Course notes on ALM

Walther Neuhaus
ISEG

September 28, 2015

Abstract

\section*{1 Mean-Variance Analysis: Proofs}

1.1 Preliminaries

This document gives all the proofs required for the different efficient portfolios in Mean Variance Analysis.

1.1.1 Differentiation of a quadratic form

Show that $\frac{\partial}{\partial \mathbf{w}} \mathbf{w}^{\prime} \mathbf{A} \mathbf{w}=2 \mathbf{w}^{\prime} \mathbf{A}$ if the matrix $\mathbf{A}^{n \times n}$ is symmetric and $\mathbf{w}^{n \times 1}$ is a vector.
Proof. If \mathbf{w} is a vector and $f(\mathbf{w})$ a real-valued function, then $\frac{\partial}{\partial \mathbf{w}} f(\mathbf{w})=$ $\left(\frac{\partial}{\partial w_{1}} f(\mathbf{w}), \cdots, \frac{\partial}{\partial w_{n}} f(\mathbf{w})\right)$, also known as the gradient vector. The matrix product means $\mathbf{w}^{\prime} \mathbf{A} \mathbf{w}=\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} a_{i j} w_{j}$, where

$$
\mathbf{A}=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right)
$$

Note that we require $a_{i j}=a_{j i}$ because \mathbf{A} is supposed to be symmetric.
We do the proof for w_{1}. It works in the same way for the other w_{i}. The only summands involving w_{1} are those where $i=1$ and/or $j=1$.

$$
\begin{aligned}
\frac{\partial}{\partial w_{1}} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} a_{i j} w_{j}= & \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial}{\partial w_{1}}\left(w_{i} a_{i j} w_{j}\right) \\
= & \frac{\partial}{\partial w_{1}}\left(w_{1} a_{11} w_{1}\right) \\
& +\sum_{j=2}^{n} \frac{\partial}{\partial w_{1}}\left(w_{i} a_{1 j} w_{j}\right)(\text { rest of row 1) } \\
& +\sum_{i=2}^{n} \frac{\partial}{\partial w_{1}}\left(w_{i} a_{i 1} w_{1}\right) \text { (rest of column 1) } \\
= & 2 w_{1} a_{11}+\sum_{j=2}^{n} a_{1 j} w_{j}+\sum_{i=2}^{n} w_{i} a_{i 1} \\
= & 2 w_{1} a_{11}+2 \sum_{i=2}^{n} w_{i} a_{i 1}\left(\text { use that } a_{i j}=a_{j i}\right) \\
= & 2 \sum_{i=1}^{n} w_{i} a_{i 1}=2 \mathbf{w}^{\prime}\left(\begin{array}{c}
a_{11} \\
\vdots \\
a_{n 1}
\end{array}\right)
\end{aligned}
$$

Thence we get

$$
\begin{aligned}
\frac{\partial}{\partial \mathbf{w}} \mathbf{w}^{\prime} \mathbf{A} \mathbf{w} & =\left(\frac{\partial}{\partial w_{1}} \mathbf{w}^{\prime} \mathbf{A} \mathbf{w}, \cdots, \frac{\partial}{\partial w_{n}} \mathbf{w}^{\prime} \mathbf{A} \mathbf{w}\right) \\
& =\left(2 \mathbf{w}^{\prime}\left(\begin{array}{c}
a_{11} \\
\vdots \\
a_{n 1}
\end{array}\right), \cdots, 2 \mathbf{w}^{\prime}\left(\begin{array}{c}
a_{1 n} \\
\vdots \\
a_{n n}
\end{array}\right)\right) \\
& =2 \mathbf{w}^{\prime} \mathbf{A}
\end{aligned}
$$

1.1.2 Lagrangian minimisation for finding a constrained minimum

When you want to minimize a differentiable function $f\left(x_{1}, \cdots, x_{n}\right)$ without constraints, you normally try to solve the equations

$$
\frac{\partial}{\partial x_{i}} f\left(x_{1}, \cdots, x_{n}\right) \text { for } i=1, \cdots, n
$$

Assume now that you want to minimize a function $f\left(x_{1}, \cdots, x_{n}\right)$ under the constraints

$$
\begin{gathered}
g_{1}\left(x_{1}, \cdots, x_{n}\right)=0 \\
g_{2}\left(x_{1}, \cdots, x_{n}\right)=0 \\
\cdots \\
g_{m}\left(x_{1}, \cdots, x_{n}\right)=0
\end{gathered}
$$

This can be done by defining a "Lagrange functional" or "Lagrangian"

$$
L\left(x_{1}, \cdots, x_{n} ; \lambda_{1}, \cdots, \lambda_{m}\right)=f\left(x_{1}, \cdots, x_{n}\right)-\lambda_{1} g_{1}\left(x_{1}, \cdots, x_{n}\right)-\cdots-\lambda_{m} g_{m}\left(x_{1}, \cdots, x_{n}\right)
$$

The variables $\lambda_{1}, \cdots, \lambda_{m}$ are called Lagrange multiplicators.
Then solve the equations

$$
\begin{aligned}
\frac{\partial}{\partial x_{i}} L\left(x_{1}, \cdots, x_{n} ; \lambda_{1}, \cdots, \lambda_{m}\right) \text { for } i & =1, \cdots, n \\
\frac{\partial}{\partial \lambda_{j}} L\left(x_{1}, \cdots, x_{n} ; \lambda_{1}, \cdots, \lambda_{m}\right) \text { for } j & =1, \cdots, m
\end{aligned}
$$

This produces (under suitable conditions) the constrained minimum of f.

1.2 Minimum variance portfolio

A very variance-averse investor could pose the asset allocation problem

$$
\min _{\mathbf{w}} \mathbf{w}^{\prime} \mathbf{\Sigma} \mathbf{w} \text {, subject to (only) } \mathbf{w}^{\prime} \mathbf{1}=1
$$

Using Lagrange minimisation, the optimal portfolio can be shown to be

$$
\begin{equation*}
\mathbf{w}_{\min }=\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{1}\right)^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{1} \tag{1}
\end{equation*}
$$

Its expected return is

$$
\boldsymbol{\mu}^{\prime} \mathbf{w}_{\min }=\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{1}\right)^{-1} \boldsymbol{\mu}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{1}
$$

and the variance of its return is

$$
\mathbf{w}_{\min }^{\prime} \boldsymbol{\Sigma} \mathbf{w}_{\min }=\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{1}\right)^{-1}
$$

Proof. The Lagrangian can be written as

$$
L(\mathbf{w}, \lambda)=\frac{1}{2} \mathbf{w}^{\prime} \boldsymbol{\Sigma} \mathbf{w}-\lambda\left(\mathbf{w}^{\prime} \mathbf{1}-1\right)
$$

To determine $\mathbf{w}_{\text {min }}$ we solve the linear equations

$$
\begin{align*}
\frac{\partial}{\partial \mathbf{w}} L(\mathbf{w}, \lambda) & =\mathbf{w}^{\prime} \boldsymbol{\Sigma}-\lambda \mathbf{1}^{\prime}=\mathbf{0}^{\prime} \tag{2}\\
\frac{\partial}{\partial \lambda} L(\mathbf{w}, \lambda) & =\mathbf{w}^{\prime} \mathbf{1}-1=0 \tag{3}
\end{align*}
$$

The first equation (2) gives us

$$
\mathbf{w}^{\prime}=\lambda \mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1}
$$

with λ to be determined. The second equation (3) then gives us

$$
\lambda=\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{1}\right)^{-1}
$$

Therefore the solution is (after transposing \mathbf{w} to be a column vector):

$$
\mathbf{w}=\mathbf{w}_{\min }=\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{1}\right)^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{1}
$$

This completes the proof.

1.3 Optimal portfolio of risky assets

A more demanding investor could pose the asset allocation problem

$$
\min _{\mathbf{w}} \mathbf{w}^{\prime} \boldsymbol{\Sigma} \mathbf{w}, \text { subject to } \mathbf{w}^{\prime} \boldsymbol{\mu}=r \text { and (of course) } \mathbf{w}^{\prime} \mathbf{1}=1
$$

where r is the expected return that an allocation must provide in order to be a candidate.

The optimal portfolio \mathbf{w}_{r} is now a linear combination of the minimum variance portfolio $\mathbf{w}_{\min }$ and one "reference" risky portfolio $\mathbf{w}_{\mathrm{ref}}$:

$$
\begin{equation*}
\mathbf{w}_{r}=(1-v) \mathbf{w}_{\min }+v \mathbf{w}_{\mathrm{ref}} \tag{4}
\end{equation*}
$$

The reference risky portfolio is

$$
\begin{equation*}
\mathbf{w}_{\mathrm{ref}}=\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}\right)^{-1} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} \tag{5}
\end{equation*}
$$

or, in special cases, $\mathbf{w}_{\text {ref }}=\mathbf{w}_{\text {min }}+\boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}$.
The weight of the risky portfolio in the optimal portfolio is

$$
\begin{equation*}
v=v(r)=\frac{r-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\mathrm{min}}}{\boldsymbol{\mu}^{\prime} \mathbf{w}_{\mathrm{ref}}-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\mathrm{min}}} \tag{6}
\end{equation*}
$$

Thus the more return you ask for, the more risk you must accept.

Proof.

The Lagrangian can be written as

$$
L\left(\mathbf{w}, \lambda_{1}, \lambda_{2}\right)=\frac{1}{2} \mathbf{w}^{\prime} \boldsymbol{\Sigma} \mathbf{w}-\lambda_{1}\left(\mathbf{w}^{\prime} \mathbf{1}-1\right)-\lambda_{2}\left(\mathbf{w}^{\prime} \boldsymbol{\mu}-r\right)
$$

To determine \mathbf{w}_{r} we solve the linear equations

$$
\begin{gather*}
\frac{\partial}{\partial \mathbf{w}} L\left(\mathbf{w}, \lambda_{1}, \lambda_{2}\right)=\mathbf{w}^{\prime} \boldsymbol{\Sigma}-\lambda_{1} \mathbf{1}^{\prime}-\lambda_{2} \boldsymbol{\mu}^{\prime}=\mathbf{0}^{\prime} \tag{7}\\
\frac{\partial}{\partial \lambda_{1}} L\left(\mathbf{w}, \lambda_{1}, \lambda_{2}\right)=\mathbf{w}^{\prime} \mathbf{1}-1=0 \tag{8}\\
\frac{\partial}{\partial \lambda_{2}} L\left(\mathbf{w}, \lambda_{1}, \lambda_{2}\right)=\mathbf{w}^{\prime} \boldsymbol{\mu}-r=0 \tag{9}
\end{gather*}
$$

Using (7) and using the definition (1) of $\mathbf{w}_{\min }$ we find that the solution \mathbf{w} is of the general form

$$
\begin{equation*}
\mathbf{w}=\lambda_{1} \boldsymbol{\Sigma}^{-1} \mathbf{1}+\lambda_{2} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}=\lambda_{1}\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{1}\right) \mathbf{w}_{\min }+\lambda_{2} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} . \tag{10}
\end{equation*}
$$

Inserting this into (8) we find that

$$
\begin{equation*}
\lambda_{1}\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{1}\right)=1-\lambda_{2}\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}\right) . \tag{11}
\end{equation*}
$$

Let us first consider the case where $\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} \neq 0$. In that case we can write(10) as

$$
\begin{aligned}
\mathbf{w} & =\left(1-\lambda_{2}\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}\right)\right) \mathbf{w}_{\min }+\lambda_{2} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} \\
& =\left(1-\lambda_{2}\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}\right)\right) \mathbf{w}_{\min }+\lambda_{2}\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}\right) \mathbf{w}_{\mathrm{ref}} \\
& =(1-v) \mathbf{w}_{\mathrm{min}}+v \mathbf{w}_{\mathrm{ref}}
\end{aligned}
$$

with a reference portfolio that is

$$
\mathbf{w}_{\mathrm{ref}}=\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}\right)^{-1} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}
$$

We finally solve (9) to determine the weight to the reference portfolio

$$
v=v(r)=\frac{r-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\min }}{\boldsymbol{\mu}^{\prime} \mathbf{w}_{\mathrm{ref}}-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\mathrm{min}}}
$$

This completes the proof the case where $\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} \neq 0$.
Let us now consider the case where $\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}=0$. We use (11) to find

$$
\lambda_{1}=\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{1}\right)^{-1}
$$

and thence, using (10),

$$
\begin{equation*}
\mathbf{w}\left(\lambda_{2}\right)=\mathbf{w}_{\min }+\lambda_{2} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} \tag{12}
\end{equation*}
$$

We then solve (9) to find

$$
\boldsymbol{\mu}^{\prime}\left(\mathbf{w}_{\min }+\lambda_{2} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}\right)=r \Rightarrow \lambda_{2}=\left(\boldsymbol{\mu}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}\right)^{-1}\left(r-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\min }\right)
$$

so that (12) becomes

$$
\mathbf{w}=\mathbf{w}_{\min }+\left(r-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\min }\right)\left(\boldsymbol{\mu}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}\right)^{-1} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}
$$

Now let $\mathbf{w}_{\text {ref }}=\mathbf{w}_{\text {min }}+\boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}$ and note that

$$
\boldsymbol{\mu}^{\prime} \mathbf{w}_{\mathrm{ref}}=\boldsymbol{\mu}^{\prime} \mathbf{w}_{\mathrm{min}}+\boldsymbol{\mu}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} \Rightarrow \boldsymbol{\mu}^{\prime} \mathbf{w}_{\mathrm{ref}}-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\mathrm{min}}=\boldsymbol{\mu}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}
$$

Therefore we can write

$$
\begin{aligned}
\mathbf{w} & =\mathbf{w}_{\min }+\frac{r-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\min }}{\boldsymbol{\mu}^{\prime} \mathbf{w}_{\mathrm{ref}}-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\min }} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} \\
& =\left(1-\frac{r-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\min }}{\boldsymbol{\mu}^{\prime} \mathbf{w}_{\mathrm{ref}}-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\min }}\right) \mathbf{w}_{\min }+\frac{r-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\min }}{\boldsymbol{\mu}^{\prime} \mathbf{w}_{\mathrm{ref}}-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\min }} \mathbf{w}_{\mathrm{ref}} \\
& =(1-v(r)) \mathbf{w}_{\mathrm{min}}+v(r) \mathbf{w}_{\mathrm{ref}} .
\end{aligned}
$$

This completes the proof in the case of $\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}=0$.

1.4 Minimum variance portfolio with a risk-free asset

We solve the problem

$$
\min _{\mathbf{w}} \mathbf{w}^{\prime} \boldsymbol{\Sigma} \mathbf{w}, \text { subject to } w_{0}+\mathbf{w}^{\prime} \mathbf{1}=1
$$

where w_{0} is the allocation to the risk-free asset..
The optimal portfolio is (obviously)

$$
w_{0}=1, \mathbf{w}=\mathbf{0}
$$

We prove this only to drill the technique.

Proof.

The Lagrangian can be written as

$$
L\left(\mathbf{w}, w_{0}, \lambda\right)=\frac{1}{2} \mathbf{w}^{\prime} \boldsymbol{\Sigma} \mathbf{w}-\lambda\left(w_{0}+\mathbf{w}^{\prime} \mathbf{1}-1\right)
$$

To determine optimal portfolio we solve the linear equations

$$
\begin{gathered}
\frac{\partial}{\partial \mathbf{w}} L\left(\mathbf{w}, w_{0}, \lambda\right)=\mathbf{w}^{\prime} \boldsymbol{\Sigma}-\lambda \mathbf{1}^{\prime}=\mathbf{0}^{\prime} \\
\frac{\partial}{\partial w_{0}} L\left(\mathbf{w}, w_{0}, \lambda\right)=\lambda=0
\end{gathered}
$$

$$
\frac{\partial}{\partial \lambda} L\left(\mathbf{w}, w_{0}, \lambda\right)=w_{0}+\mathbf{w}^{\prime} \mathbf{1}-1=0
$$

The second equation gives immediately that $\lambda=0$, the first equation thereupon gives that $\mathbf{w}=\mathbf{0}$, and finally the third equation gives that $w_{0}=1$. This completes the proof.

1.5 Optimal portfolio with a risk-free asset

Assume now that in addition to the n risky assets, you can invest in a risk-free asset $(i=0)$ that provides a secure return of $R_{0}=\mu_{0}$.

Your asset allocation problem now becomes

$$
\min _{w_{0}, \mathbf{w}} \mathbf{w}^{\prime} \boldsymbol{\Sigma} \mathbf{w}, \text { subject to } w_{0} \mu_{0}+\mathbf{w}^{\prime} \boldsymbol{\mu}=r \text { and } w_{0}+\mathbf{w}^{\prime} \mathbf{1}=1
$$

where r is the expected return that an allocation must provide in order to be a candidate, and w_{0} is the proportion of your wealth to be invested risk-free.

In this case, the optimal portfolio is a combination of

1. a risk-free investment of w_{0}, and
2. investment of the remaining $1-w_{0}$ in a tangency portfolio $\mathbf{w}_{\tan }$.

The relevant parameters are

$$
\begin{gathered}
\mathbf{w}_{\tan }=\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}-\mu_{0} \mathbf{1}\right)\right)^{-1} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}-\mu_{0} \mathbf{1}\right) \\
1-w_{0}=\frac{r-\mu_{0}}{\boldsymbol{\mu}^{\prime} \mathbf{w}_{\tan }-\mu_{0}}
\end{gathered}
$$

We assume that $\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}-\mu_{0} \mathbf{1}\right) \neq 0$.
Proof. The Lagrangian can be written as

$$
L\left(w_{0}, \mathbf{w}, \lambda_{1}, \lambda_{2}\right)=\frac{1}{2} \mathbf{w}^{\prime} \boldsymbol{\Sigma} \mathbf{w}-\lambda_{1}\left(w_{0}+\mathbf{w}^{\prime} \mathbf{1}-1\right)-\lambda_{2}\left(w_{0} \mu_{0}+\mathbf{w}^{\prime} \boldsymbol{\mu}-r\right)
$$

To determine the optimal $\left(w_{0}, \mathbf{w}\right)$ we solve the linear equations

$$
\begin{gather*}
(\partial / \partial \mathbf{w}) L\left(w_{0}, \mathbf{w}, \lambda_{1}, \lambda_{2}\right)=\mathbf{w}^{\prime} \boldsymbol{\Sigma}-\lambda_{1} \mathbf{1}^{\prime}-\lambda_{2} \boldsymbol{\mu}^{\prime}=\mathbf{0}^{\prime} \tag{13}\\
\left(\partial / \partial w_{0}\right) L\left(w_{0}, \mathbf{w}, \lambda_{1}, \lambda_{2}\right)=-\lambda_{1}-\lambda_{2} \mu_{0}=0 \tag{14}\\
\left(\partial / \partial \lambda_{1}\right) L\left(w_{0}, \mathbf{w}, \lambda_{1}, \lambda_{2}\right)=w_{0}+\mathbf{w}^{\prime} \mathbf{1}-1=0 \tag{15}\\
\left(\partial / \partial \lambda_{2}\right) L\left(w_{0}, \mathbf{w}, \lambda_{1}, \lambda_{2}\right)=w_{0} \mu_{0}+\mathbf{w}^{\prime} \boldsymbol{\mu}-r=0 \tag{16}
\end{gather*}
$$

Using (13) we find that the solution \mathbf{w} is of the general form

$$
\mathbf{w}=\lambda_{1} \boldsymbol{\Sigma}^{-1} \mathbf{1}+\lambda_{2} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} .
$$

Using (14) we find that $\lambda_{1}=-\lambda_{2} \mu_{0}$, so that

$$
\mathbf{w}=\lambda_{2} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}-\mu_{0} \mathbf{1}\right)
$$

Using (15) we find

$$
\lambda_{2}=\left(1-w_{0}\right) /\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}-\mu_{0} \mathbf{1}\right)\right)
$$

so that

$$
\mathbf{w}=\left(1-w_{0}\right)\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}-\mu_{0} \mathbf{1}\right)\right)^{-1} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}-\mu_{0} \mathbf{1}\right)=\left(1-w_{0}\right) \mathbf{w}_{\tan } .
$$

Finally, (16) gives us

$$
1-w_{0}=\frac{r-\mu_{0}}{\boldsymbol{\mu}^{\prime} \mathbf{w}_{\mathrm{tan}}-\mu_{0}}
$$

Note that the tangency portfolio is a function of the available risk-free return. The variance of the overall return is

$$
\sigma^{2}(r)=\operatorname{Var}\left(w_{0} \mu_{0}+\left(1-w_{0}\right) \mathbf{w}_{\tan }^{\prime} \mathbf{R}\right)=\left(1-w_{0}\right)^{2} \mathbf{w}_{\tan }^{\prime} \boldsymbol{\Sigma} \mathbf{w}_{\mathrm{tan}}
$$

This completes the proof.

1.6 Minimum surplus variance portfolio

Let us assume that there are n investible assets with a random return characterised by its mean vector and covariance matrix:

$$
\mathbf{R} \sim[\boldsymbol{\mu}, \boldsymbol{\Sigma}]
$$

We make the additional assumption that liability growth is random, and correlated with asset returns:

$$
\begin{aligned}
\mathrm{E}\left(R_{L}\right) & =\mu_{L} \\
\operatorname{Var}\left(R_{L}\right) & =\sigma_{L}^{2} \\
\operatorname{Cov}\left(R_{i}, R_{L}\right) & =\gamma_{i, L}=\rho_{i, L} \sigma_{i} \sigma_{L}
\end{aligned}
$$

Denote the vector of covariances by

$$
\gamma=\left(\gamma_{1, L}, \cdots, \gamma_{n, L}\right)^{\prime}
$$

and assume that you know (have estimated) μ_{L}, σ_{L}^{2} and γ. Let F denote the initial funding ratio, $F=W(0) / L(0)$.

With an arbitrary asset allocation vector \mathbf{w}, the random surplus return is

$$
R_{S}=\mathbf{w}^{\prime} \mathbf{R}-\frac{R_{L}}{F}
$$

It is easy to verify that

$$
\begin{aligned}
\mathrm{E}\left(R_{S}\right) & =\mathbf{w}^{\prime} \boldsymbol{\mu}-\frac{\mu_{L}}{F} \\
\operatorname{Var}\left(R_{S}\right) & =\mathbf{w}^{\prime} \boldsymbol{\Sigma} \mathbf{w}+\frac{\sigma_{L}^{2}}{F^{2}}-2 \frac{\mathbf{w}^{\prime} \boldsymbol{\gamma}}{F}
\end{aligned}
$$

Let us minimise the variance, subject to constraints.
If your only aim is to minimise variance, you solve:

$$
\min _{\mathbf{w}}\left(\mathbf{w}^{\prime} \boldsymbol{\Sigma} \mathbf{w}+\frac{\sigma_{L}^{2}}{F^{2}}-2 \frac{\mathbf{w}^{\prime} \boldsymbol{\gamma}}{F}\right) \text { subject to } \mathbf{w}^{\prime} \mathbf{1}=1
$$

The optimal portfolio is

$$
\mathbf{w}_{\min }(F, \gamma)=(1-v) \mathbf{w}_{\min }+v \mathbf{w}_{\gamma}
$$

where $\mathbf{w}_{\text {min }}$ is the unconditional minimum variance allocation and $\mathbf{w}_{\boldsymbol{\gamma}}$ is the liability hedge portfolio. The liability hedge portfolio is

$$
\mathbf{w}_{\boldsymbol{\gamma}}=\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\gamma}\right)^{-1} \boldsymbol{\Sigma}^{-1} \boldsymbol{\gamma}
$$

The weight of the liability hedge portfolio in the optimal portfolio is

$$
v=v(F, \boldsymbol{\gamma})=\frac{1}{F} \mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\gamma}
$$

In the case of $\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\gamma}=0$, we can write $\mathbf{w}_{\boldsymbol{\gamma}}=\mathbf{w}_{\text {min }}+\frac{1}{F} \boldsymbol{\Sigma}^{-1} \boldsymbol{\gamma}$.
Proof. The Lagrangian can be written as

$$
L(\mathbf{w}, \lambda)=\frac{1}{2}\left(\mathbf{w}^{\prime} \boldsymbol{\Sigma} \mathbf{w}+\frac{\sigma_{L}^{2}}{F^{2}}-2 \frac{\mathbf{w}^{\prime} \boldsymbol{\gamma}}{F}\right)-\lambda\left(\mathbf{w}^{\prime} \mathbf{1}-1\right)
$$

To determine \mathbf{w} we solve the linear equations

$$
\begin{gather*}
\frac{\partial}{\partial \mathbf{w}} L(\mathbf{w}, \lambda)=\mathbf{w}^{\prime} \mathbf{\Sigma}-\frac{1}{F} \boldsymbol{\gamma}^{\prime}-\lambda \mathbf{1}^{\prime}=\mathbf{0}^{\prime} \tag{17}\\
\frac{\partial}{\partial \lambda} L(\mathbf{w}, \lambda)=\mathbf{w}^{\prime} \mathbf{1}-1=0 \tag{18}
\end{gather*}
$$

Equation (17) gives

$$
\begin{equation*}
\mathbf{w}=\lambda \boldsymbol{\Sigma}^{-1} \mathbf{1}+\frac{1}{F} \boldsymbol{\Sigma}^{-1} \boldsymbol{\gamma} \tag{19}
\end{equation*}
$$

Substituting this in (18) and solving for λ gives

$$
\lambda=\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{1}\right)^{-1}\left(1-\frac{1}{F} \mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \gamma\right)
$$

We insert this back into (19) gives

$$
\begin{aligned}
\mathbf{w} & =\lambda \boldsymbol{\Sigma}^{-1} \mathbf{1}+\frac{1}{F} \boldsymbol{\Sigma}^{-1} \boldsymbol{\gamma} \\
& =\left(1-\frac{1}{F} \mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\gamma}\right)\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{1}\right)^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{1}+\frac{1}{F} \boldsymbol{\Sigma}^{-1} \boldsymbol{\gamma}
\end{aligned}
$$

If $\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\gamma} \neq 0$, we can write this as

$$
\begin{aligned}
\mathbf{w} & =\left(1-\frac{1}{F} \mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\gamma}\right) \mathbf{w}_{\min }+\frac{1}{F} \mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\gamma}\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\gamma}\right)^{-1} \boldsymbol{\Sigma}^{-1} \boldsymbol{\gamma} \\
& =(1-v) \mathbf{w}_{\min }+v \mathbf{w}_{\boldsymbol{\gamma}}
\end{aligned}
$$

If $\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\gamma}=0$, we can write

$$
\mathbf{w}=\mathbf{w}_{\min }+\frac{1}{F} \boldsymbol{\Sigma}^{-1} \boldsymbol{\gamma}
$$

This completes the proof.

1.7 Optimal asset allocation to fund a stochastic liability, optimal portfolio of risky assets

If you are more interested in beating than in meeting the expected return of the liability hedge portfolio, you would solve:

$$
\min _{\mathbf{w}}\left(\mathbf{w}^{\prime} \boldsymbol{\Sigma} \mathbf{w}+\frac{\sigma_{L}^{2}}{F^{2}}-2 \frac{\mathbf{w}^{\prime} \boldsymbol{\gamma}}{F}\right) \text { subject to } \mathbf{w}^{\prime} \boldsymbol{\mu}=r \text { and } \mathbf{w}^{\prime} \mathbf{1}=1
$$

where r is the expected return that an asset allocation must provide in order to be a candidate for you.

The additional constraint only makes sense if $r \geq \boldsymbol{\mu}^{\prime} \mathbf{w}_{\min }(F, \gamma)$.
The optimal portfolio can be written in the form

$$
\begin{aligned}
\mathbf{w}_{r}(F, \boldsymbol{\gamma}) & =(1-v-\omega) \mathbf{w}_{\min }+\omega \mathbf{w}_{\mathrm{ref}}+v \mathbf{w}_{\boldsymbol{\gamma}} \\
& =\mathbf{w}_{\min }(F, \gamma)+\omega\left(\mathbf{w}_{\mathrm{ref}}-\mathbf{w}_{\min }\right)
\end{aligned}
$$

where

- $\mathbf{w}_{\text {min }}$ denotes the unconditional minimum variance allocation,
- $\mathbf{w}_{\text {ref }}$ the risky reference portfolio when there is no risk-free asset,
- \mathbf{w}_{γ} the liability hedge portfolio, and
- $\mathbf{w}_{\text {min }}(F, \boldsymbol{\gamma})$ the minimum surplus variance allocation.

The weighting parameters are

$$
v=\frac{1}{F} \mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\gamma} \text { and } \omega=\frac{r-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\min }(F, \boldsymbol{\gamma})}{\boldsymbol{\mu}^{\prime} \mathbf{w}_{\mathrm{ref}}-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\mathrm{min}}} .
$$

Proof. The Lagrangian can be written as

$$
L\left(\mathbf{w}, \lambda_{1}, \lambda_{2}\right)=\frac{1}{2}\left(\mathbf{w}^{\prime} \boldsymbol{\Sigma} \mathbf{w}+\frac{\sigma_{L}^{2}}{F^{2}}-2 \frac{\mathbf{w}^{\prime} \boldsymbol{\gamma}}{F}\right)-\lambda_{1}\left(\mathbf{w}^{\prime} \mathbf{1}-1\right)-\lambda_{2}\left(\mathbf{w}^{\prime} \boldsymbol{\mu}-r\right) .
$$

To determine \mathbf{w} we solve the linear equations

$$
\begin{gather*}
(\partial / \partial \mathbf{w}) L\left(\mathbf{w}, \lambda_{1}, \lambda_{2}\right)=\mathbf{w}^{\prime} \boldsymbol{\Sigma}-\frac{1}{F} \boldsymbol{\gamma}^{\prime}-\lambda_{1} \mathbf{1}^{\prime}-\lambda_{2} \boldsymbol{\mu}^{\prime}=\mathbf{0}^{\prime}, \tag{20}\\
\left(\partial / \partial \lambda_{1}\right) L\left(\mathbf{w}, \lambda_{1}, \lambda_{2}\right)=\mathbf{w}^{\prime} \mathbf{1}-1=0, \tag{21}\\
\left(\partial / \partial \lambda_{2}\right) L\left(\mathbf{w}, \lambda_{1}, \lambda_{2}\right)=\mathbf{w}^{\prime} \boldsymbol{\mu}-r=0 . \tag{22}
\end{gather*}
$$

In what follows we assume that all quantities that are divided by, are nonzero.

From (20) we obtain

$$
\begin{equation*}
\mathrm{w}=\lambda_{1} \boldsymbol{\Sigma}^{-1} \mathbf{1}+\boldsymbol{\lambda}_{\mathbf{2}} \boldsymbol{\Sigma}^{-\mathbf{1}} \boldsymbol{\mu}+\frac{1}{F} \boldsymbol{\Sigma}^{-\mathbf{1}} \gamma \tag{23}
\end{equation*}
$$

Inserting this in (21) and solving for λ_{1} we obtain

$$
\lambda_{1}=\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-\mathbf{1}} \mathbf{1}\right)^{-1}\left(1-\boldsymbol{\lambda}_{\mathbf{2}} \mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-\mathbf{1}} \boldsymbol{\mu}-\frac{1}{F} \mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-\mathbf{1}} \boldsymbol{\gamma}\right)
$$

Substituting this expression for λ_{1} in (23) gives

$$
\begin{aligned}
\mathbf{w} & =\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-\mathbf{1}} \mathbf{1}\right)^{-1}\left(1-\boldsymbol{\lambda}_{\mathbf{2}} \mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-\mathbf{1}} \boldsymbol{\mu}-\frac{1}{F} \mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-\mathbf{1}} \boldsymbol{\gamma}\right) \boldsymbol{\Sigma}^{-1} \mathbf{1}+\boldsymbol{\lambda}_{\mathbf{2}} \boldsymbol{\Sigma}^{-\mathbf{1}} \boldsymbol{\mu}+\frac{1}{F} \boldsymbol{\Sigma}\left(z^{\mathbf{2}} \mathbf{f}\right) \\
& =\mathbf{w}_{\min }+\boldsymbol{\lambda}_{\mathbf{2}}\left(\boldsymbol{\Sigma}^{-\mathbf{1}} \boldsymbol{\mu}-\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-\mathbf{1}} \boldsymbol{\mu} \mathbf{w}_{\min }\right)+\left(\frac{1}{F} \boldsymbol{\Sigma}^{-\mathbf{1}} \boldsymbol{\gamma}-\frac{1}{F} \mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-\mathbf{1}} \boldsymbol{\gamma} \mathbf{w}_{\min }\right) \\
& =\mathbf{w}_{\min }+\boldsymbol{\lambda}_{\mathbf{2}} \mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}\left(\mathbf{w}_{\text {ref }}-\mathbf{w}_{\min }\right)+v\left(\mathbf{w}_{\boldsymbol{\gamma}}-\mathbf{w}_{\min }\right) \\
& =\mathbf{w}_{\min }(F, \boldsymbol{\gamma})+\boldsymbol{\lambda}_{\mathbf{2}} \mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-\mathbf{1}} \boldsymbol{\mu}\left(\mathbf{w}_{\mathrm{ref}}-\mathbf{w}_{\min }\right),
\end{aligned}
$$

where $v=\frac{1}{F} \mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\gamma}$ and $\mathbf{w}_{\text {min }}(F, \boldsymbol{\gamma})=(1-v) \mathbf{w}_{\text {min }}+v \mathbf{w}_{\boldsymbol{\gamma}}$.
Inserting this in (22) and solving for λ_{2} we obtain

$$
\begin{aligned}
\lambda_{2} & =\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-\mathbf{1}} \boldsymbol{\mu}\right)^{-1}\left(\frac{r-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\min }(F, \gamma)}{\boldsymbol{\mu}^{\prime} \mathbf{w}_{\mathrm{ref}}-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\min }}\right) \\
& =\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-\mathbf{1}} \boldsymbol{\mu}\right)^{-1} \omega
\end{aligned}
$$

where $\omega=\frac{r-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\text {min }}(F, \boldsymbol{\gamma})}{\boldsymbol{\mu}^{\prime} \mathbf{w}_{\text {ref }}-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\text {min }}}$.
Inserting this expression for λ_{2} in the last expression of (24), we finally find

$$
\begin{aligned}
\mathbf{w} & =\mathbf{w}_{\min }(F, \boldsymbol{\gamma})+\omega\left(\mathbf{w}_{\mathrm{ref}}-\mathbf{w}_{\min }\right) \\
& =(1-v-\omega) \mathbf{w}_{\min }+\omega \mathbf{w}_{\mathrm{ref}}+v \mathbf{w}_{\boldsymbol{\gamma}}
\end{aligned}
$$

This completes the proof

1.8 Optimal asset allocation to fund a stochastic liability, optimal portfolio including a risk-free asset

Let us finally develop the case where the investor has access to a risk-free asset with secure return μ_{0}. The problem is then to

$$
\min _{w_{0}, \mathbf{w}}\left(\mathbf{w}^{\prime} \boldsymbol{\Sigma} \mathbf{w}+\frac{\sigma_{L}^{2}}{F^{2}}-2 \frac{\mathbf{w}^{\prime} \boldsymbol{\gamma}}{F}\right) \text { subject to } w_{0} \mu_{0}+\mathbf{w}^{\prime} \boldsymbol{\mu}=r \text { and } w_{0}+\mathbf{w}^{\prime} \mathbf{1}=1
$$

The parameter w_{0} denotes the proportion of assets invested risk-free. The optimal portfolio consists of

- a risk-free investment of w_{0},
- investment of $1-w_{0}-v$ in the tangency portfolio $\mathbf{w}_{\mathrm{tan}}$,
- investment of v in the liability hedge portfolio $\mathbf{w}_{\boldsymbol{\gamma}}$.

The weightings are

$$
v=\frac{1}{F} \mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\gamma} \text { and } 1-w_{0}=\frac{r-v\left(\boldsymbol{\mu}^{\prime} \mathbf{w}_{\boldsymbol{\gamma}}-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\tan }\right)-\mu_{0}}{\boldsymbol{\mu}^{\prime} \mathbf{w}_{\tan }-\mu_{0}}
$$

Proof. As always we start with the Lagrangian
$L\left(\mathbf{w}, w_{0}, \lambda_{1}, \lambda_{2}\right)=\frac{1}{2}\left(\mathbf{w}^{\prime} \boldsymbol{\Sigma} \mathbf{w}+\frac{\sigma_{L}^{2}}{F^{2}}-2 \frac{\mathbf{w}^{\prime} \boldsymbol{\gamma}}{F}\right)-\lambda_{1}\left(w_{0}+\mathbf{w}^{\prime} \mathbf{1}-1\right)-\lambda_{2}\left(w_{0} \mu_{0}+\mathbf{w}^{\prime} \boldsymbol{\mu}-r\right)$.
Its derivative that we need to equate to zero, are

$$
\begin{equation*}
(\partial / \partial \mathbf{w}) L\left(\mathbf{w}, w_{0}, \lambda_{1}, \lambda_{2}\right)=\mathbf{w}^{\prime} \boldsymbol{\Sigma}-\frac{1}{F} \gamma^{\prime}-\lambda_{1} \mathbf{1}^{\prime}-\lambda_{2} \boldsymbol{\mu}^{\prime}=\mathbf{0}^{\prime} \tag{25}
\end{equation*}
$$

$$
\begin{gather*}
\left(\partial / \partial w_{0}\right) L\left(\mathbf{w}, w_{0}, \lambda_{1}, \lambda_{2}\right)=-\lambda_{1}-\lambda_{2} \mu_{0}=0 \tag{26}\\
\left(\partial / \partial \lambda_{1}\right) L\left(\mathbf{w}, w_{0}, \lambda_{1}, \lambda_{2}\right)=w_{0}+\mathbf{w}^{\prime} \mathbf{1}-1=0 \tag{27}\\
\left(\partial / \partial \lambda_{2}\right) L\left(\mathbf{w}, w_{0}, \lambda_{1}, \lambda_{2}\right)=w_{0} \mu_{0}+\mathbf{w}^{\prime} \boldsymbol{\mu}-r=0 \tag{28}
\end{gather*}
$$

In what follows we assume that all quantities that are divided by, are nonzero.

From (25) we obtain

$$
\begin{equation*}
\mathbf{w}=\lambda_{1} \boldsymbol{\Sigma}^{-1} \mathbf{1}+\lambda_{2} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}+\frac{1}{F} \boldsymbol{\Sigma}^{-1} \boldsymbol{\gamma} . \tag{29}
\end{equation*}
$$

From (26) we obtain

$$
\lambda_{1}=-\lambda_{2} \mu_{0}
$$

Insert this in (29) and transform to

$$
\begin{equation*}
\mathbf{w}=\lambda_{2} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}-\mu_{0} \mathbf{1}\right)+\frac{1}{F} \boldsymbol{\Sigma}^{-1} \boldsymbol{\gamma} \tag{30}
\end{equation*}
$$

Insert this expression for \mathbf{w} into (27) to find

$$
\begin{aligned}
1 & =w_{0}+\mathbf{1}^{\prime} \mathbf{w}=w_{0}+\lambda_{2} \mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}-\mu_{0} \mathbf{1}\right)+\frac{1}{F} \mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\gamma} \\
& \Rightarrow \\
\lambda_{2} & =\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}-\mu_{0} \mathbf{1}\right)\right)^{-1}\left(1-w_{0}-v\right)
\end{aligned}
$$

Therefore (30) can be written as

$$
\begin{aligned}
\mathbf{w} & =\lambda_{2} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}-\mu_{0} \mathbf{1}\right)+\frac{1}{F} \boldsymbol{\Sigma}^{-1} \boldsymbol{\gamma} \\
& =\left(1-w_{0}-v\right) \mathbf{w}_{\tan }+v \mathbf{w}_{\boldsymbol{\gamma}}
\end{aligned}
$$

where $\mathbf{w}_{\tan }=\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}-\mu_{0} \mathbf{1}\right)\right)^{-1} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}-\mu_{0} \mathbf{1}\right)$ and $\mathbf{w}_{\boldsymbol{\gamma}}=\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\gamma}\right)^{-1} \boldsymbol{\Sigma}^{-1} \boldsymbol{\gamma}$.
Now it only remains to determine w_{0}. We do this by solving (28):

$$
\begin{aligned}
r & =w_{0} \mu_{0}+\boldsymbol{\mu}^{\prime} \mathbf{w} \\
& =w_{0} \mu_{0}+\left(1-w_{0}-v\right) \boldsymbol{\mu}^{\prime} \mathbf{w}_{\tan }+v \boldsymbol{\mu}^{\prime} \mathbf{w}_{\boldsymbol{\gamma}} \\
& =w_{0}\left(\mu_{0}-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\mathrm{tan}}\right)+\boldsymbol{\mu}^{\prime} \mathbf{w}_{\mathrm{tan}}+v\left(\boldsymbol{\mu}^{\prime} \mathbf{w}_{\boldsymbol{\gamma}}-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\mathrm{tan}}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
1-w_{0} & =1-\frac{r-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\tan }-v\left(\boldsymbol{\mu}^{\prime} \mathbf{w}_{\boldsymbol{\gamma}}-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\mathrm{tan}}\right)}{\mu_{0}-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\mathrm{tan}}} \\
& =\frac{\mu_{0}-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\mathrm{tan}}-r+\boldsymbol{\mu}^{\prime} \mathbf{w}_{\mathrm{tan}}+v\left(\boldsymbol{\mu}^{\prime} \mathbf{w}_{\boldsymbol{\gamma}}-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\mathrm{tan}}\right)}{\mu_{0}-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\mathrm{tan}}} \\
& =\frac{r-v\left(\boldsymbol{\mu}^{\prime} \mathbf{w}_{\boldsymbol{\gamma}}-\boldsymbol{\mu}^{\prime} \mathbf{w}_{\mathrm{tan}}\right)-\mu_{0}}{\boldsymbol{\mu}^{\prime} \mathbf{w}_{\tan }-\mu_{0}}
\end{aligned}
$$

This completes the proof.

