

Macroeconomics II

Lecture 09

Romer model Extensions

Theoretical Lecture 09

Chap 08 The Romer model

- the model of endogenous growth by Romer: main assumptions;
- production function;
- production of new ideas and productivity of research (externality due to duplication; the spillover effect of research);
- economic growth in the steady state;
- long-run effect of research policy.

Reading

Jones, C., Vollrath, D. (2013), *Introduction to Economic Growth*, Norton, capítulo 5, pp. 97-119.

Classical

Romer, P. (1990), "Endogeneous Technological Change", *Journal of Political Economy*, 98, October 1990: S71-S102

The Romer model

To endogenize the technological progress: research as an economic activity (R&D)

production function:

(1)Y = $K^{\alpha} (A.L_{Y})^{1-\alpha}$

A(t) – level of technology in the economy, which is measured by the stock of ideas accumulated until the present; the model intends to explain the growth of A(t).

for a given level of technology A, the production function has $\underline{constant}$ returns to scale in K e $L_{\! Y}$

A is an **<u>input</u>** for production (*stock* of ideas: the use of *patents*)

production function has increasing returns to scale in K, L_y and A

the generation of the inputs: physical capital (K), labour (L) and ideas (A)

<u>physical capital</u> (2) dK/dt = $s_k Y - \delta K$

labour
(3) (dL/dt)/L = n n is exogenous

- (4) $L = L_{Y} + L_{A}$ labour in the production of final goods (L_Y) and in research (L_A)
- (5) $L_A/L = s_R$ s_R constant; exogenous? endogenous?

ideas

A – the growth of A is **endogenous**

A(t), the growth of the stock of ideas

$dA/dt = \theta^*$. L_A

- dA/dt the evolution of the discovery of new ideas
- θ^* <u>productivity</u> of research (the rate of producing new ideas by the researchers)
- L_A number of researchers

 $\theta^* = \theta(A)$, the productivity of researchers is a function of the stock of ideas

<u>increasing function</u>? a large set of accumulated ideas (large stock) facilitates the discovery of new ideas; <u>positive spillover</u> (much of what has been discovered so far facilitates the generation of new ideas);

<u>decreasing function</u>? a large set of accumulated ideas (large stock) becomes more difficult to discover "new" ideas (hardly you can discover new things since so much is already known ...)

 $\theta^* = \theta \cdot A^{\Phi}$ rate at which new ideas are produced, with $\Phi > 0$ (increasing) ou $\Phi < 0$ (decreasing)

 $\theta^* = \theta(L_A)$, the productivity of the researchers is a function of the number of researchers

a large number of researchers facilitates the creation of research networks and then strengthens the ability of each research and his/her team to make more and better research ($\lambda > 1$ below)

externality associated to <u>duplication</u>: some ideas may be not new ideas, since they may have been already discovered/or being discovered simultaneously by other researchers ($\lambda < 1$ below)

(6) $dA/dt = \theta L^{\lambda}_{A} A^{\Phi}$ using L^{λ}_{A} because the productivity of research depends on the number of researchers looking for new ideas

 $\underline{\lambda < 1}$ (*duplication* or repetition effect), or $\lambda > 1$

 $\Phi < 0$ (decreasing with A), or $1 \ge \Phi > 0$ (increasing with A, <u>spillover</u> effect)

The Romer model

(1)
$$Y = K^{\alpha} (A.L_{Y})^{1-\alpha}$$

(2) $dK/dt = s_{k}Y - \delta K$
(3) $(dL/dt)/L = n$
(4) $L = L_{Y} + L_{A}$

(5)
$$L_A/L = s_R$$

(6)
$$dA/dt = \theta L^{\lambda}_{A}.A^{\Phi}$$

growth of the economy in steady state

Assuming $\underline{s_R}$ constant, the growth of GDP per capita in <u>steady state</u> is explained by the technological progress (as in Solow model):

 $g_y = g_k = g_A$

What is (and what explains) the **rate of technological progress**, g_A?

<u>Rem</u>: this growth rate is <u>**endogenous**</u> in the model!

$$\begin{split} dA/dt &= \theta L_{A}^{\lambda} A^{\Phi} \\ (dA/dt)/A &= \theta . (L_{A}^{\lambda} A^{\Phi})/A &= \theta . L_{A}^{\lambda}/A^{1-\Phi} \\ & \text{or} \qquad \mathbf{g}_{A} &= \boldsymbol{\theta} . L_{A}^{\lambda}/A^{1-\Phi} \end{split}$$

the rate of technological progress in steady state

$$g_A = \theta \cdot L^{\lambda}_A / A^{1-\Phi}$$

in *steady state* g_A is <u>constant</u>: growth rate of the numerator = growth rate of denominator

 λ . (dL_A/dt)/L_A = (1 – Φ) . (dA/dt)/A

in steady state $(dL_A/dt)/L_A = n$ (growth rate of population)

$$\lambda \cdot n = (1 - \Phi) \cdot g_A$$

Technological progress $g_A = \lambda \cdot n / (1 - \Phi)$

 g_A is explained by the parameters of the production function of ideas ($\lambda \in \Phi$) and the growth rate of population (n) 9

$$g_A = \lambda \cdot n / (1 - \Phi)$$

interpretation

let the special case $\lambda = 1$ and $\Phi = 0$ (for an easier explanation)

then:

 $dA/dt = \theta \cdot L_A$, from equation (6)

(6) $dA/dt = \theta L^{\lambda} A^{\Phi}$

If L_A is constant, in each period θ . L_A new ideas are created. This means that the growth rate of A, g_A , is decreasing (the stock rises by equal amounts, so that the growth rate decreases). The possibility to get a non-decreasing growth rate of g_A is to prevent the decrease of the number of researchers and, instead, to rise. This requires the population to rise. This explains **n** in the equation above.

conclusion

If the population does not increase, **economic growth will not happen**, even keeping research activity and technological progress in the economy.

Effects of Economic Policy

Economic policy may have effect on long-run economic growth?

<u>example of an economic policy measure</u>: incentives to research, creating/increasing research subsidies; **rise of s**_R

 $(dA/dt)/A = = \theta . L^{\lambda}_{A}/A^{1-\Phi}$

let us assume that $\lambda = 1$ and $\Phi = 0$

then:

$$(dA/dt)/A = \theta \cdot L_A/A = \theta \cdot s_R \cdot L/A$$

We know that in *steady state*, with $\lambda = 1$ and $\Phi = 0$, $\mathbf{g}_{A} = \mathbf{n}$ What is the effect of a policy of incentives to research by rising s_{R} ?

FIGURE 5.1 **TECHNOLOGICAL PROGRESS: AN INCREASE IN THE R&D SHARE**

s´_R > s_R s_R increased (number of researchers in I&D)

 s'_{R} . $L_0 > s_{R}$. L_0 , the number of ideas increases;

technological progress > population growth (n)

 $=> L_A/A$ decreases

=> g_A decreases

the economy returns to the previous steady state

steady state: θ . s_R . L₀/A₀ = g_A => $s_R \cdot L_0/A_0 = g_A/\theta$

FIGURE 5.2 Å/A OVER TIME

A permanent increase of s_R increases the technological progress (and economic growth) only in a temporary way, not permanently in the long-run.

But it increases permanently (in the long-run) the level of technology.

technological progress and growth

(to remind)

growth accounting: growth of factors and of TFP (TFP, total factor productivity)

growth of TFP trough technological progress

technological progress in the models of exogenous growth

growth in steady state: rate g

rate g is exogenous

technological progress in the models of endogenous growth

rate g is endogenous

technological progress is "explained" by the working of the economy (it is an output of a sector of economic activity)

what is technological progress?

Facts and concepts, technological progress: invention and innovation

- **invention**: discovery of new ideas
- **innovation**: implementation of the new ideas in the economic activity

data research & development (R&D)

Expenditure on R&D as % of GDP **in** 2001 (OECD):

Portugal	0,83
Spain	0,96
Germany	2,49
USA	2,82
Japan	3,09

other indicators:

nr. of scientists

nr. of registered patents

PORTUGAL: Expenditure on R&D as % of GDP

Fontes/Entidades: INE-BP, DGEEC/MEC, PORDATA

PORTUGAL: Nr de researchers (Full Time Equivalent) in R&D

Equivalente a tempo integral (ETI)

Fontes/Entidades: DGEEC/MEC, PORDATA

Nr of workers in R&D as % of active population

Proporção - permilagem

Fontes/Entidades: DGEEC/MEC, INE, PORDATA

Nr of inventions/patents issued in Portugal

Fontes/Entidades: INPI/MJ, PORDATA

output of I&D: ideas (or "knowledge")

ideas (or "knowledge") as an economic good:

<u>não-rivalry</u> (knowledge is shared by several people)

<u>excludability</u> (not possible to exclude the access to knowledge; but may have restrictions to the access: secret, patent, copyright)

consequences?

non-rivalry => high fixed cost of production and low marginal cost for its production (almost null) (ex: the production of a software)

- increasing returns to scale
- **imperfect** competition

FIGURE 4.1 ECONOMIC ATTRIBUTES OF SELECTED GOODS

microeconomic analysis

FIGURE 4.2 FIXED COSTS AND INCREASING RETURNS

FIGURE 4.3 FIXED COSTS AND INCREASING RETURNS

average cost > marginal cost and then there is not a competitive equilibrium with p =
marginal cost (because in that case profits < 0); to have producers, it requires that p >
marginal cost (it is not perfect competition)
the production of new ideas requires the possibility of generating surplus,
what is not compatible with perfect competition

The Romer model (summary)

to endogenize the technological progress:

- production function (it has ideas/"knowledge" as a production factor)
- equations to describe the creation of inputs (including the ideas/"knowledge")

- (1) $Y = K^{\alpha} (A.L_{\gamma})^{1-\alpha}$
- (2) $dK/dt = s_k Y \delta K$
- (3) (dL/dt)/L = n
- $(4) \quad L = L_{Y} + L_{A}$
- (5) $L_A/L = s_R$
- (6) $dA/dt = \theta^*$. L_A
- (7) $\theta^* = \theta \cdot A^{\Phi}$

 $dA/dt = \theta L^{\lambda}_{A}.A^{\Phi}$

p.f. constant returns to scale in K and L_{γ} ; increasing returns in K, L_{γ} and A.

A(t) *stock* of knowledge (nr of ideas invented <u>until</u> moment t)

θ* <u>productivity</u> of research (nr. of new ideas produced per researcher)

 $0 < \lambda < 1$ <u>externality</u> associated with duplication

Φ > 0 positive knowledge <u>spillover</u> in research

some of the ideas created by a researcher may be not new (λ <1); but may also exist a network effect (λ >1)

much of what has been discovered so far facilitates the generation of new ideas (positive spillover); a large set of accumulated ideas becomes more difficult to discover "new" ideas (negative spillover) 25