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1 - INTRODUCTION

Credit Risk

“Default risk is the risk that an obligor does not honour his payment obligati-

n

ons.

Typically,

Default events are rare.

They may occur unexpectedly.

Default events involve significant losses.

The size of these losses is unknown before default.

All payment obligations represent some sort of default risk.
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DETERMINANTS OF CREDIT RISK

* “Credit risk is the risk of default or of reductions in market value
caused by changes in the credit quality of issuers or counterparties”,

Duffie, Darrell and Kenneth J. Singleton (2003), “Credit Risk”,
Princeton University Press.

 Credit Risk is associated to the PD of the debtor, as well as the LGD.

* Regarding the credit risk of the debtor, it is relevant not only to
qguantify the PDs but also the rating transition frequencies, which
also impact on bond prices.

* Nonetheless, the expected loss is usually calculated taking only
default into consideration: EL = PD x LGD

* Given the diversity of the counterparties, the market usually
distinguishes sovereign, banking, corporate and
individual/household credit risk.
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DETERMINANTS OF CREDIT RISK

 The bond spreads usually provide relevant information on credit
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Source: Duffie, Darrell and Kenneth J. Singleton (2003), “Credit Risk”, Princeton University

Press.
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COMPONENTS OF CREDIT RISK

Arrival risk is a term for the uncertainty whether a default will occur or not. To enable
comparisons, it is specified with respect to a given time horizon, usually one year. The measure
of arrival risk is the probability of default. The probability of default describes the distribution
of the indicator variable default before the time horizon.

Timing risk refers to the uncertainty about the precise time of default, Knowledge about the
time of default includes knowledge about the arrival risk for all possible time horizons, thus
timing risk is more detailed and specific than arrival risk. The underlying unknown quantity
(random variable) of timing risk is the fime of default, and its risk is described by the probability
distribution function of the time of default. If a default never happens, we set the time of default
(o infinity.
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COMPONENTS OF CREDIT RISK

Recovery risk describes the uncertainty about the severity of the losses if a default has
happened. In recovery risk, the uncertain quantity is the actual payoff that a creditor receives
after a default. It can be expressed in several ways which will be discussed in a later chapter.
Market convention is to express the recovery rate of a bond or loan as the fraction of the
notional value of the claim that is actually paid to the creditor. Recovery risk is described by
the probability distribution of the recovery rate, i.e. the probabilities that the recovery rate is
of a given magnitude. This probability distribution is a conditional distribution, conditional
upon default.

If we consider the risk of joint defaults of several obligors, an additional risk component is
introduced. Default correlation risk describes the risk that several obligors default together.
Again here we have joint arrival risk which is described by the joint default probabilities over a
given time horizon, and joint timing risk which is described by the joint probability distribution
function of the times of default.
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PDs

o Ratings are a ranking of credit risk
and do not explicitly provide any PD
measure.

o However, one can obtain historical
frequencies of default for each
rating classification, as well as the
historical frequencies of transition
between ratings.

o The long term ratings of the main
agencies (S&P and Moody’s) split by
7 classes, each of them (excluding
AAA) with rating modifiers +/ /-
(S&P) or 1/2/3 (Moody’s).
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PDs

e Simplest measure of credit risk — default frequencies from rating
agencies:

Global Corporate Average Cumulative Default Rates By Rating (1981-2013)

———— AAA ——AA mm—ee A -----BB8 — —BB — —B

(Logarithmicscale)
100.00 T

7 8 9 10 11 12 13 14 15 16 17 18 19 20
(Time horizon, years)

Note: Data provided arc kKeontical to thot found in chat 4, converted to log-acale. Sources:
Standard & Poor's Global Fixed income Research and Standard & Poor's CreditPro®.

Source: S&P (2014), “Default, Transition and
Recovery: 2013 Annual Global Corporate
Default Study and Rating Transitions”.

© Standard & Poor's 2014.
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PDs

o Transition matrices illustrate the significant stability of rating
classifications, being this stability higher for higher ratings.

Average One-Year Letter Rating Migration Rates, 1920-2016

From/To: Aaa Aa A Baa Ba B Caa Ca-C WR Default
Aaa 86.746% 7.848% 0.784% 0.193% 0.030% 0.002% 0.000% 0.000% 4.397% 0.000%
Aa 1.059% 84.158% 7.642% 0.729% 0.160% 0.046% 0.012% 0.004% 6.129% 0.060%
A 0.070% 2.740% 84.952% 5.597% 0.646% 0.119% 0.036% 0.008% 5.747% 0.084%
Baa 0.036% 0.239% 4.261% 82.661% 4.632% 0.741% 0.129% 0.017% 7.027% 0.257%
Ba 0.006% 0.072% 0.456% 6.148% 73.923% 6.880% 0.669% 0.089% 10.553% 1.164%
B 0.005% 0.044% 0.162% 0.620% 5.574% 71.711% 6.175% 0.476% 11.940% 3.292%
Caa 0.000% 0.010% 0.028% 0.125% 0.567% 6.897% 67.342% 2.944% 13.675% 8.413%
Ca-C 0.000% 0.016% 0.108% 0.038% 0.616% 2.975% 8.034% 48.426% 18.719% 21.068%

Source: Moody’s (2017), “Corporate Default and Recovery Rates, 1920-2016".
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Exhibit 30

S Annual Issuer-Weighted Corporate Default Rates By Letter Rating, 1920-2016*
Year Aaa Aa A Baa Ba B Caa-C nv Crade Spec Crade All rated
1920 0.000 2153 4,382 0000 3.009 1234
1921 0.000 0444 2.683 13.332 2.150 1.068
1922 0.000 1.078 1.705 7.629 1.762 1.007
1923 0.000 0925 2.270 5937 1705 0.804
1924 0.000 2.065 2.705 12.835 2.852 1152
" 1925 0.000 1.745 2585 14,397 2567 1
o Default frequencies also tend to =
1927 0.000 0.000 0.212 0.000 1.300 1980 12.842 0.069 1.831 0.736
. 1928 0,000 0.000 0.000 0.164 1.320 10 477 0.000 0.877 0363
change along time, namely for lower =
1930 0.402 0917 3163 1720 0151 2.204 1.040
rati ngs' 1931 1.085 3.005 9523 31.670 0.502 7.897 3.805
1932 0.929 6.097 13978 24062 0.861 10,989 5.503
1933 177 5 16.147 25921 0.790 15.709 8489
1934 0.857 2529 4224 16.504 0.586 5.897 3.405
1935 1923 5134 4275 13.024 1.285 6.253
1936 0.327 1.234 2.385 7795 0.482 2720
1937 0.000 1043 0.997 2.669 9074 0.619
1938 0.000 1990 0991 1 12 808 1.550
1939 0.000 0.995 0.623 1744 6.073 0.42 1.224
1940 1370 0.433 3307 11829 0.592 2472
1241 0.000 0.873 0.813 5.071 0.000
1942 0.000 0.000 D/ 2004 0.000
1943 0,000 0000 1359 0000 0.000
1944 0.000 0.000 0.000 0.435 2.551 0.000 0.666
1945 0.000 0.000 0.000 0.000 0.000 3571 0000 0.565
1946 0.000 0.000 0.000 0.000 0000 0.000 0.000 0.000
1947 0.000 0.000 0.000 0.000 D19 2178 0000 0636
1948 0.000 0.000 0.000 0.000 0.000 0000 0.000 0.000
1949 0.000 ©.000 0.000 1.031 8.571 0.000 1926
1950 0.000 0.000 0.000 0000 0000 0.000 0.000
1951 ©.000 0.000 0.000 0.000 4762 0.000 0.433
1952 0.000 0.000 0.0600 0000 0.000 0.000 0.000
1953 (0.000 0.000 0000 0000 0.000 0.000 0.000
1954 0.000 0.000 0.000 7143 0.000 0.467 0.166
Q.000 0000 0000 1613 0000 0000 0518 0.766
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1957 0.000 0.000 0.000 1.266 0.000 0.000
1958 0.000 0.000 0.000 0000 0000 0.000
1959 0.000 0.000 0.000 0.000 0.000 0.000
1960 0.000 G.000 Q000 0000 1.251 0000 0000 0000

Source: MOOdy,S (201 7), “Corporate Default and Recovery 1961 0.000 0.000 0000 0000 0593 0000 8.696 0000
Rates, 1920-2016". 1962 0.000 0.000 0.000 0.000 1749 1471 0.000 0.000

1963 0.000 0.000 0.000 0.000 1162 14N 0.000 0.000
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PDs

o Actually, the volatility of default frequencies for lower
ratings (speculative grade) is significant.

Global Speculative- Grade Default Rate Remained Low in 2013
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Source: Moody’s (2014), “Corporate Default and Recovery Rates, 1920-2013.
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PDs

o Marginal frequencies obtained from the cumulative figures tend to exhibit a

very irregular shape.

o It can be observed that marginal PD curves have different inflection points,
depending on the rating class, with the lower inflection points for the higher risk
classes.

Unconditional Marginal PDs: Unconditional Marginal PDs:
Moody's 1920-2005 - Investment Grade Moody's 1920-2005 - Speculative Grade
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PDs

o The irregular shape of marginal PD curves occurs even when cumulative PD
curves exhibit an apparently smooth behavior.

o Therefore, in order to ensure a smother behavior of marginal PD curves, it is
recommended to smooth the cumulative PD curves, as the marginal curves as a
measure of the 1t derivative of the cumulative curves.

o The cumulative PD curves can be smoothed by methods like the Nelson-Siegel-
Svensson, with the cumulative PD curves corresponding to the spot curves and
the marginal PD curves to the instantaneous forward curves.

Cumulative PDs
Moody's 1920-2005
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PDs

e P(t) — cumulative probability of surviving t years

!

* Unconditional default probability between t and s - probability of
default between any times t and s 2 t: difference between the probability
of default until s and the same probability until t:

d’(s) = [1-P(s)]-[1-P(t)] = P(t) - P(s) = D(s) = D(t)

!

difference between 2 cumulative probabilities of default (D) seen today
(being D,=0)
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PDs

* Probability of surviving to time s (P(s)) = probability of surviving until t
(P(t)) x probability of surviving between t and s, given that it has survived
until t (p(s|t)):

P(s) = P(t) x p(s|t)

!

* Conditional probability of surviving to time s, given survival to time t
(or forward default probability):

p(s|t)=P(s)/P(t)
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PDs

Table 24.1 Average cumulative default rates (%), 1970-2012, from Moody’s.

Term (vears): / . - 4 -] 7 10 15 20

Aaa 0.000 0.013 0.013 0.037 0.106 0.247 0.503 0935 1.104
Aa 0.022 0.069 0.139 0.256 0.383 0.621 0922 1.756 3.135
A 0.063 0.203 0414 0625 0870 1.441 2480 4.255 6.841
Baa 0.177 0.495 0.894 1.369 1.877 2927 4.740 8.628 12.483
Ba 1.112 3.083 5424 7.934 10.189 14.117 19.708 29.172 36.321
B 4.051 9.608 15.216 20.134 24.613 32.747 41.947 52.217 58.084
Caa-C 16.448 27.867 36.908 44.128 50.366 58.302 69.483 79.178 81.248

* For the Caa rating, the unconditional default probability (d’) seen today
for the 3" year is equal to the difference between the cumulative
probabilities of default for 3 (s) and 2 (t) years:

. d’(3)=D(3) - D(2) = 39,908% - 27,867% = 9,041%
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PDs

 The unconditional probability of default measured today is also the
product between the cumulative probability of survival until t and the
probability of default between t and s, given survival until t:

d’(s) = P(t) x d(s|t) l

* Therefore, any unconditional probability of survival may be measured as:

d =d li_[(1—dj_1)

being d;=d(s|t) and (1-d; ;) = P(t)

* The unconditional marginal PD in j is the product between the
probabilities of survival until / and the probability of default in i, given that
it has survived until then, being obtained from d, taking out the effect of
the condition of having survived in the previous periods (being d,” = 0).
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PDs
!

* From d’(s) = P(t) x d(s|t), the conditional probability of default between s
and t, given survival until t (d(s|t)) is:

d(s|t) =d’(s) / P(t)
Also called default intensity or hazard rate.
* |n our example for the Caa rating in the 3rd year:

d(3|2) = d’(3) / p(2) = 9,041%/(100%-27,867%) = 9,041%/72,133% = 12,53%
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PDs

o Cumulative default frequencies are the sum of unconditional marginal default
frequencies.

o However, cumulative default frequencies can also be calculated as is 1 - the

joint (cumulative) probability of surving until i-1 and the probability of surving in
I

D; :1_(l_di)(l_Di—1)

Jorge Barros Luis | Interest Rate and Credit Risk Models 240



DEFAULT INTENSITY

o The conditional marginal default probability to the rating Caa previously
calculated (12,53%) was for a 1-year period.

o If one considers a very short period of time At, denoting the hazard rate
at t by A(t), the probability of default between t and t + At conditional
on no previous default (until t) is A(t) x At.

o Many models of PDs are based on the notion of the arrival intensity of
default.
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DEFAULT INTENSITY

o The simplest version of such a model defines default as the 1%t arrival
time t of a Poisson process with some constant mean arrival rate —
average default intensity or hazard rate (A):

p(t ) = e - probability of survival for t years (to be shown afterwards)

1/A - expected time to default

A(t)At — default intensity in t over a small period of length A (between t
and t+At), given survival until t.

o Example: default intensity (A) = 0.04 =>

=> 1-year PD (1-p(1)) = 1-e-09%1 =3 9% => expected time to default (1/A) =
1/0.04 = 25 (years).
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DEFAULT INTENSITY

o As it was shown before, d’(s) = P(t) x d(s|t) <> d(s]|t) =d’(s) / P(t).
o For a very short period of time At, this result comes:

d(t+At|t) = d’(t+At)/P(t) = [P(t) — P(t+At)]/P(t)

o As the conditional marginal probability of default for a very short period
of time is A(t)At, we have:

[P(t) — P(t+At)]/P(t) = A(t)At & [P(t+At) - P(t)] = -A(t) P(t) At

o Taking limits:
dP(t)/dt = -A(t) P(t) => P(t) = « k"™ => D(t) = 1 - ¢ ko = 100

where A(t) 1s the average hazard rate between time 0 and time t.
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DEFAULT INTENSITY

o Default time & 15t time that a coin toss results in “heads,” given
independent tosses of coins, one each period, with each toss
having a probability A of heads and 1-A of tails <& default is
unpredictable < when default does occur, it is a “surprise.” &
default time is inaccessible.

The following assumption describes the way in which default arrival risk is modelled in all
intensity-based default risk models:

Assumption 5.1 (intensity model default arrivals) Let N(1) be a counting process' with
(possibly stochastic) intensitv A(1). The time of default t is the time of the first jump of N, i.e.

t=inf{t e R, | N(1) = 0}. (5.1)

The survival probabilities in this setup are given by:

PO, T)=P[N(T) = 0|Fs]. (5.2)
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POISSON PROCESSES

A Poisson process N(r)is an increasing process in the integers 0, 1, 2, 3, .... More important

than its unexciting set of values are the rimes of the jumps T, 1, 13, .

a jump in the next instant.

.. and the probability of

We assume that Lh@ili[y of @in the next small time interval At is proportional

to At —
PIN(t + At) = N(@) = 1] = AAL,

Probability of default

_—""in a small period of

time At (75‘3)

that jumps by more than 1 do not occur, and that jumps in disjoint time intervals happen inde-

pendently
constant 1

There is only 1 default, PIN(t+ At) = N(1)=0] =1 = LA,
i.e. the default is an
absorbing state.

f each other, This means, conversely, that thegrobability of the process remaining

 —

Probability of survival
in a small period of
time At
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Probability of survival in 2
POISSON PROCESSES small periods is the joint
probability of default in each
of them (given that the hazard
rate is the same for all periods

over the interval [¢, 2A¢ Dthis probability is / of the same magnitude)

PIN(t 4+ 2A1) — N(t) = 0]
=P[N(t + At = N(@)=0]-P[NI +2A1) = N + A1) = 0] = (1 — LA,

Now we can start to construct a We subdivide the interval [z, T] into n
subintervals ol length At = (1 — t)/n. Ineach of these subintervals the process N has a jump

with probability Ar2. We conduct n independent binomial experiments each with a probability
of At for a “jump” outcome.

The @)1 10 jump at @jb given by:
PIN(T)=N()] =(1 - Atr)' = (l (T A
/ .
At

Probability of no jumps in the n periods
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POISSON PROCESSES

/

PIN(T)= Nl = (1 - A1L)" = (1

Because (1 + x/n)" — ¢* as n — o<, this converges to:

P[N(T) = N(1)] — exp{—(T — 1))}

>

X

The Poisson
process
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POISSON PROCESSES

Next we look at the probability of exactly one jump in [#, 7']. There are n possibilities of having
exactly one jump, giving a total probability of

/ Probability of a jump
Probability of no jumps in n-1 periods
PIN(T) — N(t) = 1] = n QA= AtA)" D —

At (T — 1)L

Probability of exactly
one jump in [t, T]

=T —Drexp{—(T — 1)L} asn — o,
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POISSON PROCESSES

o For 2 jumps, there will be n/2 chances => probability of having 2

jumps:
L v
PIN(T)— N(t) =21 = (T — 1y 2~ exp{—(T — 1)A]

o Probability of n jumps:

|
PIN(T)—=N()=mn] = —1(T — )" A exp{—(T — DA}
n!

o When a Poisson process with constant intensity A is used, the term
structure of spreads will be flat and constant over time.

Stochastic dynamics in the credit spreads are necessary for several reasons. We need them
if we want to price credit derivatives whose payoft is directly atfected by volatility (e.g. credit
spread options), if the credit derivative has a payoff which might be correlated with the spread
movements (€.2. an option on the currency of an emerging market), and in general if we want
to have a model which enables us to measure, manage and hedge this type of risk.

These stochastic intensity dynamics can be modelled with a generalisation of the Poisson
process N(r), the Cox process.
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VARIABLE DEFAULT INTENSITY

Roughly speaking, [Cox processes are Poisson processes with stochastic intensity,

PIN(t 4+ At) = N(t) = 1] = A(r)dt
I Now XA is time-

varying

o If A changes over time, with A(1) and A(2) known beforehand => the
cumulative probability of survival for 2 years is:

P(Q') - p(_l')p(‘.’ | 1.) - P—),(I)E,—ML’) — F—[}.11)+).<2)]

o Carrying out the same calculation over t years, recursively, the
cumulative probability of survival for t years is:
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VARIABLE DEFAULT INTENSITY

o With deterministic continual variation in default intensity, we get:

”» — [ an dt

b(l) = e j“ A1)

o Deterministic variation in intensity implies that the only
information relevant to default risk that arrives over time is the
mere fact of survival to date.

o However, in reality, as time passes, one should have new
information, beyond simply survival, that would bear on the credit

quality of an issuer. 1

o The default intensity would generally vary at random as this
additional information arrives.
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VARIABLE DEFAULT INTENSITY

o For example, one may assume that the intensity varies with an
underlying state variable (driver), such as the credit rating,
distance to default, equity price, or the business cycle.

o If intensities are updated with new information at the beginning of
each year and are constant during the year => Probability of
survival to time t given survival to t — 1, and given all other
information available at time t - 1:

p(t_ 1‘ [) — F—A“l'

o Survival probability in the 2-year when default intensity in the 2nd
yvear (A(2)), assuming the firm survives the first and takes 2 possible
levels, A(2,H) and A(2, L), with conditional probabilities gand 1 - g:



DEFAULTABLE ZERO COUPON BONDS

The implied survival probability fromt to T >t as seen from time t is the ratio of the
defaultable 1o the defauli-free ZCB prices:

<«

B B(t.T) < Zero Coupon Defaultable bond

P, T)= , '
( BU.T) ~— (with zero recovery rate)
Zero Coupon Risk-free bond — B(.T)=E[¢”} 70 1]
I if defaultafter 7',ie. 7 > T, For the Zero Coupon Defaultable

0 if default before T.ie.t < T | bond, the pay-off will be 1 only if

the debtor is still alive at T.

ﬁ([, T) _ E[{?' -’*;Tp‘lljkil.‘i ) I(T)] ‘

Payoff = 1, = l

E“ fl) . [":[6’_,’{ risyds 1(1)] _ [*:[{/_ -':rrr':‘\‘ml"\]lﬂ [1(1)]
= B(t, T)E[I(T)] = B(t. T)P(t, T),
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DEFAULTABLE ZERO COUPON BONDS

o If the time of default is the time of the 15t jump of a Poisson
process N(t) and it’s independent from the default-free interest
rate, the price of a defaultable bond with zero recovery becomes:

.]"

B(0. T) = E[e” % "9 E[1iy -0 ].
— =l
B((), ’r ) — B((f)‘ T)(" ..io AlS I.'I'.\.

E(f TY= B(t.T)e™ ;T }..(.s‘)ds.

' flows of the corresponding risk-free
BO. T P[ ;‘Trumu]/ bond, using as discount rate the
( ) ’)= _‘; (_;7_(,) LS AN NS

The price of a defaultable bond is determined
by the risk-free interest rate and the
probability of paying the redemption value.

The  defaultable  bond price
corresponds to the NPV of the cash-

yield of the defaultable bond.
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CREDIT DERIVATIVES

‘Traditionally, a bank could only manage its credit risks at origination. Once the risk was
originated, it remained on the books until the loan was paid off or the obligor defaulted. There
was no efficient and standardised way to transfer this risk to another party, to buy or sell
protection, or to optimise the risk—return profile of the portfolio. Consequently, the pricing
of credit risks was in its infancy, spreads on loans only had to be determined at origination
and were often determined by non-credit considerations such as the hope of cross-selling
additional business in the corporate finance sector, There was no need to become more efficient
because the absence of a transparent market meant that the mode of operation was more like an
oligopoly than an efficient competition. Whether a loan was mispriced or not was impossible
to determine with certainty, it all depended on the individual subjective assessment of the
obligor’s default risk. The main “cost” of extending a loan was the cost of the regulatory risk
capital as prescribed by the rules of the Basel I capital accord, and this is the point where credit
derivatives came in.

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing
and Implementation”, Wiley.
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CREDIT DERIVATIVES

Definition:

(a) A credit derivative is a derivative security that is primarily used to transfer, hedge or

manage credil risk.
(D) A credit derivative is a derivative security whose pavoff is materially affected by credit

risk.

Narrower definition:

e A credit derivative is a derivative security that We need to
has a payoff which is conditioned on the occur- define what
rence of a credit event. are credit

events.
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[ e bankruptcy
e failure to pay

¢ obligation default

¢ obligation acceleration

Credit Events <

e repudiation/moratorium
Standardized by
ISDA (International ° restructuring
Swap Dealers
Association), even
though they may
also be freely

¢ ratings downgrade below given threshold

negotiated. \ e changes in the credit spread
e The credit event is defined with respect to a re- Reference Credit:
ference credit, and the reference credit as- ) Firm, institution or
set(s) issued by the reference credit. person who may
default.
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e |0ans

o floating or fixed rate

o may include optionality (interest rate caps,
credit facilities)

o nhottraded, thus recovery rate may be hard to
determine

Reference <

Credit Assets * bonds

o fixed—coupon or floater
o Zero coupon
o convertible

e counterparty risk

\
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MARKET TERMINOLOGY

o Credit derivatives can be defined on single-name or multi-name.
o The most popular single-name credit derivative is the CDS.

e Buying a credit derivative typically means buying credit protection, which
Is economically equivalent to shorting the credit risk.

e So selling credit protection means going long the credit risk.

e Alternatively, one may speak of protection buyers/sellers as the
payers/receivers of the premium.
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USE OF CREDIT DERIVATIVES

e Traditional uses of derivatives: hedging, speculation, arbitrage

e Reduction of regulatory capital — this in particular applies to synthetic
securitisations

¢ An unfunded way to diversify revenue

[ Asset Swaps
Total Return Swaps

Examples < Credit Default Swaps

Exotic Credit Derivatives

. Default Digital Swaps
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ASSET SWAPS

An asset swap package is ; , |
swap contract that swaps the coupon of the bond into a payott stream of Libor plus a spread
This spread is chosen such that the value of the whole package is the par value of the defaultable
bond. Usually, the bond is a fixed-coupon bond and the interest-rate swap a fixed-for-floating
interest-rate swap.

Example 2.2 The pavoffs of the asset swap package are as follows. A sells to B for 1 (the
notional value of the C-bond):

® A fixed coupon bond issued by C with coupon © pavable at coupon dates T;, i =1, ..., N;
e A fixed-for-floating swap (as below ).

As payments of the swap the following payments are made: at each coupon date T;, i < N of
the bond

® B paysio A: T, the amount of the fixed coupon of the bond,
® A paysio B: Libor + s*.

s is called the asset swap spread and is adjusted to ensure that the asset swap package has
indeed the initial value of 1.

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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ASSET SWAPS

The asset swap is not a credit derivative in the strict sense, because the swap is unaffected by
any credit events, so it is only a portfolio of a bond and a swap contract. Its main purpose is
to transform the pre-default payoft streams of ditferent defaultable bonds into the same form:
Libor + asset swap spread. B still bears the full default risk and if a default should happen,
the swap will still have to be serviced or to be unwound at market value.

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.

o Asset swaps also serve frequently as underlying assets for other
derivatives, e.g. options on asset swaps (swaptions) — gives the
holder the right to enter an asset swap package at some future
date T at a predetermined asset swap spread sA.
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TOTAL RETURN SWAPS

f ( ; ‘ ‘ o1 ’ ) o Y op /
The aim is to cash flows that arise from (wo different investments. Usually one of these two investments
swap the actual is a defaultable investment, and the other is a default-free Libor investment. This structure
return of 3 allows an exchange of the assets’ payoff profiles without legally transferring ownership of the
assels.
defaultable The payoffs of a total rate of return swap are as follows. Counterparty A pays to counterparty
bond into a B at regular payment dates 77, i < N
cashflow of ¢ The coupon ¢ of the bong issuedgy C (if there was one since the last payment date 7;_1);
LIBOR plus a ® The price appreciation (C(7;) — C(Z7i_1))" of bond C since the last payment; ‘ A pays while
spre ad ¢ The principal repayment of bond C (at the final payment date), the bond price
® ‘The recovery value of the bond (if there was a default). increases
(afterwards,
B pays at the same intervals: with the pull-to-
par, it will
* Aregular fee of Libor + s"%%; receive again)
¢ The price depreciation (C(T, 1) — C(T;))” of bond C since the last payment (if there was
any),
® The par value of the bond (if there was a default in the meantime).
A - B
Total return on bond . Total
Total ot
-
return < return
payer LIBOR + 25 basis points receaver
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ToTAL RETURN SWAPS

B lm:, almost the same pd)0II stream as if he had invested in the bond C directly and funded
' ; ¢ -+ RS The only difference is that the total rate of return swap is
marked to market at regular intervals. Price changes in the bond € become cash flows for the
TRS immediately, while for a direct investment in the bond they would only become cash
flows when the bond matures or the position is unwound. This makes the TRS similar to a
futures contract on the C-bond, while the direct investment is more similar to a forward. The
TRS is not exactly equivalent to a futures contract because it is marked to market using the
spot price of the underlying security, and not the futures price. The resulting price difference
can be adjusted using the spread s” #5 on the floating payment of B.

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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ToTAL RETURN SWAPS

Advantages:

¢ Counterparty B is long the reference asset without having to fund the investment up front,
This allows counterparty B to leverage his position much higher than he would other-
wise be able to. Usually, depending on his credit quality, B will have to post collateral,
though,

® If the reference asset is a loan and B is not a bank then this may be the only way in which
B can invest in the reference asset.

e Counterparty A has hedged his exposure to the reference credit if he owns the reference
asset (but he still retains some counterparty risk).

® The transaction can be effected without the consent or knowledge of the reference credit C.
A is still the lender to C and keeps the bank—customer relationship.

¢ If A does not own the reference asset he has created a short position in the asset. Because
of its long maturity, a short position with a TRS is less vulnerable to short squeezes than
a short repo position. Furthermore, directly shorting defaultable bonds or loans is often
impossible.

Fundamentally, a TRS can be viewed as a synthetic form of funding the investment into the
C-bond, where the C-bond is used as collateral. Thus, the TRS spread s?#* should not only
be driven by the default risk of the underlying asset but also by the credit quality of B as 4
counterparty.

If there is only one payment date, the TRS is equivalent to a forward contract on the C-bond.
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CREDIT DEFAULT SWAPS

The aim is to transfer ONLY the default risk from A to B.

The protection seller B agrees to pay the default payment
notional x (1 — recovery rate)

to A if a default has happened.

For this, A pays a periodic fee 5 to B (until maturity of the CDS or until default,
whichever comes first)
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CREDIT DEFAULT SWAPS

Default 90 basis points per year

> Default
protection P protection
buyer Payment if default by seller

reference entity

Source: Hull, John (2015), “Options, futures and other derivatives”, Pearson.

The total return swap achieves the goal of a transterral of the C-risk from A to B, but it has
some disadvantages. The default risk of C is not isolated but mixed up with the market risk of
the reference asset. Furthermore, basis risk may remain as the default risk of the obligor C is
not transterred, only the risk of one bond issued by C. The obligor might not default on the
reference asset of the TRS but on other obligations. A credit default swap on the other hand
enables the investors o isolate the default risk of the obligor. The basic structure is as follows.

In a single-name credit default swap (CDS) (also known as a credit swap) B agrees (o pay
the default payment to A if a default has happened. The default payment is structured to replace
the loss that a typical lender would incur upon a credit event of the reference entity. If there is
no default of the reference security until the maturity of the default swap, counterparty B pays
nothing.

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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CREDIT DEFAULT SWAPS

A pays a fee for the default protection. The fee can be either a regular fee at intervals until
default or maturity (the most common version, we speak of a default swap) or alump-sum fee up
front (less common, a default put). If a default occurs between two fee payment dates, A still has
to pay the fraction of the next fee payment that has accrued until the time of default (Table 2.2).

Table 2.2 Payoff streams of a credit default swap to protection
seller B (the payoffs to the protection buyer A are the converse of
these). Payoffs marked with an asterisk cease at default

Time Defaultable bond CDS —
(=0 —C(0) 0
t =T, ¢’ +5°
Maturity = T (14+0) 45
date
Default Recovery —(1 — Recovery)

(minus the default payment)

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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CREDIT DEFAULT SWAPS

Default swaps can differ in the specification of the default payment. Possible alternatives are:

® Physical delivery of one or several of the reference assets against repayment at par;
e Notional minus post-default market value® of the reference asset (cash settlement);
* A pre-agreed tixed payoft, irrespective of the recovery rate (default digital swap).

An example of a default swap with a fixed repayment at default was given in Example 2.1
(default digital swap on Brazil) but the fixed payment at default is a less common specification.
Example2.1 Defaultdigital swap on the United States of Brazil. Counterparty B (the insurer)

agrees to pay USD Im to counterparty A if and when Brazil misses a coupon or principal
pavient on one of its Eurobonds. Here:

® The reference credit is the United States of Brazil;

e The reference credit assets are the Eurobonds issued by Brazil (in the credit derivative
contract there would be an explicit list of these bonds);

® The credil evenl is a missed coupon or principal pavment on one of the reference assets;

® The default payment is USD Imi.

In return for this, counterpartv A pavs a fee to B.

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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CREDIT DEFAULT SWAPS

securities dodlfl\t a payment of its [)dl' value as delault payment. Sometimes substitute

securities may be delivered, or a payoff that depends on other market variables may be
specified (e.g. to hedge counterparty exposure in derivatives transactions).

To identify a credit default swap, the following information has to be provided:

The reference obligor and his reference assets;
. The definition of the credit event that is to be insured (default definition);
The notional of the CDS;

The start of the CDS, the start of the protection;

The maturity date;

6. The credit default swap spread;

7. The frequency and day count convention for the spread payments;,
8. The payment at the credit event and its settlement.

S 8

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.

Jorge Barros Luis | Interest Rate and Credit Risk Models



CREDIT DEFAULT SWAPS

The event that is to be insured against is a default of the reference obligor, but because
of the large payments involved the definition of what constitutes a default has to be made
more precise, and a mechanism for the determination of the default event must be given. The
standard definition of default includes:

® bankruptcy, filing for protection,

¢ failure to pay,

¢ obligation default, obligation acceleration,
¢ repudiation/moratorium,

e restructuring.”

There is a debate whethe hould be included as a default event in the specifi-
cation or not, and some market makers even quote different prices for CDSs with and without
restructuring in the defaultdefinition. Sometimes (in particular in default definitions for CDOSs),
a slightly different default definition is used which is based upon rating agencies™ definitions
of default. Despite the growing standardisation of the default definition, one advantage of a
CDS is that both parties can agree to an event definition that can be completely different from
the standard ISDA specification, ]

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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CREDIT DEFAULT SWAPS

Example 2.3  Credirt default swap on Daimler Chrysler.

The trade

At timet = 0, A and B enter a credit default swap on Daimler Chrysler, A as protection buyer
and B as protection seller. They have agreed on:

(i) The reference credit: Daimler Chrysler AG.

(ii) The term of the credit default swap: 5 vears.
(iii) The notional of the credit default swap: 20m USD.
(iv) The credit default swap fee: 5§ = 116 bp.

The credit default swap fee s = 116 bp is quoted per annum as a fraction of the notional. A
pays the fee in regular intervals, semi-annually. To make our life easier, we simplify the day
count fractions to 1/2 such that A pays to B:

116 bp x 20m /2 = 116000 USD at T, =05 T, =1,..., Tio=35
These payments are stopped and the CDS is unwound as soon as a default of Daimler Chrysler
OCCUTS.
Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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CREDIT DEFAULT SWAPS

Because the payments are
done each semester

First, A pays the remainmm fee. If the default occurred two months after the last fee
pavment, A will pay 116000 x 2/6. The next step is the determination of the default payment.
If phvsical settlement has been agreed upon, A will deliver Daimler Chrysler bonds to B with
a total notional of USD 20m (the notional of the CDS). The set of deliverable obligations has
been specified in the documentation of the CDS. As liquidity in defaulted securities can be
very low, this set usually contains more than one bond issue by the reference credit. Naturally
A will choose to deliver the bond with the lowest market value, unless he has an underlying
position of his own that he needs to unwind. (Even then he mayv prefer to sell his position in
the market and buy the cheaper bonds to deliver them to B.) This delivery option enhances the
value of his default protection. B must pav the full notional for these bonds, i.e. USD 20m in
our example.

The default payment

If cash settlement has been agreed upon, a robust procedure is necessary to determine
the market value of the bonds after default. If there were no liguidity problems, it would be

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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CREDIT DEFAULT SWAPS

sufficient to ask a dealer 1o give a price for these bonds, and use that price, but liquiditv and
manipulation are a very real concern in the market for distressed securities. Therefore not one,
but several, dealers are asked to provide quotes, and an average is taken after eliminating the
highest and lowest guotes. This is repeated, sometimes several times, in order to eliminate the
influence of temporary liquidity holes. Thus the price of the defaulted bonds is determined,
e.g. 430 USD for a bond of 1000 USD notional. Now, the protection seller pavs the difference
between this price and the par value for a notional of 20m USD, i.e.

(1000 — 430)/1000 x 20m USD = 11.4m USD

Because the price determination in s so involved, most credit default swaps
specify physical delivery in default. Cash settlement is only chosen when there may not be
any physical assets to deliver (i.e. the reference entity has not issued enough bonds) or if the
CDS is embedded in another structure where physical delivery would be inconvenient, e.g. a
credit-linked note.

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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Valuation

e Maturity = 3 years;
e Notional =€ 100.000
e Payment in case of default = 70% of the notional

® Risk-neutral marginal probability of default in t, given
that it didn’t default in t-1:

Period (t) Probability (1)
1 0.59%
2 1.00%
3 1.27%
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Valuation

e Spot rates for maturity t:

Maturity (t) Spot Rate Discount Factor
s(t) F(t)
1 4.0% 0.9615
4.2% 0.9210
3 4.4% 0.8788

e In order to obtain the swap premium, it is necessary (as usual)
to calculate the NPV of the future cash-flows, which will be
done recursively from the last cash-flows.
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Valuation

e E,[pay-off(3)|ND] = pay-off in case of no default *(1-PD) + pay-
off in default *PD

=0 x (1- 0.0127) + 0.7 x 0.0127 = 0.00889
>PD(3)
e E,[pay-off(3|D] =0.7

e E,[pay-off(3)|ND] = E,[pay-off(3) IND]*(1-PD)+ E,[pay-off(3)| D]
*PD= 0.00889 x (1—0.01) + 0.7 x 0.01 = 0.0158011

v\PD(Z)

e E,[pay-off(3)|D] =0.7
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Valuation

o EfX(3)] = Elpay-off(3)IND]*(1-PD)+  E,[pay-off(3)| D]
*PD= 0.0158011 x (1 — 0.0059) + 0.7 x 0.0059 = 0.0198

e V(0,3) = F(0,3) E,[X(3)] *nocional = 0.8788 * 0.0198*100000 =
£1740.

e If the premium is paid on an annual basis, we’ll have:

1740 = 0.9615 x p +0.9210 x p + 0.8788 x p
p = 630.14.

Jorge Barros Luis | Interest Rate and Credit Risk Models 278



FIRST TO DEFAULT SWAPS

A first-to-default swap (FtD)) is the extension of a credit default swap to portfolio credit risk.
[ts key characteristics are the following:

® Instead of referencing just a single reference credit, an FtD is specified with respect (o a
basket of reference credits C,, C». ..., Cy.

® The set of reference credit assets (the assets that can trigger default events) contains assets
by all reference credits.

e The protection buyer A pays a regular fee of 5 '°
event occurs or the FtD matures.

¢ The default event is the first default of any of the reference credits.

¢ The FtD is terminated after the first default event.

® The default paymentis “1 — recovery” on the defaulted obligor. If physical delivery is spec-
ified, the set of deliverable obligations contains only obligations of the defaulted reference
credit.

to the protection seller B until the default

The basket of a FtD tipically comprises 4 to 12 reference credits.

A natural extension of the first-to-default concept is the introduction of second-to-defaull
(StD) and nth-to-default (ntD) basket credit derivatives. Such credit derivatives only differ in
the specification of the default event, the basic structure remains the same. While FtD credit
derivatives are a common structure, second- and higher-order ntD structures are rarer.
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COLLATERALIZED BOND OBLIGATIONS

¢ underlying portfolio of defaultable bonds

e the portfolio is transferred to an SPV

e the SPV issues notes These notes are
_ . collateralized by the
o an equity (or first loss) tranche bonds sold to the SPV

o several mezzanine tranches
o a senior tranche

.. Underly | ed i
Similar to gt sk Securities Sener
RMBS but with l

bonds instead Assets SPV Mezzanine

. ) BBAE,BB
of residential
— — .
mortgage loans . B Equity
Initial Investment Initial lmyestmen
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e if during the life of the CBO one of the bonds
defaults, the recovery payments are reinvested
in default—free securities

e at maturity of the CBO, the portfolio is liquida-
ted and the proceeds distributed to the tran-
ches, according to their seniority ranking

Loss

Senior illustration

Mezzanine In this case, no losses will be

— suffered by the senior bonds,

Equity _—N while equity bonds will get a
total loss.

Defaults

Jorge Barros Luis | Interest Rate and Credit Risk Models




COLLATERALIZED DEBT OBLIGATIONS

e Designed exactly in the same way as CBOs. The main difference is that
the underlying assets can be defaultable bonds or any other credit

related instruments.

 The most well-known CDOs are the so called synthetic CDOs — when the
underlying defaultable bonds are replaced by credit derivatives, e.g.:

* CLOs—when the underlying assets are loans.

 (CBOs - when the underlying assets are bonds.

In particular, even if the underlying portfolio is mostly unrated or speculative-grade, it is
possible to enhance the credit rating of most of the notes to the high investment-grade ratings
by concentrating the default risk in a small first loss layer. This enables investors o invest in
these notes who otherwise would not be allowed to invest in the underlying assets themsel ves.
The notes of a well-designed CDO can sometimes be sold for a cumulative price that is higher
than the sum of the market value of the underlying assets.
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CREDIT-LINKED NOTES

Credit-linked notes (CLLNs) are a combination of a credit derivative with a medium-term note.
The underlying note pays a coupon of Libor plus a spread and is issued by a high-quality
issuer, The issuer of the note buys protection on the risk referenced in the credit derivative,
In addition, having effectively sold protection on the underlying credit exposure, the investors
also face the counterparty risk of the issuer.

Example 2.8 (Wal-Mart credit-linked note) [ssuer: JPMorgan, September 1996 (via an
AAA trust). The buvers of the CLN receive:

e Coupon (fixed or floating),

® Principal if no default of reference credit (Wal-Mart) until maturity;

® Onlv the recoverv rate on the reference obligation as final repavment if a default of reference
credil OCcurs.

The buvers of the note now have credit exposure to Wal-Mart which is largely equivalent to the
direct purchase of a bond issued by Wal-Mart. They also have some residual exposure (o the
credit risk of the AAA-rated trust set up to manage the note. From JPMorgan’s point of view
the investors of the CLN have sold them a CDS and posted 100% collateral.
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2 — STRUCTURAL MODELS OF CREDIT RISK

o The drawbacks of traditional credit risk models and rating
updates by agencies in the recent past led to the development of
new credit risk models, based on the prices of financial assets
issued by the company.

o The rationale is that market prices are the best assessment
available on the companies’ capital or debt value.

o The first attempt to incorporate market prices in a credit risk
model was done in the Z-Score model. Later, in 1974, Merton
developed a corporate valuation approach based on financial
options.
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2 — STRUCTURAL MODELS OF CREDIT RISK

o In structural models, the default time is determined
endogenously by the behavior of the company’s asset <~ default
occurs when the asset value falls so much that makes it
impossible to ensure the debt service - 15t passage of assets to a
default boundary.

o Therefore, structural models are based on the company’s asset
values and use information from the stock market to measure the
market value of own funds.

o The main problem with these models corresponds to the false
alarms.
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Merton Model

o The model is based on the assumption that, when the company
issues debt, the shareholders transfer the control of the company
to the creditors.

o However, they retain an option of recovering that control if the
company reimburses the debt.

o Therefore, the value of capital may be seen as the price of a call-
option on the company assets, with a strike equal to the debt
value.

o If on the redemption date, the market value of assets is lower
than the debt value, the shareholders don’t exercise the call
option, i.e. the debt is not repaid =>

o PD= P[Market Value of Assets < Debt value].
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Merton Model

Market
Value
Anrxain

@V,

U H@ Time

Source: Crosbie and Bohn (2002), “Modeling Default Risk”, KMV.
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Merton Model

o Consequently, if the call-option can be valued, the PD will be obtained
from the distribution function resulting from the stochastic process
of the company’s asset market value.

o Assuming that the option is European and the asset market value may
be taken as the price of non-paying dividend asset, one can use the
Black-Scholes formula and calculate the PD from the implied
volatility of the company’s asset value and an estimate for the
respective growth rate.

o Hence, the Merton model is based on the assumption of the growth
rates of the company’s market value of assets (V,) being normally
distributed:

dv, =V, dt+0,V, 0z & dv,/V, = udt + o,dz

where V, is the company’s market value of assets, x4 and o, the respective trend and
instantaneous volatility and dz is a Wiener process (random shocks normally distributed).
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Merton Model

o Given that this is exactly the stochastic process of the
underlying asset of an European option under the assumptions
taken in the Black-Scholes pricing formula, the pricing formula
for the European call-option on the company’s market value of
assets that corresponds to the stock price is:

Ve =V N(dD)—e"" XN(d2)

where

V¢ is the market value of the company’s own funds

N is the cumulative normal distribution function

r is the risk-free interest rate for the maturity T

X is the nominal value of the company’s total debt payable in maturity T.

2
ln(V—AjJr(r + G—AJT
41 X 2
o NT
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Merton Model

o In the pricing formula, there are two unknowns -V, and o,

o Consequently, an additional equation is required, in order to
determine the values for those two variables.

o This equation will result from the relationship between the
volatility of assets and the volatility of capital:

VeV,
= oV, V.

(1) GE=://—AN(d1)O'A (from o)

E

In Jarrow and Rudd (1983), it is shown that the stock volatility is
a multiple of the volatility of the market value of assets:

(2) OE =TIOA
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Merton Model

Given (1) and that

oC(X)
= = N
3) & A (dy)

one gets (from (1) and (2):

(4) ://—A N(dl)o, =no, <

<:>V—A5=77<:>
VE
Ui O /0,
&0 = &0 = —
A/VE VA/VE
oo=9eVe oy Ve
oV, o, O

Therefore, from inputs Vi, o, X, r and T, the equation system
including the option pricing formula and (4) allows to estimate V,

and o, .
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Merton Model

o The PD is thus the probability of the market prices of assets
falling below the nominal value of debt at the expiry date:

pe =PrVi < X, V2 =V, |=PrflnV} <In X, |V =V, |

Given that the market value of assets follows a log-normal

distribution, one gets (with 1= expected asset returns):
2

[nV, =InV, +(,u —UZA}t +oate

Therefore, the PD is:

pt=Pr{anA+(u—ﬂjt+0'A\/f5S1nXi:Pr — X >e|< p,=N|-
2 o, Nt O'A\/E

Risk-neutral PD (uz=r): Py = N[—dz:
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Merton Model

O Open issues:
e How to obtain values for ¢ and c?

e How to deal with complex debt structures, with different
maturities, seniority degrees and installments?

e How to deal with the sensitivity of PDs to the leverage ratio?

e How to solve the kurtosis problem in the market value of
assets?

e How to use the PD estimates as a leading indicator of rating
changes?

o Estimation — non-linear least squares, minimizing the sum of
the squared differences between the market value and the
estimated value of the stocks (through the option pricing
formula) and the assets.
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Moody’'s KMV Model

o Moody’s KMV overcomes the distribution problems by using
a database of loans providing empirical PDs as a function of
the distance-to-default measure.

[V o |

1 7A+ _ A 't \
X (” 2 j \

Historical
DD = t Default
O t Frequency

EDF pesesee- SR \

4

Distance to Default

Source: Duffie, Darrell and Kenneth J.
Singleton (2003), “Credit Risk”, Princeton
University Press.
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Moody’s KMV Model

In this model, o, is a linear combination of a modeled and an
empirical volatility (the latter weighting 70%, 80% for Financial
Institutions).

Empirical vols - calculated as the annualized standard deviation of
the growth rates of the nominal value of assets, using 3 years of
weekly observations for US companies (5 years of monthly data
for European companies), excluding extreme values and adjusting
for effects of M&A.

Modeled vols - obtained from a regression between the observed
vol and size, revenues, profitability, sector and region variables.
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Moody’s KMV Model

o For FIs, the PD is harder to estimate, given the diversity and
uncertainty of the liabilities” maturities.

o On the other hand, by definition, banks are highly leveraged

¥

companies.

o Moody’s KMV proposes the default point (the value of the
payable liabilities in the maturity considered) to be calculated as
a % of the total liabilities, being that % differentiated according
to the type of institution.
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Moody’s KMV Model

o In Chan-Lau and Sy (2006), it is proposed an adjustment to the Moody’s
KMV model, in order to accommodate the possibility of a bail-out.

o Consequently, the “Distance-Risk measure” concept is created, with L,
being the bank’s liabilities (A=1 => DR=DD) and PCAR the planned capital

ratio: /
111

) : 1
DR, = —. A=
! ch_ 1- PCAR,

1

o With a very low PCAR, A gets higher and the DR lower <& with a lower
capital target, the bank gets closer to default and can reach this stage at
a lower level of liabilities.

o According to Oderda et al. (2002), Moody’s KMV model anticipates
defaults with a lead of around 15 months, but also produces false alarms
in 88% of the cases.
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Fitch EIR

o In order to smooth the excessive volatility of PDs obtained from equity
prices, hybrid models were developed, being the PD obtained from
corporate financial, market and macroeconomic information.

o One of these models was developed by Fitch, the Equity Implied Rating
(EIR), relating the DD to a set of financial ratios and macroeconomic

variables:

Figure &: Modeling Step of EIR

Difault | Composie
- <
S Bamier Model Hybrid FD Dynamic'Static
| {Raw PD, — mapping — IR Mapping <
Fte s = {Final FD) (ER)
Term
Staternent Financial Ratios Birrm Size of Credit
Asset Value Miarii=t Periommance oo
s ity Macro Vanables

Source: Fitch (2007).
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Bondscore

o Another model is the Bondscore, developed by CreditSights:

D =-9.593+7.366X —3.989X, —5.308X,
~6.333X, —2.501X, +3.807X, +5.469X_

being:

X, = Total Liabilities/Market Value of Capital
X, = EBITDA/Sales

X5 = Sales/ Total Assets

X, = Working Capital / Total Assets

X:= log(Assets)

Xg= Vol of EBITDA/Sales

X,= Vol of Market Value of Capital
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3 — REDUCED FORM MODELS

o A structural model of credit risk provide a link between the prices of
equity and debt instruments issued by a given firm.

o A reduced-form model does not give any fundamental reason for
the arrival of the defaults, assuming that hazard rates for the
different companies are stochastic processes correlated with
macroeconomic variables.

o Given that credit spreads can be decomposed in default risk (PD, or
A) and recovery risk (LGD, or ¢), the PD can be modeled from the
credit spreads and LGDs.

o Taking several maturities, one can obtain a term structure of PDs.

o However, we must have in mind that spreads are not only a function
of PDs and LGDs, but also of liquidity, taxation and risk premia
charged by investors => PDs implied by spreads are risk neutral.
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Credit spreads

O 2 equivalent ways to calculate the price of a risky zero coupon
bond (assuming one-period maturity and redemption value of
one monetary unit):

(i) Expected value of the future cash-flows, discounted at the risk-
free rate:

_Eg(Xp) _Ag+(1-24)-1
1+r 1+r

P

(ii))Future cash-flows, discounted at the risk-free rate plus the
credit spread:

P=1
I+r+s
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Credit spreads

o Equalizing both expressions =>

_Ad=-9)d+1)
> 1-A(1—¢) =A0-9)

=> Credit spread:

o Increases with the probability of default 4,
o Decreases with the recovery rate ¢;

O Increases with the risk-free rate r;
o

In reality , these spreads may also be impacted by risk premium
due to uncertainty about risk-free interest rates, PDs and LGDs.
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Credit spreads

o This relationship can be generalized for any maturity:

(i) Expected value of the future cash-flows, discounted at the risk-
free rate:

CGE(X) Glagra-C [/1¢+(1 )NV
P°‘§(1+r "2 0 (1)

(ii) Future cash-flows, discounted at the risk-free rate plus the credit
spread:
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Credit spreads

o Consequently, the (risk-neutral) PD can be obtained by
modeling the risk-free and the recovery rate, instead of the
market value of the company’s assets.

o From the spreads of similar bonds for different maturities,
one can obtain the PD term structure, that can be compared
to the statistics of rating agencies (the “true” PDs).

o The initial and most popular reduced form models were
presented in Artzner ad Delbaen (1995), Jarrow and Turnbull
(1995) and Duffie and Singleton (1995).
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REDUCED FORM MODELS

Advantages:

v/ Credit spreads are directly modelled: the intensity of the default process s
the credit spread.

v/ Can be fitted to observed credit spreads.
v/ Realistic credit spreads through discontinuous dynamics.

v/ Suitable for the pricing of credit derivatives.

Disadvantages:

X There is no explicit link to the company’s fundamentals
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REDUCED FORM MODELS

Features of specifications of default intensity and risk-free rate for
derivatives pricing:

e Both r and 2 are stochastic. Stochastic default-free interest rates are indispensable for fixed-
income analysis, and a stochastic default intensity is required to reach stochastic credit
spreads, necessary for meaningful prices for credit spread options and to capture spread
change risks.

¢ The dynamics of r and A are rich enough to allow for a realistic description of the real-world
prices. Duffie and Singleton (1997) and Duffee (1999) come to the conclusion that in many
cases a multifactor model for the credit spreads is necessary.

¢ There should be scope to include correlation between credit spreads and default-free interest
rates.

¢ |tis desirable to have processes for interest rates and credit spreads that remain positive at all
times. Although negative credit spreads or interest rates represent an arbitrage opportunity,
relaxing this requirement in favour of a Gaussian specification is still acceptable because of
the analytical tractability that is gained. The Gaussian specification should then be viewed
as a local approximation to the real-world dynamics rather than as a fully closed model.
Furthermore, many important effects are more easily understood in the Gaussian setup.
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REDUCED FORM MODELS

- Zero recovery defaultable bond price:

do(t, T) = 1* |: / (r(w A ll))du]

being A* the risk-neutral hazard rate

- Risk-free interest and hazard rates depend on a set of
macroeconomic variables (X(t)):

r(t) = a,(t) + b, (t) - X(1)
LE(t) = (1) + s (1) - X(t)

As both depend on X(t), the hazard rate becomes correlated with
the interest rates.
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REDUCED FORM MODELS

- From the equations in the previous slide, we get prices for the
defaultable and the risk-free bond, respectively:

A, T = ()ad(f.T)+ﬁd(1,T)-X(f) 5(1.T) = (,0'5(_1.T)+ﬂ5(_t,T).X(_()

- Credit risk spread:

log do(t, T) —log8(t, T) (4. 7 = C o, 1)+ Bs(t, T) - X(1)

i, T') =~ T ¥ —d

for a, and B, obtained by subtraction of the respective a’s and B’s
The introduction of stochastic default intensities allows us to capture an important risk com-

ponent: the risk of a change in the credit quality of the obligor. This additional realism comes
at the price of additional complexity in the model.
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REDUCED FORM MODELS

o 3 alternative setups:

2

A two-factor Gaussian short rate/intensity setup. This setup suffers from the possibility of

reaching negative credit spreads and interest rates with positive probability, but a high degree

of analytical tractability is retained. 'The model can be calibrated o full term structures of

bond prices and spreads, and the correlations between interest rates and default intensities
are unconstrained.

. A multifactor Gaussian setup. This setup is very similar to the two-factor Gaussian setup, but

now the model is specified directly in terms of the initial term structures of defaultable and
default-tfree zerobonds and their volatilities. This setup has a similar degree of tractability,
and some of the formulae are even more intuitively accessible than the formulae of the
(Gaussian short-rate model.

. A multifactor Cox—Ingersoll-Ross (CIR) (Cox er al., 1985b) setup, following mainly

Jamshidian (1996).> This model setup gives us the required properties of non-negativity
and ease of calibration while still retaining a large degree of analytical tractability.
Furthermore, models of credit spreads of the CIR square root type have been esti-
mated by Duffie and Singleton (1997) and Duffee (1999). Unfortunately, the correlation
between interest rates and intensities in this model is restricted to essentially non-negative
correlations.
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REDUCED FORM MODELS

o 2-factor Gaussian model:

(i) The dyvnamics of the default-free short rate are given by the extended Vasicek (1977)
model:

dr(t) = (k(1) —ar)dt + o (1)dW(r). (7.1)
(ii) Similarly, the dynamics of the default intensity A are:

At = (k(t) — ahdt +7(OdW(). (7.2)

(iti) W(t) and W(t) are Brownian motions with correlation.

dWdW = pdt. (7.3)

The dynamics (7.1) (and analogously (7.2)) have the following interpretation:_interest rates
move stochastically with an absolute volatility of ¢ (7). The drift term is positive if (1) 18 below
k(t) at time ¢, otherwise it is negative. The drift always has a tendency to move r towards k.
This effect is known as mean reversion. and k(1) is the level of mean reversion. The strength of
this effect is measured by the parameter ¢ = 0 which is known as the speed of mean reversion.
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REDUCED FORM MODELS

o Results:

(i) The price of a default-free zero-coupon bond with maturity T :

B(I- T) = e,»‘ll_!.T‘,-‘l,k.le*b‘lf,T:!Il)'l.H‘ (712)

(ii) The survival probability from t until T':

P(!, T) _ e,;tn‘.r.T:a“k.'cTh—bn.T:H;}:_ur_ (7_13)

(iii) The price of a defaultable zero-coupon bond under zero recovery with maturity T, given
survival until t:

E({. ]‘) - lg([‘ '1‘ )(j.’dl,T.H’[E]—BUT.ﬁ‘lh“l (7.141)

where

k(t) = k(1) — pa()a (DB, T) (7.15)
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REDUCED FORM MODELS

o Multifactor Gaussian model:

e default-free bond prices B(t, T')

dB(t, T)

— =r()dt +a(t, T)YdW,
B(t, T) |

e defaultable bond prices B(t, T)

dB(t, T)
B(t—.T)

= (r(t)+ gr(t))dt +a(t, TYdW — qgdN(t).
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REDUCED FORM MODELS

o Multifactor CIR model:

Assumption 7.3
Xi, | =

-----

Interest rates and default intensities are driven by n independent factors
n with dvnamics of the CIR square root type:

dx; = (¢; — B;x;)dt + o, \/l_,dw, (7.25)
The coefficients satisfv o; > 3

2 7 ) . o e o~ ] - ) i .
o to ensure strict positivity of the factors, and the Brownian
motions W; are mutually independent.

The default-free short rate r and the default intensity ) are positive linear combinations of
the factors x; with weights w; > 0 and w; (0 < i < n) respectively:

n

r(t) = Z w; x; (1), (7.26)
=]

T

M) = ) wixi(D).

(7.27)
i=1
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REDUCED FORM MODELS

o Term structure of credit spreads:

In forward-rate-based models not only the short-term interest rate r is evolved stochasti-

cally, but the whole term structure of forward rates is taken as state variable and is directly
equipped with stochastic dynamics.

® The instantaneous risk-free forward rate at time ¢ for date T > 1 is defined as:

?
£, T) = _e;_rl“B“' T). (7.116)

® ‘The instantaneous defaultable forward rate at time ¢ for date 7" > 1 is defined as:

g
7, T) = —;—T InB(, T). (7.117)

¢ ‘The implied hazard rate of default at time 7" > 1 as seen from time 7 is given by the spread
of the defaultable over the default-free continuously compounded forward rates:

hit, TY=ft.T)— f(1.T). (7.118)
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REDUCED FORM MODELS

1. The dynamics of the default free forward rates are given by:

df(, T)=a(,T)dt + ) oi(t, T)dW(1).
i=1

(7.119)
2. The dynamics of the defaultable forward rates are given by:
dfa,T)=au,T)dt+ ) o1, T)dW' (). (7.120)
i=1

prices of default-free and defaultable zero-coupon bonds are given by:

g
B(!.T)zcxp:—[ f(f.s)ds}.
4

-
B, T)=(l —N(l))expl—/ T(r.s)ds}
f
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REDUCED FORM MODELS

1. Given the dvnamics of the risk-free forward rates (7.119);
(i) The dvnamics of the risk-free bond prices are given by

dB(1,T) | Ll 5
m: _y(f,])+r(1)+;z:u,(t.1) dt

“ =1

— Z(l,‘((. TYdW' (1)

where a1, TYand y(t, T) ure

mJ
aGll.T) = — / al(t.v)dve,

e

yit, T) = [ alf, v)dv,

(i) The dvnamics of the risk-free short rate are given by

oF ]
)= Ju, )= 1)+ / (s, IS

- E / Ay, INTWHa)
fom] <0
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Gaussian HJM model — vols

and bond prices are

REDUCED FORM MODELS deterministic functions of time

t and maturity T, with forward
rates normally distributed.

2. Given the dvaamics of the defauliable jorward rates (7.120);
(i) The dvnamics of the defaultable bond prices are given by

(!F‘f. ,‘| ] hq -
_'— — [ﬁ}'II. =+ ru) + = L‘T-i.”. "l] i

B(r—.T) R :

} ;: alt. TYdW(ry — dNI(1) (7.127)
where a1, T')and vy, T) are defimed by
-7
a,it. 1)y = — a.t.v) de, {(7.128)
“,.-
¥, T) = / @(r, v)d (7.129)
o

fie) The dvnamics o the Alj{'.'tfl'fll’!{J';'l'l' short rate are given .r-‘_‘-

+ ) / (5. AW (5) (7.130)
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4 — CREDIT RATING MODELS

We have focused so far on the modeling the stochastic structure of the default
event by an intensity. Other types of credit events, such as rating transitions,
can be modeled in terms of intensities as well.

o Example:

Firm ABC is currently rated A, but obviously this rating can change. We assume that there
are only three possible ratings, A, B and D, the rating for defaulted debt. For simplicity we set
the recovery rate of defaulted debt to zero.

The rating agency publishes the following rating migration data:

A B D Only 2 performing
A Das = 0.80 pap = 0.15 Pap = 0.05 ratings, as D is an
B pea = 0.10 Pz = 0.80 pep = 0.10 absorbing state
[) [71)‘4 — ().()() _[-)[)B — ().()() !)DD = l.()()

For example, of the companies rated A at the beginning of a year:

® paa = 80% were still rated A after one year,
® pap = 15% were rated B after that year, and
® pap = 5% were rated D, they had defaulted within the year.
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4 — CREDIT RATING MODELS

We assumed that no firm can recover from default, the state D is called absorbing.

What is the probability of a default of the A-rated ABC debt within the next two years?
There is an obvious, but wrong, answer.

One could say, we have two events of default each with a probability of pap = 0.05 or a
survival probability of (1 — pap) = 0.95, giving a total survival [)I'()bdblll[) of (l — pw)-
(.9025 and a default probability of 0.0975. Butthis answe ' ake 1g 1 into
account. In the next two years a default can also occur via a transition to the B rauno Default
can be reached via the following transitions:

A — A — D with probability paapap =0)80 x 0.05 =0.04 |,
A — B — D with probability pagpsp = 0.15 x 0.10 = 0.015,
A — D(— D) with probability papppp = 0.05 x 1 = 0.05.

This gives a total default probability of 0.1075. which is a full percentage point larger than
before. This effect is even stronger with real-world ratings. Here the credit risk for investment-
grade bonds lies mainly in the risk of downgrading (with subsequently very much higher risk
of default), and not in the risk of direct default.
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4 — CREDIT RATING MODELS

To sum up, the two-period probability of default given initial rating A, i.e. the rwo-period
rransition probability from A to D is:

PAD
(2) .
Pap = PAAPAD + PaBPRD + PADPDD = (Paa  PaB  Pabp) | Psp

Ppb

It one takes the transition matrix

PAA PAB PAD
A= |pBa P DB
PbAa Pos Pbp

then it is easily seen that the two-period transition probability piﬁj is exactly the (A, D) com-
ponent of the square A% of A. This also holds for the other two-period transition probabilities,
and we reach the two-period transition probability matrix as:

A®) o A A= A
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TYPES OF MODELS

o Default mode (DM) — take into consideration only the changes
in the value of bonds due to defaults.

o Marked-to-market (MTM) — allows to assess the impact on the
credit value of any change in its risk.

o Individual models — focus on the changes of a credit value,
regardless the correlations with other credits in the portfolio.

o Portfolio models — incorporate the correlations between the
several assets of a credit portfolio.
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Challenges in Estimating Portfolio Credit Risk

o Non-normal returns - credit returns are highly skewed and fat-
tailed.

o Difficulty in modeling correlations - lack of data, contrary to
equities.

Comparison of distribution of eredit returns and market returns

Typical

market returns .

Typical
credit returns

[osses i Gains

Source: Riskmetrics Group (2007), “CreditMetrics — Technical Document”.
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Credit-VaR

Example: Portfolio with a single BBB 5y-bond

Ratings Probability of Loan Value Difference Contribution
Transition (%) at year-end to the mean to the variance
1) (2) (3)=(2)-1 (4=(1)x(3)"2
AAA 0.02 109.37 2.27 0.00
AA 0.33 109.19 2.09 0.01
A 5.96 108.66 1.56 0.15
BBB 86.93 107.55 0.45 0.18
BB 53 102.02 -5.08 1.37
B 1.17 98.10 -9.00 0.95
CCC 0.12 83.64 -23.46 0.66
Default 0.18 51.13 -55.97 5.64
Mean ( W) L 107.10
Variance ( 2(4)) 8.95
Standard-dev. 2.99

Source: JPMorgan (1997), “CreditMetrics - Technical document”

Note: The Loan value is calculated using forward rates obtained from the term
structure of interest rates for each ratlng level, to discount the remaining cash-flows
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Credit-VaR

Histogram for the credit value (from (1) and (2)):

Distribution of value for a S-year BBB bond in one vear

Frequency
0.900); BEB
0.100 ¢
0.075 }
A
0.050 +
0.025 [“A
Default x AAA

0.000 —

50 60 70 80 90 100 110

Revaluation at risk horizon

Source: Riskmetrics Group (2007), “CreditMetrics — Technical Document”.

1-year 99% Credit-Var = Mean-P, ; (as the probability of having 1 year after a
rating not above B = P(B)+P(CCC)+P(D)) =1,17+0,12+0,18 = 1% = 107,1-98,1 = 9.
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Credit-VaR

Portfolio with BBB 5y-bond + single-A 3y bond, with annual
coupon rate of 5%.

- Year-end price of the single-A 3y bond, after the several
potential rating migrations:

Year-end  Probability of
Bond Price  Transition (%)

AAA 106.59 0.09
AA 106.49 2.27
A 106.30 91.05
BBB 105.64 = e ¥
BB 103.15 0.74
B 101.39 0.60
CCC 88.71 0.01
Default 51.13 0.06

Source: Riskmetrics Group (2007), “CreditMetrics — Technical Document”.
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Credit-VaR

All

potential values of the portfolio will
combination of the 8 potential values for each bond (8x8):

All possible 64 year-end values for a two-bond portfolio (S)

result from the

Obligor #2 (single-A)

Obligor #1 AAA  AA O BBB BB B CCC  Default
(BBB) 106.59 10649 10630 105.64 103.15 101.39 88.71 51.13
AAA | 10937 | 21596 21586 215.67 21501 21252 210.76 198.08 160.50
AA 109.19 | 21578 215.68 21549 21483 21234 210.58 197.90 160.32
108.66 | 215.25 215.15 214.96 21430 211.81 210.05 19737 159.79

BBB) | 107.55 | 214.14 214.04 213.85 213.19 21070 208.94 19626 158.68
BB 102.02 | 208.61 208.51 208.33 207.66 205.17 203.41 190.73 153.15
B 98.10 | 204.69 204.59 204.40 203.74 20125 199.49 18681 149.23
ooe 83.64 | 190.23 190.13 189.94 189.28 18679 185.03 17235 134.77
Default | 51.13 | 157.72 157.62 157.43 156.77 15428 152.52 13984 102.26

Source: Riskmetrics Group (2007), “CreditMetrics — Technical Document”.
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Credit-VaR

- The joint probabilities would just be product of the rating migration
probability for each bond, if these ratings were independent.

Joint migration probabilities with zero correlation (%)

Obligor #2 (single-A)

Obligor #1 AAA  AA A BBB BB B CCC  Default

(BBB) 0.09 227 91.05 5.52 0.74 026 0.01 0.06
AAA 0.02 0.00 0.00 0.02 0.00 000 000  0.00 0.00
AA 0.33 | 0.00 001 0.30 002 000 000  0.00 0.00
A 5.95| 0.0l 0.14 542 033 004 002  0.00 0.00
BBB 86.93 | 0.08 198 79.15 480 064 023 0.0l 0.05
BB 530 000 0.12 483 029 004 001 0.00 0.00
B 1.17 | 0.00  0.03 1.06  0.06 001 0.00  0.00 0.00
CCC 0.12| 000 0.00 0.11  0.01 0.00 0.00  0.00 0.00

Default 0.18 | 0.00 0.00 0.16 0.0l 0.00 0.00 0.00 0.00

Source: Riskmetrics Group (2007), “CreditMetrics — Technical Document”.
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Credit-VaR

- However, ratings do not tend to be independent, as they may be
moved by the same macroeconomic factors.

Joint rating migration probabilities with correlated bonds:

Joint migration probabilities with 0.30 asset correlation (%)

Obligor #2 (single-A)
Obligor #1 AAA AA A BBB BB B CCC  Default

(BBB) 009 227 91.05 552 074 026 0.0l 0.06
AAA 0.02] 000 0.00 0.02 0.00 000 000 0.00 0.00
AA 0.33| 000 0.04 029 000 000 000 0.00 0.00
A 595| 002  0.39 544 008 001 000 0.00 0.00
BBB 86.93 | 0.07 1.81  79.69 455 057 019 0.0l 0.04
BB 530 000  0.02 447 0.64  0.11 0.04  0.00 0.01
B .17 | 0.00  0.00 092 0.18 004 002 0.00 0.00
CCC 0.12| 000  0.00 0.09 0.02 000 000 0.00 0.00
Default |  0.18 | 000  0.00 0.13 0.04 001 000 0.00 0.00

Source: Riskmetrics Group (2007), “CreditMetrics — Technical Document”.
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Credit-VaR

Distribution of value for a portfolio of two bonds

Probability
80% r

70°o /"
10% £

0% A | .
1023 172.4 2034 2118

Source: Riskmetrics Group (2007), “CreditMetrics — Technical Document”.

215.7
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Credit-VaR

There are at least four interesting features in the joint likelihood table above:

1. The probabilities across the table necessarily sum to 100%.

2. The most likely outcome is that both obligors simply remain at their current credit
ratings. In fact, the likelihoods of joint migration become rapidly smaller as the
migration distance grows.

3. The effect of correlation is generally to increase the joint probabilities along the
diagonal drawn through their current joint standing (in this case, through BBB-A).

4. The sum of each column or each row must equal the chance of migration for that
obligor standing alone. For instance, the sum of the last row must be 0.18%,
which is the default likelithood for Obligor #1 (BBB) in isolation.

Source: Riskmetrics Group (2007), “CreditMetrics — Technical Document”.
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Credit-VaR

The credit risk in a portfolio arises because there is variability in the value of the portfo-
lio due to credit quality changes. Therefore, we expect any credit risk measure to reflect
this variability. Loosely speaking, the greater the dispersion in the range of possible val-
ues, the greater the absolute amount at credit risk. With this background, we next pro-
vide two alternative measures of credit risk that we use in CreditMetrics.

(i) standard-deviation

: « .8 W2 , 2 ’ 2 s D
(Standard Deviation)"= p; - (V; —Mean)” + p> - (V> —Mean)” +...+ pgy* (Vgs—Mean)”

where p; refers to the probability or likelithood of being in State 1 at the end of the risk
horizon, and V; refers to the value in State 1. Mean = p, -V, +p,- Vot ...+ pey- Viy

(ii) Percentile level:

We define this second measure of risk as a specified percentile level of the portfolio
value distribution. The interpretation of the percentile level is much simpler than the
standard deviation: the lowest value that the portfolio will achieve 1% of the time is the
1! percentile.

Source: Riskmetrics Group (2007), “CreditMetrics — Technical Document”.
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Credit-VaR

S
Mean: Wryeq = ) PiM; = 213.63

i= 1

5

Variance: Orptal = 11.22

Mean 107,09 106,55 213,63
St.-Dev. 2,99 1,49 3,35

Conclusion: The means of the BBB and the A bonds sum directly, but the risk (standard

deviations) is much less than the summed individuals due to diversification.

1-year 99% Credit-Var = Mean-P"; ; , (as the probability of having 1 year after a
rating not above B in the 1 bond and A in the 2" bond =
P(B,A)+P(B,BBB)+...+P(D,D) = 0,92+0,18+...+0 =1,45. = 1%) = 213,63-204,4 = 9,23.

Source: Riskmetrics Group (2007), “CreditMetrics — Technical Document”.

Jorge Barros Luis | Interest Rate and Credit Risk Models 332



Credit-VaR

o Assuming a normal distribution, the Var would be:

VaR(a%) = N(1-a%)*c =>

VaR(5%) = 1.65*%c = 1.65%3.35=5.53
VaR(1%) = 2.33*c = 2.33*3.35=7.81
(lower than the observed value, due
to fat tails)

Jorge Barros Luis | Interest Rate and Credit Risk Models 333



Credit-VaR

o The decision to hold a bond or not is likely to be made within
the context of some existing portfolio.

o Thus, the more relevant calculation is the marginal increase to
the portfolio risk that would be created by adding a new bond
to it = 0,36 (much smaller than the A-Bond st-dev = 1,49) in
standard-deviation and 0,23 in Credit-Var.

BBB-Bond Portfolio A-Bond Marginal
(1) (2) Risk (3) = (2)-(1)

Standard-deviation 0,36

99% Credit-Var 9,00 9,23 0,23

Source: Riskmetrics Group (2007), “CreditMetrics — Technical Document”.
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Creditmetrics

In our examples of one and two bond portfolios, we have been able to specify the entire
distribution of values for the portfolio. We remark that this becomes inconvenient, and
finally impossible, to do this in practice as the size of the portfolio grows. Noting that for

a three asset portfolio, there are 512 (that is, 8 times 8 times 8) possible joint rating
states. For a five asset portfolio, this number jumps to 32,768, and in general, for a port-
folio with N assets, there are 8" possible joint rating states.

Information required:

Value at Risk due to Credit Correlations

Ratings series,

Credit Spreads i _
recit Spreads Equities series

Credit Rating Seniority

v v v v
Rating migration Recovery rate Present value Models(.e. g.,
likelihoods in default bond revaluation correlations)

Y Y v v

Standard Deviation of value due to credit
quality changes for a single exposure

Joint credit
rating changes

Source: Riskmetrics Group (2007), “CreditMetrics — Technical Document”.
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5 — DEFAULT CORRELATION MODELS

O Credit spreads of different issuers are correlated through time.

O However, a good model for the default correlations across firms is still an open
challenge for credit risk researchers.

O Correlations across equities are considerably higher than observed default
correlations. 1

O Two patterns are found in time series of spreads:

1st) Spreads vary smoothly with general macro-economic factors in a correlated

fashion. 1

Cyclical correlation between defaults

2nd) Jumps are common on several firm credit spreads. This suggest that the
sudden variation in the credit risk of one issuer, which causes the jump in
first place, can propagate to other issuers as well.
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5 — DEFAULT CORRELATION MODELS

Historically, defaults tended to cluster as the following examples from the USA show.

¢ Oil industry: 22 companies defaulted in 1982-1986.

¢ Railroad conglomerates: 1 default each year 1970-1977.

e Airlines: 3 defaults in 1970-1971, 5 defaults in 1989-1990.
e Thrifts (savings and loan crisis): 19 defaults in 1989-1990.
¢ Casinos/hotel chains: 10 defaults in 1990.

¢ Retailers: =20 defaults in 1990-1992.

¢ Construction/real estate: 4 defaults in 1992.

If defaults were indeed independent, such clusters of defaults should not occur.
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5 — DEFAULT CORRELATION MODELS

0 Conditional probabilities: 0 Correlation coefficient:
_ FAB . PAB o4y — PAB — PADB
A = pg FIA = DA Vpall = pa)ps(l — pp)

/

The joint default probability is given by:

Pag = paPs + 0apv pa(l — pa)pe(l — pp)

and the conditional default probabilities are; — Dividing pajs by Pe

A | .
Palg = Pa T+ U.»\B\/L—B(l — paXl — pg).
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5 — DEFAULT CORRELATION MODELS

O Calculation of default correlation:

e Historically observed joint rating and default events: The obvious source of information on
default correlation is the historical incidence of joint defaults of similar firms in a similar
time frame. We used such data in Section 10.1.1 when we analysed the evidence for default
dependency in aggregated historical US default rate data. Such data is objective and directly
addresses the modelling problem. Unfortunately, because joint defaults are rare events,
historical data on joint defaults is very sparse. To gain a statistically useful number of
observations, long time ranges (several decades) have to be considered and the data must be
ageregated across industries and countries. In the majority of cases direct data will therefore
not be available,

e (Credit spreads: Credit spreads contain much information about the default risk of traded
bonds, and changes in credit spreads reflect changes in the markets’ assessment of the
riskiness of these investments. If the credit spreads of two obligors are strongly correlated
it is likely that the defaults of these obligors are also correlated. Credit spreads have the
further advantage that they reflect market information (therefore they already contain risk
premia) and that they can be observed far more frequently than defaults. Disadvantages
are problems with data availability, data quality (liquidity), and the fact that there is no
theoretical justification for the size and strength of the link between credit spread correlation
and default correlation.?
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5 — DEFAULT CORRELATION MODELS

O Calculation of default correlation:

® [“quity correlations: Equity price data is much more readily available and typically of better
quality than credit spread data. Unfortunately, the connection between equity prices and
credit risk is not obvious. This link can only be established by using a theoretical model,
and we saw that these models have difficulties in explaining the credit spreads observed in
the market. Consequently, a lot of pre-processing of the data is necessary until a statement
about default correlations can be made.
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Independent Defaults

It defaults are independent and happen with probability p over the time horizon 1, then the
loss distribution of a portfolio of N loans is described by the binomial distribution function.

Definition 10.1 (binomial distribution) Consider a random experiment with success prob-
ability p which is repeated N times and let X be the number of successes observed. All
repetitions are independent from each other. The binomial frequency function b(n: N, p) gives
the probability of observing n < N successes. The binomial distribution function B(n; N, p)
gives the probability of observing less than or equal 1o n successes:

b(n: N. p) ‘= P[X = n] N (1 — pyV-n N! 18
i, N, i — — | = - | _ -
I | Ly ; ¢ n'(N —u)!l ‘ P)
o | a mj)" ' :

m=y
In our credit setting, the probability of exactly X = n (with n < N) defaults until time 7" is

b(n; N, p) and the probability of up to n defaults is B(n; N, p).
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Independent Defaults

Distribution of default losses under independence
(number of obligors =100 and p =0,5)

20%

18% - =
16% - -
14% - 1H
12% ——3HHH
10% —HHHH
8% — R
6% —
4% —HHHHH

0% -ouUuHHHUY ﬂu!n,_w
10

Probability

1 1 1 1 1 T 1 | 1 1

20 30
n
Figure 10.5 Distribution of default losses under independence. Parameters: number of obligors

N = 100, individual default probability p = 5%

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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Perfectly Correlated Defaults

¢ FEither all obligors default (with 5% probability),
¢ Or none of the obligors defaults (with 95% probability).

Perfectly dependent defaults

Probability

1 2 3 . . . . 97 98 99 100
n

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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BINOMIAL EXPANSION MODEL

The binomial expansion technique (BET) is a method used by the ratings agency Moody's to
assess the default risk in bond and loan portfolios. It was one of the first attempts to quantify the
risk of a portfolio of defaultable bonds. The method is not based upon a formal portfolio default
risk model, it can be inaccurate and it is generally unsuitable for pricing, yet it has become
something of a market standard in risk assessment and portfolio credit risk concentration
terminology.?

The BET is based upon the following observation. Assume we analyse a loan portfolio of
N = 100 loans of the same size, with the same loss L in default and the same default probability
p = 5%.1f the defaults of these obligors are independent, we know from the previous section
that the loss distribution function is given by the binomial distribution function. The probability
of a loss of exactly X = nL (withn < N)until time 7 is (10.8):

J— S ) — ) ._.- ) r‘l ) .
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BINOMIAL EXPANSION MODEL

Let us now consider the other extreme, It all defaults are pertectly dependent (i.e. either all or
none of the obligors default), we have:

PIX >0]=p=5%=P[X =NL],
P[X=0]=1-p=095%=P[X =0].

The key point to note here is that this can also be represented as a binomial distribution function
with probability p = 5%, but this time only one binomial draw is taken and the stakes are much
higher: a loss of N L if the 5% event occurs.
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BINOMIAL EXPANSION MODEL

Thus we have the following results.

¢ Perfect independence is N = 100 obligors with loss L and loss probability p = 5% each.
The probability of a loss X of less than x is

P[X <x] = B(n:N., p),

where the parameters are:

- N = 100;
—n = |x/L] (“rounding down”, the largest integer less than or equal to x/L);
- p = 5%.
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BINOMIAL EXPANSION MODEL

e Perfect dependenceis equivalentto N' = 1 obligors with loss L' = N L and loss probability
p = 5%. The probability of a loss X of less than x is

P[X <x]= B ;N'.p),

where:

— N’ = 1, an adjusted number of obligors;
- n’= |x/L’] (n" = 0 here);

- p = 5%.
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FACTOR MODELS

Assumption 10.3 (one-factor model) 7The values of the assets of the obligors are driven by

a common, standard normally distributed factor Y component and an idiosyncratic standard
normal noise component €,

VuTY= /oY ++\1—pe, ¥Yn <N,

where Y and ¢,, n < N are independent normally distributed random variables with mean 0
and variance 1 and p € [0, 1].

Using this approach the values of the assets of two obligors n and m # n are correlated with
linear correlation coefficient o. The important point is that conditional on the realisation of”
the systematic factor Y, the firm's values and the defaults are independent.
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FACTOR MODELS

The systematic risk factor ¥ can be viewed as an indicator of the state of the business ¢ycle, and
the idiosyncratic tactor €, as a firm-specific etfects tactor such as the quality of the manage-
ment or the innovations of the firm. The default threshold K of the firm is mainly determined
by the firm’s reserves and balance-sheet structure. The relative sizes of the idiosyncratic and
systematic components are controlled by the correlation coefficient o, If o = (), then the busi-
ness ¢cycle has no influence on the fates of the firms, if ¢ = 1, then it is the only driver of
defaults, and the individual firm has no control whatsoever. Empirically calibrated values of o
ar¢ around 10%.

In the following we assume that all obligors have the same default barrier K, = K and
the same exposure L, = 1. Following the intuition above, the distribution of defaults in the
portfolio can be derived. First, the business cycle variable ¥ materialises, and conditional on
the general state of the economy, the individual defaults occur independently from each other,
but with a default probability p(y) which depends on the state of the economy. This default

probability is
| K-.oy
p(y) = <1>( h Al )
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FACTOR MODELS

where P(-) is the cumulative normal distribution function. This can be seen as follows. The

individual conditional default probability p(v)is the probability that the firm’s value V,(7) is
below the barrier K, given that the systematic factor ¥ takes the value y:

p(y)=PVy(T) < K | Y =]
—P[JeY+VI—ce<K|¥=)]

K— oY
— P [e Ve |y = y]

VAT
:q)(—K —‘U‘Y).
vi—p¢
The probability of having exactly n defaults is the average ol the conditional probabilities of n
defaults, averaged over the possible realisations of ¥ and weighted with the probability density
function ¢(v):

PIX=nl= / PIX=n|Y=v]¢p(v)y

(from the 3 previous equations)

X \; f 'K’ _ iR AL K . YV v N—n
P[X:n]:/ (f )(1( — @ )) (1_<p( Vi )) pOdy
w \ N \/1 — 0

vi—po
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FACTOR MODELS

Thus, the resulting distribution function of the defaults is:

it 'N' X K_\/E\_,- n ‘K—\/g_')l' ),\’n
PlX =m]= P| ———— |l - | ——— Ndy.
x=m=3() [ (7)) (-2 (7)) o

Y, L

Figure 10.10 Default losses under correlation (one-factor model). Parameters: number of obligors
N = 100, individual default probability p = 5%, asset correlation p in percentage points: 0, 1, 10, 30, 50
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FACTOR MODELS

Figure 10.10 shows the distribution of the default losses for our benchmark portfolio (100
obligors, 5% individual default probability) under different asset correlations. Increasing assel
correlation (and thus default correlation) leads to a shift of the probability weight to the left
equally more likely as very bad events (many defaults). It should be noted that the deviation
of the loss distribution function from the distribution under independence (i.€. zero correlation
o = ) is already significant for low values for the asset correlation (e.g. 10%).

Table 10.3 99.9% and 99% VaR levels as a function of
the asset correlation in the one-factor model. Parameters:
100 obligors, 5% individual default probability

Asset correlation (%)  99.9% VaR level 99% VaR level

0 13 11 The most significant effect for risk
\ 14 12 management is the increased
10 27 19 o :
20 41 7 mass of loss distribution in the tails
30 55 35 => VaR increases with asset
40 63 44 correlation

50 80 53
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6 — RECOVERY ISSUES

Different recovery specifications

The recovery payment at default can be measured in different units.

O In the recovery of par (or recovery of face value) scheme it is given as a fraction
of the security's face value.

O In the recovery of treasury (or equivalent recovery) scheme it is given as a
fraction of an equivalent but default-free version of the security.

O In the recovery of market value (or fractional recovery) scheme investors
receive a fraction of the asset market value just before default.

et

All these different
specifications of recovery rates
lead to different prices.
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EVOLUTION OF RECOVERY IMODELS

» Most papers have focused on modeling the default intensity process.
» Recovery issues are often ignored.

» When treated it is common to make unrealistic assumptions about the recovery

0 Constant recovery
O Stochastic recovery

BUT independent of the default arrival

L]

Empirical Facts: unrealistic

O Recovery rates change over time, probably in a stochastic way
OProbability of Default (PD) and Loss given default (LGD) are correlated
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RECOVERY MODELS

| MAIN MODELS & RELATED EMPIRICAL STUDIES | TREATMENT OF LGD
Credit Pricing Models

| RELATIONSHIP BETWEEN RE. AND PD

First generation | Merton (1974), Black and Cox (1976), Geske |PD and RR are a function of the | PD and RR. are inversely related (see
structural-form (1977), Vasicek (1984), Crouhy and Galai|structural charactenistics of the | Appendix A).
models (1994), Mason and Rosenfeld (1984). firm. RR 1s therefore an

endogenous variable.
Second  generation |[Kim, Ramaswamy e Sundaresan (1993),|RR 15  exogenous and|RR 1s generally defined as a fixed
structural-form Nielsen, Saa-Requejo, Santa Clara (1993), Hull | independent from the firm’s|ratio of the outstanding debt value
models and White (1995). Longstaff and Schwartz |asset value. and 1s therefore independent from PD.

(1995).

Reduced-form models

Littermman and Iben (1991), Madan and Unal
(1995), Jarrow and Turnbull (1995), Jarrow,
Lando and Turnbull (1997). Lando (1998),
Duffie and Singleton (1999), Duffie (1998) and
Duffee (1999).

Reduced-form models assume
an exogenous RR that 1s either a
constant or a stochastic variable
independent from PD.

Reduced-form models mtroduce
separate assumptions on the dynamic
of PD and RR, which are modeled
independently from the structural
features of the firm.

Latest contributions | Frye (2000a and 2000b), Jarrow (2001), Carey|Both PD and RR are stochastic |PD and RR are negatively correlated.
on the  PD-RR|and Gordy (2003), Altman Brady, Resti and | variables which depend on a In the “macroeconomic approach™
relationship Siron1 (2001 and 2004). common systematic nisk factor |this derives from the common
(the state of the economy). dependence on one single systematic
factor. In the “microeconomic
approach™ 1t derives from the supply
and demand of defaulted securities.
Credit Value art Risk Models
CreditMetrics ® Gupton, Finger and Bhatia (1997). Stochastic variable (beta distr.) |RR independent from PD
CreditPortfolioView ® | Wilson (1998). Stochastic variable RR independent from PD
CreditRiskT ® Credit Suisse Financial Products (1997). Constant RR independent from PD
KMV CreditManager® | McQuown (1997), Crosbie (1999). Stochastic variable RR independent from PD
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Loss determinants

Collateral

Debt seniority

Loan type (namely for individuals)
Region

Business cycle

Economic sector

PD

O O O 0O 0O 0O O
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LGD features

1. Most of the time recovery as a percentage of exposure is either relatively
high (around 70-80%) or low (around 20-30%). The recovery (or loss)
distribution is said to be “bimodal” (two-humped). Hence thinking about an
“average” recovery or loss given default can be very misleading.

2. The most important determinants of which mode a defaulted claim is likely
to fall into is whether or not it is secured and its place in the capital structure
of the obligor (the degree to which the claim is subordinated). Thus bank
loans, being at the top of the capital structure, typically have higher recovery
than bonds.

3. Recoveries are systematically lower in recessions, and the difference can be
dramatic: about one-third lower. That is, losses are higher in recessions, lower
otherwise.

4. Industry of the obligor seems to matter: tangible asset-intensive industries,
especially utilities, have higher recovery rates than service sector firms, with
some exceptions such as high tech and telecom.

5. Size of exposure seems to have no strong effect on losses.
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Estimation Methods

o NPV of recoveries Table 8
Classification of the objective methods to obtain LGDs
O Recove ry diStributions Source Measure Type of facilities in the ROS | Most applicable to
Defaulted Non-defaulted

facilities facilities

o Bond prices after default

Large corporate,

Price differences Market LGD sovereigns, banks

o LGD implied in bond prices A RS i mana | Lorgecopos
. . . Discounted cash thol Retail, SMEs, large
o LGD implied in observed losses and  recovery sna fows e corporate
i N P D esti mates. cost experiance Hllﬁg;? la:.udla I Implied historical LGD Feetail

estimated PD

. Supervision (2005)
LGD as a function of several

variables (LossCalc, Moody’s
(2002)).
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Statistics

o0 Recoveries exhibit a bimodal distribution:

1.8%

0.8%

0.6%

0.4%

Dno"'{l T T T T T T T T T T T T
0 10 20 30 40 50 60 70 80 a0 100 110 120 130

Recovery

Figure 1: Probability Distribution of Recoveries, 1970-2003: All Bonds & Loans (Moody’s)

Source: Schuermann (2004)
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i
Seniority

o Higher recoveries in senior debt:

2.4% Average Annual Bond and Loan Recovery Rates?!
290 Loan Bond
—— 5S¢ Secured —&— Sr. Unsecured
2.0% —&— Sr Subordinated —— Subordinated
1362 na 7250% 35.75% 43.09% 20.99% na. 35.5T%
1.8% 1863 na 40.00% 5372% 43 50% 4D54% na. 43 64%
1364 na na 43.41% £7.88% 24.26% na. 45.40%
1.6% 1885 na B3I B0.16% 0 83% 30.47% 43 50% 43 GE%
L4% 1368 na 59.25% 52.60% 50.16% 42.55% na. 48.36%
1887 na 71.00% B2 73% 4451% 4E.80% na. 50.46%
1.2% o 1388 na 55.40% 45.24% [a1% 3IBTITH 36.50% 38.96%
Lo 1869 na 4554% 43 81% 34 57% 2E.36% 18 35% 3231%
- 1530 75.25% 3381% 0% 75.54% 18.09% 10.70% 25.50%
0.8% £ 1851 T4ETH 43303, 35 6E% 41 8% 24.47% 770 35.53%
1392 61.13% 62.05% 43.15% 49.40% 3IE.04% 13.50% 45.30%
0.6% 1853 53.40% na 37 13% 2101% a4 15% na. 4308%
0.4% 1594 67.59% §3.25% 53.73% 6% 36.23% na. 45.5T%
1885 75.24% £202% 47 60% 34 3% 2154% na. 43 26%
0.2% 1598 83.23% 47.56% 62.75% 43.75% 2260% na. 41.54%
0% 1 . 1857 TATE% TEE0% 55.10% 42 73% 35.96% 30 58% 49.30%
N 1538 51.40% 45.87% 41.63% 42.93% 1E.19% 62.00% 39.25%
0 10 20 30 40 50 60 70 0 90 100 110 120 130
1888 TS a1% 4300% 33.04% 7A.01% I5EL% na. 34.33%
Recovery 2000 68.32% 33.23% 2381% M.75% 31.86% 15.50% 25.16%
Figure 2: Probability Densities of Recovery by Seniority (Moody’s, 1970-2003) 2001 64.37% 3T9E% 21.45% 19.62% 15.84% 47 00% 22 21%
2002 58.80% 48.37% 29.65% 71.36% 24.51% n.a. 29.95%
2003 7R3N £3.4E% 41.87% 37 18% 12.31% n.a. 40.70%
SOU rce: SCh uermann (2004) an d M OOd ’S 2004 B7.74% 73.25% 52.00% 42.33% 24.00% n.a. 58.50%
. y 2005 E3TEN 71.033% 24 3E% 75.08% 31.25% na. SE97%
(2009) 2008 B20% 7453% sE0z% 41.41% 56.11% n.a. s802%
2007 £3.63% B1.54% 53.25% B2 4T na. na. 54 60%
2008 63.36% 57.96% 33.80% 3% 23.56% na. 34.83%

1. issuer-weighted, based an 30-03) pasf-tefaut market prices
2. Secong-len joans exciuted.
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Region

o Often regions where customers are based exhibit different
recovery perspectives:

Figure 4: LGD over Loss Years by State

Table 5.5: Discounted recovery rates by country (12%)

100%

90% = -
80% No.in
T70% : 3
60% Mean Median  Std. dev. sample
50%
g 0% UK 65.8% 82.8% 36.4% 92
30%
France 380%  319%  336% 336
5 " . $4 Q0 0, 74 0/ <
o 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 Gel man-‘ 349 0 56' 7 /0 ;4'0 /0 3>
Total 463
| Az —=—CA FL M| —%—NV —e—Other

Source: Zhang, Yanan Lu Ji and Fei Liu (2010), “Local  Source: Franks et al (2004).
Housing Market Cycle and Loss Given Default:

Evidence from Sub-Prime Residential Mortgages”, IMF

WP WP/10/167.
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Business Cycle

o LGD is typically higher during the lower stages of the
business cycle.

Exhibit 25 - Average Annual Speculative-Grade Defaulted Bond Recovery Rates, 19822002

f.f“ \ _, I"'. Recovery Rates for Original Issue Speculative Grade Bonds
: . / \ i

- "l,- .\\ / I'._\ J_-'r \I. %U_
IR . /
] \ \1-/\.-: L . -
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Excluding Telecom for 2001 and 2002

= Iyl RecoveryRales. ===~ Lomg Term Average

Source: Bruche, Max and Carlos Gonzalez-Aguado
(2007), “Recovery Rates, Default Probabilities and
the Credit Cycle”.

Source: Moody’s (2003).
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Business Cycle

—a— Expansions —— Recessions

1.6%

1.4%

1.2% £

1.0%

0.8%

0.6%

0.4%

0.2%

0.0% T
0 10 20 30 40 30 60 70 80 90 100 110 120 130
Recovery

Figure 4: Probability Densities of Recoveries across the Business Cycle (Moody’s, 1970-2003)

Source: Schuermann (2004)
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Economic Sectors

o In Altman and Kishore (1996), differences between sectors are identified.
O The LGD is usually higher for sectors with higher PD.

Exhibit 16 - Average Recovery Rates by Industry Category

st e el Sl A Recovery Rates by Industry Group

Industry 2003 2002 1962-2003
Utility-Gas 480 54.6 51.5
Qil and Oil Services NA 44.1 44.5 85%
Hespitality 645 60.0 42.5 80%
Litility-Electric 5.3 39.8 41.4 75% — =
Transpart-Ocean 76.8 31.0 38.8 70% -
Media, Broadcasting and Cable 57.5 39.5 38.2 65% - N
Transport-Surface NA 379 36.6 60% -
Finance and Banking 18.8 256 36.3 55% A
Industrial 33.4 343 35.4 50% 1
Retail 57.9 58.2 344 45% 4
Transport - Air 22.6 24.9 34.3 40%
Automative 200 30,5 334 e o o A o o
Healthcare 52.2 47.0 327 &c)*o (}\)(s (}9\‘(\ & \@6 &
Consumer Goods 54.0 22.8 32.5 & R K F @ &
Construction 225 23.0 319 oy 6@9 6@“ ée}‘ o@"*
Technology 9.4 367 29.5 5 ‘ c§‘\ o\qf’
Real Estate NA 5.0 28.8 & v &
Steel 31.8 285 274
Telecommunications 459 21.4 23.2 ‘DUK @ France I:IGermany |
Miscellaneous 69.5 46.5 39.5

Source: Moody’s (2004). Source: Franks et al (2004).

Jorge Barros Luis | Interest Rate and Credit Risk Models



PD

O The correlation between LGD and PD along time is high (0.66
according to S&P (2007)).

Panel A Panel B
s - - - - - - - - s - ---—-——-———— -
E y=-206x + 05833 + y = -2.3668x + 0.6526
g_?n:_,;,__ ___________________ Ri=-0a02 ~ e+ __ _F=D434
& +
-
= o @ 3 - N
g BO% - ---—- R L L e
i - B + e+
= o ";EE =] (=] E '|-L + T
Bosowm ) o g —— @ —— = ————— R T L I S, o
m O v + e +
g " e - T
a -‘-I:l'ﬁ.-———————':'—————;—1—‘*-———————————— T a4t F_ % ___.
= L H““'h-h o o E
L 1 =
0 - ey LL.
‘; MWt - - — e m g~ e o — - . S
E o
20% . . . . = . 0% : : : . : .
0% % 45 6% 8% 10% 12% 0 i 4% [ B 0% 129
Annual Corporate Default Rate Annual Corporate Default Fate

Source: Moody’s (2008).

Jorge Barros Luis | Interest Rate and Credit Risk Models



PD

o Higher ratings typically
exhibit lower LGDs:

Recovery Rates

Holding Period senior Unsecured Issuer-Weighted Mean Recovery Rates

50% -
45% -
40% -
35% o
30% o
25% o
20%
15% o
10% o
5% -

3

WEaa OBa EE OCaacC

Haolding Period in Years

Average Sr. Unsecured Bond Recovery Rates by Year Prior to

Default, 1982-2008!

Caa-C
Imvestmient-Grads
Speoulative-Grade
Al Rated

Year 1

ALa.
43.60%
42 4B%
41.55%
43.00%
36.96%
33.96%
42.05%
36.26%
36.56%

Year 2
3.33%"
40.15%
45 45%
44.56%
47.58%
35.41%
33.25%
44.73%
35.71%
35.55%

Year 3
na.
43.45%
44.50%
44.07%
4.55%
I5.85%
3315
44 14%
36.30%
37.50%

97.00%
57.61%
38.18%
45.44%
41.15%
36.91%
35.59%
44.57%
38.26%
3%.52%

Year 5
85.55%
43.40%
40.95%
41.68%
41.12%
40.68%
41.94%
43.37%
40.90%
41.51%

)

Source: Moody’s (2003; 2008). z
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Listed bonds

Usually, in these exposures the LGD is measured as 1-Price (as a
% of EAD) in a given period (usually 1 month after the default).

Empirical evidence points to LGDs between 30% and 40% in non-
colateralized exposures (around 60% for collateralized loans).

Average Corporate Debt Recovery Rates Measured by Post-Default Trading Prices

ISSUER-WEIGHTED VALUE-WEISHTED
LIEM POSITHON 2009 2008 1982-2009 2009 2008 19a2-2009
st Lien Bank Loan G4.0% 61.7 % 5. 5% L6.6% 46.9% B9.1%
2nd Lien Bank Loan 16.0% 40, 4%, 32.8% 20.5% 36.6% 3.9%
&r. Unsecured Bank Loan 345% 3.6% 487 % 38.1% 22.8% 40.0%
&r. Sacurad Bond ITE% £4.0% 40.8% 20.5% 40.3% 48.5%
&r. Unsecursd Bond FT% 33.8% 36.6% 35.5% 26.2% 32.6%
&r. Subordinated Bond 22.4% 23.7% 307% 17.9% 10.4% 25.0%
Sutordinated Bond 46.8% 23.6% 3.3% 247% T.3% 23.5%
Ir. Subordinated Bond n.a. n.a. 247 % M.a. n.a. 17.1%

Source: Moody’s (2010).
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Listed bonds

Senior Unsecured Bond Recovery Rates for Financial Exhibit 21 - Distribution of Recovery Rates (1982-2002)
Institution Defaults in 2008
Default Volume 5r. Unsecured
Comipany DeHmiain {5mil)  Bond Recovery
Lehman Brothers Holdings, Inc. United States 120, 164 5.3%
Kaupthing Bank hf lceland 20,063 .05
Glitmir banki hf lceland 18,773 3.0%
GMAC LLE United states 17,150 45,55 2
wiashingtan mutual Bank United states 13,500 25.5% =
Residential Capital, LLC United States 12,318 51.7% =
Landsbanki idands hf iceland 12,161 3.0% =
Wwashington pMutual, Inc. United states £, 745 RY.0% E
GMAC of Canada Ltd Canada 265 T0.7%
Downey Financial Corp. United states 200 0.5%
Fremont General Corparation United states 165 45,05
Lurninent Kortgage Capital, inc. United Statss 131 27.3%
Triad Financial Corporation United States &9 T6.55%
Franklin Bank Carp. United States &0 0.0% . . . . - ' . . . .
GMAC International Finance B.V. Hetherland: 51 BE.E% e e
- Post Default Prices inUS Dollars
Average I5.4% median 27.3%
. ’
Source: Moody’s (2009). Source: Moody’s (2003).
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