# Models in Finance - Class 18 <br> Master in Actuarial Science 

João Guerra

ISEG

## Black-Scholes model - PDE approach

- idea: use Itô's formula to derive an expression for the price of the derivative as a function $f\left(S_{t}\right)$ of $S_{t}$ and then construct a risk-free portfolio.
- By Itô's formula:

$$
\begin{equation*}
d f\left(t, S_{t}\right)=\frac{\partial f}{\partial t}\left(t, S_{t}\right) d t+\frac{\partial f}{\partial S_{t}}\left(t, S_{t}\right) d S_{t}+\frac{1}{2} \frac{\partial^{2} f}{\partial S_{t}^{2}}\left(t, S_{t}\right)\left(d S_{t}\right)^{2} \tag{1}
\end{equation*}
$$

- Recall that $d S_{t}=S_{t}\left(\mu d t+\sigma d Z_{t}\right)$ and therefore

$$
\begin{aligned}
\left(d S_{t}\right)^{2} & =S_{t}^{2}\left[\mu^{2}(d t)^{2}+\sigma^{2}\left(d Z_{t}\right)^{2}+2 \mu \sigma d t d Z_{t}\right] \\
& =\sigma^{2} S_{t}^{2} d t
\end{aligned}
$$

(why?)

## PDE approach

- Therefore:

$$
\begin{align*}
d f\left(t, S_{t}\right) & =\frac{\partial f}{\partial t}\left(t, S_{t}\right) d t+\frac{\partial f}{\partial S_{t}}\left(t, S_{t}\right)\left[S_{t}\left(\mu d t+\sigma d Z_{t}\right)\right] \\
& +\frac{1}{2} \frac{\partial^{2} f}{\partial S_{t}^{2}}\left(t, S_{t}\right) \sigma^{2} S_{t}^{2} d t \\
& =\left[\frac{\partial f}{\partial t}\left(t, S_{t}\right)+\mu S_{t} \frac{\partial f}{\partial S_{t}}\left(t, S_{t}\right)+\frac{1}{2} \sigma^{2} S_{t}^{2} \frac{\partial^{2} f}{\partial S_{t}^{2}}\left(t, S_{t}\right)\right] d t  \tag{2}\\
& +\sigma S_{t} \frac{\partial f}{\partial S_{t}}\left(t, S_{t}\right) d Z_{t} \tag{3}
\end{align*}
$$

## PDE approach

- At time $t$ with $0 \leq t<T$, consider you hold the portfolio:
- -1 derivative $+\frac{\partial f}{\partial S_{t}}\left(t, S_{t}\right)$ shares
- Let $V\left(t, S_{t}\right)$ be the value of this portfolio:

$$
V\left(t, S_{t}\right)=-f\left(t, S_{t}\right)+\frac{\partial f}{\partial S_{t}}\left(t, S_{t}\right) S_{t}
$$

- The variation of the portfolio value over the period $(t, t+d t]$ is (by Eq. (2) and (3))

$$
\begin{align*}
& -d f\left(t, S_{t}\right)+\frac{\partial f}{\partial S_{t}}\left(t, S_{t}\right) d S_{t} \\
& =-\left(\frac{\partial f}{\partial t}\left(t, S_{t}\right)+\frac{1}{2} \sigma^{2} S_{t}^{2} \frac{\partial^{2} f}{\partial S_{t}^{2}}\left(t, S_{t}\right)\right) d t \tag{4}
\end{align*}
$$

## PDE approach

- $-d f\left(t, S_{t}\right)+\frac{\partial f}{\partial S_{t}}\left(t, S_{t}\right) d S_{t}$ involves $d t$ but not $d Z_{t} \Longrightarrow$ instantaneous investment gain in $(t, t+d t]$ is risk-free.
- arbitrage-free market $\Longrightarrow$ risk-free rate $=r \Longrightarrow$

$$
\begin{equation*}
-d f\left(t, S_{t}\right)+\frac{\partial f}{\partial S_{t}}\left(t, S_{t}\right) d S_{t}=r V\left(t, S_{t}\right) d t \tag{5}
\end{equation*}
$$

- By (4) and (5), we have:

$$
\begin{aligned}
& \left(\frac{\partial f}{\partial t}\left(t, S_{t}\right)+\frac{1}{2} \sigma^{2} S_{t}^{2} \frac{\partial^{2} f}{\partial S_{t}^{2}}\left(t, S_{t}\right)\right) d t=-r V\left(t, S_{t}\right) d t \\
& =-r\left(-f\left(t, S_{t}\right)+\frac{\partial f}{\partial S_{t}}\left(t, S_{t}\right) S_{t}\right) d t
\end{aligned}
$$

and therefore (substituting $S_{t}=s$ )

$$
\begin{equation*}
\frac{\partial f}{\partial t}(t, s)+r s \frac{\partial f}{\partial s}(t, s)+\frac{1}{2} \sigma^{2} s^{2} \frac{\partial^{2} f}{\partial s^{2}}(t, s)=r f(t, s) . \tag{6}
\end{equation*}
$$

- This is the Black-Scholes PDE (partial differential equation).


## PDE approach

- The value of the derivative $f\left(t, S_{t}\right)$ is obtained by solving the B-S PDE with appropriate boundary conditions, which are for the call and put:

$$
\begin{aligned}
& f(T, s)=\max \{s-K, 0\} \quad \text { for the call, } \\
& f(T, s)=\max \{K-s, 0\} \quad \text { for the put. }
\end{aligned}
$$

- We can try out the solutions given in the proposition:

$$
\begin{align*}
& f\left(t, S_{t}\right)=S_{t} \Phi\left(d_{1}\right)-K e^{-r(T-t)} \Phi\left(d_{2}\right) \quad \text { for the call, }  \tag{7}\\
& f\left(t, S_{t}\right)=K e^{-r(T-t)} \Phi\left(-d_{2}\right)-S_{t} \Phi\left(-d_{1}\right) \text { for the put, } \tag{8}
\end{align*}
$$

and find that they satisfy the PDE and the appropriate boundary conditions.

## PDE approach

- Exercise: A forward contract is arranged where an investor agrees to buy a share at time $T$ for an amount $K$. It is proposed that the fair price of this contract is

$$
f\left(t, S_{t}\right)=S_{t}-K e^{-r(T-t)}
$$

Show that this:
(i) Satisfies the appropriate boundary condition.
(ii) Satisfies the Black-Scholes PDE.

## Financial Derivatives

- Consider a contingent claim (a financial derivative), with payoff given by

$$
\begin{equation*}
X=\Phi(S(T)) \tag{9}
\end{equation*}
$$

Its price process is represented by

$$
\Pi(t), \quad t \in[0, T] .
$$

## Portfolios

- Portfolio $\left(h^{0}(t), h^{*}(t)\right)$
- $h^{0}(t)$ : number of bonds (or number of units of the riskless asset) at time $t$.
- $h^{*}(t)$ : number of of shares of stock in the portfolio at time $t$.


## Portfolios

- Value of the portfolio at time $t$ :

$$
V^{h}(t)=h^{0}(t) B_{t}+h^{*}(t) S_{t} .
$$

- It is supposed that the portfolio is self-financed, that is,

$$
d V_{t}^{h}=h^{0}(t) d B_{t}+h^{*}(t) d S_{t} .
$$

- In integral form:

$$
\begin{align*}
V_{t} & =V_{0}+\int_{0}^{t} h^{*}(s) d S_{s}+\int_{0}^{t} h^{0}(s) d B_{s} \\
& =V_{0}+\int_{0}^{t}\left(\alpha h^{*}(s) S_{s}+r h^{0}(s) B_{s}\right) d s+\sigma \int_{0}^{t} h^{*}(s) S_{s} d Z_{s} \tag{10}
\end{align*}
$$

## Replicating portfolio

- Assume that the contingent claim (or financial derivative) has the payoff

$$
\begin{equation*}
X=\Phi(S(T)) \tag{11}
\end{equation*}
$$

and it is replicated by the portfolio $h=\left(h^{0}(t), h^{*}(t)\right)$, that is, $V_{T}^{h}=X=\Phi(S(T))$ a.s. Then, the unique price process that is compatible with the no-arbitrage principle is

$$
\begin{equation*}
\Pi(t)=V_{t}^{h}, \quad t \in[0, T] \tag{12}
\end{equation*}
$$

- Moreover, assume also that

$$
\begin{equation*}
\Pi(t)=V_{t}^{h}=F\left(t, S_{t}\right) \tag{13}
\end{equation*}
$$

where $F$ is a differentiable function of class $C^{1,2}$.

## Replicating portfolio

- Applying Itô's formula to (13) and considering $d S_{t}=\mu S_{t} d t+\sigma S_{t} d Z_{t}$, we obtain

$$
\begin{aligned}
d F\left(t, S_{t}\right) & =\left(\frac{\partial F}{\partial t}\left(t, S_{t}\right)+\mu S_{t} \frac{\partial F}{\partial x}\left(t, S_{t}\right)+\frac{1}{2} \sigma^{2} S_{t}^{2} \frac{\partial^{2} F}{\partial x^{2}}\left(t, S_{t}\right)\right) d t \\
& +\left(\sigma S_{t} \frac{\partial F}{\partial x}\left(t, S_{t}\right)\right) d Z_{t}
\end{aligned}
$$

## Replicating portfolio

That is,

$$
\begin{align*}
F\left(t, S_{t}\right) & =F\left(0, S_{0}\right)+\int_{0}^{t}\left(\frac{\partial F}{\partial t}\left(s, S_{s}\right)+A F\left(s, S_{s}\right)\right) d s \\
& +\int_{0}^{t}\left(\sigma S_{s} \frac{\partial F}{\partial x}\left(s, S_{s}\right)\right) d Z_{s} \tag{14}
\end{align*}
$$

where

$$
A f(t, x)=\mu x \frac{\partial f}{\partial x}(t, x)+\frac{1}{2} \sigma^{2} x^{2} \frac{\partial^{2} f}{\partial x^{2}}(t, x)
$$

is the infinitesimal generator associated to the diffusion $S_{t}$.

## Replicating portfolio

- Comparing (10) and (14), we have

$$
\begin{aligned}
\sigma h^{*}(s) S_{s} & =\sigma S_{s} \frac{\partial F}{\partial x}\left(s, S_{s}\right), \\
\mu h^{*}(s) S_{s}+r h^{0}(s) B_{s} & =\frac{\partial F}{\partial t}\left(s, S_{s}\right)+A F\left(s, S_{s}\right) .
\end{aligned}
$$

- Therefore,

$$
\begin{aligned}
\frac{\partial F}{\partial x}\left(s, S_{s}\right) & =h^{*}(s), \\
\frac{\partial F}{\partial t}\left(s, S_{s}\right)+r S_{s} \frac{\partial F}{\partial x}\left(s, S_{s}\right)+\frac{1}{2} \sigma^{2} S_{s}^{2} \frac{\partial^{2} F}{\partial x^{2}}\left(s, S_{s}\right)-r F\left(s, S_{s}\right) & =0
\end{aligned}
$$

## Replicating portfolio

Therefore, we have

- A portfolio $h$ with value $V_{t}^{h}=F\left(t, S_{t}\right)$, composed of risky assets with price $S_{t}$ and riskless assets of price $B_{t}$.
- Portfolio $h$ replicates the contingent claim $X$ at each time $t$, and

$$
\Pi(t)=V_{t}^{h}=F\left(t, S_{t}\right)
$$

- In particular,

$$
F\left(T, S_{T}\right)=\Phi(S(T))=\text { Payoff }
$$

## Black-Scholes PDE

- The portfolio should be continuously updated by acquiring (or selling) $h^{*}(t)$ shares of the risky asset and $h^{0}(t)$ units of the riskless asset, where

$$
\begin{aligned}
h^{*}(t) & =\frac{\partial F}{\partial x}\left(t, S_{t}\right) \\
h^{0}(t) & =\frac{V_{t}^{h}-h^{*}(t) S_{t}}{B_{t}}=\frac{F\left(t, S_{t}\right)-h^{*}(t) S_{t}}{B_{t}}
\end{aligned}
$$

- The derivative price function satisfies the PDE (Black-Scholes eq.)

$$
\frac{\partial F}{\partial t}\left(t, S_{t}\right)+r S_{t} \frac{\partial F}{\partial x}\left(t, S_{t}\right)+\frac{1}{2} \sigma^{2} S_{t}^{2} \frac{\partial^{2} F}{\partial x^{2}}\left(t, S_{t}\right)-r F\left(t, S_{t}\right)=0
$$

## Black-Scholes PDE

## Theorem

(Black-Scholes eq.) The only pricing function that is consistent with the no-arbitrage principle is the solution $F$ of the following boundary value problem, defined in the domain $[0, T] \times \mathbb{R}^{+}$:

$$
\begin{align*}
\frac{\partial F}{\partial t}(t, x)+r x \frac{\partial F}{\partial x}(t, x)+\frac{1}{2} \sigma^{2} x^{2} \frac{\partial^{2} F}{\partial x^{2}}(t, x)-r F(t, x) & =0,  \tag{15}\\
F(T, x) & =\Phi(x) .
\end{align*}
$$

## The martingale approach

- In the binomial model, we proved that the value of a derivative could be expressed by:

$$
V_{t}=e^{-r(T-t)} E_{Q}\left[X \mid \mathcal{F}_{t}\right]
$$

where $X$ is the value of the derivative at maturity $T$ and $Q$ is the equivalent martingale measure (or risk neutral measure).

- In continuous time, this result can be generalized as:

Proposition: Let $X$ be any derivative payment contingent on $\mathcal{F}_{T}$, payable at $T$. Then the value of this derivative at time $t<T$ is

$$
\begin{equation*}
V_{t}=e^{-r(T-t)} E_{Q}\left[X \mid \mathcal{F}_{t}\right] \tag{16}
\end{equation*}
$$

## Proof of the risk neutral valuation

The price function $F$ is solution of the following boundary value problem:

$$
\begin{align*}
\frac{\partial F}{\partial t}(t, x)+r x \frac{\partial F}{\partial x}(t, x)+\frac{1}{2} \sigma^{2} x^{2} \frac{\partial^{2} F}{\partial x^{2}}(t, x)-r F(t, x) & =0  \tag{17}\\
F(T, x) & =\Phi(x)
\end{align*}
$$

Applying the Itô formula to $e^{-r s} F\left(s, X_{s}\right)$, where $d X_{s}=r X_{s} d s+\sigma X_{s} d Z_{s}$, $t \leq s \leq T$ and $X_{t}=x$, we obtain

$$
\begin{aligned}
& e^{-r T} F\left(T, X_{T}\right)=e^{-r t} F\left(t, X_{t}\right)+ \\
& +\int_{t}^{T} e^{-r s}\left(\frac{\partial F}{\partial s}\left(s, X_{s}\right)+\left(r X_{s} \frac{\partial}{\partial x}+\sigma^{2} X_{s}^{2} \frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}\right) F\left(s, X_{s}\right)-r F\left(s, X_{s}\right)\right) d s \\
& +\int_{t}^{T} e^{-r s} \sigma\left(s, X_{s}\right) \frac{\partial F}{\partial x}\left(s, X_{s}\right) d Z_{s}
\end{aligned}
$$

## Proof of the risk neutral valuation

Using (17) and applying the expected value (with $X_{t}=x$ ), we obtain

$$
E_{t, x}\left[e^{-r(T-t)} F\left(T, X_{T}\right)\right]=E_{t, x}\left[F\left(t, X_{t}\right)\right]
$$

Therefore

$$
F(t, x)=e^{-r(T-t)} E_{t, x}\left[\Phi\left(X_{T}^{t, x}\right)\right]
$$

- Note that the process $X$ is not the same as the process $S$, as the drift of $X$ is $r X$ and not $\mu X$.
- idea: change from process $X$ to process $S$, using the Girsanov (Cameron-Martin-Girsanov) Theorem.


## Proof of the risk neutral valuation

- Denote by $P$ the original probability measure ("objective" or "real" probability measure). The $P$-dynamics of the process $S$ is given in $d S_{t}=\mu S_{t} d t+\sigma S_{t} d Z_{t}$. Note that this is equivalent to

$$
\begin{aligned}
d S_{t} & =r S_{t} d t+\sigma S_{t}\left(\frac{\mu-r}{\sigma} d t+d Z_{t}\right) \\
& =r S_{t} d t+\sigma S_{t} d \underbrace{\left(\frac{\mu-r}{\sigma} t+Z_{t}\right)}_{\widetilde{Z}_{t}}
\end{aligned}
$$

- By the Girsanov Theorem, there exists a probability measure $Q$ such that, in the probability space $\left(\Omega, \mathcal{F}_{T}, Q\right)$, the process

$$
\widetilde{Z}_{t}:=\frac{\mu-r}{\sigma} t+Z_{t}
$$

is a Brownian motion, and $S$ has the $Q$-dynamics:

$$
\begin{equation*}
d S_{t}=r S_{t} d t+\sigma S_{t} d \tilde{Z}_{t} \tag{18}
\end{equation*}
$$

## Proof of the risk neutral valuation

- Consider the following notation: $E$ denotes the expected value with respect to the original measure $P$, while $E_{Q}$ denotes the expected value with respect to the new probability measure $Q$ (that comes from the application of the Girsanov theorem). Also, let $Z_{t}$ denote the original Brownian motion (under the measure $P$ ) and $\widetilde{Z}_{t}$ denote the Brownian motion under the measure $Q$.
- We represent the solution of the Black-Scholes equation by

$$
F(t, s)=e^{-r(T-t)} E_{Q}\left[X \mid \mathcal{F}_{t}\right]
$$

where $X=\Phi\left(S_{T}\right)$ represents the payoff, and the dynamics of $S$ under the measure $Q$ is

$$
\begin{gathered}
d S_{u}=r S_{u} d u+\sigma S_{u} d \widetilde{Z}_{u}, t \leq u \leq T \\
S_{t}=s
\end{gathered}
$$

## Delta hedging and martingale approach

- How to determine $\phi_{t}$ of the replicating portfolio?
- We can evaluate the price of the derivative $V_{t}=e^{-r(T-t)} E_{Q}\left[X \mid \mathcal{F}_{t}\right]$ using a formula (like the B-S formula) or numerical techniques.
- Then

$$
\begin{equation*}
\phi_{t}=\frac{\partial V}{\partial s}\left(t, S_{t}\right) \tag{19}
\end{equation*}
$$

- $\phi_{t}$ is called the Delta of the derivative:

$$
\begin{equation*}
\Delta=\frac{\partial V}{\partial s}\left(t, S_{t}\right) \tag{20}
\end{equation*}
$$

## Delta hedging and martingale approach

If:

- we start at time 0 with $V_{0}$ invested in cash and shares,
- we follow a self-financing portfolio strategy,
- we continually rebalance the portfolio to hold exactly $\phi_{t}=\Delta=\frac{\partial V}{\partial s}\left(t, S_{t}\right)$ units of $S_{t}$ with the rest in cash,
then we will precisely replicate the derivative payoff.


## Example: B-S formula for a call

- Let $X=\max \left\{S_{T}-K, 0\right\}$. Then:

$$
\begin{equation*}
V_{t}=S_{t} \Phi\left(d_{1}\right)-K e^{-r(T-t)} \Phi\left(d_{2}\right) \tag{21}
\end{equation*}
$$

where: $d_{1}=\frac{\ln \left(\frac{S_{t}}{K}\right)+\left(r+\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}}, d_{2}=d_{1}-\sigma \sqrt{T-t}$ and $\Phi(z)$ is the cumulative distribution function of the standard normal distribution.

## Example: B-S formula for a call

## Proof:

- Given the information $\mathcal{F}_{t}$, then under $Q$, we have:

$$
\begin{equation*}
S_{T}=S_{t} \exp \left[\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\sigma\left(\tilde{Z}_{T}-\tilde{Z}_{t}\right)\right] \tag{22}
\end{equation*}
$$

Then

$$
\begin{aligned}
& V_{t}=e^{-r(T-t)} E_{Q}\left[\max \left\{S_{T}-K, 0\right\} \mid \mathcal{F}_{t}\right] \\
& =e^{-r(T-t)} \\
& \times E_{Q}\left[\left.\max \left\{S_{t} \exp \left[\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\sigma\left(\widetilde{Z}_{T}-\widetilde{Z}_{t}\right)\right]-K, 0\right\} \right\rvert\, \mathcal{F}_{t}\right] \\
& =E_{Q}\left[\max \left\{e^{\alpha+\beta U}-e^{\alpha+\beta u}, 0\right\}\right]
\end{aligned}
$$

where $\alpha=\log \left(S_{t}\right)-\frac{1}{2} \sigma^{2}(T-t), \beta=\sigma \sqrt{T-t}, U \sim N(0,1)$
under $Q$ and $u=\left[\log \left(K e^{-r(T-t)}\right)-\alpha\right] / \beta$.

## Example: B-S formula for a call

## Proof:

- Therefore (with $\phi(x)$ the density of the $N(0,1)$ distribution):

$$
\begin{aligned}
V_{t} & =e^{\alpha+\beta u} \int_{u}^{\infty}\left(e^{\beta(x-u)}-1\right) \phi(x) d x \\
& =e^{\alpha} \int_{u}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{\beta x-\frac{1}{2} x^{2}} d x-e^{\alpha+\beta u} \Phi(-u) \\
& =e^{\alpha+\frac{1}{2} \beta^{2}} \int_{u}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}(x-\beta)^{2}} d x-e^{\alpha+\beta u} \Phi(-u) \\
& =e^{\alpha+\frac{1}{2} \beta^{2}} \Phi(\beta-u)-e^{\alpha+\beta u} \Phi(-u)=\ldots \\
& =S_{t} \Phi\left(d_{1}\right)-K e^{-r(T-t)} \Phi\left(d_{2}\right) .
\end{aligned}
$$

- Exercise: Prove the B-S formula for the put option, using the same technique.

