Stochastic integration and Itô formula

João Guerra

CEMAPRE and ISEG, UTL

November 4, 2014

João Guerra (CEMAPRE and ISEG, UTL)

Stochastic integration and Itô formula

November 4, 2014 1 / 19

Stochastic integration

- The stochastic integral $I_t(F) = \int_0^t \int_E F(s,x) M(ds,dx)$, with $F \in \mathcal{H}_2$, satisfies:
 - \bigcirc I_t is a linear operator
 - $\mathbb{E}\left[I_{t}\left(F\right)\right] = 0;$ $E\left[\left(I_{t}\left(F\right)\right)^{2}\right] = \int_{0}^{t} \int_{E-\left\{0\right\}} \mathbb{E}\left[\left|F\left(s,x\right)\right|^{2}\right] \nu\left(dx\right) ds + \delta_{0}\left(E\right) \int_{0}^{t} \mathbb{E}\left[\left|F\left(s,0\right)\right|^{2}\right] ds.$

 - 3 $\{I_t(F), t \geq 0\}$ is $\{\mathcal{F}_t\}$ adapted 4 $\{I_t(F), t \geq 0\}$ is a square-integrable martingale.

Sketch of the Proof of (3): Let $(F_n, n \in \mathbb{N})$ be a sequence of simple processes in \mathcal{H}_2 converging to F.

Then $(I_t(F_n), t \ge 0)$ is adapted and $I_t(F_n) \longrightarrow I_t(F)$ in L^2 . Therefore, there is a subsequence $(F_{n_k}, n_k \in \mathbb{N})$ such that $I_t(F_{n_k}) \longrightarrow I_t(F)$

Therefore $\{I_t(F), t \geq 0\}$ is $\{\mathcal{F}_t\}$ adapted.

João Guerra (CEMAPRE and ISEG, UTL)

a.s. as $n_k \to \infty$.

Stochastic integration and Itô formula

November 4, 2014 2 / 19

Stochastic integration

Sketch of the Proof of (4):

Let F be a simple process in \mathcal{H}_2 and choose $0 < s = t_l < t_{l+1} < t$.

Then $I_t(F) = I_s(F) + I_{s,t}(F)$ and by prop. (3),

$$\mathbb{E}_{s}(I_{t}(F)) = I_{s}(F) + \mathbb{E}_{s}(I_{s,t}(F))$$

Moreover,

$$\mathbb{E}_{s}(I_{s,t}(F)) = \mathbb{E}_{s}\left(\sum_{j=l+1}^{m} \sum_{k=1}^{n} F_{k}(t_{j}) M((t_{j}, t_{j+1}], A_{k})\right)$$

$$= \sum_{j=l+1}^{m} \sum_{k=1}^{n} \mathbb{E}_{s}(F_{k}(t_{j})) \mathbb{E}_{s}[M((t_{j}, t_{j+1}], A_{k})] = 0.$$

Therefore $\mathbb{E}_s(I_t(F)) = I_s(F)$ and $\{I_t(F), t \geq 0\}$ is a martingale. Now, let $(F_n, n \in \mathbb{N})$ be a sequence of simple processes converging to F in L^2 . It can be proved that (see Applebaum) $\mathbb{E}_s(I_t(F_n)) \to \mathbb{E}_s(I_t(F))$ in L^2 and therefore $\mathbb{E}_s(I_t(F)) = I_s(F)$ is a square-integrable martingale

Lévy type stochastic integrals

We say Y is a Lévy type stochastic integral if

$$Y_{t}^{i} = Y_{0} + \int_{0}^{t} G^{i}(s) ds + \int_{0}^{t} F_{j}^{i}(s) dB_{s}^{j} + \int_{0}^{t} \int_{|x| < 1} H^{i}(s, x) \widetilde{N}(ds, dx) + \int_{0}^{t} \int_{|x| \ge 1} K^{i}(s, x) N(ds, dx), \quad i = 1, ..., d, j = 1, ..., m$$

$$(1)$$

where G^i , F^i_j , H^i and K are processes such that the integrals are well defined.

 With stochastic differentials notation, in the one-dimensional case, we can write:

$$dY(t) = G(t) dt + F(t) dB(t) + \int_{|x| < 1} H(t, x) \widetilde{N}(dt, dx)$$

$$+ \int_{|x| > 1} K(t, x) N(dt, dx).$$

João Guerra (CEMAPRE and ISEG, UTL)

Stochastic integration and Itô formula

November 4, 2014

4/19

Stochastic integration

Lévy type stochastic integrals

• Let M be an adapted and left-continuous process. Then we can define a new process $\{Z_t, t \geq 0\}$ by

$$dZ(t) = M(t) dY(t)$$

or

$$dZ(t) = M(t) G(t) dt + M(t) F(t) dB(t) + M(t) H(t,x) \widetilde{N}(dt, dx) + M(t) K(t,x) N(dt, dx).$$

6

Example - Lévy stochastic integrals

• X: Lévy process with characteristics (b, A, ν) and Lévy-Itô decomposition

$$X\left(t
ight)=bt+B_{A}\left(t
ight)+\int_{\left|x
ight|<1}x\widetilde{N}\left(t,dx
ight)+\int_{\left|x
ight|\geq1}xN\left(t,dx
ight).$$

Let $U \in \mathcal{H}_{2}(t)$ for all $t \geq 0$. and choose in (1) $F_{i}^{i} = A_{i}^{i}U$, $H^{i} = K^{i} = x^{i}U$.

The process Y such that

$$dY(t) = U(t) dX(t)$$

is called a Lévy stochastic integral.

João Guerra (CEMAPRE and ISEG, UTL)

Stochastic integration and Itô formula

November 4, 2014

6 / 19

Stochastic integration

Example - Ornstein Uhlenbeck (OU) process

OU process:

$$Y\left(t
ight)=e^{-\lambda t}y_{0}+\int_{0}^{t}e^{-\lambda\left(t-s
ight)}dX\left(s
ight),$$

where y_0 is fixed.

- This process can be used for volatility modelling in finance.
- Exercise: Prove that if X is a one-dimensional Brownian motion then Y(t) is a Gaussian process with mean $e^{-\lambda t}y_0$ and variance $\frac{1}{2\lambda}\left(1-e^{-2\lambda t}\right)$

8

Example - Ornstein Uhlenbeck (OU) process

• In differential form, the OU process is the solution of the SDE:

$$dY(t) = -\lambda Y(t) dt + dX(t),$$

which is known as the Langevin equation (is a stochastic differential equation).

 The Langevin equation is also a model for the physical phenomenon of Brownian motion: includes the viscous drag of the medium on the particle as well as random fluctuations.

João Guerra (CEMAPRE and ISEG, UTL)

Stochastic integration and Itô formula

November 4, 2014

8 / 19

Itô formula

Itô formula for Poisson stochastic integrals

• Consider the Poisson stoch. integral $W(t) = W(0) + \int_0^t \int_A K(s, x) N(ds, dx)$, with A bounded below and K predictable.

Lemma

(Itô formula 1): If $f \in C(\mathbb{R})$ then

$$f(W(t))-f(W(0)) = \int_0^t \int_A [f(W(s-)+K(s,x))-f(W(s-))] N(ds,dx)$$
 a.s.

10

Itô formula for Poisson stochastic integrals

Proof: Let $Y(t) = \int_A xN(t, dx)$. The jump times of Y can be defined by $T_0^A = 0$, $T_n^A = \inf \left\{ t > T_{n-1}^A; \Delta Y(t) \in A \right\}$ Then

$$f(W(t)) - f(W(0)) = \sum_{0 \le s \le t} [f(W(s)) - f(W(s-))]$$

$$= \sum_{n=1}^{\infty} [f(W(t \land T_n^A)) - f(W(t \land T_{n-1}^A))]$$

$$= \sum_{n=1}^{\infty} f(W(t \land T_n^A-) + K(t \land T_n^A, \Delta Y(t \land T_n^A))) - f(W(t \land T_n^A-))$$

$$= \int_0^t \int_A [f(W(s-) + K(s,x)) - f(W(s-))] N(ds, dx).$$

João Guerra (CEMAPRE and ISEG, UTL)

Stochastic integration and Itô formula

November 4, 2014

10 / 19

Itô formula

Itô formula for Brownian motion

Let M be a Brownian integral with drift:

$$M^{i}(t) = \int_{0}^{t} F_{j}^{i}(s) dB^{j}(s) + \int_{0}^{t} G^{i}(s) ds.$$

Let us define the quadratic variation process:

$$[M^{i}, M^{j}](t) = \sum_{k=1}^{m} \int_{0}^{t} F_{k}^{i}(s) F_{k}^{j}(s) ds.$$

Itô formula for Brownian motion

Theorem

(Itô formula 2) If $f \in C^2(\mathbb{R}^d)$ then

$$f(M(t))-f(M(0))=\int_0^t \partial_i f(M(s)) dM^i(s)+\frac{1}{2}\int_0^t \partial_i \partial_j f(M(s)) d\left[M^i,M^j\right](s). \ a.s.$$

Proof: See Applebaum

João Guerra (CEMAPRE and ISEG, UTL)

Stochastic integration and Itô formula

November 4, 2014

12 / 19

Itô formula

Itô formula for Lévy type stochastic integrals

Let

$$dY(t) = G(t) dt + F(t) dB(t) + \int_{|x| < 1} H(t, x) \widetilde{N}(dt, dx) + \int_{|x| \ge 1} K(t, x) N(dt, dx)$$

•
$$dY_c(t) := G(t) dt + F(t) dB(t)$$

•
$$dY_d(t) := \int_{|x|<1} H(t,x) \widetilde{N}(dt,dx) + \int_{|x|\geq 1} K(t,x) N(dt,dx)$$

Itô formula for Lévy type stochastic integrals

Theorem

(Itô formula 3): If $f \in C^2(\mathbb{R}^d)$ then

$$f(Y(t)) - f(Y(0)) = \int_{0}^{t} \partial_{i} f(Y(s-)) dY_{c}^{i}(s) + \frac{1}{2} \int_{0}^{t} \partial_{i} \partial_{j} f(Y(s-)) d\left[Y_{c}^{i}, Y_{c}^{j}\right](s) + \int_{0}^{t} \int_{|x| \ge 1} \left[f(Y(s-) + K(s,x)) - f(Y(s-)) \right] N(ds, dx) + \int_{0}^{t} \int_{|x| < 1} \left[f(Y(s-) + H(s,x)) - f(Y(s-)) \right] \widetilde{N}(ds, dx) + \int_{0}^{t} \int_{|x| < 1} \left[f(Y(s-) + H(s,x)) - f(Y(s-)) \right] \widetilde{N}(ds, dx) + \int_{0}^{t} \int_{|x| < 1} \left[f(Y(s-) + H(s,x)) - f(Y(s-)) \right] \widetilde{N}(ds, dx) + \int_{0}^{t} \int_{|x| < 1} \left[f(Y(s-) + H(s,x)) - f(Y(s-)) \right] \widetilde{N}(ds, dx)$$

Proof: see Applebaum

João Guerra (CEMAPRE and ISEG, UTL)

Stochastic integration and Itô formula

November 4, 2014

14 / 10

Itô formul

Itô formula for Lévy type stochastic integrals

Theorem

(Itô formula 4): If $f \in C^2(\mathbb{R}^d)$ then

$$f(Y(t)) - f(Y(0)) = \int_0^t \partial_i f(Y(s-)) dY^i(s) + \frac{1}{2} \int_0^t \partial_i \partial_j f(Y(s-)) d\left[Y_c^i, Y_c^j\right](s)$$

$$+ \sum_{0 \le s \le t} \left[f(Y(s)) - f(Y(s-)) - \Delta Y^i(s) \partial_i f(Y(s-)) \right].$$

Proof: see Applebaum

Itô formula for Lévy type stochastic integrals

Quadratic variation process for Y:

$$\left[Y^{i},Y^{j}\right](t)=\left[Y_{c}^{i},Y_{c}^{j}\right](t)+\sum_{0\leq s\leq t}\Delta Y^{i}\left(s\right)\Delta Y^{j}\left(s\right).$$

$$[Y^{i}, Y^{j}](t) = \sum_{k=1}^{m} \int_{0}^{t} F_{k}^{i}(s) F_{k}^{j}(s) ds + \int_{0}^{t} \int_{|x|<1} H^{i}(s, x) H^{j}(s, x) \widetilde{N}(ds, dx) + \int_{0}^{t} \int_{|x|>1} K^{i}(s, x) K^{j}(s, x) N(ds, dx).$$
(2)

João Guerra (CEMAPRE and ISEG, UTL)

Stochastic integration and Itô formula

November 4, 2014

16 / 19

Itô formula

Itô's product formula

Theorem

If Y1 and Y2 are real valued Lévy type stochastic integrals then

$$Y^{1}(t) Y^{2}(t) = Y^{1}(0) Y^{2}(0) + \int_{0}^{t} Y^{1}(s-) dY^{2}(s) + \int_{0}^{t} Y^{2}(s-) dY^{1}(s) + [Y^{1}, Y^{2}](t).$$

Proof Take $f(x_1, x_2) = x_1 x_2$ and apply Itô's formula 4:

$$Y^{1}(t) Y^{2}(t) - Y^{1}(0) Y^{2}(0) = \int_{0}^{t} Y^{1}(s-) dY^{2}(s)$$

$$+ \int_{0}^{t} Y^{2}(s-) dY^{1}(s) + [Y_{c}^{1}, Y_{c}^{2}](t)$$

$$+ \sum_{0 \le s \le t} [Y^{1}(s) Y^{2}(s) - Y^{1}(s-) Y^{2}(s-) - \Delta Y^{1}(s) Y^{2}(s-) - \Delta Y^{2}(s) Y^{1}(s-)]$$

and the result follows.

17 / 19

Itô's product formula

Product formula in differential form:

$$d(Y^{1}(t) Y^{2}(t)) = Y^{1}(t-) dY^{2}(t) + Y^{2}(t-) dY^{1}(t) + d[Y^{1}, Y^{2}](t).$$

 The Itô correction arises as the result of the following formal product relations (see (2)):

$$dB^{i}(t) dB^{j}(t) = \delta^{ij} dt,$$
 $N(dt, dx) N(dt, dy) = N(dt, dx) \delta(x - y),$
all other products of differentials vanish.

João Guerra (CEMAPRE and ISEG, UTL)

Stochastic integration and Itô formula

November 4, 2014

18 / 19

Itô formula

- Applebaum, D. (2004). Lévy Processes and Stochastic Caculus. Cambridge University Press. (Sections 4.3 and 4.4)
- Applebaum, D. (2005). Lectures on Lévy Processes, Stochastic Calculus and Financial Applications, Ovronnaz September 2005, Lecture 2 in http://www.applebaum.staff.shef.ac.uk/ovron2.pdf
- Cont, R. and Tankov, P. (2003). Financial modelling with jump processes. Chapman and Hall/CRC Press (Sections 8.1, 8.2 and 8.3).