
// Programming Techniques

Exercises Class # 5

Master Programme in Mathematical Finance

1st Semester 2018/2019

ISEG -UL

Sara Lopes

{

// sblopes@iseg.ulisboa.pt

// saradutralopes@gmail.com

}



Overview

I Scope of Variables

I Call by Value vs Call by Reference

I Structures

Bibliography:

I Stroustrup, Bjarne, Programming Principles and Practice

Using C++, Second Edition, Addison-Wesley, 2014.



Scope of Variables

Local and Global Variables

local: Variables de�ned in a block of code. Are de�ned only in that

block of sub-blocks.

global: Variables de�ned outside functions.

double y=1;

double x;

cin >>x;

if(x>=0){

double z=sqrt(x);

y=x+z;

}

cout <<y<<endl; //valid

cout <<z<<endl; // invalid



Scope of Variables

Quali�ers

extern: Global variables are valid in every part of the code and can

be accessed in di�erent �les. They can only be de�ned in one �le

and in the other �les they need to be quali�ed as extern.

static: When this quali�er is applied to a global variable means

that they can only be used in that �le. When the quali�er is applied

to local variables it means that the value of the variable is only

created once and that the variable is not destroyed after execution.

const: The value of a variable quali�ed as const can not be

changed.



Function Call by Value vs Call by Reference

Call by Value vs Call by Reference

I call by value : double f(double x) - creates a copy of x when f

is called

I call by reference: double f(double & x) pass a reference as

argument

I call by const reference: double f(const double & x) pass a

reference and doesn't change the value



Function Call by Value vs Call by Reference

What happens to the value of x?

void f(int x){

x=4;

}

int main (){

int x=0;

f(x);

cout <<x;

return 0;

}



Function Call by Value vs Call by Reference

What happens to the value of x?

void f(int &x){

x=4;

}

int main (){

int x=0;

f(x);

cout <<x;

return 0;

}



Function Call by Value vs Call by Reference

What happens to the value of x?

void f(const int &x){

x=4;

}

int main (){

int x=0;

f(x);

cout <<x;

return 0;

}



Structures

Structure Example
Structure is a collection of variables of di�erent types under a single name.

struct Student{

char name [50];

double gradet1;

double gradet2;

};

void displayStudent(Student s){

cout <<"Student 's name: "<<s.name <<endl;

cout <<"First project grade: "<<s.gradet1 <<endl;

cout <<"Second project grade:"<<s.gradet2 <<endl;

}

double computefinalgrade(Student s){

double grade=s.gradet1 *0.4+s.gradet2 *0.6;

return grade;

}



Structures

Structure Example

int main()

{

Student s1;

strcpy(s1.name ,"John");

s1.gradet1 =17;

s1.gradet2 =18;

displayStudent(s1);

cout <<s1.name <<" final grade is: "<<computefinalgrade(s1);

return 0;

}


	Scope of Variables
	Function Call by Value vs Call by Reference
	Structures

