Outline
 Simple Interest
 Discount
 Compound interest
 Annuities
 Other An.
 Variable An.
 Loans
 Leasing
 Bonds

 000
 00000000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 00000000
 00000

Quantitative Finance Economics, Finance and Management

Joaquim Montezuma de Carvalho, Alfredo D. Egídio dos Reis

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

 Outline
 Simple Interest
 Discount
 Compound interest
 Annuities
 Other An.
 Variable An.
 Loans
 Leasing
 Bonds

 000
 00000000
 00000000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 00000000
 0000

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Outline

- Programme
- Referências

2 Simple Interest

- Time and interest
- Simple Interest
- Equation of Value

3 Discount

- Discount
- Applications
- Interest versus discount rate

4 Compound interest

- Future value, Present value
- Simple vs compound interest
- Nominal Rates
- Equivalent rates
- Nominal rate and Effective rate

 Outline
 Simple Interest
 Discount
 Compound interest
 Annuities
 Other An.
 Variable An.
 Loans
 Leasing
 Bonds

 000
 00000000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 00000000
 00000

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Compound Rate
- Time to reach a certain growth
- Equation of Value
- Continuous compounding
- 5 Annuities
 - Ordinary annuities
 - Ordinary Annuity
 - Annuity due
- 6 Other An.
 - Deferred Annuities
 - Perpetuities
 - Calculation of Installments, Time& Rate
- 🕖 Variable An.
 - Increasing Arithmetic Progression
 - Decreasing Arithmetic Progression
 - Geometric Progression
- 8 Loans
 - Amortization Schedules

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

• Outstanding Balance

- Concepts
- Bond Classification
- Amortization Table
- Valuation of Bonds

- Definitions
- Valuation

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
000									

Programme

Programme

- Simple interest
 - $1.1\,$ Types of time and interest
 - 1.2 Future value at simple interest
 - 1.3 Present value at simple interest
 - 1.4 Simple interest debt instruments
 - 1.5 Equation of value
 - 1.6 Equivalent time
- Oiscount interest
 - 2.1 Comparing simple and discount interest
 - 2.2 Discount applications. Treasury Bills
- Ompound Interest
 - 3.1 Compound interest. Future Value Formula
 - 3.2 Nominal rates and effective interest
 - 3.3 Finding the Compound rate
 - 3.4 Finding the time for an investment to grow

ション ふゆ く 山 マ チャット しょうくしゃ

- 3.5 Equation of Value
- 3.6 Continuous compounding

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
000	000000000	0000000	000000000000000000000000000000000000000	00000000	0000000	0000000			0000000

Programme

Ordinary Annuities

- 4.1 The future value of an ordinary annuity
- 4.2 The Present Value of an Ordinary Annuity
- 4.3 The Periodic Payment or Rent for an Ordinary Annuity

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Other Annuities Certain

- 5.1 Deferred Annuities
- 5.1 Perpetuities
- O Variable Payment Annuities
 - 6.1 Arithmetic
 - 6.2 Geometric
- Amortisation of Debts and Amortisation Schedules
- Investing in bonds
- Leasing
- Shares valuation

Outline Simple Inte	rest Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
00000000								

Referências

References

- Guthrie, Gary C. and Lemon, Larry D. (2014). *Mathematics of Interest Rates and Finance*, Pearson, London.
- Broverman, S.A. (2008). *Mathematics of Investment and Credit*, ACTEX Academic Series, ACTEX Publications Inc., Winsted, Connecticut, USA.
- Barroso, M. N.; Couto E. & Crespo, N. (2009). *Cálculo e Instrumentos Financeiros*, Escolar Editora, Lisboa.

ション ふゆ く 山 マ チャット しょうくしゃ

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
	00000000								
Dutantanal	Time and Inter								

Available income of people may be applied in two main forms:

- **Consumption**: Expenditure in goods or services that have a defined life time, which does not permit any return on that which has been spent.
- **Saving**: That may be changed into liquid currency without any type of income or by **investment**:

Application in the form of real property or financial assets with the intention of attaining an income.

ション ふゆ く 山 マ チャット しょうくしゃ

OutlineSimple InterestDiscountCompound interestAnnuitiesOther An.Variable An.LoansLeasingBonds00

Principal, Time and Interest

Capitalization: (or, Accumulation of Capital) Transformation, provoked by time, of a capital into <u>capital</u> and <u>interest</u>;

Principal: Amount of money invested or borrowed (present value).

It is a stock variable, and that is always related to a moment/instant, at the beginning or the end of a period of capitalization;

- Interest: Cost or charge for the use of borrowed money. The Interest is a flow variable, is always related to a period.
- Interest Rate: Interest is usually expressed as a percentage for a given period. Percentage of the amount of interest charged for a loan for a given time period.

Example

 $i_A = 5\%$: 5% per annum, per year, $i_M = 1.5\%$: 1.5% per month.

 Outline
 Simple Interest
 Discount
 Compound interest
 Annuities
 Other An.
 Variable An.
 Loans
 Leasing
 Bonds

 000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 0000000
 0000000<

Time, Term: Length of the loan in time units (period). There's a correspondence to the rate. Refers to the period during which the capital is applied periodically.

Period: Accumulation period, Payment period, Interest time period.

Example

The period can be: Annual, Semi-annual, Quarterly, Monthly, etc. Correspondingly, the Year, the Semester, the Quarter, the Month, etc.

Example

Similarly, the **Payment Period** could be: <u>Annually</u>: once a year; Semi-annually: Twice a year; Quarterly: 4 times a year, etc.
 Outline
 Simple Interest
 Discount
 Compound interest
 Annuities
 Other An.
 Variable An.
 Loans
 Leasing
 Bonds

 000
 000
 000000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000

Golden Rules of financial mathematics

• 1st Golden rule:

The presence of principal, the presence of time and the <u>absence of interest</u> is an impossibility.

The <u>absence of principal</u> or the <u>absence of time</u> and the presence of interest is another impossibility.

• 2nd Golden rule:

Any mathematical operation on two or more capitals requires homogenization in time.

That is, capitals cannot be added unless they are valued at the same point in time.

• 3rd Golden rule $(I = P \times i)$:

The <u>interest</u> in each period of capitalization is equal to the principal at the beginning of the period multiplied by the interest rate.

Outline Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
000 00000000								

Time and interest

Some Basic Concepts

Approximate Time: Each month is assumed to be 30 days with exact time used for any portion of a month ;

Ordinary Interest: The length of a year is assumed to be 360 days (Bankers Rule);

Exact Time: Every day of the term except the first day;

Exact Interest: The length of a year is taken as 365 days (366 for a leap year, February = 29 days)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

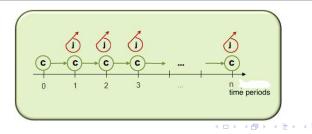
Accumulation in Simple Interest Regime

The Interest produced in each period is not added to the Principal.

Two sub-regimes may be distinguished:

- The regime of simple interest: The interest produced in each period is paid;
- The regime of interest: The interest produced in each period is retained.

Interest gains are constant throughout the period of time, unless interest of each period only varies if the interest rate varies.



OutlineSimple InterestDiscountCompound interestAnnuitiesOther An.Variable An.LoansLeasingBonds000

Simple Interest

Definition (Interest calculation)

The interest produced throughout the period of time is given as: Let I := Interest ; P := Principal; t := Time (in time units); i := Interest Rate, referred to the time unit:

$$I = P \times i \times t = P i t$$

Definition (Maturity Value or Future Value)

The Maturity Value or Future Value (FV) is given as:

$$FV = P + I = P\left(1 + it\right)$$

Definition (Present Value)

Equivalently, Present Value, PV

$$PV = P = \frac{FV}{(1+it)} = FV (1+it)^{-1}$$

Outline Sir	mple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
	00000000								

Equation of Value

Definition (Equation of Value, Focal Date)

Equation of Value is a mathematical expression that equates several pieces of money, due at certain dates, at a same chosen date (Focal Date)

Definition (Equivalent Time)

Equivalent time: When a single payment equals the sum of the original debts.

The unknown date of that payment will be called the **Average Due Date**, that is usually measured in days from the present.

ション ふゆ く 山 マ チャット しょうくしゃ

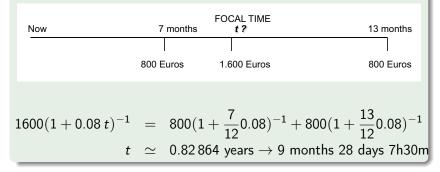
Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
	00000000								

Equation of Value

Example

Assume that two payments of \in 800 are due in 7 and 13 months, respectively. Using an interest rate of $i_A = 8.0\%$ find the date when a single payment of \in 1600.

What is the equivalent time t?



Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
		• 00 0000							

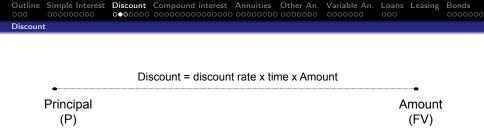
Discount

Simple Discount (or Bank Discount)

Definition (Simple Discount Interest, Amount, Discount)

Simple discount interest is based on the Future Value, where interest is paid at the beginning of the term (upfront).

- The money that is borrowed is called the **Amount** (<u>Future Value</u>).
- The rate used to compute the interest charges is called the **Discount Rate**.
- The interest charged for the use of borrowed money is called the **Discount**.
- The money received is called **Proceeds** or **Principal** (<u>Present Value</u>)



Principal: Money that the borrower receives at the time zero. **Amount**: what is due at the end of period

Formula (The Simple Discount Formula)

$$D = FV \times d \times t$$
$$P = FV - D$$

D: Amount of Simple Discount; FV: Maturity Value;

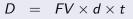
d: Interest Discount Rate (for a unit period)

t: time

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
		0000000							

Discount

Formula (Simple Discount Formulae)



$$P = FV - D$$

$$P = FV - FV dt$$

$$P = FV(1 - dt)$$
$$FV = \frac{P}{(1 - dt)}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣 の�?

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
		0000000							
Applicat	ions								

Examples of Simple discount instruments:

- **Promissory note**: Document on which one party writes his or her promise to pay another party the principal and the interest for a loan due at some date in the future.
- Treasury Bills, T-Bills: Short-term loans to the U.S. federal government, carrying terms ranging from a few days to 6 months, though the most common terms are 4, 13, or 26 weeks
- **Commercial paper**: A type of promissory note used by corporations, and is short-term (term is lower than 12 months).

ション ふゆ く 山 マ チャット しょうくしゃ

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
		0000000							

Applications

Example

A \in 10,000 face value discount note has a term of 4 months. The simple discount rate is 6%/year. Find the amount of the discount. <u>Solution</u>:

$$D = FV d t$$

$$D = 10,000 \times 0.06 \times 4/12$$

$$D = 200$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Outline
 Simple Interest
 Discount
 Compound interest
 Annuities
 Other An.
 Variable An.
 Loans
 Leasing
 Bonds

 000
 00000000
 00000000
 00000000
 0000000
 0000000
 0000000
 0000000

Applications

- Discount interest is calculated over **Future Value** and paid upfront
- Normal Interest is paid over **Principal (Present Value)** and paid at the end.

Example

Mr. X borrows $\in 1,000$ for 1 year, paying 10% interest upfront.

- He gets $P = \in 900$ only; with a <u>Discount</u> of $\in 100$; Pays a FV = 1000 at the end.
- Effective interest rate is

$$i_A = \frac{100}{900} = \frac{1000 - 900}{900} = \frac{1}{9} = 0.111(1) \neq 10\%$$

• Discount rate d = 10%; Interest rate $i_A = 11, 1(1)\%$:

 $900(1+0.111(1)) = \in 1,000$. Discount $= \in 100$.

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
		0000000							
Interest	versus discount r	ate							

• Discount Rate, d:

$$d = \frac{\mathsf{Discount}}{\mathsf{Future Value}} = \frac{FV - PV}{FV} \Leftrightarrow PV = FV (1 - d)$$

• Discount Rate d & Interest Rate i

$$PV = FV (1+i)^{-1}$$

$$FV (1-d) = FV (1+i)^{-1}$$

$$d = \frac{1+i}{i} \Leftrightarrow i = \frac{d}{1-d}$$

• Other way,

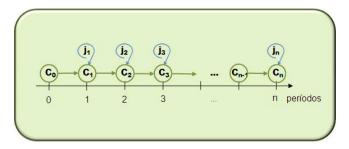
$$d = rac{FV - PV}{FV}$$
 and $i = rac{FV - PV}{PV}$

.

 Outline
 Simple Interest
 Discount
 Compound interest
 Annuities
 Other An.
 Variable An.
 Loans
 Leasing
 Bonds

 000
 00000000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 00000000
 00000

Compound Interest



$$P_{1} = P_{0} + I_{1} = P_{0} + P_{0}i \cdot i = P_{0}(1+i)$$

$$P_{2} = P_{1} + I_{2} = P_{1}(1+i) = P_{0}(1+i)^{2}$$

$$P_{3} = P_{2} + I_{3} = P_{2}(1+i) = P_{0}(1+i)^{3}$$

$$P_n = P_{n-1} + P_n = P_{n-1} (1+i) = P_0 (1+i)^n$$
, $n = 0, 1, 2, ...$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline Simple Interest Discount Compound interest Annuities Other An. Variable An. Loans Leasing Bonds

Future value, Present value

Formula (Future Value or Acummulated Value Formula)

$$FV = S = P(1+i_A)^t, \ t \ge 0$$

(1+i) is the Acummulation factor.

Equivalently,

Formula (Present Value or Discounted Value)

$$P = S(1+i_A)^{-t} = \frac{S}{(1+i_A)}, \quad t \ge 0$$

= Sv^t

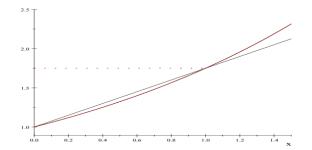
$$v = (1+i_A)^{-1}$$

 $v = (1 + i_A)^{-1}$ is the Discount Factor.

Simple vs compound interest

Simple Interest Formula: $S_t = P(1 + t.i_{\dot{A}})$, i_A : Annual rate.

Compound Interest Formula: $S_t = P(1+i_A)^t$, $t \ge 0$



0 < t < 1: Simple interest acummulates more money;

- t = 1: Both acummulate the same;
- t > 1: Compound interest acummulates ("a lot") more money.

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
			000000000000000000000000000000000000000						

Simple vs compound interest

Example ($i_A = 30\%$)

t years	Simple	Compound
0	€100,000	€100,000
0.01	100,300	100,263
0.1	103,000	102,658
0.2	106,000	105,387
0.4	112,000	111,065
0.5	115,000	114,018
1	130,000	130,000
2	160,000	169,000
4	220,000	285,610

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣 の�?

 Outline
 Simple Interest
 Discount
 Compound interest
 Annuities
 Other An.
 Variable An.
 Loans
 Leasing
 Bonds

 000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 00000000
 000000

Nominal Rates

Effective Rates and Nominal Rates

Often, banks and others, <u>Nominal Interest Rates</u> are the rates presented to clients and investors. These, are rates proportional to the effective ones.

Definition (Annual Nominal Rate $i_A^{(m)}$)

The **Nominal Interest Rate**, denoted as $i^{(m)}$, is the annual percentage rate. *m* is the number of <u>conversion periods</u> per year (usually); **Conversion Period** (interest, accumulation or capitalization period) is the time between successive computations of interest;

Definition (Effective Rate *i*)

Is the interest rate per conversion period, proportional to $i^{(m)}$:

 $i=i^{(m)}/m.$

 $) \land \bigcirc$

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
			000000000000000000000000000000000000000						

Nominal Rates

Example (Conversion periods)

Commonly: Annual, bi-annual (semi-annual), quarterly, monthly, daily...

Example

 $P = \in 1,000.00$, converted semi-annually, biannual rate of 5%, term is one year. <u>Annual effective rate</u>, equivalent rate:

- Annual nominal rate, with biannual conversion: $i^{(2)} = 10\%$;
- Effective rate: $i^{(2)}/2 = 5\%$;
- Annual Effective Rate: $i_A = 10.25\%$ (Equivalent rate to i_S of 5%):

$$P(1+0.05)^2 = P(1+i_A) \Leftrightarrow (1.05)^2 = (1+i_A)$$

 $i_A = (1.05)^2 - 1$

 Outline
 Simple Interest
 Discount
 Compound interest
 Annuities
 Other An.
 Variable An.
 Loans
 Leasing
 Bonds

 000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 00000000
 000000

Equivalent rates

Definição (Equivalent rates)

Rates that produce the same return for a given investment.

Definição (Annual Effective Rate (Annual Percentage Yield-APY))

An Annual Effective Rate is an equivalent rate that is an annually converted rate i(1) such that gives the same interest earnings as the nominal rate i(m) converted m times per year, where $m \neq 1$.

Remark

Mathematically we can put m = 1, although it is not used.

Formula (APY calculation)

For each unit amount invested $P = \in 1$

$$(1+i) = \left(1+\frac{i^{(m)}}{m}\right)^m$$

200

Outline Simple Interest Discount Compound interest Annuities Other An. Variable An. Loans Leasing Bonds

Nominal rate and Effective rate

Formula (APY calculation)

$$(1+i) = \left(1 + \frac{i^{(m)}}{m}\right)^m$$
$$i = \left(1 + \frac{i^{(m)}}{m}\right)^m - 1$$

Formula (Nominal Rate calculation)

$$(1+i) = \left(1 + \frac{i^{(m)}}{m}\right)^m$$

$$(1+i)^{\frac{1}{m}} = \left(1 + \frac{i^{(m)}}{m}\right)$$

$$i^{(m)} = m\left[(1+i)^{\frac{1}{m}} - 1\right]$$

 $) \land \bigcirc$

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
			000000000000000000000000000000000000000						
Compound Rate									

Definition (Compound Rate)

It is a growth rate that equates the present value and the future value for a number of compounding periods.

Formula (Compound Rate Formula, calculation)

$$S = P(1+i)^{n}$$

$$\frac{S}{P} = (1+i)^{n}$$

$$i = \left(\frac{S}{P}\right)^{1/n} - 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のへで

 Outline
 Simple Interest
 Discount
 Compound interest
 Annuities
 Other An.
 Variable An.
 Leasing
 Bonds

 000
 00000000
 00000000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 0000000
 000

Time to reach a certain growth

How long does it take a (present) sum of money to increase certain (future) amount? Find time t.

Formula

$$S = P(1+i)^{t} \Leftrightarrow \frac{S}{P} = (1+i)^{t}$$
$$\ln \frac{S}{P} = t \ln(1+i)$$
$$t = \frac{\ln(S/P)}{\ln(1+i)}$$

Remark: Time must be shown in Years, Months & Days. In most investment operations the "day" is taken as the smalest time unit

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
			000000000000000000000000000000000000000						

Equation of Value

Definition (Equation of Value, Focal Date [Compound Interest])

Equation of Value is a mathematical expression that equates several pieces of money, due at certain dates, at a same chosen date (Focal Date)

Definition (Equivalent Time)

Equivalent time: When a single payment equals the sum of the original debts.

The unknown date of that payment will be called the **Average Due Date**, that is usually measured in days from the present.

ション ふゆ く 山 マ チャット しょうくしゃ

 Outline
 Simple Interest
 Discount
 Compound interest
 Annuities
 Other An.
 Variable An.
 Loans
 Leasing
 Bonds

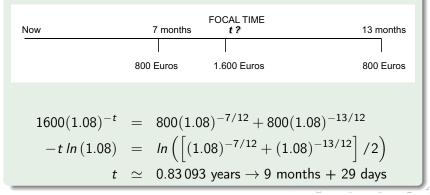
 000
 00000000
 0000000
 0000000
 0000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 000000000
 0000000
 0000000

Equation of Value

Example ([previous ex.] in Compound interest)

Assume that two payments of \in 800 are due in 7 and 13 months, respectively. Using an interest rate of $i_A = 8.0\%$ find the date when a single payment of \in 1600.

What is the equivalent time t (from today)?



Outline Simple Interest Discount Compound interest Annuities Other An. Variable An. Loans Leasing Bonds

Continuous compounding

Annual Effective Rate, i_A , "vs" Annual Nominal Rate, $i_A^{(m)}$

$$1 + i_{A} = \left(1 + \frac{i_{A}^{(m)}}{m}\right)^{m}$$
$$i_{A}^{(m)} = m \left[(1 + i_{A})^{1/m} - 1\right]$$
$$i_{A}^{(m)} = \frac{\left[(1 + i_{A})^{1/m} - 1\right]}{\frac{1}{m}}$$

Compute the limit, $\lim_{m\to\infty} i_A^{(m)}$, directly (indertermination):

$$\lim_{m \to \infty} i_A^{(m)} = \lim_{m \to \infty} \frac{\left[(1+i_A)^{1/m} - 1 \right]}{\frac{1}{m}} = \frac{0}{0}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Continuous compounding

Using *l'Hôpital*'s rule, we have.

$$\begin{split} \lim_{m \to \infty} i_A^{(m)} &= \lim_{m \to \infty} \frac{\left(\left[(1+i_A)^{1/m} - 1 \right] \right)'}{\left(\frac{1}{m}\right)'} = \lim_{m \to \infty} \frac{\left(e^{\frac{1}{m} \ln(1+i_A)} - 1 \right)'}{-\frac{1}{m^2}} \\ &= \lim_{m \to \infty} \frac{\left[e^{\frac{1}{m} \ln(1+i_A)} \ln(1+i_A) \right] \left(-\frac{1}{m^2}\right)}{\left(-\frac{1}{m^2}\right)} \\ &= \lim_{m \to \infty} \left(1+i_A \right)^{1/m} \ln(1+i_A) \ . \end{split}$$

Hence,

$$\lim_{m \to \infty} i_A^{(m)} = \lim_{m \to \infty} (1 + i_A)^{1/m} \ln (1 + i_A) = (1 + i_A)^{1/\infty} \ln (1 + i_A)$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

 $i_A^{(\infty)} = \delta = \ln \left(1 + i_A \right)$

OutlineSimple InterestDiscountCompound interestAnnuitiesOther An.Variable An.LoansLeasingBonds00

Continuous compounding

Nominal rate of interest compounded continuously or Interest Force (constant)

Where i_A is the Annual Effective Rate

$$\delta = i_A^{(\infty)} = \ln (1+i)$$
$$e^{\delta} = (1+i_A).$$

Future and Present Value Formulas for Continuous Compounding

$$S = P(1 + i_A)^t, \quad (t \text{ years})$$
$$S = P e^{\delta t}$$
$$P = S e^{-\delta t}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - 釣�?

Continuous compounding

Example

Future Value for an investment of \in 5 000, for t = 5 years and interest force of 5,5%?

$$S = 5000e^{0,055 \times 5} = 6582, 65 \in$$

$$i_A = e^{\delta} - 1 = e^{0.055} - 1 \Rightarrow 5,65\%$$
 approx.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Ordinary annuities

Definition (Ordinary Annuity)

An **Annuity** is a sequence of payments (sometimes equal) dispersed or received at equal intervals of time.

By default, or usually, at the end, sometimes at the beginning.

Ex.: A house rent, instalments of a loan.

Definition (Term)

The Term is the time of the operation, from start to end.

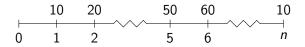


Figure: Time diagram for an annuity-immediate

Different classifications

• Certain or Contingent:

Number of payments is known in advance. \Rightarrow Annuity Certain or Guaranteed Annuity

Sometimes payments are done under some circumstances, like having a beginning or ending date that depends on some event. \Rightarrow *Contingent Annuity*. Ex.: Life Annuity.

• Temporary or Perpetual:

Perpetuity: Annuity with a specific starting time but an infinite number of payments. Ex.: Perpetual bonds.

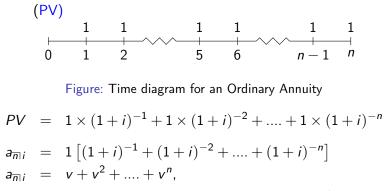
• Immediate or Due:

Deals with the placement of the periodic payments.

Ordinary Annuity or annuity-immediate: When the payments are done at the end of each time period.

Annuity Due: If the payments are done at the beginning of each period.

Ordinary Annuity (or Annuity immediate), Present Value of a unit payment annuity



Geometric progression sum, with rate $r = v = (1 + i)^{-1}$.

$$a_{\overline{n}|i} = \frac{u_1 - u_n \times r}{1 - r} = \frac{v - v^n v}{1 - v} = \frac{1 - v^n}{1 / v - 1} = \frac{1 - (1 + i)^{-n}}{i}$$

Ordinary Annuity

Annuity-immediate, Future Value of a unit payment annuity

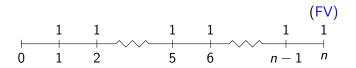


Figure: Time diagram for an Annuity-immediate

From $a_{\overline{n}|i}$ it's easy to find formula for $FV = s_{\overline{n}|i}$

Formula for $s_{\overline{n}|i}$

$$FV = s_{\overline{n}|i} = a_{\overline{n}|i} (1+i)^n$$
$$= \frac{1 - (1+i)^{-n}}{i} (1+i)^n = \frac{(1+i)^n - 1}{i}$$

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
				000000000					

Ordinary Annuity

Relationship between $a_{\overline{n}}$ and $s_{\overline{n}}$

$$s_{\overline{n}|i} = a_{\overline{n}|i} \left(1+i\right)$$

Present Value of an Ordinary Annuity, with constant installment ${\it R}$

$$A_n = R a_{\overline{n}i} = R \left(\frac{1 - (1 + i)^{-n}}{i}\right)$$

Future Value of an Ordinary Annuity, with constant installment R

$$S_n = R s_{\overline{n}|i} = R \left(\frac{1 - (1 + i)^{-n}}{i} \right)$$

 A_n : Present value; S_n : Present value; n: No. of payments; R: Periodical payment; $i = i^{(m)} / m$: Interest rate.

Ordinary	Annuity								
				00000000					
Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds

Knowing the rate of an annuity provides a realistic way to compare different investment or loan rates.

However, for instance, money lenders sometimes hide the true rate that they are charging for lending money. Apart from the interest rate they add other costs to the payments. Besides, different institutions act differently.

The best way to compare different lend proposals or investments is to calculate the Annual percentage Rate (APR):

Annual percentage Rate (APR)

It is the rate at which the cash value of the loan equals the present value of the payments

ション ふゆ く 山 マ チャット しょうくしゃ

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
				00000000					
Annuity	due								

Annuity due, Present Value

$$\ddot{a}_{\overline{n}|i} = 1 + v + v^2 + \dots + v^{n-2} + v^{n-1} \\ = 1 + a_{\overline{n-1}|i} = a_{\overline{n}|i}(1+i)$$

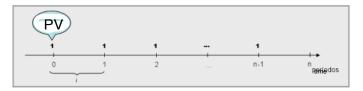
Geometric progression sum, rate $v = (1+i)^{-1}$,

$$PV = \ddot{a}_{\overline{n}|i} = \frac{1 - v^{n-1} \times v}{1 - v} = \frac{1 - v^n}{1 - v} = \frac{1 - v^n}{i}(1 + i) = a_{\overline{n}|i}(1 + i)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
				00000000					
Annuity	due								

Annuity due, Future Value



Sum =
$$(1+i)^n + (1+i)^{n-1} + \dots + (1+i)^2 + (1+i)$$

 $\ddot{s}_{\overline{n}|} = \frac{(1+i)^n - 1}{1-v} = \frac{(1+i)^n - 1}{i}(1+i)$

Geometric progression sum, rate $v = (1+i)^{-1}$,

$$FV = \ddot{s}_{\overline{n}} = s_{\overline{n}}(1+i)$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Deferred Annuities

Example (Deferred Annuity)

$$PV = 650_{2|}a_{\overline{4}|i} = 650_{3|}\ddot{a}_{\overline{4}|i}$$

Definition (Deferred Annuity)

It's an annuity under which the first payment occurs at some specified future time.

The *PV* (Present Value) of an **annuity-due** deferred k years, with constant payment R, is given by

$$PV = R_{k|}\ddot{a}_{\overline{n}|i} = R v^{k} \ddot{a}_{\overline{n}|i}$$
$$= R_{k-1|}a_{\overline{n}|i} = R v^{k-1} a_{\overline{n}|i}$$

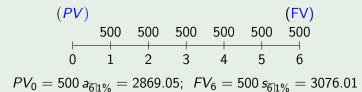
) Q (P

OutlineSimple InterestDiscountCompound interestAnnuitiesOther An.Variable An.LoansLeasingBonds000

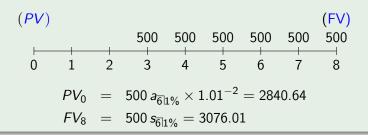
Deferred Annuities

Example (Ordinary vs Deferred)

Ordinary annuity



Deferred annuity



Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
					0000000				

Definition (Perpetuity)

Perpetuities

A Perpetuity is an annuity with infinite term.

Ordinary Perpetuity, Present Value

$$a_{\overline{\infty}|} = \lim_{n \uparrow \infty} a_{\overline{n}|i} = \lim_{n \to \infty} \frac{1 - (1 + i)^{-n}}{i} = \lim_{n \to \infty} \frac{1}{i} \left(1 - \frac{1}{(1 + i)^n} \right) = \frac{1}{i}$$

Perpetuity-due, PV

$$\ddot{a}_{\overline{\infty}} = 1 + \frac{1}{i}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
					0000000				

Perpetuities

Example

Perpetua will start studying at ULisboa, once in Lisbon she intends to stay and find a job afterwards. $i_A^{(12)} = 6\%$. She has two options:

a) Rent a Flat: \in 500/month; b) Buy a flat: \in 120,000.

$$i_M = 5\%/12 = 0.5\%$$

 $PV = 500a_{\overline{\infty}|i_M} = 100\,000.00 \in < 120\,000.00 \in$

ション ふゆ く 山 マ チャット しょうくしゃ

Calculation of Installments, Time& Rate

PV of a *R*-payment annuity

$$A_n = R a_{\overline{n}|i} = R \left(\frac{1 - (1 + i)^{-n}}{i}\right)$$

Calculation of Payment R, knowing A_n , n & i

$$R=\frac{A_n}{a_{\overline{n}|i}}$$

Calculation of Time *n*, knowing A_n , R & i

$$i A_n = R \left(1 - (1+i)^{-n} \right)$$

$$(1+i)^{-n} = 1 - i A_n / R$$

$$-n \ln(1+i) = -\ln(1 - i A_n / R)$$

$$n = -\ln(1 - i A_n / R) / \ln(1+i)$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

Calculation of Installments, Time& Rate

Calculation of Rate *i*, knowing A_n , R & n

Use equation

$$i A_n = R (1 - (1 + i)^{-n})$$

 $(1 + i)^{-n} = 1 - i A_n / R$

It can be solved numerically with software: With Excel (function *Rate*, Solver)

Excel function: RATE(np,1,pv, type,guess)

$$\begin{split} \mathbf{np} &= n, \\ \mathbf{pv} &= -A, \\ \text{type} &= 0 \text{ (or omitted) for annuity-immediate, 1 for annuity-due} \\ \text{guess} &= \text{starting value, set to } 0.1 \text{ if omitted} \\ \text{Output} &= i, \text{ rate of interest per payment period of the annuity} \end{split}$$

Calculation of Installments, Time& Rate

: B)	Eile	<u>E</u> dit	⊻iew	Insert	F <u>o</u> rmat	<u>T</u> ools	Dat	a <u>W</u> indow	<u>H</u> elp	Ad	o <u>b</u> e PDF	
	A2		•	f _x	=(1-(1+A	1)^(-15))/A1					
		A		В	С	D		E	F		G	H
1		0.05										
2	10.3	379658	3]									
3	Solv	ver Pa	ramet	iers							\mathbf{X}	
5	S <u>e</u> t	Target	Cell:	\$A	\$2						<u>S</u> olve	
6 7	Equ	ial To:	0	<u>M</u> ax	⊖ Mi <u>n</u>	⊙ <u>V</u> alue	e of:	10			Close	
8	₿y	Changir	ng Cells	51								
9	\$	4\$1					3	<u><u> </u></u>	ess			
10	su	bject to	the Co	onstraint:	s:					C.	Options	
11												
12 13							-					
14								⊆har	nge	_		
15										E	Reset All	
16							~		ete		Help	
17												
18												

Increasing Arithmetic Progression

Example (Payments in Increasing Arithmetic form)

O John is buying a computer and iPhone payable in three instalments: €950, 1000 e 1050 (interest included, 9% annual).Present Value?

P.V. =
$$950.00(1.09)^{-1} + 1000.00(1.09)^{-2} + 1050.00(1.09)^{-3}$$

= 2524.03 €

$$+ 50a_{\overline{3}9\%} + 50_{1|}a_{\overline{2}9\%} + 50_{2|}a_{\overline{1}9\%} = €2524.03 = (950 - 50)a_{\overline{3}|} + 50 (Ia)_{\overline{3}|}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

OutlineSimple InterestDiscountCompound interestAnnuitiesOther An.Variable An.LoansLeasingBonds00

Increasing Arithmetic Progression

Result (P.V. Payments in Increasing Arithmetic form)

Present Value (P.V.)

$$PV = (C - h) a_{\overline{n}|} + h (a_{\overline{n}|} + 1_{|} a_{\overline{n-1}|} + 2_{|} a_{\overline{n-2}|} + \dots + n-1_{|} a_{\overline{1}|}) = = (C - h) a_{\overline{n}|} + h. (Ia)_{\overline{n}|}$$

where, simplifying,

$$(Ia)_{\overline{n}i} = \frac{\ddot{a}_{\overline{n}i} - nv^n}{i} = \frac{\ddot{a}_{\overline{n}i} - n(1+i)^{-n}}{i}$$

• If
$$C = h$$
 then $PV = h \cdot (Ia)_{\overline{n}i}$
• If $C = h$ and $h = 1$ then $PV = (Ia)_{\overline{n}i}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 Outline
 Simple Interest
 Discount
 Compound interest
 Annuities
 Other An.
 Variable An.
 Loans
 Leasing
 Bonds

 000
 00000000
 00000000
 0000000
 0000000
 000
 000
 0000000

Decreasing Arithmetic Progression

Example (Payments in Decreasing Arithmetic form)

Edward is buying an *iPod* payble in 4 monthly instalments of 45, 35, 25 e $15 \in I_M = 0,012$, $h^* = -10$. P.V.?

 $PV = 45(1.012)^{-1} + 35(1.012)^{-2} + 25(1.012)^{-3} + 15(1.012)^{-4}$

Looking backwards, $PV = 45v + 35v^2 + 25v^3 + 15v^4$ = 5v +5v² +5v³ +5v⁴ + 10v + $10v^{2}$ + $10v^{3}$ + $10v^{4}$ + 10v + $10v^2$ + $10v^3$ $+ 10v + 10v^2$ + 10*v* $5a_{\overline{4}}$ + $10(a_{\overline{A}} + a_{\overline{3}} + a_{\overline{2}})$ $+a_{11}$) = $(15-10) a_{\overline{4}} + 10 (Da)_{\overline{4}}$ $5a_{\overline{4}} + 10\frac{4-a_{\overline{4}_{1,2\%}}}{0.012}$ =

$$PV = (D - h) a_{\overline{n}|i} + h \cdot (Da)_{\overline{n}|i}$$

$$\begin{array}{rcl} (Da)_{\overline{n}|i} &=& nv + (n-1)v^2 + (n-2)v^3 + \dots + 2v^{n-1} + v^n \\ &+v + v^2 + v^3 + \dots + v^{n-1} + v^n + \\ &+v + v^2 + v^3 + \dots + v^{n-1} &+ \\ &+v + v^2 + v^3 + \dots &+ \\ && \dots &\dots &+ \\ &+v + v^2 && + \\ &+v && = \end{array}$$

$$\begin{array}{rcl} &=& a_{\overline{n}|i} + a_{\overline{n-1}|i} + \dots + a_{\overline{3}|i} + a_{\overline{2}|i} + a_{\overline{1}|i} \\ &(Da)_{\overline{n}|i} &=& \frac{n-a_{\overline{n}|i}}{i}, \ P.V. \ with \ D = h = 1) \end{array}$$

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● のへで

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
						0000000			

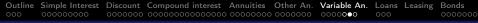
Geometric Progression

Example

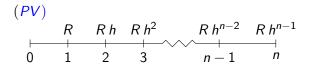
John is buying a computer, paying in three instalments: 1st \in 950, others with 25% increase, i = 9%.

 $PV = 950(1,09)^{-1} + 950 \times 1.25(1,09)^{-2} + 950 \times 1.25^{2}(1,09)^{-3}$ = 3017, 26€

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



Geometric Progression



- 1st Payment: R; Rate (Increasing or Decreasing): h.
- If h > 1, annuity is increasing;
- If 0 < h < 1, annuity is decreasing.
- P.V.: Geometric series with rate hv:

P.V. =
$$Rv + Rhv^2 + Rh^2v^3 + ... + Rh^{n-1}v^n$$

= $R\left(\frac{v - h^{n-1}v^n \times hv}{1 - hv}\right) = R\left(\frac{v(1 - h^nv^n)}{v(1/v - h)}\right)$
= $R\left(\frac{1 - h^n(1 + i)^{-n}}{1 + i - h}\right)$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - の Q @

Outline Si	imple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
						000000			

Geometric Progression

In many applications we set h = 1 + g, where g is a growth rate, we get

$$PV = R\left(\frac{1-\left(\frac{1+g}{1+i}\right)^n}{i-g}\right)$$
$$= R\left(\frac{1-(1+x)^{-n}}{i-g}\right)$$
$$x = \frac{i-g}{1+g}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

In a Loan Repayment, two different payments are due:

Interest

Amortization payment

Many different ways to do the Amortization, we summarize:

Bullet loan: The entire principal of the loan is due at the end of the loan term. This is an interest-only loan. The payments prior to maturity are only to offset the interests.

These are short term and/or small loan sizes

Constant-payment loan: A sequence of equal-size payments, each of which is composed of the interest due plus a portion of the principal. Ex: Home mortgage

Constant-principal loan The principal amortizations is constant throughout the life of the loan.

Number of payments is determined by the Term, and Payment Frequency.

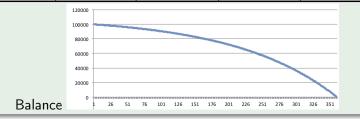
Amortiza	ation Schedules								
							000		
Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds

Constant Payment Loan:

- Often, Long Term loans, like home mortgage;
- Interest at each payment slowly decreases;
- Total payment is constant;
- Amortization, portion going to the Principal slowly increases.

Example (Interest rate $8_A^{(12)}$ % for 30 years.)

Payment No.	Payment	Interest Paid	Principal Paid	Balance
0				100.000,00 C
1	733,77€	666,67€	67,10€	99.932,90 €
2	733,77€	666,22€	67,55€	99.865,35€
3	733,77€	665,77€	68,00 €	99.797,35 €



Constant Principal Loan:

- Interest at each payment decreases;
- Total payment is decreasing;
- Amortization, portion going to the Principal is constant.

Example (i = 2%)

t	Payment	Interest Due	Principal Repaid	Outstanding Balance
0	-	-	-	$L = OB_0 = 3000$
1	$K_1 = 310$	$I_1 = OB_0 \times i = 60$	$PR_1 = 250$	$OB_1 = OB_0 - PR_1 = 2750$
2	305	55	250	2500
3	300	50	250	2250
4	295	45	250	2000
5	290	40	250	1750
6	285	35	250	1500
7	280	30	250	1250
8	275	25	250	1000
9	270	20	250	750
10	265	15	250	500
11	260	10	250	250
12	255	5	250	0

		Compound interest			Bonds 0000000
Outstan	ding Balance				

Find the Outstanding Balance after m paymts, term n, OB_m :

Prospective method, after *m* payments

$$OB_m = R a_{\overline{n-m}|i}$$

Retrospective method, after *m* payments

$$OB_m = OB_0 \, (1+i)^m - R \, s_{\overline{m}|i}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sometimes, it is better to rent an asset than buy it:

Definição (Leasing)

A contractual arrangement to grant the use of specific fixed assets for a specific time in exchange for payment, usually in the form of a rent. It has an optional clause for buying later, by a Residual Value.

Theree are different sorts of <u>Leasing</u> contracts, like: Operating I. Generally a short-term cancellable arrangement; Financial I. (or capital) is a long-term non cancellable agreement.

Lessee

One that receives the use of assets under a lease. He <u>uses</u>, <u>not owns</u>, <u>pays</u> a rent.

Lessor

One that conveys the use of assets under lease. He \underline{owns} , \underline{not} uses, $\underline{receives}$ a rent.

Many examples of situations to do a Lease, insted of buying a property or an equipment. Like:

- An individual looking for a car or apartment;
- A business looking at office space or a photocopier.

Example

Suppose ABC Ltd is looking for a new car. Leasing is essentially the same as renting the car for a set period of time. If ABC leases, ABC will have the right to drive the car, will have the responsibility for maintaining it and insuring it, but she will not actually be the owner of the car.

At the end of the lease, ABC's payments cease and the car must be returned to the leasing company, or buy it for a residual value.

Example (Car Loan)

Suppose that ABC decides to finance the entire cost of the car with a 5-year loan at an 8.4% annual interest rate compounded monthly. Calculate ABC monthly payment, R, knowing that the entire cost of the car is \in 19, 875.

19, 875 =
$$R a_{\overline{60}|0.7\%}$$
 ⇔ $R = €406.81$

Example (Car Lease)

If ABC Ltd signs a lease, she doesn't directly borrow any money, but the car itself:

- With the loan, ABC monthly payments repay all of the principal borrowed (+ interest).
- With the lease, ABC partly repays with the monthly lease payments. Another part is repaid at the end of the lease by returning the car to the leasing company.

Example (Car Lease)

Suppose that the leasing company has determined that, after two years of normal use and proper maintenance (Lessee's duty), the value of this car should be \in 14,055. This is its <u>Residual Value</u>:

- Of the €19, 875 that ABC borrowed in the form of the car, ABC will repay €14, 055 by returning the car.
- ABC lease payments need to cover the difference together (+ interest) on this debt of €19, 875.

ション ふゆ く 山 マ チャット しょうくしゃ

With $i^{(12)} = 8.4\%$, find the the monthly payments: $19,875 = R a_{\overline{24}|0.7\%} + 14055 (1.084)^2$ $R = \in 362.67$

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds

Example (Car Lease)

Alternatively, to calculate the Lease Payment:

$$5,820 = R^* a_{\overline{24}|0.7\%}$$

$$R^* = 264.29 \leftarrow \underline{\text{Payment on Loss}}$$

- $I = 14055 \times 0.007 \leftarrow \text{Interest on Residual}$
- $R = 264.29 + 98.38 = \bigcirc 362.67 \leftarrow \text{Lease Payment}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

In many situations, in ordinary annuity payments, and Residual Value paid in one sole amount at the end. **Ex.**:

Leasing Formula for calculation

$$AC = DP + R a_{\overline{n}i} + RV(1+i)^{-(n+k)}$$

- AC: Asset Cost;
- DP: Down Payment;
- R: Lease Payment;
- *RV*: Residual Value;
- *n*: Term;
- k: (Time) Deferment of RV payment, from time n.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• i: Effective Rate of Interest

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
									•••••

Concepts

Definition (Bond)

A Bond is debt instrument that pays interest at regular intervals and that matures at some specific, given date in the future. Issued directly to the public, borrowing money (usually, big loan amounts). Pays interest, it can be traded in the financial markets

Issuers (Money Borrowers):

- Public Companies (with the authorization of the Financial Market Regulator);
- Governments: Treasury Bonds (Public Debt).

Buyers (Money Lenders):

- Public, individuals and/or companies;
- Funds, Pension funds, Investment funds, Insurance...

ション ふゆ く 山 マ チャット しょうくしゃ

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
									000000

Important Concepts

Concepts

- Coupon: (Guaranteed) Interest payment;
- Term: Can be short or long, perpetual even;
- Maturity or Redemption Value: Value at the end of its term;
- Issue Value: Can be "at the par" (at the Face Value), above or below the par;
- Redeeming the bond: Process called when the bond holder receives his principal back at the maturity date. It can also be Can be *at the par, above* or *below* the par;
- Premium: It is paid when a bond is redeemed avove the par;
- Market value: Value traded in the market;
- Yield: Annual interest / bond value;

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
									0000000

Bond Classification

There are many types of Bonds, like:

- Coupon Bonds: Unregistered bonds;
- Mortgage bonds: Attached fixed assets as securities;
- Convertible Bonds: Given option to convert the loan into a Share;

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Zero Coupon or <u>Discount</u> Bond: Pays no interest;
- Indexed Bond: Interest indexed to inflation;

Bond prices fluctuate according to day-to-day trading at the securities secondary market, as they are negotiable.

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
									0000000

Amortization Table

Example

Omega PLC, issued a bond loan with the following terms:

- Date of issue: 01/01/yy.
- Nominal Value: €10.00.
- No. of bonds issued: 20,000.
- Issue value at par;
- Loan term: 3 years.
- Semi-annual coupon rate: 3.0%.
- Payment of semiannual interest. The first payment will occur one semester after issuance.
- Mode of Redemption (above the par): Repayments semi-annually of equal number of bonds, starting one year after the issuance date;
- Redemption premium: €0.50 per bond during the first two repayments and €1.00 per bond after that.
- Compute the total value of the bond loan;
- Pill out the bond amortization table (Euros).

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
									0000000

Amortization Table

Example (Cont'd, Amortization table)

Sem.	Balance	Inte-	Bonds	Amorti-	Pre-	Total	Balance
	before	rest	paid	zation	mium	Payment	after
1	200,000	6,000				6,000	200,000
2	200,000	6,000	4,000	40,000	2,000	48,000	160,000
3	160,000	4,800	4,000	40,000	2,000	46,800	120,000
4	120,000	3,600	4,000	40,000	4,000	47,600	80,000
5	80,000	2,400	4,000	40,000	4,000	46,400	40,000
6	40,000	1,200	4,000	40,000	4,000	45,200	0

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
									00000000

Yield

Quotient between the annual interest paid (Coupon) and the bond value (Purchase, Market value)

Rate of Return / Return Rate

The Return Rate of an Investment it's the rate (of interest) that equates the Investment Outflow (Cost) to the Inflows (Income) that it generates, at some focal date. It uses an Equation of Value.

Yield to Maturity (YTM)

Annual <u>Rate of return</u> the buyer gets if he buys and holds the bond until its maturity date when it is redeemed. Otherwise, it is the interest rate that equates interest and principal payments to be received in the future to the present cost. Also called the Effective Rate of Return. OutlineSimple InterestDiscountCompound interestAnnuitiesOther An.Variable An.LoansLeasingBonds000

Valuation of Bonds

Formula (Calculation of YTM = j)

$$P = \sum_{k=1}^{n} \frac{C}{(1 + YTM)^{k}} + \frac{S}{(1 + YTM)^{n}}$$
$$= F r a_{\overline{n}|j} + S v_{j}^{n}$$

P: Purchase value (Market value); *S*: Redemption value; C = F r: Annual coupon payment; *F*: Face value; *r*: Coupon Rate; j = YTM; $v_j = (1+j)^{-n}$; *n*: Term.

Formula (Calculation of YTM = j, with S = F)

When Redemption is at the par

$$P = F r a_{\overline{n}|j} + F v_j^n$$
$$= F + F(r-j)a_{\overline{n}|j}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
									0000000

Proof:
Because
$$a_{\overline{n}|j} = (1 - v_j^n)/j \Leftrightarrow v_j^n = 1 - j a_{\overline{n}|j},$$

 $P = F r a_{\overline{n}|j} + F v_j^n$
 $= F r a_{\overline{n}|j} + F(1 - j a_{\overline{n}|j})$
 $= F + F(r - j)a_{\overline{n}|j}$

Makeham's Formula (with S = F)

In the above formula, set $K = F v_j^n$ and $a_{\overline{n}|j} = (1 - v_j^n)/j$ to get

$$P = K + \frac{r}{j}(F - K).$$

Price equals K (Present Value of the bond redemption) plus $\frac{r}{i}(F - K)$ (Present Value of the coupons received).

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
									0000000

Current Yield

Rate of return for a given year. It is simply the annual interest earned (Coupon) divided by the bond current market value (or Purchase, Market price):

$\frac{C}{P}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
									0000000

Example (Yield calculation)

On the 02/01/n Delta PLC issued a bond loan of 200,000 bonds, as follows.

- Face value, *F*: €10.00;
- Issuance value (under the par), $P: \in 9.20$;
- Redemption: annually at equal value, at the par R = F;
- No. of Repayments: 4;
- Date of first redemption: $\frac{02}{01}/n + 2$
- Coupon payment C: annually
- Coupon (annual) rate: 8%
- Date of first coupon payment: $\frac{02}{01}/n + 1$

An investor bought one bond at issuance with redemption in the last group (02/01/n + 5). Calculate Investor's yield.

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
									0000000

9

Example (Yield calculation (cont'd))

Calculate Investor's yield.

$$(9.20) 10+ 0.8 0.8 0.8 0.8 0.8 0.8 2/1/n n+1 n+2 n+3 n+4 n+5 C = 10,00 \times 0,08 = 0,80 \in P = C a_{\overline{k}|r} + \frac{R}{(1+r)^k} 0,20 = 0,8 \cdot a_{\overline{5}|r} + \frac{10}{(1+r)^5} \Leftrightarrow r = 10,117\%$$
 (Excel)

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
									0000000

Example (Ex. 6.7 (cont.). Alternative invesment)

What is the investment $\underline{accumulated value}$, S, at the end of term?

$$r \simeq 10, 117\%$$

 $S = 0, 8 \cdot s_{\overline{S}|r} + 10 \simeq 14.89$

Alternatively: If he had invested $\in 9.20$ in a savings account, under rate r = 10, 117%:

$$S = 9.2(1+r)^5 \simeq \in 14.89$$

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
									0000000

Example (Calculation of Purchase Value (ex. cont'd))

An investor intends to buy, on 02/07/n + 1, 200 of these bonds and wants an yield rate of 9%. Its redemption plan is as follows:

- 25 in the 2nd group;
- 75 in the 3rd;
- 100 in the last one.

How much should the investor pay for each bond?

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds
									0000000

Example (Calculation of Purchase Value (cont'd))

Time	No. of Bonds	Interest	<u> </u> No.	Bonds Redeemed Value
2/1/n+2	200	10(0.08) = 160.00		
2/1/n + 3	200	160.00	25	25(10) = 250.00
2/1/n + 4	175	140.00	75	75(10) = 750.00
2/1/n + 5	100	80.00	100	100(10) = 1000.00
$C = \frac{160}{1.00}$	$\frac{0.00}{9^{0.5}} + \frac{4}{1}$	$\frac{10.00}{.09^{1,5}} + \frac{890}{1,09}$	$\frac{.00}{9^{2.5}}$ +	$\frac{1080.00}{1.09^{3.5}} = 2043.62$
$P = \frac{C}{200}$		22		

 Outline
 Simple Interest
 Discount
 Compound interest
 Annuities
 Other An.
 Variable An.
 Loans
 Leasing
 Bonds

 000
 00000000
 00000000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 000000

Definitions

Shares/Stocks

Share (UK) or <u>Stocks</u> (US) are equity securities (claim of the owners of the firm). Each share entitles its holder to an equal share in the ownership of the firm. Usually, each share entitled to the same amount of profits and its entitled to one vote on matters of corporate governance.

Common shares represent a residual claim on the assets of a firm (assets that are left over after meeting all of the firm's other financial obligations).

Share prices

- The share has a **Nominal Value** (issue value) corresponding to its percentage on the firm's capital;
- The market value is dependent on the cash flows investors are expecting to receive with the acquisition of the share.

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds

Valuation

Value of a share

It's calculated as the Present Value of the firm's Expected Future Cash Flows.

To value a share we needed to

- Estimate future cash flows:
 - Size (amount); and
 - O Timing (when).
- Obscount future cash flows at an appropriate interest rate. The discounting rate should be related with the share risk (not just an interest rate).

Potential sources of Cash flows

- Future dividends to shareholders;
- Market value trading, selling.

Valuation

Share value. One year transaction

Investor buys and sells in one year. Futre Value Estimate

Share value (buying), r - Discount rate, cost of capital:

$$P_0 = \frac{Div_1 + P_1}{1 + r}$$

$$r = \frac{Div1}{P_0} + \frac{P_1 - P_0}{P_0}$$

$$= \text{Dividend yield} + \text{Capital gain}$$

 Outline
 Simple Interest
 Discount
 Compound interest
 Annuities
 Other An.
 Variable An.
 Loans
 Leasing
 Bonds

 000
 00000000
 00000000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 00000

Valuation

Example (Share value. One year transaction)

Expectations are that Alfa PLC is going to pay a dividend of €0.56/share next year and that the share can be sold at €45.5 at the end of the year.

- If another investment of similar risk has an expected return of 6.80%, what value would you expect to pay for this share?
- At that transation value calculate the Dividend Yield the Capital Gain ganho expected.

Sol.:

 $P_0 = (0.56 + 45.5)/1.068 \simeq 43.13$

D Yield $= 0.56/43.13 \simeq 1.298480\%$

C Gain = $(45.5 - 43.13)/43.13 \simeq 5.550152\%$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds

Valuation

Share value. For a share kept for many years

• Share is kept for *n* years:

$$P_0 = \frac{Div_1}{1+r} + \frac{Div_2}{(1+r)^2} + \dots + \frac{Div_2}{(1+r)^n}$$

• Share is kept undefinitely:

$$P_0 = \sum_{k=1}^{\infty} \frac{Div_k}{(1+r)^k}$$

Easy way of estimating future dividends:

- Current or coming dividend is known;
- 2 Estimate a growth rate for the following ones;
- Oiscount rate / Cost of capital (estimate) is known.

000	00000000	0000000	000000000000000000000000000000000000000	00000000	0000000	0000000	000	0000000
Valuatio	n							

- Current or coming dividend is known;
- Estimate a growth rate for the following ones;
- Solution Discount rate / Cost of capital (estimate) is known.

Share value. For a share kept for many years

$$P_{0} = D\left(\frac{1}{1+r} + \frac{1+g}{(1+r)^{2}} + \frac{(1+g)^{2}}{(1+r)^{3}} + ...\right)$$

= $D\lim_{n \to \infty} \frac{1 - \left(\frac{1+g}{1+r}\right)^{n}}{r-k}$
= $\frac{D}{r-g}$, if $r > g$

Outline	Simple Interest	Discount	Compound interest	Annuities	Other An.	Variable An.	Loans	Leasing	Bonds

Valuation

Example

The ABC, PLC Share is expected to pay a dividend of \notin 2 per share a year from now, and its dividends are expected to grow by 6% per year thereafter. If its price is now \notin 20 per share, what must be the discount rate?

Sol.:

$$20 = \frac{2}{r - 0.06} \Leftrightarrow r = 0.16 \rightarrow r = 16\%$$

 Outline
 Simple Interest
 Discount
 Compound interest
 Annuities
 Other An.
 Variable An.
 Loans
 Leasing
 Bonds

 000
 00000000
 00000000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 00000000
 0000

Valuation

Example (Valuation of a share)

The ABCD Co. is expecting earnings of $\in 10$ per share, an earnings retention rate of 75%, an expected rate of return on future investments of 18% per year, and a discount rate of 15% per year. Compute an estimate of the ABCD share price. (R: $P_0 = \in 166.67$)

Let r = 0.15 and $g = 0.75 \times 0.18$ be the discount and the growth rate, respectively. Then

$$Div_1 = 10.00 \times 0.25$$

 $Div_{n+1} = Div_n (1 + 0.75(0.18))$, $n = 1, 2, ...$

Discounting

$$P_0 = 2.5 \frac{1}{1+r} + 2.5 \frac{(1+g)}{(1+r)^2} + 2.5 \frac{(1+g)^2}{(1+r)^3} + \dots$$
$$= 2.5 \sum_{k=0}^{\infty} \frac{1.135^k}{1.15^{k+1}} = \frac{2.5}{0.015} = \frac{2.5}{0.15 - 0.75(0.18)} = 166.6(6)$$