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ABSTRACT Estimation of outstanding claims is an essential part of ac-
tuarial work in general insurance. This book is an introduction to delays
involved in claim settlement, mathematical models of the claim settlement
process, and methods that actuaries use to estimate outstanding claims.
It provides a coherent modelling framework that is illustrated by worked
examples and exercises.

DRAFT 
09.04.14



Contents

1 Introduction 1
1.1 Estimation of outstanding claims . . . . . . . . . . . . . . . 1
1.2 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Claim development in general insurance 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 General insurance contracts . . . . . . . . . . . . . . . . . . 7
2.3 Claim attachment principles . . . . . . . . . . . . . . . . . . 9
2.4 Stages in the life of a claim . . . . . . . . . . . . . . . . . . 10
2.5 The length of the tail . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Valuation of outstanding claims . . . . . . . . . . . . . . . . 13

2.6.1 Purpose of valuation . . . . . . . . . . . . . . . . . . 13
2.6.2 Accounting . . . . . . . . . . . . . . . . . . . . . . . 13
2.6.3 Pricing . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.4 Statutory reporting . . . . . . . . . . . . . . . . . . 14
2.6.5 Sale or purchase of a portfolio . . . . . . . . . . . . . 15
2.6.6 Commutation . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Case estimates . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.8 Nominal and discounted values . . . . . . . . . . . . . . . . 16
2.9 Time dimensions . . . . . . . . . . . . . . . . . . . . . . . . 17

2.9.1 Underwriting date . . . . . . . . . . . . . . . . . . . 18
2.9.2 Accident date . . . . . . . . . . . . . . . . . . . . . . 18
2.9.3 Reporting date . . . . . . . . . . . . . . . . . . . . . 18
2.9.4 Valuation date . . . . . . . . . . . . . . . . . . . . . 18

DRAFT 
09.04.14

I have crossed out all sections that have not been
taught in class and that will not be examined.



iv Contents

2.9.5 Development date . . . . . . . . . . . . . . . . . . . 18
2.9.6 Acronyms . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Framework model 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Continuous time model . . . . . . . . . . . . . . . . . . . . . 21
3.3 Discrete time model with three dimensions . . . . . . . . . . 24
3.4 Discrete time model with two dimensions . . . . . . . . . . 26

4 The number of unreported claims 29
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Modelling the number of claims IBNR . . . . . . . . . . . . 29
4.3 Constant claim frequency: The Bornhuetter-Ferguson method 30
4.4 Varying claim frequency: The chain-ladder method . . . . . 32
4.5 Bootstrapping in fixed-parameter models . . . . . . . . . . . 35
4.6 Varying claim frequency: A Bayesian model . . . . . . . . . 36

4.6.1 The model . . . . . . . . . . . . . . . . . . . . . . . 36
4.6.2 Parameter estimation . . . . . . . . . . . . . . . . . 38

4.7 Varying claim frequency: The Bühlmann-Straub model . . . 39
4.7.1 The model . . . . . . . . . . . . . . . . . . . . . . . 39
4.7.2 Parameter estimation . . . . . . . . . . . . . . . . . 41

4.8 Varying claim frequency: A random walk model . . . . . . . 43
4.9 Varying claim frequency: A general credibility model . . . . 46
4.10 The number of claims CBNI . . . . . . . . . . . . . . . . . . 48
4.11 Measures of risk exposure . . . . . . . . . . . . . . . . . . . 49
4.12 Tail development factors . . . . . . . . . . . . . . . . . . . . 49

5 The cost of unreported claims 51
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 The cost of claims IBNR . . . . . . . . . . . . . . . . . . . . 51
5.3 The cost of claims CBNI . . . . . . . . . . . . . . . . . . . . 52
5.4 Estimating the severity distribution . . . . . . . . . . . . . 53

6 The cost of reported claims 55
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Estimating claims RBNS by payment data . . . . . . . . . . 55

6.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . 55
6.2.2 The Dirichlet distribution . . . . . . . . . . . . . . . 56
6.2.3 Model of payment pattern . . . . . . . . . . . . . . . 57

6.2.4 Prediction of ultimate claims . . . . . . . . . . . . . 57
6.2.5 Estimation of parameters . . . . . . . . . . . . . . . 60

6.3 Estimating claims RBNS by incurred data . . . . . . . . . . 61
6.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . 61

6.3.2 Compound poisson model of reporting events . . . . 62

DRAFT 
09.04.14



Contents v

6.3.3 Prediction of ultimate claims . . . . . . . . . . . . . 63
6.3.4 Estimation of parameters . . . . . . . . . . . . . . . 65

6.4 Actuarial case estimates . . . . . . . . . . . . . . . . . . . . 66
6.5 Markov chain models . . . . . . . . . . . . . . . . . . . . . . 67

7 Two-dimensional models 69
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.2 Generic notation . . . . . . . . . . . . . . . . . . . . . . . . 70
7.3 The Bornhuetter-Ferguson method . . . . . . . . . . . . . . 70
7.4 The Chain-ladder method . . . . . . . . . . . . . . . . . . . 71
7.5 Bühlmann-Straub’s model . . . . . . . . . . . . . . . . . . . 71
7.6 A model with random delay probabilities . . . . . . . . . . 74

7.6.1 The Hesselager-Witting model . . . . . . . . . . . . 74
7.6.2 Parameter estimation . . . . . . . . . . . . . . . . . 77

7.7 Benktander´s method . . . . . . . . . . . . . . . . . . . . . 79
7.8 Mack’s model . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.9 Hertig’s model . . . . . . . . . . . . . . . . . . . . . . . . . 85

8 Log-linear models 89
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.2 Log-linear models . . . . . . . . . . . . . . . . . . . . . . . . 89
8.3 Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9 General linear models 101
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
9.2 Exponential family of distributions . . . . . . . . . . . . . . 102
9.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.4 Bootstrapping the GLM . . . . . . . . . . . . . . . . . . . . 104
9.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

10 Dynamic linear models 107

11 Miscellaneous topics 109
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
11.2 Simple model diagnostics . . . . . . . . . . . . . . . . . . . 109
11.3 Analysis of development . . . . . . . . . . . . . . . . . . . . 110
11.4 The NP approximation . . . . . . . . . . . . . . . . . . . . . 110
11.5 The mean squared error of the one-period run-off result . . 112
11.6 When is a credibility estimator worse than the apriori mean? 115

12 Inflation and discounting 117
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
12.2 Inflation and discounting . . . . . . . . . . . . . . . . . . . . 117
12.3 Estimating inflation by the separation method . . . . . . . 118

DRAFT 
09.04.14



vi Contents

13 Reinsurance recoveries 121

14 Data requirements 123
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

15 Appendix. Credibility estimation in the regression case
127

16 Literature 131

DRAFT 
09.04.14



Preface

This text is based on lecture notes for a course on Loss Reserving, that
the author has held at the Universidade Técnica de Lisboa (UTL) since
2002. It is the second text on Loss Reserving to emanate from the Master
in Actuarial Science Program at UTL, the first being the monograph by
Taylor (2000).
In its present form the text is still incomplete inasfar as numerical ex-

amples and exercises are lacking. Examples and exercises will be given
separately during the course.
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1
Introduction

1.1 Estimation of outstanding claims

Estimation of outstanding claims, also known as loss reserving, is an es-
sential part of actuarial work in general insurance. In almost every ac-
tuarial task the actuary needs to address the question: have outstanding
claims been taken into account? Neither the underwriting nor the account-
ing function of an insurance company can be performed reliably, unless the
company has a good idea about the likely cost of its outstanding claims at
any point in time.
Estimation of outstanding claims is a challenging and an interesting task.

It involves the analysis of past data that is often sparse and usually hetero-
geneous, prediction of future outcomes over many years, and an assessment
of the effect of changes that have occurred in the past or may occur in the
future.
Actuaries have devised several heuristic methods to assist them in esti-

mating outstanding claims. The most commonly-used methods are known
as the Chain-ladder method and the Bornhuetter-Ferguson method. Both
methods can be derived using rudimentary model assumptions which, in a
certain sense, are diametrical opposites of each other. This does not dimin-
ish the practical usefulness and popularity of those methods.
Actuaries are facing increasing demands in the modern financial envi-

ronment, including

1. to be able to estimate outstanding claims reliably and consistently
over time,
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2 1. Introduction

2. to be able to explain, discuss and modify model assumptions, and

3. to be able to illustrate predictive uncertainty with a quantitative
statement.

Several lines of research are currently en vogue in the actuarial profession.
For want of better terms, I will refer to these lines of research as “fitting
to method”, “fitting to data” and “stochastic micro-modelling”. Before
explaining what I mean, I will very briefly define a few terms.

• Mechanism: the totality of internal and external processes that gen-
erate claim development.

• Model: a simplified mathematical description of the claim develop-
ment mechanism.

• Method: an algorithm for turning observed data into projections of
future data.

Fitting to method

A number of academics and actuaries are attempting to analyse the sta-
tistical properties of the heuristic methods, most often the Chain-ladder
method. The seminal paper is Mack (1993), see also England & Verrall
(2002) and Wüthrich & Merz (2008) for comprehensive descriptions. This
line of research involves finding a model within which a given method is
optimal or at least justifiable, for example, because its predictions coincide
with maximum likelihood estimates. Thereafter the statistical properties
of the method are computed within constraints of that model. As a result,
the actuary will be able to produce an estimate of predictive uncertainty.

Fitting to data

Other authors fit models not to methods, but to data. An extensive treat-
ment can be found in Taylor (2000). This approach typically involves defi-
nition of a stochastic model with a finite number of fixed, unknown model
parameters. Statistical software is used to calculate parameter estimates
and their standard errors. To calculate predictive uncertainty, bootstrap
methodology is often proposed.
The main difference between fitting to method and fitting to data is that

in the former approach the method being studied puts à priori constraints
on the admissible models, while in the latter approach the model is built
with the objective of capturing important aspects of the mechanism that
underlies claim development.

Stochastic micro-modelling

Several authors, most prominently Arjas (1989) and Norberg (1986, 1993,
1999), are advocating a stochastic micro-modelling approach. According to
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1.1 Estimation of outstanding claims 3

their prescription, the actuary should start with an à priori description of
the stochastic nature of the mechanisms that generate the claim process.
Having modelled the important features of the claim process, calibrated its
parameters to the available data, and decided on an optimality criterion,
the actuary can then derive the estimation method that is optimal to his
criterion. He or she will also be able to assess the performance of methods
that, even if not optimal with respect to the chosen criterion, may be
legitimate alternatives.
The paper of Arjas (1989) does not provide operational models, but states

as a general principle that the estimation of outstanding claims should
utilise the conditional distribution of future claim development, given ob-
served claim development. Norberg (1986, 1993, 1999) is more specific and
suggests models that allow estimation by linear Bayes methods, known to
actuaries as Credibility methods.
In the humble opinion of this author, fitting to method is putting the cart

before the horse. The real-world meaning of the uncertainty remains hazy
because normally no attempt is made to verify that the model that pro-
duces a method, also reflects the mechanism that generates the data. The
assumptions needed to produce (in particular) the Chain-ladder method
and its variations, seem to provide a poor description of the claim develop-
ment mechanismn. In any case, the need to make certain model assumptions
for the sake of the method is not conducive to thinking about the properties
of the claim development mechanism.
Properly calibrated, a statistical model can provide a meaningful quan-

tification of predictive uncertainty. However, it also suffers drawbacks. The
ability to fit a statistical model that produces consistent and reliable re-
sults over time requires a good volume of reasonably well-behaved data. To
many actuaries that situation is an exception rather than the rule. Com-
munication of model assumptions may also be difficult if modelling requires
transformation of the data or the parameters. An old adage says that "in-
surance executives cannot think in log space".
In the view of this author, estimation of outstanding claims fits squarely

into the decision-theoretic framwork formulated by Wald (1950), see also
Ferguson (1967). The actuary is confronted with an uncertain "state of
nature" - being the claim development mechanism that is only imperfectly
understood - and must make a decision, i.e. provide an estimate. The pre-
cision of the estimate will depend on both the estimation method used and
the claim development mechanism. Bayesian and linear Bayesian estima-
tion procedures are a natural part of the decision-theoretic toolbox.
Coming back to the main theme, actuarial students face a multifarious

array of approaches when they study estimation of outstanding claims. The
academic proclivity to publish papers not because something essential has
been recognised, but because publication is essential to being recognised,
only adds to the cacophony. To theoretically-minded students the lack of a
coherent and credible model framework can be a turn-off from the subject.
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4 1. Introduction

Less theoretically-minded students may never get to see the forest because
logs are blocking their view. It is symptomatic of the state of the art that the
General Insurance Reserving Issues Task Force of the Institute of Actuaries
in a recent report (GRIT, 2006) both recommends greater transparency of
reserving methods, and rejects calls for more sophisticated methods. In the
opinion of this author, while transparency undoubtedly is a desirable prop-
erty, to achieve transparency at the expense of methodological development
would lead to a dead-end.
This book is an introduction to mechanisms involved in claim settlement,

modelling of the claim settlement process, and to methods that actuaries
can use to estimate outstanding claims. Its main focus is on stochastic
micro-modelling.
Estimation of outstanding claims is not exclusively a statistical disci-

pline. In most practical situations, the actuary’s estimates are by necessity
based on a combination of statistical estimation and actuarial judgement.
There is nothing wrong with such a compromise. Quite on the contrary, the
necessity of applying judgement makes estimation of outstanding claims a
more interesting exercise, than it would be if it amounted to pure number-
crunching. The mathematical framework can be likened to the white cane
used by a blind person: the cane is an indispensible aid while the per-
son is finding his orientation in an unfamiliar environment, but once the
environment has become familiar, the person can move around more freely.
Chapter 2 describes the main aspects of claim development in general in-

surance, and introduces the reader to some actuarial terminology in speak-
ing of outstanding claims.Chapter 3 outlines the model framework of Arjas
(1989) and Norberg (1986) in preparation for the more detailed modelling
in Chapters 4 (estimating the number of unreported claims), 5 (estimat-
ing the cost of unreported claims) and 6 (estimating the cost of reported
claims). The common theme of chapters 4 to 6 is what Norberg (1986) calls
a stochastic micro-theory.
Chapter 7 presents some of the more summary models of claim develop-

ment that are commonly used, most of which can be viewed as applications
of models presented in chapter 4.
Chapters 8 and 9 are an excursion into the statistical model-fitting ap-

proach. Chapter 8 treats a log-linear model, while Chapter 9 gives an in-
troduction to generalised linear models (GLM). Chapter 10 gives a brief
introduction to dynamic linear models (DLM).
Chapter 11 takes up some practical issues, including model diagnostics,

the comparison between actual and expected claim development, and the
philosophical question of what estimation methods one is justified in using
in an imperfect world.
Chapter 12 deals briefly with the technicalities of inflation adjustment

and discounting. The more practical question of what inflation and discount
rates one should use, is not addressed in this book.
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1.1 Estimation of outstanding claims 5

Chapter 13 addresses quite briefly the conversion of estimated gross li-
abilities (i.e., before taking reinsurance into account) to estimated net lia-
bilities (after reinsurance). No attempt at an exhaustive treatment is made
in this book, as most reinsurance contracts have very specific clauses, frus-
trating attempts at a unified theoretical treatment.
Chapter 14 is devoted to the important issue of data. Many actuaries

have to make do with data that is far from perfect for the purpose of es-
timating outstanding claims. In the opinion of this author, well-organised
and disciplined data collection is an indispensable prerequisite for the esti-
mation of outstanding claims.
A few words about the order of appearance in chapters 4-7.Chapters 4-6

present an outline of a stochastic micro-model in the spirit of Arjas (1989)
and Norberg (1986, 1993, 1999). It is only an outline because, as will become
apparent, the details of the model can be varied. Chapter 7 represents
a few methods that are tradionally being taught and used - their main
characteristic being that the two main sources of delay (reporting delay
and settlement delay) are merged into just one aggregate delay pattern.
One could ask, would it not be better to start teaching the traditional
methods before advancing to more sophisticated ones? I have chosen the
opposite approach for two reasons:

• From my own time as a student, I remember vividly that what I
remember best of most courses, was what I learnt first. It provided
the scaffolding for what came after, so to speak.

• The chosen approach makes it possible to present a sound theoret-
ical derivation of the two classical methods (Chain-ladder method
and Bornhuetter-Ferguson method). Both methods provide maximum
likelihood estimates in a very intuitive Poisson model of claim counts.
There is no need to appeal to heuristics or strange conditional distrib-
utions to motivate those methods, if they are used in the appropriate
context.

For the teacher wanting to teach the traditional approaches first, I have
kept Chapter 7 free of references to chapters 4-6. For the sceptic I would
like to mention that the model framework propounded in chapters 4-6 has
been used continuously for more than 15 years by a major Nordic insurer.
It is common for papers on loss reserving to be full of ritual apologies for

the inadequacy of models, as opposed to so-called expert knowledge. Let
me therefore say this just once:

• All models are wrong, but some are useful.
• Actuaries use models because they are not clairvoyants.
• Most of our predictions will miss the mark, but hopefully by less than
if we hadn’t built a model.
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6 1. Introduction

As will be see, moreover, stochastic micro-models allow the incorporation
of expert opinion in a natural way.

1.2 Notes

There exists an extensive literature on estimation of outstanding claims, or
loss reserving. A good source of references is Schmidt (2011). The interested
reader will also find a great number or references Wüthrich & Merz (2008).
Another standard textbook is Taylor (2000).
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2
Claim development in general
insurance

2.1 Introduction

This chapter describes the main aspects of delayed claim development in
general insurance, and introduces the reader to the common actuarial ter-
minology in speaking of outstanding claims.

2.2 General insurance contracts

A general insurance contract is normally valid for a period of one year.
The contract stipulates that the insured may claim compensation from the
insurer, for financial losses incurred during the contract period. The right to
compensation depends on the fulfilment of contractual conditions. Among
such conditions are:

• The cause of the loss. This could be fire, burglary, accident, disease,
an act of negligence, and so on.

• The type of the loss. This could be fire damage, loss of property, loss
of income, medical expenses, liability for the loss incurred by a third
party, and so on.

If a right to compensation has been established, the compensation will
normally be limited by a deductible and an upper limit. Only in rare cases
do insurance contracts provide for full compensation.
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8 2. Claim development in general insurance

Property insurance compensates losses incurred by the insured himself.
Liability insurance compensates the insured for a financial liability that the
insured has incurred towards a third party. In both cases the contractual
relation is limited to the two parties, the insurer and the insured.
Statutory liability insurances, like Motor Vehicle Third Party insurance

and Workers’ Compensation insurance, cover losses incurred by a third
party. In those insurances, the third party can lodge a direct claim against
the insurer, thereby bypassing the insured.
General insurance is customarily subdivided into lines of business. Each

of these lines of business has its own characteristics, which may differ be-
tween countries. A list of the most common lines is given below, together
with an indication of what each type of insurance typically would cover.

• Domestic property insurance compensates a private home owner for
losses due to fire, water damage and burglary.

• Commercial property insurance compensates a commercial property
owner for losses due to fire, water damage and burglary, as well as
the consequential loss of rent income.

• Commercial business insurance compensates a business for losses due
to fire, water damage, burglary and fraud by employees, as well as
consequential loss of profits and recovery of business archives.

• Motor vehicle insurance compensates a car owner for losses from col-
lision damage, burglary/theft and fire.

• Motor vehicle third party insurance compensates a third party for
personal injuries or property damage that have been caused by the
insured’s use of a motor vehicle.

• Travel insurance covers travellers for loss of property, hospital ex-
penses while abroad, repatriation, accidental injury or death, cancel-
lation.

• Liability insurance compensates the insured for a financial liability
that the insured has incurred towards a third party.

• Accident insurance pays compensation on the insured’s accidental
injury or death.

• Health insurance pays doctors’ fees, hospital fees and medical ex-
penses.

• Disability insurance compensates loss of income arising out of a dis-
ability that can be the result of an accident or illness.

• Workers’ compensation insurance compensates employed workers for
accidents or diseases contracted at the workplace.
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2.3 Claim attachment principles 9

• Marine insurance covers damage to the vessel (hull insurance) and/or
the liability of the owner or operator (P&I insurance).

• Aviation insurance covers damage to the aircraft (hull insurance)
and/or the liability of the owner or operator.

• Transport insurance covers damage to or loss of goods in transport.

• Reinsurance covers an insurer against exposures that it cannot bear
in its own balance sheet.

One should not attach too much importance to the label that is given
to a product of insurance. The content of the product can vary signifi-
cantly between countries, and even between insurers within a country. In
particular, insurance in personal lines like health insurance and workers’
compensation insurance, will depend on the legislation and the social se-
curity framework of the country. Therefor, lumping together products of
insurance on the basis of only their name can be fraught with danger.

2.3 Claim attachment principles

When a claim is received, the insurer must check whether that claim can
rightfully be attached to an insurance policy (contract) that the insurer
has issued to the insured. The time of the event leading to the loss, as well
as the time when the claim is reported, may determine whether the claim
can be attached to a policy.

Claims incurred principle

Under the Claims incurred principle, a loss is covered if the event leading to
the loss happened during the policy period. The claim itself may be lodged
even when the policy period has expired. The Claims incurred principle
is common in lines of business where the event leading to the loss can be
identified (property insurance, business insurance, motor vehicle insurance,
accident insurance, marine insurance).

Claims made principle

Under the Claims made principle, a loss is covered only if the claim is
received while the policy is in force. There may be a limited time extension
after the policy has expired. The Claims made principle is sometimes used
in liability insurance, and is common in health insurance. The reason is
that in those lines, it is often impossible to pinpoint the exact time of the
event leading to the loss.
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10 2. Claim development in general insurance

Claims manifestation principle

An intermediate form between Claims incurred and Claims made is the
Claim manifestation principle that is sometimes used for Workers’ Com-
pensation insurance. Under the Claim manifestation principle, the loss is
covered by the policy that the insured had at the time when the right to
claim for the first time became manifest - for example, through diagnosis
of an occupational disease.
Under all attachment principles, there will normally be time limits on

the notification of claims. For the actuary estimating outstanding claims,
the attachment principle is important as it determines the potential length
of the reporting period.

2.4 Stages in the life of a claim

Reporting (Notification)

A claim is reported when the insured contacts the insurance company,
and the insurance company opens a file on the claim. There will almost
invariably be a delay between the event leading to an insured loss and the
notification of a claim. The delay can vary between a few days and several
years. Common reasons for delayed notification of claims are:

• Gradual deterioration of the insured’s health as the result of an acci-
dent or disease,

• The insured not being aware of his or her right to claim,
• Initial reliance on social security institutions for financial support,
• Public holidays just prior to the end of year, for example Christmas,
• Periodic bulk reporting of claims by intermediaries,
• The insurer’s administrative routines.

Assessment

Once a claim has been reported, if it cannot be settled immediately, an
assessment of its likely cost should be made. Depending on the nature of
the claim, the assessment could involve

• On-site inspections,
• A technical report by a builder, plumber etc.,
• A quote by a motor vehicle repair workshop,

DRAFT 
09.04.14



2.4 Stages in the life of a claim 11

• Medical examinations,

• Legal opinions.

These processes take time. In particular, medical examinations will often
have to be conducted over an extended period of time in order to assess
the degree of permanent disability. Normally, no payments other than fees
are made during the assessment period.

Handling

After the initial assessment the claim will be handled, which may involve
payments for

• Repairs,

• Reconstruction,

• Medical treatment,

• Rehabilitation,

• Legal assistance,

• Loss of income.

During the time that the claim is actively being handled it is often called
an “open claim”. The ultimate cost of the claim will not be known with
certainty.
Depending on the nature of the claim, the claimant and the insurer, the

claim handling phase can take any length of time. Claim handling may
involve litigation, possibly passing through several law courts before the
claim can be finally settled.

Payment

Partial payments may be made throughout the handling phase of the claim,
to cover losses that the insured has had (such as medical expenses and lost
income) or the cost of ongoing repairs. A final payment is made when the
claim is settled, unless the entire compensable loss already has been covered
by partial payments.
In personal lines, the final payment will often be for future loss of income

and future cost of care. Future benefits can be paid in a lump sum (one
payment) or an annuity (a series of payments). Once the final lump sum
has been paid, or the amount and the duration of the annuity has been
determined, the insurance company normally considers the claim to be
settled.
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12 2. Claim development in general insurance

Settlement

A claim is considered to be settled when there is no reasonable expectation
that it will give rise to any more payments or adjustments by the insurance
company. Most claims, once they are settled, are never looked at again
by claim handling staff. IT staff tend to consider closed claims as space-
consuming rubbish, to be removed from the data base as quickly as possible.
For the actuarial analysis, the information provided by closed claims is
indispensable.

Reopening

Some claims are reopened. This occurs when the claimant decides that the
original compensation was inadequate for some reason, or when the health
of the claimant has deteriorated beyond the stage that was the basis of
the original compensation. A reopened claim enters again into the stages
of assessment, claim handling and finally settlement.
The processes of claim settlement and claim reopening are strongly influ-

enced by the administrative routines of the insurer, and by the incentives
that claim handlers have to settle claims. As a general rule, when claim han-
dlers have a strong incentive to settle claims, one must expect a significant
proportion of settled claims to be reopened later.

Recoveries

The insurer will sometimes be able to recover some of its outlay from other
parties. Common forms of recovery are

• Recovery from reinsurers,

• Recovery from the liability insurer of the negligent party,

• Subrogation (the insurer takes possession of the damaged goods and
sells them for a residual value).

2.5 The length of the tail

In actuarial and insurance parlance, it is normal to distinguish between
short-tailed lines and long-tailed lines. Short-tailed lines are those where
the majority of claims incurred during a year will be settled within, say
two years. Long-tailed lines are those where there remains a significant
proportion of open claims after, say 3-5 years.
The table below is only meant to give an indication of the placement

of different lines of business between the two categories. In practice, the
development time of a line of business depends on local legislation, policy
terms and time limits.
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2.6 Valuation of outstanding claims 13

Line of insurance Reporting Handling Reopening Overall
Domestic property short medium rare short
Commercial property short short rare short
Commercial business short medium rare short
Motor vehicle short short rare short
Third party medium long frequent long
Travel short short rare short
Liability long long frequent long
Accident short/med. long frequent long
Health short short N/A short
Disability short/med. long frequent long
Worker´s compensation med./long long frequent long
Marine short/med. long rare long
Aviation med./long long rare long
Transport short short rare short
Reinsurance med./long long N/A long

I have put “N/A” on reopening for health insurance and reinsurance,
because in those lines it is difficult to identify a single claim and to decide
whether it is open or closed. Again, this is only a rule of thumb which may
not hold in all situations.
In all lines of business there will be some claims that are notified and

settled almost immediately, and others that drag on forever. The character-
isation above is only meant to show the average delays in notification and
assessment/handling that one should expect to see in the different lines.

2.6 Valuation of outstanding claims

Valuation of outstanding claims involves establishing a value of future pay-
ments that will be generated by claims that are currently outstanding. I am
deliberately saying a value, not the value, as valuations made for different
purposes and with different assumptions, can produce different values.

2.6.1 Purpose of valuation

There are five main purposes for which a valuation of outstanding claims is
required: Accounting, pricing, statutory reporting, portfolio transfer, and
commutation. They will be briefly outlined in the following sections.

2.6.2 Accounting

An general insurer’s balance sheet has the following main entries:
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14 2. Claim development in general insurance

Assets
Financial assets
Reinsured share of premium provision
Reinsured share of outstanding claim provision
Receivables (from reinsurers and policyholders)
Other assets

Liabilities
Gross premium provision
Gross outstanding claim provision
Prudential margin or risk margin
Payables (to reinsurers and policyholders)
Other liabilities

Equity = Assets - Liabilities

Insurance provisions (gross premium provision and gross outstanding
claim provision) normally form the largest part of the liabilities in the
balance sheet of a general insurer. Insurance provisions should represent a
fair and prudent estimate of the value of outstanding claim payments. This
means that the provisions should give a realistic view of the liabilities. They
should not be excessive but, in case of doubt, they should rather be a little
too high than too low. The difference between the actual provision and
a strictly unbiased estimate (or “central estimate”) is called a prudential
margin or risk margin.

2.6.3 Pricing

Pricing in general insurance is an ongoing process. Pricing calculations are
often complicated by the fact that the latest years’ claims have not been
finally settled, maybe not even fully notified, so that one must estimate the
outstanding claim cost of the latest years in order to use those in pricing
calculations.
As a general rule, outstanding claim estimates used in pricing should

be strictly central estimates with no risk margins. Expense loadings and
profit margins should be entered into the pricing formula separately from
the pure claim cost estimate.

2.6.4 Statutory reporting

Some countries have statutory requirements for the calculation of technical
provisions in the balance sheet. These requirements are normally designed
to protect the policyholders by ensuring adequate provisions, and the re-
sulting provisions are likely to be higher than a strictly central estimate.
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2.7 Case estimates 15

The opposite may also occur, however, if the statutory rules are not suffi-
ciently adaptive to actual claim developments.
This book does not contain a description of statutory requirements. The

only point I should like to make is that the actuary should not rely on the
statutory provisions being adequate, without having formed an indepen-
dent opinion.

2.6.5 Sale or purchase of a portfolio

When a block of business is transferred from one insurance company to
another, or from an insurance company to a reinsurer, the buyer and the
seller must form an opinion on the value of the outstanding claim payments
that follow with the business.
It is equally important for both parties to have a view on the fair value

of the outstanding claim payments. The parties will normally keep their
respective fair value estimates to themselves and negotiate on the basis of
estimates that serve their commercial self-interest. Unless the portfolio is
strictly to be run off, the price that is ultimately paid for the transfer will
reflect a number of other consideration besides the value of outstanding
claim payments - such as expected future profits, synergy benefits, cost
savings and so on.

2.6.6 Commutation

Commutation means the settlement of uncertain future claim payment lia-
bilities for a fixed price. Commutation is similar to the sale of a portfolio for
run-off, and a valuation of the outstanding claim payments is indispensable.

2.7 Case estimates

When the insurance company has received notification of a claim, and while
the claim goes through the different stages, the claim handler will normally
have an opinion of what the ultimate cost of the claim will be. That opinion
may be based on past experience and an educated guess, or it may be based
on more systematic analysis using estimation tools.
Actuaries usually refer to the claim handler’s estimate of the outstand-

ing cost (i.e., future payments) on a claim as its “case estimate”. The case
estimate of a claim should be adjusted whenever the claim handler has
reason to believe that the existing case estimate does not reflect the ex-
pected outstanding claim cost. The change in opinion could stem from new
information on the individual claim (e.g., a new medical report) or from
information on another, similar claim (e.g., a landmark court decision).
This author likes to distinguish between two types of case estimate,
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16 2. Claim development in general insurance

• The outstanding case estimate, being an estimate of future payments;
• The ultimate case estimate, being an estimate of total payments on
the claim.

A claim’s ultimate case estimate is the sum of past payments on the
claim and its outstanding case estimate. One can extend the terminology
to closed claims, where the ultimate case estimate is the sum of payments,
and the outstanding case estimate is zero. After all, a number that one
knows with certainty is just a very reliable estimate.
While the outstanding case estimate normally should decrease towards

zero as a claim is handled and approaches final settlement, the ultimate
case estimate should ideally be stable. An upward trend in ultimate case
estimates of a given body of reported claims indicates under-estimation by
the claim handler.A persistent downward trend indicates that early case
estimates overstate the ultimate cost.
The sum of ultimate case estimates of a portfolio of reported claims is of-

ten referred to as the reported incurred claims or simply incurred claims in
the actuarial literature. The second term, while widely used, is unsatisfac-
tory because in other contexts, incurred claims also comprises unreported
claims. A short and unambiguous synonym for ultimate case estimates is
the term reported claim cost, and it will be used in what follows.

2.8 Nominal and discounted values

The estimated value of outstanding claims should always include an al-
lowance for future inflation. That allowance should comprise the expected
normal inflation that occurs over time in most countries. In addition, an
allowance should be made for so-called superimposed inflation, if any. Su-
perimposed inflation is inflationary growth in claim cost over and above
normal inflation. Superimposed inflation may be the result of specific in-
fluences, for example:

• Higher than normal inflation for specific products or services,
• An increasing propensity to claim,
• Gradual change in legal practice.

An argument can be made for not separating normal inflation from su-
perimposed inflation at all, because the inflationary forces that drive the
cost of insurance claims may be quite different from those that drive normal
inflation.
The effect that inflation can have on the cost of outstanding claims de-

pends on policy terms and the length of time before the claims are settled.
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2.9 Time dimensions 17

The policy terms are important inasfar as they regulate if claim payments
are made in the currency of the policy period (for example, a fixed nominal
sum insured) or in the currency of the payment period (for example, un-
specified medical cost); in the former case there will be no future inflation,
while in the latter case there may be. Generally, the longer the time before
payments are made, the greater will be the potential inflationary effect. As
a result, inflation must always be considered in long-tailed lines of business,
while it often can be ignored in short-tailed lines.
If the value of outstanding claim payments includes an allowance for in-

flation, we say that it is expressed in nominal values. The nominal value
of outstanding claims represents the amount of Euro notes that the insur-
ance company would need to stash away in its vault, if it wanted to make
expected claim payments as they fall due, dispensing Euro notes from its
vault.
In reality, the insurance company would have a bank account at the

very least. More sensibly, it would invest some of its money in interest-
bearing securities (notes and bonds). The money thus invested is expected
to generate interest that can also be used to finance future claim payments.
The cash outlay required to buy notional notes and bonds that with

interest will generate sufficient cash inflow to finance the expected future
cash outflow, is less than the value of the cash needed in the vault. Therefore
it is cheaper for the company to express its liability in terms of the cash
value of notes and bonds; in doing so, however, the company allocates
future investment income to payment of outstanding claims.
If the value of outstanding claim payments includes an allowance for

inflation and makes allowance for expected future investment income, we
say that it is expressed in discounted value or present value.
Whether outstanding claim provisions in the balance sheet are expressed

in nominal value or in present value, depends on local accounting rules.
Considerations of financial prudence are often quoted in favour of holding
provisions in nominal values, while considerations of economic realism work
in favour of expressing provisions in discounted values.
If outstanding claims are valued for the purpose of pricing insurances in

a long-tailed line of business, the estimates should always be expressed in
discounted values, using a conservative discount rate.
Outstanding claims valued for the purchase or sale of a portfolio, or for a

commutation, must by necessity be expressed in discounted values in order
to make economic sense to buyer and seller.

2.9 Time dimensions

Depending on the context, premiums and claims in insurance are analysed
along several different time dimensions, which will be defined now.
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18 2. Claim development in general insurance

2.9.1 Underwriting date

The underwriting date of an insurance policy is the date of its inception or
its most recent renewal. For a claim, the underwriting date is the under-
writing date of the policy to which the claim is attached.
From a risk perspective it is often argued that a claim’s underwriting date

is is irrelevant. Notwithstanding, the actuary sometimes needs to analyse
claim cost by underwriting period. One reason for this is that reinsurance
is often written by underwriting year, i.e., covering claims from policies
that are underwritten during a the reinsurance contract’s period. Another
reason is that claim cost allocated to underwriting periods can be readily
compared with premium income during the corresponding periods, thus
allowing profitability analyses.

2.9.2 Accident date

Accident date is the date of the loss event leading to the claim. The term
accident date is used generically, also when the cause of loss is not an
accident in the narrow sense of the word.

2.9.3 Reporting date

Reporting date is the date when the claim it reported or, more precisely,
recognised as a claim in the official files of the insurer. There is some discus-
sion as to whether reopened claims should be considered to be new claims
with a new reporting date, or simply as a continuation of known claims.
Both approaches are possible and valid, as long as the chosen approach is
used consistently.

2.9.4 Valuation date

This is the date as at which claims are valued.

2.9.5 Development date

Development date (normally: development year) is a term used generically
in the actuarial literature to describe delay after a certain event. Develop-
ment date normally starts with zero (0), which is the date of the anchor
event. Thus development date could be delay after the underwriting date,
the accident date, or the reporting date. The actuary should always take
care to define precisely what he or she means by development date and,
consequently, what it is that constitutes claim development.
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2.9 Time dimensions 19

2.9.6 Acronyms

Several acronyms are common in the actuarial literature:

• RBNS — reported but not settled;
• IBNR — incurred but not reported;
• IBNS — incurred but not settled;
• CBNI — covered but not incurred;
• CBNR — covered but not reported.
RBNS claims are claims that have been notified to the insurer. This

book uses the term RBNS for the totality of reported claims, including
settled claims, because even settled claims may be reopened and gener-
ate more payments. Of RBNS claims one definitely knows their number,
but the ultimate claim amount can be uncertain. Some actuaries use the
acronym IBNER (incurred but not enough reported) for future develop-
ment of reported claims. I dislike the acronym IBNER because it uses the
term "incurred" in an ambiguous way.
IBNR claims are claims where the event that will give rise to a claim (the

fire, accident, burglary or whatever) has occurred, but where the claim has
not been notified to the insurer. One knows from experience that there will
be unreported claims around at any point in time, but neither their number
nor their ultimate claim amount is known.
The term IBNS is sometimes used to denote the sum of claims IBNR

and claims RBNS. Claims IBNS is the totality of claims that have been
incurred at a given point in time.
CBNI claims are claims that are linked to events that will occur in fu-

ture, i.e., after the balance date, and that are covered by policies in force
on the balance date. For example, if a policy was renewed for one year
on 1st October and the balance date is 31st December, then any insured
events between ist January and 30th September of the following year will
be covered by the policy and constitute a CBNI liability for the insurer.
Claims CBNI behave very similarly to claims IBNR. Both types of claim

are unknown in number and amount, and both are reported after the bal-
ance date. Thus one can introduce a category of claims covered but not
reported (CBNR) that comprises claims CBNI and claims IBNR. One does
not need to split claims CBNR into separate components if one is only in-
terested in the liability for unreported claims, not whether the loss events
have occurred before, or will occur after after, the balance date. For exam-
ple, claim cost development in marine insurance is customarily analysed by
underwriting year. The accident date of claims may be unavailable, which
makes it impossible to distinguish between claims IBNR and claims CBNI.
In such a setting, the most fruitful division is between claims RBNS and
claims CBNR.
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20 2. Claim development in general insurance

The most common way of examining claims, however, is by accident
period. In that case one can distinguish between claims reported (RBNS),
claims incurred in the past but not reported (IBNR), and claims that will
be incurred in the future and obviously have not been reported (CBNI).
It is important to distinguish between future claims that are covered by

existing contracts (CBNI), and claims that will arise from new contracts
and renewals written after the balance date. A general insurer normally
has no legal obligation to write new contracts or to renew existing ones. As
a consequence, expected premiums and claim liabilities related to future
business are normally not recorded in the insurer’s accounts. For the pur-
pose of budgeting and forecasting, however, the premiums and claim cost
generated by future business is very interesting.
The graph below shows the typical development of the claim cost of an ac-

cident year. As time goes by after the accident year, more and more claims
will be paid (cumulative claim payments) or reported (reported claims).
More often then not, the reported claims are under-estimated, leading to
positive future case development. Negative future case development is also
known to occur. Also as time goes by, fewer and fewer claims will be unre-
ported (IBNR).
Loosely speaking, the actuary can observe the development of the two

solid lines - cumulative claim payments and reported claims - at any point in
time, and his task is to estimate the magnitude of future case development
and claims IBNR.
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Framework model

3.1 Introduction

This chapter starts with a brief outline of a framework model in continuous
time. The main consequence of the framework model is that the cost of
reported and unreported claims ought to be estimated separately, whenever
possible.Two discrete time models are then presented. The first model has
three time dimensions along which claims evolve, while the second model
only has two time dimensions.

3.2 Continuous time model

A general framework model for the estimation of outstanding claims in
general insurance has been developed in papers by Arjas (1989), Norberg
(1993, 1999), and Jewell (1989, 1990).
The main features of the framework model of Norberg are the following:

• Prior to discretisation of the data, claims develop in continuous time.
• Claims are incurred in accordance with a point process that generates
random times T1, T2, · · · . More specifically, Norberg assumes the exis-
tence of an exposure function {p(t) : t ≥ 0} and a frequency function
{θ(t) : t ≥ 0}, so that claims are incurred in accordance with a Pois-
son process with an infinitesimal rate of claim incurrence of p(t)θ(t).
Given {p(t) : 0 ≤ t ≤ τ} and {θ(t) : 0 ≤ t ≤ τ}, the number of claims
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22 3. Framework model

timeT1 T2 T3

Reporting
delay

Assessment
and handling

Settlement

Partial
payments

Notification

Z(T1 )

(a “mark”)

τ

Unknown future
development

Accident

incurred up to time τ has a Poisson distribution with expected value
τ∫
0

p(t)θ(t)dt.

• A claim incurred at time t has an evolution Z(t) that encapsulates the
development of all the relevant aspects of the claim, including time to
notification, partial payments, development of case estimates, time to
settlement, and whatever else could be of interest. Statisticians refer
to Z(t) as a mark, and to the whole process model as a marked point
process. A mark is a generalisation of the random claim amount that
actuaries commonly use in the compound Poisson process.

• The marks {Z(t) : t ≥ 0} are stochastically independent of each
other and of the claim incurrence process. The marks are not neces-
sarily identically distributed, although this is a common assumption.
Internally in each mark, there may be a number of stochastic depen-
dencies, such as, for example, dependency between the ultimate claim
amount and the time it takes to settle the claim.

The diagram below illustrates the concept of a marked point process.

I will not elaborate on Norberg´s framework model any further in this
book, just state some of its main implications for our work.

• Given complete information about the claim process up to time τ , the
future development of reported claims is stochastically independent
of the future development of unreported claims. That is so because
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3.2 Continuous time model 23

the future development of reported claims occurs entirely within the
marks that are assumed to be stochastically independent of each other
and of the claim incurrence process.

• In order to estimate the future development of all claims (reported
and unreported), one should separate the estimation of reported claims
from the estimation of unreported claims. Being conditionally inde-
pendent, the two processes do not carry any information about each
other. By mixing them one loses information.

• In the estimation of unreported claims one should separate the esti-
mation of claim counts from the estimation of claim amounts. Claim
amounts, being part of the marks, do not carry information about
claim counts.

• The estimated amount of unreported claims becomes the estimated
number of unreported claims, multiplied with an average amount.
The average amount may depend on the reporting delay, because
both the claim amount and the reporting delay are part of the mark.

The humble actuary will normally only have access to discretised data,
so that work in continuous time is not a practical option. However, in
recognition of the conclusions above, the actuary should organise his or her
work in the following five-step procedure:

1. Estimate the amount of reported claims (RBNS).

2. Estimate the number of incurred, unreported claims (IBNR).

3. Estimate the amount of incurred, unreported claims (IBNR).

4. Estimate the number of covered, future claims (CBNI).

5. Estimate the amount of covered, future claims (CBNI).

Each of these steps is not a trivial task, and the actuary has to fill the
generalities with specific assumptions in order to arrive at a number. A
short comment on the sequence of the analysis is in order.
Reported claims (RBNS) come with a great deal of information that

is potentially valuable: number of claims, claim characteristics, settlement
status, settled amounts, partial payments, case estimates etc.
Of unreported claims we know neither their number nor their cost, in

other words: nothing. We only know that they are there and will be reported
later. To establish the expected cost of unreported claims, one normally has
no other source of information than already reported claims. That is why
an analysis of reported claims usually must come first.
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A final, important observation is that the available factual information
for claims CBNI and claims IBNR is identical: nothing. From a methodolo-
gial standpoint, therefore, it makes more sense to treat claims CBNI simi-
larly to claims IBNR, than to confound claims RBNS with claims IBNR.
It may come as a surprise that it is often easier to estimate the cost of

unreported claims (IBNR and CBNI), than it is to estimate the ultimate
cost of reported claims (RBNS).
Notwithstanding the above, the presentation that follows starts with es-

timating the number of incurred, unreported claims in Chapter 4, followed
by estimating the amount of incurred, unreported claims in Chapter 5, and
then estimating the amount of reported claims in 6. The reason for the
inverted ordering is that the two most basic methods - the Chain-ladder
method and the Bornhuetter-Ferguson method - are most convincingly mo-
tivated and explained in the context of estimating the number of unreported
claims.

3.3 Discrete time model with three dimensions

Let us now consider a discrete time model with three time dimensions:
accident period, reporting period and valuation period.
Conventional actuarial terminology usually speaks of ’years’. In prac-

tice it is entirely possible and usually advisable to build the model with
shorter time periods (quarters or months). The initial investment in doing
so is more than compensated by the facility with which one can calcu-
late updated estimates at shorter time intervals, using a consistent set of
assumptions. We will call the smallest discrete time units ’periods’.
We denote accident periods by j. For an accident period j, we denote the

amount of risk exposed by pj . The number of claims reported with delay d
is denoted by Njd. The individual severities of those claims we denote by
{Y (k)jd : k = 1, · · · , Njd} and their sum as Yjd.

For a given claim, its ultimate severity Y (k)jd is made up of a series of

partial payments U (k)jdt that occur at delay t = 0, · · · ,∞ after the reporting
date:

Y
(k)
jd =

∞∑
t=0

U
(k)
jdt (3.1)

The use of the symbol∞ only means that we do not impose a fixed upper
limit on the possible number of terms; there will of course be a finite number
of terms. In addition to partial payments we may observe outstanding case
estimates. Denote by V (k)jdt the change in the outstanding case estimate at

delay t after the reporting date. Finally, let W (k)
jdt = U

(k)
jdt +V

(k)
jdt denote the

change in the reported claim cost. Note that
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Y
(k)
jd =

∞∑
t=0

U
(k)
jdt =

∞∑
t=0

W
(k)
jdt , (3.2)

which states the obvious fact that the total change in the outstanding
case estimate from the time when the claim is reported to the time when
it is settled, is zero. The outstanding case estimate starts at zero and ends
at zero.
Now assume that the last calendar period and the current valuation

period is J .
At time J we will have recorded the reported number of claims {Njd :

j = 1, · · · , J, d = 0, · · · , J − j}, while {Njd : j = 1, · · · , J, d > J − j} will
still be unreported. The only partial payments that we have had the chance
to observe are those for which j + d + t ≤ J . The accumulated payments
to the end of period J are

U
(k)
jd,≤J−(j+d) =

J−(j+d)∑
t=0

U
(k)
jdt , (3.3)

with corresponding formulas for the current outstanding case estimate
and ultimate case estimate. The outstanding payments in respect of re-
ported claims are

RBNSJ =
J∑
j=1

J−j∑
d=0

∞∑
t=J−(j+d)+1

Ujdt

︸ ︷︷ ︸
Future payments︸ ︷︷ ︸

Reported claims︸ ︷︷ ︸
Incurred claims

, (3.4)

and the future cost of claims IBNR is

IBNRJ =
J∑
j=1

∞∑
d=J−j+1

∞∑
t=0

Ujdt︸ ︷︷ ︸
All payments︸ ︷︷ ︸

Unreported claims︸ ︷︷ ︸
Incurred claims

. (3.5)

The development tetrahedron below illustrates the three dimensions of
claim development. Claims that are RBNS at time J have been reported
inside the horizontal triangle given by j+d ≤ J , as indicated by a diamond.
The observed development of a reported claim is indicated by a solid ver-
tical line lying inside the tetrahedron which is delimited by j + d+ t ≤ J ,
and its future development is indicated by the dotted extension of that line.
The development of a claim ends at settlement, indicated by a bullet. A
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26 3. Framework model

claim that is IBNR starts its observed development outside the horizontal
triangle and its development lifeline is dotted all the way to settlement. The
current status of reported claims can be ’read off’ on the simplex given by
j + d+ t = J .
The following abbreviation will be used in the rest of this paper: a vari-

able with a subscript omitted denotes the sum of the underlying variables
across all values of the subscript that has been omitted. A variable with a
subscript replaced by an inequality (for example, Ujd,≤J−(j+d)) denotes the
sum of the underlying variables that satisfy the inequality. A variable with
a subscript replaced ≤ by is usually the sum of the underlying variables
that lie inside the tetrahedron, while a variable with a subscript replaced
by > is the sum of the underlying variables that lie outside the tetrahedron.

3.4 Discrete time model with two dimensions

Most loss-reserving studies analyse only two-dimensional development mod-
els, where the two dimensions are accident period (j) and accident-to-
valuation delay (e = d + t). The delay dimension in those triangles is
normally referred to as development period. In those models, no attempt
is made to separate the development of reported claims from that of unre-
ported claims.
The most common data to analyse in the two-dimensional setting is paid

claims. One starts with a development triangle containing the accumulated
claim payments per accident period and valuation delay:
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Ũ10 Ũ11 · · · Ũ1,J−1

Ũ20 Ũ21
. . .

...
. . .

ŨJ0

(3.6)

Here we have defined the accumulated claim payments Ũje by

Ũje =

e−j∑
d=0

e−(j+d)∑
t=0

Ujdt, (3.7)

i.e., Ũje is the sum of all payments recorded until valuation period j+ e,
comprising payments from all reporting periods as they emerge.
Development in the accumulated claim payments between two different

valuation dates is driven by two different processes:

• Partial payments on claims that had been reported already on the
first valuation date; and

• Partial payments on new claims that were reported between the val-
uation dates.

The task then becomes to predict the entries in the south-east corner
of the development square.

One may triangulate reported claims in the same way:

W̃10 W̃11 · · · W̃1,J−1

W̃20 W̃21
. . .

...
. . .

W̃J0

(3.8)

Here we have defined the accumulated reported claims W̃je by

W̃je =

e−j∑
d=0

e−(j+d)∑
t=0

Wjdt (3.9)

Development in the amount of reported claims between two valuation
dates comprises the effect of four processes:

• Partial payments on claims that had been reported already on the
first valuation date;
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28 3. Framework model

• Partial payments on new claims that were reported between the val-
uation dates;

• Revaluation of case estimates on claims that had been reported on
the first date;

• New case estimates for claims that were reported between the valua-
tion dates.

We will study some of these methods in Chapter 7.

DRAFT 
09.04.14



4
The number of unreported claims

4.1 Introduction

This chapter considers specific models and estimation methods for the claim
reporting process. In this chapter we only consider the number of claims
reported, not their cost.

4.2 Modelling the number of claims IBNR

Let us assume that we have observed claim notifications for the accident
periods j = 1, · · · J , where J denotes the current period. Thus the set of
observations is {Njd : j + d ≤ J}. For a specific accident period j we
have observed {Njd : d = 0, · · · J − j}. The data can be arranged in the
well-known triangular array.

N10 N11 · · · N1,J−1

N20 N21
. . .

...
. . .

NJ0

(4.1)

The task of the actuary is to fill the lower part of the triangle with
predicted values that denote by {N jd : j + d > J}. Let us denote the
highest observed reporting delay by D = J − 1; it is not necessarily the
highest possible reporting delay.
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30 4. The number of unreported claims

Now, let us assume that the amount of risk exposed in accident period
j has been pj . The expected claim frequency relative to the risk measure
we denote by θj , and the probability of a notification delay of d periods,
we denote by πd. We now make the assumption that Njd has a Poisson
distribution with expected value pjθjπd:

Njd ∼ Poisson(pjθjπd) (4.2)

Before continuing, a few words on the assumptions are in order. The
assumption that claim numbers have a Poisson distribution is standard in
insurance modelling. The assumption that the expected number of claims is
proportional to the amount of risk exposed pj is very reasonable, provided
of course that it is possible to measure the amount of risk exposed reliably.
The assumption that every accident period has a certain ultimate claim
frequency θj , possibly different from period to period, is almost axiomatic.
Finally, assuming that the reporting of claims follows a fixed statistical
pattern πd, is quite reasonable as a first approach. What has not been
modelled so far, is possible interactions, i.e. models when the expected
number of claims has the form pjθjd, where θjd cannot be written as a
product of two marginal factors. We defer the more complex models until
later.
If the claim frequencies θ1, · · · , θJ and the delay probabilities π0, π1, · · ·

were known, an obvious predictor of Njd for j + d > J would be

N jd = pjθjπd (4.3)

In practice, of course, both the claim frequencies and the delay probabil-
ities are unknown and must be estimated first. We now consider different
models for estimating claim frequencies and delay probabilities. For the
time being, let us assume that

∑D
d=0 πd = 1, which means that the claims

of at least one accident period are fully reported.

4.3 Constant claim frequency: The
Bornhuetter-Ferguson method

For some lines of insurance a quite reasonable assumption is that claim
frequencies are constant over time, i.e., θ1 = θ2 = · · · = θJ = θ. For
instance, claim frequencies in personal accident insurance normally do not
vary greatly from period to period, provided that the insurance cover is
unchanged, and barring catastrophic events.

A convenient re-parametrisation is θd = θπd for d = 0, · · · , D.The para-
meters θd can be interpreted as delay-specific claim frequencies. To estimate
the parameters one can maximise the likelihood of the observations:
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4.3 Constant claim frequency: The Bornhuetter-Ferguson method 31

L =
J∏
j=1

J−j∏
d=0

(pjθd)
Njd

Njd!
e−pjθd (4.4)

The log-likelihood function is then:

ln(L) =
D∑
d=0

N≤J−d,d ln(θd)−
D∑
d=0

p≤J−dθd + terms not involving θd (4.5)

Differentiating the log-likelihood function, one obtains for d = 0, · · · , D,
∂ ln(L)

∂θd
=
N≤J−d,d

θd
− p≤J−d (4.6)

Equating these expression to zero one obtains the maximum likelihood
estimates of the delay-specific claim frequencies,

θ∗d =
N≤J−d,d
p≤J−d

=
Number of claims reported with delay d (column d)
Sum of exposure for which delay d has been observed

(4.7)
for d = 0, · · · , D. From this and the constraint

∑D
d=0 πd = 1 one can

derive the maximum likelihood estimates of the original parameters:

θ∗ =
D∑
d=0

θ∗d (4.8a)

and, for d = 0, · · · , D,

π∗d =
θ∗d
θ∗

(4.9)

The maximum likelihood predictions of claims IBNR for j + d > J then
become

N jd = pjθ
∗
d = pjθ

∗π∗d = pj

(
N≤J−d,d
p≤J−d

)
(4.10)

This method, where the same delay-specific claim frequencies are as-
sumed for all accident periods, is often referred to as the Bornhuetter-
Ferguson method. There exist several interpretations as to what constitutes
the essence of the Bornhuetter-Ferguson method. One aspect that is fre-
quently cited is that the claim frequencies θ should be chosen à priori, i.e.
using expert knowledge. I do not see any conflict with the current approach,
because estimation is a way of acquiring knowledge. In my view, the essen-
tial characteristic of the Bornhuetter-Ferguson method is that predictions
of outstanding claims of a specific accident year only depend on the risk
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32 4. The number of unreported claims

exposed and a delay pattern, but not on the already observed claim history
of that accident year.
An advantage of the Bornhuetter-Ferguson method is that is provides

stable estimates for the newer, undeveloped accident periods, based on
experience from older periods.
A disadvantage of the Bornhuetter-Ferguson method is that its projec-

tions are relatively unresponsive to changes in observed claim frequencies —
but then, if one à priori believed that changes in claim frequency are a pos-
sibility, one should not have made the assumption θ1 = θ2 = · · · = θJ = θ
in the first place. Let us therefore consider ways in which the assumption
of constant claim frequencies can be relaxed.

4.4 Varying claim frequency: The chain-ladder
method

An extreme alternative to the assumption underlying the Bornhuetter-
Ferguson method, is to postulate that all claim frequencies are potentially
different and need to be estimated in their own right. Instead of estimating
θ and π0, · · · , πD, we must then estimate the parameters θ1, · · · , θJ and
π0, · · · , πD.In that case, the likelihood function is

L =
J∏
j=1

J−j∏
d=0

(pjθjπd)
Njd

Njd!
e−pjθjπd (4.11)

The log-likelihood function is then:

ln(L) =
J∑
j=1

Nj,≤J−j ln(θj) +
D∑
d=0

N≤J−d,d ln(πd)

−
J∑
j=1

J−j∑
d=0

pjdθjπd + terms not involving θj or πd

(4.12)

Differentiating the log-likelihood and equating the derivatives to zero, we
find the defining equations of the maximum likelihood estimates:

Nj,≤J−j︸ ︷︷ ︸
Row sum

= pjθ
∗
jπ

∗
≤J−j for j = 1, · · · , J (4.13)

and
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4.4 Varying claim frequency: The chain-ladder method 33

N≤J−d,d︸ ︷︷ ︸
Column sum

=

⎛
⎝J−d∑
j=1

pjθ
∗
j

⎞
⎠π∗d for d = 0, · · · , D (4.14)

Using the constraint
∑D

d=0 πd = 1, the sets of equations (4.13) and (4.14)
can be solved by backward recursion, starting in the far north-east corner
of the triangle with θ∗1, then finding π

∗
J−1, then carrying on with θ

∗
2, then

π∗J−2, and so on.
Due to (4.13), the maximum likelihood prediction of claims IBNR for

j + d > J becomes

N jd = pjθ
∗
jπ

∗
d = pj

(
Nj,≤J−j
pjπ∗≤J−j

)
π∗d = Nj,≤J−j

(
π∗d

π∗≤J−j

)
(4.15)

In the literature is is called the Chain-ladder method. The essence of
this method is that it extrapolates the observed claim number of accident
period j into the future, using “grossing up” of the observed claim number
in proportion with the estimated delay probabilities.
An advantage of the Chain-ladder method is that its predicted claim

numbers are highly responsive to changes in the observed claim numbers.
Any change in reported claim numbers of a specific accident period is ex-
trapolated in the same proportion to the estimated, unreported claim num-
bers of that accident period.
A disadvantage of the Chain-ladder method is its sensitivity. In long-

tail lines of business, where π∗≤J−j will be small for the newer accident
periods, a small and possibly random fluctuation in the reported claim
number can lead to a much larger change in the Chain-ladder prediction of
the unreported claim number. In essence, a small number will be wagging
a heavy tail.
The backward recursion implied by (4.13) and (4.14) is very awkward.

One can avoid it using an equivalence that is proved by Taylor (2000, pp.
34). To this end we define development factors.

Definition 1 The development factors δd, d = 1, 2, · · · are defined as the
relative increase in the reported proportion from development period d − 1
to development period d:

δd =
π≤d
π≤d−1

(4.16)

Empirical development factors are easy to calculate as ratios between
numbers of claims reported in successive development periods:

δ∗d =

∑J−d
j=1 Nj,≤d∑J−d
j=1 Nj,≤d−1

(4.17)
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34 4. The number of unreported claims

Note that the summation in the numerator and the denominator extends
over the accident periods for which both numbers are available. Now we
can prove the equivalence that makes life a lot easier.

Lemma 2 The ratios between successive estimates of the cumulative de-
lay probabilities π∗≤d are equal to the empirical development factors δ

∗
d. In

formulas, this means that

π∗≤d
π∗≤d−1

=
π∗0 + π

∗
1 + · · ·+ π∗d−1 + π∗d

π∗0 + π
∗
1 + · · ·+ π∗d−1

= δ∗d (4.18)

Proof. We prove equation (4.18) by backwards induction. The induction

step begins with assuming that for an arbitrary d ≤ J − 1 the equality
J−d∑
j=1

Nj,≤d =
J−d∑
j=1

pjθ
∗
jπ

∗
≤d (4.19)

holds. Use (4.13) to verify that N1,≤J−1 = p1θ
∗
1π

∗
≤J−1, which means that

(4.19) holds for d = D = J−1.From (4.19) and using (4.14) we then derive
that

J−d∑
j=1

Nj,≤d−1 =
J−d∑
j=1

(Nj,≤d −Njd)

=
J−d∑
j=1

pjθ
∗
j

(
π∗≤d − π∗d

)
=

J−d∑
j=1

pjθ
∗
jπ

∗
≤d−1

(4.20)

Dividing both sides of (4.19) by (4.20) we find

δ∗d =

∑J−d
j=1 Nj,≤d∑J−d
j=1 Nj,≤d−1

=
π∗≤d
π∗≤d−1

(4.21)

Thus the sought-after equation (4.18) holds for this particular value of d.
Now it only remains to show that (4.19) carries over to d− 1. Using (4.13)
again we find

J−(d−1)∑
j=1

Nj,≤d−1 =
J−d∑
j=1

Nj,≤d−1 +NJ−(d−1),≤d−1

=
J−d∑
j=1

pjθ
∗
jπ

∗
≤d−1 + pJ−(d−1)θ

∗
J−(d−1)π

∗
≤d−1

=
J−(d−1)∑
j=1

pjθ
∗
jπ

∗
≤d−1

(4.22)
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4.5 Bootstrapping in fixed-parameter models 35

So (4.19) indeed holds for d− 1. This concludes the induction.
Thus an easy way to calculate the maximum likelihood estimates of the

delay probabilities and claim frequencies is via the empirical development
factors. The algorithm goes as follows:

1. Calculate empirical development factors δ∗d =
∑J−d

j=1 Nj,≤d∑J−d
j=1 Nj,≤d−1

for d =

1, · · · , D. Set δ∗0 = 1.
2. Calculate cumulative development factors Δ∗d =

∏d
d′=0 δ

∗
d′ for d =

0, · · · , D.
3. Calculate cumulative delay probabilities π∗≤d = Δ∗d/Δ

∗
D for d =

0, · · · , D.
4. Calculate incremental delay probabilities π∗d = π∗≤d − π∗≤d−1 for d =
1, · · · , D, and π∗0 = π∗≤0.

5. Calculate claim frequencies θ∗j = Nj,≤J−j/pjπ∗≤J−j for j = 1, · · · , J .
This algorithm is straightforward to implement in a spreadsheet program.
Actuaries love their development factors, and major parts of the theory

for loss reserving are formulated exclusively in terms of development fac-
tors. In the opinion of this author, development proportions (here: delay
probabilities) provide a far more understandable representation of claim
development than the ubiquitous development factors.
Since the prediction of future claim numbers (4.15) does not depend

on the exposures pj , one can use any exposure measure and get the same
predictions (but not the same claim frequencies). The Chain-ladder method
is often referred to as being exposure-independent. This author prefers to
view the Chain-ladder method as a specific way of estimating the claim
frequencies.

4.5 Bootstrapping in fixed-parameter models

Having derived estimates of the claim frequencies
{
θ∗j : j = 1, · · · , J

}
and

delay distributions {π∗d : d = 0, · · · , D}, the next question is about the un-
certainty of the predictions. Under the Poisson assumption (4.2), one can
apply a parametric bootstrap procedure (reference needed). The proce-
dure amounts to simulating random outcomes of past and future claims,
then applying the prediction method, and finally comparing the simulated
outcome of future claims with the simulated predictions.

The algorithm goes as follows:
For i = 1, · · · ,M :
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36 4. The number of unreported claims

1. Generate {N (i)
jd : j = 1, · · · , J, d = 0, · · · , D} in such a way that

N
(i)
jd ∼Poisson(pjθ∗jπ∗d) and independent.

2. Based on pseudo-observations {N (i)
jd : j + d ≤ J}, calculate pseudo-

predictions {N (i)

jd : j + d > J}.
3. Calculate pseudo-errors of any desired form, for example E(i) =∑

j+d>J

(
N
(i)
jd −N

(i)

jd

)
.

For each of theM simulations, store the measures that are of interest, for
example,

{
E(i) : i = 1, · · · ,M}

. At the end, one can analyse the simulated
probability distribution of the measures under investigation.

4.6 Varying claim frequency: A Bayesian model

4.6.1 The model

In the previous two sections we have seen two models that both are based
on extreme assumptions. In section 4.3 we assumed that the claim frequen-
cies pertaining to different accident period were identical and derived the
Bornhuetter-Ferguson method. In section 4.4 we assumed that every ac-
cident period’s claim frequency needed to be established in isolation and
found the Chain-ladder method. Both Bornhuetter-Ferguson’s method and
the Chain-ladder method are in widespread use. Still, the extreme assump-
tions that underly both methods are somewhat unsatisfactory. Claim fre-
quencies do differ from period period, but in many lines of insurance we
have an idea of the claim frequency we can expect.
In trying to strike a balance between the assumption of constant claim

frequency on the one hand, and no assumption about claim frequencies on
the other hand, one could consider the following model.
Assume that instead of being fixed model parameters, the claim frequen-

cies θ1, · · · , θJ are the realisations of random variables Θ1, · · · ,ΘJ , which
follow some probability distribution. Then we assume that the conditional
probability distribution of Njd, given Θj = θj , is a Poisson with expected
value pjθjπd. The Njd are still assumed to be independent, but now in
the conditional distribution given Θ1, · · · ,ΘJ . To start with, let us assume
that the claim frequencies Θ1, · · · ,ΘJ are independent and identically dis-
tributed with a continuous distribution U , the density of which we denote
by u.
From Bayesian estimation theory it is well known that the best predictor

ofNjd (j+d > J) with respect to expected squared error isN jd =E(Njd|D),
where D represents the observed data. Using the assumption that claims
develop independently in different accident periods, we can further write
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4.6 Varying claim frequency: A Bayesian model 37

N jd =E(Njd|Dj), where Dj = (Nj0, · · · , Nj,J−j) represents the observed
data from accident period j alone.
Now using the law of iterated expectations and the assumed indepen-

dence between the Njd in the conditional distribution given Θj = θj , one
can find the conditional expectation of Njd (j + d > J), given the vector
of observations Dj to be:

E(Njd|Dj) = E(E(Njd|Θj ,Dj)|Dj)
= E(E(Njd|Θj)|Dj)
= E(pjΘjπd|Dj)
= pjE(Θj |Dj)πd

(4.23)

Thus we need to find the conditional distribution of Θj , given the obser-
vations Dj . In general terms, the Bayes inversion rule states that

u(θj |Dj) =
p(Dj |θj)u(θj)∫
p(Dj |θ)u(θ)dθ

(4.24)

To compute this expression, a distributional assumption is necessary.
Thus let us assume that each Θj follows a Γ(α, β) distribution. The prob-

ability density of the gamma distribution with parameters (α, β) is

u(θ) =
βα

Γ(α)
θα−1e−βθI(θ > 0) (4.25)

The mean and variance ofΘ1, · · · ,ΘJ are then E(Θj) = α/β and Var(Θj) =
α/β2.
The family of gamma distributions form a family of conjugate priors to

the Poisson distributions. By the Bayes inversion rule (4.24), the condi-
tional density of Θj , given Dj , is proportional to the conditional density of
Dj , given Θj , and the unconditional density of Θj :

u(θj |Dj) ∝ p(Dj |θj)u(θj)
=

J−j∏
d=0

(pjθjπd)
Njd

Njd!
e−pjθjπd · βα

Γ(α)θ
α−1
j e−βjθj

∝ θ
α+Nj,≤J−j−1
j e−(β+pjπ≤J−j)θj

(ignoring terms that do not involve θj)

(4.26)

Therefore the conditional distribution of Θj , given the observations Dj ,
must again be a gamma with updated parameters:

α = α+Nj,≤J−j
β = β + pjπ≤J−j

(4.27)
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Thence we derive conditional expected value ofΘj , given the observations
Dj :

Θj = E (Θj |Dj) =
α+Nj,≤J−j
β + pjπ≤J−j

(4.28)

Note that the formula may also be written as

Θj = ζj

(
Nj,≤J−j
pjπ≤J−j

)
+
(
1− ζj

)(α
β

)
(4.29)

where he have defined so-called credibility factors,

ζj =
pjπ≤J−j

pjπ≤J−j + β
(4.30)

From (4.29) one sees that the estimate Θj is a weighted average of a
Chain-ladder type estimate of θj and the prior mean. The resulting credi-
bility predictor of outstanding claims,

N jd = pjΘjπd (4.31)

is a blend of a Bornhuetter-Ferguson type estimate and a Chain-ladder
type estimate. The Bornhuetter-Ferguson method is a limiting case for β →
∞ (no variation in claim frequencies), while the Chain Ladder method is a
limiting case for β → 0 (no statistical likeness between claim frequencies).

The mean squared error of prediction of the predictor N jd for j + d > J
is

E
((
Njd −N jd

)2 |Dj

)
= E

((
Njd −N jd

)2 |Dj

)
= E

(
(Njd − E(Njd|Dj))

2 |Dj

)
Var (Njd|Dj)
E (Var (Njd|Θj) |Dj) +Var (E (Njd|Θj) |Dj)
E (pjΘjπd|Dj) +Var (pjΘjπd|Dj)

pjπd
α+Nj,≤J−j
β+pjπ≤J−j

+ (pjπd)
2 α+Nj,≤J−j
(β+pjπ≤J−j)

2

(4.32)

4.6.2 Parameter estimation

In a genuine Bayesian framework, the gamma prior and posterior distribu-
tions represent uncertainty about the true values of the claim frequencies
Θ1, · · · ,ΘJ .
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4.7 Varying claim frequency: The Bühlmann-Straub model 39

In an empirical Bayesian framework, the gamma distributions have a fre-
quentist interpretation and, as a consequence, one may attempt to estimate
the parameters (α, β). This can be done in a two-step procedure:
a) First, estimate the delay probabilities π0, · · · , πD;
b) Then estimate the parameters (α, β) in the gamma distribution,

treating the estimated delay probabilities π∗0, · · · , π∗D as fixed parameters.
In step (b) one can estimate the parameters (α, β) by maximising the

unconditional likelihood function of the data, which is a product of negative
binomial densities:

L =
∏J
j=1

∫∞
0

∏J−j
d=0

(pjθjπd)
Njd

Njd!
e−pjθjπd · βα

Γ(α)θ
α−1
j e−βjθjdθj

∝ ∏J
j=1

βα

Γ(α)

Γ(α+Nj,≤J−j)
(β+pjπ≤J−j)

α+Nj,≤J−j

(4.33)

If the distribution of Θ1, · · · ,ΘJ is not assumed to be a gamma dis-
tribution, the derivation of the conditional distribution of Θj , given the
observations, becomes much harder.

4.7 Varying claim frequency: The
Bühlmann-Straub model

4.7.1 The model

In previous section we assumed that the claim frequencies Θ1, · · · ,ΘJ have
a gamma distribution, which allowed us to use a Bayesian argument to
arrive at the formula (4.29). The credibility factors could also be expressed
in terms of the mean τ = α/β and variance λ = α/β2 in the gamma
distribution, in the following way:

ζj =
pjπ≤J−jλ

pjπ≤J−jλ+ τ
(4.34)

There is another theoretical avenue to the formulas (4.29) and (4.31),
using linear least squares credibility theory. Assume that

1. The claim frequencies Θ1, · · · ,ΘJ are independent and identically
distributed with mean τ =E(Θj) and variance λ =Var(Θj). Assume
for the present that the mean τ =E(Θj) and the variance λ =Var(Θj)
are known.

2. Conditional on Θj , the reported claim numbers Njd are independent,
and Poisson distributed, Njd | Θj = θj ∼Poisson(pjθjπd).

3. Variables belonging to different accident periods are stochastically
independent.
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4. The estimator of Θj is restricted to be linear and in the form: Θj =

zj

(
Nj,≤J−j
pjπ≤J−j

)
+ (1− zj) τ .

5. The predictor of Njd for j + d > J is N jd = pjΘjπd.

Lemma 3 For an arbitrary, non-random value of zj, the estimator Θj has
the following mean squared error,

Q (zj) = E
(
Θj −Θj

)2
= z2j

τ

pjπ≤J−j
+ (1− zj)2 λ (4.35)

and the mean squared error of prediction of the predictor N jd is

E
(
N jd −Njd

)2
= (pjπd)

2
Q (zj) + pjπdτ (4.36)

and

E
(
N j,>J−j −Nj,>J−j

)2
= (pjπ>J−j)

2
Q (zj) + pjπ>J−jτ (4.37)

and

E

⎛
⎝ J∑
j=1

(
N j,>J−j −Nj,>J−j

)⎞⎠2

=
J∑
j=1

(
(pjπ>J−j)

2
Q (zj) + pjπ>J−jτ

)
(4.38)

Proof. We start by proving (4.35).

Q (zj) = E
(
zj

Nj,≤J−j
pjπ≤J−j

+ (1− zj) τ −Θj
)2

= E
(
zj

(
Nj,≤J−j
pjπ≤J−j

−Θj
)
+ (1− zj) (τ −Θj)

)2
= z2jE

(
Nj,≤J−j
pjπ≤J−j

−Θj
)2
+ (1− zj)2 E (τ −Θj)2

+ 2zj (1− zj)E
(
Nj,≤J−j
pjπ≤J−j

−Θj
)
(τ −Θj)

(4.39)

Now we calculate

E
(
Nj,≤J−j
pjπ≤J−j

−Θj
)2

= EE
((

Nj,≤J−j
pjπ≤J−j

−Θj
)2
|Θj

)
= EVar

(
Nj,≤J−j
pjπ≤J−j

|Θj
)

= τ
pjπ≤J−j

(4.40)

and
E (τ −Θj)2 = λ (4.41)
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and

E
(
Nj,≤J−j
pjπ≤J−j

−Θj
)
(τ −Θj) = EE

((
Nj,≤J−j
pjπ≤J−j

−Θj
)
(τ −Θj) |Θj

)
= 0

(4.42)
This gives us (4.35). To prove (4.36) we can write

E
(
N jd −Njd

)2
= E

(
pjΘjπd −Njd

)2
= E

(
pjΘjπd − pjΘjπd + pjΘjπd −Njd

)2
= E

(
pjΘjπd − pjΘjπd

)2
+ E (pjΘjπd −Njd)2

+ 2E
(
pjΘjπd − pjΘjπd

)
(pjΘjπd −Njd)

(4.43)
Now we calculate

E
(
pjΘjπd − pjΘjπd

)2
= (pjπd)

2 E
(
Θj −Θj

)2
= (pjπd)

2
Q(zj) (4.44)

and

E (pjΘjπd −Njd)2 = EE
(
(pjΘjπd −Njd)2 |Θj

)
= EVar (Njd|Θj)
= E (pjΘjπd)
= pjπdτ

(4.45)

and

E
(
pjΘjπd − pjΘjπd

)
(pjΘjπd −Njd) = EE

((
pjΘjπd − pjΘjπd

)
(pjΘjπd −Njd) |Θj

)
= 0

(4.46)
The last equation holds because Θj and Njd are conditionally indepen-

dent, given Θj , for j + d > J.
The equation (4.37) follows similarly, and (4.38) follows from the assumed

independence of different accident years’ claim development.
An arbitrary value of zj could be, for example, zj = 1 (Chain-ladder)

or zj = 0 (Bornhuetter-Ferguson) or another value between zero and one.
The question naturally arises what the best choice of zj would be within
the constraints of the model. Minimising (4.35) it is easy to see that the
optimal choice of zj is exactly the one defined in (4.34).

4.7.2 Parameter estimation

We start with the following

Lemma 4 Define chain ladder estimates θ̂j = Nj,≤J−j/pjπ∗≤J−j and

τ∗ =

⎛
⎝ J∑
j=1

ζj

⎞
⎠−1

J∑
j=1

ζj θ̂j (4.47)
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and

λ∗ = (J − 1)−1
J∑
j=1

ζj

(
θ̂j − τ∗

)2
(4.48)

Under the assumptions of the Bühlmann-Straub model, the following
equations hold

E (τ∗) = τ (4.49)

and

E (λ∗) = λ (4.50)

Proof. The first equation (4.49) follows directly from

E
(
θ̂j

)
= EE (Nj,≤J−j |Θj) /pjπ∗≤J−j
= E (pjΘjπ≤J−j) /pjπ∗≤J−j
= τ

(4.51)

To prove the second equation (4.50), we first verify that

Var(θ̂j) = EVar
(
θ̂j |Θj

)
+VarE

(
θ̂j |Θj

)
= E

(
Θj

pjπ≤J−j

)
+Var (Θj)

= τ
pjπ≤J−j

+ λ

= λ/ζj

(4.52)

Defining ζ =
∑J

j=1 ζj, we find that

Var(τ∗) = ζ−2
J∑
j=1

ζ2jVar
(
θ̂j

)
= ζ−2

J∑
j=1

ζ2jλ/ζj

= λ/ζ

(4.53)

and

Cov(θ̂j , τ∗) = ζ−1ζjVar
(
θ̂j

)
= ζ−1ζjλ/ζj
= λ/ζ

(4.54)
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Thence we can verify that

E(λ∗) = (J − 1)−1
J∑
j=1

ζjE
(
θ̂j − τ∗

)2
= (J − 1)−1

J∑
j=1

ζjVar
(
θ̂j − τ∗

)
= (J − 1)−1

J∑
j=1

ζj

(
Var

(
θ̂j

)
+Var (τ∗)− 2Cov

(
θ̂j , τ

∗
))

= (J − 1)−1
J∑
j=1

ζj
(
λ/ζj + λ/ζ − 2λ/ζ

)
= (J − 1)−1 λ(J + 1− 2)
= λ

(4.55)

The estimators (4.47) and (4.48) cannot be applied directly because
the weights ζj involve the estimands τ and λ. They are therefore called
pseudo-estimators. To estimate the parameters, one can proceed as follows:
First, estimate the delay probabilities π0, · · · , πD. Then apply the iteration
method of De Vylder to estimate τ and λ, treating the delay probabilities
as fixed. The iteration method goes a follows:

1. Pick starting values τ∗(0) and λ
∗
(0). Set the iteration number to i = 0.

2. For j = 1, · · · , J , calculate the Chain Ladder estimates θ̂j = Nj,≤J−j/pjπ∗≤J−j .

3. For j = 1, · · · , J , calculate credibility factors z(i)j =
pjπ

∗
≤J−jλ

∗
(i)

pjπ∗≤J−jλ
∗
(i)
+τ∗

(i)
.

4. Calculate a new estimate of the mean τ∗(i+1) =
J∑
j=1

z
(i)
j θ̂j/

J∑
j=1

z
(i)
j .

5. Calculate a new estimate of the variance λ∗(i+1) = (J − 1)−1
J∑
j=1

z
(i)
j

(
θ̂j − τ∗(i+1)

)2
.

Repeat (3)-(5) until convergence is reached.

4.8 Varying claim frequency: A random walk model

The Bühlmann-Straub model represents a relaxation of the strong assump-
tion underlying Bornhuetter-Ferguson’s method (identical claim frequen-
cies) and a tightening of the slack assumption underlying the chain ladder
method (unrelated claim frequencies). Its underlying asumption is that
claim frequencies are independent and identically distributed replicates
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from an underlying probability distribution. In particular, this means that
for every new accident year the à priori claim frequency is τ .
In real-life situations, claim frequencies are neither constant over time

nor independent, but behave like an auto-correlated time series. Claim fre-
quencies are determined by a number of factors that change gradually over
time, including underlying risk conditions, policy terms and deductibles,
and the insureds´ overall propensity to make a claim. Therefore claim fre-
quencies develop in a way that suggests that there should be some benefit
in including data from previous accident periods, when one is trying to
estimate the claim frequency in a given accident period.
A simple assumption is that the claim frequencies follow a random walk

process:

Θj = Θj−1 + εj (4.56)

where ε1, · · · , εJ are independent and identically distributed error terms
with mean zero and variance σ2. Assume also, pro forma, that there ex-
ists an initial random variable Θ0 that has mean τ =E(Θ0) and variance
σ20 =Var(Θ0). Then it is easy to verify that the random vector of claim
frequencies ΘJ = (Θ1, · · · ,ΘJ)′ has mean

τ J = E (ΘJ) = τ [1, · · · , 1]′ = τ1 (4.57)

and a covariance matrix

ΛJ = Cov (ΘJ) = [λjk]j,k=1,··· ,J (4.58)

with elements λjk = σ20 +min(j, k)σ
2.

As before, let us assume that

Njd|Θj ∼ Poisson(pjΘjπd) (4.59)

and that the Njd are stochastically independent, given ΘJ . Write

Θ̂j =
Nj,≤J−j
pjπ≤J−j

for j = 1, · · · , J (4.60)

and verify that E(Θ̂J |ΘJ) = ΘJ and Var(Θ̂J |ΘJ) = diag(Θj/pjπ≤J−j) .
A linear estimator of ΘJ is then

ΘJ = ZJΘ̂J + (I− ZJ) τ J (4.61)

and, as we will see in the next section, the best linear estimator of ΘJ

is given when one uses the credibility matrix
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ZJ = ΛJ

⎛
⎜⎜⎜⎜⎝ΛJ +

⎡
⎢⎢⎢⎢⎣
τ1/p1π≤J−1 0 . . . 0

0 τ2/p2π≤J−2
...

...
. . . 0

0 . . . 0 τJ/pJπ≤0

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠
−1

(4.62)
As in the the Bühlmann-Straub model, one has the choice between a

subjectivist approach, where the mean τ and the variances σ20 and σ
2 rep-

resent a prior guess and its uncertainty; and a frequentist approach, where
τ and σ2 may be estimated from the data (the prior variance σ20 cannot be
estimated on the basis of just one realisation of the process).
Assume that π0, · · · , πD have already been estimated. Empirical estima-

tion of τ and σ2 can then start with the relations

E
(
Θ̂J

)
= τ · 1 (4.63)

and

E
(
Θ̂j − Θ̂j−1

)2
= σ2 + τ

(
1

pjπ≤J−j
+

1

pj−1π≤J−(j−1)

)
(4.64)

for j = 1, · · · , J . Given an estimate τ∗ one could attempt to estimate σ2
by

σ∗2 =

⎛
⎝ J∑
j=2

wj

⎞
⎠−1

J∑
j=2

wj

((
Θ̂j − Θ̂j−1

)2
− τ∗

(
1

pjπ≤J−j
+

1

pj−1π≤J−(j−1)

))
(4.65)

using suitable weights wj .
One could argue that strictly positive claim frequencies cannot be mod-

elled as a random walk, as claim frequencies cannot become negative. Like
all statistical models, the random walk model is only an approximation to
reality. The purpose of the model is to allow for a pattern of varying claim
frequencies, while at the same time retaining some transfer of information
between consecutive accident periods.
One can develop more sophisticated models for the time series of claim

frequencies. For example, if the basic time period is shorter than a period,
it may be necessary to model seasonal variation. This can be done within
the framework of section 4.9, at the expense of having to specify a larger
number of model parameters.
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4.9 Varying claim frequency: A general credibility
model

We turn to a general credibility model. Let us therefore assume that the
evolution of claim frequencies is governed by a stochastic process of some
form. Denote the mean of the vector ΘJ = (Θ1, · · · ,ΘJ)′ by τ J and its
covariance matrix by ΛJ . Assume for the present that τ J and ΛJ are
known quantities.
We assume as before that conditional on unknown claim frequencies

(Θ1, · · · ,ΘJ), the claim numbers Njd are independent random variables,
each with a Poisson distribution,

Njd | Θj = θj ∼ Poisson(pjθjπd) (4.66)

with fixed, non-negative delay probabilities {πd : d = 0, 1, · · · } that add
to one.
Define the diagonal matrix

VJ =

⎡
⎢⎢⎢⎢⎣
p1π≤J−1 0 · · · 0

0 p2π≤J−2
...

...
. . . 0

0 · · · 0 pJπ≤0

⎤
⎥⎥⎥⎥⎦ (4.67)

At any time J , the vector of reported claim counts

NJ =

⎡
⎢⎢⎢⎣
N1,≤J−1
N2,≤J−2

...
NJ,≤0

⎤
⎥⎥⎥⎦ (4.68)

is linearly regressed on the vector of claim frequenciesΘJ = (Θ1, · · · ,ΘJ)′
through the equation

E (NJ | ΘJ) = VJΘJ (4.69)

and has a covariance matrix given by

Cov (NJ | ΘJ) = VJdiag (ΘJ) (4.70)

’Chain-ladder estimates’ of the unknown claim frequencies (Θ1, · · · ,ΘJ)
are given by

Θ̂J = V
−1
J NJ =

⎡
⎢⎢⎢⎣
N1,≤J−1/p1π≤J−1
N2,≤J−2/p2π≤J−2

...
NJ,≤0/pJπ≤0

⎤
⎥⎥⎥⎦ (4.71)
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’Bornhuetter-Ferguson estimates’ of the unknown claim frequencies (Θ1, · · · ,ΘJ)
are given by the prior mean vector τ J . A general linear mixture of the two
types of estimate is

ΘJ = ZJΘ̂J + (I− ZJ) τ J (4.72)

The mean squared error matrix of the estimator ΘJ is

Q (ZJ) = E
(
ΘJ −ΘJ

) (
ΘJ −ΘJ

)′
= ZJV

−1
J diag (τ J)Z′J + (I− ZJ)ΛJ (I− ZJ)′

(4.73)

Using the apparatus of credibility theory, we know that the best linear
estimator of ΘJ based on the vector of observations NJ is given by the
following choice of credibility matrix:

ZJ = ΛJ
(
ΛJ +V

−1
J diag (τ J)

)−1
(4.74)

Having thus estimated (Θ1, · · · ,ΘJ) , the credibility predictor of the
number of claims IBNR in respect of accident period j, is

N j,>J−j = pjΘjπ>J−j (4.75)

and its mean squared error is

E
(
N j,>J−j −Nj,>J−j

)2
= (pjπ>J−j)

2
[Q (ZJ)]jj + pjπ>J−jτ j (4.76)

The credibility predictor of the total number of claims IBNR is

N> =
J∑
j=1

pjΘjπ>J−j (4.77)

with mean squared error

E
(
N> −N>

)2
=

J∑
j=1

J∑
j′=1

(pjπ>J−j) [Q (ZJ)]jj′ (pj′π>J−j′)+
J∑
j=1

pjπ>J−jτ j

Many different time series models can be formulated with the proper
specification of the matrices τ J and ΛJ . In the previous section we saw
one possible specification, where claim frequencies perform a random walk.
Rather than to derive an "explicit" form of the best linear estimator for
every specification of the mean-covariance structure, it is much easier to
treat (4.74) as the explicit form that covers all possible specifications.
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4.10 The number of claims CBNI

Claims CBNI are claims that will occur under policies which are in force
on the balance date and which will remain in force for some time after the
balance date. If no policy has a term of longer than one period, all claims
CBNI at the end of period J will occur during period J + 1. Denote the
number of claims CBNI at the end of period J by NJ+1|J and the unexpired
risk exposure by pJ+1|J .
Traditionally, the unearned premium was seen to be a sufficient provision

for unexpired risk. Under newer accounting rules, if the actuary´s estimate
of the unexpired risk exceeds the unearned premium, an additional provi-
sion must be made. That provision is alternatively called an “unexpired
risk provision”, or a “premium deficiency provision”. I do not know of any
accounting standard that allows a provision for claims CBNI that is less
than the unearned premium. Anyway, the actuary needs an estimate of the
number and the amount of claims CBNI.
In the current model framework, the best estimate of the number of

claims CBNI becomes

NJ+1|J = pJ+1|JΘJ+1|J , (4.78)

where ΘJ+1|J is a predictor of ΘJ+1 that is based on data up to time J .
Within the Bornhuetter-Ferguson model with constant claim frequencies,

a natural course of action is to equate ΘJ+1|J to the previously estimated
Θ1 = · · · = ΘJ .
Within the chain ladder model, one has no guidance as to what one

should think of the accident period j+1. Being a pragmatist, one could of
course set ΘJ+1|J = ΘJ , believing that risk conditions next period should
not be too different from risk conditions this period. But in doing so, one
would base one´s expectation for the period J + 1 on the estimate that
has the least amount of data to substantiate it. Alternatively, one could set
ΘJ+1|J =average

(
Θ1, · · · ,ΘJ

)
or some moving average of the latest peri-

ods. None of these fixes, however practical, has any theoretical foundation
in the assumptions underlying of the chain ladder model.
Within the Bühlmann-Straub model, the theoretically right estimate

would be ΘJ+1|J = τ . The mean squared error of prediction would be

E
(
NJ+1|J −NJ+1|J

)2
= p2J+1|Jλ+ pJ+1|Jτ . (4.79)

Within the random walk model, the theoretically right estimate isΘJ+1|J =
ΘJ . However, unlike in the chain ladder model, the estimate will be based
on the entire claim history, not just the claims of the last period. The mean
squared error of prediction would be

E
(
NJ+1|J −NJ+1|J

)2
= p2J+1|J

(
[Q (ZJ)]JJ + σ

2
)
+ pJ+1|Jτ . (4.80)
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See chapter 10 for more examples of modelling the claims frequency
process.

4.11 Measures of risk exposure

We have defined pj as a measure of risk exposure. Let us briefly consider
what that could be.
In lines of business with fairly homogeneous risks, the number of risks

or number of policies will normally be adequate. For example domestic
property insurance, motor vehicle insurance, travel insurance, accident in-
surance, health insurance.
In lines of business where individual policies can cover large or small

collectives, one should use the number of risks covered, like insured persons
or labour-years. Example: Workers Compensation insurance, motor vehicle
fleet insurance, or any other collective form of insurance where an insurance
can cover a variable number of otherwise homogenous risks.
In some lines of business it is difficult to quantify the amount of risk.

Examples are liability insurance and most business insurances. There one
can use the premium as a proxy, but only if the average premium rate has
been reasonably steady over time.
If the line of business generates a substantial number of claims that are

notified in the accident period (d = 0), then pj = Nj0 can be used as a
proxy measure of risk exposed. This method is very useful in practice when
other exposure measures are unavailable or unreliable.

4.12 Tail development factors

We assumed above that the claims belonging to the first accident period
were fully notified, i.e.

∑D
d=0 πd = 1. In practice it is very common to en-

counter lines of business where one must expect further claim notifications
even for the oldest accident periods. In those cases one must extend the
sequence of delay probabilities beyond D = J − 1. As there will be no data
to base estimates on, the common procedure is to extrapolate the “tail” by
some type of exponential curve.
If the delay probabilities are estimated as in the Chain-ladder method,

using empirical development factors δ∗d, a typical formula would be

δ∗d = 1 + γ
(
δ∗d−1 − 1

)
(4.81)

for d > D, with a suitably chosen value of γ. If the delay probabilities
are estimated as in the Bornhuetter-Ferguson method, using delay-specific
claim frequencies θ∗d, a typical formula would be

DRAFT 
09.04.14



50 4. The number of unreported claims

θ∗d = γθ∗d−1. (4.82)

In both cases on would choose γ ∈ [0, 1).
If the empirical development factors or claim frequencies exhibit erratic

behaviour already at earlier delays, it may be appropriate to start the
smoothing formula at an earlier delay than D.If necessary, different values
of γ can be applied to different sections of the tail. Note that the outstand-
ing claim estimates are very sensitive to the choice of tail factors, because
whatever additional development one is assuming beyond the observed time
horizon D, will affect every single accident year.
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The cost of unreported claims

5.1 Introduction

This chapter treats the estimation of the cost of unreported claims, in a sit-
uation where it is possible to estimate separately the number of unreported
claims.

5.2 The cost of claims IBNR

We now turn to estimating the cost of claims IBNR.
The severities of individual claims reported in period j + d in respect of

accidents incurred in period j we denote by
{
Y
(k)
jd : k = 1, · · · , Njd

}
. We

assume that Y (k)jd are independent random variables with a distribution Gd
that may depend on the reporting delay d. We also assume that the sever-
ities are independent of the claim counts. Denote the mean and variance
of Y (k)jd by ξd and σ

2
d , and let ρd = σ2d + ξ

2
d denote the non-central second

order moment.
In the conditional distribution given ΘJ = (Θ1, · · · ,ΘJ)′, the amounts

{Yj,>J−j : j = 1, · · · , J} of claims IBNR are independent random variables,
and Yj,>J−j has a compound Poisson distribution with frequency parameter
pjθjπ>J−j and a mixed severity distribution (the tail severity distribution)
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G>J−j = π−1>J−j

∞∑
d=J−j+1

πdGd (5.1)

We let the inequality subscript in conjunction with an overbar denote a
π-weighted average. The non-central first and second order moments of the
tail severity distribution are then

ξ>J−j = π−1>J−j

∞∑
d=J−j+1

πdξd (5.2)

and

ρ>J−j = π−1>J−j

∞∑
d=J−j+1

πdρd (5.3)

The credibility predictor of the amount of claims IBNR in respect of
accidents incurred in period j, is then

Y j,>J−j = pjΘjπ>J−jξ>J−j (5.4)

and its mean squared error is

E
(
Y j,>J−j − Yj,>J−j

)2
=
(
pjπ>J−jξ>J−j

)2
[Q (ZJ)]jj+pjπ>J−jτ jρ>J−j

(5.5)
The credibility predictor of the total amount of claims IBNR in respect

of all accident periods is

Y > =
J∑
j=1

pjΘjπ>J−jξ>J−j (5.6)

with mean squared error

E
(
N> −N>

)2
=

∑J
j=1

∑J
j′=1

(
pjπ>J−jξ>J−j

)
[Q (ZJ)]jj′

(
pj′π>J−j′ξ>J−j′

)
+

∑J
j=1 pjπ>J−jτ jρ>J−j

(5.7)

5.3 The cost of claims CBNI

Let G =
∑∞

d=0 πdGd denote the probability distribution of all claims in-
curred in an accident period and denote by ξ =

∑∞
d=0 πdξd and ρ =∑∞

d=0 πdρd its first and non-central second order moment.
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An estimator of the amount of claims CBNI at time J is

Y J+1|J = pJ+1|JΘJ+1|Jξ (5.8)

and its mean squared error is

E
(
Y J+1|J − YJ+1|J

)2
=
(
p
J+1|J ξ

)2
E
(
ΘJ+1|J −ΘJ+1

)2
+ p

J+1|J τJ+1ρ
(5.9)

The exact form of the mean squared error E
(
ΘJ+1|J −ΘJ+1

)2
and the

expected claim frequency τ
J+1

depends on the model that is used for the
evolution of the claim frequencies.

5.4 Estimating the severity distribution

Until now we have assumed that the severity distributions Gd are known.
They must be estimated too, of course, or at least their first and second

order moments, ξd =E
(
Y
(k)
jd

)
and ρd =E

(
Y
(k)
jd

)2
. In this section we just

briefly touch some of the practical issues.
Given the ultimate claim amounts Y (k)jd for sufficiently many claims, the

severity distribution or its moments can be estimated by a range of statis-
tical techniques, ranging from the non-parametric to the fully parametric.
Of parametric distributions, the lognormal or pareto are usually good can-
didates for severity distributions in insurance, with the caveat that the
pareto distribution may not possess all the required moments.
As we noted in the previous sections, however, the ultimate claim amounts

will normally not be known for all claims. One will then have to use some
approximation, adjusting the results for any biases that they may contain.

• If reasonably reliable case estimates are available, one can base the
estimation on the total case estimates, treating them as if they were
the ultimate cost of the claims. Whether the average claim amount
will need to be adjusted, and in what direction, depends on the quality
of the case estimates.

• In an attempt to alleviate a problem with unreliable case estimates,
one could omit, say, claims reported in the last period (j + d = J) or
the last two periods from the estimation. This procedure works well
for short-tailed lines of insurance where claims are settled rapidly. For
long-tailed lines, if one wanted to be 100% that sure that the case
estimates were reliable or the claims settled, one would need to omit
so many reporting periods that there was no data left.
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• One could base the estimation on settled claims only. Unless one has
a significant volume of claim data, this method is likely to under-
estimate the mean severity and the variability of claims, as small
claims tend to be over-represented among settled claims.

• In order to avoid the bias inherent in using only settled claims, one
could apply a procedure that consists of estimating separately the
settlement pattern, and the severity distributions as a function of
the time to settlement. The overall severity distribution can then be
estimated as the weighted average of those distributions, with weights
provided by the settlement pattern.

• Having to specify (potentially) a different severity distribution for
each delay can require a great number of parameters, unless one is
able to find a suitable parametric representation of the dependency
between severity and reporting delay. Norberg (1999) proposes a joint
probability distribution for severity and reporting delay in continu-
ous time, that requires only three parameters (α, β, μ). In Norberg’s
model, Y ∼ Γ(α, β) and D|Y = y ∼ Γ (1, μy), where Y denotes
the claim amount and D denotes reporting delay in continuous time.
An implication of Norberg’s model is that large claims tend to be
reported more promptly than small claims. This makes the model
suitable for property insurance, less so for casualty insurance. An ad-
vantage of Norberg’s model is that its discretised version is a mixture
of gamma distributions - employing only three parameters (α, β, μ) -
that is mathematically tractable.

Generally, estimating the severity distribution and its dependency on the
reporting delay requires ad-hoc adjustments and a good deal of judgement.
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6
The cost of reported claims

6.1 Introduction

Let us now turn to the problem of estimating the ultimate cost of a cohort
of claims that has been reported in calendar period j+ d and was incurred
in accident period j, where of course j + d ≤ J . We know with certainty
the number of claims that have been reported (Njd) and any activity that
has already been recorded on the claims. We pretend to know the ultimate
cost of claims that are closed, but they could be reopened.
In this section two models will be proposed to estimate the ultimate cost

of reported claims. One model is based on payments and the other model is
based on reported claim cost, i.e. payments plus case estimates. Which basis
one should choose, depends on the situation. This author normally prefers
using reported claims, but in high-volume and reasonably short-tailed lines
of business, using paid claims may work just as well. An interesting area
for further research would be to formulate an elegant and tractable model
of the joint development of payments and case estimates.

6.2 Estimating claims RBNS by payment data

6.2.1 Background

For the cohort of claims that has been reported in calendar period j+d and
was incurred in accident period j, we denote the payments at delay t after
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56 6. The cost of reported claims

the reporting period by Ujdt. The unknown ultimate claim cost we denote
by Ujd and the unknown average severity by Ξjd. Thus Ujd = NjdΞjd is
the product of an observed number of claims and an unobserved average
severity,

Under the (reasonable) assumption that claim payments after the report-
ing date follow a certain pattern {υt : t = 0, 1, · · · } with

∑∞
t=0 υt = 1, one

can readily propose estimators of the outstanding cost of reported claims
in the cell (j, d):

• Alluding to a Bornhuetter-Ferguson estimator, one could estimate the
outstanding cost by U

"BF"
jd,>J−(j+d) = Njdξdυ>J−(j+d).

• Alluding to a Chain-ladder estimator, one could estimate the out-
standing cost by U

"CL"
jd,>J−(j+d) = Ujd,≤J−(j+d)

(
υ>J−(j+d)
υ≤J−(j+d)

)
.

• Alluding to credibility estimators, one could use a convex combination
of the two above.

In order to evaluate the mean squared error and to find an optimal
credibility estimator, further assumption are needed. Let us consider one
possible set of assumptions about the evolution of claim payments after the
reporting date.

6.2.2 The Dirichlet distribution

The Dirichlet distribution is a generalised Beta distribution on the (n −
1)-dimensional simplex {x1, · · · , xn ≥ 0 : x1 + · · ·+ xn = 1}, with density
function

f (x1, · · · , xn) = Γ (α1 + · · ·+ αn)
Γ (α1) · · ·Γ (αn) x

α1−1
1 · · ·xαn−1n (6.1)

for x1, · · · , xn ≥ 0 and x1 + · · · + xn = 1. Its parameters α1, α2, · · · are
non-negative and fixed and sum to α > 0. Let υt = αt/α.. Let us quickly
recapitulate the first and second order moment structure of the Dirichlet
distribution.

Lemma 5 The first and second order moments of the Dirichlet distribution
are

E(Xt) =
αt

αt + (α− αt) = υt (6.2)

and

Var(Xt) =
αt(α− αt)
α2(α+ 1)

=
υt(1− υt)
α+ 1

(6.3)

and
Cov(Xt, Xt′) =

−υtυt′
α+ 1

. (6.4)
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6.2 Estimating claims RBNS by payment data 57

Proof. Observe that each component Xt in a Dirichlet distribution has a
marginal Beta distribution with parameters (αt, α−αt), giving us 6.2 and
6.3. To establish the covariance Cov(Xt, Xt′) for t 	= t′, calculate

E(XtXt′) =
∫
xi≥0 , x1+···+xn=1(xtxt′)f (x1, · · · , xn) d(x1, · · · , xn−1)

= Γ(α)
Γ(αt)Γ(αt′ )

· Γ(αt+1)Γ(αt′+1)Γ(α+2)

= αtαt′
α(α+1)

= υtυt′
α

(α+1)

(6.5)
Subtracting E(Xt)E(Xt′) from (6.5) we find the expression 6.4.

6.2.3 Model of payment pattern

To model the development payment ratios
{
Ujdt
Ujd

: t = 0, 1, · · ·
}
, the Dirich-

let distribution is an obvious candidate. Let us assume that the process of
payment ratios after the reporting period has a Dirichlet distribution:(

Ujd0
Ujd

,
Ujd1
Ujd

, · · ·
)
| Njd,Ξjd ∼ Dirichlet(α0, α1, · · · ) (6.6)

with non-negative fixed parameters α0, α1, · · · summing to α > 0. Please
note that Ujd = NjdΞjd is the unknown ultimate cost. Let υt = αt/α. The
conditional moments of the partial payments are then

E (Ujdt | Njd,Ξjd) = υtNjdΞjd (6.7)

and

Cov (Ujdt, Ujdt′ | Njd,Ξjd) =
(
δtt′υt − υtυt′

α+ 1

)
(NjdΞjd)

2 (6.8)

6.2.4 Prediction of ultimate claims

Conditional on only Njd and before any payments have been recorded, the
average severity Ξjd has a ’prior mean’ of ξd and a variance of σ

2
d/Njd. We

now use the apparatus of credibility theory to find the best linear predictor
of Ξjd in the conditional model, given Njd.

Proposition 6 Define a general linear predictor of the average severity by

Ξjd = zjdΞ̂jd + (1− zjd) ξd (6.9)
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58 6. The cost of reported claims

with ’Chain-ladder estimate’

Ξ̂jd =
Ujd,≤J−(j+d)
Njdυ≤J−(j+d)

(6.10)

The conditional mean squared error of the predictor (6.9), given the number
of claims Njd, is

qd (zjd | Njd) = E
((
Ξjd − Ξjd

)2 | Njd)
= N−1

jd

(
z2jd
(σ2d+Njdξ

2
d)υ>J−(j+d)

(α+1)υ≤J−(j+d)
+ (1− zjd)2 σ2d

)
(6.11)

A linear predictor of the outstanding payments is then

U jd,>J−(j+d) = NjdΞjd − Ujd,≤J−(j+d) (6.12)

with conditional mean squared error

E
((
U jd,>J−(j+d) − Ujd,>J−(j+d)

)2 | Njd) = N2
jd · qd (zjd | Njd) (6.13)

Due to the independence between the different cohorts, the mean squared
error of the overall amount of outstanding payments for reported claims is
additive. The conditional mean squared error is minimised if one chooses
the credibility factors in the following way:

zjd =
σ2d (α+ 1) υ≤J−(j+d)

σ2d (α+ 1) υ≤J−(j+d) +
(
σ2d +Njdξ

2
d

)
υ>J−(j+d)

(6.14)

Proof. In order to prove 6.9 to 6.13, let us simplify the notation a bit.

We omit the indexes j and d, as every combination of accident period and
reporting delay is being considered separately. Thus the reported number
of claims is now denoted by N , the unknown ultimate cost is denoted by
U , and the unknown average severity is denoted by Ξ . Let us now write

the observed payments as a vector U =
(
U0, U1, · · · , UJ−(j+d)

)′
and the

corresponding payment ratios as υ =
(
υ0, υ1, · · · , υJ−(j+d)

)′
. Further, let

1(J−(j+d)+1)×1 = (1, · · · , 1)′and verify that 1′υ = υ≤J−(j+d), the accumu-
lated payment proportion which we simply denote by υ≤. Its complement
we denote by υ> = 1 − υ≤. Now please verify that, given the number of
reported claims and the unknown average severity, the vector of observed
payments has conditional expectation

E (U | N,Ξ) = NΞυ (6.15)

and conditional variance

Var (U | N,Ξ) = (NΞ)2 1

α+ 1
(diag(υ)− υυ′) = (NΞ)2 1

α+ 1
(I− υ1′) diag(υ)

(6.16)
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To allude to the notation used in Appendix A, we write

E ((U | N,Ξ) | N) = NυΞ = Y(J−(j+d)+1)×1Ξ (6.17)

Φ = E (Var (U | N,Ξ) | N) = (Nσ2 +N2ξ2)
1

α+ 1
(I− υ1′) diag(υ)

(6.18)

and note that the conditional mean and variance of Ξ, given N , are

E (Ξ | N) = ξ (6.19)

(remember we dropped the subscript d),

Var (Ξ | N) = σ2/N (6.20)

Thus the conditional model (given N) fits into the mould of the credibility
regression model of Appendix A. To find the credibility estimator of Ξ, we
need only to go through the motions of Appendix A.
Using (15.15) it is easy to prove that

(I− υ1′)−1 = I+ 1

υ>
υ1′ (6.21)

Therefore,

Φ−1 =
α+ 1

Nσ2 +N2ξ2

(
diag−1(υ) +

1

υ>
11′

)
(6.22)

Y′−1Φ−1U =
α+ 1

σ2 +Nξ2
· U≤
υ>

(6.23)

Y′−1Φ−1Y =
α+ 1

σ2 +Nξ2
· Nυ≤
υ>

(6.24)

Ξ̂ =
U≤
Nυ≤

(6.25)

and

z =
(σ2/N)Y′−1Φ−1Y

1 + (σ2/N)Y′−1Φ−1Y
=

σ2(α+ 1)υ≤
σ2(α+ 1)υ≤ +

(
σ2 +Nξ2

)
υ>

(6.26)

Equation 6.11 is (15.14) with the appropriate substitutions. This concludes
the proof.
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60 6. The cost of reported claims

The assumption of the payment pattern being the same for claims at all
notification delays, is not necessarily realistic. To see why this need not
be the case, contrast claims notified in the accident period (d = 0) with
claims notified in the subsequent period (d = 1). If accidents are spread
evenly over the accident period, claim notifications in the accident period
will be skewed towards the end of the period because of the notification
delay. On the other hand, unless the reporting pattern is very flat-tailed,
claim notifications in the subsequent period will occur mostly at the start
of the period before they start tailing off. Thus on average, claims that are
reported in the accident period will have less time for the first batch of
payments (t = 0) to be processed, than claims reported in the subsequent
period. Therefore one should expect that υ0 is smaller for d = 0 than
for d = 1. The formulas above extend readily to a model with payment
patterns that depend on d. However, this comes at the expense of having
to set more parameters.

6.2.5 Estimation of parameters

Let us briefly consider the estimation of the parameters α0, α1, · · · by a
maximum likelihood method. For each combination of j = 1, · · · , J and
d = 0, · · · , J − j, define the payment-ratios-to-date

Ajdt = Ujdt/Ujd,≤J−(j+d) for t = 0, · · · , J − (j + d) (6.27)

and note that the vectors Ajd =
(
Ajd0, · · · , Ajd,J−(j+d)

)
are stochasti-

cally independent and that

Ajd ∼ Dirichlet(α0, · · · , αJ−(j+d)) (6.28)

Thus the likelihood function of the set of payment-ratios-to-date is

L =

J∏
j=1

J−j∏
d=0

Γ
(
α≤J−(j+d)

)
Γ (α0) · · ·Γ

(
αJ−(j+d)

) J−(j+d)∏
t=0

Aαt−1jdt (6.29)

Then we can calculate

∂ ln(L)

∂αs
=

J−s∑
j=1

J−s−j∑
d=0

ψ
(
α≤J−(j+d)

)− nsψ (αs) + J−s∑
j=1

J−s−j∑
d=0

Zjds (6.30)

Here we have used the digamma function ψ(x) = Γ′(x)/Γ(x) and defined

ns =
J−s∑
j=1

J−s−j∑
d=0

1 =
(J − s) (J − s+ 1)

2
(6.31)

as well as
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Zjds = ln(Ajds) (6.32)

The solution to ∂ ln(L)
∂αs

= 0 for s = 0, · · · , J − 1, if it exists, is given by
the equations

ψ (α∗s) = n−1s
J−s∑
j=1

J−s−j∑
d=0

ψ
(
α∗≤J−(j+d)

)
+ Z··s for s = 0, · · · , J − 1 (6.33)

Here Z··s = n−1s
∑J−s

j=1

∑J−s−j
d=0 Zjds denotes the average of ln (Ajds), for

the cells where payment delay s has been observed.
The Hessian matrix H(α) of ln(L) is given by its elements

hst(α) = ∂2 ln(L)
∂αs∂αt

=
∑J−max(s,t)

j=1

(∑J−max(s,t)−j
d=0 ψ′

(
α≤J−(j+d)

))− δstnsψ′ (αs)
(6.34)

Since ψ′ is a non-negative, decreasing and convex function, this author
suspects that the matrix H(α∗) is negative definite, which would prove
that (6.33) defines a maximum.
Providing a solution to (6.33) exists, it should be possible to evaluate

numerically. One could also try to determine α∗ by a Newton-Raphson
iteration of the form

α∗i+1 = α
∗
i −H−1(α∗i )

(
∂ ln(L)

∂α
(α∗i )

)
(6.35)

The author has not tried to do this in practice yet.

6.3 Estimating claims RBNS by incurred data

6.3.1 Background

For the cohort of claims that has been reported in calendar period j+d and
was incurred in accident period j, we denote the change in the reported
incurred claim amount at delay t after the reporting period by Wjdt. We
denote the unknown ultimate claim cost by Wjd and the unknown average
severity by Ξjd.
Under the (reasonable) assumption that claim reports after the reporting

date follow a certain pattern {ωt : t = 0, 1, · · · } with
∑∞

t=0 ωt = 1, one can
readily propose estimators of the outstanding cost of reported claims in the
cell (j, d):
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62 6. The cost of reported claims

• Alluding to a Bornhuetter-Ferguson estimator, one could estimate the
outstanding cost by W

"BF"
jd,>J−(j+d) = Njdξdω>J−(j+d).

• Alluding to a Chain-ladder estimator, one could estimate the out-
standing cost by W

"CL"
jd,>J−(j+d) =Wjd,≤J−(j+d)

(
ω>J−(j+d)
ω≤J−(j+d)

)
.

• Alluding to credibility estimators, one could use a convex combination
of the two above.

In order to evaluate the mean squared error and to find an optimal
credibility estimator, further assumption are needed. Let us consider one
possible set of assumptions about the evolution of claim payments after the
reporting date.
To model the development of

{Wjdt : t = 0, 1, · · · } (6.36)

conditionally on the number of claims and the unknown average severity,
one needs a distribution that allows negative as well as positive increments.
That requirement excludes the Dirichlet model that we used to model pay-
ment ratios. An alternative model is proposed in what follows.

6.3.2 Compound poisson model of reporting events

Consider the following model: given the number of reported claims Njd and
the average claim amount Ξjd, we assume that the Wjdt at different delays
t are conditionally independent, and that Wjdt is a compound Poisson
random variable with a frequency parameter that is proportional to NjdΞjd
and a jump size distribution Ht that allows negative jumps:

Wjdt | Njd,Ξjd ∼ Compound Poisson (NjdΞjd, Ht) (6.37)

The assumption (6.37) implies that the expected number of claim re-
assessments at delay t (a claim reassessment being a partial payment and/or
a change to the outstanding case estimate) is proportional to the unknown
overall claim amountWjd = NjdΞjd, and that the individual reassessments
have a size distribution Ht. Let us briefly discuss this assumption.
To assume that the expected number of claim reassessments is propor-

tional to the number of claims reported, is quite reasonable. To assume
that it is actually proportional not to the number of claims, but to the
amount of claims, stretches the imagination a bit more. That assumption
could be wrong, but it could also be approximately right. It will be pos-
tulated here that it is approximately right, because this assumption makes
for tractable mathematics. That does not imply that the expected num-
ber of claim reassessments must be equal to the aggregate claim amount
(expressed in some currency or other); it is only the proportionality that
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counts. The distribution function Ht will have a high point mass at zero, so
that the number of actual claim reassessments with a jump, will be much
smaller. One could generate the same compound Poisson distribution using
a different model formulation with an explicit proportionality factor in the
claim frequency parameter and a distribution function Ht that is strictly
non-zero.
Also note that we are not constraining the aggregate claim development

to equal the aggregate severity, i.e. we are not demanding that
∑∞

t=0Wjdt =
NjdΞjd, as we did in the payment model. Thus the aggregate severity takes
on the role of the expected level of ultimate payments, given the (abstract)
severities of claims reported, rather than the definitive level of ultimate
payments.
Denote the non-central first and second order moments of the distribution

Ht by

ωt =

∫ ∞

−∞
u dHt(u) (6.38)

and

ηt =

∫ ∞

−∞
u2 dHt(u) (6.39)

This formalistic definition (using integrals from −∞ to ∞) is made only
to emphasise that the distributions Ht must allow negative jumps.
Then we can easily establish the following conditional moments:

E (Wjdt | Njd,Ξjd) = NjdΞjdωt (6.40)

and

Var (Wjdt | Njd,Ξjd) = NjdΞjdηt (6.41)

We are assuming that
∑∞

t=0 ωt = 1 and
∑∞

t=0 ηt < ∞, but not all ωt
need to be non-negative.

6.3.3 Prediction of ultimate claims

Proposition 7 Conditional on only Njd and before any payments have
been recorded, the average severity Ξjd has a ’prior mean’ of ξd and a
variance of σ2d/Njd. This leads to the following proposition.Define a general
linear predictor of the average severity by

Ξjd = zjdΞ̂jd + (1− zjd) ξd (6.42)

with

Ξ̂jd =

⎛
⎝J−(j+d)∑

t=0

ω2t
ηt

⎞
⎠−1

J−(j+d)∑
t=0

ωt
ηt
· Wjdt

Njd
(6.43)
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The conditional mean squared error of Ξ̄jd is

rd (zjd | Njd) = E
((
Ξ̄jd − Ξjd

)2 | Njd)
= N−1

jd

(
z2jd

(∑J−(j+d)
t=0

ω2t
ηt

)−1
ξd + (1− zjd)2σ2d

)

Having estimated the average severity by the credibility formula (6.42), an
estimator of outstanding claim development becomes

W̄jd,>J−(j+d) = NjdΞ̄jdω>J−(j+d) (6.44)

with mean squared error

E
((
W̄jd,>J−(j+d) −Wjd,>J−(j+d)

)2 | Njd) = Njdξdη>J−(j+d)+
(
Njdω>J−(j+d)

)2
rd (zjd | Njd)

(6.45)
The conditional mean squared error is minimised if one chooses the credi-
bility factors in the following way:

zjd = σ2d

J−(j+d)∑
t=0

ω2t
ηt
·
⎛
⎝ξd + σ2d J−(j+d)∑

t=0

ω2t
ηt

⎞
⎠−1

(6.46)

Remark 8 It is interesting to note that the number of claims Njd does not
enter into the credibility factor zjd. The reason for this lies in the assump-
tion that the ’prior’ variance of the unknown Ξjd is inversely proportional
to Njd in the conditional model.

Proof. This proof follows the same lines as the one in the previous section,
but it is easier. Without going through all the definitions again, let us sim-
ply write a regression model in the following form:

E ((W | N,Ξ) | N) = NωΞ = YΞ (6.47)

Φ = E (Var (W | N,Ξ) | N) = Nξ · diag(ω) (6.48)

Y′−1Φ−1W =
1

ξ

J−(j+d)∑
t=0

ωt
ηt
Wt (6.49)

Y′−1Φ−1Y =
N

ξ

J−(j+d)∑
t=0

ω2t
ηt

(6.50)

This gives the required expressions.
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6.3.4 Estimation of parameters

Let us briefly consider the estimation of the parameters ωt and ηt under
the simplifying assumption that

ηt = ηωt (6.51)

It is easy to see that, in this case,

Ξ̂jd =
Wjd,≤J−(j+d)
Njdω≤J−(j+d)

(6.52)

i.e. the reported claim cost to date, Wjd,≤J−(j+d), is a linear sufficient
statistic. Conditional, given Njd and Ξjd, we have that the incrementsWjdt

are independent and

E (Wjdt | Njd,Ξjd) = NjdΞjdωt (6.53)

and, by virtue of (6.51),

Var (Wjdt | Njd,Ξjd) = NjdΞjdηωt (6.54)

Assume that the parameters ωt are known or have been estimated. Es-
timating those parameters is straightforward and entirely analogeous to
estimating a claim reporting pattern or a payment pattern. Then consider
the statistics

Vjd =
1

J − (j + d)
J−(j+d)∑
t=0

Njdωt

(
Wjdt

Njdωt
− Ξ̂jd

)2
(6.55)

One can verify that

E (Vjd | Njd,Ξjd) = Ξjdη (6.56)

and, consequently,

E (Vjd | Njd) = ξdη (6.57)

Assuming that the ξd are known or have been estimated, one could then
estimate η by a suitably weighted average of Vjd/ξd. One could suggest, for
example, the estimator
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η∗ =
J−1∑
d=0

wd
1

ξd

⎛
⎝J−d∑
j=1

(J − (j + d))
⎞
⎠−1

J−d∑
j=1

(J − (j + d))Vjd (6.58)

with suitable weights wd that add to 1.
The variance estimates Vjd will be unstable if ωt is small or negative. If

that is the case, one could consider using the regression equation

E
(
Ξ̂2jd | Njd

)
=

ξd
Njdω≤J−(j+d)

· η +
(
σ2

Njd
+ ξ2d

)
(6.59)

to estimate η - again, assuming the other quantities on the right hand side
of (6.59) have been estimated aforehand.

6.4 Actuarial case estimates

In a real life situation, the actuary should consider whether he or she can
do better than just to extrapolate the evolution of claim payments or of re-
ported claim cost. He or she could attempt to predict the ultimate outcome
of reported claims by a statistical model that gives regard to individual
claim characteristics.
Individual claim characteristics that can be utilised depend on the type

of insurance and on the available data. Examples of individual claim char-
acteristics would be:

• In Workers Compensation insurance: the type of injury sustained,
the current degree of disability (which may not be the same as the
degree of permanent disability), the claimant’s age, his salary before
the accident, and so on.

• In Disability insurance: the time the claimant has been off work (the
longer the claimant has been off work, the less the chance of a recovery
will be), the type of illness, age, the claimant’s employability etc.

• In Motor Vehicle insurance: the type of vehicle, type of damage etc.

Case estimates by claim handlers, if available, should of course also be
taken into account in the estimation, but not necessarily at their face value.
The theoretical actuarial literature offers little general guidance on that

kind of modelling, probably because such models will be dependent on the
individual circumstances and can seldom be generalised. There is still a lot
of work to be done.
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6.5 Markov chain models

In some lines of insurance one can model the development inside a "mark"
as a Markov chain in continuous time, with a finite number of states. For
example, in disability insurance, a claimant could be in one of several states:

• Off work for the first time.
• On work again.
• Off work for a subsequent period.
• In rehabilitation.
• Permanently disabled.
• and so on.

Assume that transitions between states are governed by transition in-
tensities λij(t), where t = 0 refers to the start of the first period off work.
Assume further that a pension benefit of bi(t)dt is payable if the claimant
is in state i at time (t, t+ dt). If the claimant transits from state i to state
j at time t, a lump sum benefit of Aij(t) is payable. Of course, both bi(t)
and Aij(t) will be zero for all but a few defined states and transitions.
Hesselager (1994) shows how one can calculate the expected future claim

payments, given the state of the claimant at a specified time. His model
has been applied in the calculation of actuarial case estimates in Danish
Workers’ Compensation claims.

DRAFT 
09.04.14



68 6. The cost of reported claims

DRAFT 
09.04.14



7
Two-dimensional models

7.1 Introduction

Most loss-reserving studies analyse only two-dimensional development mod-
els, where the two dimensions are accident period (j) and accident-to-
valuation delay (e = d + t). The delay dimension in those triangles is
normally referred to as development period. In those models, no attempt
is made to separate the development of reported claims from that of unre-
ported claims.
The most common data to analyse in the two-dimensional setting is paid

claims. One starts with a development triangle containing the accumulated
claim payments per accident period and valuation delay:

Ũ10 Ũ11 · · · Ũ1,J−1

Ũ20 Ũ21
. . .

...
. . .

ŨJ0

(7.1)

The task then becomes to predict the entries in the south-east corner of
the development square.
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One may triangulate reported claims in the same way:

W̃10 W̃11 · · · W̃1,J−1

W̃20 W̃21
. . .

...
. . .

W̃J0

(7.2)

The methods derived for claim numbers, in particular the Chain ladder
method and the Bornhuetter-Ferguson method, can also be applied to claim
amounts. We will study some of these methods in this chapter.

7.2 Generic notation

Let us use X as a generic notation for the quantity that is being analysed,
whether that is the number of claims (N), claim payments (U) or reported
claim cost (W ). More specifically, let Xje denote the incremental change
in development period e and X̃je the accumulated quantity at the end of
development period e, so that

Xje = X̃je − X̃j,e−1 (7.3)

and

X̃je = Xj,≤e (7.4)

7.3 The Bornhuetter-Ferguson method

In the opinion of this author, the essential characteristic of the Bornhuetter-
Ferguson method is the following prediction formula:

Xje = pjθ
∗
jπ

∗
e for j + e > J, (7.5)

where pj is a measure of risk exposure, θ
∗
j is an expected (or à priori)

claim rate per unit of risk exposed in year j that does not directly depend
on the observed experience from year j, and π∗e is the expected proportion
of claims that will materialise at delay e.
Estimating future claim by the Bornhuetter-Ferguson method is similar

to “budgeting” a certain amount of claims to arrive in future periods, in
proportion with an estimated delay pattern.
The expected claim rate, as well as the delay pattern, may come from

different sources:

• Estimation from the observed data,
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• Expert knowledge, or a budgeted claims cost per unit of exposure,

• Industry statistics.

Especially for the delay pattern, industry statistics can be very helpful
if the data at hand is not sufficiently developed or organised to allow an
estimation.

7.4 The Chain-ladder method

In the opinion of this author, the essential characteristic of the Chain ladder
method is the following prediction formula:

Xje = Xj,≤J−j

(
π∗e

π∗j,≤J−j

)
for j + e > J, (7.6)

where π∗e is the expected proportion of claims that will materialise at
delay e.
Estimating future claim by the Chain ladder method amounts to "gross-

ing up" the observed claim experience of the actual year, in proportion
with an estimated delay pattern.
The delay pattern may come from different sources:

• Estimation from the observed data,

• Expert assessment,

• Industry statistics.

Industry statistics can be very helpful if the data at hand is not suffi-
ciently developed or organised to allow an estimation.

7.5 Bühlmann-Straub’s model

The Bühlmann-Straub model is very similar to the model we have seen for
claim frequencies. To motivate the model, imagine that conditional on a
risk parameter Θj , the claim statistic Xje has a compound Poisson dis-
tribution with frequency parameter pjλ (Θj)πe and a severity distribution
F (y|Θj). In this case, however, we only observe the compound Poisson
random variable, not the number of jumps. Then

E (Xje|Θj) = pjπeλ (Θj)

∫
ydF (y|Θj) =: pjπeb (Θj) (7.7)

DRAFT 
09.04.14



72 7. Two-dimensional models

Var (Xje|Θj) = pjπeλ (Θj)

∫
y2dF (y|Θj) =: pjπev (Θj) (7.8)

That means that there are two functions b (Θj) = λ (Θj)
∫
ydF (y|Θj)

and v (Θj) = λ (Θj)
∫
y2dF (y|Θj) of the risk parameterΘj . For the Poisson

model (claim counts), the two functions coincide.

The assumptions of Bühlmann-Straub’s model are:

• Conditional on an unobserved risk parameter that we denote by Θj ,
the increments Xj0, Xj1, · · · are stochastically independent with con-
ditional mean E(Xje|Θj) = pjb (Θj)πe and variance Var(Xje|Θj) =
pjv (Θj)πe. The quantity pj denotes an observed measure of risk
exposure, while the quantity πe denotes the expected amount of in-
crement in development period e. We assume that

∑∞
e=0 πe = 1.

• The unobserved risk parameter Θj is assumed to be the outcome of
a random variable.

• The risk parameters Θ1, · · · ,ΘJ are assumed to be stochastically in-
dependent and identically distributed. We denote the mean and vari-
ance of the function b (Θj) by β =E(b (Θj)) and λ =Var(b (Θj)). Let
use further denote the mean of the function v (Θj) by ϕ =E(v (Θj)).

• The sets {Θj , Xj0, Xj1, · · · } and {Θk, Xk0, Xk1, · · · } are assumed to
be independent for different accident periods (i.e., j 	= k).

We assume for the present that the delay probabilities πe as well as
the distribution moments (β, λ, ϕ) are known. We restrict the estimator
of b (Θj) to be a linear combination of a Chain-ladder estimate and the à
prior mean, i.e.

b̄j = zj

(
Xj,≤J−j
pjπ≤J−j

)
+ (1− zj)β (7.9)

Then it is easy to verify that for an arbitrary choice of zj , the mean squared
error of the estimator b̄j is

Q (zj) = E
(
b̄j − b (Θj)

)2
= z2j

ϕ

pjπ≤J−j
+ (1− zj)2 λ (7.10)

DRAFT 
09.04.14



7.5 Bühlmann-Straub’s model 73

The mean squared error of the predictor

X̄je = pj b̄jπe (7.11)

for j + e>J is

E
(
X̄je −Xje

)2
= (pjπe)

2
Q (zj) + pjπeϕ (7.12)

An estimator of the total outstanding development is

X̄j,>J−j = pj b̄jπ>J−j (7.13)

with mean squared error

E
(
X̄j,>J−j −Xj,>J−j

)2
= (pjπ>J−j)

2
Q (zj) + pjπ>J−jϕ (7.14)

Minimising (7.10) it is easy to see that the optimal choice of zj is

ζj =
λpjπ≤J−j

λpjπ≤J−j + ϕ
(7.15)

Note that ζj → 1 when λ → ∞; thus [a version of] the Chain-ladder
method is the appropriate choice if there is much heterogeneity between
accident periods. On the other hand, ζj → 0 when λ → 0, which means
that [a version of] Bornhuetter-Ferguson’s method is the appropriate choice
if there is no, or very little, heterogeneity between accident periods. These
conditions correspond exactly to the models which were used to derive
those methods for claim frequencies.
In practice, of course, the delay probabilities πe and the moments (β, λ, ϕ)

will not be known, unless they reflect a subjective, apriori assessment. They
can be estimated by De Vylder’s iteration method in essentially the same
way as in section 4.7.
First, estimate the delay probabilities π0, π1, · · · . Then treat the delay

probabilities as known, fixed parameters and estimate the remaining para-
meters in the following way:

1. Pick starting values β∗(0)and λ
∗
(0). Set the iteration number i = 0.
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2. Calculate the Chain Ladder estimates b̂j = Xj,≤J−j/pjπ≤J−j for
j = 1, . . . , J .

3. Calculate the empirical variances v̂j = 1
J−j

∑J−j
e=0 pjπe

(
Xje

pjπe
− b̂j

)2
for j = 1, . . . , J − 1, and then ϕ∗ = 2

(J−1)J
∑J−1

j=1 (J − j)v̂j . This is an
unbiased estimator of ϕ.

4. Calculate credibility factors z(i)j =
λ∗(i)pjπ≤J−j

λ∗
(i)
pjπ≤J−j+ϕ∗

for j = 1, . . . , J .

5. Calculate an estimate of the mean β∗(i+1) =
∑J

j=1 z
(i)
j b̂j/

∑J
j=1 z

(i)
j .

6. Calculate the estimated variance λ∗(i+1) =
1

J−1
∑J

j=1 z
(i)
j

(
b̂j − β∗(i+1)

)2
.

Repeat (4)-(6) until convergence is reached.

7.6 A model with random delay probabilities

7.6.1 The Hesselager-Witting model

In the Bühlmann-Straub model of section 6.3, the delay probabilities {π0, · · · , πD}
were interpreted as fixed (non-random) parameters. As a result of this as-
sumption, the optimal credibility factor ζj defined in (7.15) will always be
non-negative, and there will always be a non-negative linkage between the
(observed) past claim development and the (predicted) future claim devel-
opment. In the words of Taylor (2000), the stochastic risk parameter b(Θj)
can do little more than act as a scaling constant between different periods
of origin.
Sometimes the actuary will meet the argument that there should be a

negative linkage, in the sense that above-average claim development in the
past should be seen as an indication of below-average development in the
future. The argument is intuitively very plausible.
Hesselager & Witting (1988) have developed a model with random de-

lay probabilities to explain negative linkages, or at least linkages that are
weaker than in the Bühlmann-Straub model. In our context and notation,
a version of their model looks as follows:

1. Given an unobserved risk parameter Θj and a vector of unknown de-
lay probabilities Πj = (Πj0, · · · ,ΠjD)′, the increments Xj0, Xj1, · · ·
are conditionally independent with conditional mean E(Xje | Θj ,Πj) =
pjb(Θj)Πje and variance Var(Xje | Θj ,Πj) = pjv(Θj)Πje. The quan-
tity pj denotes an observed measure of risk exposure, while the quan-
tity Πje denotes the expected amount of increment in development
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period e.

2. The unobserved risk pair (Θj ,Πj) is the outcome of a random vari-
able. For each j, Θj is assumed to be stochastically independent of
Πj , i.e., there is no stochastic linkage between the level of claims and
their development pattern. The risk pairs (Θ1,Π1), · · · , (ΘJ ,ΠJ) are
stochastically independent and identically distributed.

3. We define β =E(b(Θj)), λ = Var(b(Θj))and ϕ = E(v(Θj)) with no
further specification of the distribution of Θj .

4. We assume that each Πj has a Dirichlet distribution with parameters
α = (α0, · · · , αD)′. Let α =

∑D
e=0 αe, and define the expected delay

proportions πe = αe/α.

5. The sets {(Θj ,Πj), Xj0, Xj1, · · · } and {(Θk,Πk), Xk0, Xk1, · · · } are
independent for different accident periods (i.e., j 	= k).

Using the assumed independence between Θj and Πj and the moments
of the Dirichlet distribution, it is straightforward to derive that

E(Xje) = pjβπe (7.16)

and

Var(Xje) = EVar(Xje | Θj ,Πj) +VarE(Xje | Θj ,Πj)
= E(pjv(Θj)Πje) +Var(pjb(Θj)Πje)

= pjϕπe + p
2
j (λ+ β

2)
(
π2e

α
α+1 + πe

1
α+1

)
− p2jβ2π2e

= pjπe

(
ϕ+

pj(λ+β
2)

α+1

)
+ (pjπe)

2
(
λα−β2
α+1

)
= pjπeϕj(α) + (pjπe)

2λ(α)

(7.17)

and, similarly, for e 	= e′:

Cov(Xje, Xje′) = p2jπeπe′λ(α) (7.18)

Here we have defined the quantities

ϕj(α) = ϕ+
pj(λ+ β

2)

α+ 1
(7.19)
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and

λ(α) =
λα− β2
α+ 1

(7.20)

These quantities are not variances, as one can easily see by checking
that λ(α) becomes negative for small values of α. They are important
because they allow us write the mean-covariance structure of the observed
and unobserved claims in the same formal way as in the Bühlmann-Straub
model. Please note that ϕj(∞) = ϕ and λ(∞) = λ.
Let us assume that the Dirichlet parameters α = (α0, · · · , αD)′ as well

as the distribution moments (β, λ, ϕ) are known.
A linear estimator of the outstanding development is

X̄j,>J−j = pjπ>J−j

(
zj

(
Xj,≤J−j
pjπ≤J−j

)
+ (1− zj)β

)
(7.21)

Then it is easy to verify that the mean squared error of the estimator
X̄j,>J−j is

E(X̄j,>J−j −Xj,>J−j)2 = Var
(
zj
π>J−j
π≤J−j

Xj,≤J−j −Xj,>J−j
)

= (pjπ>J−j)2
(
z2j

ϕj(α)

pjπ≤J−j
+ (1− zj)2λ(α)

)
+ pjπ>J−jϕj(α)

(7.22)
Minimising (7.22) it is easy to see that the optimal choice of the credi-

bility factor zj is

ζj(α) =
λ(α)pjπ≤J−j

λ(α)pjπ≤J−j + ϕj(α)
(7.23)

Note that this is the same form as in the Bühlmann-Straub model, with
only the parameter α added. Thus we have an optimal credibility factor that
is always smaller than the credibility factor in the Bühlmann-Straub model,
with equality only in the limiting case of α→∞ while αe/α→ πe. In that
case, the Dirichlet distribution approaches a degenerate distribution.
On the other hand, for α → 0 while αe/α → πe, the Dirichlet distribu-

tion attains its maximum dispersion. The credibility factor then approaches

ζj(0) = −
pjβ

2π≤J−j
pjβ

2π>J−j + ϕ+ pjλ
< 0 (7.24)
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The model of Hesselager & Witting can thus be used to justify lower or
even negative credibility factors than those that derive from the Bühlmann-
Straub model. Even if one is not using the credibility factors (7.23), the
expression for the mean squared error (7.22) allows one to pose the question:
Given that we are using credibility factors zj , what would the mean squared
error of our estimates if the delay probabilities were random, and how would
that mean squared error compare to the optimum that we could achieve if
we knew α?
The notion of negative credibility factors is not as far-fetched as it may

appear at first glance. In many situations, the actuary would have a prior
opinion on the ultimate claim cost of an accident period, and would not
change that estimate even if early claim development is different from what
he had expected - typically arguing that early claim development is subject
to so much random fluctuation that it does not warrant a reassessment of
the ultimate outcome. That actuary is implicitly using negative credibility
factors in the sense that more (less) development in the past implies less
(more) development in the future. The model of Hesselager & Witting is
an attempt to provide a theoretical grounding to such an approach.
The alert reader may object that before using an estimator of the form

(7.21), we should have checked that the sum of observed claim develop-
ment to date (i.e., Xj,≤J−j) is linear sufficient. Otherwise, a better linear
estimator could be designed using some other linear combination of the
{Xj,e : e ≤ J−j}. Let it suffice to say that the linear sufficiency of Xj,≤J−j
can be proved, see Hesselager & Witting (1988).

7.6.2 Parameter estimation

The model is not operational before one has established values for the
parameters (β, ϕ, λ), {π0, · · · , πD}and α, whether that be by subjective
judgement or by estimation or, most likely, a combination of both. Here an
estimation procedure will be outlined that is inspired by the suggestions in
Hesselager & Witting’s paper.
We begin by noting the regression equations

E(Xje) = pjβπe (7.25)

E(XjeXje′) = δee′pjπe

(
ϕ+ pj

λ+ β2

α+ 1

)
+ p2jπeπe′

(
(λ+ β2)α

α+ 1

)
(7.26)

Now defining

Zj,ee′ = XjeXje′ (7.27)
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aj,ee′ =
(
δee′pjπe, δee′p

2
jπe, p

2
jπeπe′

)
(7.28)

τ = (τ1, τ2, τ3)
′ =

(
ϕ,
λ+ β2

α+ 1
,
(λ+ β2)α

α+ 1

)′

(7.29)

we write (7.26) as a linear regression

E(Z) = Aτ (7.30)

where the vector Z is a collection of all available cross-products of the form
(7.27) and the matrix A consists of the corresponding row vectors (7.28).
Note that τ2+ τ3 = λ+ β2 and α = τ2/τ3. Let us assume that A is of full
column rank.
To begin the estimation, the parameters β and π0, · · · , πD must be es-

timated. The estimates β∗ and π∗0, · · · , π∗D are thereafter treated as fixed
parameters.
In order to estimate the remaining parameters, we use the regression

(7.30). For any fixed weighting matrixW of full rank, the estimator τ ∗W =
(A′WA)−1A′WZ is unbiased. A simple solution would be to use the iden-
tity matrix so that τ ∗ = τ ∗I = (A′A)−1A′Z. That estimator can be cal-
culated as soon as one has estimated the π0, · · · , πD that enter into the
matrix A.
Having estimated τ ∗, we can estimate λ by

λ∗ = τ∗2 + τ
∗
3 − (β∗)2 (7.31)

(crossing our fingers and praying that it will be non-negative!) and α by

α∗ = τ∗2/τ
∗
3 (7.32)

(say another prayer...).
By the Gauss-Markov theorem, however, the optimal choice ofW would

be

Σ = Cov(Z) (7.33)

. Obviously, that matrix depends on the unknown parameters, a fact we
can indicate by writing Σ = Σ(τ ). Thus one could be tempted to iterate
the procedure and use W = Σ(τ ∗I ), hoping that this will produce a more
reliable estimate. A complication is that the covariance matrix cannot be
calculated without a further specification of the underlying probability dis-
tribution of both Θj and (Xj0, · · · , XjD) | Θj ,Πj .
To enable the calculation of an approximate Σ = Σ(τ ), one could as-

sume that Θj and Πj have a degenerate (one-point) distribution. In that
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case, the Xje will be mutually independent with mean E(Xje) = pjβπe
and variance Var(Xje) = pjϕπe, and the covariances

Cov(Zj,ee′ , Zj,ff ′) = E(XjeXje′XjfXjf ′)−E(XjeXje′)E(XjfXjf ′) (7.34)

involve only expressions of the form E(Xk
je) for k=1,2,3,4. Calculating the

E(Xk
je) is normally straightforward if the Xje have a two-parametric prob-

ability distribution that is completely characterised by its mean and vari-
ance. Candidates for the parametric distribution of the Xje are the Poisson
distribution (if Xje represents claim counts), the lognormal or gamma dis-
tribution (ifXje represents claim amounts) or even the normal distribution.
To exemplify, let us assume that the observations are gamma distributed,

Xje ∼ Γ(γje, δje). Equating the mean and the variance of the gamma
distribution to the mean and variance of Xje, one easily finds that γje =
pjπeβ

2/ϕ and δje = β/ϕ. The k’th order moment of Xje is then E(Xk
je) =

Γ(γje+k)

Γ(γje)δ
k
je

, and this can be used to assemble estimates of the covariances

(7.34), using previously calculated estimates β∗, π∗0, · · · , π∗D and ϕ∗.

7.7 Benktander´s method

As we have seen, every credibility method forms a compromise between
the Bornhuetter-Ferguson method and the Chain Ladder method. Within
a Bayesian framework the credibility estimates are optimal. However, as-
sessing or estimating the parameters requires hard work. Especially when
data is sparse or of poor quality - as is the case most of the time - estimating
the variances ϕ and λ degrades to pure guesswork.
In Neuhaus (1992), a pragmatic variation of the formula (7.9) is explored,

where the credibility factors are set in the following way:

zj = π≤j

The advantage of this choice is that it does not require estimation of the
variances ϕ and λ.
Mack (2000) has traced the method back to Benktander and proposed to

call it Benktander’s method. In Sweden, Benktander’s home country, the
method is known as Hovinen’s method, after a Finnish actuary. Personally,
I like the name “Golden Stairs method”. After all, Golden Stairs are a
lot more comfortable to climb than a chain ladder (as well as a lot more
scenic)!
Benktander’s method is close to Bornhuetter-Ferguson’s method as long

as π≤j is small, and approaches the chain ladder method as π≤j approaches
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1. In that way it avoids both the sensitivity of the chain ladder methods for
immature accident periods, and the inflexibility of Bornhuetter-Ferguson’s
method for mature periods. Within the model of Bühlmann and Straub,
the mean squared error of its predictions can of course be calculated by
(7.10)-(7.12) with zj = π≤j .
It can be shown that Benktander’s method is superior to Bornhuetter-

Ferguson’s method most of the time, when judged by mean squared pre-
diction error within the Bühlmann-Straub model. By the same criterion
it is also often, but not always, better than the Chain Ladder method.
Expressed somewhat informally, the method is “not too far from optimal,
most of the time”.
An interesting feature of Benktander’s method appears when one looks

at the predicted outstanding claim development:

X̄je = pj

(
π≤J−j

(
Xj,≤J−j
pjπ≤J−j

)
+ (1− π≤J−j)β

)
πe

= (Xj,≤J−j + pj (1− π≤J−j)β)πe
= pj b̃jπe

(7.35)

The quantity b̃j is just the ultimate claim level of period j, when esti-
mated by the Bornhuetter-Ferguson method. Thus in Benktander’s method,
we are not predicting the outstanding claim development by the Bornhuetter-
Ferguson method, but rather the unobserved claim level in the tail.

7.8 Mack’s model

The chain ladder method has already been presented in chapter 4.4, where
it was derived as a maximum likelihood method for estimating claim fre-
quencies and predicting the number of unreported claims within the frame-
work of a Poisson model. Due to its simplicity and intuitive appeal, the
chain ladder method is being used in many other contexts too, for exam-
ple to predict the amount of future payments. As Taylor (2000) correctly
states, the chain ladder method has a pre-eminent role in actuarial practice.
Let us recapitulate by writing out the chain ladder method in the no-

tation of this chapter. For the quantity that is being analysed, we denote
by Xje its incremental change during development period e and by X̃je

its cumulative status at the end of development period e. Let us further
denote the maximum observed development period by D = J−1. Although
it is usually not the case in practice, it is quite common to assume that
at least one period (period one) is fully developed, so that there will be
no development beyond D. As an abbreviation, let us denote the unknown
ultimate claims of accident period j by X̃j = X̃jD.
The chain ladder method can be succinctly formulated in the following

two instructions:
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1. For delay e = 2, · · · , D, calculate empirical development factors δ∗e =∑J−e
j=1 X̃je/

∑J−e
j=1 X̃j,e−1.

2. For accident period j = 2, · · · , J , predict its ultimate claims by X̄j =

X̃j,J−j ·
∏D
e=J−j+1 δ

∗
e.

Thus for every accident period, its current cumulative level is extrapo-
lated in a multiplicative fashion, using the average development that has
been observed for earlier accident periods. It will also be useful to have
defined the chain ladder predictions at delays before the ultimate delay D,
by X̄je = X̃j,J−j ·

∏e
e′=J−j+1 δ

∗
e′ for e>J − j.

Mack (1993) has proposed a distribution-free model to calculate the mean
squared error of chain ladder predictions, which will be presented briefly
here. As will be explained later, this author has certain reservations about
Mack’s approach. As you will almost certainly be confronted with Mack’s
model in actuarial practice, you need to know about it.

LetD =
{
X̃je : j = 1, · · · , J, e = 0, · · · , J − j

}
denote the observed data,

and let us write Dje =
{
X̃je′ : e

′ = 0, · · · , e
}
for the development of acci-

dent period j up to development period e. Finally, letDe =
⋃J
j=1Dj,e∧(J−j)denote

the observed development of all accident periods up to development period
e. The drawing below indicates the demarkations.
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Conditional on the observed data, the mean squared error of the predictor
X̄j is

E

((
X̃j − X̄j

)2
| D

)
= V ar

(
X̃j | D

)
+
(
E
(
X̃j | D

)
− X̄j

)2
(7.36)

This formula can easily be verified by noting that X̃j is a random vari-
able, while X̄j is fully determined in the conditional distribution, given
D.
To be able to give substance to the conditional expression in (7.36), Mack

makes three model assumptions:

1. There exist constants δ1, δ2, · · · , δD such that E
(
X̃je | Dj,e−1

)
=

δeX̃j,e−1 for e = 1, · · · , D.

2. There exist constants γ1, γ2, · · · , γD such that Var
(
X̃je | Dj,e−1

)
=

γeX̃j,e−1 for e = 1, · · · , D.

3. The ensembles Dj,D and Dk,D are stochastically independent for j 	=
k.

Under these assumptions, Mack proves that the estimated development
factors δ∗1, δ

∗
2, · · · , δ∗D are unbiased and uncorrelated in the unconditional

distribution, i.e. E(δ∗e) = δe and E(δ
∗
eδ
∗
e′) = δeδe′ for e 	= e′. By repeated

conditioning it is easy to verify that E
(
X̃je | Dj,J−j

)
= X̃j,J−j

∏e
e′=J−j+1 δe′

for e = J − j + 1, · · · , D. It is also easy to verify that the estimators
γ∗e =

1
J−e−1

∑J−e
j=1 X̃j,e−1

(
X̃j,e

X̃j,e−1
− δ∗e

)2
are unbiased for γe.

Using assumptions (1)-(3) we shall now calculate (7.36). We begin with

Var
(
X̃j | D

)
= Var

(
X̃jD | Dj,J−j

)
= E

(
Var

(
X̃jD | Dj,D−1

)
| Dj,J−j

)
+ Var

(
E
(
X̃jD | Dj,D−1

)
| Dj,J−j

)
= γDE

(
X̃j,D−1 | Dj,J−j

)
+ δ2DVar

(
X̃j,D−1 | Dj,J−j

)
= γD

∏D−1
e=J−j+1 δeX̃j,J−j + δ2DVar

(
X̃j,D−1 | Dj,J−j

)
= · · ·
= X̃j,J−j

∑D
e=J−j+1

(∏e−1
e′=J−j+1 δe′

)
γe

(∏D
e′=e+1 δ

2
e′

)
(7.37)
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This expression can be estimated if one substitutes the unknown quan-
tities by their empirical counterparts to obtain

Var*
(
X̃j | D

)
= X̃j,J−j

∑D
e=J−j+1

(∏e−1
e′=J−j+1 δ

∗
e′

)
γ∗e
(∏D

e′=e+1 δ
∗
e′
2
)

= X̄2
j

∑D
e=J−j+1

γ∗e
δ∗e2

(
1

X̄j,e−1

)
(7.38)

Next, we find

(
E
(
X̃j | D

)
− X̄j

)2
= X̃2

j,J−j
(∏D

e=J−j+1 δe −
∏D
e=J−j+1 δ

∗
e

)2
= X̃2

j,J−j
(∑D

e=J−j+1
(∏e−1

e′=J−j+1 δ
∗
e′

)
(δe − δ∗e)

(∏D
e′=e+1 δe′

))2
= X̃2

j,J−j
(∑D

e=J−j+1 Se

)2
(7.39)

If one were to simply substitute unknown quantities by their their empiri-
cal counterparts in this expression one would obtain zero, which admittedly
is a bit optimistic. Mack therefore proposes to expand the expression to

(
E
(
X̃j | D

)
− X̄j

)2
= X̃2

j,J−j

⎛
⎝ D∑
e=J−j+1

S2e + 2

D∑
e=J−j+1

D∑
e′=e+1

SeSe′

⎞
⎠

(7.40)

He then approximates S2e by E
(
S2e | De−1

)
and SeSe′ by E(SeSe′ | De′−1),

i.e. the distribution where only one term (δe − δ∗e)is random while every-
thing else is fixed.
Using conditioning it is not difficult to verify that

E
(
S2e | De−1

)
=

⎛
⎝ e−1∏
e′=J−j+1

δ∗e′

⎞
⎠2

γe∑J−e
j=1 X̃j,e−1

(
D∏

e′=e+1

δe′

)2
(7.41)

and that E(SeSe′ | De′−1) = 0 for e < e′. Expression (7.41) may be
estimated by substituting unknown quantities with their empirical coun-
terparts, and Mack obtains the estimator

E*
(
S2e | De−1

)
=

⎛
⎝ D∏
e′=J−j+1

δ∗e′

⎞
⎠2

γ∗e
δ∗e2

1∑J−e
j=1 X̃j,e−1

(7.42)
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84 7. Two-dimensional models

Assembling all the terms, one obtains the following estimator of the mean
squared error:

E*
((

X̃j − X̄j

)2
| D

)
= X̄2

j

D∑
e=J−j+1

γ∗e
δ∗e2

(
1

X̄j,e−1
+

1∑J−e
j=1 X̃j,e−1

)
(7.43)

The mean squared error of the overall estimate of outstanding claim de-
velopment is

E
((∑J

j=1(X̃j − X̄j)
)2
| D

)
=

∑J
j=1 E

((
X̃j − X̄j

)2
| D

)
+ 2

∑J
j=1

∑J
k=j+1 E

((
X̃j − X̄j

)(
X̃k − X̄k

)
| D

)
The first sum on the right hand side can be taken directly from (7.43).

For the second sum, the assumed independence between accident periods
implies

E
((
X̃j − X̄j

)(
X̃k − X̄k

)
| D

)
=

(
E
(
X̃j | Dj,J−j

)
− X̄j

)(
E
(
X̃k | Dk,J−k

)
− X̄k

)
= X̃j,J−jX̃k,J−k

(∏D
e=J−j+1 δe −

∏D
e=J−j+1 δ

∗
e

)
×

(∏D
e=J−k+1 δe −

∏D
e=J−k+1 δ

∗
e

)
(7.44)

Using a similar approximation as that leading to (7.42), Mack obtains

E*
((∑J

j=1

(
X̃j − X̄j

))2
| D

)
=

∑J
j=1 E

*
((

X̃j − X̄j

)2
| D

)
+ 2

∑J
j=1 X̄j

(∑J
k=j+1 X̄j

)∑D
e=J−j+1

γ∗e
δ∗e2

· 1∑J−e
n=1 X̃n,e−1

(7.45)
Mack (1993) claims that his model is distribution-free. However, one

should note that in order to derive expressions for the conditional mean
squared error given the data, he is making very specific assumptions (1)-
(2), without checking whether there exist sensible models where those as-
sumptions are satisfied. Mack seems to imply that in using the chain ladder
method, one is accepting a model of the form (1)-(3). This author disagrees
with such an implication, while reserving the right to use the chain ladder
method.
One model that would fit into Mack’s mould, is the following: Conditional

on the development of an accident period’s claims up to development period
e-1, the incremental development in development period e is generated by
a compound Poisson random variable with a frequency parameter that is
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[proportional to] X̃j,e−1 and a severity distribution He that is independent
of X̃j,e−1 but depends on the development period e. In formulas

Xje | Dj,e−1 ∼ Compound Poisson (X̃j,e−1, He) (7.46)

δe − 1 =
∞∫

−∞
u dHe(u) and γe =

∞∫
−∞

u2 dHe(u) (7.47)

This author believes that these assumptions exaggerate the dependency
between what happened before and what happens next. One (the only?)
situation in which they are asymptotically satisfied, is in the Bayesian Pois-
son/Gamma model for claim counts, when the variance of the Gamma prior
tends to infinity.

7.9 Hertig’s model

Hertig has proposed a parametric model for development factors.
Before we get stuck into Hertig’s model, let us quickly recapitulate some

properties of the lognormal distribution. A random variable Z is said to be
lognormally distributed with parameters (ξ, σ2) if L = ln(Z) ∼Normal(ξ, σ2).
Using the moment generating function of the normal distribution of L, it is

easy to verify that E(Z) = exp
(
ξ + σ2/2

)
and Var(Z) =E2(Z)

(
eσ

2 − 1
)
.

Finally, if

(
L1
L2

)
∼ Normal

((
ξ1
ξ2

)
,

(
σ21 ρσ1σ2

ρσ1σ2 σ22

))
(7.48)

and Zi = eLi for i = 1, 2, then Cov(Z1, Z2) =E(Z1)E(Z2) (eρσ1σ2 − 1).
Let D =

{
X̃je : j = 1, · · · , J, e = 0, · · · , J − j

}
denote the observed (cu-

mulative) data , and let us write Dje =
{
X̃je′ : e

′ = 0, · · · , e
}
for the de-

velopment of accident period j up to development period e. Denote the de-
velopment ratios of accident period j by Zje = X̃je/X̃j,e−1 for e = 1, 2, · · · .
As before, let the maximum observed delay be denoted by D = J − 1.
Assume that the random variables {Zje : j = 1, · · · , J, e = 1, · · · , D} are

independent and that there exist constants
{
(ξe, σ

2
e) : e = 1, · · · , D

}
so that

Zje ∼lognormal(ξe, σ2e). That is Hertig’s model in a nutshell.
Under those assumptions, it is straightforward to derive the conditional

distribution of the ultimate claims X̃j of accident period j, given its ob-
served history:
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86 7. Two-dimensional models

X̃j | Dj,J−j ∼ lognormal
⎛
⎝ln X̃j,J−j +

D∑
e=J−j+1

ξe,

D∑
e=J−j+1

σ2e

⎞
⎠ (7.49)

Here we have used that X̃j = X̃j,J−j
∏D
e=J−j+1 Zje.

It is also straightforward to find estimators of the parameters {(ξe, σ2e) :
e = 1, · · · , D}. They are

ξ∗e =
1

ne

ne∑
j=1

ln(Zje) (e = 1, 2, · · · , D) (7.50)

and

σ∗e
2 =

1

ne − 1
ne∑
j=1

(ln(Zje)− ξ∗e)2 (e = 1, 2, · · · , D − 1) (7.51)

where we have denoted the number of observed development factors in
development period e by ne = J − e. Using Student-Fisher’s theorem and
the assumed independence of development factors pertaining to different
development periods, we conclude that all ξ∗e and σ

∗
e
2 are independent and

that ξ∗e ∼Normal(ξe, σ2e/ne) and σ∗e2 ∼ σ2e
ne−1χ

2
ne−1.

Hertig now proposes the following predictor for the ultimate claims of
accident period j:

X̄j = X̃j,J−jexp

⎛
⎝ D∑
e=J−j+1

(
ξ∗e +

1

2
σ2e

(
1 +

1

ne

))⎞⎠ (7.52)

Let us for the moment ignore the fact that σ2e are unknown. The rationale
for Hertig’s predictor becomes apparent when one considers the probability
distribution of the ratio

X̃j

X̄j
= exp

⎛
⎝ D∑
e=J−j+1

(
ln(Zje)− ξ∗e −

1

2
σ2e

(
1 +

1

ne

))⎞⎠ (7.53)

Using that the estimators ξ∗e (being based on past data for accident
periods other than j) are independent of the future development of accident

period j, the conditional distribution of X̃j

X̄j
is found to be
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X̃j

X̄j
| Dj,J−j ∼ lognormal

⎛
⎝−1

2

D∑
e=J−j+1

σ2e

(
1 +

1

ne

)
,

D∑
e=J−j+1

σ2e

(
1 +

1

ne

)⎞⎠
(7.54)

so that E
(
X̃j

X̄j
| Dj,J−j

)
= 1. Thus the predictors (7.52) are "relatively

unbiased".
Using the lognormal distribution, one can immediately conclude that

Var

(
X̃j

X̄j
| Dj,J−j

)
= exp

⎛
⎝ D∑
e=J−j+1

σ2e

(
1 +

1

ne

)⎞⎠− 1 (7.55)

Thus one can calculate the conditional mean squared error of the pre-
dictor X̄j as

E
((

X̃j − X̄j

)2
| Dj,J−j

)
= E

(
X̄2
j

(
X̃j

X̄j
− 1

)2
| Dj,J−j

)
= X̄2

jVar
(
X̃j

X̄j
| Dj,J−j

)
= X̄2

j

(
exp

(∑D
e=J−j+1 σ

2
e

(
1 + 1

ne

))
− 1

)
(7.56)

This expression may be estimated if one replaces the unknown σ2e by the
estimators σ∗e

2.
Similarly one can calculate an expression for the mean squared error of

the overall predictor:

E
(∑J

j=1

(
X̃j − X̄j

))2
=

∑J
j=1

∑J
k=1 E

(
X̃j − X̄j

)(
X̃k − X̄k

)
=

∑J
j=1

∑J
k=1 E

(
X̄jX̄k

(
X̃j

X̄j
− 1

)(
X̃k

X̄k
− 1

))
=

∑J
j=1

∑J
k=1 EE

(
X̄jX̄k

(
X̃j

X̄j
− 1

)(
X̃k

X̄k
− 1

)
| Dj,J−j , Dk,J−k

)
=

∑J
j=1

∑J
k=1 X̄jX̄kECov

(
X̃j

X̄j
, X̃k

X̄k
| Dj,J−j , Dk,J−k

)
(7.57)

Using the same representation as in (7.53) for both j and k, one can
derive the covariance

Cov

(
X̃j

X̄j
,
X̃k

X̄k
| Dj,J−j , Dk,J−k

)
= exp

⎛
⎝ D∑
e=J−j+1

σ2e
ne

⎞
⎠− 1 (7.58)
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88 7. Two-dimensional models

for j<k. Here we have used the fact that the only dependency comes
through the common summands ξ∗J−j+1, · · · , ξ∗D.
Assembling (7.57) up we find

E

⎛
⎝ J∑
j=1

(
X̃j − X̄j

)⎞⎠2

=

J∑
j=1

J∑
k=1

X̄jX̄k

⎛
⎝exp

⎛
⎝ D∑
e=J−(j∧k)+1

(
δjk +

σ2e
ne

)⎞⎠− 1
⎞
⎠

(7.59)
Again, to calculate this expression one must replace the unknown σ2e by

the estimators σ∗e
2.

This derivation of the mean squared error of Hertig’s estimator is due to
Taylor (2000). As we noted above, Hertig assumed in his derivation that
the variances were known, and only were replaced by estimates at the last
stage. Taylor is more circumspect and defines

X̄∗
j = X̃j,J−jexp

⎛
⎝ D∑
e=J−j+1

ξ∗e +
1

2

D∑
e=J−j+1

σ∗e
2

(
1 +

1

ne

)⎞⎠ (7.60)

from the outset. Using Student-Fisher’s theorem and the moment gener-
ating function of the χ2-distribution, one can derive closed expressions for
the variances and covariances of X̃j/X̄

∗
j . Not surprisingly, those expressions

are very complicated and still involve the σ2e.
It is interesting to compare the conditional mean-variance structure of

Hertig’s model with that of Mack’s model. In Hertig’s model we have

E
(
X̃je|X̃j,e−1

)
= X̃j,e−1E (Zje) = X̃j,e−1exp

(
ξe +

1

2
σ2e

)
(7.61)

Var
(
X̃je|X̃j,e−1

)
= X̃2

j,e−1Var (Zje) = X̃2
j,e−1exp

2

(
ξe +

1

2
σ2e

)(
exp

(
σ2e
)− 1)

(7.62)
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8
Log-linear models

8.1 Introduction

The following chapters will present a number of statistical model-fitting
approaches rather briefly, starting with log-linear models. The reader can
consult Taylor (2000) for an extensive treatment of statistical model-fitting
techniques.
An apology concerns the use of notation. Throughout the previous chap-

ters I have attempted to use a standard notation for data and model para-
meters. In this chapter it is necessary to deviate from the standard, which
includes recycling some previously defined symbols with new meanings at-
tached to them. The reason is that the statistical theories that underly the
different models have their own notations, which utilise many of the same
symbols as we have used before. Rather than defining a bevy of new sym-
bols, I have chosen to tolerate some duplication and trust that the reader
will understand the meaning of symbols from their context.
A second apology is for the extensive use of matrix notation. In the

opinion of this author that without resorting to matrix notation, one does
not stand a chance of seeing through the forest of detail.

8.2 Log-linear models

Let us denote the quantity that is subject to analysis by Xje as before.
The common definition of Xje is Xje = Uje, i.e. Xje means incremental
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90 8. Log-linear models

claim payments. A common and useful distribution in modelling insurance
claims is the lognormal, i.e. assuming that the logarithms of Xje follow
a normal distribution. Since logarithms are required, the Xje should be
strictly positive with high probability (a few isolated exceptions we can
always deal with). Thus it would not be a good idea to define Xje = Wje

(reported claim cost), because incremental reported claim cost often will be
negative. As before, pj will denote a non-random measure of risk exposed
in accident period j.
If one studies the two-dimensional models of the previous chapter, one

finds that they all comprise an accident period effect and a development
period effect. Sometimes one would like to model additional effects, for
example: a calendar period effect; a trend in the accident period effect; a
parametric function for the development period effect; and so on. All this
can be modelled within the framework of log-linear models.
Let us therefore assume that the random variables Xje/pj are stochasti-

cally independent and lognormally distributed, i.e., Zje = ln (Xje/pj) ∼N
(
μje, σ

2
je

)
.

This means inter alia that

E (Xje/pj) = exp
(
μje + σ

2
je/2

)
(8.1)

Var (Xje/pj) = E
2 (Xje/pj)

(
exp

(
σ2je

)− 1) (8.2)

The question is, how could the parameters μje, σ
2
je be modelled? Let us

consider some possibilities.

1. In 4.4 we saw that the chain ladder method could be derived as a
maximum likelihood procedure in a Poisson model with multiplica-
tive means. A model with multiplicative means could be obtained by
defining μje = αj + βe.

2. In 4.3 we saw that the Bornhuetter-Ferguson method could be derived
as a maximum likelihood procedure in a Poisson model with multi-
plicative means and a fixed accident period parameter. Analogeously,
we could define μje = α+ βe here.

3. Maybe we are quite happy with the assumption of a fixed accident
period parameter, for all but one exceptional accident period j′. We
could model this by setting μje = α · I(j 	= j′) + α′ · I(j = j′) + βe.

4. Or maybe we would like to capture a calendar period effect. This we
can achieve by modelling μje = αj+βe+λj+e. If the calendar period
effect is caused by inflation at a constant rate λ, we could model
μje = αj + βe + λ · (j + e− 1).

5. We could attempt to model the development period effect βe as a
parametric function in order to reduce the number of parameters. For
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8.2 Log-linear models 91

example, βe = δ ·ln(k+e)+γ ·(k+e) with a known location parameter
k > 0 results in a gamma-shaped function that only involves two
parameters δ and γ. It is also known as a Hoerl curve.

6. If we are happy to use gamma-shaped function in the tail ( e > e′)
but not at the early development periods, then we could model μje =
αj + βe · I(e ≤ e′) + (δ · ln(k + e) + γ · (k + e)) · I(e > e′).

7. ... and so forth.

I think you have got the picture by now. In every model specification,
the mean μje could be written in the form

μje =m
′
jeβ (8.3)

withm
′
je denotes a row vector of knowable covariates associated with the

distribution of Zje and β denotes a column vector of unknown regression
parameters. Let us denote the number of observations by n, the number of
unknown parameters by p, and the degrees of freedom by f = n − p. Let
us further assume that σ2je = σ2/wje, where the weights wje are yet to be
determined.
We now stack the observed variables {Zje : j + e ≤ J} into a column

vector that we denote by Zn×1, and the corresponding covariate vectors
{m′

je : j + e ≤ J} into a matrix that we denote by Mn×p. Finally, we
arrange the weights

{wje : j + e ≤ J} (8.4)

in a diagonal matrixWn×n.
It is easy to see that under the model assumptions, the random vector

Z has a multivariate normal distribution with mean vector μ = Mβ and
covariance matrix

Σ = σ2W−1 (8.5)

. We assume that M is of full column rank p. Let Qp×p =M′WM.
Using the standard theory of normal linear models, we can immediately

write down maximum likelihood estimators of the model parameters:

β̂ = (M′WM)
−1
M′WZ (8.6)

and

σ̂2 = n−1
(
Z−Mβ̂

)′
W

(
Z−Mβ̂

)
(8.7)
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The Student-Fisher Theorem tells us that β̂ and σ̂2 are stochastically
independent with

β̂ ∼ Np
(
β , σ2 (M′WM)

−1 ) ∼ Np (β , σ2Q−1 ) (8.8)

and

σ̂2 ∼
(
σ2

n

)
χ2n−p ∼

(
σ2

n

)
Γ

(
f

2
,
1

2

)
(8.9)

We are not finished yet, because insurance liabilities are not settled
in log(money). What we actually need, is a predictor of the future pay-
ments X> = {Xje = pj exp (Zje) : j + e > J } and an estimate of its mean
squared error.
The expected value of Xje is pjξje, where ξje is defined by

ξje = exp

(
m

′
jeβ +

1

2

σ2

wje

)
(8.10)

The maximum likelihood estimator of ξje is

ξ̂je = exp

(
m

′
jeβ̂ +

1

2

σ̂2

wje

)
(8.11)

Using the independence between β̂ and σ̂2, the multivariate normal dis-
tribution of β̂, and the chi-square distribution of σ̂2 and, we find that

E
(
ξ̂je

)
= E exp

(
m

′
jeβ̂

)
× E exp

(
1
2
σ̂2

wje

)
= exp

(
m

′
jeβ +

1
2σ

2m
′
jeQ

−1mje

)
×Mf

(
1
2

σ2

nwje

)
= exp

(
m

′
jeβ +

1
2σ

2m
′
jeQ

−1mje

)
×
(
1− σ2

nwje

)− f
2

(8.12)

In this expression, Mf (t) = (1− 2t)−f/2 denotes the moment generating
function of the χ2f distribution (remember that f = n − p denotes the
degrees of freedom). We assume that σ2 < nwje so that the m.g.f. is defined.
The estimators ξ̂je are biased in finite samples.
A first-order bias corrected estimator of ξje is

ξ̃je = exp

(
m

′
jeβ̂ +

1

2
σ̂2
(
w−1je −m

′
jeQ

−1mje

))
(8.13)
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Using the same reasoning as in (8.12), we see that this estimator has mean

E
(
ξ̃je

)
= exp

(
m

′
jeβ +

1
2σ

2m
′
jeQ

−1mje

)
×

(
1− σ2

(
w−1je −m

′
jeQ

−1mje

)

n

)− f
2

These estimators are still biased in finite samples.
In order to find an unbiased estimator of ξje, we compute the moments

of all orders of σ̂2. Using (8.9) and the moments of a gamma distribution,
we find that

E
(
σ̂2k

)
= σ2k ·

(
f

n

)k
· γk

(
f

2
,
f

2

)
for k = 0, 1, 2, · · · (8.14)

where γk (α, β) =
Γ(α+k)

Γ(α)βk
denotes the k’th order moment of a Γ (α, β)distribution.

Now let us denote the well-known, unbiased estimator of σ2 by

σ̄2 = σ̂2
(
n

f

)
= (n− p)−1

(
Z−Mβ̂

)′
W

(
Z−Mβ̂

)
(8.15)

Using (8.14) and (8.15) and the Taylor expansion of ex, is is now easy to
verify that

E

( ∞∑
k=0

γ−1
k

(
f

2
,
f

2

)
σ̄2k

k!

)
=

∞∑
k=0

σ2k

k!
= exp

(
σ2
)

(8.16)

If we define the function

Gf (t) =

∞∑
k=0

γ−1
k

(
f

2
,
f

2

)
tk

k!
(8.17)

then it is easy to verify that
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EGf
(
σ̄2b

)
= exp

(
σ2b

)
(8.18)

for any constant b.
In particular, an unbiased estimator of ξje is

ξ̄je = exp
(
m

′
jeβ̂

)
·Gn−p

(
1

2
σ̄2
(
w−1je −m

′
jeQ

−1mje

))
(8.19)

Next, let us derive a formula for the MSEP of an overall estimate based
on ξ̄je.
The overall outstanding claim liability isX> =

∑
j+e>J Xje. Let us write

X̄je = pj ξ̄je for j+ e > J , and X̄> =
∑

j+e>J X̄je. Using the unbiasedness
of X̄je and the independence between past and future observations, we can
write the MSE as

E
(
X> − X̄>

)2
=

∑
j+e>J

∑
j′+e′>J

E
(
Xje − X̄je

) (
Xj′e′ − X̄j′e′

)
=

∑
j+e>J

∑
j′+e′>J

(
Cov (Xje, Xj′e′) + Cov

(
X̄je, X̄j′e′

))
(8.20)

Now

Cov (Xje, Xj′e′) = δjj′ δee′ p
2
j ξ

2
je

(
exp

(
σ2/wje

)− 1) (8.21)

and

Cov
(
X̄je, X̄j′e′

)
= pj pj′

(
E
(
ξ̄jeξ̄j′e′

)− ξjeξj′e′) (8.22)

Using the abbreviation vje =
(
w−1je −m

′
jeQ

−1mje

)
/2, we find the ex-

pression

E
(
ξ̄jeξ̄j′e′

)
= E

(
exp

(
m

′
jeβ̂

)
Gf

(
σ̄2vje

)
exp

(
m

′
j′e′ β̂

)
Gf

(
σ̄2vj′e′

))
= E

(
exp

((
m

′
je +m

′
j′e′

)′
β̂

))
× E (Gf (σ̄2vje)Gf (σ̄2vj′e′))

= [1] × [2]
(8.23)

with
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[1] = E
(
exp

((
m

′
je +m

′
j′e′

)′
β̂

))
= exp

((
m

′
je +m

′
j′e′

)′
β

)
× exp

(
1
2σ

2
(
m

′
je +m

′
j′e′

)′
Q−1

(
m

′
je +m

′
j′e′

)) (8.24)

and, using the abbreviation γk = γk

(
f
2 ,

f
2

)
,

[2] = E
(
Gf

(
σ̄2vje

) ·Gf (σ̄2vj′e′))
= E

( ∞∑
k=0

∞∑
k′=0

γ−1k
(σ̄2vje)

k

k ! · γ−1k′ (
σ̄2vj′e′)

k′

k′ !

)
=

∞∑
k=0

∞∑
k′=0

(
γk+k′
γk γk′

)
·
(
vkje v

k′
j′e′

k! k′!

)
· σ2(k+k′)

(8.25)

Now one can collect terms from (8.21)-(8.25) to assemble the MSEP in
(8.20). A consistent estimator of the MSEP, albeit not an unbiased one,
can be obtained by replacing the parameters ξ, β and σ2 with estimates in
(8.21)-(8.25).
The function Gf in the estimator ξ̄je may appear to be a bit unsatisfac-

tory at first glance, as it involves an infinite series. To that objection, let
it suffice to respond that Gf (t) and (8.25) can be evaluated to any desired
degree of precision, using any modern programming language.
The meaning of the weights wje has not been made clear yet. Since they

affect the variance of the logarithmic variables Zje = ln (Xje/pj), the wje
are not necessarily proportional to pj , as one would intuitively assume if
the variance of Xje/pj itself was affected. Taylor (2000) determines the
weights by visual inspection of the residuals. Let us briefly summarise his
procedure.

One starts with observing that
Zje−m′

jeβ̂

σ/
√
wje

∼N(0, 1) if the model is cor-
rectly specified; moreover, in large samples, the Pearson standardised resid-
uals Rje will have a mean of approximately zero and a variance of approx-
imately one:

Rje =
Zje −m′

jeβ̂

σ̂/
√
wje

approx.∼ [0, 1] (8.26)

In order to fit a model using the standardised residuals and the require-
ment (8.26), one can proceed as follows:
Start with an initial set of {wje : j + e ≤ J}, for example, wje ≡ 1.

Estimate β and σ2 and calculate the residuals Rje. Inspect graphs of Rje
to check whether (8.26) appears to be reasonably satisfied along the axes of
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96 8. Log-linear models

j (accident period), e (development period) and j+e (valuation period). If
the graphs reveal a violation of (8.26), adjust the wje to reduce or remove
the violation. Estimate β and σ2 again and calculate new residuals Rje.
Inspect graphs...
Needless to say, the wje cannot be just any set of numbers, but should

have a functional form that allows a credible extension to the future weights
{wje : j+e > J}. One could surmise, for example, that wje form a function
like wje = exp(−ω · e), and try to find a suitable value of ω. For other
examples, see Taylor (2000).

8.3 Bootstrapping

For most of the methods we have seen so far, we have been able to derive a
formula for the mean squared error or predictions (MSEP) within the model
that justifies the method. In those cases, the MSEP could be written as a
function of unknown model parameters. In order to calculate an estimate of
MSEP, we would replace unknown model parameters with point estimates.
There are some problems connected with this procedure.

• Point estimates are subject to randomness, and could turn out dif-
ferent in a new data sample, even if the new data is generated by the
same underlying mechanism as the original data.

• The MSEP does not specify the distribution of the prediction error.
In cases where that distribution is important, for example to calcu-
late a percentile of outstanding claims, that distribution is essential.

• In some models, it is possible to calculate the distribution of predic-
tion error in principle, but in practice is is rather hairy.

Enter the bootstrap. In very simple terms, bootstrapping consists of ran-
dom resampling of the data, in order to generate an empirical distribution
of the quantity that is of interest.
This section outlines bootstrapping only for the log-linear model. For a

more general presentation, the reader may consult Taylor (2000), Pinheiro
et al. (2000), and the references in those sources.
Let us therefore continue with the log-linear model. We would like to

generate, by simulation, a distribution of the prediction error X> − X̄>.
In order to do so, we consider first the distribution of the residuals (8.26),
repeated here for ease of reference:

Rje =
Zje −m′

jeβ̂

σ̂/
√
wje

(8.27)
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Now let us stack the observed residuals

{Rje : j + e ≤ J} (8.28)

into a column vector that we denote by Rn×1. We can write

R = σ̂−1W
1
2

(
Z−Mβ̂

)
(8.29)

Using the model assumptions, one can verify that

E
(
W

1
2

(
Z−Mβ̂

))
= 0 (8.30)

and

Cov
(
W

1
2

(
Z−Mβ̂

))
= σ2

(
I −W 1

2MQ−1MW
1
2

)
= σ2Λ (8.31)

where

W
1
2 = diag

(√
wje

)
(8.32)

and Λ denotes the matrix expression in the brackets following σ2. The
matrix Λ is easily calculated, as it only involves known, non-random quan-
tities.
Ignoring the randomness in σ̂2, we conclude from (8.29)-(8.31) that

R
approx.∼ [0,Λ] (8.33)

where [0,Λ] is shorthand notation for zero mean, covariance matrix Λ.
In order to be able to simulate new samples of the empirical residuals, we

transform the distribution of the residuals to one that is (approximately)
standardised - i.e. uncorrelated with zero mean and unit variance. One can
use the Cholesky decomposition to find a matrix L that satisfies

LΛL′ = I (8.34)

Then vector of standardised residuals is

S = L ·R approx.∼ [0, I] (8.35)

We denote the empirical distribution of the components of S by F̂ .
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98 8. Log-linear models

To simulate N random replications of the past data {Zje : j + e ≤ J},
we proceed as follows:
For i = 1, · · · , N :

1. Generate {S(i)je : j + e ≤ J} in such a way that S(i)je i.i.d.∼ F̂ . This one

achieves by sampling from the empirical distribution F̂ , with replace-
ment. Denote the resulting vector by S(i).

2. Calculate a set of pseudo-residuals by R(i) = L−1S(i).

3. Calculate a set of pseudo-observations by Z(i) =Mβ̂+ σ̂W− 1
2R(i)or,

in component notation: Z(i)je = m
′
jeβ̂ + σ̂ R

(i)
je /wje for j, e such that

j + e ≤ J .

4. On the basis of the pseudo-observations, calculate estimates β̂
(i)
and

σ̂(i)as well as predictors X̄(i)
je = pj ξ̄

(i)
je for j, e such that j + e > J .

In order to evaluate the distribution of the prediction error, we must also
simulate N random replications of the future data {Zje : j + e > J}. In
order to do so, we first calculate matrices M̄, W̄ and Q̄ = M̄′W̄M̄ that
correspond to the future data. We then calculate Λ̄ as in (8.31), mutatis
mutandis, and L̄ in such a way that L̄Λ̄L̄

′
= I. Having done that, simulation

of the future is analogeous to simulation of the past.
For i = 1, · · · , N , we proceed as follows:

1. Generate {S(i)je : j + e > J} so that S(i)je i.i.d.∼ F̂ . Denote the resulting
vector by S̄(i).

2. Calculate a set of future pseudo-residuals by R̄(i) = L̄−1S̄(i).

3. Calculate pseudo-observations Z(i)je =m
′
jeβ̂+ σ̂ R

(i)
je /wje for j, e such

that j + e > J .

4. Calculate X(i)
je = pj exp

(
Z
(i)
je

)
for j, e such that j + e > J .

For each of the N simulations, one calculates and stores the values that
are of interest. At the very simplest, one would calculate the aggregate

estimation error, E(i) =
∑

j+e>J

(
X
(i)
je − X̄(i)

je

)
.
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8.3 Bootstrapping 99

An empirical estimate of MSEP is then MSEP∗ = N−1∑N
i=1

(
E(i)

)2
.

This estimate enables one to avoid the cumbersome computations (8.20)-
(8.25). Of course, implementing the bootstrap procedure also requires a bit
of work.
Other properties of the simulated distribution of the estimation error, in

particular percentiles, are also easy to find.
The empirical nature of the bootstrap procedure allows one to analyse

the properties of other predictors as well. For example, the ξ̂je or ξ̃je of the
previous section are not unbiased, but they are easier to evaluate than ξ̄je.
Using the bootstrap, one can analyse the increase in MSEP that replacing
ξ̄je by ξ̂je or ξ̃je would engender.
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9
General linear models

9.1 Introduction

In the previous chapter we considered a model where the logarithms of the
claim observations Xje formed a normal linear model, with a mean that
was linearly regressed on a smaller number of parameters. This allowed us
to use the theory of normal linear models on the transformed variables.
Generalised linear models take a different approach, in that it is the

mean itself that is assumed to be a transformation of a linear regression.
The general formulation is

E (Xje/pj) = h
(
m

′
jeβ

)
(9.1)

Var (Xje/pj) = τ2jeϕ/wje (9.2)

Cov (Xje/pj , Xj′e′/pj′) = 0 for (j, e) 	= (j′, e′) (9.3)

Here m
′
je denotes a row vector of knowable covariates associated with

the distribution of Xje/pj , and β denotes a column vector of unknown
regression parameters. The function h is called the response function, and
its inverse h−1 is called the link function.
Extensive theory and software exists for the analysis of generalised linear

models when the distribution of the Xje/pj belongs to the exponential
distribution family. The software can be used to compute estimators β̂ and
ϕ̂. Using those estimators one can compute fitted values and predictions,
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102 9. General linear models

X̂je/pj = h
(
m

′
je · β̂

)
(9.4)

We shall see some examples in what follows.

9.2 Exponential family of distributions

The exponential family of distributions if given by the density functions

f(y) = a(y, ϕ) exp

(
yθ − b(θ)

ϕ

)
(9.5)

The mean and variance of a distribution in the exponential family may
be found by first observing that the moment generating function is given
by

M(t) = E
(
etY

)
=

∫
a(y, ϕ)ety exp

(
yθ−b(θ)
a(ϕ)

)
dy

= exp
(
b(θ+ta(ϕ))−b(θ)

a(ϕ)

) (9.6)

Thus the mean and variance are

E (Y ) =M ′ (0) = b′(θ) (9.7)

and

Var (Y ) =M ′′ (0)− (b′(θ))2 = ϕb′′(θ) (9.8)

A member of a given exponential family is fully characterized by its mean
and variance. Note in particular that for a given family, the variance can
be expressed as a function of the mean via the "natural parameter" θ:

Var (Y ) = ϕb′′
(
(b′)−1 (E (Y ))

)
(9.9)

One can also write Var(Y ) = ϕτ2(θ), where τ2(θ) = b′′(θ).

Normal distribution

The normal distribution with mean μ and variance σ2 has the density

f(y) =
1√
2πσ

exp

(
−1
2

(
y − μ
σ

)2)
(9.10a)

= exp

(
−1
2

(
ln(2πσ2) +

y2

σ2

))
exp

(
yμ− μ2/2

σ2

)
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9.2 Exponential family of distributions 103

Thus it can be cast in the form (9.5) by defining θ = μ, ϕ = σ2, b(θ) = θ2/2,

b′(θ) = θ, b′′(θ) = 1 and a(y, ϕ) = exp
(
− 1
2

(
ln(2πϕ) + y2

ϕ

))
.

Poisson distribution

The Poisson distribution with mean μ and has the point probabilities

p(y) =
μy

y!
exp (−μ) = 1

y!
exp (y ln(μ)− μ) (9.11)

Thus it can be cast in the form (9.5) by defining θ = lnμ, ϕ = 1, b(θ) =
b′(θ) = b′′(θ) = eθ and c(y, ϕ) = 1/y!.

Gamma distribution

The gamma distribution with parameters (α, β) has the density

f(y) =
βα

Γ(α)
yα−1e−βy (9.12)

=
αα

Γ(α)
yα−1 exp

(
y(−β/α)− ln(α/β)

1/α

)

Thus it can be cast in the form (9.5) by defining θ = −β/α, ϕ = 1/α,
b(θ) = ln(−1/θ), b′(θ) = −1/θ, b′′(θ) = 1/θ2, and c(y, ϕ) = αα

Γ(α)y
α−1.

Other distributions

There are a number of other distributions that can be cast in the form of
an EDF, see Wüthrich & Merz (2008, ch. 6).
The theory of GLMs also allows for a distibution-free approach that

employs only an assumed relationship between the mean and the variance
of the observations and obtains parameter estimates by maximising the
quasi-likelihood. The relationship is given by (9.9). In particular in the
three example distributions above, the relationship between the mean and
the variance is

• Normal distribution: Var(Y ) = ϕ

• Poisson distribution: Var(Y ) = E(Y )

• Gamma distribution: Var(Y ) = ϕE2 (Y )
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104 9. General linear models

9.3 Applications

In loss reserving exercises, the link function is normally h−1(x) = ln(x).
The mean of the observed variables has the multiplicative form

E (Xje/pj) = h
(
m

′
jeβ

)
= exp(m

′
jeβ) (9.13)

For example, a model with multiplicative accident period effects and
development period effects is obtained by defining

m
′
jeβ = αj + βe (9.14)

A model with a fixed accident period level, and free development period
effects is obtained by defining

m
′
jeβ = α+ βe (9.15)

Similarly, all the model variations suggested for the log-linear model can
also be combined with a generalised linear model. If pj denotes a measure
of risk exposed, then it seems semsible to define wje = pj .
The Poisson distribution enjoys great popularity because with that dis-

tribution, the maximum likelihood estimates of the GLM coincide with the
estimates from the Chain-ladder method. As a result, a GLM with Pois-
son distributions is often cited as the model underlying the Chain-ladder
method.

9.4 Bootstrapping the GLM

The Pearson standardised residuals are

Rje =
Xje/pj − X̂je/pj√
Vâr

(
X̂je/pj

) =
Xje/pj − X̂je/pj

τ̂ je
√
ϕ̂/wje

(9.16)

If the model is correctly specified, the mean and variance of Rje are
approximately [0,1] in large samples. This property can be used for boot-
strapping. A new sample of past and future pseudo-observations may be
calculated from the formula

X
(i)
je /pj = h(m

′
jeβ̂) + τ̂ je

√
ϕ̂/wjeR

(i)
je (9.17)

If one is assuming a specific distribution, one can also simulate directly
from that distribution, using the estimated β̂ and ϕ̂.
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9.5 Notes

The theory of generalised linear models is described in McCullagh & Nelder
(1989). For worked examples, see Taylor (2000) and Pinheiro et al (2000).
Wüthrich & Merz (2008) provide details about the estimation procedure.
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10
Dynamic linear models

Remark 9 This chapter will be reworked or eliminated. I am not convinced
of the usefulness of dynamic linear models in the loss reserving context,
although the theory is elegant.
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11
Miscellaneous topics

11.1 Introduction

This chapter is a collection of bits and pieces and will be reworked.

11.2 Simple model diagnostics

In assessing whether a given method provides reasonable estimates, it is
often useful to calculate diagnostic quantities such as

• The implied ultimate claim frequency, i.e. reported claims plus esti-
mated claims IBNR, divided by the risk volume. Unless there are ex-
plainable deviations or trends, the ultimate claim frequencies of suc-
cessive accident periods should normally form a trendless sequence.
If this is not the case, the model reporting pattern may be wrong.

• The implied average claim size for reported claims, including any al-
lowance made for future revaluations. In the absence of very large
claims, the average size of reported claims of successive accident pe-
riods should form a sequence that roughly follows an inflation trend-
line. A give-away sign of under-estimation is when the average claim
size of immature accident periods is lower than that of more mature
periods. In that case one must be prepared for revaluations.

• The implied average claim size for unreported claims. In many lines
of business, there is a marked dependency between the average claim
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110 11. Miscellaneous topics

size and the reporting delay. In property insurance the dependency
is usually negative, while it is often positive in casualty insurance.
The average claim size of unreported claims will give you an idea
whether the estimated amount of claims IBNR is in harmony with
their predicted number.

• The implied risk premium, i.e. the ultimate claim cost divided by the
risk volume. Unless there are explainable deviations or trends, the
ultimate risk premiums of successive accident periods should normally
form a trendless or inflation-linked sequence.

11.3 Analysis of development

One should always keep track of the accuracy of previous estimates. In the
detailed model of chapters 4 to 6, it is easy to split up the development
into its different components: Number of new claims reported (actual vs.
predicted), severity of new claims reported (actual vs. predicted) and reval-
uation of old claims (actual vs. predicted). In the more summary models,
one can of course only keep track of the quantity whose evolution one has
predicted.

11.4 The NP approximation

We have seen how one can calculate the mean squared error of the esti-
mators. Unfortunately, mean squared error does not capture the skewness
that is common to claim distributions. The Normal Power (NP) approxi-
mation is an extension of the normal approximation that makes allowance
for the skewness in the distribution. In this section we will see very briefly
how one can use the NP approximation to approximate percentiles in the
probability distribution of claims IBNR.
Consider a random variable X with a probability distribution F . The

NP approximation to the (1− ε) percentile of F is

F−1(1− ε) = E(X) + z1−ε
√
E(X − EX)2 +

(
z1−ε − 1

6

)
E(X − EX)3
E(X − EX)2

(11.1)
where z1−ε = Φ−1(1− ε) is the (1− ε) percentile in the standard normal

distribution. The NP approximation has been shown to work well in the
right tail (small ε) of probability distributions that are not too skew.
From a practical point of view the NP approximation has a very attrac-

tive property. Let X =
∑n

i=1Xi, with independent, but not necessarily
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11.4 The NP approximation 111

identically distributed random variables X1, · · · , Xn. Then it is easy to
verify that E(X − EX)k =

∑n
i=1E(Xi − EXi)

k for k=2,3. Therefore the
NP approximation allows one to easily approximate the aggregate distrib-
ution of independent variables, if the moments of the constituent random
variables are known.
Let us now calculate the necessary moments in a mixed, compound Pois-

son distribution. For the time being we drop all the indeces, but retain a
notation that will indicate where the ultimate aim lies.
First, let a random variable Y have a compound Poisson distribution

with frequency parameter pπθ and severity distribution G. Denote the non-
central moments of G by μ(k) =

∫
xkG(dx) for k=1,2,3. Then it is well-

known and easy to prove by moment generating functions, that

Eθ(Y ) = pπθμ(1) (11.2)

and

Eθ(Y − EθY )k = pπθμ(k) (11.3)

for k=2,3.
Now assume that the compound distribution is conditional on the ran-

dom parameter Θ, and that Θ has a mixing distribution U . Denote the
non-central moments of Θ by

ϕ(k) = E(Θk) (11.4)

By tedious algebra one can verify that the unconditional moments of Y
are

E(Y ) = pπϕ(1)μ(1) (11.5)

E(Y − EY )2 = pπϕ(1)μ(2) + (pπμ(1))2(ϕ(2) − [ϕ(1)]2) (11.6)

E(Y − EY )3 = pπϕ(1)μ(3)

+ 3(pπ)2μ(1)μ(2)(ϕ(2) − [ϕ(1)]2)
+ (pπμ(1))3(ϕ(3) − 3ϕ(2)ϕ(1) + 2[ϕ(1)]3)

(11.7)

In order to apply the NP approximation to the claims IBNR, we have to
calculate the corresponding moments there.
Let us work within the Bayesian credibility model with Θ1, · · · ,ΘJ ∼

Γ(α, β)and independent. The amount of claims IBNR for accident period
j is Yj,>J−j =

∑∞
d=J−j+1 Yjd, where Yjd is the ultimate claim amount in

respect of claims reported in calendar period j+d. Conditional on Θj = θj ,
Yj,>J−j has a compound Poisson distribution with frequency parameter

DRAFT 
09.04.14



112 11. Miscellaneous topics

pjθjπ>J−j and tail severity distribution G>J−j =
∑∞

d=J−j+1 πdGd/π>J−j .
The moments of the tail severity distribution are:

μ
(k)

>J−j =
∞∑

d=J−j+1
πdμ

(k)
d /π>J−j (11.8)

for k = 1, 2, 3.
The non-central moments in the à priori (or structural) distribution of

Θj are

ϕ(k) =
βα

Γ(α)

∫ ∞

0

θα+k−1e−βθdθ =
Γ(α+ k)

Γ(α)βk
(11.9)

The conditional distribution of Θj , given counts up to time J−j, is again
a gamma distribution with updated parameters

ᾱ = α+Nj,≤J−j (11.10)

and

β̄ = β + pjπ≤J−j (11.11)

The corresponding non-central moments are of course

ϕ̄(k) =
Γ(ᾱ+ k)

Γ(ᾱ)β̄
k

(11.12)

If one now uses pj , π>J−j , μ
(1)
>J−j , μ

(2)
>J−j , μ

(3)
>J−j , ϕ̄

(1), ϕ̄(2), ϕ̄(3) to assem-
ble (11.5)-(11.7), one has all the moments needed to calculate the NP ap-
proximation to the conditional probability distribution of the IBNR claim
amount of accident period j.
Further, aggregating those moments across j = 1, ..., J , one gets the

moments needed for the overall IBNR claim distribution. Note that this
last step assumes independence of Θ1, · · · ,ΘJ , an assumption which is not
fulfilled in the dynamic linear model.
One could also use unconditional moments of Θ1, · · · ,ΘJ . As Θ1, · · · ,ΘJ

are more dispersed in the unconditional distribution than in the conditional
distribution given the data, the resulting estimate would be somewhat on
the safe side. In some situations this may be desirable.

11.5 The mean squared error of the one-period
run-off result

Solvency II requires consideration of one-year run-off results. In this section
we briefly consider how that concept could be realised when a credibility
formula is used, and under the assumptions of the Bühlmann-Straub model.
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11.5 The mean squared error of the one-period run-off result 113

Consider passing from development period e to development period e+1
while using a certain credibility formula. The run-off result in period e+ 1
is then the incremental claim development in period e+1, plus the change
in the estimated outstanding claim development. Omitting the accident
period subscript j, this becomes:

Re+1 = Xe+1 + p
(
b̄e+1π>e+1 − b̄eπ>e

)
(11.13)

It is easy to verify that, unconditionally, E(Re+1) = 0, so that E
(
R2e+1

)
=Var(Re+1) .

Let us derive that variance the long way. We start by writing:

Re+1 = Xe+1+p
((
ze+1b̂e+1 + (1− ze+1)β

)
π>e+1 −

(
zeb̂e + (1− ze)β

)
π>e

)
(11.14)

Ignoring the non-stochastic terms we find the unconditional variance:

Var (Re+1) = Var
(
Xe+1 + pze+1b̂e+1π>e+1 − pzeb̂eπ>e

)
= Var (Xe+1) + (pze+1π>e+1)

2Var
(
b̂e+1

)
+ (pzeπ>e)

2Var
(
b̂e

)
+ 2pze+1π>e+1Cov

(
Xe+1, b̂e+1

)
− 2pzeπ>eCov

(
Xe+1, b̂e

)
− 2p2zeze+1π>eπ>e+1Cov

(
b̂e, b̂e+1

)
(11.15)

We now calculate the variances and covariances in the above expression.

Var (Xe+1) = (pπe+1)
2
λ+ pπe+1ϕ (11.16)

Var
(
b̂e+1

)
= λ+

ϕ

pπ≤e+1
(11.17)

Var
(
b̂e

)
= λ+

ϕ

pπ≤e
(11.18)

Note that b̂e = X≤e/ (pπ≤e) and b̂e+1 = (X≤e +Xe+1) / (pπ≤e+1) .Thus

Cov
(
Xe+1, b̂e

)
= 1

pπ≤e
Cov (Xe+1, X≤e)

= 1
pπ≤e

(ECov (Xe+1, X≤e|Θ) + Cov (E (Xe+1|Θ) ,E (X≤e|Θ)))
= 1

pπ≤e
Cov (pΘπe+1, pΘπ≤e)

= pπe+1λ
(11.19)

and
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Cov
(
Xe+1, b̂e+1

)
= Cov

(
Xe+1,

X≤e+Xe+1

pπ≤e+1

)
= 1

pπ≤e+1
(Cov (Xe+1, X≤e) + Cov (Xe+1, Xe+1))

=
(
p2π≤eπe+1λ+ (pπe+1)

2
λ+ pπe+1ϕ

)
/ (pπ≤e+1)

=
(
p2πe+1π≤e+1λ+ pπe+1ϕ

)
/ (pπ≤e+1)

= pπe+1λ+ (πe+1/π≤e+1)ϕ
(11.20)

Cov
(
b̂e, b̂e+1

)
= Cov

(
X≤e
pπ≤e

,
X≤e+Xe+1

pπ≤e+1

)
= 1

p2π≤eπ≤e+1
(Cov (X≤e, X≤e) + Cov (X≤e, Xe+1))

=
(
(pπ≤e)

2
λ+ pπ≤eϕ+ p2π≤eπe+1λ

)
/
(
p2π≤eπ≤e+1

)
=

(
p2π≤eλ (π≤e + πe+1) + pπ≤eϕ

)
/
(
p2π≤eπ≤e+1

)
= λ+ ϕ

pπ≤e+1
(11.21)

Let us now put all this together:

Var (Re+1) = (pπe+1)
2
λ+ pπe+1ϕ+ (pze+1π>e+1)

2
(
λ+ ϕ

pπ≤e+1

)
+ (pzeπ>e)

2
(
λ+ ϕ

pπ≤e

)
+ 2pze+1π>e+1 (pπe+1λ+ (πe+1/π≤e+1)ϕ)
− 2pzeπ>e (pπe+1λ)

− 2p2zeze+1π>eπ>e+1

(
λ+ ϕ

pπ≤e+1

)
= p2λL+ pϕF

(11.22)
with

L = π2e+1 + (ze+1π>e+1)
2
+ (zeπ>e)

2

+ 2ze+1π>e+1πe+1
− 2zeπ>eπe+1
− 2zeze+1π>eπ>e+1

(11.23)

F = πe+1 + (ze+1π>e+1)
2
/π≤e+1 + (zeπ>e)

2
/π≤e

+ 2ze+1π>e+1πe+1/π≤e+1
− 2zeze+1π>eπ>e+1/π≤e+1

(11.24)

To minimise the MSE of the run-off result one can try to differentiate L
and F by ze+1 :

∂L
∂ze+1

= 2ze+1π
2
>e+1 + 2π>e+1πe+1 − 2zeπ>eπ>e+1

= 2π>e+1 (ze+1π>e+1 + πe+1 − zeπ>e) (11.25)
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∂F
∂ze+1

= 2ze+1π
2
>e+1/π≤e+1 + 2π>e+1πe+1/π≤e+1 − 2zeπ>eπ>e+1/π≤e+1

= 2π>e+1
π≤e+1

(ze+1π>e+1 + πe+1 − zeπ>e)
(11.26)

Note that the two derivatives differ only by a constant factor. One could
see what happens if one tries to minimise the MSE of the one-period run-off
result.

∂Var(Re+1)
∂ze+1

= p2λ ∂L
∂ze+1

+ pϕ ∂F
∂ze+1

= 2
(
p2λπ>e+1 + pϕ

π>e+1
π≤e+1

)
(ze+1π>e+1 + πe+1 − zeπ>e)

= 2pπ>e+1

(
pλ+ ϕ

π≤e+1

)
(ze+1π>e+1 + πe+1 − zeπ>e)

= 2p2λπ>e+1ζe+1
(ze+1π>e+1 + πe+1 − zeπ>e)

(11.27)
where ζe+1 is the optimal credibility factor at time e+1. The derivative

is zero is and only if

ze+1 = (zeπ>e − πe+1) /π>e+1
= ze − (1− ze)πe+1/π>e+1
≤ ze if 0 ≤ ze ≤ 1

(11.28)

That the optimal ze+1 with respect to run-off result is smaller than the
previous is at odds with the credibility result that has z increasing as e
grows. In particular we see that ze = 1 ⇒ ze+1 = 1, that is once chain-
ladder, always chain-ladder, if the run-off result is the governing criterion.
We also see that ze = 0 ⇒ ze+1 < 0, so that the optimal ze+1 is actually
negative. This seems a little strange.

11.6 When is a credibility estimator worse than
the apriori mean?

The mean squared error of the estimator b̄j = zj

(
Xj,≤J−j
pjπ≤J−j

)
+ (1− zj)β is,

as we know

Q (zj) = E
(
b̄j − b (Θj)

)2
= z2j

ϕ

pjπ≤J−j
+ (1− zj)2 λ (11.29)

We want to know when Q (zj) > λ, i.e. the credibility estimator degrades
precision.
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z2j
ϕ

pjπ≤J−j
+ (1− zj)2 λ > λ ⇔

z2j
ϕ

pjπ≤J−j
+
(
z2j − 2zj

)
λ > 0 ⇔

z2j

(
ϕ

pjπ≤J−j
+ λ

)
> 2zjλ ⇔

zj

(
ϕ

pjπ≤J−j
+ λ

)
> 2λ ⇔

zj > 2λ
ϕ

pjπ≤J−j +λ
⇔

zj > 2
λpjπ≤J−j

λpjπ≤J−j+ϕ
⇔

zj > 2ζj

(11.30)

Thus credibility estimation degrades precision if (and only if) the cred-
ibility factor used is more than twice the optimal credibility factor in the
Bühlmann-Straub model. In particular this means that whenever ςj < 0.5,
the chain ladder method degrades precision.
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12
Inflation and discounting

12.1 Introduction

12.2 Inflation and discounting

In the three-dimensional model of chapters 3-5 it is easy to write down ex-
pressions for the inflated and possibly discounted value of future payments.
Denote the rate of inflation by ε and the discount rate by δ. The inflated,
discounted value of the estimated cost of claims IBNR is

IBNR(ID)J =
J∑
j=1

∞∑
d=J−j+1

∞∑
t=0

(
pjΘ̄jπdξdυt

)( 1 + ε
1 + δ

)(j+d+t)−J−0.5
(12.1)

and the inflated, discounted value of the estimated future payments on
claims RBNS is

RBNS(ID)J =

J∑
j=1

J−j∑
d=0

∞∑
t=J−(j+d)+1

(
Ȳjd − Ujd,≤J−(j+d)

)( υt
υ>J−(j+d)

)(
1 + ε

1 + δ

)(j+d+t)−J−0.5
(12.2)

By subtracting 0.5 in the exponent we have made allowance for the assump-
tion that claim payments will be spread evenly over the payment period.
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These equations can easily be extended to variable (non-stochastic) rates
of inflation or interest.

12.3 Estimating inflation by the separation method

One can use the separation method (Taylor, 2000) to estimate past inflation
from the data.
Assume that the expected amount of incremental claim payments in re-

spect of accident period j in development period kan be written in the
multiplicative form

E(Uje) = pjπeλj+e (12.3)

In this equation, pj denotes some measure of claim exposure, πe denotes
the proportion of claims paid in development period e in uninflated terms,
and λj+e denotes the price index that applies in calendar period j + e.
Now introduce the calendar period k = j + e and re-cast (12.3) in the

following form:

E

(
Uke
pk−e

)
= πeλk k = 1, · · · , J, e = 0, · · · , k − 1 (12.4)

The transformation is easy to visualise if one imagines that the tra-
ditional development triangle is rotated so that its diagonals appear as
horizontals.

Write Xke = Uke/pk−e. A heuristic estimator of the πe and λk is given
by the equations

λ∗kπ
∗
≤k−1 = Xk,≤k−1 for k = 1, · · · , J (12.5)

and

λ∗>eπ
∗
e = X>e,e for e = 0, · · · , J − 1 (12.6)

These equations are analogeous to the chain ladder equations (4.13)-
(4.14) without the volume measures. The solution is of the same form, too.
It can be calculated in the following way:
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12.3 Estimating inflation by the separation method 119

1. Set π∗≤J−1 = 1 or some arbitrary 1− ε.

2. Calculate the empirical development factors
π∗≤e
π∗≤e−1

=
∑J

k=e+1Xk,≤e∑J
k=e+1Xk,≤e−1

and thence π∗≤e for e = 0, · · · , J − 1.
3. Calculate λ∗k = Xk,≤k−1/π∗≤k−1 for k = 1, · · · , J .

If one sets π∗≤J−1 = 1− ε instead of 1, all π∗≤e change proportionally, and
so do the price indices λ∗k. However, the implied inflation rates λ

∗
k/λ

∗
k−1

remain unaffected. Thus in order to use the separation method to estimate
inflation rates, one does not need to have fully developed accident periods.
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13
Reinsurance recoveries

Remark 10 This chapter must be extended, although I am not planning
to produce a long text on this subject. Most reinsurance treaties do not lend
themselves easily to an analytic approach, although stochastic simulation is
always an option.

Most direct insurance companies have a reinsurance program combined
of proportional and non-proportional reinsurance. A simple reinsurance
program with a retained quota share q and a non-proportional priority M
would transform the gross ultimate claim amounts Yjdk into net ultimate
claim amounts:

Y
(net)
jdk = min (M, q · Yjdk) (13.1)

This can be used to calculate the severity distribution net of reinsurance
and its moments:

μ
(net)
d = q

M/q∫
0

yGd(dy) +M · (1−Gd(M/q)) (13.2)
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ρ
(net)
d = q2

M/q∫
0

y2Gd(dy) +M
2 · (1−Gd(M/q)) (13.3)

With a parametric distribution like the pareto and lognormal, this calcu-
lation is simple. Thus, in principle, one can carry out the same calculations
for the net business as for the gross business. Unfortunately, most compa-
nies’ reinsurance programs are not so simple.
A pragmatic approach is to

1. Calculate proportional reinsurance recoveries on RBNS claims, using
the actuarial estimate of their outstanding cost.

2. Calculate any non-proportional reinsurance recoveries on RBNS claims,
using case estimates of those individual claims that exceed the prior-
ity.

3. Calculate only proportional reinsurance recoveries on IBNR claims.
The rationale is that any claim large enough to be covered by non-
proportional reinsurance is likely to have been reported already.

Unless the non-proportional cover comes in at very low and high-frequent
claim amounts or sets an overall limit to the retention of the company (like
a stop loss contract), the actuary should normally not make allowance
for recoveries from non-proportional contracts that cannot be linked to
reported claims.

DRAFT 
09.04.14



14
Data requirements

14.1 Introduction

Next to capital and staff, data is an insurer’s most precious asset. Alas,
very often the modelling efforts of the actuary are hindered by data that is
inappropriately extracted or aggregated for his or her purpose. This section
gives some general guidance about the data that the actuary should ask
for. More specific requirements may of course be added.
Until now we have spoken about accident years, reporting years and so

on. I will illustrate briefly why one should try to model at smaller time
intervals wherever possible.
Imagine you are the actuary who has proudly presented his valuation

results for the annual report. Six months on at the latest, your boss will
say: “We’ve had so many new claims since last December, and besides,
quite a substantial number of late reported claims from last year — and our
case estimates have increased! Now what do you think?”. What you should
think depends, of course, on whether the numbers quoted by your boss are
in line with your expectations or not. Your problem is that a model based
on yearly development patterns does not tell you what to expect during
the year. This would not be a big issue if one could assume that every
development during the year was spread evenly — but that is not the case
either. Late reported claims incurred the year before tend to cluster at the
start of the year. Claims incurred this year tend to reported later in the
year, because they need to be incurred first. And so on.
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Therefore, it is normally sensible to build a model with smaller time
intervals — quarters, or even months. The initial investment in doing so
is more than compensated by the facility with which you can calculate
updated estimates at frequent time intervals and with a consistent set of
assumptions. The data you collect must of course be able to support your
modelling efforts.
Ideally, a data set should have individual claim records containing the

following variables:

• Valuation date
• Accident date
• Reporting date
• Claim number

• Claim type

• Claim status

• Payments
• Outstanding case estimate
No claim must be omitted, whether it be old or settled or a “zero-claim”.

The last statement needs some qualification: claims which are immediately
and irrevocably rejected can be omitted from the data, while claims that
just turned out to be zero-claims after an assessment, should always be
included in the data.
One should always ask for cumulative payment amounts, because the

consequence of a valuation date missing is much less if one has cumulative
data, than if one only had incremental data.
Many computer systems find it difficult to reconstruct outstanding case

estimates on earlier valuation dates, therefore it is a good idea to retain
copies of datasets that one has received, for future use.
Sometimes the volume of data makes it impractical to collect information

on every individual claim, or the insurance company may be reluctant
to hand over so detailed information. In that case, the variable “Claim
number” should be omitted and replaced by “Number of claims”, showing
how many claims are included in each group. The variables “Payments”
and “Outstanding case estimates” should of course show the aggregate for
the group. In this context, ”Group” means a combination of (valuation
date, accident date, reporting date, claim type and claim status).
All aggregation makes it more difficult to estimate a severity distribution.

If you only receive aggregate data, you may want to supplement it with
information that allows you to assess the variability of the claim amounts.
Such information could be:
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• The largest claim in every group.

• The sum of squares of reported claim cost in every group. This will
allow you to calculate a sample variance of reported claim cost.

• The sum and sum of squares of ln(total case estimate) in every group.
This will allow you to fit a lognormal distribution to reported claim
cost.

Or you could ask for a sample of individual claims to support your sever-
ity modelling.
Claims should be grouped into reasonably homogeneous groups prior to

being analysed. Depending on the type of claims to be valued and the
volume of data that is available, the actuary can decide to split claims into
more subgroups.
In splitting claims by claim attributes, it is important that the attributes

used are stable over the life of the claim. Attributes that may change over
the life of a claim, will distort statistics by spurious changes and should
be used with great caution. A particularly unpleasant side effect using of
unstable claim attributes is that the number of claims reported in the past
for a specific group may change in successive valuation dates.
One example of an attribute that is sometimes used to split claims, but

which is not stable, is grouping into small claims and large claims. Regard-
less of the limit chosen for small claims, there will always be some migration
between the two groups, causing apparent changes in the statistics.
Another unstable attribute is the distinction of claims into “zero claims”

and “genuine claims”. If claimhandlers were clairvoyants who could predict
for any claim whether or not it would generate a payment, then “genuine
claims” would be a stable group. In reality, there is always a great deal of
migration — zero claims turning out to be genuine claims and vice versa.
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15
Appendix. Credibility estimation in
the regression case

Remark 11 This chapter was written for students with a knowledge of
credibility theory, who only need an alignment of the notation. I am plan-
ning to extend it with some essential proofs, so that it can serve as a very
quick introduction to the theory.

The appendix gives a very brief overview of credibility theory in the
regression case. No proofs will be given as this is not a course on credibility
theory. However, most results can be verified using standard matrix algebra
for covariance matrices.
Let us assume that we have a random vector of observations Xn×1 (for

example, past claims). Let us further assume the existence of an unob-
served random element Θ (for example, underlying risk conditions). Now
assume that in the conditional distribution given Θ the vector X is linearly
regressed on a vector-valued function of Θ:

E(X | Θ) = Yn×mbm×1(Θ) (15.1)

with a known regression matrix Y with full column rank m ≤ n.
Denote the first and second order moments of b(Θ) by

βm×1 = E(b(Θ)) (15.2)
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and

Λm×m = Cov(b(Θ)) (15.3)

The expected conditional covariance matrix of X given Θ we denote by

Φn×n = ECov(X | Θ) (15.4)

It is easy to verify that the unconditional covariance matrix of X is

Σn×n = Φ+YΛY′ (15.5)

We assume that Φ and thereby Σ are of full rank.
We now set out to estimate the unknown regressor b(Θ) by a linear func-

tion of the form

b∗ = gm×1 +Gm×nX (15.6)

with fixed coefficient matrices g and G. The mean squared error matrix of
the estimator b∗ is

Qm×m(g,G) = E(b− b∗)(b− b∗)′
= GΦG′ + (I−GY)Λ(I−GY)′
+ ((I−GY)β − g) ((I−GY)β − g)

(15.7)

For any linear combination a′b(Θ) with a vector of fixed coefficients
am×1, the mean squared error of the estimator a′b∗ is trivially a′Qa. The
mean squared error is uniformly minimal for all choices of am×1 if one
chooses the following cofficients:

Γ = Cov(b(Θ),X′) Cov−1(X) = ΛY′Σ−1 (15.8)

and

γ = (I− ΓY)β (15.9)
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The linear greatest accuracy credibility estimator is then

b̄ = γm×1 + Γm×nX (15.10)

It can also be written in the form

b̄ = Zb̂+ (I− Z)β (15.11)

with

b̂ =
(
Y′Φ−1Y

)−1
Y′Φ−1X (15.12)

and a credibility matrix

Z = ΓY
= ΛY′Σ−1Y
= ΛY′Φ−1Y

(
I+ΛY′Φ−1Y

)−1 (15.13)

Its mean squared error may be written as

Q(Z) = E(b− b̄)(b− b̄)′
Z
(
Y′Φ−1Y

)−1
Z′ + (I− Z)Λ(I− Z)′ (15.14)

This equation holds for an arbitrary choice of Z (not just the one given
in (15.13)).
A matrix identity that is often useful in calculating (15.13), is the fol-

lowing:

(I+AB)
−1
= I−A (I+BA)−1B (15.15)

This holds whenever all the displayed inverses exist. Let Xn2×1
2 be an-

other random vector that is linearly regressed on b(Θ), i.e.

E(X2 | Θ) = Yn2×m
2 b(Θ) (15.16)

The vector X2 could for example denote future claims that depend on the
same underlying risk conditions as those already observed (X). Assume that
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Φn2×n22 = ECov(X2 | Θ) (15.17)

Finally assume that X2 and X are conditionally independent, given Θ.
Then the linear predictor X̄2 = Y2b̄ has a mean squared error matrix of

E(X2 − X̄2)(X2 − X̄2)
′ = Φ2 +Y2Q(Z)Y

′
2. (15.18)

Empirical credibility theory is the discipline where the parameters (β,Φ,Λ)
are replaced by estimates (β∗,Φ∗,Λ∗) prior to being used in (15.11)-(15.14).
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