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Abstract. A three parameter stochastic process, termed the variance gamma process, that generalizes
Brownian motion is developed as a model for the dynamics of log stock prices. The process is
obtained by evaluating Brownian motion with drift at a random time given by a gamma process.
The two additional parameters are the drift of the Brownian motion and the volatility of the time
change. These additional parameters provide control over the skewness and kurtosis of the return
distribution. Closed forms are obtained for the return density and the prices of European options.
The statistical and risk neutral densities are estimated for data on the S&P500 Index and the prices
of options on this Index. It is observed that the statistical density is symmetric with some kurtosis,
while the risk neutral density is negatively skewed with a larger kurtosis. The additional parameters
also correct for pricing biases of the Black Scholes model that is a parametric special case of the
option pricing model developed here.

1. Introduction

This article proposes a three parameter generalization of Brownian motion as a
model for the dynamics of the logarithm of the stock price. The new process,
termed the variance gamma (VG) process, is obtained by evaluating Brownian mo-
tion (with constant drift and volatility) at arandom time changegiven by a gamma
process.1 Each unit of calendar time may be viewed as having an economically
relevant time length given by an independent random variable that has a gamma

1 Earlier related work by Madan and Seneta (1990) considered a time change of Brownian motion
without drift by a gamma process and this process is here termed the symmetric variance gamma
process. Madan and Milne (1991) considered equilibrium option pricing for the symmetric variance
gamma process in a representative agent model, under a constant relative risk aversion utility func-
tion. The resulting risk neutral process is identical with the more general variance gamma process
proposed here, with the drift in the time changed Brownian motion being negative for positive risk
aversion. This paper theoretically extends Madan and Milne (1991), by providing closed forms for
the return density and the prices of European options on the stock.
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density with unit mean and positive variance. Under theVG process, the unit
period continuously compounded return is normally distributed, conditional on the
realization of a random time. This random time has a gamma density. The resulting
stochastic process and associated option pricing model provide us with a robust
three parameter model. In addition to the volatility of the Brownian motion there
are parameters that control for (i) kurtosis (a symmetric increase in the left and
right tail probabilities of the return distribution) and (ii) skewness that allows for
asymmetry of the left and right tails of the return density. An additional attractive
feature of the model is that it nests the lognormal density and the Black-Scholes
formula as a parametric special case.2

The risk neutral approach, first introduced by Black and Scholes (1973), to valu-
ing derivatives is a standard paradigm in finance. While the Black-Scholes formula
remains the most widely used model by practitioners, it has known biases. Two well
documented biases are volatility smiles and skewness premia. Rubinstein (1985,
1994) among others, documents evidence that implied volatilities tend to rise for
options that are deeply in- or out-of-the-money. Bates (1995) presents evidence
that, relative to call options, put options are underpriced by the Black-Scholes for-
mula which, in turn, suggests that the implied volatility curve is downward sloping
in the strike price. On the one hand, the presence of a volatility smile suggests a
risk neutral density with a kurtosis above that of a normal density, on the other,
the existence of skewness premia further suggests that the left tail of the return
distribution is fatter than the right tail.

Contrary to much of the literature on option pricing, the proposedVG process
for log stock prices has no continuous martingale component.3 In contrast, it is
a pure jump process that accounts for high activity4 (as in Brownian motion) by
having an infinite number of jumps in any interval of time. The importance of
introducing a jump component in modeling stock price dynamics has recently been
noted in Bakshi, Chen and Cao (1996), who argue that pure diffusion based models
have difficulties in explaining smile effects in, in particular, short-dated option
prices. Poisson type jump components in jump diffusion models are designed to
address these concerns. For theVG process, however, as the Black Scholes model

2 The resulting stochastic process is a one dimensional time homogeneous Markov process. As
such we do not have a stochastic volatility model that allows for changes in the conditional volatility,
as for example in GARCH models or the Heston stochastic volatility model. Higher dimensional
Markov models may be obtained by for example, time changing the Heston stochastic volatility
model by a gamma time process. In this paper we abstract from issues of time inhomogeneity.

3 In this regard the VG process is a departure from existing option pricing literature, where the
main mode of analysis is a diffusion, that has a martingale component with sample paths that are
continuous functions of calendar time. The Black Scholes (1973) option pricing model makes this
assumption, as do most other diffusion and jump diffusion models of Praetz (1972), Merton (1976),
Cox and Ross (1976), Jones (1984), Hull and White (1987), Scott (1987), Wiggins (1987), Mellino
and Turnbull (1990), Naik and Lee (1990), Heston (1993a,b) and Bates (1991, 1995).

4 The level of activity may here loosely be measured by the volume or number of transactions, or
the associated number of price changes.
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is a parametric special case already, and high activity is already accounted for, it is
not necessary to introduce a diffusion component in addition: hence the absence of
a continuous martingale component.

Unlike Brownian motion, the sum of the absolute log price changes is finite for
theVG process.5 Since theVG process is one of finite variation, it can be written
as the difference of two increasing processes, the first of which accounts for the
price increases, while the second explains the price decreases. In the case of the
VG process, the two increasing processes that are differenced to obtain theVG

process are themselves gamma processes.6

The statistical and risk neutral processes are postulated to beVG processes
for the dynamics of the S&P500 index and estimates are obtained using data on
the index and on a large cross-section of option prices for S&P 500 futures. First,
theVG model successfully corrects strike and maturity biases in Black Scholes
pricing. Second, estimation of the statistical process shows that the hypothesis of
zero skewness in the statistical return distribution cannot be rejected, while the hy-
pothesis of zero excess kurtosis over the normal distribution can be rejected. Third,
estimates of the risk neutral process show that the hypotheses of zero skewness and
zero kurtosis, can both be rejected. Thus, we reject the Black Scholes and symmet-
ric VG special cases of our general option pricing formula associated with the
asymmetricVG process. Furthermore, excess kurtosis estimates are substantially
larger for the risk neutral process than they are for the statistical process.

The outline of the paper is as follows. TheVG process is defined in Section
1 and its properties are presented and discussed. Closed forms for the statistical
density and the prices of European options, when the stock price follows theVG

process, are presented in Section 2. The data is described in Section 3. Empirical
findings and the analysis of pricing errors are presented in Sections 4 and 5. Section
6 concludes. All proofs are to be found in the Appendix.

2. The VG Process for Statistical and Risk Neutral Log Stock Prices

This section defines theVG process, generalizing the two parameter stochastic
process studied in Madan and Seneta (1990) and Madan and Milne (1991), that
controlled for volatility and kurtosis, to a three parameter process that now ad-
dresses skewness as well.7 Consider a continuous time economy, over the interval
[0, ϒ], in which are traded a stock, a money market account, and options on the
stock for all strikes and maturities 0< T ≤ ϒ. We suppose a constant continu-

5 Brownian motion is a process of infinite variation but finite quadratic variation and the log price
changes must be squared before they are summed, to get a finite result.

6 Such a process has also been considered by Heston (1993c) in the context of interest rate
modeling.

7 The statistical process in Madan and Milne (1991) was symmetric and did not allow for skew-
ness, but the risk neutral process had skewness obtained via representative agent model with constant
relative risk aversion utility. This paper provides an alternative derivation of this process, seen here
as Brownian motion with drift, time changed by a gamma process.
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ously compounded interest rate ofr with money market account value of exp(rt),
stock prices ofS(t) and European call option prices ofc(t;K,T ) for strikeK and
maturityT > t , at timet .

The VG process is obtained by evaluating Brownian motion with drift at a
random time given by a gamma process. Let

b(t; θ, σ ) = θt + σW(t) (1)

whereW(t) is a standard Brownian motion. The processb(t; θ, σ ) is a Brownian
motion with drift θ and volatilityσ .

The gamma processγ (t;µ, ν) with mean rateµ and variance rateν is the
process of independent gamma increments over non-overlapping intervals of time
(t, t + h). The density,fh(g), of the incrementg = γ (t + h;µ, ν)− γ (t;µ, ν) is
given by the gamma density function with meanµh and varianceνh. Specifically,

fh(g) =
(µ
ν

)µ2h
ν
g
µ2h
ν −1 exp

(
−µ
ν
g
)

0(
µ2h

ν
)

, g > 0, (2)

where0(x) is the gamma function. The gamma density has a characteristic func-
tion, φγ (t)(u) = E[exp(iuγ (t;µ, ν)], given by,

φγ (t)(u) =
 1

1− iu ν
µ


µ2t
ν

. (3)

The dynamics of the continuous time gamma process is best explained by de-
scribing a simulation of the process. As the process is an infinitely divisible one, of
independent and identically distributed increments over non-overlapping intervals
of equal length, the simulation may be described in terms of the Lévy measure
(Revuz and Yor (1991, p. 110)),kγ (x)dx explicitly given by

kγ (x)dx =
µ2 exp

(
−µ
ν
x
)

νx
dx, for x > 0 and 0 otherwise. (4)

Since the Lévy measure has an infinite integral, we see that the gamma process
has an infinite arrival rate of jumps, most of which are small, as is indicated by the
concentration of the Lévy measure at the origin. The process is pure jump and may
be approximated as a compound Poisson process. To simulate the compound Pois-
son approximation, we truncate the Lévy measure near the origin, thereby ignoring
jumps of a size belowε.We then use the area under the truncated Lévy measure as
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the Poisson arrival rate of jumps. The normalized truncated Lévy measure provides
the conditional density of jump magnitudes, given the arrival of a jump.

TheVG processX(t;σ, ν, θ), is defined in terms of the Brownian motion with
drift b(t; θ, σ ) and the gamma process with unit mean rate,γ (t;1, ν) as

X(t;σ, ν, θ) = b(γ (t;1, ν); θ, σ ). (5)

TheVG process is obtained on evaluating Brownian motion at a time given by
the gamma process.8 TheVG process has three parameters: (i)σ the volatility of
the Brownian motion, (ii)ν the variance rate of the gamma time change and (iii)
θ the drift in the Brownian motion with drift. The process therefore provides two
dimensions of control on the distribution over and above that of the volatility. We
observe below that control is attained over the skew viaθ and over kurtosis withν.

The density function for theVG process at timet can be expressed conditional
on the realization of the gamma time changeg as a normal density function. The
unconditional density may then be obtained on integrating outg employing the
density (2) for the time changeg. This gives us the density for,X(t), fX(t)(X), as

fX(t)(X) =
∞∫

0

1

σ
√

2πg
exp

(
−(X − θg)

2

2σ 2g

) g t
ν−1 exp

(
−g
ν

)
ν
t
ν 0(

t

ν
)

dg. (6)

The characteristic function for theVG process,φX(t)(u) = E[exp(iuX(t)], is9

φX(t)(u) =
(

1

1− iθνu+ (σ 2ν/2)u2

)t/ν
. (7)

The VG process may also be expressed as the difference of two independent
increasing gamma processes, specifically (see the appendix for deatils)10

X(t;σ, ν, θ) = γp(t;µp, νp)− γn(t;µn, νn). (8)

The explicit relation between the parameters of the gamma processes differenced in
(8) and the original parameters of theVG process (5) is given by (see the Appendix
for details),

µp = 1

2

√
θ2+ 2σ 2

ν
+ θ

2
(9)

8 TheVG process is therefore in the class of subordinated processes. Such processes were first
considered for stock prices by Clark (1973). Recent investigations using such processes in a financial
context include Ańe and Geman (1995), Bossaerts, Ghysels and Gourieroux (1996) and Geman and
Ané (1996).

9 This expression is obtained by first conditioning on the gamma time and employing the char-
acteristic function of the normal to obtain the conditional characteristic function. One next employs
equation (2) to integrate out the gamma time with respect to its density.

10 Such gamma processes have recently been used to model order queues by Gourieroux, LeFol
and Meyer (1996).
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µn = 1

2

√
θ2+ 2σ 2

ν
− θ

2
(10)

νp =
1

2

√
θ2+ 2σ 2

ν
+ θ

2

2

ν (11)

νn =
1

2

√
θ2+ 2σ 2

ν
− θ

2

2

ν (12)

The Lévy measure for theVG process has three representations, two in terms
of the parameterizations introduced above, as time changed Brownian motion, and
the difference of two gamma processes and the third in terms of a symmetricVG

process subjected to a measure change induced by a constant relative risk aversion
utility function as in Madan and Milne (1991). When viewed as the difference of
two gamma processes as in (8) we may write the Lévy measure forX(t), employing
(4) as

kX(x)dx =



µ2
n

νn

exp

(
−µn
νn
|x|
)

|x| dx for x < 0

µ2
p

νp

exp
(
−µp
νp
x

)
x

dx for x > 0

(13)

We observe from (13) that theVG process inherits the property of an infinite arrival
rate of price jumps, from the gamma process. The role of the original parameters
is more easily observed when we write the Lévy measure directly in terms of these
parameters. In terms of(σ, ν, θ) one may write the Lévy measure as

kX(x)dx = exp(θx/σ 2)

ν |x| exp

−
√

2

ν
+ θ2

σ 2

σ
|x|

 dx (14)

The special case ofθ = 0 in (14) yields a Lévy measure that is symmetric about
zero. This yields the symmetricVG process employed by Madan and Seneta (1990)
and Madan and Milne (1991) for describing the statistical process of continuously
compounded returns. We also observe from (14), that whenθ < 0, negative values
of x receive a higher relative probability than the corresponding positive value.
Hence, negative values ofθ give rise to a negative skewness. We note further that



THE VARIANCE GAMMA PROCESS AND OPTION PRICING 85

large values ofν, lower the exponential decay rate of the Lévy measure symmet-
rically around zero, and hence raise the likelihood of large jumps, thereby raising
tail probabilities and kurtosis. TheVG process can therefore be expected to flatten
the volatility smiles at the low end of the maturity spectrum.

The third form of the Lévy measure for theVG process is in terms of the repre-
sentation employed in Madan and Milne (1991). The risk neutralVG process for
the stock price can be derived from a Lucas-type general equilibrium economy in
which the representative agent has a constant relative risk aversion utility function
with relative risk aversionζ, and in which the statistical process for the log price
dynamics is given by the symmetricVG process(θ = 0), with volatility s and time
change volatilityν. The risk neutral Lévy measure (see Madan and Milne (1991))
is given by11

kX(x)dx = exp(−ζx)
ν |x| exp

(
−
√

2

s
√
ν
|x|
)
. (15)

This is in agreement with the definition of equation (14) on defining

ζ = − θ
σ 2

(16)

and

s = σ√
1+

(
θ

σ

)2
ν

2

. (17)

The parameters of theVG process, only indirectly reflect the skewness and
kurtosis of the return distribution. Explicit expressions for the first four central
moments of the return distribution over an interval of lengtht are derived in the
Appendix, and are as follows:

E[X(t)] = θt,

E[(X(t)− E[X(t)])2] = (θ2ν + σ 2)t, (18)

E[(X(t)− E[X(t)])3] = (2θ3ν2+ 3σ 2θν)t, (19)

E[(X(t)− E[X(t)])4] = (3σ 4ν + 12σ 2θ2ν2+ 6θ4ν3)t

+(3σ 4+ 6σ 2θ2ν + 3θ4ν2)t2. (20)

11 The measure change function exp(−ζx) is precisely the ratio of marginal utilities for a repre-
sentative investor holding stock with marginal utility functionS−ζ . For a jump in the log price ofx,
the ratio of marginal utilities is(S exp(x))−ζ /S−ζ = exp(−ζx).
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We observe from Equation (19), thatθ = 0 does indeed imply that there is no
skewness, and furthermore the sign of the skewness is that ofθ. Furthermore, we
note from Equation (20) and Equation (18), that whenθ = 0, the fourth central
moment divided by the squared second central moment is 3(1+ ν) and soν is the
percentage excess kurtosis in the distribution.

3. VG Stock Price Dynamics, Densities and Option Prices

This section describes the statistical and risk neutral dynamics of the stock price
in terms of theVG process and derives closed forms for the return density and
the prices of European options on the stock.12 Such closed forms are useful in
econometric estimation of the statistical and risk neutral processes by maximum
likelihood methods. First the statistical and risk neutral processes are defined,
followed by results on the return density function and the option price.

The new specification for the statistical stock price dynamics is obtained by
replacing the role of Brownian motion in the original Black-Scholes geometric
Brownian motion model by theVG process. Let the statistical process for the stock
price be given by

S(t) = S(0)exp(mt +X(t;σS, νS, θS)+ ωSt), (21)

where the subscriptS on theVGparameters indicates that these are the statistical
parameters,ωS = 1

νS
ln(1− θSνS − σ 2

S νS/2), andm is the mean rate of return on

the stock under the statistical probability measure.12

Under the risk neutral process, money market account discounted stock prices
are martingales and it follows that the mean rate of return on the stock under this
probability measure is the continuously compounded interest rater. Let the risk
neutral process be given by

S(t) = S(0)exp(rt +X(t;σRN, νRN, θRN)+ ωRNt), (22)

where the subscriptRN on theVG parameters indicates that these are the risk
neutral parameters, andωRN = 1

νRN
ln(1− θRNνRN − σ 2

RNνRN/2).
12

12 We interpret closed forms to mean reduction to the special functions of mathematics that have
representations as integrals of elementary functions. This is an advance over integral representations
that employ special functions in the integrand: the latter being a double integral of elementary
functions. Furthermore, advances in the computation of special functions (by other methods em-
ploying, for example, functional approximation by polynomial methods) are often being made in the
mathematics literature.

12 The value forωS is determined by evaluating the characteristic function forX(t) at u = 1/i,
so that the expectation ofS(t) = S(0) exp(mt), or equivalently the expectation of exp(X(t)) =
exp(−ωSt).

12 It is important to note, in contrast to the situation for diffusion based continuous price processes,
the risk neutral parameters do not have to equal their statistical counterparts, and can in principle be
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The density of the log stock price relative over an interval of lengtht is, con-
ditional on the realization of the gamma time change, a normal density function.
The unconditional density is obtained by integrating out the gamma variate and the
result is in terms of the modified bessel functions of the second kind.

THEOREM. The density for the log price relativez = ln(S(t)/S(0)) when prices
follow theVG process dynamics of equation (21) is given by

h(z) = 2 exp(θx/σ 2)

νt/ν
√

2πσ0( t
ν
)

(
x2

2σ 2/ν + θ2

) t
2ν− 1

4

X

K t
ν− 1

2

(
1

σ 2

√
x2(2σ 2/ν + θ2)

)
, (23)

whereK is the modified bessel function of the second kind,

x = z−mt − t

ν
ln(1− θν − σ 2ν/2)

and it is understood that theVG parameters employed are the statistical ones.

The price of a European call option,c(S(0);K, t), for a strike ofK and maturity
t , is by a standard result given by

c(S(0);K, t) = e−rtE[max(S(t)−K,0)], (24)

where the expectation is taken under the risk neutral process of Equation (22). The
evaluation of the option price (24) proceeds by first conditioning on a knowledge of
the random time changeg that has an independent gamma distribution. Conditional
ong,X(t) is normally distributed and the option value is given by a Black-Scholes
type formula. The European option price forVG risk neutral dynamics is then
obtained on integrating this conditional Black-Scholes formula overg with respect
the gamma density. This was the procedure followed in Madan and Milne (1991)
where the price was obtained by numerical integration.15 Here we obtain an ana-

significantly different. The basic intuition for pure jump processes, like the VG, is that each instant
is like a one period infinite state model and the risk neutral density can beq(x) (wherex is the
log of the stock price and−∞ < x < ∞) while the statistical density isp(x) with the change of
measure density beingλ(x) = q(x)/p(x). If q is VG with parametersσRN, θRN , νRN andp is VG
with parametersσS, θS, νS thenλ is appropriately defined and there is no link between the statistical
and risk neutral parameters. Bothq andp charge the entire real line and so they are equivalent, but
other than this point there is no relationship between them. Of course, for the formal measure change
density process in the current context, one needs to consider the ratio of Lévy measures as opposed
to densities and these considerations are beyond the scope of this paper.

15 As noted earlier, the integrand in Madan and Milne (1991) employed special functions and was
therefore a double integral of elementary functions.
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lytical reduction in terms of the special functions of mathematics, or a closed form
expression for the price.

THEOREM 2. The European call option price on a stock, when the risk neutral
dynamics of the stock price is given by theVG process (22) is (for risk neutral
parametersσ, ν, θ),

c(S(0);K, t) = S(0)9

(
d

√
1− c1

ν
, (α + s)

√
ν

1− c1
,
t

ν

)

−K exp(−rt)9
(
d

√
1− c2

ν
, αs

√
ν

1− c2
,
t

ν

)
(25)

where

d = 1

s

[
ln
(
S(0)

K

)
+ rt + t

ν
ln
(

1− c1

1− c2

)]
, (26)

α = ζ s andζ, s are as defined in (16) and (17),

c1 = ν(α + s)2
2

, (27)

c2 = να2

2
, (28)

and the function9 is defined in terms of the modified bessel function of the sec-
ond kind and the degenerate hypergeometric function of two variables by equation
(A11) of the Appendix.

The European call option pricing formula (25) has the usual form of the stock
price times a probability element less the present value of the strike times a second
probability element. It can be shown that the second probability element is the risk
neutral probability thatS(t) exceedsK. The first probability element is also the
probability thatS(t) exceedsK, using now the density obtained on normalizing
the product of the stock price with the risk neutral density of the stock price.

We expect the additional parameters of theVGmodel to be important for option
pricing. Risk aversion implies from equation (16) that the risk neutral density of
returns is negatively skewed(θ < 0 or α > 0), a feature that is missed by the
Black Scholes model where symmetry is essentially a consequence of continuity
coupled with continuous rebalancing. Regarding kurtosis, a relatively high kurtosis
for returns over short periods of time is a well known feature of the statistical re-
turn distribution. Furthermore, we suspect that the risk neutral density has an even
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greater kurtosis that is reflected in the Black Scholes implied volatility premiums
associated with out-of-the money, relative to at-the-money, options.

There are three option pricing formulas nested in the option pricing formula
(25). These are a) theVG model, b) the symmetricVG (obtained by restricting
θ or α to zero) and c) the Black Scholes model (that results on settingν equal to
zero). We report estimates for all three models.

4. The Option Data

The prices used in this study are for the S&P 500 futures options traded at the
Chicago Mercantile Exchange (CME). The S&P 500 futures options are cash set-
tled and are listed on a monthly expiration cycle. Option prices are expressed in
terms of index units. Each index point represents $500. Strike prices are set at
five-point intervals.

The data for the study were obtained from the Financial Futures Institute in
Washington D.C. and include all time stamped transaction option prices from Janu-
ary 1992 to September 1994. Closing prices on index futures were also available as
was the level of the spot index. To ensure sufficient liquidity and to be immune from
problems of nonsynchronous trading, up to 16 options with prices that were time
stamped at or near the daily close were selected for each day. Up to four strikes for
each of four maturities were selected. Daily data on the three month Treasury Bill
rate was obtained from the Federal Reserve in Washington D.C., dividend yields
were inferred from the theoretical no-arbitrage relationship between the spot and
futures index. All options contracts were viewed as written on the underlying spot
index. There were 2824 options selected from the 1992 data file, 3010 from the
1993 file and 2411 from 1994, a total of 8245 option prices.

5. Empirical Performance of the VG model

We begin the analysis by estimating the parameter values of the statistical densities
underlying the three nested models of the lognormal, the symmetricVG, and the
VG. The data employed was the 691 daily observations of log spot price relatives
covering the period from January 1992 to September 1994. For the stock price
dynamics under theVG model, we employ the densityh(z) of Equation (23) and
estimate all four parameters. The parameterθ is set to zero when we estimate the
symmetricVG model. The stock price dynamics underlying the Black Scholes
model is simply the lognormal density. We employ maximum likelihood estimation
for all the estimations. We present the estimated parameter values in Table I.

As shown in the first row of Table I, the annualized mean returns estimated by all
three models are very similar. It ranges from a low of 5.69% from the Black Scholes
model to a high of 5.91% for theVG model. The estimated asset volatilities are
also very similar, ranging from a low of 11.71% for the symmetricVG model to
a high of 11.91% for the Black Scholes model. The estimated kurtosis parameter
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Table I. Maximum likelihood estimates of the statistical
density parameters for daily returns on the standard and
poor’s stock index based on geometric Brownian motion
and the symmetric variance gamma and variance gamma
stochastic processes: January 1992–September 1994

Geometric Symmetric

Parameter Brownian variance Variance

estimated motion gamma gamma

m 0.0596 0.0570 0.0591

(0.0857) (0.0685) (0.0263)

s 0.1191 0.1171 0.1172

(0.0032)∗∗ (0.0045)∗∗ (0.0044)∗∗
ν 0.0020 0.002

(0.0003)∗∗ (0.0004)∗∗
α 0.0048

(0.12)

ln L 2528.39 2570.36 2569.78

NOBS 691 691 691

ν under the symmetricVG model is 0.002, and it is significantly different from
zero. It was noted in Section 2 that for the caseθ = 0 , this parameter measures
an annualized excess percentage kurtosis over 3, the kurtosis of the normal density.
From Equations (20) and (18) we observe that the corresponding daily kurtosis is
3[1+ (.002)(365)], or 5.19. TheVG estimate forν is also .002 and the estimate
for θ , though positive, is insignificant.16

On a chi-squared test (taking twice the difference in log likelihoods given in
the fifth row of the first two columns of Table I), the lognormal model is strongly
rejected in favor of the symmetricVG with aχ2

1 statistic of 83.94. TheVGmakes
no improvement in the log likelihood over the symmetricVG and we conclude that
the log-price relative of the S&P 500 index, statistically follows a symmetricVG

process.

16 When we start the optimization at the estimates obtained for the symmetricVG, there is no
change and the skew is estimated at zero. The reported estimates were obtained by using a starting
point that solved the moment equations developed in section 2. As a further check we report the
moment estimates for the skewness and kurtosis on our sample. The standard deviation is 0.006233.
The third central moment divided by the cube of the standard deviation is−0.2105. The fourth central
moment divided by the fourth power of the standard deviation is 7.8463. The moment estimates
suggest a small negative skew and kurtosis larger than that provided by the maximum likelihood
estimates.
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We estimate the parameter values of the risk neutral densities on a weekly ba-
sis.17 Using all of the option prices available for each week, we invert the three
option pricing models to estimate the implied volatilities,σ , (for all three models),
the implied excess kurtosis or the parameter,ν, (for the twoVG models), and the
implied skewness or the parameter,θ , (for theVG model). Since the number of
option prices ranges from 40 to 80, it is generally not possible to find a single set of
parameters that exactly fit all of the option prices. Consequently, these parameters
are estimated by the maximum likelihood method.

Specifically, the precise likelihood employed addresses expected heteroskedas-
ticity in option prices for various strikes by using a multiplicative error formulation.
Lettingwi be the observed market price on the ith option and lettinĝwi be the model
price we adopted the error model

wi = ŵi exp(ηεi − η2/2) (29)

where it is supposed that theεi ’s are normally distributed with zero mean and
unit variance.18 It is shown in the Appendix, that maximum likelihood estimation
is asymptotically equivalent to non-linear least squares on the logarithms, or the
minimization of

k =
√√√√ 1

M

M∑
i=1

(ln(wi)− ln(ŵi))
2. (30)

The average estimated parameter values of the risk neutral densities, along with
their standard deviation across the weeks, and the minimum and maximum esti-
mated values over all the weeks are presented in Table II. We also present average
values for the estimated log likelihood statistic. As noted earlier the parameters
were estimated weekly for 143 weeks.19

The average risk neutral volatility estimated for the log normal density is 12.13%.
The corresponding values for the symmetricVG and theVG are 13.01% and
11.48%. These are consistent estimates across the models and comparable to the
consistently estimated statistical volatility of 12%.

17 We could impose constancy of the risk neutral parameters across time and then estimate jointly
the statistical and risk neutral processes from the pooled cross section and time series data on option
prices and the underlying index. We, however, allow for time variation in the risk neutral parameters
as there is enough option price information at each time point to permit the estimation of this time
variation. In this regard we follow the precedents set by Rubinstein (1994), Jackwerth and Rubin-
stein (1996), Bates (1991), Bates (1996), Stutzer (1996) and Bakshi, Cao and Chen (1997) for the
evaluation of the option pricing models.

18 A multiplicative formulation is employed to preserve the positivity ofwi while allowingεi to
be unbounded. Similar formulations have recently been employed by Jacquier and Jarrow (1995) and
Elliott, Lahaie and Madan (1995).

19 Exponential transformations were invoked to ensure positivity of the estimates forσ and ν,
and the objective function for the estimation was the asymptotic log likelihood. The statistical
significance of parameter estimates is directly addressed by likelihood ratio tests.
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Table II. Summary statistics of weekly estimates of parameters for S&P 500
stock index risk neutral density function based on he Black/Scholes option
pricing model, the symmetric variance gamma and the variance gamma price
processes: January 1992–September 1994 (143 Weeks)

Standard

Parameter Mean deviation Minimum Maximum

A. Black Scholes Model

σ 0.1236 0.0165 0.087 0.171

Mean Log-

likelihood 0.0057 0.0026 0.002 0.019

B. Symmetric Variance Gamma Model

σ 0.1301 0.0199 0.091 0.183

ν 0.1861 0.1391 0.051 0.876

Mean Log-

Likelihood 0.0052 0.0024 0.001 0.019

C. Variance Gamma Model

σ 0.1213 0.0192 0.08 0.1737

ν 0.1686 0.0812 0.0541 0.6790

θ −0.1436 0.0552 −0.2744 0.0492

Mean Log-

Likelihood 0.003 0.0022 0.001 0.015

D. Rejection Percentages At the 5% (1%) Levels

Null Hypothesis

Alternate Hypothesis Black Scholes Symm. VG

Symmetric VG Model 37.8% (30.8%)

VG Model 93.7% (91.6%) 93.7% (91.6%)

The average estimates forν under the symmetricVG and theVG are, (see Table
II rows 4 and 7 of column 1) respectively 18.61% and 16.86%. These are much
higher than the statistical estimates of a fifth of a percent. The average estimate for
θ = −0.1436. Applying the transformation (16) the average value of risk aversion
is 10.59 and the standard error across the 143 weeks is 5.76. Hence, the risk neutral
volatility of theVG process is comparable to its statistical volatility and there is a
negative skewness to the risk neutral process associated with risk aversion.

The enhancement of skewness in the risk neutral process relative to the statis-
tical process is an expected consequence of risk aversion in equilibrium. This is
easily seen in the context of a simple one period model. For example ifp(x) is nor-
mal with mean zero and unit variance, and if utility is HARA with marginal utility
given by(1+ ex)−1, thenq is no longer symmetric and has in fact a fatter left tail.
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The risk neutral process also displays increased kurtosis. We view this as related
to the well documented evidence on higher implied volatilities in option pricing
in general. Unlike the geometric Brownian motion model, that lacks a kurtosis
parameter, in the VG model this property of high prices for tail events, is reflected
in increased risk neutral kurtosis with volatilities being typically unaffected.

Panel D of Table II presents the results of log likelihood ratio tests of the null
hypothesis of the Black Scholes model against the alternate of the symmetricVG

and theVG model, and the null hypothesis of the symmetricVG model against
the alternate of theVG model. At the one percent level, the Black Scholes model
is rejected in 30.8% of the cases given by the 143 weeks in favor of the symmetric
VG model, whereas the comparable rejection rate for the Black Scholes model vs
theVG model is 91.6%. The symmetricVG is also rejected in favor of theVG in
91.6% of the cases.

The evidence presented so far is statistical and provides some support for the
significance of the risk neutralVG process and the additional parameters intro-
duced in this model. In the next section, we analyse further the improvement
obtained in the quality of pricing delivered by theVG models by studying the
behavior of biases in the pricing errors of the three models.

6. Pricing Performance of the Variance Gamma Option Model

In this section we evaluate the pricing biases of the three models,VG, the sym-
metricVG and the Black Scholes model. Our results show that theVG model is
successful in addressing the pricing biases present in the other two models.

The three models were investigated to determine the quality of prices the models
deliver. For each of the 143 weeks we used the parameter estimates of that week to
calculate the option price as per each of the three models for all the options of that
week and obtained the pricing error. This gave us 8245 pricing errors for each of
the three models. The quality of pricing was judged by performing orthogonality
tests. For a good model the pricing errors should not exhibit any consistent pattern
and they should not be predictable.

With a view to assessing the estimated models in this way we performed a
regression analysis on the pricing errors obtained from each model. The explana-
tory variables for the regression summarized the characteristics of the option. The
presence of implied volatility smiles (Bates (1995)), suggests that pricing errors
are systematically related to the degree of moneyness, measured by the ratio of the
spot index level to the option strike. To allow for the possibility that both out-of-
the-money puts and calls may have higher implied volatilities, we employ both the
degree of moneyness and its square as an explanatory variable. Implied volatilities
are also known to rise with the option maturity and to accomodate this bias we also
employ the option maturity as an explanatory variable. In addition we use the level
of interest rates as an additional regressor. Consistency with general observations
on the Black Scholes implied volatility surface suggests that the coefficient of the



94 DILIP B. MADAN ET AL.

degree of moneyness should be negative, while the coefficients for the square of
moneyness and the option maturity should be positive.

The results of these orthogonality tests are presented in Table III. For the Black
Scholes model, we observe a high degree of predictability in the pricing errors
with anR2 of 16% given in the fifth row of the first column of Table III. More-
over, there is a moneyness smile with both the linear and the quadratic moneyness
coefficients being highly significant: and of the expected signs for a smile effect.
This is indicated by rows two and three of column 1 of Table III. There is also
a maturity bias indicative of rising implied volatilities with maturity. The pricing
errors are also positively related to interest rates as seen from rows 4 and 5. All
the independent variables employed are significant. TheF statistic reported in row
7 of Table III shows that we must reject the hypothesis of orthogonality of Black
Scholes pricing errors to these explanatory variables. The results are consistent
with extant evidence on the empirical biases of the Black Scholes model.

We find that the symmetricVG model does not fare much better. TheR2, row
6 of column 2 of Table III, is 17% and the pricing errors are predictable to a similar
extent as that of Black Scholes, with anF statistic of 425.068 given in row 7
of column 2. The model appears to over correct for the smile and has significant
moneyness coefficients consistent with an inverted smile, (see rows 2 and 3 of
column 2 of Table III). There is a positive maturity bias, though the interest rate is
now not significant as evidenced by rows 4 and 5 of Table III.

TheVG model performs much better. TheR2 (row 6, column 3 of Table III) is
0.001 and there appears to be no predictability, at least by the simple explanators
considered. TheF statistic is not significant. There is also no moneyness bias to
note. Thet − statistics of rows 2 and 3 of column 3 are near zero. The positive
maturity bias is also reduced and, if any, there is a slight negative maturity bias (see
row 4 of column 3). On these orthogonality tests, theVGmodel appears to deliver
acceptable option prices.

7. Conclusion

This paper presents a new option valuation formula, that nests the Black Scholes
formula as a parametric special case, based on asset price dynamics characterized
by the variance gamma process, obtained by evaluating Brownian motion with drift
at a random time given by a gamma process. The pricing performance of the new
model is compared on S&P 500 option data with the Black Scholes model and with
a symmetric special case of the new model. In contrast to traditional Brownian
motion, theVG process is a pure jump process with an infinite arrival rate of
jumps, but unlike Brownian motion (that also has infinite motion), the process has
finite variation and can be written as the difference of two increasing processes,
each giving separately the market up and down moves. The resulting option pricing
model has two parameters in addition to the asset volatility that allow for skewness
and excess kurtosis in the risk-neutralized density. Theoretically skewness is a
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Table III. Regression Results on the Predictability of S&P 500 Stock Index
Futures Option Pricing Errors Based on the Black Scholes Model, the
Symmetric Variance Gamma and the Variance Gamma Model: January
1992–September 1994

The regression specification is

PEi = α0+ α1MNYi + α2(MNYi)
2+ α3MATi + α4INTi + εi

where PEi is the model pricing error,MNYi is the ratio of the
index level to the strike price of optioni, (MNYi)

2 is square ofMNYi ,
MATi is the option maturity andINTi is the risk free interest rate.t-values
are in parentheses

Explanatory Black Symmetric Variance

variable scholes VG gamma

α0 59.005 −228.3113 0.0476

(Constant) (4.254)∗∗ (−22.367)∗∗ (0.007)

α1 −138.0872 435.7121 −0.4693

(Moneyness) (−5.00)∗∗ (21.711)∗∗ (−0.020)

α2 78.4561 −207.2874 0.5378

(Moneyness2) (5.703)∗∗ (020.904)∗∗ (0.077)

α3 2.5739 1.4843 −0.6241

(Maturity) (8.242)∗∗ (5.012)∗∗ −(2.310)∗
α4 10.4648 3.3723 2.9540

(Interest rate) (3.787)∗∗ (1.272) (1.201)

ADJ-R2 0.0.161 0.171 0.001

NOBS 8245 8245 8245

F -Stat(4,8240) 394.460 425.068 2.649

*, **, Indicates significance at the 1% (5%) level.

consequence of risk aversion in facing the risks of price jumps that is not addressed
in the Black Scholes model by assumption of continuity. Excess kurtosis is also a
result of jumps and is reflected in risk premia on deep in- and out-of-the money
options. Closed form formulas are developed for European option prices when the
risk neutral dynamics is given by theVG process.

Estimates of the statistical and risk neutralVG process, and the Black Scholes
special case are obtained for S&P 500 futures index option data. All parameters
were estimated by the maximum likelihood method. We provide evidence that,
while the statiscal density of the underlying index return is symmetric, the risk
neutral density implied option data is negatively skewed (confirming risk aversion),
with significant excess kurtosis. For the null of Black Scholes against theVG

alternate, the null of Black Scholes is strongly rejected by likelihood ratio tests.
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We also show that the superior performance of theVG model is reflected in
orthogonality tests conducted on the pricing errors. Option pricing errors from the
Black Scholes model and the symmetric special case of theVGmodel are observed
to be correlated with the degree of moneyness and the maturity of the options.
Orthogonality tests show that theVG model is relatively free of these biases.

Appendix

DERIVATION OF EQUATION (8)

The characteristic function (7) may be written as the product of the following two
characteristic functions,

φγp(t)(u) =
(

1

1− i(νp/µp)u
)(µ2

p
νp

)
t

and

φ−γn(t)(u) =
(

1

1+ i(νn/µn)u
)(µ2

n
νn

)
t

with µp,µn, νp andνn satisfying

µ2
p

νp
= µ2

n

νn
= 1

ν
, (A1)

νpνn

µpµn
= σ 2ν

2
, (A2)

νp

µp
− νn

µn
= θν. (A3)

It follows that theVG process is the difference of two gamma processes with mean
ratesµp,µn and variance ratesνp, νn respectively.

DERIVATION OF EQUATIONS (9), (10), (11)AND (12)

These relations are obtained by solving the equations (A1), (A2) and (A3). Solving
(A2) and (A3) we obtain that

νp

µp
= 1

2

√
θ2ν2+ 2σ 2ν + θν

2

νn

µn
= 1

2

√
θ2ν2+ 2σ 2ν − θν

2



THE VARIANCE GAMMA PROCESS AND OPTION PRICING 97

The result then follows from (A1).

DERIVATION OF EQUATIONS (18), (19)AND (20)

Conditional on the gamma time change,g, theVG variate,X(t), over an interval
of length t, is normally distributed with meanθg and varianceσ

√
g. Hence, we

may write

X(t) = θg + σ√gz (A4)

wherez is a standard normal variate, independent of the gamma random variableg

that has meant and varianceνt .
Computing expectations we obtain that

E[X(t)] = θt.
Let x = X(t)− E[X(t)], then we may write

x = θ(g − t)+ σ√gz.
It follows on squaring and computing expectations that

E[x2] = θ2νt + σ 2t,

and hence (18) holds.
Computing the cube ofx, we have

x3 = θ3(g − t)3+ 3θ2(g − t)2σ√gz+ 3θ(g − t)σ 2gz2+ σ 3g
3
2z3.

Taking expectations we obtain that

E[x3] = θ3E[(g − t)3] + 0+ 3σ 2θνt + 0.

The expectation of(g − t)3 may be obtained by explicit integration of the gamma
density. On explicit integration we have that

E[g3] = ν3(2+ t

ν
)(1+ t

ν
)
t

ν

= t3+ 3νt2 + 2ν2t.

It follows that

E[(g − t)3] = t3 + 3νt2 + 2ν2t − 3(νt + t2)t + 3t3− t3
= 2ν2t.
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The result of Equation (19) follows on substitution in the expression forE[x3].
For the fourth moment we note on expandingx4 and taking expectations that

E[x4] = θ4E[(g − t)4] + 6σ 2θ2E[(g − t)2g] + 3σ 4E[g2].

The expectation of theg4 may be explicitly computed by integration and is

E[g4] = (3ν + t)(2ν + t)(ν + t)t
= 6ν3t + 11ν2t2+ 6νt3 + t4.

The result for (20) follows by substitution and collecting terms.

Proof of Theorem 1.We may write the density ofz, as the conditional density
giveng times the marginal density ofg, with the random variableg integrated out.
Hence,

h(z) =
∫ ∞

0

exp
(
− 1

2σ 2g
(z−mt − t

ν
ln(1− θν − σ 2ν/2)− θg)2

)
σ
√

2πg
X

g
t
ν−1 exp

(
−g
ν

)
ν
t
ν 0(

t

ν
)

dg,

becausez is normally distributed with meanmt + t/ν ln(1− θν − σ 2ν/2) + θg
and varianceσ 2g conditional on the gamma variateg. By Gradshetyn and Ryzhik
(1970) 3.471.9 this form is integrable with the result given by (23).

Proof of Theorem 2.First conditioning on the random timeg, the conditional
option value is obtained from the conditional normality as in Madan and Milne
(1991, equation (6.5), noting that the coefficientα in that paper isζ s) as a Black
Scholes type formula, with the option value,c(g), being

c(g) = S(0)

(
1− ν(α + s)

2

2

) t
ν

exp

(
(α + s)2g

2

)
×N

(
d√
g
+ (α + s)√g

)
−K exp(−rt)

(
1− να

2

2

) t
ν

exp

(
α2g

2

)
×N

(
d√
g
+ α√g

)
, (A5)
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whereN is the cumulative distribution function of the standard normal variate and
d is given by equation (26). The call option price,c(S(0);K, t) is obtained on
integrating with respect to the gamma density, specifically,

c(S(0);K, t) =
∫ ∞

0
c(g)

g
t
ν−1 exp(−g

ν
)

ν
t
ν 0( t

ν
)

dg. (A6)

Making the change of variabley = g/ν and definingγ = t
ν
, c1 = ν(α+s)2

2 , c2 = να2

2
we may write that

c(S(0);K, t) =
∫ ∞

0

{
S(0) (1− c1)

γ exp(c1y)N

(
d/
√
ν√
y
+ (α + s)√ν√y

)
−K exp(−rt) (1− c2)

γ exp(c2y)N

(
d/
√
ν√
y
+ α√ν√y

)}
yγ−1 exp(−y)

0(γ )
dy

where we may now write

d = ln(S(0)exp(rt)/K)

s
+ γ
s

ln
(

1− c1

1− c2

)
.

Consider the general form∫ ∞
0

exp(cy)N

(
a√
y
+ b√y

)
yγ−1 exp(−y)

0(γ )
dy

and note on making the change of variableu = (1− c)y that this integral is equal
to ∫ ∞

0
N

(
a
√

1− c√
u
+ b√

1− c
√
u

)
uγ−1 exp(−u)
(1− c)γ 0(γ ) du.

Hence if we define the function

9(a, b, γ ) =
∫ ∞

0
N

(
a√
u
+ b√u

)
uγ−1 exp(−u)

0(γ )
du.

we may write the call option directly in terms of9 as

c(S(0);K, t) = S(0)9

(
d

√
1− c1

ν
, (α + s)

√
ν

1− c1
, γ

)
−

K exp(−rt)9
(
d

√
1− c2

ν
, α

√
ν

1− c2
, γ

)
.
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A closed form for the option price is obtained on developing a closed form for
the function9(a, b, γ ). For this we first develop expressions for the derivatives of
9 with respect toa andb. Taking derivatives and integrating using Gradshetyn and
Ryzhik (1970) 3.471.9 we obtain that

9a = 2 exp(−ab)√
2π0(γ )

(
a2/2

1+ b2/2

) γ
2− 1

4

Kγ−1/2

(
|a|
√

2+ b2
)

whereKα is the modified bessel function of the second kind of orderα.By a similar
calculation we obtain

9b = 2 exp(−ab)√
2π0(γ )

(
a2/2

1+ b2/2

) γ
2+ 1

4

Kγ+1/2

(
|a|
√

2+ b2
)

To evaluate9(a, b, γ ) we choose a path of integration in(a, b) space along
which the arguments of the bessel functions are constant. Hence, consider the path
of integration

b(t) = t −∞ < t < b

a(t) = sign(a)|a|
√

2+b2√
2+t2

−∞ < t < b.

noting by construction that along the path of integration|a(t)|√2+ b(t)2 =
|a|√2+ b2 = c. We may then write

9(a, b, γ ) =
∫ b

−∞

[
9aa

′(t)+9bb′(t)
]
dt, (A7)

for whenb = −∞, a = 0 and we know that9(0,−∞, γ ) = 0. Substituting
required expressions and evaluating (A5) we get that

c(S(0);K, t) =
∫ b

−∞
2

exp

(
−sign(a)ct√

2+t2

)
√

2π0(γ )


(

c2

(2+ t2)2
) γ

2+ 1
4

Kγ+ 1
2
(c)

−
(

c2

(2+ t2)2
) γ

2− 1
4

Kγ− 1
2
(c)

sign(a)ct

(2+ t2)3/2

 dt
On simplifying and making the change of variabley = t√

2+t2
we obtain that

c(S(0);K, t) =
∫ b√

2+b2

−1

cγ+ 1
2√

2π0(γ )2γ−1{
Kγ+ 1

2
(c)exp(−sign(a)cy)

(
1− y2)γ−1

−sign(a)Kγ− 1
2
(c)exp(−sign(a)cy)

(
1− y2)γ−1

y
}
dy
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The answer follows on obtaining the integrals,

H1(u, c, γ ) =
∫ u

−1
exp(−cy)(1− y2)γ−1dy

and

H2(u, c, γ ) =
∫ u

−1
exp(−cy)(1− y2)γ−1ydy.

We then have that

9(a, b, γ ) = cγ+
1
2√

2π0(γ )2γ−1

{
Kγ+ 1

2
(c)H1

(
b√

2+ b2
, sign(a)c, γ

)
− sign(a)Kγ− 1

2
(c)H2

(
b√

2+ b2
, sign(a)c, γ

)}
. (A8)

To reduce the integralH1 in terms of the special functions of mathematics we make
the change of variablex = 1+y

1+u to obtain that

H1(u, c, γ ) = exp(c)(1+ u)γ2γ−1
∫ 1

0
exp(−c(1+ u)x)

×
(

1− 1+ u
2

x

)γ−1

xγ−1dx.

The degenerate hypergeometric function of two variables,8 has the integral rep-
resentation (Humbert (1920))

8(α, β, γ ; x, y) = 0(γ )

0(α)0(γ − α)

×
∫ 1

0
uα−1(1− u)γ−α−1(1− ux)−β exp(uy)du.

We may therefore obtainH1 in terms of8, specifically,

H1(u, c, γ ) = exp(c)(1+ u)γ2γ−1 1

γ
8

×
(
γ,1− γ,1+ γ ; 1+ u

2
,−c(1+ u)

)
. (A9)

The second integral, forH2 is similarly obtained and is given by

H2(u, c, γ ) = exp(c)(1+ u)1+γ2γ−1

1+ γ 8

×(1+ γ,1− γ,2+ γ ; 1+ u
2

,−c(1+ u))−H1(u, c, γ ).

(A10)
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Substituting (A9) and (A10) into (A8) yields the representation of9(a, b, γ ) in
terms of the modified bessel function of the second kind and the degenerate hyper-
geometric function of two variables as

9(a, b, γ ) = cγ+ 1
2 exp(sign(a)c)(1+ u)γ√

2π0(γ )γ
X (A11)

Kγ+ 1
2
(c)8

(
γ,1− γ,1+ γ ; 1+ u

2
,−sign(a)c(1+ u)

)

−sign(a)
cγ+

1
2 exp(sign(a)c)(1+ u)1+γ√

2π0(γ )(1+ γ ) X

Kγ− 1
2
(c)8

(
1+ γ,1− γ,2+ γ ; 1+ u

2
,−sign(a)c(1+ u)

)

+sign(a)
cγ+

1
2 exp(sign(a)c)(1+ u)γ√

2π0(γ )γ
X

Kγ− 1
2
(c)8

(
γ,1− γ,1+ γ ; 1+ u

2
,−sign(a)c(1+ u)

)
,

wherec = |a| √2+ b2 andu = b√
2+b2

.

DERIVATION OF THE LIKELIHOOD FUNCTION FOR RISK NEUTRAL ESTIMATION

The log likelihood function of the datawi for i = 1, · · ·M under the model given
by Equation (29) is

ln L = −1

2

M∑
i=1

(
ln(wi)− ln(ŵi)

η
+ η

2

)2

−M ln(2π)

2
−M ln η −

M∑
i=1

ln(wi).

The partial with respect toη gives on simplification the equation

k2 = 1

M

M∑
i=1

(ln(wi)− ln(ŵi))
2 = η2+ η

4

4
, (A12)

and this equation may be solved forη to obtain

η =
√

2(
√

1+ k2− 1). (A13)
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For purposes of model comparison or estimation, the terms not involving para-
meters may be dropped and this leaves, for twice the log likelihood the expression

2 lnL = −
M∑
i=1

(
ln(wi)− ln(ŵi)

η
+ η

2

)2

−M ln η2

Completing the square, dividing byM and simplifying we get that

2 lnL

M
= − 1

M

M∑
i=1

(
ln(wi)− ln(ŵi)

η

)2

−

1

M

M∑
i=1

(ln(wi)− ln(ŵi))− η
2

4
− ln η2 (A14)

Substituting for the sum of squares of log differences from (A12) and using the
definition of ξ as the average of log price relatives we obtain ignoring constants
that

2 lnL

M
= − ln η2− (ξ + η

2

2
). (A15)

Substituting from (A13) into (A15) yields the expression employed for likelihood
ratio test comparisons

2 lnL = −M
[
ln
(
2(
√

1+ k2− 1)
)
+ (ξ +

√
1+ k2− 1)

]
. (A16)

For the estimation we observe that for largeM the limiting value ofξ is by
hypothesisη2/2 and hence (A15) shows that asymptotically maximum likelihood
estimation is equivalent to minimizingη or by (A13),k.

Acknowledgements

Dilip Madan would like to acknowledge financial support from the Isaac Newton
Institute, Cambridge, UK, during his visit to the financial mathematics workshop
when part of the work on this paper was completed. He would also like to acknowl-
edge the Hong Kong University of Science and Technology and the University
of Maryland Signet Bank Summer Research Fellow Award for financial support
of this project. Eric Chang acknowledges support from the Hong Kong Govern-
ment Research Grant Council, Grant Number, HKUST 159/93H. We would like
to thank Gurdip Bakshi, Helyette Geman, Christian Gourieroux, Robert Jarrow,
Pegaret Pichler, Alex Triantis, Marc Yor and seminar participants at the September
1995 Risk Conference on Advanced Mathematics for Derivatives in New York,
the Columbia University Workshop in Mathematical Finance, the Courant Insti-
tute at New York University, the Johnson Graduate School at Cornell University,



104 DILIP B. MADAN ET AL.

the Mathematical Finance Workshop at Université de Montreal, the Mathematical
Finance workshop at the University of Aarhus, seminar participants at ESSEC,
the meeting of the French Finance Association in Geneva, the Fields Institute in
Toronto, the University of Chicago, and Purdue University.

References

Ané, Thiery and Helyette Geman (1995) Stochastic time changes, subordinated processes and asset
price dynamics, working paper,ESSEC, France.

Bakshi, Gurdip, Charles Cao, and Zhiwu Chen (1997) Empirical performance of alternative option
pricing models,Journal of Finance52, 2003–2049.

Bates, David S. (1991) The crash of ’87: Was it expected? The evidence from options markets,
Journal of Finance46, 1009–1044.

Bates, David S. (1995) Post-crash moneyness biases in S&P 500 futures options, Rodney, L. White
Center working paper,Wharton School, University of Pennsylvania, Philadelphia, PA.

Bates, David S. (1996) Jumps and stochastic volatility: Exchange rate processes implicit in
deutschemark options,Review of Financial Studies9, 69–108.

Black, Fisher and Myron S. Scholes (1973) The pricing of options and corporate liabilities,Journal
of Political Economy81, 637–654.

Bossaerts, Peter, Eric Ghysels, and Christian Gourieroux (1996) Arbitrage-based pricing when
volatility is stochastic, Social Science Working Paper,California Institute of Technology,
Pasadena, CA.

Clark, P. (1973) A subordinated stochastic process model with finite variance for speculative prices,
Econometrica41, 135–156.

Cox, John C. and Stephen A. Ross (1976) The valuation of options for alternative stochastic
processes,Journal of Financial Economics3, 145–166.

Elliott, R. J., C. H. Lahaie and D. B. Madan (1997) Filtering derivative security valuations from
market prices,Proceedings of the Isaac Newton Workshop in Financial Mathematics, Canbridge
University Press, forthcoming.

Geman, H. and T. Ané (1996) Stochastic subordination,Risk, September.
Gourieroux, C., G. Le Fol and B. Meyer (1996) ‘Analysis of order queues, Working Paper,CREST,

Paris, France.
Gradshetyn, I. S. and I. M. Ryzhik (1980)Table of Integrals, Series, and Products, Academic Press,

New York.
Heston, S. (1993a) A closed-form solution for options with stochastic volatility with applications to

bond and currency options,The Review of Financial Studies6, 327–343.
Heston, S. (1993b) Invisible parameters in options prices,Journal of Finance48, 933–947.
Heston, S. (1993c) Yield curves and volatility, Working Paper,Washington University, St. Louis,

MO.
Hull, John and Alan White, (1987) The pricing of options on assets with stochastic volatility,Journal

of Finance42, 281–300.
Humbert, Pierre (1920) The confluent hypergeometric functions of two variables,Proceedings of the

Royal Society of Edinburgh, pp. 73–85.
Jackwerth, J. C. and M. Rubinstein (1996) Recovering probability distributions from option prices,

Journal of Finance1611–1631.
Jacquier, E. and R. A. Jarrow (1995) Dynamic evaluation of contingent claim models: An analysis

of model error, Working Paper,Johnson Graduate School of Management, Cornell University,
Ithaca, NY.

Jones, E. P. (1984) Option arbitrage and strategy with large price changes,Journal of Financial
Economics, 13, 91–113.



THE VARIANCE GAMMA PROCESS AND OPTION PRICING 105

Madan, Dilip B. and Frank Milne (1991) Option pricing with VG martingale components,Mathe-
matical Finance1(4), 39–55.

Madan, Dilip B. and Eugene Seneta (1990) The variance gamma (V.G.) model for share market
returns,Journal of Business63(4), 511–524.

Melino, Angelo and Stuart Turnbull (1990) Pricing foreign currency options with stochastic
volatility, Journal of Econometrics45, 239–265.

Merton, Robert C. (1976) Option pricing when underlying stock returns are discontinuous,Journal
of Financial Economics3, 125–144.

Naik, V. and M. Lee (1990) General equilibrium pricing of options on the market portfolio with
discontinuous returns,Review of Financial Studies3, 493–522.

Praetz, P. D. (1972) The distribution of share price changes,Journal of Business45, 49–55.
Rubinstein, M. (1985) Non-parametric tests of alternative option pricing models using all reported

trades and quotes on the 30 most active CBOE option classes from August 23, 1976 through
August 31, 1978,Journal of Finance40, 455–480.

Rubinstein, M. (1994) Implied binomial trees,Journal of Finance49, 771–818.
Revuz, Daniel and Marc Yor (1991)Continuous Martingales and Brownian Motion, Springer-Verlag,

Berlin.
Scott, Louis (1987) Option pricing when the variance changes randomly: Theory, estimation and an

application,Journal of Financial and Quantitative Analysis22, 419–438.
Stutzer, M. (1996) A simple nonparametric approach to derivative security valuation,Journal of

Finance51, 1633–1652.
Wiggins, James B. (1987) Option values under stochastic volatility: Theory and empirical estimates,

Journal of Financial Economics19, 351–377.




