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1.1 - FITTING THE TS OF INTEREST RATES

O Fundamental Asset Pricing Formula

O Spot Rates

O Recovering the Term Structure

O Direct Methods: Bootstraping and Interpolation

O Indirect Methods: Deterministic interest rate models

O Spline Methods
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FUNDAMENTAL ASSET PRICING FORMULA

T

Fy=>, ZO p<0’t)

t1(1+R()t =1

— R(0,t) is the discount rate (the yield in the case of a bond)
— p(0,t) is the discount factor (equal to 1 if cash-flows are received at t=0)

Two main questions:

— Q1: Where do we get the p(0,t) or R(O,t) from?

— Q2: Do we use the equation to obtain bond prices or implied discount
factors/discount rates?
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Answers:

e Q1l1: Where do we get the p(0,t) or R(0O,t) from?

Any relevant information concerning how to price a financial
asset must be primarily obtained from market sources

— Discount factor p(0,t) is the price of a t-Bond with unitary face
value and maturity t
— Spot rate R, is the annualized rate of a pure discount bond:

1
(1+ Ry,)

;= 2(0¢)
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e Example: Getting Spot rates from Bond Prices:

— Consider a 2-year pure discount bond that trades at
92¢€.

— The 2-year spot rate R, is:

100
(1+R,,)"

92 = R,, = 4.26%

e |n the real world, zero-coupon bonds are not abundant.

e However, we are still able to compute spot rates from
market information.
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e Q2: Do we use the equation to obtain bond prices or
implied discount factors/discount rates?

It depends on the situation!

— One would like to use the price of existing securities as
given, and derive implied discount factors or discount
rates from them.

— Then, one could use that information (more specifically
the term structure of interest rates, represented by
the discount rates) to price any other security.

— This is known as relative pricing.
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1.1.1 - DIRECT METHODS

e Bootstrapping method

e Carleton and Cooper (1976)

e |nterpolation methods:
— Linear
— polynomial
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BOOTSTRAPPING

e Consider 2 securities (nominal value = 100€):
— 1-year pure discount bond selling at 95£€.
— 2-year 8% bond selling at 99€, with annual coupon payments.

e 1-year spot rate:

95 = - R.. = 5.26%
(Lt Byy)” ™ 0
e 2-year spot rate:
8 108 8 108
99 = + = + ;
L+ Ry) 1+ 30’2)2 1.0526 (1 + 3072)2
Ry, =8.7%
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O The same type of reasoning can be developed for any number of
bonds, e.g. 4 bonds:

Coupon _ Maturity (vear) Price
Bond 1 5 1 101
Bond 2 5.5 2 101.5
Bond 3 5 3 99
Bond 4 6 4 100

O Solve the following system:
101 = 105 p(0,1)
101.5=5.5p(0,1) + 105.5 p(0,2)
99 =5p(0,1) + 5 p(0,2) + 105 p(0,3)
100 =6 p(0,1) + 6 p(0,2) + 6 p(0,3) + 106 p(0,4)

O and obtain
p(0,1)=0.9619, p(0,2)=0.9114, p(0,3)=0.85363, p(0,4)= 0.7890
R(0,1)=3.96%, R(0,2)=4.717%, R(0,3)=5.417%, R(0,4)=6.103%
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O A usual practical way to estimate the yield curve involves the employment of
interbank money market rates for several maturities:

Maturity | zC |

Overnight | 4.40% Coupon Maturity (years) Price
1 month |4.50% Bond 1| 5% 1yand2m 103.7
2 months | 4.60% Bond 2| 6% 1yand 9m 102
3 months |4.70%  Bond 3| 5.50% 2y 99.5

6 months [ 4.90%
9 months | 5.00%
1 year 5.10%

e lyearand 2 monthsrate 103.7 = D __ 10? :
x=5.41% (1+4.6%)"° (14 z)+/6
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CONCLUSIONS

O If one can find different bonds with coincident cash-flow dates
and one of them only has one remaining cash-flow date, then one

can get the spot rates directly.

O These rates are not vyields (except for the shortest bond) and
consequently they do not face their consistency problems.

O Therefore, we have a single spot rate for each maturity and the
yield curve may have any shape.

O One can also calculate spot rates by using money market rates.
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CARLTON AND COOPER (1976)

e Estimation of the discount factors by OLS method if the number of
bonds is larger than the number of discount factors to be
estimated.

P =CF-d

(ix1) (ixt) (tx1)

Where

i=1,.., k -riskless government bonds considered

t=1,..., n-the cash-flows for which the discount factors are to be calculated.

P = vector of the prices of the i bonds (a column vector with i rows);

CF = matrix of the cash-flows of the i bonds for the t cash-flows (i rows and t columns);

d = vector of the discount factors for the t cash-flows (a column vector with t cash-flows).
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CARLTON AND COOPER (1976)

e This method has several drawbacks:

(i) it only allows the estimation of some points of the discount
function (for the maturities of the cash-flows considered);

(i) it does not impose any smoothness on the discount function,
allowing meaningless shapes (non-monotonically decreasing and
convex); and

(iii) It faces multicolinearity problems resulting from the linear
dependence between the cash-flows of, at least, some of the
securities taken into consideration.
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INTERPOLATION - LINEAR

e |nterpolations may be useful if we don’t have all market information required to
get spot rates for the same maturities, being interest rates calculated as
functions of maturities, with linear interpolations as the simplest approach.

* Assuming that we know discount rates for maturities t;, and t, the rate for
maturity t, being t,< t <t,, corresponds to the weighted average of the adjacent
rates, being the weights higher for the maturity closer to t (e.g. if t=t,, t; will not
have any relevance to calculate t):

(t2 . t)R(()? tl) + (t - tl)R(()? t2>
<t2 - t1)

e Linear interpolations provide good proxies for near maturities.

R(0,1) =

e However, for distant maturities, the shape of the resulting yield curve tends to
be kinked.

e By definition, linear interpolation doesn’t allow to get estimates for maturities
longer than those observed.
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INTERPOLATION — POLYNOMIAL

e Polynomial interpolations of the interest rates allow to obtain smoother yield
curves, with interest rates as polynomial functions of maturities.

e A very common polynomial interpolation is the cubic => one can estimate the
full term structure just by knowing the spot rates for 4 maturities.

e Therefore, if R(O, t,), R(0, t,), R(0, t;) and R(0, t,) are known, one can solve the
following system in order to the four coefficients of the 37 order polynomial.

R(0,t,) = at} + bt} + ct, + d .
R(0,t,) = at; + bt; +ct, + d ‘ R=T-4, '?S'”gz
< ’ R(0,1) ty i tp 1 a
R(0,t;) = aty + b3 + cty +d _|R(0,2) . t3 t2 t, 1 4 b
R(0,t,) = at? + bt? + ct, + d RO |3 5 3 1 |¢
~ R(0,4) 2 2ot 1 d

e If one uses more than 4 spot rates, these coefficients are estimated by
econometric techniques (as we will have degrees of freedom), e.g. ordinary least
squares (as the functions are linear in the coefficients).

e Otherwise, R=T- A<= A=T"1-R
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EXAMPLE

e The calculation of a, b, ¢ and d allows to obtain the spot rate for any
maturity t:  R(0,t) = at® + bt* +ct +d

e Assuming the following rates are known:
- R(0,1)=3% RO =a-13+b-124+c-1+d

— R(0,2) =5% » <1!2(0,2)=a-23+b-22+c-2+d
~ R(0,3) =5.5% R(03)=a-3*+b-32+c-3+d

— R(0,4) = 6% \R(04)=a-4>+b-4*+c-4+d
a 1 1 1\ 3% 0.0025
b| |8 2 1| | 5% | |-0.0225
cl (27 9 3 1| 155%]| | 0.07
d 64 16 4 1) | 6% ~0.02

e Goal - Compute the 2.5 year rate:
R(0,2.5)=ax2.53+bx 2.5+ cx 2.5'+d =5.34375%
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ILLUSTRATION: POLYNOMIAL VERSUS LINEAR

Linear vs Cubic Interpolation
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CONCLUSIONS

e The resulting spot curve using 3" order polynomial methods tends
to be too irregular, namely when:

— one uses it to estimate a rate for a maturity much higher than the maximum
maturity used to calculate the polynomial coefficients (e.g. in the previous
example the 10-year would be 93%!)

— the difference between two consecutive maturities is too large.

Linear vs Cubic Interpolation

—e—Linear ——Cubic

13,0% y =0,0025%° - 0,0225x* + 0,07x - 0,02

Rate

15 2 25 3 3,5 4 45 5 55 6 6.5
Maturity

e Polynomial splines improve the adjustment, by allowing different
specifications for the polynomials in different maturity buckets.

e Nonetheless, the explosive behavior of the resulting curves is kept.
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1.1.2 - SPLINE METHODS

POLYNOMIAL FUNCTIONS

» Discount factors (p) as polynomial functions of the maturity (s),
with all coefficignts differing in the different maturity buckets:

po(8) = dy + 45 + b032 + aos?’,s € [0,5]
p(s) =1 ps(s)=d +¢s+bs* +as’ s €|510]

P1o(8) = dy + o8 + bys® + ays®,s € [10,20]

L

» Imposing continuity constraints and given the fact that the discount
factor for zero maturity is 1, the
Po(5) = ps(5)
ps(10) = p;,(10)

po(0) =1
» The number of parameters may be even further reduced if it is

assumed that only one of the parameters is different in the several
maturity buckets => McCulloch (1971, 1975) splines.
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POLYNOMIAL SPLINES

e Dividing the maturity spectrum is divided in k-2 intervals, with k-3
vertices, the discount function can be defined by a cubic function,
adding a factor (spline) to the 3" order component in k-3 intervals
(the polynomial in the 1% interval will not have this additional
factor, being the discount function given straight by the 3 order
polynomial), being No. of parameters = k:

k-3
d(t)=1+a, t+a,t" +a,,t" + Z 8,5 (t—1,)" Dy (1)

h=1
where Dn(t) for h=1,2,..., k-3 are functions defined on the basis of
the vertices of the intervals, as follows:

D, (1) =0, if t<t,, D, (t) =1, if t >t , for h=1,...k-3.

e The discount function is continuous <> for all vertjces, the values

for the discount function are given as: d(t) =a, + ) _a,g, (t)
h=1
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POLYNOMIAL SPLINES

e How to choose the number of parameters/intervals and the
vertices:

— McCulloch proposes k = square root of the number of observations
(bonds), rounded to the nearest integer, with the vertices chosen to
ensure all intervals have the same No. observations (or the difference
between the No. observations in each interval is not higher than 1).

— Alternative methodology - fixing the vertices of the intervals in
maturity dates corresponding to the maturities in which the market is
traditionally “divided”: 1, 3, 5 and 10 years.
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POLYNOMIAL SPLINES

e |f the vertices of the intervals correspond to the maturities in
which the market is traditionally “divided” - 1, 3, 5 and 10 years —
we have:

— No. Intervals: k-2 =5 (0-1, 1-3, 3-5, 5-10 and > 10y)
— No. Vertices: k-3=4(1, 3, 5 and 10)

k-3
d(t) =1+a, t+a,,t* +a, "+ > a,,,(-t,)" - Dy(1)
h=1

dt)y=1+a, t+a, t* +a,,t" +a,,(t—-1)"-D,(t) +a,,(t—3)" - D,(t)
+a,,(t-5)"-D;()+a,5(t-10)"-D,(t)

D,(t)=0,ift<1, D,(t)=1,if t=1 D,(t)=0,ift<3, D,(t) =1,if t >3
D,(t)=0,ift<5, D,(t)=1,if t>5 D,(t)=0,ift<10, D, (1) =1,
if t=>10
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POLYNOMIAL SPLINES

e The method of polynomial splines provides us better estimates in
sample, i.e. up to the longest observed maturity, comparing to
polynomial functions.

e However, the estimation problems outside the sample remain, as the
discount function tends to assume irregular shapes from the longest
maturity onwards, and it may even become negative.

e Whenever the yield curve assumes complex shapes, the use of a high
number of parameters leads the estimated curve to adjust excessively to
outliers => yield curve becomes even more irregular.

e This is particularly inconvenient if the objective is, as it usually happens,
the estimation of the term structure of interest rates for a fixed or
standardised range of maturities, or to calculate forward rates.

e Therefore, more complex specifications will be required.
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1.1.3 - DETERMINISTIC METHODS

e 3steps:

— Step 1: select a set of K bonds with prices P/ paying cash-flows F(t) at
dates t >t

— Step 2: select a deterministic interest rate model for the functional form
of the discount factors p(t,t;f3), or the discount rates R(t,t,;f3), where f8 is
a vector of unknown parameters, and generate prices.

N N
Pit) = S CFI(t,)p(t,t58) = S CFI (t)e (1 104)
=1 i=1

— Step 3: estimate the parameters f§ as the ones making the theoretical

prices as close as possible to market prices:
2

8= argminZ(Pj(t) — Pj(t))

j=1
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e Key advantages:

— Parsimonious models, i.e. do not involve many parameters

— Ensure stable functions

— Adjust to many possible shapes of the TS

— Some parameters have economic interpretation
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RECAP AND NOTATION

Spot rate curve as a function of maturity (sm) = simple average of instantaneous
forward rates:

1 m
smza-l-ﬂfody

Discount curve: d

Forward rate for time to settlement m and for maturity n (with discrete
compounding): !

f :I:(1+ Sm+n)m :ln 1
(I+s,)

1/t
1
Given that the spot rate can be obtained from the discount function s, = (d—j -1
t

We obtain f { d, }”
m'n d —1
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NELSON AND SIEGEL

» Nelson and Siegel (1987) proposed to fit the term structure using a
flexible, smooth parametric function.

» They demonstrated that the proposed model is capable of capturing
many of the typically observed shapes that the yield curve assumes
over time.

» The resulting Nelson-Siegel forward curve can be assumed to
correspond to a 3 unobserved factor model (as pointed out in Diebold
and Li (2005)):

f.=08+28 e-mD) + 8 ,[(m/ z.),e(—m/f)]
Sm — ﬂo +(ﬁ +@).[1—e(—m/1)] /(m/ Z') _@ .[e(—m/r)]

|:ﬂom(ﬂl +5, )T(l—e’} +ﬂ2m‘e(Tj ]
d,.=e
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B, : level parameter - the long-term rate

B, + B;: short-term rate
B, : (-) slope parameter
B,: curvature parameter

T : influences the speed of convergence of the curve towards the asymptotic
value.

(1 — ﬁ) 7T : point of inflection of the slope of the forward curve
2

(2 ——1]7 : point of inflection of the concavity of the forward curve
2
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DIEBOLD, P1AZZESI AND RUDEBUSCH

» Some authors argue that the NS model has to many parameters to be
estimated.

» Litterman and Scheinkman (1991)* show that the variation in interest
rates can be explained by a small number of underlying common
factors, typically up to three, interpreted as level, slope and curvature.

» The 1%t factor explains 89,5% of the total variance of returns, the 2
factor for 8,5% and the 3™ for the remaining 2%.

» For this reason, Diebold, Piazzesi, and Rudebusch (2005)*2 examine a
2-factor Nelson-Siegel model, even though they recognize that more
than 2 factors will “be needed in order to obtain a close fit to the entire
yield curve at any point in time”, e.g. for pricing derivatives.

* Litterman, Robert and José Scheinkman (1991), “Common Factors Affecting Bond Returns”, Journal
of Fixed Income.

*2 Diebold, Francis X., Monika Piazzesi and Glenn D. Rudebusch (2005), "Modeling Bond Yields in
Finance and Macroeconomics”, American Economic Review, 95, pp. 415-420.
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DPR (2005) TWO-FACTOR MODEL

» Compared to the 3-factor Nelson-Siegel model, the 2-factor
model only contains the level and slope factor => only 3
parameters have to be estimated:

Sm = Po+ P [1 — e(_m/r)]/(m/T)
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BJORK AND CHRISTENSEN

» Although NS model can capture a wide range of shapes, it cannot
handle all shapes that the term structure assumes over time.

<

» Several more flexible NS specifications have been proposed in the
literature to improve the fit to more complex shapes, namely with
multiple inflection points, introducing additional factors and

parameters.

» One of those models was developed by Bjork, T. and Christensen
B.J. (1999): "“Interest rate dynamics and consistent forward rate

curves”, Mathematical Finance.
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» Bjork and Christensen (1999) proposed to add a fourth factor to
the approximating forward curve

—_

fe(T) = Bug + 2y CKP(_;\_t) + 34 (;‘_t) {?Kp(_’_)

Y (7) = i+ Fog

+ |/ fg?t

I —exp (

T

At

+ g €Xp (— —

(

T

e

)

) o

The fourth component, resembles the
second component, as it also mainly
affects short-term maturities.

The difference is that it decays to zero
at a faster rate.

+ |/ il +

Jorge Barros Luis | Interest Rate and Credit Risk Models 101



BC (1999) FOUR-FACTOR - PROPERTIES

» The factor (3,; can be interpreted as a second slope factor.

» As a result, the Bjork and Christensen model captures the
slope of the term structure by the (weighted) sum of (3; and

I
Ilf'fj,;l._t .

» The instantaneous short rate in this case is given by
yi(0) = .51_.t + Bt + Pas
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I

BLiss (1997)

» A second option to make the Nelson-Siegel more flexible is
through relaxing the restriction that the slope and curvature
component should be governed by the same decay parameter .

» Bliss (1997) estimates the term structure of interest rates with the
3-factor model that allows for 2 different decay parameters 1, and

T,.

» The forward and spot curves are then given by

mfo = Bo + By - e + B, - [(m/7) - T/ D]

S, =S, + B, -1l—-e™™ |(m/z,)+ g, [1—e ™ |((m/ 7, ) - [e ™ |
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SVENSSON (1994)

» A popular term-structure estimation method among central banks
(see BIS, 2005) is the 4-factor Svensson (1994) model.

» Svensson (1994) proposes to increase the flexibility and fit of the
NS model by adding a second hump-shape factor with a separate
decay parameter.

» This feature is specially relevant when fitting the short segment
of the yield curves, following disturbances in the money markets
that lead to curves with 2 local optima (2 points of inflection of the
slope) or with 2 points of inflection of the concavity.

» As the NS method admits the existence of only 1 point of inflection
in the slope and concavity, the fit in the short segment of the yield
curve turns out to be very poor under such circumstances.
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» The resulting 4-factor forward curve is given by:

m f0 — /Bo +,@ 'e(_m/rl) +ﬂ2 ‘[(m/Tl) °e(_m/rl)]+133(m/ Tz)e(_m/fz)

» Thus, the spot rate will be given by the following expression:

Bo : level parameter - the

< —b +b . l_e(m/rl)}/ o N long-term rate
) ° [ ( Tl) Bo * B4: short-term rate

+b2.{|:1_e(mlrl):| / (m/ r }e(m”l)}Jr [31 : (-) slope parameter
[32, B,: curvature parameters

b Sl et )}/ / (-m: | Ty, T, : influences the speed
T {[ : LRSS of convergence of the curve
towards the asymptotic

value.
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PROPERTIES

» Even though the Svensson method is more adequate to estimate
the term structure of interest rates for monetary policy purposes,
given its higher adjustment capacity in the segment of the shorter
maturities, when the yield curve assumes simple shapes in the
short segment, the estimation by the NS method seems
preferable since it is more parsimonious.

» In fact, the NS model is a restricted version of the Svensson model
with the restriction 3, = 0 and/or t,— 0. Thus, using a likelihood
ratio test we can test the null hypothesis corresponding to those
restrictions:

Hy: A=B=-=4=0 1="2.(nv-Inv) = £*(Q)
where: v = likelihood function of the adjustment with restrictions; v+ = likelihood

function of the adjustment without restrictions; g = number of restrictions.
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PROPERTIES

» In this case, v corresponds to the likelihood function of the NS
model, while v* is the likelihood function of the Svensson model.

» Thus, if the logarithm of the likelihood function of the Svensson
model is large enough (i.e., is statistically above that of the NS
model), the Svensson model will be selected.

» A potential problem with the Svensson model is that it is highly
non-linear, which can make the estimation of the model difficult
(see Bolder and Stréliski (1999) for a discussion).

» Nonetheless, one can implement it even in a spreadsheet!
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CONCLUSIONS

e Despite the drawback that they lack theoretical underpinnings, the BIS
reported that 9 out of 13 central banks which report their curve
estimation methods to the BIS use deterministic Interest Rate Models
(BIS (2005), “Zero-coupon yield curves: technical documentation”, BIS
Papers, No 25, Monetary and Economic Department, October 2005).

e According to this study, most central banks reporting data have adopted
either the Nelson and Siegel (1987) model or the extended version
suggested by Svensson (1994). Exceptions are Canada, Japan, Sweden,
UK and the US, which all apply variants of the “smoothing splines”
method.

e Deterministic interest rate models are also widely used among market
practitioners.

e Given that these models are usually non-linear in the parameters,
attention has to be paid to their starting values.
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