Statistics I

Problem set 5-Expected values and parameters of functions of random variables
(version: 2/05/2018)

1. If X and Y have the joint probability distribution $f(x, y)=1 / 4$ for $x=-3$ and $y=-5, x=-1$ and $y=-1, x=1$ and $y=1$, and $x=3$ and $y=5$, find $\operatorname{cov}(X, Y)$.
2. Let X and Y be continuous and independent random variables. Prove that $E[h(X) v(Y)]=$ $E(h(X)) E(v(Y))$ for any two functions $h(X)$ and $v(Y)$, provided that $E(|h(X)|)$ and $E(|v(Y)|)$ are finite.
3. If X and Y have the joint probability distribution $f(-1,0)=0, f(-1,1)=1 / 4$, $f(0,0)=1 / 6, f(0,1)=0, f(1,0)=1 / 12$, and $f(1,1)=1 / 2$, show that
(a) $\operatorname{cov}(X, Y)=0$;
(b) the two random variables are not independent.
4. Let $Y=b X+a$, where b and a are constants, and $\rho_{X, Y}$ be the correlation coefficient between X and Y. Prove that if $\operatorname{Var}(X)>0$:
(a) $\rho_{X, Y}=1$ if $b>0$.
(b) $\rho_{X, Y}=-1$ if $b<0$.
(c) If $b=0$, it is not defined.
5. In a certain shop which sells computer components, the daily sales of hard drives of brands X and Y has the following joint probability function:

$y \backslash x$	0	1	2
0	0.12	0.25	0.13
1	0.05	0.30	0.01
2	0.03	0.10	0.01

(a) Compute the means and variances of X and Y.
(b) Analyze the independence of the two random variables and compute the correlation coefficient.
(c) Find that $E(Y \mid X=x)$ is not equal to $E(Y)$. Comment.
(d) Compute the mean and variance of $Z=X-Y$.
6. Let (X, Y) be a discrete random vector with joint probability function given by:

$$
f(x, y)=\frac{x+y}{32}, x=1,2 ; y=1,2,3,4
$$

(a) Compute the means and variances of X and Y
(b) Using $E(X Y)$ analyze the independence of the two random variables and compute the correlation coefficient.
(c) Compute $E(X \mid Y=y)$
7. Let (X, Y) be a discrete random vector with joint probability function:

$y \backslash x$	-1	0	1
-1	b	0	c
0	0	a	0
1	c	0	b

(a) Find a, b and c such that X and Y are not correlated.
(b) Find a, b and c such that there is a perfect correlation between X and Y
(c) Compute the mean and variance of $Z=|X-Y|$.
8. Let and X and Y be independent random variables with variances σ_{X}^{2} and σ_{Y}^{2}. Let $Z=X+Y$ and $W=X-Y$. Derive the expression of $\rho_{Z, W}$.
9. A company sells items A and B. The monthly sales of of items A and B, expressed in monetary units, constitute a random vector, with joint probability density function given by:

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{1}{2} & \text {, for } 0<x \leq 2,0<y<x \\
0 & , \text { elsewhere }
\end{array}\right.
$$

(a) Compute the means and variances of X and of Y.
(b) Analyze the independence of the two random variables and compute the correlation coefficient.
(c) Find the $E(Y \mid X=1)$
(d) Compute the mean and variance of total sales of the two items.
10. Consider the random vector (X, Y) with joint probability density function defined by:

$$
f(x, y)=\left\{\begin{array}{cc}
8 x y & , \text { for } 0<x \leq 1,0<y<x \\
0 & , \text { elsewhere }
\end{array}\right.
$$

(a) Compute the means and variances of X and of Y.
(b) Analyze the independence of the two random variables and compute the correlation coefficient.
(c) Find the $E(X \mid Y=y)$.
11. If the probability density of X is given by

$$
f(x)=\left\{\begin{array}{cc}
1+x & , \text { for }-1<x \leq 0 \\
1-x & , \text { for } 0<x<1 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

and $U=X$ and $V=X^{2}$, show that
(a) $\operatorname{cov}(U, V)=0$;
(b) U and V are dependent.
12. Let X_{1}, X_{2}, and X_{3} be independent random variables with means 4,9 , and 3 and the variances 3,7 , and 5 .
(a) Find the means and the variances of $Y=2 X_{1}-3 X_{2}+4 X_{3}$ and $Z=X_{1}+2 X_{2}-X_{3}$.
(b) Find $\operatorname{cov}(Y, Z)$.
13. Repeat both parts of exercise 10, dropping the assumption of independence and using instead the information that $\operatorname{cov}\left(X_{1}, X_{2}\right)=1, \operatorname{cov}\left(X_{2}, X_{3}\right)=-2$, and $\operatorname{cov}\left(X_{1}, X_{3}\right)=$ -3 .
14. If the joint probability density of X and Y is given by

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{1}{3}(y+x) & , \text { for } 0<x \leq 1,0<y<2 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

find the variance of $W=3 X+4 Y-5$.
15. Suppose that only two factories supply light bulbs to the market. Factory A's bulbs work for an average of 5000 hours, whereas factory B 's bulbs work for an average of 4000 hours. It is known that factory A supplies 60% of the total bulbs available. What is the expected length of time that a purchased bulb will work for?
16. Suppose that $E(Y \mid X=x)=0.7+0.002 x$. If the $E(X)$ is 1100 and $\operatorname{Var}(X)=290000$, what is $\operatorname{cov}(Y, X)$?
17. (The mean of the sum of a random number of random variables) Let $W=\sum_{i=1}^{N} X_{i}$, where both $X_{i}, i=1,2, \ldots$ and N are random variables. Suppose that the $X_{i}^{\prime} s$ are independent of N and that $E\left(X_{i}\right)=\mu_{X}$ for all i, and that $E(N)=\mu_{N}$. Prove that $E(W)=\mu_{X} \times \mu_{N}$.

