FORMULAE * Project Evaluation

English Class M01 2013/2014

Working Capital

- Working Capital= Raw materials in stock + Finished goods in stock + Monies owed by customers + Monies owned to suppliers ${ }^{1}$
or
- Working Capital $=$ Current Assets - Current Liabilities ${ }^{2}$ or
- Working Capital = Accounts receivable + Inventory + Accounts payable ${ }^{3}$
- Working Capital Investment= Working Capital ${ }_{\mathrm{t}}$ - Working Capital ${ }_{\mathrm{t}-1}$

Cash Flows for a Project

CFG ${ }_{t}=$ Global or Total Cash Flow in t
CFEt $=$ Operational Cash Flow or Cash Flow from Operating Activities

- CFG $_{t}=$ Infows $_{t}-$ Outflows $_{t}$
- $\mathrm{CFG}_{\mathrm{t}}=\left[-\mathrm{Cl}_{\mathrm{t}}+\mathrm{VR}_{\mathrm{t}}-\Delta N F M_{\mathrm{t}}\right]+\mathrm{CFE}_{\mathrm{t}}$

CFG Global Cash Flow
CI Cost of Investment
VR Residual Value
NFM Working Capital
$\triangle N F M$ Investment in Working Capital

- CFE $_{t}=\mathrm{RL}_{\mathrm{t}}+\mathrm{A}_{\mathrm{t}}+\mathrm{Aj}_{\mathrm{t}}+$ EFFin $_{t}$

CFE Operational Cash Flow
RL operating net return (net profit)
A Depreciation
Aj Adjustments
EFFin t value of Interests paid (Interests)

- $\mathrm{FCF}_{\mathrm{t}}=$ RAIEF $_{\mathrm{t}} \times(1-\mathrm{T})+\mathrm{A}_{\mathrm{t}}+$ Ajt $_{\mathrm{t}}-$ Investment $_{\mathrm{t}}$
- Free Cash Flow = Net Results before Taxes and Interest
$\mathrm{T}=$ taxes (tax rate; e.g. 25\%)
- WACC definitions:
(Flow Global CF/Fluxo= CFG) WACC ${ }_{t}=w_{d}$ Kd $_{t}+\left(1-w_{d}\right)$ Ks $_{t}$
(Flow Free CF/Fluxo= FCF) $\quad W_{A C C}=w_{d} K_{t}(1-T)+\left(1-w_{d}\right) K s_{t}$
- Cash Flow of Stockholders (=CFGA):

CFGAt $=$ CFG $_{t}+$ Received from funders(external capital $)_{t}-$ Paid to funders (external capital) t

Financing Projects

- \quad WACC $=w_{s} k_{s}+w_{d} k_{d}$
- $\mathrm{APV}=\mathrm{NPV}$ of the project if financed 100% by own capital + discounted value of fiscal saving from interest payment
- $k s_{i}=\mathrm{R}_{\mathrm{F}}+$ risk premium
- Risk Premium ${ }_{i}=\left(\mathrm{R}_{\mathrm{M}}-\mathrm{R}_{\mathrm{F}}\right) \beta_{\mathrm{i}}$

[^0].

- $\beta_{\mathrm{i}}=\frac{\operatorname{Cov}(R i, R M)}{\sigma_{M}^{2}}$
- NPV of a project (assuming a constant k):
$\mathrm{NPV}=\sum_{t=0}^{n} \frac{C F G_{t}}{(1+k)^{t}}$
- IRR
$\sum_{i=1}^{n} \frac{C F E}{(1+T I R)^{\prime}}=C I_{0}$
- IRR Modified or Modified Internal Rate of Return (MIRR) ${ }^{4}$
$\frac{\sum_{t=1}^{n} C F E_{t}\left(1+R_{2}\right)^{n-t}}{(1+T I R M)^{n}}=C l_{0}$
- Profitability Index
$\mathbf{I R}=\left[\frac{\sum_{t=1}^{n} \frac{C F E_{t}}{(1+k)^{t}}}{C I_{0}}\right]$
- Adjusted Present Value, APV
$\boldsymbol{A P V}=\sum_{t=0}^{n} \frac{F C F_{t}}{\left(1+k s_{U}\right)^{t}}+\sum_{t=1}^{n} \frac{k d D_{t} T}{(1+k d)^{t}}$

Decisions under uncertainty

- NPV (using certainty equivalent method)

$$
\boldsymbol{N P V}=\sum_{t=0}^{n} \frac{\alpha_{t} C F G_{t}}{(1+R f)^{t}}
$$

[^1]
[^0]: ${ }^{1}$ Crundwell (2008, p.7)
 ${ }^{2}$ Crundwell (2008, p.113)
 ${ }^{3}$ Crundwell (2008, p.113)

[^1]: ${ }^{4}$ Crundwell (2008), p. 180.

