CHAPTER 7: GAME THEORY

Exercise 1

Solve the following games using (iterative) elimination of (weakly) dominated strategies.

1.

	L	CL	CR	R
U	5, 10	0, 11	1, 10	10, 20
MU	4, 0	1, 0	2, 0	20, 1
MD	3, 2	0, 4	4, 3	50, 1
D	2, 93	0, 92	0, 91	100, 90

2.

	L	С	R
U	3, 3	0, 3	0, 0
М	3, 0	2, 2	0, 2
D	0, 0	2, 0	1, 1

Exercise 2

Consider a second-price sealed-bid auction with two bidders denoted by i = 1, 2, with valuations $v_1 > v_2$. Assume that, in case of a tie, i.e., if both bidders submit the same bid, bidder 1 wins the auction. Formalize this auction as a strategic-form game and find the equilibrium in weakly dominant strategies.

Exercise 3

Players 1 and 2 simultaneously choose a positive integer smaller or equal to K. If both players choose the same number, player 2 pays 1 \in to player 1; otherwise no payment occurs. Determine the unique Nash equilibrium of this game.

1.

Determine the set of Nash equilibria of the following games:

		L	R
	U	0, 1	0, 2
	D	2, 2	0, 1
·			

2.

	L	R
U	6, 0	0, 6
D	3, 2	6, 0

3.

MI		M2			
	L	R		L	R
U	1, 1, 1	0, 0, 0	U	0, 0, 0	0, 0, 0
D	0, 0, 0	0, 0, 0	D	0, 0, 0	2, 2, 2

Exercise 5

Consider a first-price sealed-bid auction with two bidders denoted by i = 1, 2, with valuations $v_1 > v_2$. Assume that, in case of a tie, i.e., if both bidders submit the same bid, bidder 1 wins the auction. Also assume that valuations are common knowledge. Formalize this auction as a strategic-form game and determine the set of Nash equilibria.

Exercise 6

Consider the Cournot model with *n* firms, which simultaneously choose how much to produce. Let q_i be the quantity produced by firm *i* and let $Q = q_1 + ... + q_n$ be total quantity produced. Let *p* be the equilibrium price and assume that the inverse market

demand is: $p(Q) = \max\{0, a-Q\}$. Total cost of producing q_i by firm *i* is $c_i(q_i) = c_i q_i$, with $c_i < a$ for all i=1,...,n. All of this is common knowledge.

- i. Assume $c_i = c$ for all i=1,..., n. Determine, as a function of n, the quantities produced, the price, and the profits in Nash equilibrium (Cournot equilibrium).
- ii. Determine the limits of the functions obtained in i. when *n* goes to infinity.Explain.

iii. Assume n = 2. Determine the Nash equilibrium when $0 < c_i < \frac{a}{2}$ for each firm? What if $c_1 < c_2 < a$, but $2c_2 > a + c_1$?

Exercise 7

Find the Nash equilibrium of a Bertrand duopoly where the two firms in the market have the same cost structure.

Exercise 8

Find all Bayesian-Nash equilibria of the following game with incomplete information:

- (a) Nature chooses J_1 and J_2 with 50% probability.
- (b) Player 1 observes Nature's choice, but player 2 does not.
- (c) Player 1 chooses C or B; simultaneously, player 2 chooses E or D.

J_1	E	D
С	1, 1	0, 0
В	0, 0	0, 0

J_2	E	D
С	0, 0	0, 0
В	0, 0	2, 2

Exercise 9

Consider a Cournot duopoly with market demand given by P(Q) = a - Q, where $Q = q_1 + q_2$. Firm 1's cost function, given the quantity produced, is $C_1(q_1) = cq_1$ and firm 2's cost function is $C_2(q_2) = c_Hq_2$ with probability *a* and $C_2(q_2) = c_Lq_2$ with probability

1 - a. All of this is common knowledge. However, information is asymmetric: firm 2 knows its cost function, but firm 1 does not.

- i. Formulate this situation as game in strategic form.
- ii. Compute a Bayesian-Nash equilibrium.

Exercise 10

Consider the Battle of Sexes:

	Bach	Stravinski
Bach	3, 1	0, 0
Stravinski	0, 0	1, 3

i. Find all Nash equilibria of this game.

ii. Now assume that this game has incomplete information:

	Bach	Stravinski
Bach	$3 + t_1, 1$	0, 0
Stravinski	0, 0	$1, 3 + t_2$

Where t_1 and t_2 follow a uniform distribution in [0, x]. Determine the Bayesian-Nash equilibrium in pure strategies and show that as x goes to 0, the Bayesian-Nash equilibrium tends to the mixed strategies equilibrium of the complete information game.

Exercise 11

Two players, 1 and 2, share 1 \in using the following procedure: each player *i* chooses a number s_i , $s_i \in [0, 1]$, i = 1, 2. The choices are simultaneous. If $s_1 + s_2 \le 1$, each player gets the amount chosen; if $s_1 + s_2 > 1$ both get 0.

i. Determine the set of pure Nash equilibria.

Suppose that player 2, before choosing s_2 , observes the number chosen by player 1 and this fact is common knowledge.

- ii. Find a few examples of pure Nash equilibria of the modified game.
- iii. Determine the set of pure subgame perfect Nash equilibria.

Player 1 may choose Stop or Continue. If he chooses Stop, the game ends and each player gets $1 \in$. If he chooses Continue, both players simultaneously choose non-negative integers and each player gets the product of the chosen numbers.

- i. Formulate this situation as an extensive-form game with imperfect information.
- ii. Determine the set of pure subgame perfect Nash equilibria.
- iii. How does this set change if the non-negative integers are at most equal to M > 1?

Exercise 13

Consider the following extensive-form game with imperfect information Γ :

This game has two types of Nash equilibria:

Type <u>1</u>: $x_1(E)=1$, $x_2(E')=1$ and $x_3(E'') \in [0, 1/4]$.

Type <u>2</u>: $x_1(E)=0$, $x_2(E') \in [1/3, 1]$ and $x_3(E'')=1$.

- i. Show that equilibria of Type 1 are perfect Bayesian equilibria of Γ .
- ii. Show that no equilibrium of Type 2 is a perfect Bayesian equilibria of Γ .

Consider the following extensive-form game with imperfect information Γ :

Show that the strategy $x = (x_1, x_2)$, with $x_1(D)=1$ and $x_2(D')=1$, is a perfect Bayesian equilibrium for x < 2.

Exercise 15

Check whether Player 1's strategies (L,R), (R,L), (R,R) and (L,L) are part of perfect Bayesian equilibria of the following game:

Exercise 16

Show that Player 1's strategy (L,R) is part of a perfect Bayesian equilibrium of the following game:

Consider the following extensive-form game with imperfect information:

- a) Write the game in normal form.
- b) Determine the set of pure strategy Nash equilibria of the game.
- c) How many subgames does this game have?
- d) Determine the set of pure strategy subgame perfect Nash equilibria of the game.
- e) Check whether the equilibria found in d) are perfect Bayesian equilibria.