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Infinitesimal generator of a diffusion

o Consider a one n-dimensional diffusion X that satisfies the SDE

dXt — b (t, Xt) dt + o (t, Xt) dBt,
Xo — X0.
o Assume that b and o satisfy the conditions of the existence and

uniqueness theorem of SDE's, b: RT™ x R" —+ R", ¢ : R™ x R" —
M (n, m), M (n, m) is the set of n X m matrices, xp € R".

Definition
The infinitesimal generator associated to the diffusion X is the differential
operator of 2nd order A defined by

n oh 1 &/ 9%h
Ah (t, x) .—;b,(t,X)a—)qug <‘7‘7 ),-,J-(t’x> 9x;0x;’

where h is a C12 function defined on RT x R".
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The infinitesimal generator is also called Dynkin operator, 1t0
operator or Kolmogorov Backward operator.

Relationship between the diffusion X and the operator A: By It6
formula, if f (t, x) is a C1'? function, then f (t, X;) is an It6 process
such that:

df (£, X;) = {g_’; (£, X;) + AF (t,Xt)} dt+ [V f (t, Xe)] o (t, X;) dB,
(1)

where the gradient is defined by

o _[of of
X — aXl ) o e oy axn .
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Note that if

E/ (ax, (t, X)o7, (¢, Xt)>2ds < o0, 2)

for all t > 0 and for all i, j, then all the stochastic integrals in (1) are
well defined and are martingales. Therefore

M, = f (£ X,) —/O (gi (s, X.) —|—Af(s,Xs)) ds

Is a martingale.

A sufficient condition for (2) to be satisfied is that the partial
derivatives of f (s, Xs) have linear growth, i.e.

of

()] < C(1+Ix).
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PDE's

o The PDE

oF
=7 (£.x) + AF (£,x) = 0, (3)

is a parabolic PDE with a terminal condition (in T).

o This PDE can also be written (assuming that n =1, for a simpler

notation)
oF oF 1 2 P
F (T, x) = ®(x)
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PDE's

o Instead of solving the PDE analytically, we will try to obtain a
solution, using a “stochastic representation formula”

o Assume that exists a solution F. Let us fix t and x and define the
process X in [t, T] as the solution of the SDE

dXs = b(s, Xs) ds + 0 (s, Xs) dBs,
Xt = X.
o The infinitesimal generator associated to X is

0 1 0°
A:b( )a_X+ 0'2( )axz,

which is exactly the differential operator in (3) or (4).
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o Applying the Itd formula to F, we obtain (see (1)):

F(TXT)—F(tXt+/( (SX)+AF(S,X5))C/5
+/ (sX)dB

o We know that 2 (s, Xs) + AF (s, Xs) = 0 and applying the expected
values (considering the initial value X; = x), we obtain

Eix [F(T,X7)] = Etx [F (t, Xt)].
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o Since, by the terminal values (or boundary values),
Eix [F (T, X7)] = Eex [@(X2X)] and E;x [F (8, X[X)] = F (¢, x),
we have that
F(t,x) = Eex [P(X7)],

and this is a “stochastic representation formula” for the solution of
the PDE (4).
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Feynman-Kac Formula

Proposition

Assume that F is a solution of the problem (4). Assume that
o (s, Xs) %€ (s, Xs) is a process in L2 (ie.

2
E [} ( (t, X)o7 (t, Xt)) ds < o). Then
F(t,x) = Etx [®(X79)],

where Xt satisfies

dXs = b (s, Xs) ds -+ (s, Xs) dBs,
Xt = X.
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Feynman-Kac Formula (multidimensional case)

Proposition

Assume that F is a solution of problem (3). Assume that

2
E [} ( (t, X)o7 (¢, Xt)) ds < oo, for all t > 0 and for all i, j

F(t.x) = Eex [®(X77)]

where Xt satisfies

dXs = b (s, Xs) ds + 0 (s, Xs) dBs,
Xt = X.

. Then
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Notes on PDE's

o A parabolic PDE is a PDE of 2nd order of the type
Auyy + Buyy, + Cuyy +--- =0,

where B2 — 4AC = 0.

o Example: the “heat equation” in dimension one:

Ut — kU)O<.
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A more general Feynman-Kac formula
o Consider that the function g(x) is continuous and lower bounded,
with g € C (R").
o Consider that the PDE

a_F(t,X)+AF(t,x)—q(x)F(t,x) =0, (5)

Jt
F(T,x)=®(x)

with boundary terminal condition (in T).

o The previous PDE can also be written as (assuming n = 1, for a
simpler notation)

oF (t,x) + b (t,x) oF 15 (t,x) rF q(x)F(t,x) =0, (6)

ot ox 2 dx2
F(T,x)=®(x).
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A more general Feynman-Kac formula

o Instead of solving the PDE in an analytic way, we will try to obtain a
"stochastic representation formula” for the solution.

o Assume that exists a solution F.
Let us fix t and x and define the process X in [t, T] as the solution of

the SDE

dXs = b(s, Xs) ds + 0 (s, Xs) dBs,
Xt = X.
o The infinitesimal generator associated to X is

Jd 1 0°
A= b(t, x )a—X-|- (72( )W1

which is exactly the operator in PDE (5) or (6).
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A more general Feynman-Kac formula

o Applying the It6 formula to g (t, X;) = exp ( fo ) F(t, Xt)
and integrating between t and T, we have

exp( /Tq(Xs)d ) F(T,X7) = exp (—/th<xs)ds) F(t, X:) +

+/ e Jo ( (sX)+AF(5,XS)—q(XS)F(s,X5)> ds
+/t exp(—/o q(Xr)d) (sx>g§(s><)d3

We have 9 (s, Xs) + AF (s, Xs) — q (Xs) F(s, Xs) = 0 and by the
expected value (with X; = x), we obtain

E. . [exp (—/th(xs) ds) F(T,XT)] — Ee [F (£, X0)],

assuming that the stochastic integral is well defined and that
therefore, its expected value is zero.
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A more general Feynman-Kac formula

o It is clear that E; [exp ( ft ) F(T, XT)} —

E;: « [exp ( ft > CID(XtX)} and
E;: « [F (t,XttX)] = F( , x). Therefore

F(t,%) = Eux [exp (— [ a(x) ds) cp(xm] |

and this is the stochastic representation formula for the solution of

PDE (5) ou (6).
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Feynman-Kac Formula 2

Proposition

Let F be a solution of problem (5) ou (6). Assume that o (s, Xs) 9 (s, Xs)

is a process in L3 + (i.e. Efo [ (s, Xs) o (s,Xs)] ds < o). Then

-
F (t,x) = E;« [exp (—/ q (X) ds) CID(X%X)] :
t
where Xt satisfies

dXs = b (s, Xs) ds + o (s, Xs) dBs,
Xt == X.
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o Note: Assuming that g(x) is a continuous and lower bounded
function, a sufficient condition for

2
Ef] [exp (= [ q(X,) dr) 2 (s, X:) o (s, Xs)} ds < o is that the

derivative 95 (s, x) has linear growth, i.e.
oF
T (s0| < cx).

(ISEG) Stochastic Calculus - part 13 17 / 17



