ISEG - Lisbon School of Economics and Management 2017/2018

Statistics I

Problem set 3 - Multivariate Random Variables

(version: 20/03/2018)

1. If the values of the joint probability function of X and Y are as shown in the table

	X	0	1	2
Y				
0		$1 / 12$	$1 / 6$	$1 / 24$
1		$1 / 4$	$1 / 4$	$1 / 40$
2		$1 / 8$	$1 / 20$	0
3		$1 / 120$	0	0

(a) find:
i. $P(X=1, Y=2)$;
ii. $P(X=0,1 \leq Y<3)$;
iii. $P(X+Y \leq 1)$;
iv. $P(X>Y)$.
(b) find the following values of the joint cumulative distribution function of the two random variables:
i. $F(1.2,0.9)$;
ii. $F(-3,1.5)$;
iii. $F(2,0)$;
iv. $F(4,2.7)$.
2. If the joint probability function of X and Y is given by

$$
f(x, y)=c\left(x^{2}+y^{2}\right)
$$

for $x=-1,0,1,3 ; y=-1,2,3$.
(a) find the value of c.
(b) find:
i. $P(X \leq 1, Y>2)$;
ii. $P(X=0, Y \leq 2)$;
iii. $P(X+Y>2)$.
3. Show that there is no value of k for which

$$
f(x, y)=k y(2 y-x),
$$

for $x=0,3 ; y=0,1,2$ can serve as the joint probability function of two random variables.
4. If the joint probability distribution of X and Y is given by

$$
f(x, y)=\frac{1}{30}(x+y)
$$

for $x=0,1,2,3 ; y=0,1,2$ construct a table showing the values of the joint cumulative distribution function of the two random variables at the 12 points $(0,0),(0,1), \ldots$, $(3,2)$.
5. Determine k so that

$$
f(x, y)=\left\{\begin{array}{cc}
k x(x-y) & , \text { for } 0<x<1,-x<y<x \\
0 & , \text { elsewhere }
\end{array}\right.
$$

can serve as a joint probability density function.
6. If the joint probability density of X and Y is given by

$$
f(x, y)=\left\{\begin{array}{cc}
24 x y & \text {, for } 0<x<1,0<y<1, x+y<1 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

find $P(X+Y<1 / 2)$.
7. If the joint probability density of X and Y is given by

$$
f(x, y)=\left\{\begin{array}{lc}
2 & , \text { for } x>0, y>0, x+y<1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

(a) find
i. $P(X \leq 1 / 2, Y \leq 1 / 2)$;
ii. $P(X+Y>2 / 3)$;
iii. $P(X>2 Y)$.
(b) find an expression for the values of the joint cumulative distribution function of X and Y for for $x>0, y>0, x+y<1$.
8. If the joint probability density of X and Y is given by

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{1}{x} & 0<x<1, \text { for } 0<y<x \\
0 & , \text { elsewhere }
\end{array}\right.
$$

find the probability that the sum of the values of X and Y will exceed $1 / 2$.
9. If the joint cumulative distribution function of X and Y is given by

$$
F(x, y)=\left\{\begin{array}{cc}
\left(1-e^{-x^{2}}\right)\left(1-e^{-y^{2}}\right) & , \text { for } x>0, y>0 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

(a) find the joint probability density of the two random variables X and Y.
(b) find $P(1<X \leq 2,1<Y \leq 2)$.
10. If the joint cumulative distribution function of X and Y is given by

$$
F(x, y)=\left\{\begin{array}{cc}
1-e^{-x}-e^{-y}+e^{-x-y} & \text {, for } x>0, y>0 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

(a) find the joint probability density of the two random variables X and Y.
(b) find $P(X+Y>3)$.
11. Two random variables have the following joint distribution:

	$X=1$	$X=2$	$X=3$
$Y=1$	$\frac{1}{18}$	$\frac{1}{9}$	$\frac{1}{9}$
$Y=2$	$\frac{1}{18}$	$\frac{1}{9}$	$\frac{2}{9}$
$Y=3$	$\frac{1}{9}$	$\frac{2}{9}$	0

(a) What is $P(Y=2)$?
(b) What is $P(Y=2 \mid X=2)$?
(c) Are X and Y independent?
12. Given the values of the joint probability distribution of X and Y shown in the table

	$X=-1$	$X=1$
$Y=-1$	$\frac{1}{8}$	$\frac{1}{2}$
$Y=0$	0	$\frac{1}{4}$
$Y=1$	$\frac{1}{8}$	0

find
(a) the marginal probability function of X;
(b) the marginal probability function of Y;
(c) the conditional probability function of X given $Y=-1$.
13. With reference to question 1 , find
(a) the marginal probability function of X;
(b) the marginal probability function of Y;
(c) the conditional probability function of X given $Y=1$;
(d) the conditional probability function of Y given $X=0$.
14. Check whether X and Y are independent if their joint probability function is given by
(a) $f(x, y)=1 / 4$ for $x=-1$ and $y=-1 ; x=-1$ and $y=1 ; x=1$ and $y=-1$; and $x=1$ and $y=1$;
(b) $f(x, y)=1 / 3$ for $x=0$ and $y=0 ; x=0$ and $y=1$; and $x=1$ and $y=1$.
15. If the joint probability density of X and Y is given by

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{1}{4}(2 x+y) & , \text { for } 0<x<1,0<y<2 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

find
(a) the marginal density of X;
(b) the conditional density of Y given $X=1 / 4$
(c) the marginal density of Y;
(d) the conditional density of X given $Y=1$.
16. If the joint probability density of X and Y is given by

$$
f(x, y)=\left\{\begin{array}{cc}
24 y(1-x-y) & , \text { for } x>0, y>0, x+y<1 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

(a) find the marginal density of X;
(b) find the marginal density of Y;
(c) determine whether the two random variables are independent.
17. If the joint probability density of X and Y is given by

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{1}{y} & , \text { for } 0<x<y, 0<y<1 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

(a) find the marginal density of X;
(b) find the marginal density of Y.
(c) determine whether the two random variables are independent.
18. With reference to question 9 find the marginal cumulative distribution function of X.
19. Let $X \sim U(0,2), Y \sim U(0,3)$ and X and Y are independent random variables, find the joint probability density function of X and Y;
20. Suppose that P, the price of a certain commodity (in dollars), and S, its total sales (in 10,000 units), are random variables whose joint probability distribution can be approximated closely with the joint probability density

$$
f(p, s)=\left\{\begin{array}{cc}
5 p e^{-p s} & , \text { for } 0.2<p<0.4, s>0 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

(a) find the probabilities that
i. the price will be less than 30 cents and sales will exceed 20,000 units;
ii. the price will be between 25 cents and 30 cents and sales will be less than 10,000 units.
(b) find
i. the marginal density of P;
ii. the conditional density of S given $P=p$;
iii. the probability that sales will be less than 30,000 units when $p=25$ cents.
21. In a company, if X is the proportion of persons who will respond to the first kind of mail-order solicitation, Y is the proportion of persons who will respond to the second kind of mail-order and the joint probability density of X and Y is given by

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{2}{5}(x+4 y) & , \text { for } 0<x<1,0<y<1 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

find the probabilities that
(a) at least 30 percent will respond to the first kind of mail-order solicitation;
(b) at most 50 percent will respond to the second kind of mail-order solicitation given that there has been a 20 percent response to the first kind of mail-order solicitation.
22. If X is the amount of money (in dollars) that a salesperson spends on gasoline during a day and Y is the corresponding amount of money (in dollars) for which he or she is reimbursed, the joint density of these two random variables is given by

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{1}{25}\left(\frac{20-x}{x}\right) & , \text { for } 10<x<20, \frac{x}{2}<y<x \\
0 & , \text { elsewhere }
\end{array}\right.
$$

find
(a) the marginal density of X;
(b) the conditional density of Y given $X=12$;
(c) the probability that the salesperson will be reimbursed at least $\$ 8$ when spending $\$ 12$.

