $\{x = n^{(-1)^n} : n \in \mathbb{N}\};$
- (i) $\{x = n^{(-1)^m} : n, m \in \mathbb{N}\};$
- (j) $\left\{x = \frac{1}{n} + \frac{1}{m} : n, m \in \mathbb{Z} \setminus \{0\}\right\}$.