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Chapter Goals 

After completing this chapter, you should be 

able to:  
 Distinguish between a point estimate and a confidence 

interval estimate 

 Construct and interpret a confidence interval estimate for 
a single population mean using both the  Z  and  t  
distributions 

 Form and interpret a confidence interval estimate for a 
single population proportion 

 Create confidence interval estimates for the variance of a 
normal population 

 Determine the required sample size to estimate a mean 
or proportion within a specified margin of error 
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Confidence Intervals 

Contents of this chapter: 

 Confidence Intervals for the Population Mean, μ 
 when Population Variance σ2 is Known 

 when Population Variance σ2 is Unknown 

 Confidence Intervals for the Population 

Proportion, P  (large samples) 

 Confidence interval estimates for the variance of 

a normal population 

 Finite population corrections 

 Sample-size determination 
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Properties of Point Estimators 

 An estimator of a population parameter is  

 a random variable that depends on sample 

information . . .  

 whose value provides an approximation to this 

unknown parameter 

 

 A specific value of that random variable is 

called an estimate 
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Point and Interval Estimates 

 A point estimate is a single number,  

 a confidence interval provides additional 
information about variability 

Point Estimate 

Lower  

Confidence  

Limit 

Upper 

Confidence  

Limit 

Width of  
confidence interval 
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Point Estimates 

We can estimate a  

Population Parameter … 

 

with a Sample 

Statistic 

(a Point Estimate) 

Mean 

Proportion P 

 x μ 

p̂
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Unbiasedness 

 A point estimator      is said to be an 

unbiased estimator of the parameter    if its 

expected value is equal to that parameter: 

 

 
 Examples:   

 The sample mean     is an unbiased estimator of μ 

 The sample variance s2  is an unbiased estimator of σ2 

 The sample proportion     is an unbiased estimator of P 

θ̂

θ)θE( ˆ
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Unbiasedness 

       is an unbiased estimator,       is biased: 

1θ̂ 2θ̂

θ̂θ

1θ̂ 2θ̂

(continued) 
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Bias 

 Let      be an estimator of  

 

 The bias in     is defined as the difference 

between its mean and  

 

 

 

 The bias of an unbiased estimator is 0 

θ̂

θ̂

θ)θE()θBias(  ˆˆ
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Most Efficient Estimator 

 Suppose there are several unbiased estimators of  

 The most efficient estimator or the minimum variance 
unbiased estimator of  is the unbiased estimator with the 
smallest variance  
 

 Let      and      be two unbiased estimators of , based on 
the same number of sample observations.  Then, 
 

     is said to be more efficient than     if  
 

 The relative efficiency of     with respect to     is the ratio 
of their variances: 

 

 

)θVar()θVar( 21
ˆˆ 

)θVar(

)θVar(
  Efficiency Relative

1

2

ˆ

ˆ


1θ̂ 2θ̂

1θ̂ 2θ̂

1θ̂ 2θ̂
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Confidence Interval Estimation 

 How much uncertainty is associated with a 
point estimate of a population parameter? 
 

 An interval estimate provides more 
information about a population characteristic 
than does a point estimate 
 

 Such interval estimates are called confidence 
interval estimates 
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Confidence Interval Estimate 

 An interval gives a range of values: 

 Takes into consideration variation in sample 
statistics from sample to sample 

 Based on observation from 1 sample 

 Gives information about closeness to 
unknown population parameters 

 Stated in terms of level of confidence 

 Can never be 100% confident 
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Confidence Interval and 
Confidence Level 

 If P(a <  < b) = 1 -   then the interval from  a  
to  b  is called a  100(1 - )%  confidence 
interval of  .  

 

 The quantity 100(1 - )% is called the 
confidence level of the interval  
 

  is between 0 and 1 

 In repeated samples of the population, the true value 
of the parameter  would be contained in 100(1 - )% 
of intervals calculated this way.   

 The confidence interval calculated in this manner is 
written as a <  < b with 100(1 - )% confidence 
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Estimation Process 

(mean, μ, is 

unknown) 

Population 

Random Sample 

Mean    

   X = 50 

Sample 

I am 95% 

confident that 

μ is between 

40 & 60. 
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Confidence Level, (1-) 

 Suppose confidence level = 95%    

 Also written (1 - ) = 0.95 

 A relative frequency interpretation: 

 From repeated samples, 95% of all the 

confidence intervals that can be constructed of 

size n will contain the unknown true parameter 

 A specific interval either will contain or will 

not contain the true parameter 

 No probability involved in a specific interval 

(continued) 
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General Formula 

 The general form for all confidence 

intervals is: 

 

 

 

 

 The value of the margin of error depends 

on the desired level of confidence 

Point Estimate ± Margin of Error 
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Confidence Intervals 

Population  

Mean 

 σ2 Unknown 

Confidence 

Intervals 

Population 

Proportion 

 σ2 Known 
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Confidence Interval Estimation 
for the Mean (σ2  Known)  

 Assumptions 

 Population variance σ2 is known 

 Population is normally distributed 

 If population is not normal, use large sample 

 Confidence interval estimate: 

 

 

 (where z/2 is the normal distribution value for a probability of /2 in 

each tail) 

n

σ
zx α/2
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Confidence Limits 

 The confidence interval is 

 

 

 

 The endpoints of the interval are 

 

    Upper confidence limit 
 

 

    Lower confidence limit 

 
 

 

 

 

n

σ
zx α/2
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Margin of Error 

 The confidence interval, 

 
 

 

 

 

 Can also be written as 

 where ME is called the margin of error 

 

 
 

 

 The interval width, w, is equal to twice the margin of 

error 

n

σ
zx α/2

MEx 

n

σ
zME α/2
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Reducing the Margin of Error 

The margin of error can be reduced if  
 

 the population standard deviation can be reduced (σ↓) 
 

 The sample size is increased (n↑) 
 

 The confidence level is decreased, (1 – ) ↓ 

n

σ
zME α/2
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Finding z/2 

 Consider a 95% confidence interval: 

z = -1.96 z = 1.96 

.951 

.025
2

α
 .025

2

α


Point Estimate 
Lower  
Confidence  
Limit 

Upper 
Confidence  
Limit 

Z units: 

X units: Point Estimate 

0 

 Find z.025 = 1.96 from the standard normal distribution table 
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Common Levels of Confidence 

 Commonly used confidence levels are 90%, 

95%, 98%, and 99% 

Confidence 

Level 

Confidence 

Coefficient, 

  

Z/2 value 

1.28 

1.645 

1.96 

2.33 

2.58 

3.08 

3.27 

.80 

.90 

.95 

.98 

.99 

.998 

.999 

80% 

90% 

95% 

98% 

99% 

99.8% 

99.9% 

1
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Intervals and Level of Confidence 

μμ
x


Confidence Intervals  

Intervals 
extend from 

 
 
 

    to     
 
 

100(1-)% 

of intervals 

constructed 

contain μ;  

100()% do 

not. 

Sampling Distribution of the Mean 

n

σ
zxLCL 

n

σ
zxUCL 

x 

x1 

x2 

/2 /21
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Example 

 A sample of 11 circuits from a large normal 

population has a mean resistance of 2.20 

ohms.  We know from past testing that the 

population standard deviation is 0.35 ohms.   
 

 Determine a 95% confidence interval for the 

true mean resistance of the population. 
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Example 

 A sample of 11 circuits from a large normal 

population has a mean resistance of 2.20 

ohms.  We know from past testing that the 

population standard deviation is .35 ohms.   

 Solution: 

2.4068μ1.9932

.2068  2.20

)11(.35/ 1.96  2.20

n

σ
z x /2







 

(continued) 
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Interpretation 

 We are 95% confident that the true mean 

resistance is between 1.9932  and  2.4068 

ohms  

 Although the true mean may or may not be 

in this interval, 95% of intervals formed in 

this manner will contain the true mean 
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Population  

Mean 

 σ2 Unknown 

Confidence 

Intervals 

Population 

Proportion 

 σ2 Known 
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Population 

Variance 

7.3 

(From normally distributed populations) 

Confidence Interval Estimation 
for the Mean (σ2  Unknown)  



Student’s  t  Distribution 

 Consider a random sample of n observations 

 with mean  x  and standard deviation  s  

 from a normally distributed population with mean  μ 

 

 Then the variable 

 

 

 

 follows the Student’s t distribution with (n - 1) degrees 

of freedom 

 

ns/

μx
t



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Student’s  t  Distribution 

 The  t  is a family of distributions 

 The  t value  depends on degrees of 

freedom (d.f.) 

 Number of observations that are free to vary after 

sample mean has been calculated 

    d.f. = n - 1 
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Student’s  t  Distribution 

t 0 

t  (df = 5) 

 t  (df = 13) 
t-distributions are bell-
shaped and symmetric, but 
have ‘fatter’ tails than the 
normal 

Standard 

Normal 
(t with df = ∞) 

Note:  t       Z  as  n  increases 
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Student’s t Table 

Upper Tail Area 

df 

 

.10 .025 .05 

1 12.706 

2 

3 3.182 

t 0 2.920 

The body of the table 

contains t values, not 

probabilities 

Let: n = 3      

df = n - 1 = 2  

        = .10 

    /2 =.05 

/2 = .05 

3.078 

1.886 

1.638 

6.314 

2.920 

2.353 

4.303 
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t distribution values 

With comparison to the Z value 

Confidence       t                 t                t              Z 

  Level          (10 d.f.)     (20 d.f.)     (30 d.f.)     ____ 
 

   .80     1.372          1.325         1.310      1.282 

   .90              1.812          1.725         1.697      1.645 

   .95              2.228          2.086         2.042      1.960 

   .99              3.169          2.845         2.750      2.576 

Note:  t       Z  as  n  increases 
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 If the population standard deviation  σ  is 

unknown, we can substitute the sample 

standard deviation, s  

 This introduces extra uncertainty, since  

s  is variable from sample to sample 

 So we use the  t  distribution instead of 

the normal distribution 
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for the Mean (σ2  Unknown)  



 Assumptions 
 Population standard deviation is unknown 

 Population is normally distributed 

 If population is not normal, use large sample 

 Use Student’s t  Distribution 

 Confidence Interval Estimate: 

 

 

 
 where  tn-1,α/2  is the critical value of the t distribution with  n-1  d.f. 

and an area of  α/2  in each tail:  

n

s
tx α/21,-n

α/2)tP(t α/21,n1n  
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Confidence Interval Estimation 
for the Mean (σ2  Unknown)  

(continued) 



Margin of Error 

 The confidence interval, 

 
 

 

 

 

 Can also be written as 

 

 where ME is called the margin of error: 

 

 
 

 

MEx 

n

s
tME α/21,-n
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Example 

   A random sample of n = 25 has x = 50 and  
 s = 8.  Form a 95% confidence interval for μ 

 

 d.f. = n – 1 = 24,  so 
 

The confidence interval is  

2.0639tt 24,.025α/21,n 

53.302μ46.698

25

8
(2.0639)50

n

s
tx  α/21,-n






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Confidence Interval Estimation 
for Population Proportion 

Population  

Mean 

 σ2 Unknown 

Confidence 

Intervals 

Population 

Proportion 

 σ2 Known 

Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Ch. 7-38 

Population 

Variance 
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Confidence Interval Estimation 
for Population Proportion 

 An interval estimate for the population 

proportion ( P ) can be calculated by 

adding an allowance for uncertainty to 

the sample proportion (    )  
 

p̂
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Confidence Intervals for the  
Population Proportion 

 Recall that the distribution of the sample 

proportion is approximately normal if the 

sample size is large, with standard deviation 

 

 

 

 We will estimate this with sample data: 

n

)p(1p ˆˆ 

n

P)P(1
σP



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Confidence Interval Endpoints 

 The confidence interval for the population 
proportion is given by 

 

 
 
 
 

 where  

 z/2 is the standard normal value for the level of confidence desired 

     is the sample proportion 

 n is the sample size 

 nP(1−P) > 5 

n

)p(1p
zp α/2

ˆˆ
ˆ




p̂
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Example 

 A random sample of 100 people 

shows that 25 are left-handed.  

 Form a 95% confidence interval for 

the true proportion of left-handers 
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Example 

 A random sample of 100 people shows 

that 25 are left-handed. Form a 95% 

confidence interval for the true proportion 

of left-handers. 

(continued) 

0.3349P0.1651

100

.25(.75)
1.96

100

25

n

)p(1p
zp α/2








ˆˆ
ˆ
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Interpretation 

 We are 95% confident that the true proportion 
of left-handers in the population is between  

16.51% and 33.49%.   
 

 Although the interval from 0.1651 to 0.3349  
may or may not contain the true proportion, 
95% of intervals formed from samples of size 
100 in this manner will contain the true 
proportion. 
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Confidence Interval Estimation 
for the Variance 

Population  

Mean 

 σ2 Unknown 

Confidence 

Intervals 

Population 

Proportion 

 σ2 Known 
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Population 

Variance 

7.5 

(From a normally 

distributed population) 



Confidence Intervals for the 
Population Variance 

 The confidence interval is based  on the 
sample variance,  s2  

 

 Assumed:  the population is normally 
distributed 
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  Goal: Form a confidence interval for the 

population variance,  σ2  
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Confidence Intervals for the 
Population Variance 
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The random variable  

2

2
2

1n
σ

1)s(n


follows a chi-square distribution with (n – 1) 

degrees of freedom  

(continued) 

Where the chi-square value             denotes the number for which 

 

2

 , 1n  

αχχ   )P( 2

α , 1n

2

1n
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Confidence Intervals for the 
Population Variance 
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The 100(1 - )% confidence interval for the 

population variance is given by  

(continued) 

Ch. 7-48 

2

α/2 - 1 , 1n

21)s(n
UCL





χ

2

α/2 , 1n

21)s(n
 LCL






χ



Example 

You are testing the speed of a batch of computer 

processors. You collect the following data (in Mhz): 
 

 

Sample size            17 

Sample mean       3004 

Sample std dev      74 
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Assume the population is normal.   

Determine the 95% confidence interval for σx
2 
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Finding the Chi-square Values 

 n = 17 so the chi-square distribution has (n – 1) = 16 

degrees of freedom  

  = 0.05, so use the the chi-square values with area 

0.025 in each tail: 
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probability 

α/2 = .025 

2
16 

2
16 

= 28.85 

6.91

28.85

2

0.975 , 16

2

/2 - 1 , 1n

2

0.025 , 16

2

/2 , 1n









χχ

χχ

α

α

2
16 

= 6.91 

probability 

α/2 = .025 
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Calculating the Confidence Limits 

 The 95% confidence interval is 
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Converting to standard deviation, we are 95% 

confident that the population standard deviation of 

CPU speed is between 55.1 and 112.6 Mhz 

2

/2 - 1 , 1n

2
2

2

/2 , 1n

2 1)s(n
σ

1)s(n

αα χχ 






6.91

1)(74)(17
σ

28.85

1)(74)(17 2
2

2





12680σ3037 2

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Confidence Interval Estimation: 
Finite Populations 

 If the sample size is more than 5% of the 

population size (and sampling is without 

replacement) then a finite population 

correction factor must be used when 

calculating the standard error 
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Finite Population 
Correction Factor 

 Suppose sampling is without replacement and 

the sample size is large relative to the 

population size 

 Assume the population size is large enough to 

apply the central limit theorem 

 Apply the finite population correction factor 

when estimating the population variance 
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1N

nN
factor correction population finite





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Estimating the Population Mean 

 Let a simple random sample of size  n  be 
taken from a population of  N  members with 
mean  μ 

 The sample mean is an unbiased estimator of 
the population mean  μ 

 The point estimate is: 
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



n

1i

ix
n

1
x
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Finite Populations: Mean 

 If the sample size is more than 5% of the 

population size, an unbiased estimator for 

the variance of the sample mean is 

 

 

 

 So the 100(1-α)% confidence interval for the 

population mean is 
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




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1N

nN

n

s
σ

2
2

x
ˆ

xα/21,-n σtx ˆ



Estimating the Population Total 

 Consider a simple random sample of size  

n  from a population of size  N 

 The quantity to be estimated is the 

population total  Nμ 

 An unbiased estimation procedure for the 

population total  Nμ  yields the point 

estimate  Nx 
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Estimating the Population Total 

 An unbiased estimator of the variance of the 
population total is 

 

 

 

 

 A  100(1 - )% confidence interval for the population 
total is 
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xα/21,-n σNtxN ˆ








 


1-N

nN

n

s
NσN

2
22

x

2 ˆ
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Confidence Interval for 
Population Total: Example 
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A firm has a population of 1000 accounts and 

wishes to estimate the value of the total population 

balance  
 

A sample of 80 accounts is selected with average 

balance of $87.60 and standard deviation of $22.30 
 

Find the 95% confidence interval estimate of the 

total balance 

Ch. 7-58 



Example Solution 
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The 95% confidence interval for the population total 

balance is $82,837.53 to $92,362.47 

2392.65724559.6σN

5724559.6
999

920

80

(22.3)
(1000)

1-N

n)(N

n

s
NσN

x

2
2

2
22

x

2








ˆ

ˆ

22.3s    87.6,x    80,  n    1000,N 

392.6)(1.9905)(26)(1000)(87.σNtxN x79,0.025  ˆ

92362.47Nμ82837.53 
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Estimating the Population 
Proportion: Finite Population 

 Let the true population proportion be  P 

 Let      be the sample proportion from  n  

observations from a simple random sample  

 The sample proportion,    , is an unbiased 

estimator of the population proportion, P 
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p̂

p̂

Ch. 7-60 



 If the sample size is more than 5% of the 

population size, an unbiased estimator for 

the variance of the population proportion is 

 

 

 

 So the 100(1-α)% confidence interval for the 

population proportion is 
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













1N

nN

n

)p(1-p
σ2

p

ˆˆ
ˆ
ˆ

pα/2σzp ˆ
ˆˆ 

Confidence Intervals for Population 
Proportion: Finite Population 



Sample-Size Determination 
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For the  

Mean 

Determining 

Sample Size 

For the 

Proportion 

Ch. 7-62 

Large 

Populations 

Finite 

Populations 

For the  

Mean 

For the 

Proportion 

7.7 7.8 



Sample-Size Determination: 
Large Populations 
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n

σ
zx α/2

n

σ
zME α/2

Margin of Error 

(sampling error) 

Ch. 7-63 

For the  

Mean 

Large 

Populations 

(Known population 

variance) 
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n

σ
zME α/2

(continued) 

2

22

α/2

ME

σz
n 

Now solve 

for  n  to get 

Ch. 7-64 

For the  

Mean 

Large 

Populations 

(Known population 

variance) 

Sample-Size Determination: 
Large Populations 



Sample-Size Determination 

 To determine the required sample size for the 

mean, you must know: 

 

 The desired level of confidence (1 - ), which 

determines the z/2 value 

 The acceptable margin of error (sampling error), ME 

 The population standard deviation, σ 
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(continued) 

Ch. 7-65 



Required Sample Size Example 

If  = 45, what sample size is needed to 

estimate the mean within ± 5 with 90% 

confidence?   
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(Always round up) 

219.19
5

(45)(1.645)

ME

σz
n

2

22

2

22

α/2 

So the required sample size is n = 220 

Ch. 7-66 



Sample Size Determination: 
Population Proportion 
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n

)p(1p
zp α/2

ˆˆ
ˆ




n

)p(1p
zME α/2

ˆˆ 


Margin of Error 

(sampling error) 
Ch. 7-67 

For the 

Proportion 

Large 

Populations 
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2

2

α/2

ME

z 0.25
n 

Substitute 

0.25 for   

and solve for  

n  to get 

(continued) 

n

)p(1p
zME α/2

ˆˆ 


           cannot 

be larger than 

0.25, when    = 

0.5 

)p(1p ˆˆ 

p̂

)p(1p ˆˆ 

Ch. 7-68 

For the 

Proportion 

Large 

Populations 

Sample Size Determination: 
Population Proportion 



 The sample and population proportions,     and P, are 

generally not known (since no sample has been taken 

yet) 

 P(1 – P) = 0.25 generates the largest possible margin 

of error (so guarantees that the resulting sample size 

will meet the desired level of confidence) 

 To determine the required sample size for the 

proportion, you must know: 

 The desired level of confidence (1 - ), which determines the 

critical z/2 value 

 The acceptable sampling error (margin of error), ME 

 Estimate P(1 – P) = 0.25 
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(continued) 

p̂

Ch. 7-69 

Sample Size Determination: 
Population Proportion 



Required Sample Size Example: 
Population Proportion 

How large a sample would be necessary 

to estimate the true proportion defective in 

a large population within ±3%, with 95% 

confidence? 
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Required Sample Size Example 
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Solution: 

For 95% confidence, use z0.025 = 1.96 

ME = 0.03 

Estimate P(1 – P) = 0.25 

So use  n = 1068 

(continued) 

1067.11
(0.03)

6)(0.25)(1.9

ME

z 0.25
n

2

2

2

2

α/2 

Ch. 7-71 
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Sample-Size Determination: 
Finite Populations 

Finite 

Populations 

For the  

Mean 















1N

nN

n

σ
)XVar(

2

A finite population 

correction factor is added: 

1. Calculate the required 

sample size n0 using the 

prior formula: 

 

 

 

2. Then adjust for the finite 

population: 

 

 

 

 

2

22

α/2
0

ME

σz
n 

1)-(Nn

Nn
n

0

0




7.8 



Sample-Size Determination: 
Finite Populations 
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Finite 

Populations 

For the 

Proportion 















1N

nN

n

P)P(1-
)pVar( ˆ

A finite population 

correction factor is added: 

1. Solve for n: 

 

 

 

2. The largest possible value 

for this expression  

 (if P = 0.25) is: 

 

 

 

 

3. A 95% confidence interval 

will extend ±1.96      from 

the sample proportion 

P)P(11)σ(N

P)NP(1
n

2

p





ˆ

0.251)σ(N

P)0.25(1
n

2

p





ˆ

p
σ ˆ



Example: Sample Size to 
Estimate Population Proportion 
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How large a sample would be necessary to 

estimate within ±5% the true proportion of 

college graduates in a population of 850 

people with 95% confidence? 



Required Sample Size Example 
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Solution: 

 For 95% confidence, use z0.025 = 1.96 

 ME = 0.05 

So use  n = 265 

(continued) 

Ch. 7-75 

0.02551σ0.05σ1.96
pp
 ˆˆ

264.8
0.25551)(849)(0.02

)(0.25)(850

0.251)σ(N

0.25N
n

22

p

max 






ˆ



Chapter Summary 

 Introduced the concept of confidence 
intervals 

 Discussed point estimates 

 Developed confidence interval estimates 

 Created confidence interval estimates for the 
mean (σ2  known) 

 Introduced the Student’s t distribution 

 Determined confidence interval estimates for 
the mean (σ2 unknown) 

Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Ch. 7-76 



Chapter Summary 

 Created confidence interval estimates for the 
proportion 

 Created confidence interval estimates for the 
variance of a normal population 

 Applied the finite population correction factor 
to form confidence intervals when the 
sample size is not small relative to the 
population size 

 Determined required sample size to meet 
confidence and margin of error requirements 
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(continued) 
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