

Valuation: Intrinsic value or fundamental value

João Carvalho das Neves

Professor of Business Administration ISEG, Universidade de Lisboa jcneves@iseg.ulisboa.pt

Intrinsic value or fundamental value

- actual value of a company or an asset based on an underlying perception of its true value including all aspects of the business, in terms of both tangible and intangible factors.
- This value may or may not be the same as the current market value
- It is ordinarily calculated by the present value of the future income generated by the asset/company

Discounted Cash Flow Valuation General formula

$$V_{0} = \sum_{i=0}^{n} \frac{CF_{i}}{(1+k)^{i}} = \sum_{i=0}^{T} \frac{CF_{i}}{(1+k)^{i}} + \frac{TV_{T}}{(1+k)^{T}}$$

 V_0 – Present value of future cash flows

CF_i – cash flow for year i (definition of cash flow?)

k – Cost of capital adjusted to risk (definition of cost of capital?)

TV_T – Terminal value, (residual or de continuing) at year T

T - Last year of annual forecast

Agenda for learning about DCF valuations

- Cost of capital
 - Cost of equity
 - Cost of debt
 - Cost of prefered equity
 - Weighted average cost of capital (WACC)
 - Unlevered cost of capital
- Types of cash flow
 - Free cash flow to the equity
 - Free cash flow to the firm (Net operational cash flow)

- Terminal value approaches
- DCF methods
 - The equity method
 - WACC method
 - APV method
- Other complex situations

© J.C.Neves, ISEG 2018

1. Cost of capital

Types of cost of capital

- Cost of equity (ke)
- Cost of debt (kd)
- Cost of prefered capital (kp)
- WACC (km)
- Unlevered cost of capital (ku)

© J.C.Neves, ISEG 2018

i. Cost of equity (ke)

Models to estimate the cost of equity

- Historical based
 - CAPM
 - CAPM 2° moment D-CAPM

 - Merton
 - APM Arbitrage Pricing Model
 - Multifactors (Fama e French)
 - Regression
 - Accounting Approach
 - Modigliani e Miller
 - Covariance of operational income
 - Covariance of sales

- Implicit prices using discounting models
 - Models of Gordon, Malkiel, H
 - EVA Model
 - DCF
 - Compound betas
 - Leverage effect
 - Conservation of risk
 - Simultaneous equations
 - Regression of Business Units
- Implicit prices using options models
 - Shares (Hsia)
 - Options on shares (McNulty)

Most commonly used models to estimate the cost of equity (ke)

$$k_e = r_f + eta (r_m - r_f)$$
 $r_f = \text{Risk free rate of return}$ $B = \text{Beta}$ $r_m = \text{Market return}$ $r_m - r_f = \text{Market risk premium}$

* THE GORDON MODEL

$$k_e = \frac{d_1}{P_0} + g \qquad \qquad \begin{array}{c} \text{d_1 = Dividend per share year 1} \\ \text{P_0 = Share price year 0} \\ \text{g = Growth rate in the long term} \end{array}$$

* THE MODIGLIANI & MILLER (M&M) MODEL

$$k_e = k_u + (k_u - k_d) \times \frac{D}{E} \times (1 - t)$$

k_u - Unlevered cost of capital

t - Corporate income tax rate

* INTUITIVE MODELS

$$k_e = k_d + \rho$$
 k_d = Cost of debt $k_e = r_f + \eta$ p = Risk premium over debt η = Risk premium over Treasury Bonds

CAPM - A standard in the market

$$r_e = r_f + \beta \left(r_m - r_f \right)$$

Choosing the CAPM variables!

- Risk free rate
 - Which rate to choose?
 - Stationary or variable?
- Market risk premium
 - Stationary or variable?
- Retas
 - Raw data, adjusted for market conditions, adjusted for trends?
- Cost of equity
 - Stationary or variable?
 - Nominal terms or real terms (constant)?

© J.C.Neves, ISEG 2018

Risk free rate

 $r_e = r_f + \beta \cdot (r_m - r_f)$

Historical Risk Premium (USA)

L	Market	40.77.67	
Period	Return	10 Y Gbonds	Risk Premium
1928-2017	9,65%	4,88%	4,77%
1968-2017	10,05%	6,76%	3,29%
2009 2017	9.420	2.960	1.560

Source: Reuters

Standard error of equity risk premium against the number of years

Γ	Estimation Period	Standard Error of Risk Premium Estimate
Γ	5 years	$20\% / \sqrt{5} = 8.94\%$
Γ	10 years	$20\% / \sqrt{10} = 6.32\%$
Γ	25 years	$20\% / \sqrt{25} = 4.00\%$
Γ	50 years	20% / √50 = 2.83%
Γ	80 years	$20\% / \sqrt{80} = 2.23\%$

The longer the series is, the smaller the standard error

© J.C.Neves, ISEG 2018

Equity risk premium varies across countries

TABLE 3 Equity Premium for Selected Countries

		Mean real	Mean real return		
Country	Period	Market index (%)	Relatively riskless security (%)	Equity premium (%)	
United Kingdom	1900-2005	7.4	1.3	6.1	
Japan	1900-2005	9.3	-0.5	9.8	
Germany	1900-2005	8.2	-0.9	9.1	
France	1900-2005	6.1	-3.2	9.3	
Sweden	1900-2005	10.1	2.1	8.0	
Australia	1900-2005	9.2	0.7	8.5	
India	1991-2004	12.6	1.3	11.3	

Source: Dimson et al. (2002) and Mehra (2007) for India.

The country risk affects the equity risk premium

How to measure country risk: 2 - Country Risk Scores (0 a 100)

- The PRS Group
 - Political Risk Services
- ICRG
 - International Country Risk Guide
- The Economist

PS: Scores are not linear

© J.C.Neves, ISEG 2018

How to measure country risk:

3 - Market data

- Bond default spread
 - Treasury bond of emergent country Treasury bond of stable country
- Credit Default Swap Spreads
 - A credit default swap (CDS) is a financial swap agreement that the seller of the CDS will compensate the buyer in the event of a loan default or other credit event.
- Relative volatility of markets
 - volatilidade of emergent country / volatilidade of stable country

Risk premium based on "Bond Default Spread"

Equity risk premium = Equity risk premium in USA + Emergent country risk premium (4,79%)(?)

$$CRP = CDS \frac{\sigma_{_{e}}}{\sigma_{_{T}}}$$

CRP= Country Risk Premium

CDS = Country Default Spread

= Treasury Yield of Emergent Country - USA Treasury Yield

 $\sigma_{\rm e}$ = Standard deviation of shares

 σ_T = Standard deviation of Treasury Bonds

India Example from Damodaran, The Dark Side of Valuation, p. 68:

$$CRP = 3\% \times \frac{31,82\%}{14,90\%} = 6,43\%$$

$$ERP = ERP_{USA} + CRP_{Emergent} = 4,79\% + 6,43\% = 11,22\%$$

© J.C.Neves, ISEG 2018

Equity risk premium based on "relative volatility of markets"

$$ERP_{Emergent} = ERP_{USA} \frac{\sigma_{Emergent}}{\sigma_{USA}}$$

ERP_{Emergent} = Equity risk premium of emergent market

ERP_{USA} = Equity risk premium of USA

 σ_{Emergent} = Standard deviation of shares in the emergent country σ_{USA} = Standard deviation of shares in USA or equivalent country

Brasil example:

$$ERP_{Brasil} = 4,79\% \times \frac{25,83\%}{15,27\%} = 8,1\%$$

$$CRP = 8.1\% - 4.79\% = 3.31\%$$

Betas

CAPM and Market Model

CAPM

$$r_e = r_f + \beta \cdot (r_m - r_f)$$

$$r_e - r_f = \beta \cdot (r_m - r_f)$$

• Market Model (used by Bloomberg)

$$r_e = a + b.r_m$$

• Bloomberg, Datastream, Reuters, etc.

ii. Cost of debt (kd)

Cost of debt Ranked by best practice

- The company has bonds quoted:
 - Use the yield to maturity
- The company has a rating but no bond is quoted:
 - Use yield to maturity of identical risk bonds
- No bonds are quoted and no rating:
 - Interets rate of next loan
 - Interest rate of most recent loan
 - Estimate a syntetic rating base on Times interest earning
 - Average cost of debt

Reuters corporate default spreads 2013

Rating	1 yr	2 yr	3 yr	5 yr	7 yr	10 yr	30 yr
Aaa/AAA	14	16	27	40	56	68	90
Aa1/AA+	22	30	31	48	64	77	99
Aa2/AA	24	37	39	54	67	80	103
Aa3/AA-	25	39	40	58	71	81	109
A1/A+	43	48	52	65	79	93	117
A2/A	46	51	54	67	81	95	121
A3/A-	50	54	57	72	84	98	124
Baa1/BBB+	62	72	80	92	121	141	170
Baa2/BBB	65	80	88	97	128	151	177
Baa3/BBB-	72	85	90	102	134	159	183
Ba1/BB+	185	195	205	215	235	255	275
Ba2/BB	195	205	215	225	245	265	285
Ba3/BB-	205	215	225	235	255	275	295
B1/B+	265	275	285	315	355	395	445
B2/B	275	285	295	325	365	405	455
B3/B-	285	295	305	335	375	415	465
Caa/CCC+	450	460	470	495	505	515	545
US Treasury Yield	4.74	4.71	4.68	4.63	4.60	4.59	4.56

© J.C.Neves, ISEG 2018

Rating and interest coverage ratio

For smaller non-financial service companies (market cap < \$ 5 billion)

If interest coverage ratio is			
greater than	≤to	Rating is	Spread is
12.5	100000	Aaa/AAA	0.75%
9.5	12.499999	Aa2/AA	1.00%
7.5	9.499999	A1/A+	1.10%
6	7.499999	A2/A	1.25%
4.5	5.999999	A3/A-	1.75%
4	4.499999	Baa2/BBB	2.25%
3.5	3.9999999	Ba1/BB+	3.25%
3	3.499999	Ba2/BB	4.25%
2.5	2.999999	B1/B+	5.50%
2	2.499999	B2/B	6.50%
1.5	1.999999	B3/B-	7.50%
1.25	1.499999	Caa/CCC	9.00%
0.8	1.249999	Ca2/CC	12.00%
0.5	0.799999	C2/C	16.00%
-100000	0.499999	D2/D	20.00%

© J.C.Neves, ISEG 2018

Source: Damodaran, 2016

iii. Cost of prefered equity (kp)

Cost of prefered shares

- No growth of dividends:
 - = dividends/Price
- Constant growth of dividens:
 - = (Dividends/Price) + g
- If there are special rights
 - Use the options theory

Hibrid securities
Decompose the security into equity and debt
© J.C.Neves, ISEG 2018
iv. Weighed average cost of capital (km)

Weighted average cost of capital (km)

$$k_{m} = k_{e} \frac{E}{C} + k_{p} \frac{E_{p}}{C} + k_{d} \frac{D}{C} (1 - t)$$

$$k_{m} = k_{u} \cdot \left(1 - t \frac{D}{C} \right)$$

 $\mathsf{E}-\mathsf{Equity}$ based on ordinary shares $\mathsf{E_p}-\mathsf{Equity}$ based on prefered shares $\mathsf{D}-\mathsf{Debt}$

 $C = Invested Capital = E+E_p+D$ t = Tax rate

© J.C.Neves, ISEG 2018

v. Unlevered cost of capital (ku)

Unlevered cost of capital (ku)

CAPM

$$k_u = r_f + \beta_u \Big(r_m - r_f \Big)$$

MODIGLIANI & MILLER

$$k_{u} = \frac{k_{m}}{1 - t \times \frac{D}{D + E}}$$

Hamada Formula: $\beta + \beta / D/$

$$\beta_{u} = \frac{\beta_{e} + \beta_{D} \left(D_{E} \right)}{1 + D_{E} \left(1 - t \right)}$$

Hamada Formula Simplified:

$$\beta_U = \frac{\beta_E}{1 + \frac{D}{E} (1 - t)}$$

$$k_{u} = \frac{k_{e} + \frac{D}{E} k_{d} (1 - t)}{1 + \frac{D}{E} (1 - t)}$$

© J.C.Neves, ISEG 2018

2. Types of cash flows

Free cash flow ou Free cash flow to the equity

- + Net profit
- + Amortizations & Depretiations
- + Provisions
- + Impairments
- +/- Regularizations
- Increase of working capital requirements
- Capex
- + New loans
- Payment of loans

© J.C.Neves, ISEG 2018

Operational cash flow or Free cash flow to the firm

- + Operational income
- Tax on operational income
- = NOPAT (Net Operating Profit After Taxes)
- + Amortization and depreciation
- + Provisions
- + Impairment
- +/- Regularizations
- Increase of working capital requirements
- Capex

3. Methods to estimate terminal value

Methods to estimate terminal value

- Discounted cash flow models
 - No growth model
 - Constant growth model (Gordon)
 - Two phases of constant growth model (Malkiel)
 - Three phases of constant growth model (H of Fuller and Hsia)
- Relative valuation
- Cost approach

Cautions

- Terminal may represent 60% to 80% of company value or more
- Failure to estimate terminal value implies incorrect valuation
- Cash flows for terminal value valuation must be normalized;
- Careful with the estimation of working capital requirements (WCR) and Capex in the cash flow of the perpetuity;
- Growth rate: Real growth + inflation for nominal cash flows
- Se g>inflation implies a continuing investment in capex and WCR

4. DCF Methods
i. Equity method

Equity method

$$V_{E} = \sum_{i=1}^{n} \frac{FCFE_{i}}{(1+k_{e})^{i}} = \sum_{i=1}^{T} \frac{FCFE_{i}}{(1+k_{e})^{i}} + \frac{TV_{T}}{(1+k_{e})^{T}}$$

 V_E – Equity Value $FCFE_i$ – Free cash flow to Equity for year i k_e – Cost of equity TV_T – Terminal value in year T

© J.C.Neves, ISEG 2018

ii. WACC method

WACC method

$$V_{E} = \sum_{i=1}^{T} \frac{FCFF_{i}}{(1 + k_{m})^{i}} + \frac{TV_{T}}{(1 + k_{m})^{T}} + VNOA - D_{0}$$

FCFF_i - Free cash flow to the firm in year i

 k_{m} - WACC D_{0} - Debt in year 0

TV_T – Terminal value in year T

VNOA – Value of non operational assets (cash & others)

iii. APV - Adjusted Present Value

Adjusted Present Value

$$V_{E} = \sum_{i=1}^{T} \frac{FCFF_{i}}{(1+k_{u})^{i}} + \frac{TV_{T}}{(1+k_{u})^{T}} + VCD + VNOA - D_{0}$$

FCFF_i – Free cash flow to the firm in year i

 $\boldsymbol{k_u-Unlevered\;cost\;of\;capital}$

 TV_T – Terminal value in year T

VCD - Valued created by Debt

VNOA - Value of non operational assets

D₀ – Debt at present

Value created by debt

GERAL FORMULA:

$$VCD = L_0 - \sum_{i=1}^{n} \frac{FE_i(1-t) + LP_i}{(1+r)^i}$$

 $IF k_d = r :$

$$VCD = \sum_{i=1}^{n} \frac{FE_{i} \times t}{(1+r)^{i}} = \sum_{i=1}^{T} \frac{FE_{i} \times t}{(1+r)^{i}} + \frac{TVCD_{T}}{(1+r)^{T}}$$

VCD - Value created by debt

FE_i - Financial expenses in year i

t - tax rate

r - market interest rate

k_d - Company interest rate

5. More complex cases

More complex cases

- Large variance in the capital structure
- Continuing negative cash flows
- Assets that do not generate cash flows
- Banruptcy risk
- High correlation with th eeconomic cycle
- Existance of options

One example
See the example in the platform
Working Groups

Case study:

Valuation of a Company

Steps to conduct the valuation project:

- 1) Industry analysis and competitiveness
- 2) Financial statement analysis
- 3) Assumptions for future
- 4) Forecast of financial statements and cash flow
- 5) Apply a DCF model and estimate intrinsic value
- 6) Develop a sensitivity analysis
- 7) Use relative valuation
- 8) Conclusion