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Three processes reflecting persistence of volatility are initially formulated by evalu-
ating three Lévy processes at a time change given by the integral of a mean-reverting
square root process. The model for the mean-reverting time change is then generalized
to include non-Gaussian models that are solutions to Ornstein-Uhlenbeck equations
driven by one-sided discontinuous Lévy processes permitting correlation with the stock.
Positive stock price processes are obtained by exponentiating and mean correcting these
processes, or alternatively by stochastically exponentiating these processes. The charac-
teristic functions for the log price can be used to yield option prices via the fast Fourier
transform. In general mean-corrected exponentiation performs better than employing
the stochastic exponential. It is observed that the mean-corrected exponential model
is not a martingale in the filtration in which it is originally defined. This leads us to
formulate and investigate the important property of martingale marginals where we
seek martingales in altered filtrations consistent with the one-dimensional marginal
distributions of the level of the process at each future date.
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1. INTRODUCTION

It has been clear that the standard option pricing model of Black and Scholes (1973)
and Merton (1973) (hereafter BMS) has been inconsistent with options data for at least
a decade. The model in fact implies that the informational content of the option surface
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is one dimensional. Were the model to be empirically relevant, then one could infer the
prices of options at all strikes and maturities from the price of any single option. This
property calls into question the very existence of these markets and the associated activity
of price discovery undertaken therein.

At the other extreme we have, for example, local volatility models that enhance the
dimension of the informational content to a doubly indexed continuum specifying the
volatility σ (S, t)that would prevail at any future time t were the spot asset to trade then
at the price S. Furthermore, the implicit maintained hypothesis of a one-dimensional
Markov process remains questionable. This hypothesis is called into question by trading
in the options markets that presumably occurs to extract from these markets relevant
information that is not available on observing the spot price of the underlying asset.

This paper is concerned primarily with synthesizing the informational content of op-
tion prices across strike and maturity at a point of time. The objective is accomplished
by developing a parsimonious model that fits the surface at each point of time. The pa-
rameters of this synthesizing model are then viewed as efficient summaries of the surface
and it is envisaged that the changes in these synthesizing parameters from day to day
define a dynamic model that is ultimately Markovisan in the dimension of the spot price
augmented by the synthesizing parameters.

Improvements in pricing performance over the BMS model have been sought by a
majority of researchers by modifying the continuous-time stochastic process followed by
the underlying asset. In particular, asset returns have been modeled as diffusions with
stochastic volatility (e.g., Heston 1993; Hull and White 1987), as jump-diffusions (e.g.,
Kou and Wang 2001; Merton 1976), or as both (e.g., Bates 1996, 2000; Duffie, Pan, and
Singleton 2000). Empirical work on these models has generally supported the need for
both stochastic volatility to calibrate the longer maturities and jumps to reflect shorter
maturity option prices.

On the theoretical side, arguments have been proposed by Geman, Madan, and Yor
(2001) which suggest that price processes for financial assets must have a jump component
but they need not have a diffusion component. Their argument rests on recognizing that
all price processes of interest may be regarded as Brownian motion subordinated to a
random clock. This clock may be regarded as a cumulative measure of economic activity,
as conjectured by Clark (1973), and as estimated by Ané and Geman (2000). As time
must be increasing, the random clock can be modeled as a pure jump increasing process,
or alternatively as a time integral of a positive diffusion process, and thus devoid of a
martingale component. If jumps are suppressed, then the clock is locally deterministic.
Ruling out a locally deterministic clock a priori, it is concluded that the required jumps in
the clock induce jumps in the price process. There is no similar argument requiring that
prices have a diffusion component. Furthermore, the use of jump processes with an infinite
arrival rate can adequately encompass the contribution of any diffusion component,
rendering its explicit employment vacuous.

Three examples of infinite activity pure jump Lévy processes are employed in this paper.
First, we have the normal inverse Gaussian (NIG) model of Barndorff-Nielsen (1998),
and its generalization to the generalized hyperbolic class by Eberlein, Keller, and Prause
(1998). Second, we have the symmetric variance gamma (VG) model studied by Madan
and Seneta (1990) and its asymmetric extension studied by Madan, Carr, and Chang
(1998), and Madan and Milne (1991). Finally, we have the model developed by Carr,
Geman, Madan, and Yor (2002; hereafter, the CGMY model); which further generalizes
the VG model.
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The empirical success of pure jump Lévy processes is not maintained when one con-
siders the variation of option prices across maturity. It has been observed in Konikov
and Madan (2002) that these homogeneous Lévy processes impose strict conditions on
the term structure of the risk-neutral variance, skewness, and kurtosis. Specifically, the
variance rate is constant over the term, skewness is inversely proportional to the square
root of the term, and kurtosis is inversely proportional to the term. In contrast, the data
suggest that these risk-neutral moments are often rising with term. Collectively, these
considerations suggest that it may be desirable to incorporate a richer behavior across
maturity than is implied by homogeneous Lévy processes.

In a parallel development in the literature, it has been observed by several authors (e.g.,
Barndorff-Nielsen and Shephard 2001; Bates 1996, 2000; Duan 1995; Engle 1982; Heston
1993) that volatilities estimated from the time series are both stochastic and usually clus-
tered. The phenomenon of clustering is commonly referred to as volatility persistence. For
these reasons, the objective of this paper is to extend the otherwise fairly successful Lévy
process models cited above by incorporating stochastic and mean-reverting volatilities.

We take the three homogeneous Lévy processes cited above, the NIG, VG, and CGMY
models, and generate the desired volatility properties by subordinating them, in the first
instance to the time integral of a Cox, Ingersoll, and Ross (1985; CIR) process. The
randomness of the CIR process induces stochastic volatility (SV), and the mean reversion
in this process induces volatility clustering. We term the resulting processes NIGSV,
VGSV, and CGMYSV in recognition of their synthesis with stochastic volatility.

Extensions to other mean-reverting processes expressed as solutions to Ornstein-
Uhlenbeck (OU) equations driven by one-sided pure jump Lévy processes, termed back-
ground driving Lévy processes (BDLP) by Barndorff-Nielsen and Shephard (2001), are
subsequently presented that accommodate leverage effects as well. This work is closely
related to work by Barndorff-Nielsen, Nicolato, and Shepard (2001) and Nicolato and
Venardos (2001) in which such methods were developed to model the accumulated vari-
ance of a diffusion; we employ similar processes to time change a discontinuous Lévy
process. The specific BDLPs considered are those associated with a stationary solution
to the OU equation that is gamma or inverse Gaussian (IG) and this leads to the BDLPs
we refer to as SG and SIG. In addition we also develop the inverse Gaussian (IG) BDLP.
The resulting alternative BDLP models are 18 in number, combining three Lévy processes
with three pure jump Lévy BDLPs and then employing two architectures of exponentia-
tion and stochastic exponentiation. Finally, we also add correlation or leverage to VGSA
(the exponential form for combining VG with CIR) and develop the VGCSA model. In
all, the paper develops 25 models with explicit forms for the log characteristic function
in each case.

In constructing risk-neutral price processes from the stochastic volatility Lévy pro-
cesses (e.g., NIGSV, VGSV, and CGMYSV), two approaches are followed. The first
approach reflects the implications of prohibiting static arbitrage opportunities by con-
structing the risk-neutral distribution at each maturity as the exponential of NIGSV,
VGSV, and CGMYSV processes normalized to reflect initial forward prices. This class
of models is termed NIGSA, VGSA, and CGMYSA. The second approach follows the
more stringent implications of excluding dynamic arbitrage by compensating the pure
jump processes NIGSV, VGSV, and CGMYSV to form martingales. These martingales
are then stochastically exponentiated to yield martingale candidates (in the enlarged fil-
tration of the stock price and the integrated CIR time change) for forward prices. This
class of models is termed NIGSAM, VGSAM, and CGMYSAM.
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We note that the martingale properties of the SAM models are all with respect to
the enlarged filtration, which includes knowledge of the subordinator given by the time-
integrated CIR process. In this regard Geman, Madan, and Yor (2002) observed that for
pure jump processes the time change is a random variable given a full realization of the
price path; they want on to develop its conditional law in a number of cases. To the extent
that the subordinator cannot be ascertained from a time series of prices, and to the extent
that parameters must be reestimated to ensure pricing quality, serious issues arise as to
the practical relevance of the associated martingale condition.

The models NIGSA, VGSA, and CGMYSA take a more conservative approach than
the martingale models NIGSAM, VGSAM, and CGMYSAM. We find that these more
conservative models consistently provide substantially superior empirical performance
over their martingale counterparts. We are then led to making a deeper study of the
properties of these more conservative models . In this regard, we introduce two important
new concepts, which we term the martingale marginal property and the Lévy marginal
property. We define a process as having the martingale marginal property if it has the
same one-dimensional marginal distributions as some martingale process. We further
show that the martingale marginal property is intimately connected with the absence of
elementary arbitrages that amount to static arbitrages enhanced by a few stock trades
triggered by observations on the price level at particular times.

We further define a process as having the Lévy marginal property if it has the martingale
marginal property and if the martingale is derived from normalizing the exponential of a
time-inhomogeneous Lévy process. We show first that if the CIR process is started at zero,
then our conservative processes have this Lévy marginal property. When the starting value
is not zero, we conjecture that these processes have the martingale marginal properties.

We report the results of estimating the six CIR-based models using S&P 500 option
closing prices for the second Wednesday of each month of the year 2000. In the inter-
est of brevity, for other BDLPs we provide results for just the VG model. The models
are observed to be capable of adequately fitting a wide range of strikes and maturities
consistently across the year.

The outline of the paper is as follows. In Section 2 we briefly summarize the three
homogeneous Lévy processes, NIG, VG, and CGMY. Section 3 introduces the time
change using an integrated CIR process and presents the characteristic functions for the
processes NIGSV, VGSV, and CGMYSV. In Section 4 we introduce the two stock price
model architectures and the martingale marginal property along with its connections to
arbitrage. The characteristic functions for the log of the stock price for the six models
NIGSA, VGSA, CGMYSA, NIGSAM, VGSAM, and CGMYSAM are then developed.
Section 5 studies the martingale properties of the models NIGSA, VGSA, and CGMYSA.
Section 6 introduces other BDLPs and presents the required construction of characteristic
functions in these cases, including leverage effects. Section 7 adds correlation to VGSA.
Section 8 describes the data and briefly reviews the estimation methodology. The results
for our class of models are presented in Section 9. Section 10 summarizes the paper and
provides suggestions for further research.

2. THE LÉVY PROCESSES

Three homogeneous Lévy processes employed in this paper to develop their stochastic
volatility versions are briefly summarized in this section. These are NIG, VG, and CGMY.
All three processes are pure jump with infinite activity. In the interest of notational
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parsimony, the reader is forewarned that “notational overloading” is employed in the
discussion of the three models. Confusion is easily avoided by simply being aware of the
context in which the notation is used.

2.1. The Normal Inverse Gaussian Model

The NIG process has a characteristic function defined by three parameters (see
Barndorff-Nielsen 1998):

φNIG(u; α, β, tδ) = exp
(−tδ

(√
α2 − (β + iu)2 −

√
α2 − β2

))
.(2.1)

From the linearity of the log characteristic function in the time variable, we observe that
this is an infinitely divisible process with stationary independent increments. For com-
parison with the variance gamma later we write the NIG process explicitly as Brownian
motion with drift time changed by an independent inverse Gaussian process. Let T ν

t be
the first time that a Brownian motion with drift ν reaches the positive level t. It is well
known that the Laplace transform of this random time is

E
[

exp
(−λTν

t

)] = exp
(−t

(√
2λ + ν2 − ν

))
.(2.2)

Now consider evaluating Brownian motion with drift θ and volatility σ at the inverse
Gaussian process to define the new process

XNIG(t; σ, ν, θ ) = θT ν
t + σ W

(
T ν

t

)
.(2.3)

Suppressing the dependence of the process on its parameters, the characteristic function
is

E
[
eiu XNIG (t)

] = exp

−tσ

√
ν2

σ 2
+ θ2

σ 4
−

(
θ

σ 2
+ iu

)2

− ν

σ 2

 .

Hence we may define

β = θ

σ 2
; α2 = ν2

σ 2
+ θ2

σ 4
; δ = σ

and observe that the NIG process is

XNIG(t; α, β, δ) = βδ2T
δ
√

α2−β2

t + δW
(

T
δ
√

α2−β2

t

)
.(2.4)

To obtain the NIG Lévy density, note that, conditioning on a jump of g in the time
change, the move is Gaussian with mean βδ2g and variance δ2g.The arrival rate for the
jumps is given by the Lévy density for inverse Gaussian time:

k(g) =
exp

(
− δ2(α2 − β2)

2 g
)

g3/2
.

It follows that the Lévy density for NIG is

kNIG(x) =
√

2
π

δα2 eβxK1(|x|)
|x| ,

where Ka(x) is the Bessel function.
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For later use, we record here the unit time log characteristic function expressed in terms
of the parameters of the time-changed Brownian motion

ψNIG(u; σ, ν, θ ) = σ

ν

θ
−

√
ν2

θ2
− 2

θ iu
σ 2

+ u2

 .

2.2. The Variance Gamma Model

The variance gamma process is defined by evaluating Brownian motion with drift θ

and volatility σ at an independent gamma time. Specifically, we have

XVG(t; σ, ν, θ ) = θGν
t + σ W

(
Gν

t

)
,

where Gν
t is a gamma process with mean rate t and variance rate νt, independent of W.

The Laplace transform of the gamma process is

E
[
exp

(−λGν
t

)] = (1 + λν)−t/ν .(2.5)

The characteristic function of the VG process is easily evaluated as

E
[
eiu XVG(t)] = (1 − iuθν + σ 2νu2/2)−t/ν .

The Lévy density for the variance gamma process may be derived directly from the Lévy
Khintchine theorem. Alternatively, one may exploit the representation of the variance
gamma process as the difference of two independent gamma processes. It is shown in
Carr et al. (2002) that

kVG(x) =
{C exp(Gx)

|x| x < 0

C exp(−Mx)
x x > 0,

where

C = 1
ν

(2.6)

G =
(√

θ2ν2

4
+ σ 2ν

2
− θν

2

)−1

(2.7)

M =
(√

θ2ν2

4
+ σ 2ν

2
+ θν

2

)−1

.(2.8)

For later use, we will need the following unit time log characteristic function in the
Lévy measure parametrization:

ψVG(u; C, G, M) = C log
(

G M
G M + (M − G)iu + u2

)
.(2.9)
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2.3. The CGMY model

The specific form for the CGMY Lévy density is

kCGMY(x) =


C exp(Gx)
(−x)1+Y x < 0

C exp(−Mx)
x1+Y x > 0.

This process has also come to be known in the literature on turbulence as the trun-
cated Lévy flight model (Mantegna and Stanley 1994). Boyarchenko and Levendorskii
(2000) and Hagan and Woodward (2002) also consider option pricing with such a pro-
cess. Furthermore, these processes play an important role in the construction of certain
Poisson-Dirichlet laws as studied in Pitman and Yor (1997).

The characteristic function is

E[exp(iu XCGMY(t))](2.10)

= exp(tC�(−Y )[(M − iu)Y + (G + iu)Y − MY − GY]).

The case G = M was also studied by Koponen (1995).
In what follows, the C and Y parameters will be allowed to take different values for

positive and negative outcomes in x. Letting Cp, Yp denote the parameters for x > 0 and
Cn, Yn denote the parameters for x < 0, the generalized characteristic function is

E[exp(iu XCGMY(t)]

= exp
(
tCp�(−Yp)

(
(M − iu)Yp − MYp

) + Cn�(−Yn)
(
(G + iu)Yn − GYn

))
.

For later use, we record here the unit time log characteristic function

ψCGMY(u; Cp, G, M, Yp, Yn, ζ )

= Cp
(
�(−Yp)

(
(M − iu)Yp − MYp

) + ζ�(−Yn)
(
(G + iu)Yn − GYn

)
with ζ defined as the ratio of Cn to Cp.

3. CLUSTERING TIME OR ACTIVITY PERSISTENCE

The basic intuition underlying our approach to stochastic volatility arises from the
Brownian scaling property. This property relates changes in scale to changes in time
and thus random changes in volatility can alternatively be captured by random changes
in time. The instantaneous rate of time change must be positive if the new clock is to be
increasing. Furthermore, this rate of time change must be mean reverting if the random
time changes are to persist. The classic example of a mean-reverting positive process is
the so-called square root process of Cox, Ingersoll, and Ross. We first focus on this can-
didate and in section 6 we address the use of other Lévy processes driving the stochastic
volatility time change. In section 7 we also incorporate the effects of leverage along the
lines followed by Barndorff-Nielsen et al. (2001), but applied here to a discontinuous
Lévy process requiring exact integrals of certain functionals of the Lévy cumulant that
we develop.

Hence, we consider first the process y(t) defined as the solution to the stochastic dif-
ferential equation

dy = κ(η − y)dt + λ
√

ydW,(3.1)
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where W(t) is a standard Brownian motion independent of any processes encoun-
tered thus far. The parameter η has the usual interpretation as the long run rate of
time change, κ is the rate of mean reversion, and λ governs the volatility of the time
change.

The process y(t) is the instantaneous rate of time change and so the new clock is given
by its integral

Y(t) =
∫ t

0
y(u) du.(3.2)

The characteristic function for Y(t) is well known from the work of CIR and from the
literature on Brownian motion because it is closely associated with Lévy’s stochastic
area formula (e.g., see Lamberton and Lapeyre 1996; Pitman and Yor 1982; Yor 1992).
Other important references include Taylor (1975) and Williams (1976). We recall that the
characteristic function for Y(t) is explicitly given by

E[exp(iuY(t))] = φ(u, t, y(0); κ, η, λ)

= A(t, u) exp(B(t, u)y(0)),

A(t, u) =
exp

(
κ2ηt
λ2

)
(

cosh
(

γ t
2

) + κ
γ

sinh
(

γ t
2

))2κη/λ2 ,

B(t, u) = 2iu
κ + γ coth

(
γ t
2

) ,

γ =
√

κ2 − 2λ2iu.

3.1. The Generic Stochastic Volatility Lévy Process

Let X(t) be a Lévy process, so that it has stationary independent increments. Its char-
acteristic function is thus of the form

E[exp(iu X(t))] = exp(tψX(u)).(3.3)

For simplicity, we assume a Lévy density exists and denote it by k(x). When X(t) is a pure
jump, zero drift process of finite variation, the log characteristic function at unit time
ψX(u) is related to k(x) by

ψX(u) =
∫ ∞

−∞
(eiux − 1)k(x) dx.(3.4)

Explicit forms for ψX(u) in the case of the NIG, the VG, and the CGMY models were
exhibited in Section 2.

The class of stochastic volatility Lévy processes (SVLP) is defined by

Z(t) = X(Y(t)),(3.5)

where Y is independent of X. Thus, Z is obtained by Bochner’s procedure of subordinating
X to Y.
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The process Z(t) is a semimartingale with a martingale component that is a compen-
sated jump process. Specifically, we may write that

Z(t) = Z(0) +
∫ t

0

∫ ∞

−∞
xν(dx, ds) +

∫ t

0

∫ ∞

−∞
x(µ(dx, ds) − ν(dx, ds))

ν(dx, ds) = y(s)k(x) ds dx,

where µ(dx, ds) is the integer-valued random measure associated with the jumps of Z
and ν(dx, ds) is the compensator. The factorization of the compensator occurs as a result
of the time change on noting that the speed of the economy is y(s) ds.

The compensator for the jumps of the stochastic volatility Lévy process (SVLP) models
is the measure ν(dx, ds) = y(s)k(x) dx ds. This representation suggests that any scaling
constant in the Lévy density that is σ for the NIG model and C for the VG or CGMY
models may be absorbed into a scaling of the process y(t). The parameterizations we
develop below incorporate this scaling absorption of the Lévy density into the process
for y(t) where we identify the scaling constant with the initial value for the y process.

We note that the quadratic variation expected at time s in the interval (s, t) is given by∫ ∞

−∞
x2k(x) dxE

[∫ t

s
y(u) du

]

=
∫ ∞
−∞ x2k(x) dx

i

[
∂

∂u
A(t − s, u)|u=0 + ∂

∂u
B(t − s, u)|u=0 × y(s)

]
and, unlike Lévy processes, the conditional expected quadratic variations are stochastic
and adapted to the process for the time change, y(t). The autocorrelation in the process
for y is then expected to lead to autocorrelation in squared returns.

One could also consider a factor structure of a vector of CIR processes and also allow
for CIR processes that drive the long-term volatility η, but as our interest is in synthesizing
the information content of the option surface at a point of time in as few parameters as
possible, we did not make this further development on observing that we had an adequate
synthesis on using a single time change process.

Yet another possibility is to combine differently the time changes in the first subor-
dination resulting in the Lévy process, for the case of NIG, and for VG where this time
change is known, with the second time change for stochastic volatility. We have composed
the time changes, but alternatively they could have been added to form a single time
change displaying a continuous mean-reverting component and a discontinuous inverse
Gaussian or gamma component. The characteristic functions for the time change would
in this case be products of the characteristic function of the Heston stochastic volatil-
ity model and the NIG or VG characteristic function. This approach has recently been
observed in Barndorff-Nielsen et al. (2001) and has been pursued by Sin (2002) in the
context of term structure models. We did not take this route as we were interested in
providing architectures for stochastic volatility for Lévy processes generally, without first
writing them in the form of a subordinated Brownian motion.

The characteristic functions for these stochastic volatility enhanced Lévy processes are
obtained simply as follows

E[exp(iu Z(t))] = E[exp(Y(t)ψX(u))](3.6)

= φ(−iψX(u), t, y(0); κ, η, λ).

The specific parametrizations for the three Lévy processes are developed next.
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3.1.1. The Process NIGSV. The stochastic volatility version of the NIG process is

ZNIG(t) = XNIG(Y(t); σ, ν, θ ).

We note that y(0) = σ and so we can write

E exp(iu ZNIG(t)) = φ(−iψNIG(1, ν, θ ), t, σ ; κ, η, λ).

This is a six-parameter process with parameters

σ, ν, θ, κ, η, λ.

3.1.2. The Process VGSV. The stochastic volatility version of the VG process is

ZVG(t) = XVG(Y(t); σ, ν, θ )

= XVG(Y(t); C, G, M),

where the second representation employs the parameters of the Lévy density as defined
in equations (2.6), (2.7), and (2.8). As commented earlier here we identify the parameter
C with y(0). Hence, we may write

E[exp(iu ZVG(t))] = φ(−iψVG(u; 1, G, M), t, C; κ, η, λ).(3.7)

This is a six-parameter process with parameters

C, G, M, κ, η, λ.

3.1.3. The Process CGMYSV. The stochastic volatility version of the CGMY process
is

ZCGMY(t) = XCGMY(Y(t); Cp, G, M, Yp, Yn, ζ ),

where we have replaced Cn by its ratio to Cp. The identification in this case is between Cp

and y(0) and we continue to use the notation C. We thus obtain that

E[exp(iu ZCGMY(t))] = φ(−iψCGMY(1, G, M, Yp, Yn, ζ ), t, C; κ, η, λ).

This is a nine-parameter process with parameters

C, G, M, Yp, Yn, ζ, κ, η, λ.

4. THE STOCK PRICE PROCESSES

This section considers two approaches for obtaining a positive stock price process. The
first approach uses the ordinary exponential function normalized to the right forward
price, the second uses the stochastic exponential to construct discounted martingales. The
second approach is a little more involved and has some desirable and possibly undesirable
features from an economic point of view. The most desirable feature is that one easily
obtains the martingale laws required by the exclusion of dynamic arbitrage. The unde-
sirable feature is that the validity of the martingale representation is tied to the relevant
filtration for the dynamics of the option surface being the space of two-dimensional paths
generated by movements in the spot price and the hidden mean-reverting time change. To
the extent that the time change is not observable, and to the extent that option markets
are actually characterized by an informational filtration that is either higher dimensional
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than the specified two dimensions or is in fact completely different from this filtration,
the associated martingale property is called into question in any case.

The first approach produces models that are superior in their ability to capture the
information content of the option surface and aid in the task of providing an efficient
synthesis of this data. This led us to inquire into the martingale properties of these models
and to formulate the important concept of martingale marginals as opposed to and
distinct from the idea of an equivalent martingale measure. The next section presents this
concept and relates it to the absence of essentially static arbitrage, marginally enhanced
to permit certain dynamic stock trades that may be arranged in advance and activated
on rules written at time 0 and triggered by movements in the spot price. We subsequently
inquire into whether the models obtained on a normalized ordinary exponentiation have
the martingale marginal property.

4.1. Martingale Marginals and Semistatic Arbitrage

The property of martingale marginals differs substantially from the idea of martingale
measures. For the latter, one begins with a complete probability space on which we seek
to find martingales via measure changes. In studying martingale marginals we need not
have at the start a probability space or even a stochastic process, but rather just a family
of densities of random variables Q = {q(X, t), t > 0} indexed by the real number t. We
say that the family of densities Q has the martingale marginal property if there exists a
probability space on which one may define a martingale M(t) such that for each t the law
of M(t) is given by the density q(M, t). Both the filtration and the probability measure
are created as part of the construction procedure of the martingale. For a more detailed
discussion of the martingale marginal property with explicit constructions of martingale
marginals for a variety of processes in a variety of ways we refer the reader to Madan
and Yor (2002).

We now relate the property of martingale marginals to the absence of arbitrage in
certain market structures. The market structure we are concerned with is that of trading
vanilla options on a single underlying asset for all strikes and maturities at a fixed date
in calendar time. Let C(t; K, T) be the price, at calendar time t, of a call option of strike
K and maturity T on an underlying asset that trades at time t for the price of S(t). Also
trading are bonds of all maturities and unit face value with time t prices of one dollar. For
the sake of simplicity we restrict attention to the case of zero interest rates and dividend
yields.

In the absence of arbitrage between options, stocks, and bonds at each maturity one
may deduce from standard arguments the existence of a risk-neutral density for the stock
price at future time T, q(S, T) such that

C(t; K, T ) =
∫ ∞

K
(S − K)q(S, T ) d S.(4.1)

In fact we may identify the risk-neutral density from option prices at time t using the
Breeden and Litzenberger (1978) formula when interest rates and dividend yield are zero
as

q(S, T ) = ∂2

∂K2

∣∣∣∣
K=S

C(t; K, T ).(4.2)
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It follows in particular that all the densities in the family of risk-neutral densities have a
constant expectation, for with zero interest rates and dividend yields,

S(t) =
∫ ∞

0
Sq(S, T ) d S.(4.3)

We now enhance the collection of assets one may trade to include dynamic trades in
stock where the trade is triggered by the level of the price of the asset at the earlier date.
Hence, given two future time points T1 < T2 we may invest in an asset that pays at time
T2 the quantity

1S(T1)>K (S(T2) − S(T1)).(4.4)

These are well-defined European-type payoffs that are the result of zero cost positions in
forwards triggered by simple rules depending on the level of the stock price at the earlier
date of the forward contract. In this sense we define semistatic trading by marginally
enhancing static trading and introducing a simple set of assets replicating a limited form
of dynamic trading. One may explicitly introduce these payoffs as part of the time t space
of European traded assets or allow for the limited dynamic trade. The prices of these
assets are zero at time t.

From the inequality

(S(T2) − K)+ − (S(T1) − K)+ − 1S(T1)>K (S(T2) − S(T1)) ≥ 0

we deduce on computing valuations that∫ ∞

0
(S − K)+q(S, T2) d S ≥

∫ ∞

0
(S − K)+q(S, T1) d S(4.5)

or that call prices rise with maturity for a fixed strike.
It follows from a result of Rothschild and Stiglitz (1970, 1971, 1972) and Kellerer

(1972) that if the family of distributions q(S, T) with constant expectation has the pos-
itive calendar spread property (4.5) then there exists a martingale M(T) such that for
all T the density of M(T) is q(M, T). We see then that the absence of static arbitrage
in our marginally enhanced space of static trading assets implies that the family of
risk-neutral densities has the martingale marginal property. The converse is easily seen
as an application of Jensen’s inequality applied to the convex payoff (S(T) − K)+.

Since the absence of dynamic arbitrage always precludes the absence of marginally
enhanced static arbitrages as described here, the martingale marginal property is more
fundamental than the existence of an equivalent martingale measure. In fact the former
can be verified from a knowledge of the risk-neutral densities at a point of time in contexts
where the latter is not even defined due to a lack of knowledge of the appropriate filtration
with respect to which the martingale is to be formulated. It is even possible that the
martingale marginal property holds and there are no equivalent martingale measures. A
simple example on a binomial tree illustrates this situation.

Consider the two-period process defined on the tree of Figure (4.1). This tree displays
a process with no equivalent martingale measure as there is arbitrage with the stock only
rising from the time 1 down state of $90. However, as the final probabilities for the three
states are 1/4 each for the extreme states of $120 and $80 at time 2, and 1/2 for the
intermediate state of $100, a standard binomial tree with path probabilities of 1/2 and
movement from $90 to $100 and $80 provides a martingale marginal process.

This example also highlights the fact that dynamic arbitrages are intimately linked
with the filtrations with respect to which the process is defined. In this regard we note
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FIGURE 4.1. Two-period tree displaying a process with no equivalent martingale mea-
sure but one with martingale marginals.

that many models in the literature involve stochastic processes for hidden variables like
stochastic volatility. To the extent these hidden variables are not observed, dynamic trad-
ing considerations based on their observation may well admit arbitrage that investors
cannot access. If the dimension of the hidden Markov filtration is small, then one may
be tempted to view the hidden filtration as observable via the prices of traded options.
However, if one is correct about the size of the hidden filtration but wrong about the
dynamics, either as a result of estimation error or more broadly model error (e.g., with
the dynamics specified as a diffusion instead of a non-Gaussian model), then the value
of the observed option prices as an indirect reading of the hidden Markov filtration is
called into question. Indirect observation and direct observation must never really ever
be viewed as at par or equivalent.

4.2. Ordinary Exponentials of SVLP Processes

Under this approach, the risk-neutral stock price process is given by mean correcting
the exponential of a stochastic volatility Lévy process. Let S(t) denote the stock price at
time t and let r and q denote the constant continuously compounded interest rate and
dividend yield respectively. Let Z(t) be a generic SVLP as described in (3.5). We define
the stock price at time t by the random variable

S(t) = S(0)
exp((r − q)t + Z(t))

E[exp(Z(t)]
.(4.6)
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Noting that

E[exp(Z(t))] = φ(−iψX(−i ), t, y(0); κ, η, λ),

we get that the characteristic function for the log of the stock price at time t is given by

E[exp(iu log(S(t)))] = exp(iu(log(S(0) + (r − q)t))(4.7)

× φ(−iψX(u), t, y(0); κ, η, λ)
φ(−iψX(−i ), t, y(0); κ, η, λ)iu

.

The exponential stock price models obtained on using NIG, VG, and CGMY for the
process X(t) in defining Z(t) are termed, respectively, NIGSA, VGSA, and CGMYSA.
Details for these models are presented next.

4.2.1. NIGSA Characteristic Function for Log Stock Price. This characteristic func-
tion for the NIGSA process at time t is explicitly given as

NIGSACF(u) = exp(iu(log(S(0) + (r − q)t))(4.8)

× φ(−iψNIG(u; 1, ν, θ ), t, σ ; κ, η, λ)
φ(−iψNIG(−i ; 1, ν, θ ), t, σ ; κ, η, λ)iu

.

4.2.2. VGSA Characteristic Function for Log Stock Price. This characteristic function
for the VGSA process at time t is explicitly given as

VGSACF(u) = exp(iu(log(S(0) + (r − q)t))(4.9)

× φ(−iψVG(u; 1, G, M), t, C; κ, η, λ)
φ(−iψVG(−i ; 1, G, M), t, C; κ, η, λ)iu

.

4.2.3. CGMYSA Characteristic Function for Log Stock Price. This characteristic
function for the CGMYSA process at time t is explicitly given as

CGMYSACF(u) = exp(iu(log(S(0) + (r − q)t))(4.10)

× φ(−iψCGMY(u; 1, G, M, Yp, Yn, ζ ), t, C; κ, η, λ)
φ(−iψCGMY(−i ; 1, G, M, Yp, Yn, ζ ), t, C; κ, η, λ)iu

.

4.3. Stochastic Exponentials of SVLP Processes

Under this approach, martingale models for the discounted stock price are obtained
by stochastically exponentiating martingales. Let Z(t) be a generic SVLP. The process
Z(t) is a pure jump process with a predictable compensator given by

ρ(dx, dt) = y(t)k(x) dt dx.

It follows that

n(t) = Z(t) −
∫ t

0

∫ ∞

−∞
xρ(dx, ds)

is a martingale. Let µ(dx, dt) be the integer-valued random measure associated with the
jumps of the process Z(t), so that

Z(t) =
∫ t

0

∫ ∞

−∞
xµ(dx, ds).



STOCHASTIC VOLATILITY FOR LÉVY PROCESSES 359

Then n(t) is the compensated jump martingale

n(t) = x ∗ (µ − ρ).

Now define the compensated jump martingale m(t) by

m(t) = (ex − 1) ∗ (µ − ρ)

and consider the stochastic exponential of m(t) given by

M(t) = exp
(

Z(t) −
∫ t

0

∫ ∞

−∞
(ex − 1)k(x)y(s) dx ds

)
.

Employing (3.4), we have with Y(t) = ∫ t
0 y(s) ds that

M(t) = exp(Z(t) − Y(t)ψX(−i )).(4.11)

We may also write M(t) as

M(t) = exp(X(Y(t)) − Y(t)ψX(−i )),

which is the martingale

exp(X(u) − uψX(−i ))

evaluated at an independent random time change Y(t), and hence is also a martingale.
Development of (4.11) shows that the relationship to the stochastic volatility process Z(t)
is precisely one of stochastically exponentiating m(t). (For a related development see Carr
and Wu 2002.)

This second approach to developing stock price processes adopts the formulation

S(t) = S(0) exp((r − q)t) exp(X(Y(t)) − Y(t)ψX(−i )).(4.12)

In this case, the characteristic function for the log of the stock price is given by

E[exp(iu log(S(t)))] = exp(iu(log(S(0) + (r − q)t))(4.13)

× φ(−iψX(u) − uψX(−i ), t, y(0); κ, η, λ).

The three special cases of interest are formulated next.

4.3.1. The NIGSAM Characteristic Function for Log Stock Price. For the NIG pro-
cess at time t, the characteristic function is

NIGSAMCF(u) = exp(iu(log(S(0) + (r − q)t))

× φ(−iψNIG(u, 1, ν, θ ) − uψNIG(−i, 1, ν, θ ), t, σ ; κ, η, λ).

4.3.2. The VGSAM Characteristic Function for Log Stock Price. For the VG process
at time t, the characteristic function is

VGSAMCF(u) = exp(iu(log(S(0) + (r − q)t))

× φ(−iψVG(u, 1, G, M) − uψVG(−i, 1, G, M), t, C; κ, η, λ).
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4.3.3. The CGMYSAM Characteristic Function for Log Stock Price. For the CGMY
process at time t, the characteristic function is

CGMYSAMCF(u) = exp(iu(log(S(0) + (r − q)t))φ(−iψCGMY(u, 1, G, M, Yp, Yn, ζ )

− uψCGMY(−i, 1, G, M, Yp, Yn, ζ ), t, C; κ, η, λ).

5. EXPONENTIATION AND MARTINGALE MARGINALS

The NIGSA, VGSA, and CGMYSA models are formulated by writing the discounted
stock price relative as a process of unit unconditional expectation obtained on expo-
nentiating the NIGSV, VGSV, and CGMYSV processes and dividing the exponential by
its mean. This formulation leads to prices free of static arbitrage since expectations are
calculated with respect to a measure on the space of paths that respects spot forward
arbitrage. If the log price processes had independent increments, then forward price pro-
cesses would be (local) martingales because conditional expectations are now identified
with unconditional expectations. However, the lack of independence in the increments of
the SA processes implies that forward price processes need not be martingales, and hence
these processes are subject to the possibility of dynamic arbitrage.

This section addresses the relatively deeper question of whether the SA construction
has the property of martingale marginals. This question could be investigated from a
computational perspective by constructing Lévy densities associated with characteristic
functions for the processes, but a richer understanding of the possibilities is provided by
the more structural representation of the processes pursued here.

We first ask whether there exist processes of independent increments, possibly inho-
mogeneous, with the same one-dimensional densities as the processes NIGSA, VGSA,
or CGMYSA. Since European option prices only determine the one-dimensional density
of the stock price at each maturity and we have seen that it is possible that two or more
probability measures are consistent with the same option prices, it is also possible that
one of these measures is a martingale measure and the other arises from the NIGSA,
VGSA, or CGMYSA models. We show that there exists a very large class of martingale
measures for which this is indeed true. More generally we investigate the nature of the
departures when such a representation is not available.

To assist the discussion, we focus on the generic case where (X(u), u ≥ 0) is a homo-
geneous Lévy process and Z(t) = X(Y(t)) with Y(t) defined in accordance with (3.2) and
(3.1). Let V(t) be a generic representation of our constant unconditional expectation
process

V(t) = exp(Z(t))
E[exp(Z(t)]

.

It is clear that if one constructs a process of independent and possibly inhomogeneous
increments (U(t), t ≥ 0), that is independent of (X(t), t ≥ 0), but with the same one-
dimensional distributions as those of Y(t), then the one-dimensional distributions of
V(t) are those of

Ṽ(t) = exp(X(U(t))
E[exp(X(U(t))]

,

where now Ṽ(t) is a process of independent multiplicative increments and a martingale.
This leads us to focus our attention on representing the one-dimensional distributions of
the process Y(t).
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The process Y(t) has three parameters κ, η, and λ and is useful to employ scaling
changes to relate the process to the case where λ = 2. In fact, if we let

h(t) = 4
λ2

y(t)

then H(t) = ∫ t
0 h(s) ds = 4

λ2 Y(t) and an application of Ito’s lemma shows that h(t) satisfies
the stochastic differential equation

dh =
(

4κη

λ2
− κh

)
dt + 2

√
hdW(t).

To simplify the notation and to better relate to the results in Pitman and Yor (1982),
we introduce the stochastic differential equation

dh = (δ + 2βh) dt + 2
√

hdW(t),(5.1)

where our case of interest is δ = 4κη

λ2 and β = − κ
2 . We denote by βQδ

x the law of the
process h(t) satisfying (5.1) and starting at h(0) = x. It is well known that for fixed β, this
two-parameter family enjoys the additivity property

βQδ
x ∗ βQδ′

x′ = βQδ+δ′
x+x′ .(5.2)

Furthermore, as shown by Shiga and Watanabe (1973), these diffusions are (up to a
trivial homothetic change of variable) the only family of R+-valued diffusions to have
this additivity property. Denoting the solution by (h(u), u ≥ 0), (5.2) implies that for every
nonnegative measure µ(ds) on R+ and every t ≥ 0, the random variable

Iµ,t(h) =
∫ t

0
µ(ds)h(s)

is infinitely divisible under the law βQδ
x, with parameters of infinite divisibility x and δ.

Its Lévy Khintchine representation is studied in Pitman and Yor (1982). In fact, Pitman
and Yor used classical Ray-Knight theorems on Brownian local times (among other
arguments) to show the existence, for given β, of two σ -finite measures βM, and βN on
C(R+, R+) such that

βQδ
x(exp(−γ Iµ,t)) = exp

(
−

∫
(x βM + δ βN )(dh)(1 − e−γ Iµ,t )

)
The Lévy measure associated to Iµ,t under βQδ

x is

x βmµ,t + δ βnµ,t,

where βmµ,t,
βnµ,t are the images of βM, βN by the mapping h −→ Iµ,t(h). A number of

computations of these Lévy measures are found in Pitman and Yor (1982).
We are interested here in yet another possible infinite divisibility property. Specifically,

for a given “reasonable” µ, we wish to determine whether the marginals of the process
(Iµ,t(h), t ≥ 0) are those of a process with inhomogeneous independent increments. For
simplicity, we take µ(ds) = ds as the Lebesgue measure and we say that the process
H(t) = ∫ t

0 h(u) du has the Lévy marginal (LM) property if there exists an inhomogeneous
Lévy process (θ (t), t ≥ 0) such that for any given t

H(t)
(d)= θ (t).

Our main result is the following.
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THEOREM 5.1. Let β ∈ R, and let p, q be two reals.

(i) The process (Yp,q (t) = py(t) + q
∫ t

0 y(s) ds, t ≥ 0), under βQδ
0 enjoys the LM

property.
(ii) Let x �= 0. The process (Y0,1(t) = ∫ t

0 y(s) ds, t ≥ 0) considered under βQδ
x does not

enjoy the LM property.

We first deal with the case δ = 2. For this case, the theorem is a consequence of the
following theorem. (Proofs of both theorems are given in the Appendix.)

THEOREM 5.2. Let ((−µ) y(a), a ≥ 0) denote a process distributed as (−µ)Q2
0. Then one

has
(a)

(5.3)(
−(µ) y(b);

∫ b

0
da(−µ) y(a)

)
(d)=

(
�0

Tb

(
X (µ));

∫ Tb(X (µ))

0
ds1(

X (µ)
s >

)), for every b ≥ 0,

where (X (µ)
t , t ≥ 0) is the solution of

Xt = Bt + µ

∫ t

0
ds1(Xs>0)(5.4)

and Tb(Xµ) = inf{t ≥ 0 : Xµ
t = b}.

(b) There is the identity(∫ Tb(X (µ))

0
ds1(

X (µ)
s >0

), b ≥ 0

)
(d)= (

Tb
(∣∣Z(µ)

∣∣), b ≥ 0
)
,

where (Z(µ)
t , t ≥ 0) is the solution to

Zt = γt + µ

∫ t

0
sgn(Zs) ds,(5.5)

with (γt, t ≥ 0) a Brownian motion.
(c) The identity in law,(∣∣Z(µ)

t

∣∣, t ≥ 0
) (d)= (

St
(
β (−µ)) − β

(−µ)
t , t ≥ 0

)
,

holds, where on the right-hand side β
(−µ)
t = βt − µt for a Brownian motion βt,

and St(θ ) = sups≤tθs

From these results, we may write the law

βQδ
x = βQδ

0 ∗ βQ0
x

and, hence, we may write

βyδ
x(t) = βyδ

0(t) + βy0
x(t),

where the processes βyδ
0,

βy0
x are independent. On integrating, we obtain

βY δ
0 (t) =

∫ t

0

βyδ
0(u) du
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βY0
x (t) =

∫ t

0

βy0
x(u) du.

The marginals of the process X(Y(t)) now agree with the marginals of X(βY δ
0 (t)) +

X(βY0
x (t)) and hence we may write

exp(X(Y(t))
E[exp(X(Y(t)))]

(d)= exp
(
X

(
βYδ

0 (t)
))

E
[
exp

(
X

(
βYδ

0 (t)
))] exp

(
X

(
βY0

x (t)
))

E
[
exp

(
X

(
βY0

x (t)
))]

de f= M(t)U(t).

The process M(t) has the multiplicative LM property and there exists an inhomoge-
neous Levy process of independent multiplicative increments with unit unconditional
expectations and the same marginal distributions. In particular, this inhomogeneous
Lévy process is also a martingale. On the other hand, the process U(t) does not have
the LM property. Hence, its one-dimensional distributions may not be consistent with a
martingale process by such an argument.

Some properties of the process U(t) are worthy of note. First, we observe that βy0
x(t)

starts at x, but is eventually absorbed at 0. The distribution of the first hitting time of 0
by the process y0

x(t) is (see Yor 1992; Getoor 1979)

T 0(y0
x

) (d)= x
2e

,

where e is a standard exponential random variable. More generally, for general β we have
that

P[T 0 ≤ s] = exp
(

− κx/2
exp (κs) − 1

)
.

It follows that the numerator in the expression for U(t) is eventually constant. The
process is a smooth differentiable process that is unconditionally absent but serves condi-
tionally as a random drift component perturbing the martingale M(t). We may interpret
this conditional drift as a conditional abnormal return that is unconditionally absent and
eventually zero.

Leaving aside these considerations, we now introduce the property of martingale
marginals (MM) for processes. We say that a process H(t) of constant expectation has the
property of MM just if there exists a martingale N(t) with the same marginal distributions
as those for H(t) for each t. The process U(t) may possess the property of martingale
marginals, and by such a decomposition we could write martingale laws for the class of
SA processes defined here.

The LM and MM properties introduced here are related in that if (L̃t) satisfies the LM
property, then (M̃t) = exp(L̃t)

E[exp(L̃t)]
satisfies the MM property. A priori, the converse does

not hold; that is, if (M̃t) satisfies the MM property, there does not necessarily exist (L̃t)
satisfying the LM property.

6. OTHER BDLPs AND LEVERAGE

We consider here the strategy of using a one-sided jump process for the background driv-
ing Lévy process (in the terminology of Barndorff-Nielsen and Shephard 2001) that drives
an OU process for the economic speed or the rate at which time changes. Additionally,
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by allowing the jumps in the BDLP to directly impact the stock price, we incorporate
the effects of leverage as well. The ideas of this section are closely related to those of
Nicolato and Venardos (2001), with the difference that we time change a pure jump Lévy
process but they time change a diffusion. For us this requires that certain functionals of
Lévy cumulants, identified below, be integrable in closed form. In section 7 we extend
VGSA to incorporate leverage in that model as well.

The formal structure is as follows. Let X(t) be a homogeneous Lévy process. Fur-
thermore let U(t) be a one-sided jump process with independent and homogeneous
increments—that is, a one-sided Lévy process. Examples that we shall use are the process
with exponential jump sizes and a constant Poisson arrival rate under which the station-
ary distribution for speed of the economy is a gamma distribution and we refer to this
as SG for stationary gamma. Other examples are the IG inverse Gaussian process or the
time taken by a Brownian with drift to reach level t. Finally we consider SIG or a BDLP
such that the stationary distribution for the speed of the economy is the inverse Gaussian
distribution at unit time.

The process for the speed of the economy at time t, y(t), is given by a solution to the
OU equation

dy = −κydt + dU(t).(6.1)

Solutions to such equations have also recently been extensively studied by Sato (1991,
1999) and Jurek and Vervaat (1983). In particular, the stationary solutions V(t) to this
equation characterize a subclass of infinitely divisible laws called self-decomposable laws.
The process y(t) may then be seen as a scaled and time changed form of V(t); specifically
we have (Lamperti 1962) that

y(t) = tκ V(log(t)).

We take the total elapsed economic time to be

Y(t) =
∫ t

0
y(s) ds.(6.2)

The uncertainty embedded in the stock price is now given by Z(t), where

Z(t) = X(Y(t)) + ρU(t)(6.3)

and the coefficient ρ allows for correlation between the Lévy volatility and the stock
return.

We present details for both our approaches of exponentiating and using the stochastic
exponential. In the first architecture, we have as before that S(t) is given by equation (4.6)
and the forward prices for fixed future delivery dates are processes of constant expectation.
In the second architecture we follow the principle of equation (4.12).

The stock price process for the second architecture is given by

S(t) = S(0)e(r−q)t M(t)(6.4)

= S(0)e(r−q)t exp
(

Z(t) −
∫ t

0

∫ ∞

−∞
(ex − 1) ν(dx, ds)

)
,

where ν is the predictable compensator for the jumps in Z.
For a given specification for X, say NIG, VG, and CGMY, and choice of Z, say SG,

IG, and SIG, we obtain on exponentiation the models VGSG, NIGSG, CGMYSG,
NIGIG, . . . , CGMYSIG. For all these models when we use stochastic exponentiation
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we obtain the martingale models that we denote with the extension M, to get the models
VGSGM, NIGSGM, CGMYSGM, NIGIGM, . . . , CGMYSIGM. For the three ho-
mogeneous Lévy processes, three BDLPs, and two forms of exponentiation we have 18
models.

6.1. Generic Construction of Characteristic Function for the Log Stock Price

Suppose that the homogeneous Lévy process has the unit time log characteristic func-
tion ψX(u) as defined by equation (3.4).

Further suppose that the BDLP has the characteristic function φU(u),

φU(u) = E
[
eiuU(t)]

= exp(tψU(u))

= exp
(

t
∫ ∞

−∞
(eiux − 1)kU(x) dx

)
,

where ψU(u) is the log characteristic function and kU(x) is the Lévy density which is
identically zero for x < 0.

The process U(t) may be written in terms of its integer-valued random measure
µU(dz, ds) as

U(t) = (x ∗ µU)t

=
∫ t

0

∫ ∞

0
xµU(dx, ds).

6.1.1. Characteristic Function for Z(t). We begin by considering the construction of
the characteristic function for Z(t).

By definition we have that

E[eiu Z(t)] = E
[
eiu X(Y(t))+iuρU(t)]

= E [exp (Y(t)ψX(u) + iuρU(t))] .

We now develop an expression for the joint characteristic function of Y(t) and U(t),

�t(a, b) = E[exp(iaY(t) + ibU(t))],(6.5)

and note that the desired characteristic function is

φZ(u) = �t(−iψX(u), ρu).(6.6)

To construct the joint characteristic function we note that

y(s) = y(0)e−κs +
∫ s

0

∫ ∞

0
e−κ(s−u)xµU(dx, du).

It follows that

Y(t) = y(0)
1 − e−κt

κ
+

∫ t

0

∫ s

0

∫ ∞

0
e−κ(s−u)xµU(dx, du) ds

= y(0)
1 − e−κt

κ
+

∫ t

0

∫ ∞

0

1 − e−κ(t−u)

κ
xµU(dx, du).



366 P. CARR, H. GEMAN, D. B. MADAN, AND M. YOR

Hence

iaY(t) + ibZ(t) = iay(0)
1 − e−κt

κ
+

∫ t

0

∫ ∞

0

(
ia

1 − e−κ(t−u)

κ
+ ib

)
xµU(dx, ds)

and

�t(a, b) = exp
(

iay(0)
1 − e−κt

κ

)
E

[
exp

(∫ t

0

∫ ∞

0

(
ia

1 − e−κ(t−u)

κ
+ ib

)
xµU(dx, ds)

)]
.

Define the compensated jump martingale n(s) by

n(s) =
(

exp
((

ia
1 − e−κ(t−u)

κ
+ ib

)
x
)

− 1
)

∗ (µU(dx, ds) − kU(x) dxds)

and note that its stochastic exponential is the martingale

N(s) = exp
(∫ s

0

∫ ∞

0

(
ia

1 − e−κ(t−u)

κ
+ ib

)
xµU(dx, ds)

)

× exp
(

−
∫ s

0

∫ ∞

0

(
exp

((
ia

1 − e−κ(t−u)

κ
+ ib

)
x
)

− 1
)

kU(x) dxdu
)

.

In particular, noting that the expectation of N(t) = 1, we get that

E
[

exp
(∫ t

0

∫ ∞

0

(
ia

1 − e−κ(t−u)

κ
+ ib

)
xµU(dx, ds)

)]

= exp
(∫ t

0

∫ ∞

0

(
exp

((
ia

1 − e−κ(t−u)

κ
+ ib

)
x
)

− 1
)

kU(x) dx du
)

= exp
(∫ t

0
ψU

(
a

1 − e−κ(t−u)

κ
+ b

)
du

)
.

Making the change of variable

v = b + a
1 − e−κ(t−u)

κ

in the exponent we may write the result as

�t(a, b) = exp
(

iay(0)
1 − e−κt

κ

)
exp

(∫ U

L

ψU(v)
a + κb − κv

dv
)

,(6.7)

L = b,

U = b + a
1 − e−κt

κ
.

We have closed-form solutions for the characteristic function of Z(t) provided we
integrate the log characteristic function of U(t) divided by a linear function in closed form.
This is accomplished below for the BDLPs SG, IG, and SIG that are briefly described in
the next subsection.
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6.1.2. Characteristic Function for the Log Stock Price: Exponential Model. Here the
stock is given by equation (4.6) and

E[exp(iu log(S(t))] = exp(iu(log(S(0) + (r − q)t))

× �t(−iψX(u), ρu)

× exp(−iu log(�t(−iψX(−i ), −iρ)).

6.1.3. Characteristic Function for the Log Stock Price: Stochastic Exponential Model.
Here the stock price is given by equation (6.4) and we need to determine the compensator
for the jump process Z(t).

The process X(Y(t)) has compensator

y(s)kX(x) dxds,

the process ρU(t) has compensator

kU

(
x
ρ

)
1
ρ

dxds.

It follows that the compensator for Z(t) is

ν(dx, ds) =
[

y(s)kX(x) + kU

(
x
ρ

)
1
ρ

]
dxds.

Computing the integral in the exponent of equation (6.4) we see that

M(t) = exp(Z(t) − Y(t)ψX(−i ) − tψU(−iρ)).

It follows on evaluation that

E[exp(iu log(S(t))] = exp(iu(log(S(0)) + (r − q)t − ψU(−iρ)t))

× �t(−iψX(u) − uψX(−i ), ρu).

This completes the generic construction of the characteristic function for the log of the
stock price. We now develop the joint characteristic function for Y, U in the special cases
of the stationary gamma, inverse Gaussian, and stationary inverse Gaussian.

6.1.4. The SG, IG, and SIG BDLPs. We consider three models for the process U(t).
These are termed stationary gamma, inverse Gaussian, and stationary inverse Gaussian.
The stationary gamma name refers to the fact that in this case the stationary solution to
the OU equation is a gamma density. A similar motivation underlies the nomenclature
SIG. For further details on these the reader is referred to Nicolato and Venardos (2001).

6.2. The SG Case

Consider by way of an example the process with Poisson arrival rate λ of positive
jumps exponentially distributed with mean ζ . In this case the Lévy density for jumps in
the process Z(t) is

kU(x) = λ

ζ
e−x/ζ .
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The log characteristic function of the BDLP is

ψU(u) = iuλ

1/ζ − iu
.

We wish to integrate ∫
iuλ

(1/ζ − iu)(a + κb − κu)
du.

We may write this as

λ

∫
u

(1/(iζ ) − u)(a + κb − κu)
du,

which is of the form

λ

∫
x

(α − x)(γ + δx)
dx,

α = −i/ζ

γ = a + κb

δ = −κ.

The indefinite integral is

−λα log(x − α)
γ + αδ

− λγ log(γ + δx)
δ(γ + αδ)

= log

[(
1

x − α

) λα
γ+αδ

(
1

γ + δx

) λγ

δ(γ+αδ)

]

= log

[(
x + i

ζ

) λ
(κ−iζ (a+κb))

(a + κb − κx)
λ(a+κb)ζ

κ((a+κb)ζ+iκ)

]
.

We evaluate this expression at x = b + a(1 − e−κt)
κ

and subtract the evaluation at x = b.

6.3. The IG Case

The Laplace transform for inverse Gaussian time with drift ν for the Brownian motion
is

E
[
exp

(−λTν
1

)] = exp
(
ν −

√
ν2 + 2λ

)
and the log characteristic function is

ψU(u) = ν −
√

ν2 − 2iu.

In this case we wish to integrate∫
ν − √

ν2 − 2iu
a + κb − κu

du.

This expression is of the form ∫
α −

√
α2 + βx

γ + δx
dx,
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α = ν

β = −2i

γ = a + κb

δ = −κ.

The indefinite integral is

− 2

√
α2 + βx

δ
− 2(βγ − α2δ)

δ3/2
√

α2δ − βγ
arctanh

[√
δ
√

α2 + βx√
α2δ − βγ

]
+ α log (γ + δx)

δ
.

In terms of the original parameters we have

2
√

ν2 − 2i x
κ

+ 2
κ3/2

ν2κ − 2i (a + κb)√
ν2κ − 2i (a + κb)

arctanh

[ √
κ
√

ν2 − 2i x√
ν2κ − 2i (a + κb)

]

− ν log(a + κb − κx)
κ

.

6.4. The SIG Case

For this case Barndorff-Nielsen and Shephard (2001) show that the Lévy density is

kU(x) = 1

2
√

2π
x−3/2(1 + ν2x) exp

(
−ν2x

2

)
.

The log characteristic function is

ψU(u) = iu√
ν2 − 2iu

and we wish to integrate ∫
iu√

ν2 − 2iu (a + κb − κu)
du.

This is of the form

i
∫

x√
α2 + βx(γ + δx)

dx,

α = ν

β = −2i

γ = a + κb

δ = −κ,

and the indefinite integral is

i

[
2
√

α2 + βx
βδ

+ 2γ

δ3/2
√

α2δ − βγ
arctanh

[√
δ
√

α2 + βx√
α2δ − βγ

]]

=
√

ν2 − 2i x
κ

− 2i (a + κb)

κ3/2
√

ν2κ − 2i (a + κb)
arctanh

[ √
κ
√

ν2 − 2i x√
ν2κ − 2i (a + κb)

]
.
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6.5. Summary of SG, IG, and SIG Results

We have the following result∫ U

L

ψZ(v)
a + κb − κv

dv = �(U, a, b) − �(L, a, b)

with analytic expressions for �(x, a, b) in the SG, IG, and SIG cases that we summarize
as follows:

�SG(x, a, b; κ, λ, ζ ) = log

[(
x + i

ζ

) λ
κ−iζ (a+κb)

(a + κb − κx)
λ(a+κb)ζ

κ((a+κb)ζ+iκ)

]
,

�IG(x, a, b; κ, ν) = 2
√

ν2 − 2i x
κ

+ 2
√

ν2κ − 2i (a + κb)
κ3/2

× arctanh

[ √
κ
√

ν2 − 2i x√
ν2κ − 2i (a + κb)

]

− ν log(a + κb − κx)
κ

,

�SIG(x, a, b; κ, ν) =
√

ν2 − 2i x
κ

− 2i (a + κb)

κ3/2
√

ν2κ − 2i (a + κb)

× arctanh

[ √
κ
√

ν2 − 2i x√
ν2κ − 2i (a + κb)

]
.

.

7. LEVERAGE IN VGSA

We consider the introduction of correlation in VGSA along the following lines. Let
X(t) be the VG process and define the time change Y(t) in accordance with equa-
tions (3.1) and (3.2). We take as the model for the uncertainty in the stock the
process

Z(t) = X(Y(t)) + ρy(t).

In this way the disturbances affecting the level of volatility also impact the stock di-
rectly. Any impact of the drifts will be absorbed by the constant forward or martingale
construction and should be a serious effect. What makes this line of attack feasible is
that the characteristic function for Z(t), the fundamental entity for most of our work on
identifying stochastic processes, has the structure

E
[
eiu Z(t)] = E

[
eY(t)ψX(u)+iuρy(t)]

and we only need to evaluate the joint characteristic function for Y(t), y(t) at the point
(−iψX(u), uρ). Hence, defining

�t(a, b, x) = E[exp(iaY(t) + iby(t)) | y(0) = x],

we have that

φZ(u) = �t(−iψX(u), ρu).
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We recall the solution for �t(a, b, x) from Lamberton and Lapeyre (1996) and Pitman
and Yor (1982) as

�t(a, b, x) = A(t, a, b) exp(B(t, a, b)x),

A(t, a, b) = exp
(

κ2ηt
λ2

)
[
cosh

(
γ t
2

) + (κ − ibλ2)
γ

sinh
(

γ t
2

)]2κη/λ2 ,

B(t, a, b) = ib
[
γ cosh

(
γ t
2

) − κ sinh
(

γ t
2

)] + 2ia sinh
(

γ t
2

)
γ cosh

(
γ t
2

) + (κ − ibλ2) sinh
(

γ t
2

) ,

γ =
√

κ2 − 2λ2ia.

We get the characteristic function for the model VGCSA where the letter C denotes
correlated stochastic arrival by exponentiation as

E[exp(iu log(S(t))] = exp(iu(log(S(0)) + (r − q)t)

× �t(−iψX(u), ρu)

× exp(−iu log(�t(−iψX(−i ), −iρ)).

8. THE DATA AND ESTIMATION PROCEDURE

We obtained data on out-of-the-money S&P 500 closing option prices for maturities
between a month and a year for the second Wednesday of each month for the year 2000.
This provides us with a monthly time series of option prices on a single but important
underlying asset. The dates employed were Jan. 12, Feb. 9, Mar. 8, Apr. 12, May 10,
Jun. 14, Jul. 12, Aug. 9, Sept. 13, Oct. 11, Nov. 8, and Dec. 13. Similar data were obtained
for some 20 other underliers. By ticker symbol, they are BA, BKX, CSCO, DRG, GE,
HWP, IBM, INTC, JNJ, KO, MCD, MSFT, ORCL, PFE, RUT, SUNW, WMT, XAU,
XOI, and XOM.

For each model and each underlier, we followed a uniform procedure for constructing
the option price. In particular, we used the fast Fourier transform (FFT) to invert the
generalized Fourier transform of the call price, as developed in Carr and Madan (1998).
This generalized Fourier transform is analytic whenever the characteristic function for
the log of the stock price is analytic. More precisely, let C(k, t) be the price of a call option
with strike exp(k) and maturity t. Let a be a positive constant such that the ath moment
of the stock price exists. Carr and Madan (1998) showed that

γ (u, t) =
∫ ∞

−∞
eiukeαkC(k, t) dk

= e−rtζ (u − i (α + 1), t)
α2 + α − u2 + i (2α + 1)u

,

where ζ (u, t) denotes the characteristic function for the log of the stock price. The call
prices follow on performing the FFT integration

C(k, t) = 1
2π

∫ ∞

−∞
e−iuk−αkγ (u, t) du.

Put option prices are obtained using put-call parity.
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One advantage of this procedure is that all models may be handled with a single code
because a model change only involves changing the specific characteristic function that
is called. Furthermore, as the FFT works equally well on matrix structures, all strikes
and maturities may be simultaneously computed in a very efficient manner. This is a
very desirable property when we consider that parameters have to be estimated within an
optimization algorithm.

The model parameters in each case are estimated by minimizing the root mean square
error between market close prices and model option prices. The root mean square error
is taken here over all strikes and maturities. We also compute the average absolute error
as a percentage of the mean price. For comparative purposes, we report this statistic as
an overall measure of the quality of the fit.

9. RESULTS OF ESTIMATIONS FOR THE YEAR 2000

The results are presented in four tables and two graphs. With a view to a concise presen-
tation we report results just for the S&P 500 Index options. Table 9.1 presents the results
of regressing the absolute errors on moneyness and maturity for the three models VGSA,
NIGSA, and CGMYSA. Then, in the interest of brevity, but with a view to displaying
typical parameter values appropriate for each model, we present quarterly results for
each of the SA and SAM models on the SPX in Tables 9.2 and 9.3 respectively. Finally,
in Table 9.4 we present estimates for just one day, December 13, 2000, for only the VG
Lévy process.

Each of the six CIR-based models was estimated on S&P 500 Index options using one
day from each of the 12 months for the year 2000. A comparison of the average percentage
pricing errors shows that the exponential method dominates the stochastic exponential
method in all cases. The average improvements of the exponential over the stochastic
exponential in the three cases of NIG, VG, and CGMY were 3.62%, 2.87%, and 2.70%
respectively. We present in Figure 9.1 a graph of the percentage absolute pricing errors
for each of the six models over the 12 months.

The domination of the mean-corrected exponential over the martingale stochastic
exponential is markedly evident. Thus, for the rest of the reporting, we restrict attention
to the ordinary exponential models.

TABLE 9.1
Results on Regressing the Absolute Percentage Errors for the Three Exponential

Models on Moneyness, Its Square, and Its Maturity∗

Model Constant Moneyness Moneyness2 Maturity R2

VGSA 7.7628 −15.6155 7.8784 −.1220 49.07
(43.62) (−42.01) (40.40) (−4.93)

NIGSA 8.6899 −17.3529 8.7147 −.1813 51.62
(45.99) (−43.98) (42.10) (−6.89)

CGMYSA 8.043 −16.2076 8.2097 −.1307 47.12
(42.20) (−40.72) (39.31) (−4.93)

∗ t statistics are given in parentheses.
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TABLE 9.2
Parameter Estimates for the SA Models on the SPX at the Quarterly Points

Parameter estimates

VGSA model
Quarter C G M κ η λ ape

Mar. 26.23 26.34 42.47 4.08 15.99 16.52 .0545
Jun. 48.98 40.62 62.14 7.24 32.15 24.81 .0394
Sep. 12.19 21.26 42.95 0.25 0 3.76 .0536
Dec. 15.75 19.14 38.69 2.18 5.71 5.67 .0242

NIGSA model
σ ν θ κ η λ ape

Mar. 1.14 24.24 −8.18 4.23 0.6925 3.51 .0551
Jun. 2.50 63.52 −11.28 8.71 1.63 6.53 .0412
Sep. .6038 20.62 −10.65 .9225 .1734 .92 .0303
Dec. .7878 18.93 −10.63 1.91 .2246 1.124 .0238

CGMYSA model
C G M YP Yn ζ κ η λ ape

Mar. 3.99 13.75 52.97 .5323 .5764 .5280 2.67 2.93 5.72 .0523
Jun. 5.48 21.87 66.41 .6423 .8376 .1827 7.64 3.57 8.47 .0392
Sep. 1.69 12.24 48.72 .6359 .7152 .4707 .4675 .6772 1.60 .0287
Dec. 37.66 19.78 192.20 .2893 .3291 .2022 1.63 22.89 10.83 .0206

The best-performing model by far was the CGMYSA model, as it consistently had the
lowest pricing errors. The parameters of this model were also more stable across time.
The mean pricing errors for the models NIGSA, VGSA, and CGMYSA were 4.1346%,
4.4251%, and 3.3738% respectively. Among these six models, the tentatively best model
was the CGMYSA. The best overall fit was for December 13, 2000, for CGMYSA, and
we present a graph (see Fig. 9.2) of the actual and predicted prices for that day.

9.1. Absolute Percentage Errors for the Year

For the three exponential models estimated for each of the 12 days in the year 2000,
we stacked all of the absolute percentage pricing errors across strikes and maturities. The
pricing errors are themselves orthogonal to strike and maturity, but the absolute pricing
errors tend to be larger for shorter maturities and options that are further out-of-the-
money. This is confirmed by regression results of the absolute errors on moneyness and
maturity, where we employ moneyness and its square to capture the fact that we have
out-of-the-money options on both sides of the forward. Table 9.1 presents the results.

We note that the coefficients for moneyness are significant in both their linear and
quadratic terms. The shape is consistent with absolute errors rising as an option gets fur-
ther out-of-the-money. The coefficient for maturity is also negative and significant, which
is indicative of higher absolute errors for shorter maturity options. The R2 coefficients are
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TABLE 9.3
Parameter Estimates for the SAM Models on the SPX at the Quarterly Points

Parameter estimates

VGSAM model
Quarter C G M κ η λ ape

Mar. 3.71 7.33 32.40 12.66 3.38 7.35 .0839
Jun. 5.30 11.02 30.11 0 4.15 1.14 .0678
Sep. 5.17 12.35 33.61 .0762 16.94 .6939 .0794
Dec. 16.43 11.72 42.67 58.51 6.17 24.00 .0529

NIGSAM model
σ ν θ κ η λ ape

Mar. .3214 9.28 −9.50 0 2.61 .1044 .0816
Jun. .4009 12.72 −9.98 0 11.52 .0006 .0641
Sep. .3566 14.56 −11.58 .0043 11.74 .0005 .0744
Dec. .4399 31.34 −51.35 0 19.43 .3861 .0602

CGMYSAM model
C G M YP Yn ζ κ η λ ape

Mar. .1635 .6965 21.97 −3.65 1.45 .2883 8.51 .1497 .00022 .0785
Jun. .3587 .4231 24.64 −4.51 1.67 .0526 6.65 .3469 .0006 .0612
Sep. .4041 1.64 16.91 −2.90 1.54 .0676 4.85 .4474 2.78e-5 .0685
Dec. 2.044 3.68 52.86 −2.12 1.22 .0855 15.91 1.37 1.70 .0489

approximately 50%, with values of 51.62, 49.07, and 47.12 for the models NIGSA,VGSA,
and CGMYSA respectively.

9.2. Parameter Estimates for the Various Models

The strong negative skew is captured by all three SA models. This is reflected by
consistently strong negative estimates of θ for NIGSA, with an average value of −9.84.
For the VGSA and CGMYSA models, this is reflected by a consistently lower value for
G than for M. For the VGSA model, the average markup of M over G is 20.83; for the
CGMYSA model it is 68.03.

The rates of mean reversion in volatility or activity are comparable for NIGSA, VGSA,
and CGMYSA, averaging to 6.79, 4.27, and 3.34 respectively. These are associated with
half lives of around 7.5 weeks.

All three models indicate a comparable long-term level, relative to the initial value of
the time change process. For the NIGSA, VGSA, and CGMYSA models, these ratios
average .5076, .4681, and .5118 respectively. The models are quite consistent in this regard.

The estimates for the volatility of the time change are consistent between NIGSA and
CGMYSA, with mean values of 5.34 and 6.97 respectively. The values are somewhat
higher for VGSA at 16.45.

We report the other BDLPs and leverage in Table 9.4 using the parameter key provided
below the table for the values estimated for December 13, 2000, for the VG Lévy process.
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TABLE 9.4
Parameter Estimates for the SA Models on the SPX at the Quarterly Points for Other

BDLPs on Dec. 13, 2000

Model P1 P2 P3 P4 P5 P6 P7 ape

VGSG 15.94 17.71 51.33 2.19 .6662 19.63 .0024 .0146
VGIG 13.21 2.49 68.66 .0282 −13.57 −7.16 .0406
VGSIG 16.46 3.17 96.54 .0112 −14.73 −8.54 .0441
VGSGM 96.56 51.06 225.4 3.394 1.795 205.23 −.0006 .0182
VGIGM 573.76 687.16 110.09 .0599 .0070 .0043 .0341
VGSIGM 31.601 26.707 468.73 .4046 −52.21 −.8696 .0337
VGCSA 14.27 16.91 40.93 2.12 3.486 5.475 .003 .0172

Parameter Key:

Model P1 P2 P3 P4 P5 P6 P7

VGSG/VGSGM C G M κ λ ζ ρ

VGIG/VGIGM C G M κ ν ρ

VGSIG/VGSIGM C G M κ ν ρ

VGCSA C G M κ η λ ρ

We note that when we couple with the IG or SIG driver for volatility, then leverage
is estimated negatively. However, for the other drivers of SG and CIR we get a slightly
small and possibly positive value for the correlation term.

10. CONCLUSION

Twenty-five stochastic volatility models were formulated by time changing three homo-
geneous Lévy processes, using four stochastic processes to drive the volatility. The Lévy
processes employed were the normal inverse Gaussian model of Barndorff-Nielsen (1998),
the variance gamma of Madan et al. (1998), and the CGMY model of Carr et al. (2002).
The time change used to induce stochastic volatility was the integral of the Cox, Ingersoll,
and Ross (1985) process, and three one-sided pure jump processes: the inverse Gaussian
IG, and two processes consistent with gamma and inverse Gaussian distributions for the
stationary solution to the OU equation. These volatility drivers were termed SG and SIG.
This resulted in 12 stochastic volatility transformations of Lévy processes with explicit
solutions for the log characteristic in each case.

Stock price models were built by exponentiating these processes and correcting the
mean in accordance with spot forward arbitrage considerations, leading to 12 mod-
els on the exponential architecture. A second class of discounted stock price mod-
els was obtained using stochastic exponentials, resulting in martingale models that
were martingales in the joint filtration of the stock price and the stochastic time
change.

The paper also introduces two new concepts connected with studying the martingale
structure of the exponential models. We define the concept of martingale marginals as
distinct from martingale measures that seek martingales in the original filtration. Instead,
we emphasize the lack of knowledge with respect to the filtration, noting that in the first
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FIGURE 9.1. Graphs of absolute percentage errors for the six models across the
12 months of 2000 on the S&P 500 Index.

instance the object of option pricing models may be seen as synthesizing the information
content of the option surface into a smaller dimension defined by the parameters of the
model. The movement in these parameters through time, along with the spot price, can
form the filtration for a Markov dynamics of the surface. With this in mind our interest
turns to questions of no-static arbitrage marginally enhanced to include calendar spread
arbitrages. We show that the absence of such elementary arbitrages is in fact consistent
with the martingale marginal property that seeks martingales in altered filtrations consis-
tent with the marginal risk-neutral distributions revealed at each maturity by the options
market.

A procedure for constructing martingale marginals is the exploitation of the Lévy
marginal property that seeks the construction of an inhomogeneous Lévy process as the
solution to the martingale marginal problem. We show that the exponential constructions
associated with the CIR process for the volatility satisfy the Lévy marginal property
when the underlying CIR is started at zero. More generally, however, one may have the
martingale marginal property for the SA processes without having the Lévy marginal
property for the SV processes.

The models were estimated for the second Wednesday of each month of the year
2000 on data for S&P 500 Index options and 20 other underlying assets. For the S&P
500 options, the exponential models were significantly better than their stochastic ex-
ponential counterparts in all three cases for the Lévy processes endowed with CIR
stochastic volatility. The results for the S&P 500 options consistently reflected mar-
ket skews and stochastic volatility, with mean-reversion rates of approximately seven



STOCHASTIC VOLATILITY FOR LÉVY PROCESSES 377
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FIGURE 9.2. Actual and predicted prices of the CGMYSA model for December 13,
2000.

weeks. Similar patterns were observed for other underliers, but these are not reported
here.

The best model by far was the CGMYSA model, with percentage errors across all
strikes and maturities reaching as low as 2% for the S&P 500 Index options. For op-
tions on single names, the performance of the lower dimensional NIGSA and VGSA
models was adequate. The class of models proposed here is for the first time providing
us with a relatively parsimonious representation of the surface of option prices, with
some stability over time in the parameter estimates. These structures lead to interest-
ing applications on pricing exotic products and analyzing risk-management strategies
in empirically realistic, yet tractable, contexts. We expect continuing research to shed
further light on these interesting questions. Of particular interest is the study of the
statistical dynamics in the same parametric class, with a view to effectively describing
likelihoods at arbitrary horizons, using the analyticity of the characteristic functions de-
fined here, and with a view to learning the nature of the measure change employed in
markets.

APPENDIX

Proof of Theorem 5.2. Part (a) is a consequence of a slight generalization of
Theorem 3.1 in Yor (1992). Let P denote the measure induced by the standard Wiener
process and define X (µ)

t by (5.4). By Girsanov’s theorem, the law of this process has
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density with respect to P given by
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We denote simply by Tb : inf{t : X (µ)
t = b} and consider a functional F of the local time

at b − a of X (µ) up to time Tb, (�b−a
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where L(H; P) denotes the law of H under P. As a consequence, there is the identity in
law between the pairs of two-dimensional variables:

L
{

Zb,

∫ b

0
Za da;(−µ) Q2

0

}
= L

{
�0

Tb
(X ),

∫ b

0
�b−a

Tb
(X ) da; Pµ,+

}

= L
{
�0

Tb
(X ),

∫ Tb

0
1(Xs>0) ds; Pµ,+

}
,

so that (5.3) holds.
For part (b), from equation (5.5) and Tanaka’s formula we deduce

X+
t =

∫ t

0
1(Xs>0)(d Bs + µ ds) + 1

2
�0

t (X )(A.1)

= β
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where L∫ t
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is defined in accordance with Skorohod’s lemma by sups≤t(−β
(µ)∫ s
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).

On the other hand, we have from (5.5) and Tanaka’s formula:

|Zt| =
∫ t

0
sgn(Zs) dγs + µt + Lt(Z ).(A.2)

Comparing (A.1) and (A.2), we note that

X+
t = |Zu ||u=∫ t

0 ds1(Xs >0)
(A.3)

for some process (Zu, u ≥ 0).
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Now the identity in law proposed in part (b) follows immediately from (A.3).
Part (c) is an immediate consequence of (5.5) and Skorohod’s lemma. �

Proof of Theorem 5.1 continued. We come next to the general case for δ > 0. Some
important references for this development are Fitzsimmons (1987), Shiryaev and Cherny
(1999), and Graversen and Shiryaev (2000). Here we note that with x = δb/2, and em-
ploying consequences of Ray-Knight theorems presented in Yor (1992), we have that
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where τx = inf{t ≥ 0 : �0
t = x}.

We define
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δ
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so that by Tanaka’s formula we may write
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and it follows by Girsanov’s theorem that this is
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where, under Pµ,δ, X solves

Xt = βt − µ

∫ t

0
ds sgn(Xs)1(|Xs |− 2

δ
�s≤0).(A.4)

It follows in particular1 that the law of (
∫ b

0 da(−µ) yδ(a), b ≥ 0) has the same one-
dimensional marginals as the inhomogeneous Lévy process(∫ τx

0
ds1(|Xs |− 2

δ
�s≤0), b ≥ 0

)
, under Pµ,δ.

That this process is an inhomogeneous Lévy process in b follows from the fact that
when we apply the Markov property in τx we obtain that Xτx = 0 and �τx = x, hence the
process (Xτx+u,u ≥ 0) is independent from (Xv , v ≤ τx).

For part (ii) of Theorem 5.1 we note that by arguments similar to the ones used in the
proof of part (i) we may show that for x �= 0 we have that∫ b

0
da(−µ) yδ

x(a)
(d)=

∫ τ b
x (X)

0
ds1(0≤Xs≤b),

1 In accordance with Theorem 1, we ought to consider jointly (−µ) y(b), but for the sake of simplicity we
do not write this down.
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where X solves (A.4) but now τ b
x (X ) = inf{t ≥ 0 : �b

t (X) > x}. That the LM property fails
may be explained by the fact that τ b

x (X ) is no longer an increasing process in b. �

For the nonmonotonicity of τ b
x (X) we note that for even Brownian motion, with a < b

we may write, on defining Ta , the first passage time of Brownian motion (B(t), t ≥ 0) to
the level a, that
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where La
t is the local time of (B(t), t ≥ 0) at the level a. On defining B̂(t) = B(Ta + t) − a

and noting the independence of B̂(t) from the path of (B(t), 0 ≤ t ≤ Ta), we observe that
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Hence, to see that τ b
x (B) is not increasing in b one need only observe that τ̂
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x . In fact, the event(̂
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)
and the probability that L(b−a)

τ
(0)
x

< x is (by the first Ray-Knight theorem) the probability

that a squared Bessel process of dimension 0 started at x is at time (b − a) below the
level x. This probability is below unity and hence τ b

x (B) is not increasing in b. Similar
considerations apply to τ b

x (X ). �
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CARR, P., and D. MADAN (1998): Option Valuation Using the Fast Fourier Transform, J. Com-
putat. Finance 2, 61–73.
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with Drift, and an Extension of P. Lévy’s Theorem, Theory Probab. Appl. 44, 412–418.

SIN, C. (2002): Modelling Yield Curve Volatility Skew Using Jumps and Stochastic Volatility.
Working paper, UBS Warburg.

TAYLOR, H. M. (1975): A Stopped Brownian Motion Formula, Ann. Probab. 3, 234–246.

WILLIAMS, D. (1976): On a Stopped Brownian Motion Formula of H. M. Taylor, Sem. Probab.
Strasbourg X. Lecture Notes in Mathematics 511, 235–239. Berlin: Springer.

YOR, M. (1992): Some Aspects of Brownian Motion, Part I: Some Special Functionals. Lectures
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