General specification testing:

- For E(Y|X):
 - RESET test
 - Chow test
 - P test for nonnested hypotheses
- For Pr(Y|X):
 - Information Matrix text, usually very hard to implement
 - More common: tests designed specifically to particular models

General specification testing:

RESET test:

- Implementation:
 - Estimate the original model:

$$Pr(Y|X) = F(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)$$

- Generate the variables $(X\hat{\beta})^2$, $(X\hat{\beta})^3$, $(X\hat{\beta})^4$, ...
- Add the generated variables to the original model and estimate the following auxiliary model:

$$Pr(Y|X) = F\left[\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + \gamma_1 (X\hat{\beta})^2 + \gamma_2 (X\hat{\beta})^3 + \gamma_3 (X\hat{\beta})^4 + \dots\right]$$

Apply a LR / Wald test for the significance of the added variables:

$$H_0: \gamma_1 = \gamma_2 = \gamma_3 = \cdots = 0$$
 (suitable model functional form)

 H_1 : No H_0 (unsuitable model functional form)

General specification testing:

Chow test for structural breaks:

- Context:
 - Two groups of individuals / firms / ...: G_A , G_B
 - It is suspected that the behaviour of the two groups in which regards the dependent variable may have different determinants
- Implementation:
 - Generate the dummy variable $D = \begin{cases} 1 & \text{if the individual belongs to } G_A \\ 0 & \text{if the individual belongs to } G_B \end{cases}$
 - Estimate the original model 'duplicated':

$$Pr(Y|X) = F(\theta_0 + \theta_1 X_1 + \dots + \theta_k X_k + \gamma_0 D + \gamma_1 D X_1 + \dots + \gamma_k D X_k)$$

Apply a LR / Wald test for the significance of the variables including D:

$$H_0: \gamma_1 = \cdots = \gamma_k = 0$$
 (no structural break)

 H_1 : Não H_0 (with a structural break)

General specification testing:

P Test for Nonnested Hypotheses:

- Usefulness:
 - Most nonlinear models are based on specifications for E(Y|X) that are nonnested: one specification is not a particular case of the other
 - The P test checks nonnested specifications, one against the other, with the test being calculated twice, with each model under H_0 :

$$H_0: E(Y|X) = G(X\beta); H_1: E(Y|X) = S(X\beta)$$

 $H'_0: E(Y|X) = S(X\beta); H'_1: E(Y|X) = G(X\beta)$

- Possibles outcomes from the test:
 - G is better than S, since H'_0 is rejected but H_0 is not
 - S is better than G, since H_0 is rejected but H_0' is not
 - No model is suitable, since both H_0 and H_0' are rejected
 - Both models are suitable, since neither H_0 nor H_0' are rejected

General specification testing:

- Implementation:
 - $H_0: E(Y|X) = G(X\beta); H_1: E(Y|X) = S(X\beta):$
 - Estimate the null model and get $G(X\hat{\beta})$
 - Estimate the alternative model and get $S(X\hat{\beta})$
 - Estimate the linear artificial model:

$$Y - G(X\hat{\beta}) = [g(X\hat{\beta})X]\theta + \gamma[S(X\hat{\beta}) - G(X\hat{\beta})]$$

– ttest for:

$$H_0: \gamma = 0 \iff E(Y|X) = G(X\beta)$$

- $H'_0: E(Y|X) = S(X\beta); H'_1: E(Y|X) = G(X\beta)$
 - Similar procedures but inverting the roles of the two models

Partial Effects:

- Linear models:
 - Model: $E(Y|X) = X\beta$
 - Effects: $\Delta X_j = 1 \Longrightarrow \Delta E(Y|X) = \beta_j$
- Nonlinear models:
 - Model:

$$- E(Y|X) = G(X\beta)$$

$$-Pr(Y|X) = F(X\beta)$$

• Effects: $\Delta X_i = 1 \Longrightarrow$

$$-\Delta E(Y|X) = \frac{\partial E(Y|X)}{\partial X_j} = \frac{\partial G(X\beta)}{\partial X_j} = \beta_j \frac{\partial G(X\beta)}{\partial X\beta} = \beta_j g(x_i'\beta)$$

$$-\Delta Pr(Y|X) = \frac{\partial P(Y|X)}{\partial X_j} = \frac{\partial F(X\beta)}{\partial X_j} = \beta_j \frac{\partial F(X\beta)}{\partial X\beta} = \beta_j f(x_i'\beta)$$

Partial Effects:

- Partial effects may be compared across different models, but the values of β cannot
- However, because $\frac{\partial G(X\beta)}{\partial X\beta} > 0$ and $\frac{\partial F(X\beta)}{\partial X\beta} > 0$:
 - The sign of the partial effect is given by the sign of β_i
 - Testing the statistical significance of the partial effect is equivalent to test for H_0 : $\beta_i=0$

- To calculate the magnitude of the partial effects, there are three main alternatives:
 - Average marginal effect: calculate the partial effects for each individual in the sample and then obtain the mean of those effects
 - Marginal effect at mean: replace x by its sample means
 - Marginal effect at a representative value: replace x by specific values

Stata
(after estimating the model)
margins, dydx(varlist) at(...)
margins, dydx(varlist) atmeans
margins, dydx(varlist)

Models for Nonnegative Outcomes

Continuous Outcomes and Count Data

Log-Linear and Exponential Regression Models

Poisson and Negative Binomial Models

Panel Data Models

Models for Nonnegative Outcomes Continuous Outcomes and Count Data

- Nonnegative outcomes can be:
 - Continuous: $Y \in [0, +\infty[$
 - Examples: prices, wages,...
 - Discrete (counts): $Y \in \{0,1,2,3,...\}$
 - Examples: patents applied for by a firm in a year, times someone is arrested in a year,...
- Linear regression models are not the most suitable option because:
 - May generate negative predictions for the dependent variable
 - At least close to the lower bound of Y, it does not make sense to assume constant partial effects

Models for Nonnegative Outcomes Log-Linear and Exponential Regression Models

Log-linear regression model:

$$ln(Y_i) = \beta_0 + \beta_1 x_{1i} + \dots + \beta_k x_{ki} + u_i$$

- Assumption: $E(u_i|x) = 0$
- With this transformation, the dependent variable becomes unbounded: $Y \in]0, +\infty[\Longrightarrow \ln(Y) \in]-\infty, +\infty[$
- However, two new problems arise:
 - The log-linear model is not defined for Y = 0; adding a small constant value to Y or dropping zeros are not in general good solutions
 - Prediction is more interesting in the original scale, \widehat{Y}_i , and not in the logarithmic scale, $\widehat{ln(Y_i)}$; the log-linear model gives the latter directly but retransforming it to the original scale requires additional assumptions and calculations and/or the application of relatively complex methods

Models for Nonnegative Outcomes Log-Linear and Exponential Regression Models

Exponential regression model:

$$Y = exp(x'\beta + u)$$

$$E(Y|X) = exp(x'\beta)$$

- Assumption: $E(e^u|x) = 1$
- Advantages:
 - \widehat{Y}_i is always nonnegative
 - Predictions are obtained directly in the original scale, without requiring any retransformations
- Partial effects:

$$\Delta X_i = 1 \Longrightarrow \Delta E(Y|X) = \beta_i exp(x'\beta)$$

- The sign of the effect is given by the sign of β_i
- β_i can be interpreted as a semi-elasticity, since:

$$100\beta_j = 100 \frac{\Delta E(Y|X)}{E(Y|X)}$$
, i.e. $\Delta X_j = 1 \Longrightarrow \% \Delta E(Y|X) = 100\beta_j\%$

Models for Nonnegative Outcomes Poisson and Negative Binomial Models

- Assumptions and estimation methods according to the type of nonnegative outcome:
 - Continuous response:
 - Assumption: only E(Y|X); estimation: QML
 - Count data two alternatives:
 - Assumption: only E(Y|X); estimation: QML
 - Assumption: E(Y|X) and Pr(Y=j|X); estimation: ML
- Three main distribution functions are used as basis for QML and/or ML estimation:
 - Poisson
 - Negative Binomial 1
 - Negative Binomial 2

Models for Nonnegative Outcomes Poisson and Negative Binomial Models

Poisson regression model:

$$Y_i \sim Poisson(\lambda_i) \Longrightarrow Pr(Y_i = y | x_i) = \frac{e^{-\lambda_i \lambda_i^y}}{y!}$$

where
$$\lambda_i = E(Y|X) = exp(x'\beta)$$

- Estimation methods: ML (only count data) or QML, since the Poisson distribution belongs to the linear exponential family
- By definition, E(Y|X) = Var(Y|X) (equidispersion), which may be a strong assumption is some empirical applications

Stata

ML: poisson $YX_1 \dots X_k$

QML: poisson $YX_1 \dots X_k$, robust

Models for Nonnegative Outcomes Poisson and Negative Binomial Models

Negative binomial regression models:

- Two variants, both allowing for overdispersion ($\delta > 0$):
 - NEGBIN1: $Var(Y|X) = (1 + \delta)E(Y|X)$ ML estimation
 - NEGBIN2: $Var(Y|X) = [1 + \delta E(Y|X)]E(Y|X)$ it belongs to the linear exponential family, enabling estimation by both ML (only count data) and QML

<u>Stata</u>

NEGBIN1: nbreg $YX_1 \dots X_k$, dispersion(constant) NEGBIN2 (ML): nbreg $YX_1 \dots X_k$, dispersion(mean)

NEGBIN2 (QML): nbreg $YX_1 \dots X_k$, dispersion(mean) robust

• Overdispersion test:

```
H_0: \delta = 0 (Poisson model)
```

 $H_1: \delta \neq 0$ (Negative Binomial 1 or 2 model)

Base model:

Continuous / count data:

$$E(Y_{it}|x_{it},\alpha_i) = exp(\gamma_i + x'_{it}\beta) = \alpha_i exp(x'_{it}\beta)$$

Count data:

$$Pr(Y_{it} = y | x_{it}, \alpha_i) = \frac{e^{-\lambda_{it} \lambda_{it}^{y}}}{y!}$$
$$\lambda_i = E(Y_{it} | x_{it}, \alpha_i) = \alpha_i exp(x'_{it} \beta)$$

Pooled estimator:

- Based on the cross-sectional assumption $E(Y_{it}|x_{it}) = exp(x'_{it}\beta)$
- Produces consistent estimators only if $E(\alpha_i|x_{it})=1$
- Does not require the Poisson distributional assumption
- Using a robust vce controls for both overdispersion and time dependence

Random Effects Poisson Estimator:

- Assumptions:
 - $Y_{it} \sim Poisson(\lambda_{it})$

 - $log(\alpha_i) = \gamma_i \sim Gamma(1, \eta)$
- Resulting model:
 - NEGBIN2-type model
 - Estimation method: ML
 - $E(Y_{it}|x_{it}) = exp(x'_{it}\beta)$, which implies that the Pooled estimator is consistent under random effects of this type
- Alternative model: assumes $log(\alpha_i) = \gamma_i \sim N(0, \sigma^2)$ and produces $(Y_{it}|x_{it}) = exp(x'_{it}\beta)$ but has no close form solution

 $\frac{\text{Stata}}{\text{xtpoisson } YX_1 \dots X_k, \text{ re}}$

Fixed Effects Estimators:

- Fixed effects Poisson estimator (three equivalent versions):
 - Pooled estimator with individual effects
 - Estimator conditional on $\sum_{t=1}^{T} Y_{it}$, with $\sum_{t=1}^{T} Y_{it} \neq 0$
 - Quasi mean-differenced GMM estimator (Hausman, Hall and Griliches, 1984)
- Quasi-differences GMM estimator:
 - Chamberlain (1992)
 - Wooldridge (1997)

Do not require the Poisson distributional assumption

Fixed effects Poisson estimator:

- May be derived using the three equivalent versions
- Pooled estimator with individual effects:
 - lacktriangle Adds individual dummies, associated to the γ_i' s
 - As in linear models, β is consistently estimated even in short panels (no incidental parameters problem)
- The quasi mean-differenced GMM estimator is based on the following moment condition:

$$E\left(Y_{it} - \frac{\lambda_{it}}{\bar{\lambda}_i} \bar{Y}_i \middle| x_{it}\right) = 0,$$

where
$$\lambda_{it} = exp(x_{it}'\beta)$$
 and $\bar{\lambda}_i = \frac{1}{T}\sum_{t=1}^T \lambda_{it}$

Requires strictly exogenous explanatory variables

Stata xtpoisson $YX_1 \dots X_k$, fe

Quasi-differences GMM estimator:

Chamberlain (1992):

$$E\left(\frac{\lambda_{i,t-1}}{\lambda_{i,t}}Y_{it} - Y_{i,t-1} \middle| x_{it}\right) = 0$$

• Wooldridge (1997):

$$E\left(\frac{Y_{it}}{\lambda_{it}} - \frac{Y_{i,t-1}}{\lambda_{i,t-1}} \middle| x_{it}\right) = 0$$

 In both cases the explanatory variables do not need to be strictly exogenous, so these estimators are particularly useful in dynamic models