Equivalent martingale measures in Lévy markets

João Guerra

CEMAPRE and ISEG, UTL

November, 12, 2014

João Guerra (CEMAPRE and ISEG, UTL)

Equivalent martingale measures in Lévy markets

November, 12, 2014

1/1

From the previous lecture

• If the process $e^Y = (e^{Y(t)}, t \ge 0)$ is a martingale then

$$e^{Y(t)} = 1 + \int_{0}^{t} e^{Y(s-)} F(s) dB(s) + \int_{0}^{t} \int_{|x|<1} e^{Y(s-)} \left(e^{H(s,x)} - 1 \right) \widetilde{N}(ds, dx)$$

$$+ \int_{0}^{t} \int_{|x|>1} e^{Y(s-)} \left(e^{K(s,x)} - 1 \right) \widetilde{N}(ds, dx)$$
(1)

 $oldsymbol{\widetilde{S}}$ is a Q-martingale if and only if

$$m\sigma + \mu - r + k\sigma F(t) + \sigma \int_{\mathbb{R}-\{0\}} x \left(e^{H(t,x)} - 1\right) \nu(dx) = 0$$
 a.s. (2)

Incomplete markets and Esscher transform

- Equivalent measures Q exist with respect to which \widetilde{S} will be a martingale, but these will no longer be unique in general
- We must follow a selection principle to reduce the class of all possible measures Q to a subclass, within which a unique measure can be found.
- Aditional assumption:

$$\int_{|x|\geq 1}e^{ux}\nu\left(dx\right)<\infty$$

for all $u \in \mathbb{R}$.

 In this case, we can analytically continue the Lévy- Khintchine formula to obtain

$$\mathbb{E}\left[e^{-uX(t)}\right]=e^{-t\psi(u)}$$

where

$$\psi(u) = -\eta(iu) = bu - \frac{1}{2}k^2u^2 + \int_c^{\infty} (1 - e^{-ux} - ux\mathbf{1}_{\{|x| < 1\}}(x)) \nu(dx).$$

João Guerra (CEMAPRE and ISEG, UTL)

Equivalent martingale measures in Lévy markets

November, 12, 2014

3

Incomplete markets and Esscher transform

The processes

$$M_{u}(t) = \exp(iuX(t) - t\eta(u)),$$

 $N_{u}(t) = M_{iu}(t) = \exp(-uX(t) + t\psi(u))$

are martingales and N_u is strictly positive.

Define a new probability measure by

$$\frac{dQ_{u}}{dP}|_{\mathcal{F}_{t}}=N_{u}\left(t\right) .$$

• Q_u is called the Esscher transform of P by N_u .

Incomplete markets and Esscher transform

• Applying the Itô formula to N_u , we have

$$dN_{u}\left(t
ight) =N_{u}\left(t-
ight) \left(-kuB\left(t
ight) +\left(e^{-ux}-1
ight) \widetilde{N}\left(dt,dx
ight)
ight) .$$

• Comparing this with (1) for exponential martingales e^{Y} , we have that

$$F(t) = -ku,$$

$$H(t, x) = -ux$$

and the condition for Q_u to be a martingale (2) is

$$m\sigma + \mu - r - k^2 u\sigma + \sigma \int_c^\infty x \left(e^{-ux} - 1\right) \nu \left(dx\right) = 0$$
 a.s.

João Guerra (CEMAPRE and ISEG, UTL)

Equivalent martingale measures in Lévy markets

November, 12, 2014

4/1

Incomplete markets and Esscher transform

• Let $z(u) = \int_{c}^{\infty} x (e^{-ux} - 1) \nu (dx) - k^2 u$. Then the martingale condition is: $r - \mu - m\sigma$

$$z(u) = \frac{r - \mu - m\sigma}{\sigma}. (3)$$

- Since z'(u) < 0, z is strictly decrerasing, and therefore there is a unique u (a unique measure Q_u) that satisfies (3).
- The Esscher transform is such that this measure Q_u minimizes the relative entropy H(Q|P) between the measures Q and P (a measure of "distance" between two measures), where

$$H(Q|P) = \mathbb{E}_Q\left[\ln\left(rac{dQ}{dP}
ight)
ight] = \mathbb{E}_P\left[rac{dQ}{dP}\ln\left(rac{dQ}{dP}
ight)
ight].$$

Absence of arbitrage in exponential Lévy models

- Let X be a Lévy process and consider a market model where $S_t = S_0 \exp(X_t)$.
- Theorem (see Cont and Tankov, pages 310-311): If the trajectories of X are neither increasing (a.s.) nor decreasing (a.s.), then the exponential Lévy market model given by $S_t = S_0 \exp(rt + X_t)$ is arbitrage free: there exists a probability measure Q equivalent to P (equivalent martingale measure) such that $\widetilde{S}_t = e^{-rt}S_t$ is a Q-martingale.
- In other words, the exponential-Lévy model is arbitrage free in the following cases (not mutually exclusive):
 - 1) X has a nonzero Gaussian component (or diffusion coeff.): $\sigma > 0$.
 - 2) *X* has both positive and negative jumps.
 - 3) *X* has infinite variation paths: $\int_{|x|<1} |x| \, \nu \, (dx) = \infty$.
 - 4) *X* has positive jumps and negative drift or negative jumps and positive drift.

João Guerra (CEMAPRE and ISEG, UTL)

Equivalent martingale measures in Lévy markets

November, 12, 2014

6/

The mean-correcting martingale measure

- A practical way to obtain an equivalent martingale measure Q in a exponential Lévy model of type $S_t = S_0 \exp(X_t)$, is by mean correcting the exponential of a Lévy process (see Schoutens, pages 79-80).
- We can correct the exponential of the Lévy process X, by adding a new drift term mt (with new parameter m):

$$\overline{X}_t = mt + X_t$$
.

• When comparing the characteristics triplet of \overline{X} with those of X, the only parameter that changes is the drift: $\overline{b} = b + m$.

November, 12, 2014

The mean-correcting martingale measure

- We can change the m parameter of the process X such that $\widetilde{S}_t = e^{-rt}S_t$ is a martingale. This is equivalent to choose an equivalent martingale measure Q.
- Example: in the Black-Scholes model, we change the mean of the normal distribution $\mu \frac{1}{2}\sigma^2 = m_{old}$ (the m_{old}) into the new m parameter:

$$m_{new} = r - \frac{1}{2}\sigma^2,$$

or

$$m_{new} = m_{old} + r - \ln \left[\phi \left(-i \right) \right],$$

where $\phi(x)$ is the characteristic function of the log-returns involving the m_{old} parameter.

In the Black-Scholes model, $\ln \left[\phi \left(-i \right) \right] = \mu$.

• This choice of m_{new} will imply that the discounted price $\widetilde{S}_t = e^{-rt}S_t$ is a martingale.

João Guerra (CEMAPRE and ISEG, UTL)

Equivalent martingale measures in Lévy markets

November, 12, 2014

0 / 1

The mean-correcting martingale measure

- Procedure:
 - 1) Estimate in some way the parameters involved in the process.
 - 2) Then change the *m* parameter in a way that

$$m_{new} = m_{old} + r - \ln \left[\phi \left(-i \right) \right],$$

where $\phi(x)$ is the characteristic function of the log-returns involving the m_{old} parameter.

- 3) Then, with this new m_{new} parameter in the Lévy process, the discounted price $\tilde{S}_t = e^{-rt}S_t$ is a martingale and we have chosen the mean-correcting equivlent martingale measure.
- In page 78 of Schoutens, the author lists what is the value of the m parameter for several Lévy processes (CGMY, VG, NIG, etc...)

- Applebaum, D. (2004). Lévy Processes and Stochastic Caculus. Cambridge University Press. (Section 5.6)
- Applebaum, D. (2005). Lectures on Lévy Processes, Stochastic Calculus and Financial Applications, Ovronnaz September 2005, Lecture 3 in http://www.applebaum.staff.shef.ac.uk/ovron3.pdf
- Cont, R. and Tankov, P. (2003). Financial modelling with jump processes. Chapman and Hall/CRC Press, (Section 9.5.)
- Schoutens, W. (2002). Lévy Processes in Finance: Pricing Financial Derivatives. Wiley, (Sections 5.4 and 6.2.)