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2.2.1. Interest Rate Trees

2.2.2. Continuous‐time Single‐factor models

2.2.3. Continuous‐time Multi‐Factor models

2.2.4. Modeling the Term Structure: Affine Models

2.2. SHORT RATE MODELS
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• Focus: How to model the term structure by specifying the
behavior of the short‐term interest rate?

• Why do we use trees? ‐ A tree is a discrete‐time
representation of the stochastic process.

• Most trees are binomial, event though trinomial trees are
also used, namely to value interest rate derivatives.

2.2.1. Interest Rate Trees

Source: Hull (2017)
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 General binomial model
 Given the current level of short‐term rate r, the next‐period short rate can

take only two possible values: an upper value ru and a lower value rl, with
equal probability 0.5

 In period 2, the short‐term interest rate can take on four possible values: ruu,
rul, rlu, rll

 More generally, in period n, the short‐term interest rate can take on 2n

values => very time‐consuming and computationally inefficient

 Recombining trees
 Means that an upward‐downward sequence leads to the same result as a

downward‐upward sequence (regardless being binomial or trinomial trees)
 For example, rul = rlu
 Only (n+1) different values at period n

2.2.1 – INTEREST RATE TREES
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Period 0 Period 1 Period 2 Period 3 Period 4 …
ruuuu

ruuu

ruu ruuul

ru ruul

r rul ruull

rl rull

rll rulll

rlll

rllll

INTEREST RATE TREE ‐ Recombining
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 We may write down the binomial process as

rt  rt1  rt  t

where      are independent variables taking on values (+1,‐1) 
with probability (1/2,1/2)

 Problem: rates can take on negative values with positive 
probability

 Fix that problem by working with logs
 ln rt  ln rt1  ln rt   t

 rt1  rt  exp  t   rt 
u  exp  

d  exp  










with probability (1/2,1/2)

INTEREST RATE TREE – analytical

 t
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 More general models (that can also be written on log
rates, for any time increment and any mean):

  rt  rtt  rt   t,t,rt    t,t,rt  t

 Continuous‐time limit (Merton (1973)):

drt  rtdt  rt  dt dWt

 Specific case – assuming that the drift and the variance are 
proportional to the time increment:

rt  rtt  rt  t  t t

rt  rt1  rt  t
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INTEREST RATE TREE – calibration
 Calibration of the model is performed so as to make model

consistent with the current term structure.
 We have at date 0 (working in logs):

 As the uncertainty source is the path of the interest rate (up or
down), the difference between interest rates in t+t will be
originated by the random factor (the deterministic factor will be
the same if the interest rate increases or decreases):

 ln r0  ln rt  ln r0  t 0 t

   ln ru  ln rl  2 t    or  ru  rl exp 2 t 
 If we take as given an estimate for  and the current yield

curve yt, we iteratively find the values ru, rl, ruu, rul, rlu, rll, etc.,
consistent with the input data.

rt  rtt  rt  t   tt(From )
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 Consider a 2 period tree (t=0 and t=1 => t = 1)
 The price 1 year from now of a 2‐year Treasury bond (at the par

value, i.e. coupon rate = yield) can take 2 values:
‐ Pu ‐ associated with ru (price with the interest rate increasing)
‐ Pl ‐ associated with rl (price with the interest rate decreasing):

Pu 
100  y2

1 ru
  and  Pd 

100  y2
1 rl

NPV at t=1 of the future cash‐flows of the bond ‐
redemption and the last coupon (y2, the 2‐period
yield at t=0, that corresponds to the coupon
rate, as it is assumed that the bond is at par
value), as in t=1 there is only one remaining
period for the bond => the future cash‐flows in
t=1 are the redemption and the last coupon.
The uncertainty in t=0 about the bond price in
t=1 stems from the uncertainty about the
interest rate, which may have increased or
decreased.

EXAMPLE

Coupon rate, which is equal to 
the yield for a bond at par.

ru and rl must be seen as the 2 
possible future values in t=0 of 
the 1‐period interest rate in t=1
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 Given that

 taking expectations at time 0, we find an equation that can be
solved for ru and rl , replacing ru by the previous expression
(and being t = 1) and taking into consideration that

 :

100 
1
2

100  y2
1 rl exp 2   y2

1 y1


100  y2
1 rl

 y2

1 y1

















 

 ln ru  ln rl  2 t    or  ru  rl exp 2 t 

1st year coupon, as in t=0 we
have 2 coupons ahead

Pu 
100  y2

1 ru
  and  Pd 

100  y2
1 rlBond price in t=0 is the

expected value of the
future cash‐flows – the
coupon in t=1 and the
bond price also in t=1,
which is the NPV at t=1 of
the cash‐flows to be paid
in t=2.
The bond price in t=0 is
also equal to 100, as it is
assumed that the bond is
at par.
The probability for each
bond price in t=1, with ru
or rl , is ½.

Discounted by y1 as these are cash‐
flows that will occur in t=1

EXAMPLE
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 General expression for a single‐factor continuous‐time
model (from the continuous time limit ‐Merton (1973))

drt   t,rt dt  t,rt dWt

 The term W denotes a Brownian motion ‐ process with
independent normally distributed increments:
 dW represents the instantaneous change.
 It is stochastic (uncertain)
 It is a stochastic variable with a normal distribution with zero mean

and variance dt

dWt  t dt

2.2.2 – CT SINGLE FACTOR MODELS
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WHAT IS A GOOD MODEL?
 A good model is a model that is consistent with reality

 Stylized facts about the dynamics of the term structure
 Fact 1: (nominal) interest rates are positive

 Fact 2: interest rates are mean‐reverting

 Fact 3: interest rates with different maturities are imperfectly 
correlated

 Fact 4: the volatility of interest rates evolves (randomly) in time

 A good model should also be
 Tractable

 Parsimonious
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Empirical Facts 1, 2 and 4
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Empirical Fact 3

1M 3M 6M 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

1M 1

3M 0.992 1

6M 0.775 0.775 1

1Y 0.354 0.3 0.637 1

2Y 0.214 0.165 0.42 0.901 1

3Y 0.278 0.246 0.484 0.79 0.946 1

4Y 0.26 0.225 0.444 0.754 0.913 0.983 1

5Y 0.224 0.179 0.381 0.737 0.879 0.935 0.981 1

6Y 0.216 0.168 0.352 0.704 0.837 0.892 0.953 0.991 1

7Y 0.228 0.182 0.35 0.661 0.792 0.859 0.924 0.969 0.991 1

8Y 0.241 0.199 0.351 0.614 0.745 0.826 0.892 0.936 0.968 0.992 1

9Y 0.238 0.198 0.339 0.58 0.712 0.798 0.866 0.913 0.95 0.981 0.996 1

10Y 0.202 0.158 0.296 0.576 0.705 0.779 0.856 0.915 0.952 0.976 0.985 0.99 1

Daily changes in French swap markets in 1998
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MOST POPULAR ENDOGENOUS SHORT RATE CT MODELS

Constant volatility model
with mean‐reversion to (as 
it is na Ornstein‐Uhlenback
process

Stochastic
volatility model
with mean-
reversion to 

 Most important types of one‐factor interest rate (xt) models, being
the short‐term rate the single factor (i.e. endogenous models):

(from )drt   t,rt dt  t,rt dWt
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 Most important types of one‐factor interest rate (xt) models, being
the short‐term rate the single factor (i.e. endogenous models):

(from )

 1. Vasicek (1977):

 The spot rate follows an Ornstein‐Uhlenbeck process => contrary to the
random walk (Wiener process), which diverge to infinite values in the long‐
run, this process converges to the long‐term mean 

drt   t,rt dt  t,rt dWt

MOST POPULAR ENDOGENOUS SHORT RATE CT MODELS
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VASICEK MODEL

 Therefore, the Vasicek model has some peculiarities that make
it attractive:

‐ Gaussian disturbances;
‐ Constant volatility, making the model more tractable;
‐ Mean reverting – expected value of the short rate tends to a

constant value  with velocity given by .

 Drawbacks:

‐ Rates can assume negative values with positive probability.
‐ Gaussian distributions for the rates are not compatible with

the market implied distributions.
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COX‐INGERSOLL AND ROSS MODEL

 2. CIR (1985):

 The CIR model is also mean reverting, like Vasicek.

 However, the volatility is not constant, depending on the short‐
term rate.

 This stochastic volatility brings the model closer to reality.

 However, the model becomes less tractable as it requires the
single factor to be positive.



Jorge Barros Luís|   Interest Rate and Credit Risk Models    146

POPULAR EXOGENOUS SHORT RATE CT MODELS

 Exogenous short‐rate models are built by suitably modifying the above
endogenous models.

 The basic strategy that is used to transform an endogenous model into an
exogenous model is the inclusion of time‐varying parameters.

 Therefore, interest rates become determined not only by the short‐term
rates but also by a time‐varying drift:
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2.2.3 – CT MULTI FACTOR MODELS

1. Fong and Vasicek (1991) model ‐ short rate and its
volatility (v) as two state variables

MOST POPULAR MODELS
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2.2.3 – CT MULTI FACTOR MODELS

2. Longstaff and Schwartz (1992) model

 Longstaff and Schwartz (1992) use the same two state variables
(the short rate and its volatility) , but with a different specification.

 The starting point is a two‐factor model, where the drift is
governed by the two factors or state variables, while the variance is
a function of only one of them:

 With this specification, it is ensured that the drift and the variance
are not perfectly correlated.

MOST POPULAR MODELS
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2.2.3 – CT MULTI FACTOR MODELS

2. Longstaff and Schwartz (1992) model

 The dynamics of the state variables are as follows:

MOST POPULAR MODELS
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2.2.3 – CT MULTI FACTOR MODELS

2. Longstaff and Schwartz (1992) model

 With the rescaling of the state variables to ,
the dynamics of state variables are as follows:

MOST POPULAR MODELS
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2.2.3 – CT MULTI FACTOR MODELS

2. Longstaff and Schwartz (1992) model

 Relevant features:
(i) All parameters are positive;
(ii) r is non‐negative, since both state variables follow square root processes;
(iii) r has a long‐run stationary distribution with mean and variance:

(iv) Volatility also has a stationary distribution with mean

(v) r depends on volatility, but volatility also depends on r;

MOST POPULAR MODELS
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2.2.3 – CT MULTI FACTOR MODELS

2. Longstaff and Schwartz
(1992) model

 Closed‐form expressions for
riskless discount bond prices
with maturity ( = 0 => F = 1)

MOST POPULAR MODELS
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2.2.3 – CT MULTI FACTOR MODELS

2. Longstaff and Schwartz (1992) model

 YTM of riskless discount bonds with maturity:

 For a given  maturity, the yield is a linear function of r and V.

MOST POPULAR MODELS
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2.2.3 – CT MULTI FACTOR MODELS

2. Longstaff and Schwartz (1992) model

 It can be shown that:

  0 => Yt ‐> r
 ∞  Yt tends to a constant

 The current values of r and V become less relevant for very distant cash‐flows

 The current term structure is irrelevant for the determination of very long
interest rates.

MOST POPULAR MODELS
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2.2.3 – CT MULTI FACTOR MODELS

2. Longstaff and Schwartz (1992) model

 This model offers a much larger variety of shapes than single factor models,
with one inflexion point for the slope and the convexity.

 Instantaneous expected return for a discount bond:

 Subtracting r from the previous result, one obtains the risk premium.
 For a given  maturity, the term premium is a linear function of r and V,

depending on  (market price of risk):
  <0 => term premium > 0.
  =0 => term premium = 0 => Expectations theory holds.

 For small , the term premium is an increasing function of r.

MOST POPULAR MODELS
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3. Balduzzi et al. (1996) models

 Balduzzi et al. (1996) suggest the use of a three‐factor model by
adding the mean of the short‐term rate to a 2‐factor model.
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2.3. AFFINE MODELS OF THE TERM STRUCTURE

• Fundamental asset pricing concept ‐ The pricing of any financial
asset is based on a very intuitive result ‐ the price corresponds to
the present value of the future asset pay‐off:

being Pt the price of a financial asset providing nominal cash‐flows and Mt+1

the nominal stochastic discount factor (sdf) or pricing kernel, as it is the
determining variable of Pt . In fact, solving equation (1) forward, the asset
price may be written solely as a function of the pricing kernel, as:

(1)

(2)
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• Asset prices and returns are related to their risk, i.e., to the asset
capacity of offering higher cash‐flows when they are more
needed and valued.

• Actually, the more an asset helps to smooth income fluctuations,
the less risky it is and the higher will be its demand for ensuring
against “bad times”.

• Considering that

• Equation (1) may be written as:

(3)
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• When the asset is riskless, its pay‐off in t+1 is known in t with
certainty => Pt+1 may be considered as a constant in t, which
implies, from (1):

• As the LHS of (4) is the inverse of the risk‐free asset’s gross
return, denoted by , replacing in equation (3) by

, it is obtained:

The asset price is the discounted expected value of its future pay‐
off or price, adjusted by the covariance of its return with the sdf.

(4)

(5)
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• As it will become clear later, this covariance consists in a risk
factor and it is positive for assets that pay higher returns when
they are more needed.

• The same result may be obtained for interest rates, instead of
prices. Actually, dividing both sides of equation (1) by Pt, one
gets:

(6)



Jorge Barros Luís|   Interest Rate and Credit Risk Models    161

• Applying the already used statistical result

to (6) it is obtained

• Following equation (4) we obtain:

• Therefore, we get:

(9)

The interest rate of an asset results from the
risk‐free rate, adjusted by a risk factor => the
lower the covariance, the higher the risk and
the interest rate.

(7)

(8)
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• With some additional self‐explanatory algebra, the following
result is obtained:

• In equation (10) , is the coefficient of a regression of
on .

• Therefore, it measures the correlation between the asset’s return
and the stochastic discount factor (sdf) or the quantity of risk.

(10)
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• Market price of risk:

• From equation (8), denoting by the correlation
coefficient between the sdf and the asset’s rate of return and

and , the excess return of any asset over the risk‐free
asset is:

• Equation (11) illustrate a basic result in finance theory: the excess
return of any asset over the risk‐free asset depends on the
covariance of its rate of return with the sdf => an asset with pay‐
off negatively correlated to the sdf is riskier.

(11)
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• The mean‐variance frontier will correspond to the limiting values
of equation (11) => expected values and standard‐deviations must
lie in the interval .

• As on the frontier all asset returns are perfectly correlated with
the sdf, all asset returns are also perfectly correlated with each
other => it is possible to define the return of any asset as a linear
combination of the returns of any 2 other assets ‐ market or
wealth portfolio and the risk‐free asset:

mean-variance region
minimum risk (frontier):

(12)

- Rate of return of market portfolio CAPM
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.

• (10) + (12) => CAPM assumes the sdf as a function of the gross
rate of return of the wealth market portfolio, while the market
price of risk is the spread between the expected market portfolio
return and the risk‐free asset return.

• CCAPM: an asset will pay a higher return or is riskier when the
covariance of its return with the marginal utility of consumption is
lower, i.e. when consumption is higher => the asset is riskier when
it pays more when those cash‐flows are less needed.

(10)

(8)
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• Affine models: log‐linear relationship between asset prices and
the sdf, on one side, and the factors or state variables, on the
other side.

• These models were originally developed by Duffie and Kan (1996),
for the term structure of interest rates.

• Equation (1) in logs:

• Assuming joint log‐normality of asset prices and discount factor
=> if log X ~ N(,2) then log E(X) =  + 2/2 (as X is lognormally
distributed, being its mean E(X) = exp( + 2/2) => basic equation
considered in the affine models:

 

(13)

(14)
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• DK models: multifactor affine models of the term structure, where
the pricing kernel is a linear function of several factors

• DK models advantages:

(i) Accommodate the most important term structure models, from
Vasicek (1977) and CIR one‐factor models to multi‐factor models.

(ii) Allow the estimation of the term structure simultaneously on a
cross‐section and time‐series basis.

(iii) Provide a way of computing and estimating simple closed‐form
expressions for the spot, forward, volatility and term premium
curves.
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• Discount factors:

• Higher s  higher covariance between the discount factor and
the asset return lower expected rate of returns or lower risk.

• Another way to write the pricing kernel (from (15)):

(15)
V(Zt) - variance matrix of the random
shocks on the sdf, defined as a diagonal
matrix with elements
and No.rows/columns equal to the No.
factors.
t - independent shocks

- market prices of risks, as they govern
the covariance between the stochastic
discount factor and the yield curve factors.

(16)
⋯ , , ⋯ ,
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• The k factors zt are defined as mean reverting, forming a k-
dimensional vector :

• From (17), we have the factors as follows:

, where

• Asset prices are also log‐linear functions of the factors.

(17)

 - long-run mean of the
factors.
  has positive diagonal
elements, that determine the
speed of convergence of the
factors to the long-term mean,
ensuring that the factors are
stationary;

n ‐ term to maturity
An and Bn ‐ vectors of parameters to be estimated.
Bn ‐ factor loadings (impact of a random shock on
the factors over the log of asset prices).

(18)

(19)
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• The question now is how to relate the parameters of the stochastic
factor to the parameters of bond prices and the term structure of
interest rates identification of the parameters.

• In term structure models, the identification of the parameters is
easier assuming that the term structure is modelled using zero‐
coupon bonds paying 1 monetary unit => the log of the maturing
bond price = 0 => (from (19))

• According to (15) and (19), the 1st term on the RHS of (14) is in (20):

=> in t+1: ,

(14)

(15)

(19)

(20)
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• Using the factor definition in (17) we get
from (20):

• Computing the expected value and given that the random shocks
are assumed to have zero mean => all terms in t+1 will be cancelled
=> (21) may be simplified to:

(21)

(22)
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(15) +

(19)

• To obtain the variance in the 2nd term on the RHS of

(14) , all constant terms will
be eliminated:

• Evidencing the independent terms and the terms in zt ,

(23)

(24)
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• From

• Putting in evidence the independent terms and the terms in zt ,
from (25) one obtains:

• Considering that the continuously compounded yield is

(25)

(26)

(22)

(14)

(24)
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• Comparing the coefficients on the RHS of

(19)

to the independent term and the term associated to the factor in

(26)

the recursive restrictions in (27) and (28) are obtained:

(28)

(27)
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• Considering that the continuously compounded yield is:

• From (29) and

(19)

the yield curve is defined as:

(29)

(30)
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• From equations (27), (28) and (30)

and

(30)

as well as the normalisation , it is obtained the short‐
term rate (as with n=1, An‐1 and Bn‐1 will be A0 and B0 correspondingly,
both equal to 0):

(31)

(27)

(28)
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• Correspondingly, using the definition of the factors in

(17)

• and solving backwards, one gets:

• Given that the expression in the sum corresponds to the sum of the
first n‐terms of a geometric progression with rate f and first term
equal to , equivalent to , the following
expression is obtained:

(32)

(33)
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• To calculate the expected value of future short‐term interest rate,
one can use

(31)

• and plug

(33)

writing in matrix form (as the matrices involved in the computations
are diagonal)

(34)
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• From

one gets the variance of interest rates:

• Instantaneous or one‐period forward rate = log of the inverse of the
gross return =>

(35)

(36)

(17)

(30)
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• From

(19)

(36)

one gets the instantaneous or one‐period forward curve:

(37)
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• From the current and the one‐period ahead bond prices in the price
equation in

(19)

and the short‐term rate in

(31)

it is obtained the term premium as the difference between the one‐
period expected return and the short‐term interest rate:

(38)
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• From the recursive restrictions on the factor loadings in

equation (38) can be simplified as in (39):

(27)

(28)

(38)

(39)
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• The term premium can alternatively be calculated from the basic
pricing equation

(14)

• Solving in order to , we get:

• Given that the , as is the only
stochastic component in the rate of return, the previous equation is
equal to:

(42)

(40)

(41)
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• According to

(14)

and considering the assumption

• Solving in order to , having in mind that p0=0, we get the
price of the short‐term bond:

(43)
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• From

(42)

(43)

(29) and

(38)

the term premium will be equal to
(44)

Risk premium determined by the

covar. of the asset’s rate of return

with the stochastic discount factor

=> the lower the covar., the higher

the risk premium is.
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• As from

(19)

we get

(45)

the covariance in

(44) is

(46)

• Consequently, equation (44) for the term premium becomes
equivalente to:

(47)



Jorge Barros Luís|   Interest Rate and Credit Risk Models    187

• From

(15) and

(17)

the term premium in

(47)

may be written as:

(48)

at least one of the market prices of risk must be
negative in order to have a positive term premium.
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• One‐factor models were the first step in modelling the term structure of interest

rates.

• These models are grounded on the estimation of bond yields as functions of the

short‐term interest rate.

• Vasicek (1977) presented the whole term structure as a function of a single factor,

the short‐term interest rate, whose volatility was assumed to be constant.

• Vasicel model can have the following DK characterisation:

* Depending on whether the true values of interest rates or their diferences to the mean are considered.

• The Cox et al. (1985a) model added the stochastic volatility feature to the Vasicek

model, avoiding interest rates to go negative, as in the Vasicek model. Thus, it

corresponds to an analogous particular case of the DK model, with and .

.

K i     
1 0 or  *     
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• Affine models may be classified according to:

(i) number of factors considered;

(ii) volatility properties.

• According to Litterman and Scheinkman (1991), the pronounced
hump‐shape of the US yield curve => 3 factors are required to explain
the shifts in the whole term structure of interest rates.

• These factors are usually identified as the level, the slope and the
curvature, being the level often responsible for the most important
part of interest rate variation.
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• Given the stochastic properties of interest rates volatility, Gaussian or
constant volatility models are often rejected. Besides, these models
impose constant volatility and one‐period term premium curves (non‐
pure version of expectations theory).

• The forward rate also exhibits some shortcomings.

• Nonetheless, Gaussian models are used very often as:

(i) interest rate volatilities don’t suffer significant changes and during
most periods;

(ii) Constant volatility models as much easier to implement, namely
with non‐observable or latent factor, given that the volatility
depends on the square root of the factors in stochastic volatility
models => signal restrictions have to be imposed, which in harder to
do in iterative econometric processes.
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• Shortcomings of the forward rates under constant volatility:

(37)

as i=0, the forward rate may be written as:

(49)

• As the last term of the RHS of

(28)

is zero when the volatility is constant, each factor loading in a
multifactor Vasicek model corresponds to:

(50)
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• The one‐period forward rate may thus be written

From

(49) as:

(51)

• Though this specification of the forward‐rate curve accommodates
very different shapes, the limiting forward rate cannot be
simultaneously finite and time‐varying.

• In fact, if , the limiting value will not depend on the factors,
as the limit of the last term on the RHS is zero.

• If , the limiting value of the instantaneous forward becomes
time‐varying but assumes infinite values, as in this case.
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• 2‐factor constant volatility (i.e. Vasicek‐type) model:

Stochastic discount factor: From (15)

(52)

Factors ‐ first‐order autoregressive processes with zero mean
(corresponds to considering the differences between the “true” factors
and their means): From (17)

(53)

Bond prices: From (19)
(54)
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Yield curve: From (30)

(55)

Factor loadings: From (27), (28) and (52)

(56)

(57)
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Short‐term interest rate: From (31)

(58)

Given the common normalisation

• This model has the appealing feature of the short‐term being the
sum of 2 factors plus a constant.

• The usual conjecture is that one factor is related to inflation
expectations and that the other factor reflects the ex‐ante real
interest rate.
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One‐period forward curve:

(59)

From (30)

Volatility curve: From (35)

(60)

as the factors have constant volatility, given by , the
volatility of yields depends neither on the level of the factors, nor on
the level of the short‐rate.
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Term premium:

(61)

From (30)
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• If the factors that determine the dynamics of the yield curve are
assumed to be non‐observable and the parameters are unknown, a
usual estimation methodology is the Kalman filter and a maximum
likelihood procedure.

• Kalman Filter ‐ algorithm that computes the optimal estimate for the
state variables at t using the information available up to t‐1.

• Maximum likelihood procedure – provides the estimates for the
parameters.
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• The starting point for the derivation of the Kalman filter is to write the
model in state‐space form:

‐ observation or measurement equation

(62)
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‐ state or transition equation

(63)

r – No. variables (interest rates) to estimate
n – No. observable exogenous variables (with no observable factors, n=1 => A becomes a column vector 
with the independent terms for each interest rate)
k – No. non‐observable or latent exogenous variables (the factors).
t and t - i.i.d. residuals, distributed as and
Variance matrices:  .
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• One may estimate simultaneously the yields and the volatilities, to
avoid implausible estimates for the latter:

(64)
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• Contrary to the pioneer interest rate models, such as Vasicek (1977)
and Cox et al. (1985a), where the short‐term interest influenced the
whole term structure, the latent factor models do not use explicit
determinants of the yield curve.

• As previously referred, one common conjecture is to assume that one
factor is related to the ex‐ante real interest rate and a second factor
linked to inflation expectations.

• Therefore, one may start by estimating the factors and at a second
stage try to identify how does one of the factors relate to inflation.

• Alternatively, one may specifically relate inflation to the second factor
in the model to be estimated, as follows.
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• Assuming that inflation () is an AR(1) process, being its mean and
 a parameter that measures the rate of mean‐reversion:

(65)

• If the short‐term interest is the sum of the factors and one of the
factors is related to inflation, we may write:

(66)

• From the 2 previous equations:

(67)

• As stated before, we have
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• If the link between inflation and the second factor is considered, the
observation equation becomes:

(68)
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• Major drawback: it implies the 2nd factor to explain simultaneously
the inflation as well as the long term rates, which in some periods
may evidence significantly different volatilities.

(i) In periods of higher volatility of the long‐term rates, the estimated
inflation tends to present a more irregular behaviour than the true
inflation.

(ii) The AR(1) process for inflation is not necessarily the optimal model
for forecasting inflation, being too simple concerning its lag
structure and not allowing for the inclusion of other macro‐
economic information that market participants may use to form
their expectations of inflation (e.g. monetary aggregates,
commodity prices, exchange rates, wages and unit labour costs).
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• However, a more complex model would certainly not allow a simple
identification of the factor.

• One way to overcome these problems is by using a joint model for the
term structure and the inflation, where the latter still shares a
common factor with the interest rates but is also determined by a
second specific factor:

(69)

• and
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• In this case, the observation and the state equations become:

(70)

(71)
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• One may also use the DK framework to model simultaneously the
term structures of interest rates of 2 countries.

• A first attempt to model jointly the term structures of 2 countries is
found in Fung et al. (1999), where a 2‐factor stochastic volatility
model is used to estimate simultaneously the U.S. and the Canadian
term structures.

• In this case, it was assumed that both countries share a common
factor related to the real interest rate, following the close trade
relationship between those countries. As each country pursued its
own monetary policy, it was assumed that the U.S. and the Canadian
term structures also depended on a specific factor, related to the
inflation expectations and, accordingly, to the monetary policy.
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• In the Euro area, the opposite happens, i.e., there is a common
monetary policy and real interest rates differ among the member
countries.

• One can model the joint term structures of 2 Euro Area countries
assuming a common factor related to the inflation expectations and a
specific factor that is supposed to be related to the real interest rate,
modelling the 1st term structure as previously stated and the 2nd as:

(72)
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• Remaining equations:

(73)

(74)

(75)

• 2‐country model with (common) inflation:

(76)
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• The estimation departs from assuming that the starting value of the
state vector Z is obtained from a normal distribution with mean

and variance P0 (usually it is assumed that the starting values of
the factors are zero).

• can be seen as a guess concerning the value of Z using all
information available up to and including t = 0.

• Using and P0 and following (17), the optimal estimator for Z1 will
be given by:

(77)
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• Consequently, the variance matrix of the estimation error of the
state vector will correspond to:

(78)

• Given that , may be obtained from:
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• Consequently, the variance matrix of the estimation error of the
state vector will correspond to:

• As wt is independent from Xt and from all the prior information on
y and x (denoted by ), we can obtain the forecast of yt
conditional on Xt and directly from

(62)

(79)

• Therefore, from (62) and (79), we have the following expression for
the forecasting error:

(80)
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• From (80), the conditional variance‐covariance matrix of the
estimation error of the observation vector will be:

(81)

• After the updates of the mean and variance‐covariance matrices of
the dependent variables, the log‐likelihood function is computed
to estimate the parameters:

(82)

being (for t 1 T) and assuming that the starting value is ero
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• The maximization of the log‐likelihood function is often performed
as the minimization of the symmetric of that function.

• In order to characterise the distribution of the observation and
state vectors, it is also required to compute the conditional
covariance between both forecasting errors.

• From (81) we get:
(83)

• Therefore, using (79), (81) and (83), the conditional distribution of
the vector is:

(84)
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• Consequently, following (84), the distribution of Zt given Yt, Xt and

is , where and are respectively the optimal
forecast of Zt given Pt|t and the mean square error of this forecast,
corresponding to the following updating equations of the Kalman
Filter:

(85)

(86)

• Following this update, a new estimate for these estimates can be
obtained, generalizing (77) and (78):

(87)
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(88)

• The matrix is usually known as the gain matrix,
since it determines the update in due to the estimation error of

• Concluding, the Kalman Filter may be applied after specifying
starting values for and using equations (79), (81), (85), and
(86) and iterating on equations (87) and (88).

Ricatti equation
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(if there are
(if all iterations iterations to be done)
 are done)

(if the maximum hasn't
(if the maximum for the been obtained)
 sum has been obtained)

function (82)

Forecasting the new values for
S (87) and P (88)

END

matrices (A, H, C, F, R, Q) 
Starting values for the parameter

log-likelihood function (82)

New value for Y (79)

 (77) and for P1|0 (78)
New value for S|0

Value of the log-likelihood

error of the observation equation (81)
Variance matrix of the estimation

Starting values for the state vector S

Sum of the values of the

Forecasting error of Y (80)

Updating S (85) and P (86)

errors of both equations (83)
Conditional covariance between the
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Goal: Model the dynamics of the entire yield curve, assuming
there is just one factor in a risk‐neutral world.
A zero‐coupon bond return will be the risk‐free rate

2.4. HJM
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Stochastic process:

Forward rate:

From (1) and Ito’s Lemma:

(1)

(2)

(3)

The risk‐neutral process
for the forward rate
depends solely on the
bond price volatility
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It is possible to show that:

There is a link between the drift and the standard‐deviation of
the instantaneous forward rate (F(t,T)).

Key problem: risk‐free interest rate is non‐Markov  the risk‐
free interest rate process depends on its previous path

(4)


