Solutions to problems - Part 2

1.

(a) The wage inflation is modelled by an autoregressive process of order 2 : $\mathrm{AR}(2)$. It is natural that the wage inflation depends much more on the inflation on the previous year than on the second previous year: that is why the first autoregressive parameter (0.3) is larger than the second parameter (0.09).

The process is mean reverting, with a long term mean of 0.02 or 2%.
The model allows for negative values (deflation), which can happen with small probability.

The standard normal random variables Z_{t} represent the random component of inflation. The independence of these random variables can be a drawback of the model, since there can be dependence in the random oscillations of inflation and these random oscillations can be non-normal.
(b)

$$
\left[\begin{array}{c}
I_{t} \\
I_{t-1}
\end{array}\right]=\left[\begin{array}{c}
0.0122 \\
0
\end{array}\right]+\left[\begin{array}{cc}
0.3 & 0.09 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
I_{t-1} \\
I_{t-2}
\end{array}\right]+\left[\begin{array}{cc}
0.005 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
Z_{t} \\
Z_{t-1}
\end{array}\right]
$$

or in vector-matrix form: $\mathbf{I}_{t}=\mathbf{b}+\mathbf{A I}_{t-1}+\mathbf{B} \mathbf{Z}_{t}$.
(c) The current force of inflation is $I_{t}=0.022$ and during the last year incrased 5%. So,

$$
I_{t-1}=\frac{0.022}{1.05}=0.02095
$$

Replacing these values in the equation, we have:

$$
I_{t+1}=\ldots=0.020686+0.005 Z_{t+1}
$$

Therefore, the probability of increasing again 5% (such that $I_{t+1}=0.022 \times$ $1.05=0.0231$) is

$$
P\left[I_{t+1} \geq 0.0231\right]=\ldots=0.315
$$

The value $I_{t}=0.022$ is larger than the long term mean, therefore one expects by the mean-reverting effect that the inflation decreases next year, that is why the probability is less than 0.5 .
2.
(a) $I_{0}=\ln (1+0.029)=\ln (1.029)$

We assume that the random variables Z_{t} have a distribution $N(0,1)$.
Replacing I_{11} and then I_{10}, etc..., we see that

$$
I_{12}=0.001\left[Z_{12}+0.95 Z_{11}+0.95^{2} Z_{10}+\ldots+0.95^{11} Z_{1}\right]+0.95^{12} I_{0}
$$

$$
\operatorname{Var}\left[I_{12}\right]=0.001^{2}\left[1+0.95^{2}+0.95^{4}+\ldots+0.95^{22}\right]=7.2614 \times 10^{-6}
$$

So I_{12} has normal distribution $N\left[0.015448 ; 7.2614 \times 10^{-6}\right]$
(b) We assume that the random variables Z_{t} have a distribution $N(0,1)$.

$$
\begin{aligned}
& P\left[\ln (1.01)<I_{12}<\ln (1.03)\right]= \\
& =\Phi(5.2365)-\Phi(-2.0402)=0.97934
\end{aligned}
$$

(c) We assume that the random variables Z_{t} have a distribution $N(0,1)$. We can write the model has

$$
I_{t}-0=0.95\left(I_{t-1}-0\right)+0.001 Z_{t},
$$

and the model is mean reverting with a long run mean of 0 .
Another market variable that can be considered to be mean reverting is the interest rate.

