// Programming Techniques
Exercises Class # 5

Master Programme in Mathematical Finance
1st Semester 2018/2019
ISEG-UL

Sara Lopes

{
//sblopes@iseg.ulisboa.pt
//saradutralopes@gmail.com

}



Overview

» Scope of Variables
» Call by Value vs Call by Reference
» Structures

Bibliography:
» Stroustrup, Bjarne, Programming Principles and Practice
Using C++, Second Edition, Addison-Wesley, 2014.



LScope of Variables

Local and Global Variables

local: Variables defined in a block of code. Are defined only in that
block of sub-blocks.

global: Variables defined outside functions.

double y=1;

double x;

cin>>x;

if (x>=0){

double z=sqrt(x);

y=x+z;

}

cout<<y<<endl; //valid
cout<<z<<endl; //invalid



LScope of Variables

Qualifiers

extern: Global variables are valid in every part of the code and can
be accessed in different files. They can only be defined in one file
and in the other files they need to be qualified as extern.

static: When this qualifier is applied to a global variable means
that they can only be used in that file. When the qualifier is applied
to local variables it means that the value of the variable is only
created once and that the variable is not destroyed after execution.

const: The value of a variable qualified as const can not be
changed.



L Function Call by Value vs Call by Reference

Call by Value vs Call by Reference

» call by value : double f(double x) - creates a copy of x when f
is called

» call by reference: double f(double & x) pass a reference as
argument

» call by const reference: double f(const double & x) pass a
reference and doesn't change the value



L Function Call by Value vs Call by Reference

What happens to the value of x?

void f(int x){
x=4;

}

int main (){
int x=0;

f(x);

cout <<x;
return O;

}



L Function Call by Value vs Call by Reference

What happens to the value of x?

void f(int &x){
x=4;

}

int main (){

int x=0;

f(x);

cout <<x;

return O;

}



L Function Call by Value vs Call by Reference

What happens to the value of x?

void f(const int &x){
x=4;

}

int main (){

int x=0;

f(x);

cout <<x;

return O;

}



LStructures

Structure Example

Structure is a collection of variables of different types under a single name.

struct Student{

char name [50];
double gradetl;
double gradet2;

};

void displayStudent (Student s){
cout<<"Student’s name: "<<s.name<<endl;
cout<<"Firstyprojectygrade: "<<s.gradetl<<endl;
cout<<"Second,projectygrade:"<<s.gradet2<<endl;

double computefinalgrade (Student s){
double grade=s.gradetl*0.4+s.gradet2#%0.6;
return grade;



|—Structures

Structure Example

int main ()

{
Student s1;

strcpy (sl.name,"John");
sl.gradetl=17;
sl.gradet2=18;

displayStudent (sl1);
cout<<sl.name<<" final gradeis:"<<computefinalgrade (s1);

return 0;

}



	Scope of Variables
	Function Call by Value vs Call by Reference
	Structures

