Master in Mathematical Finance - ISEG/Universidade de Lisboa Lévy Processes and Applications Exam (Época Normal)

Duration: 2 hours

January 20, 2017

Consider a Lévy process X(t) and a subordinator process T(t), which is independent of X(t).
(a) Define what is a subordinator, present the general characteristic exponent of a subordinator and present four different examples of subordinators.

(b) Consider the process Y(t) = X(T(t)). Is Y a Lévy process? If your answer is yes, deduce the formula for the characteristic exponent η_Y of the process Y in terms of the Laplace exponent ψ_T and the characteristic exponent η_X (if you cannot deduce the formula, just present it). Moreover, apply this formula in order to obtain the characteristic exponent of Y if T is an α -stable process with $\alpha = \frac{1}{4}$ and $X = \sqrt{2}B(t)$, where B is a Brownian motion.

2. Consider a Lévy process *L* defined by

$$L_t = \sqrt{3B_t + X_1 + X_2 + \dots + X_{N(t)} - 8t},$$

where B_t is a Brownian motion, the r.v. $X_1, ..., X_k, ...$ are i.i.d. with mean value $\mathbb{E}[X_k] = 4$ and N(t) is a Poisson process with intensity $\lambda = 2$.

(a) (i) What kind of process is L_t ? Is it a martingale?; (ii) Assuming that the random variables X_k have a normal distribution with mean 4 and variance 2, deduce the characteristic function of the process L_t .

(b) Show that the distribution of L_t is infinitely divisible.

3. Consider the process

$$X(t) = \exp\left(Y(t)\right),$$

where Y(t) is a Lévy-type stochastic integral such that

$$dY(t) = b(t)dt + u(t)dB(t) + \int_{|x| \ge 1} w(t,x)N(dt,dx).$$

Deduce the conditions that the processes b(t), u(t) and w(t, x) must satisfy if Y(t) and X(t) are both martingales.

4. Let X be a Lévy process and consider the measure $\nu(dx) = x^{\alpha} \mathbf{1}_{\{0 < x < 1\}} + x^{\beta} \mathbf{1}_{\{x > 1\}} + |x|^{\gamma} \mathbf{1}_{\{x < -1\}}$, where α, β and γ are real parameters.

(a) For what values of α , β and γ is $\nu(dx)$ a Lévy measure? Justify and then choosing the values of $\alpha = -1$, $\beta = -4$ and $\gamma = -5$, calculate the expected value of the Poisson integral

$$\mathbb{E}\left[\int_{\mathbb{R}\setminus[-1,1]} |x|^2 N(t,dx)\right].$$

and explain what is the interpretation of this value in terms of the sizes of the jumps.

(b) Consider that the process Y is the solution of the stochastic differential equation

$$dY(t) = 3Y(t-)dt + 2Y(t-)dB_t + 5Y(t-)\int_{|x|<1} x^2 N(dt, dx), \text{ with } Y(0) = 4.$$

Solve this equation (hint: apply the Itô formula using the log function).

5. Consider a financial market with one risky asset with price process S_t given as the solution of the stochastic differential equation

$$dS(t) = S(t-) dZ(t),$$

where $Z(t) = \sigma X(t) + \mu t$ and X(t) is a Lévy process with decomposition

$$X(t) = mt + kB(t) + \int_{c}^{+\infty} x\widetilde{N}(t, dx),$$

where $k \ge 0$, $m \ge 0$ and $c := -\sigma^{-1}$. Assume that the riskless interest rate is r > 0.

(a) State the condition that σ, μ, k, m and r must satisfy in order for the discounted price process \tilde{S} to be a martingale with respect to an equivalent martingale measure Q and discuss the existence and uniqueness of this martingale measure, when

(i) $X(t) = B(t) + \tilde{N}(t)$, where B(t) is a Brownian motion and $\tilde{N}(t)$ is an independent compensated Poisson process.

(ii) in the context of the Esscher transform measure Q_u , with u(t) = -ku, h(t, x) = -ux, discuss the equivalent martingale measure condition and the uniqueness of the Esscher transform measure.

(b) Considering that the price of the risky asset is modeled as an ordinary exponential of a Lévy process Y(t), that is

$$S(t) = S_0 \exp(Y(t)),$$

in which of the following cases can we ensure that the market model is arbitrage free (explain why)?:

(i) Y(t) is a Brownian motion with drift: Y(t) = mt + B(t).

(ii) Y(t) is a compound Poisson process: $Y(t) = \sum_{k=1}^{N(t)} J_k$, where the random variables J_k have uniform distribution on the interval]0, 10[.

(iii) Y(t) is a pure jump process with Lévy measure $\nu(dx) = x^{-2} \mathbf{1}_{\{0 < x < 1\}}$. (iv) Y(t) is a compound Poisson process with drift: $Y(t) = -3t + \sum_{k=1}^{N(t)} J_k$, where the random variables J_k have exponential distribution.

Marks: 1(a):2, 1(b):2.5, 2(a):2.5, 2(b):2, 3:2, 4(a):2, 4(b):2.5, 5(a):2.5, 5(b):2