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Stochastic exponentials

Stochastic exponential

@ Letd = 1 and consider the process Z = (Z(t),t > 0) solution of the SDE:
dz(t) = Z (t-)dY (t), (1)

where Y is a Lévy-type stochastic integral, of the type:

dY (t) = G (t)dt+F (t)dB (t)+/

Ix]<1

H(t,x)N(dt,dx)—i—/ K (t,x)N (dt, dx).

x[=>1

@ The solution of (1) is the "stochastic exponential” or "Doléans-Dade
exponential:

Z (t) =&y (1) =exp {Y (t) — % [Ye, Y] (t)} [] @+AY(s)e 20,
0<s<t
(2)
@ We require that (assumption):

inf{AY (t),t >0} > -1 a.s. (3)
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Stochastic exponentials

Stochastic exponential

Proposition
If Y is a Lévy-type stochastic integral and (3) holds, then each &y (t) is a.s.
finite.

o Exercise: Prove the previous proposition (see Applebaum)
@ Note that (3) also implies that &y (t) > 0 a.s.

@ The stochastic exponential Ey (t) is the unique solution of SDE (1) which
satisfies the initial condition Z (0) = 1 a.s.

o If (3) does not hold then &y (t) may take negative values.
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Stochastic exponentials

Stochastic exponential

o Alternative form of (2):
Ey (t) = eSO, (4)

where
1 2
dSy(t) =F (t)dB (t) + (G (t) — EF (1) ) dt

+/ Iog(1+K(t,x))N(dt,dx)+/ log (1 + H (t,x)) N (dt, dx)
x| >1

[x]<1

+/|| (log (1 + H (t,x)) — H (t,x)) v (dx) dt (5)
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Stochastic exponentials

Stochastic exponential

Theorem
d&y (t) =&y (1) dY (t) J

o Exercise: Prove the previous theorem by applying the Itd6 formula to (5)
(see Applebaum).
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Stochastic exponentials

Stochastic exponential

o Example 1: If Y (t) = 0B (t), where ¢ > 0 and B is a BM, then

Ey (t) = exp {UB (t) — %Jzt} :

@ Example 2: If Y = (Y (t),t > 0) is a compound Poisson process:
Y(t)=Xi+---+ XN(t) then

N(t)

& (t)=T[(L+X)

i=1
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Stochastic exponentials

Stochastic exponential

o Example 3: If Y (t) = ut + 0B (t) + J(t) (jump-diffusion model), where
o >0,BisaBM,andJ = (J(t),t > 0) is a compound Poisson process:

Jt)=Xg+---+ XN(t),then

N(t)

& (1) :exp{(u— %JZ)tJrUB (t)} TT@+x).

i=1
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Stochastic exponentials

Stochastic exponential

@ Let X be a Lévy process with characteristics (b, o, v) and Lévy-Itd
decomposition X (t) = bt + 0B (t) + [, XN (t,dx) + [, 5, XN (t, dx).

@ When can &x (t) be written as exp (X (t)) for a certain Lévy process X;
and vice-versa?

o By (4) and (5) we have &x (t) = eSx(\) with

Iog(1+x)N(t,dx)+/ log (1 + x) N (t, dx)

[x]<1

Sx (t):O'B(t)+/

x|>1

+t|b— %(;2 + /|X|<1 (log(1+x) — x)u(dx)] : (6)
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Stochastic exponentials

Stochastic exponential

@ Comparing the Lévy-Itd decomposition with (6), we have

Theorem

If X is a Lévy process with each &Ex (t), then Ex (t) = exp (X1 (t)) where X; is a
Lévy process with characteristics (b1, 01, v1) given by:

v =vef™, f(x)=log(l+x).
1 2

by =b— 50+ / log (1 +x) 1j_1. (log (1 +x)) — x1)_1 11 (x)] v (dX),
R—{0}

01 — 0.

Conversely, there exists a Lévy process X, with characteristics (b2, o2, 17)
such that exp (X (t)) = &, (t) , where

vp=vog ", g(x)=e" -1
1
_ 2 X X
b, =b + 50+ (o) [(&" = 1)1 qqp(€" — 1) = xTy_1 97 (x)] v (dX),
O2 = 0.
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Exponential martingales

Exponential martingales

@ Leévy-type stochastic integral:

dY (t) = G (t)dt + F (t)dB (t) +/ H (t,x) N (dt, dx)

Ix|<1

+ /|x|21 K (t,x) N (dt, dx).

@ Whenis Y a martingale?

@ Assumptions (stronger than necessary to avoid the local martingale
concept):

o (M) E {fg Jiiz1 K (s,x)|2u(dx)ds} < oo foreacht >0

o (M2) [{E[|G(s)|]ds < oo for each t > 0.
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Exponential martingales

Exponential martingales

@ consequence of (M1) and Cauchy-Schwarz inequality:
Jo Jixi>1 1K (s, X)| v (dx)ds < oo a.s.and

/Ot /|X|21K (s,X)N (ds,dx) = /Ot /le K (s,x)N (dS,dX)—l—/ot /|X|21K (s,X) v (dx

and the compensated integral is a martingale.

Theorem
With assumptions (M1) and (M2), Y is a martingale if and only if

G(t) + /|X|>1 K(t,x)v(dx)=0 (a.s.)fora.a.t>0.

(see the proof in Applebaum)
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Exponential martingales

Exponential martingales

o Let us consider the process e¥ = (e"),t > 0).
@ By Itd’s formula, we have that

t
eY(t)_1+/ ¥ (-)E // oY (s— ) QH(sX) _ )N(ds,dx)
[x|<1
// Y(S) ek(sx) )N(ds,dx)
[x|>1

+/O e¥(s- )<G( )+ = F(S) +/|x|<1 (eH(S’X)—l—H(s,x))u(dx)

+/| . (eK(S’X) -~ 1) u(dx)) ds (7)
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Exponential martingales

Exponential martingales

Theorem
e is a martingale if and only if

G(s) + %F (s)? +/ (eH<S7X> —1- H(s,x)) v (dx)

[x|<1

a.s. and fora.a. s > 0.

o Therefore, if e¥ is a martingale then

t
ey () — 1+/ Y(s—)F // eY(s— ) eH(sx) _ )N(d&dx)
[x|<1
// e¥(s- ) eksx) )N(ds,dx).
[x|>1
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Exponential martingales

Exponential martingales

o IfeY is a martingale then E [e¥®] = 1forallt > 0 and e is called an
exponential martingale.

o ifY isan Itd process Y(t) = [;G(s)ds + [y F (s)dB (s) then (8) is
G(t) =— 2F(t) and

e’ = exp </OtF(S)dB(S)—%/OtF(S)2dS>.
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Change of Measure - Girsanov's Theorem

Change of Measure - Girsanov’s Theorem

o Let P and Q be two different probability measures. Q; and P; are the
measures restricted to (2, 7).

o LeteY be an exponential martingale and define Q; by

a _ vy
ap, ~ °

@ Fix an interval [0, T] and define P = P+ and Q = Qr.

Lemma

= (M(1)

,0<t g T) is a Q-martingale if and only if
MeY = (M(t)e"

Jo<t< T) is a P-martingale.
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Change of Measure - Girsanov’s Theorem

Change of Measure - Girsanov’s Theorem

141727

o LetY be an It6 process (or Brownian integral) and
e’ = exp (fo F (s)dB(s) — F (s)? ds) :
o Define a new process

BQ(t):B(t)—/O F (s)ds

Theorem
(Girsanov): Bq is a Q-Brownian motion.

o Generalization of Girsanov: Let M be a martingale of the form
M(t) fo JaL(x ,s)N (ds, dx), with L predictable, L € P,. Then

N(t) = t)—// s, x) (eHEx) — )u(dx)ds

Is a Q-martingale.
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LCVYy FTOCCsosEs 1T UpPUOn Fricing

Option pricing

@ Stock price: S = (S(t),t > 0).
@ Contingent claims with maturity date T: Z is a non-negative F+
measurable r.v. representing the payoff of the option.

o European call option: Z = max{S(T) — K, 0}

@ American call option: Z = sup [max{S (7) — K,0}]
0<7<T

o Asian option: Z = max {% J(S(t) = K) dt,O}
@ We assume that the interest rate r is constant.
@ Discounted stock price process: S = (S (t),t > O) with S (t) = e~ "S(t).

@ Portfolio: (« (t),5(t)), a(t) is the number of shares and 3 (t) the number
of riskless assets (bonds).

o Portfolio value: V (t) = a(t) S (t) + B (t) A(t)
@ A portfolio is said to be replicating if V(T) = Z.
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Lévy Processes in Option Pricing

Option pricing

o Self-financing portfolio: dV (t) = « (t)dS (t) +r3 (t) A(t) dt.
@ A market is said to be complete if every contingent claim can be
replicated by a self-financing portfolio.

@ An arbitrage opportunity exists if the market allows risk-free profit. The
market is arbitrage free if there exists no self-financing strategy for which
V(0)=0,V(T)>0and P(V(T)>0) > 0.

Theorem
(Fundamental Theorem of Asset Pricing 1 in discrete time) If the market is
free of arbitrage opportunities, then there exists a probability measure Q,

which is equivalent to P, with respect to which the discounted process S is a
martingale.

@ A similar result holds in the continuous case but we need to make more
technical assumptions - instead of absence of arbitrage we need the
stronger NFLVR hypothesis ("no free lunch with vanishing risk").
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LCVYy FTOCCsosEs 1T UpPUOn Fricing

Option pricing

Theorem
Fundamental Theorem of Asset Pricing 2) An arbitrage-free market is
complete if and only if there exists a unique probability measure Q, which is

equivalent to P, with respect to which the discounted process S is a
martingale.

@ Such a Q is called a martingale measure or risk-neutral measure.
o If Q exists, but is not unique, then the market is said to be incomplete.
@ In a complete market, it turns out that we have

V(t) =e " "VEq [Z|A]

and this is the arbitrage-free price of the claim Z at time t.
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Lévy Processes in Option Pricing

Stock price as a Levy process

o Return: 55 (1)
—= = 00X (t t
where X = (X (t),t > 0) is a Lévy process and o > 0, i are parameters
called the volatility and stock drift.

@ It6 calculus SDE:

dS (t) = oS (t=) dX (t) + uS (t—)dt
— S(t-)dZ (1),

where Z (t) = oX (t) + pt.
o Then S(t) = & () is the stochastic exponential of Z.
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LCVYy FTOCCsosEs 1T UpPUOn Fricing

Stock price as a Levy process

@ When X is a standard Brownian motion B, we obtain the geometric

Brownian motion
1 2
S(t)=exp|oB(t)+ | nx— 50 t

o idea: Let X be a Lévy process. In order for stock prices to be
non-negative, (3) yields AX (t) > —o~! (a.s.) for each t > 0. Denote
c=—-01

@ We impose f(c JU[L+o0) x?v (dx) < oco. This means that each X (t) has
first and second moments (reasonable for stock returns).

o By the Lévy-Ité decomposition,

X (t) = mt 4+ kB(t) +/Ooxﬁ (t,dx),

wherek > 0and m =Db + f(c UL to0) XY (dx) (in terms of the earlier
parameters).
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Lévy Processes in Option Pricing

Stock price as a Levy process

© Representing S(t) as the stochastic exponential £7(;), we obtain from (5)
that

d (log (S (t))) = kodB(t) + (ma + - %kzaz) dt
+/OO |og(1+ax)ﬁ(dt,dx)+/oo (log (1 4 ox) — ox) v (dx) dt

@ There are a number of explicit mathematically tractable and realistic
models: variance-gamma, normal inverse Gaussian, hyperbolic, etc.
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LCVYy FTOCCsosEs 1T UpPUOn Fricing

Change of measure

o we seek to find measures Q, which are equivalent to P, with respect to
which the discounted stock process S is a martingale.

o Let Y be a Lévy-type stochastic integral of the form:

dY (t) = G (t)dt + F (t)dB(t)+/ { }H (t,x)N (dt,dx).
R—{0

o Consider that e is an exponential martingale (therefore, G is determined
by F and H).

o Define Q by 2 = eY(T). By Girsanov theorem and its generalization:
t
Bo (1) =B(t) —/ F (s)dsis a Q-BM
0

NQ(t,A) — N(t,A) — 1o (t,A) is a Q-martingale

vo (t,A) == /t/ (eH(S’X)—1>y(dx)ds.
0 JA
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Lévy Processes in Option Pricing

Change of measure

~

@ S(t) = e "S(t) can be written in terms of these processes by:

d (log (é (t)>) — kodBq(t) + (ma b -t — TK262 4 KoF (1)

2
_|_0/ X (eH(t,X) _ 1) z/(dx)) dt +/ log (1 + ox) NQ (dt, dx)
R—{0} c
+ / (log (1 4 ox) — oX) g (dt, dx) .
C

o PutS(t) =S (t)S; (), where

d (log (él (t))) = kodBo(t) — %kzazdt

+/ Iog(1+ax)NQ(dt,dx)+/ (log (1 + ox) — oX) vg (dt,dx).
c c
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LCVYy FTOCCsosEs 1T UpPUOn Fricing

Change of measure

o and

d (Iog (éz (t))) = (Mo + p — 1 +koF (1) +

—l—a/ X (eH(t’X) — 1) I/(dX)) dt.
R—{0}

o Apllying Ité’s formula to §1 we obtain:
dS; (t) = koSy (t—) dBg(t) +/ oSy (t—)xNg (dt, dx) .
Cc

and §1 Is a Q-martingale.
o Therefore S is a Q-martingale if and only if

ma—i—,LL—r+k0F(t)+0/

X <eH(‘7X) — 1) v(dx) =0 as. (9)
R—{0}
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Lévy Processes in Option Pricing

Change of measure

@ Equation (9) clearly has an infinite number of possible solution pairs
(F.H).

@ There are an infinite number of possible measures Q with respect to
which S is a martingale. So the general Lévy process model gives rise to
incomplete markets.

o Example - the Brownian motion case: v = 0 and k # 0. Then there is a
unique solution

_I'—p—mo

F(t) = e as

and the market is complete (Black-Scholes model).
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LCVYy FTOCCsosEs 1T UpPUOn Fricing

Change of measure

@ Example - the Poisson Process case:take k = 0 and v (X) = A\d1 (X).
Then X (t) = mt + [.° xN (t, dx), where the jump part is the standard
Poisson process N (t).Writing H(t, 1) = H(t), we have from (9) that

Mo+ pu—r 4o\ (eH(t) —1) =0 as.

and

H(t) = log (r _/“L)f;\_m)a).

In this case, the market is also complete and we obtain a martingale
measure ifr — 4+ (A—m)o > 0.

@ In most part of the other cases (with other Lévy processes), the market is
incomplete.
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Lévy Processes in Option Pricing
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