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PART III
CREDIT RISK MODELS
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1 ‐ INTRODUCTION

Credit Risk
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DETERMINANTS OF CREDIT RISK

• “Credit risk is the risk of default or of reductions in market value
caused by changes in the credit quality of issuers or counterparties”,
Duffie, Darrell and Kenneth J. Singleton (2003), “Credit Risk”,
Princeton University Press.

• Credit Risk is associated to the PD of the debtor, as well as the LGD.

• Regarding the credit risk of the debtor, it is relevant not only to
quantify the PDs but also the rating transition frequencies, which
also impact on bond prices.

• Nonetheless, the expected loss is usually calculated taking only
default into consideration: EL = PD x LGD

• Given the diversity of the counterparties, the market usually
distinguishes sovereign, banking, corporate and
individual/household credit risk.
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DETERMINANTS OF CREDIT RISK

Source: Duffie, Darrell and Kenneth J. Singleton (2003), “Credit Risk”, Princeton University
Press.

• The bond spreads usually provide relevant information on credit
risk.
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COMPONENTS OF CREDIT RISK
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COMPONENTS OF CREDIT RISK
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 Ratings are a ranking of credit risk
and do not explicitly provide any PD
measure.

 However, one can obtain historical
frequencies of default for each
rating classification, as well as the
historical frequencies of transition
between ratings.

 The long term ratings of the main
agencies (S&P and Moody’s) split by
7 classes, each of them (excluding
AAA) with rating modifiers +/ /‐
(S&P) or 1/2/3 (Moody’s).

PDS

S&P Moody's

Investment Grade AAA Aaa
AA Aa
A A
BBB Baa

Speculative Grade BB Ba
B B
CCC Caa
CC Ca
C C
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PDS
• Simplest measure of credit risk – default frequencies from rating
agencies:

Source: S&P (2014), “Default, Transition and
Recovery: 2013 Annual Global Corporate
Default Study and Rating Transitions”.
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 Transition matrices illustrate the significant stability of rating
classifications, being this stability higher for higher ratings.

Source: Moody’s (2017), “Corporate Default and Recovery Rates, 1920-2016”.

PDS

230



Jorge Barros Luís |  Interest Rate and Credit Risk Models

 Default frequencies also tend to
change along time, namely for lower
ratings.

Source: Moody’s (2017), “Corporate Default and Recovery
Rates, 1920-2016”.

PDS
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 Actually, the volatility of default frequencies for lower
ratings (speculative grade) is significant.

Source: Moody’s (2014), “Corporate Default and Recovery Rates, 1920-2013”.

PDS
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 Marginal frequencies obtained from the cumulative figures tend to exhibit a
very irregular shape.

 It can be observed that marginal PD curves have different inflection points,
depending on the rating class, with the lower inflection points for the higher risk
classes.

PDS
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 The irregular shape of marginal PD curves occurs even when cumulative PD
curves exhibit an apparently smooth behavior.

 Therefore, in order to ensure a smother behavior of marginal PD curves, it is
recommended to smooth the cumulative PD curves, as the marginal curves as a
measure of the 1st derivative of the cumulative curves.

 The cumulative PD curves can be smoothed by methods like the Nelson‐Siegel‐
Svensson, with the cumulative PD curves corresponding to the spot curves and
the marginal PD curves to the instantaneous forward curves.

PDS
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PDS
• P(t) – cumulative probability of surviving t years

• Unconditional default probability between t and s ‐ probability of
default between any times t and s ≥ t: difference between the probability
of default until s and the same probability until t:

d’(s) = [1‐P(s)]‐[1‐P(t)] = P(t) − P(s) = D(s) – D(t)

difference between 2 cumulative probabilities of default (D) seen today 
(being D0=0)
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PDS
• Probability of surviving to time s (P(s)) = probability of surviving until t

(P(t)) x probability of surviving between t and s, given that it has survived
until t (p(s|t)):

P(s) = P(t) x p(s|t)

• Conditional probability of surviving to time s, given survival to time t
(or forward default probability):

p(s|t)=P(s)/P(t)
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PDS

• For the Caa rating, the unconditional default probability (d’) seen today
for the 3rd year is equal to the difference between the cumulative
probabilities of default for 3 (s) and 2 (t) years:

• d’(3) = D(3) – D(2) = 39,908% ‐ 27,867% = 9,041%
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PDS
• The unconditional probability of default measured today is also the

product between the cumulative probability of survival until t and the
probability of default between t and s, given survival until t:

d’(s) = P(t) x d(s|t)

• Therefore, any unconditional probability of survival may be measured as:

being di = d(s|t) and (1‐dj‐1) = P(t)

• The unconditional marginal PD in i is the product between the
probabilities of survival until I and the probability of default in i, given that
it has survived until then, being obtained from di taking out the effect of
the condition of having survived in the previous periods (being d0’ = 0).
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PDS

• From d’(s) = P(t) x d(s|t), the conditional probability of default between s
and t, given survival until t (d(s|t)) is:

d(s|t) =d’(s) / P(t)

Also called default intensity or hazard rate.

• In our example for the Caa rating in the 3rd year:

d(3|2) = d’(3) / p(2) = 9,041%/(100%‐27,867%) = 9,041%/72,133% = 12,53%
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 Cumulative default frequencies are the sum of unconditional marginal default
frequencies.

 However, cumulative default frequencies can also be calculated as is 1 ‐ the
joint (cumulative) probability of surving until i‐1 and the probability of surving in
i:

PDS

  1111  iii DdD
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 The conditional marginal default probability to the rating Caa previously
calculated (12,53%) was for a 1‐year period.

 If one considers a very short period of time t, denoting the hazard rate
at t by λ(t), the probability of default between t and t + t conditional
on no previous default (until t) is λ(t) x t.

 Many models of PDs are based on the notion of the arrival intensity of
default.

DEFAULT INTENSITY
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 The simplest version of such a model defines default as the 1st arrival
time τ of a Poisson process with some constant mean arrival rate –
average default intensity or hazard rate (λ):

p(t ) = e−λt ‐ probability of survival for t years (to be shown afterwards)

1/λ ‐ expected time to default

λ(t)t – default intensity in t over a small period of length  (between t
and t+t), given survival until t.

 Example: default intensity (λ) = 0.04 =>

=> 1‐year PD (1‐p(1)) = 1‐e‐0.04x1 =3,9% => expected time to default (1/λ) =
1/0.04 = 25 (years).

DEFAULT INTENSITY
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 As it was shown before, d’(s) = P(t) x d(s|t) d(s|t) =d’(s) / P(t).

 For a very short period of time t, this result comes:

d(t+t|t) = d’(t+t)/P(t) = [P(t) – P(t+t)]/P(t)

 As the conditional marginal probability of default for a very short period
of time is λ(t)t, we have:

[P(t) – P(t+t)]/P(t) = λ(t)t [P(t+t) ‐ P(t)] = ‐λ(t) P(t) t

 Taking limits:

dP(t)/dt = ‐λ(t) P(t) => P(t) = => D(t) = =

DEFAULT INTENSITY
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DEFAULT INTENSITY

 Default time  1st time that a coin toss results in “heads,” given
independent tosses of coins, one each period, with each toss
having a probability λ of heads and 1−λ of tails  default is
unpredictable  when default does occur, it is a “surprise.” 
default time is inaccessible.
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POISSON PROCESSES

245

Probability of default
in a small period of
time t

There is only 1 default,
i.e. the default is an
absorbing state.

Probability of survival
in a small period of
time t
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POISSON PROCESSES

Probability of no jumps in the n periods

246

Probability of survival in 2
small periods is the joint
probability of default in each
of them (given that the hazard
rate is the same for all periods
of the same magnitude)

t
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POISSON PROCESSES

247

The Poisson
process
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POISSON PROCESSES

Probability of a jump

Probability of no jumps in n-1 periods

t

248

Probability of exactly
one jump in [t,T]
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POISSON PROCESSES

 For 2 jumps, there will be n/2 chances => probability of having 2 
jumps:

 Probability of n jumps:

 When a Poisson process with constant intensity  is used, the term 
structure of spreads will be flat and constant over time.
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 If λ changes over time, with λ(1) and λ(2) known beforehand => the
cumulative probability of survival for 2 years is:

 Carrying out the same calculation over t years, recursively, the
cumulative probability of survival for t years is:

VARIABLE DEFAULT INTENSITY
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Now  is time-
varying
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 With deterministic continual variation in default intensity, we get:

 Deterministic variation in intensity implies that the only
information relevant to default risk that arrives over time is the
mere fact of survival to date.

 However, in reality, as time passes, one should have new
information, beyond simply survival, that would bear on the credit
quality of an issuer.

 The default intensity would generally vary at random as this
additional information arrives.

VARIABLE DEFAULT INTENSITY
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 For example, one may assume that the intensity varies with an
underlying state variable (driver), such as the credit rating,
distance to default, equity price, or the business cycle.

 If intensities are updated with new information at the beginning of
each year and are constant during the year => Probability of
survival to time t given survival to t − 1, and given all other
information available at time t − 1:

 Survival probability in the 2‐year when default intensity in the 2nd
year (λ(2)), assuming the firm survives the first and takes 2 possible
levels, λ(2,H) and λ(2, L), with conditional probabilities q and 1 − q:

VARIABLE DEFAULT INTENSITY

=
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DEFAULTABLE ZERO COUPON BONDS

Zero Coupon Defaultable bond 
(with zero recovery rate)

Zero Coupon Risk-free bond
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For the Zero Coupon Defaultable
bond, the pay-off will be 1 only if 
the debtor is still alive at T.
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DEFAULTABLE ZERO COUPON BONDS

The defaultable bond price
corresponds to the NPV of the cash-
flows of the corresponding risk-free
bond, using as discount rate the
yield of the defaultable bond.
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The price of a defaultable bond is determined 
by the risk-free interest rate and the 
probability of paying the redemption value.

 If the time of default is the time of the 1st jump of a Poisson
process N(t) and it’s independent from the default‐free interest
rate, the price of a defaultable bond with zero recovery becomes:
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CREDIT DERIVATIVES

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing 
and Implementation”, Wiley.
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CREDIT DERIVATIVES

We need to 
define what 
are credit 
events.
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Credit Events

Reference Credit: 
Firm, institution or 
person who may 
default.

257

Standardized by
ISDA (International
Swap Dealers
Association), even
though they may
also be freely
negotiated.
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Reference 
Credit Assets
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MARKET TERMINOLOGY

259

 Credit derivatives can be defined on single‐name or multi‐name.
 The most popular single‐name credit derivative is the CDS.
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Examples

Asset Swaps

Total Return Swaps

Credit Default Swaps

Exotic Credit Derivatives

Default Digital Swaps

USE OF CREDIT DERIVATIVES
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ASSET SWAPS

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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ASSET SWAPS

 Asset swaps also serve frequently as underlying assets for other
derivatives, e.g. options on asset swaps (swaptions) – gives the
holder the right to enter an asset swap package at some future
date T at a predetermined asset swap spread sA.

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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TOTAL RETURN SWAPS
The aim is to
swap the actual
return of a
defaultable
bond into a
cashflow of
LIBOR plus a
spread

263

A B

A pays while
the bond price
increases
(afterwards,
with the pull-to-
par, it will
receive again)
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TOTAL RETURN SWAPS

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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TOTAL RETURN SWAPS

Advantages:
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CREDIT DEFAULT SWAPS

The aim is to transfer ONLY the default risk from A to B.
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CREDIT DEFAULT SWAPS

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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Source: Hull, John (2015), “Options, futures and other derivatives”, Pearson.
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CREDIT DEFAULT SWAPS

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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Maturity
date
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CREDIT DEFAULT SWAPS

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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CREDIT DEFAULT SWAPS

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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CREDIT DEFAULT SWAPS

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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CREDIT DEFAULT SWAPS

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.

272



Jorge Barros Luís |  Interest Rate and Credit Risk Models

CREDIT DEFAULT SWAPS

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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Because the payments are
done each semester
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CREDIT DEFAULT SWAPS

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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Valuation

 Maturity = 3 years;
 Notional = € 100.000
 Payment in case of default = 70% of the notional
 Risk‐neutral marginal probability of default in t, given

that it didn’t default in t‐1:

Period (t) Probability ()

1 0.59%

2 1.00%

3 1.27%
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 Spot rates for maturity t:

 In order to obtain the swap premium, it is necessary (as usual)
to calculate the NPV of the future cash‐flows, which will be
done recursively from the last cash‐flows.

Maturity (t) Spot Rate  
s(t) 

Discount Factor 
F(t) 

1 4.0% 0.9615 
2 4.2% 0.9210 
3 4.4% 0.8788 

 

Valuation
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 E2[pay‐off(3)|ND] = pay‐off in case of no default *(1‐PD) + pay‐
off in default *PD
=0 x (1 0.0127) + 0.7 x 0.0127 = 0.00889

 E2[pay‐off(3|D] = 0.7

 E1[pay‐off(3)|ND] = E2[pay‐off(3)|ND]*(1‐PD)+ E2[pay‐off(3)|D]
*PD= 0.00889 x (1 – 0.01) + 0.7 x 0.01 = 0.0158011

 E1[pay‐off(3)|D] = 0.7

PD(3)

PD(2)

Valuation
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 E0[X(3)] = E1[pay‐off(3)|ND]*(1‐PD)+ E1[pay‐off(3)|D]
*PD= 0.0158011 x (1 – 0.0059) + 0.7 x 0.0059 = 0.0198

 V(0,3) = F(0,3) E0[X(3)] *nocional = 0.8788 * 0.0198*100000 =
€1740.

 If the premium is paid on an annual basis, we’ll have:

1740 = 0.9615 x p +0.9210 x p + 0.8788 x p
p = 630.14.

Valuation
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FIRST TO DEFAULT SWAPS

The basket of a FtD tipically comprises 4 to 12 reference credits.
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COLLATERALIZED BOND OBLIGATIONS

These notes are
collateralized by the
bonds sold to the SPV

280

Similar to
RMBS but with
bonds instead
of residential
mortgage loans
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illustration
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In this case, no losses will be
suffered by the senior bonds,
while equity bonds will get a
total loss.
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COLLATERALIZED DEBT OBLIGATIONS

• Designed exactly in the same way as CBOs. The main difference is that
the underlying assets can be defaultable bonds or any other credit
related instruments.

• The most well‐known CDOs are the so called synthetic CDOs – when the
underlying defaultable bonds are replaced by credit derivatives, e.g.:

• CLOs – when the underlying assets are loans.

• CBOs ‐ when the underlying assets are bonds.
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CREDIT‐LINKED NOTES
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 The drawbacks of traditional credit risk models and rating
updates by agencies in the recent past led to the development of
new credit risk models, based on the prices of financial assets
issued by the company.

 The rationale is that market prices are the best assessment
available on the companies’ capital or debt value.

 The first attempt to incorporate market prices in a credit risk
model was done in the Z‐Score model. Later, in 1974, Merton
developed a corporate valuation approach based on financial
options.

2 – STRUCTURAL MODELS OF CREDIT RISK
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 In structural models, the default time is determined
endogenously by the behavior of the company’s asset default
occurs when the asset value falls so much that makes it
impossible to ensure the debt service ‐ 1st passage of assets to a
default boundary.

 Therefore, structural models are based on the company’s asset
values and use information from the stock market to measure the
market value of own funds.

 The main problem with these models corresponds to the false
alarms.

2 – STRUCTURAL MODELS OF CREDIT RISK
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Merton Model
 The model is based on the assumption that, when the company

issues debt, the shareholders transfer the control of the company
to the creditors.

 However, they retain an option of recovering that control if the
company reimburses the debt.

 Therefore, the value of capital may be seen as the price of a call‐
option on the company assets, with a strike equal to the debt
value.

 If on the redemption date, the market value of assets is lower
than the debt value, the shareholders don’t exercise the call
option, i.e. the debt is not repaid =>

 PD= P[Market Value of Assets < Debt value].
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Source: Crosbie and Bohn (2002), “Modeling Default Risk”, KMV.

Merton Model
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Merton Model
 Consequently, if the call‐option can be valued, the PD will be obtained

from the distribution function resulting from the stochastic process
of the company’s asset market value.

 Assuming that the option is European and the asset market value may
be taken as the price of non‐paying dividend asset, one can use the
Black‐Scholes formula and calculate the PD from the implied
volatility of the company’s asset value and an estimate for the
respective growth rate.

 Hence, the Merton model is based on the assumption of the growth
rates of the company’s market value of assets (VA) being normally
distributed:

 dzVdtVdV AAAA 

where VA is the company’s market value of assets,  and A the respective trend and
instantaneous volatility and dz is a Wiener process (random shocks normally distributed).

dzdtVdV AAA  
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Merton Model
 Given that this is exactly the stochastic process of the

underlying asset of an European option under the assumptions
taken in the Black‐Scholes pricing formula, the pricing formula
for the European call‐option on the company’s market value of
assets that corresponds to the stock price is:

)2()1( dXNedNVV rT
AE



where
VE is the market value of the company’s own funds
N is the cumulative normal distribution function
r is the risk-free interest rate for the maturity T
X is the nominal value of the company’s total debt payable in maturity T.

T

Tr
X

V

d
A
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






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


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
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
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
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1
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Merton Model
 In the pricing formula, there are two unknowns ‐ VA and A.

 Consequently, an additional equation is required, in order to
determine the values for those two variables.

 This equation will result from the relationship between the
volatility of assets and the volatility of capital:

(1) (from )  A
E

A
E dN

V
V  1

 In Jarrow and Rudd (1983), it is shown that the stock volatility is
a multiple of the volatility of the market value of assets:

(2) AE  
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Merton Model

   1dN
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


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

 Given (1) and that

(3)

one gets (from (1) and (2):
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
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EA

AE

EA

E
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V
V

dN
V
V







1

 Therefore, from inputs VE, E , X, r and T, the equation system
including the option pricing formula and (4) allows to estimate VA
and A .

(4)
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Merton Model
 The PD is thus the probability of the market prices of assets

falling below the nominal value of debt at the expiry date:

   AAt
t
AAAt

t
At VVXVVVXVp  00 |lnlnPr|Pr

 ttVV A
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A
t
A 










2
lnln

2

 Given that the market value of assets follows a log‐normal
distribution, one gets (with  = expected asset returns):

 Therefore, the PD is:
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 2dNpt  Risk‐neutral PD ( = r ):
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Merton Model
 Open issues:

 How to obtain values for  and E?

 How to deal with complex debt structures, with different
maturities, seniority degrees and installments?

 How to deal with the sensitivity of PDs to the leverage ratio?

 How to solve the kurtosis problem in the market value of
assets?

 How to use the PD estimates as a leading indicator of rating
changes?

 Estimation – non‐linear least squares, minimizing the sum of
the squared differences between the market value and the
estimated value of the stocks (through the option pricing
formula) and the assets.
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Moody’s KMV Model
 Moody’s KMV overcomes the distribution problems by using

a database of loans providing empirical PDs as a function of
the distance‐to‐default measure.
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Source: Duffie, Darrell and Kenneth J.
Singleton (2003), “Credit Risk”, Princeton
University Press.
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Moody’s KMV Model
 In this model, A is a linear combination of a modeled and an
empirical volatility (the latter weighting 70%, 80% for Financial
Institutions).

 Empirical vols ‐ calculated as the annualized standard deviation of
the growth rates of the nominal value of assets, using 3 years of
weekly observations for US companies (5 years of monthly data
for European companies), excluding extreme values and adjusting
for effects of M&A.

Modeled vols ‐ obtained from a regression between the observed
vol and size, revenues, profitability, sector and region variables.
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Moody’s KMV Model

 For FIs, the PD is harder to estimate, given the diversity and
uncertainty of the liabilities’ maturities.

On the other hand, by definition, banks are highly leveraged
companies.

Moody’s KMV proposes the default point (the value of the
payable liabilities in the maturity considered) to be calculated as
a % of the total liabilities, being that % differentiated according
to the type of institution.
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Moody’s KMV Model
 In Chan‐Lau and Sy (2006), it is proposed an adjustment to the Moody’s
KMV model, in order to accommodate the possibility of a bail‐out.

 Consequently, the “Distance‐Risk measure” concept is created, with Lt
being the bank’s liabilities (=1 => DR=DD) and PCAR the planned capital
ratio:

 With a very low PCAR,  gets higher and the DR lower with a lower
capital target, the bank gets closer to default and can reach this stage at
a lower level of liabilities.

 According to Oderda et al. (2002), Moody’s KMV model anticipates
defaults with a lead of around 15 months, but also produces false alarms
in 88% of the cases.
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Fitch EIR
 In order to smooth the excessive volatility of PDs obtained from equity
prices, hybrid models were developed, being the PD obtained from
corporate financial, market and macroeconomic information.

 One of these models was developed by Fitch, the Equity Implied Rating
(EIR), relating the DD to a set of financial ratios and macroeconomic
variables:

Source: Fitch (2007).
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Bondscore

 Another model is the Bondscore, developed by CreditSights:

7654

321

469.5807.3501.2333.6
308.5989.3366.7593.9

XXXX
XXXp




being:
X1 = Total Liabilities/Market Value of Capital
X2 = EBITDA/Sales
X3 = Sales/ Total Assets
X4 = Working Capital / Total Assets
X5= log(Assets)
X6= Vol of EBITDA/Sales
X7= Vol of Market Value of Capital
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3 – REDUCED FORM MODELS
 A structural model of credit risk provide a link between the prices of
equity and debt instruments issued by a given firm.

 A reduced‐form model does not give any fundamental reason for
the arrival of the defaults, assuming that hazard rates for the
different companies are stochastic processes correlated with
macroeconomic variables.

 Given that credit spreads can be decomposed in default risk (PD, or
) and recovery risk (LGD, or ), the PD can be modeled from the
credit spreads and LGDs.

 Taking several maturities, one can obtain a term structure of PDs.

 However, we must have in mind that spreads are not only a function
of PDs and LGDs, but also of liquidity, taxation and risk premia
charged by investors => PDs implied by spreads are risk neutral.
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Credit spreads
 2 equivalent ways to calculate the price of a risky zero coupon

bond (assuming one‐period maturity and redemption value of
one monetary unit):

(i) Expected value of the future cash‐flows, discounted at the risk‐
free rate:

(ii)Future cash‐flows, discounted at the risk‐free rate plus the
credit spread:
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Credit spreads

 Equalizing both expressions =>

=> Credit spread:
 Increases with the probability of default ;
 Decreases with the recovery rate ;
 Increases with the risk‐free rate r;
 In reality , these spreads may also be impacted by risk premium 

due to uncertainty about risk‐free interest rates, PDs and LGDs.
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Credit spreads
 This relationship can be generalized for any maturity:

(i) Expected value of the future cash‐flows, discounted at the risk‐
free rate:

(ii) Future cash‐flows, discounted at the risk‐free rate plus the credit
spread:
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 Consequently, the (risk‐neutral) PD can be obtained by
modeling the risk‐free and the recovery rate, instead of the
market value of the company’s assets.

 From the spreads of similar bonds for different maturities,
one can obtain the PD term structure, that can be compared
to the statistics of rating agencies (the “true” PDs).

 The initial and most popular reduced form models were
presented in Artzner ad Delbaen (1995), Jarrow and Turnbull
(1995) and Duffie and Singleton (1995).

Credit spreads
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REDUCED FORM MODELS

Advantages:

Disadvantages:

X There is no explicit link to the company’s fundamentals
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REDUCED FORM MODELS

Features of specifications of default intensity and risk‐free rate for 
derivatives pricing:
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REDUCED FORM MODELS

‐ Zero recovery defaultable bond price:

being * the risk‐neutral hazard rate

‐ Risk‐free interest and hazard rates depend on a set of
macroeconomic variables (X(t)):

As both depend on X(t), the hazard rate becomes correlated with
the interest rates.
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REDUCED FORM MODELS

‐ From the equations in the previous slide, we get prices for the
defaultable and the risk‐free bond, respectively:

‐ Credit risk spread:


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REDUCED FORM MODELS

 3 alternative setups:
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REDUCED FORM MODELS

 2‐factor Gaussian model:
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REDUCED FORM MODELS

 Results:
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REDUCED FORM MODELS

 Multifactor Gaussian model:
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REDUCED FORM MODELS

 Multifactor CIR model:
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REDUCED FORM MODELS

 Term structure of credit spreads:
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REDUCED FORM MODELS
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REDUCED FORM MODELS

316



Jorge Barros Luís |  Interest Rate and Credit Risk Models

REDUCED FORM MODELS
Gaussian HJM model – vols
and bond prices are
deterministic functions of time
t and maturity T, with forward
rates normally distributed.
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4 – CREDIT RATING MODELS

o

 Example:

318

Only 2 performing
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absorbing state
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4 – CREDIT RATING MODELS

0,80
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4 – CREDIT RATING MODELS
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 Default mode (DM) – take into consideration only the changes
in the value of bonds due to defaults.

 Marked‐to‐market (MTM) – allows to assess the impact on the
credit value of any change in its risk.

 Individual models – focus on the changes of a credit value,
regardless the correlations with other credits in the portfolio.

 Portfolio models – incorporate the correlations between the
several assets of a credit portfolio.

TYPES OF MODELS
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Challenges in Estimating Portfolio Credit Risk
 Non‐normal returns ‐ credit returns are highly skewed and fat‐

tailed.
 Difficulty in modeling correlations ‐ lack of data, contrary to

equities.

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.
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Credit‐VaR

Ratings Probability of Loan Value Difference Contribution
Transition (%) at year-end to the mean to the variance

(1) (2) (3)=(2)- (4)=(1)x(3)^2
AAA 0.02 109.37 2.27 0.00
AA 0.33 109.19 2.09 0.01
A 5.96 108.66 1.56 0.15
BBB 86.93 107.55 0.45 0.18
BB 5.3 102.02 -5.08 1.37
B 1.17 98.10 -9.00 0.95
CCC 0.12 83.64 -23.46 0.66
Default 0.18 51.13 -55.97 5.64

Mean ( ) 107.10
Variance ( (4)) 8.95
Standard-dev. 2.99
Source: JPMorgan (1997), “CreditMetrics ‐ Technical document”

Example: Portfolio with a single BBB 5y‐bond

Note: The Loan value is calculated using forward rates obtained from the term
structure of interest rates for each rating level, to discount the remaining cash‐flows
(from year 1 to 5). The default price is the expected recovery rate.
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Credit‐VaR
Histogram for the credit value (from (1) and (2)):

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.

1‐year 99% Credit‐Var = Mean‐P1,B (as the probability of having 1 year after a
rating not above B = P(B)+P(CCC)+P(D)) = 1,17+0,12+0,18 ≈ 1% = 107,1‐98,1 = 9.
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Credit‐VaR
Portfolio with BBB 5y‐bond + single‐A 3y bond, with annual
coupon rate of 5%.

‐ Year‐end price of the single‐A 3y bond, after the several
potential rating migrations:

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.

Year-end
Bond Price

Probability of
Transition (%)

325



Jorge Barros Luís |  Interest Rate and Credit Risk Models

Credit‐VaR
All potential values of the portfolio will result from the
combination of the 8 potential values for each bond (8x8):

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.

326



Jorge Barros Luís |  Interest Rate and Credit Risk Models

Credit‐VaR
‐ The joint probabilities would just be product of the rating migration
probability for each bond, if these ratings were independent.

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.
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Credit‐VaR
‐ However, ratings do not tend to be independent, as they may be
moved by the same macroeconomic factors.

Joint rating migration probabilities with correlated bonds:

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.
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Credit‐VaR

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.
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Credit‐VaR

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.
330



Jorge Barros Luís |  Interest Rate and Credit Risk Models

Credit‐VaR

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.

(i) standard‐deviation

(ii) Percentile level:
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Credit‐VaR

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.

Conclusion: The means of the BBB and the A bonds sum directly, but the risk (standard
deviations) is much less than the summed individuals due to diversification.

BBB Bond A Bond Portfolio

Mean 107,09 106,55 213,63

St.‐Dev. 2,99 1,49 3,35

1‐year 99% Credit‐Var = Mean‐PP1,(B,A) (as the probability of having 1 year after a
rating not above B in the 1st bond and A in the 2nd bond =
P(B,A)+P(B,BBB)+…+P(D,D) = 0,92+0,18+…+0 =1,45. ≈ 1%) = 213,63‐204,4 = 9,23.
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VaR(%) = N(1-%)* =>

VaR(5%) = 1.65* = 1.65*3.35=5.53
VaR(1%) = 2.33* = 2.33*3.35=7.81 
(lower than the observed value, due 

to fat tails)

Credit‐VaR
 Assuming a normal distribution, the Var would be:
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Credit‐VaR

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.

 The decision to hold a bond or not is likely to be made within
the context of some existing portfolio.

 Thus, the more relevant calculation is the marginal increase to
the portfolio risk that would be created by adding a new bond
to it = 0,36 (much smaller than the A‐Bond st‐dev = 1,49) in
standard‐deviation and 0,23 in Credit‐Var.

BBB‐Bond
(1)

Portfolio
(2)

A‐Bond Marginal 
Risk (3) = (2)‐(1)

Standard‐deviation 2,99 3,35 0,36

99% Credit‐Var 9,00 9,23 0,23
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Creditmetrics

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.

Information required:
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o Credit spreads of different issuers are correlated through time.

o However, a good model for the default correlations across firms is still an open
challenge for credit risk researchers.

o Correlations across equities are considerably higher than observed default
correlations.

o Two patterns are found in time series of spreads:

1st) Spreads vary smoothly with general macro‐economic factors in a correlated 
fashion.

Cyclical correlation between defaults

2nd) Jumps are common on several firm credit spreads. This suggest that the 
sudden variation in the credit risk of one issuer, which causes the jump in 
first place, can propagate to other issuers as well.

5 – DEFAULT CORRELATION MODELS
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5 – DEFAULT CORRELATION MODELS
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5 – DEFAULT CORRELATION MODELS

o Conditional probabilities: o Correlation coefficient:

338
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5 – DEFAULT CORRELATION MODELS

o Calculation of default correlation:
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5 – DEFAULT CORRELATION MODELS

o Calculation of default correlation:

340



Jorge Barros Luís |  Interest Rate and Credit Risk Models

Independent Defaults
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Independent Defaults

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.

Distribution of default losses under independence
(number of obligors =100 and p =0,5)
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Perfectly Correlated Defaults

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.

Perfectly dependent defaults
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BINOMIAL EXPANSION MODEL
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BINOMIAL EXPANSION MODEL
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BINOMIAL EXPANSION MODEL
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BINOMIAL EXPANSION MODEL
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FACTOR MODELS
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FACTOR MODELS
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FACTOR MODELS

(from the 3 previous equations)
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FACTOR MODELS
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FACTOR MODELS

The most significant effect for risk
management is the increased
mass of loss distribution in the tails
=> VaR increases with asset
correlation
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Different recovery specifications

The recovery payment at default can be measured in different units.

o In the recovery of par (or recovery of face value) scheme it is given as a fraction 
of the security's face value. 

o In the recovery of treasury (or equivalent recovery) scheme  it is given as a 
fraction of an equivalent but default‐free version of the security. 

o In the recovery of market value (or fractional recovery) scheme investors
receive a fraction of the asset market value just before default.

6 – RECOVERY ISSUES

All these different 
specifications of recovery rates 

lead to different prices.
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 Most papers have focused on modeling the default intensity process.

 Recovery issues are often ignored.

 When treated it is common to make unrealistic assumptions about the recovery

o Constant recovery

o Stochastic recovery

BUT independent of the default arrival

unrealisticEmpirical Facts: 

o Recovery rates change over time, probably in a stochastic way
oProbability of Default (PD) and Loss given default (LGD) are correlated

EVOLUTION OF RECOVERY MODELS
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RECOVERY MODELS
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Loss determinants

 Collateral
 Debt seniority
 Loan type (namely for individuals)
 Region
 Business cycle
 Economic sector
 PD
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LGD features
1. Most of the time recovery as a percentage of exposure is either relatively
high (around 70‐80%) or low (around 20‐30%). The recovery (or loss)
distribution is said to be “bimodal” (two‐humped). Hence thinking about an
“average” recovery or loss given default can be very misleading.
2. The most important determinants of which mode a defaulted claim is likely
to fall into is whether or not it is secured and its place in the capital structure
of the obligor (the degree to which the claim is subordinated). Thus bank
loans, being at the top of the capital structure, typically have higher recovery
than bonds.
3. Recoveries are systematically lower in recessions, and the difference can be
dramatic: about one‐third lower. That is, losses are higher in recessions, lower
otherwise.
4. Industry of the obligor seems to matter: tangible asset‐intensive industries,
especially utilities, have higher recovery rates than service sector firms, with
some exceptions such as high tech and telecom.
5. Size of exposure seems to have no strong effect on losses.
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Estimation Methods

 NPV of recoveries

 Recovery distributions

 Bond prices after default

 LGD implied in bond prices

 LGD implied in observed losses and
in PD estimates.

 Econometric adjustment of the
LGD as a function of several
variables (LossCalc, Moody’s
(2002)).

Source: Basel Committee on Banking
Supervision (2005)
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Statistics

 Recoveries exhibit a bimodal distribution:

Source: Schuermann (2004)
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Seniority

 Higher recoveries in senior debt:

Source: Schuermann (2004) and Moody’s
(2009)
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Region

 Often regions where customers are based exhibit different
recovery perspectives:

Source: Zhang, Yanan Lu Ji and Fei Liu (2010), “Local
Housing Market Cycle and Loss Given Default:
Evidence from Sub-Prime Residential Mortgages”, IMF
WP WP/10/167.

Source: Franks et al (2004).
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Business Cycle

 LGD is typically higher during the lower stages of the
business cycle.

Source: Bruche, Max and Carlos Gonzalez-Aguado
(2007), “Recovery Rates, Default Probabilities and
the Credit Cycle”.

Source: Moody’s (2003).

362



Jorge Barros Luís |  Interest Rate and Credit Risk Models

Business Cycle

Source: Schuermann (2004)
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Economic Sectors
 In Altman and Kishore (1996), differences between sectors are identified.
 The LGD is usually higher for sectors with higher PD.

Source: Moody’s (2004). Source: Franks et al (2004).
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PD

 The correlation between LGD and PD along time is high (0.66
according to S&P (2007)).

Source: Moody’s (2008).
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PD

 Higher ratings typically
exhibit lower LGDs:

Source: Moody’s (2003; 2008).
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Listed bonds

Source: Moody’s (2010).

 Usually, in these exposures the LGD is measured as 1‐Price (as a
% of EAD) in a given period (usually 1 month after the default).

 Empirical evidence points to LGDs between 30% and 40% in non‐
colateralized exposures (around 60% for collateralized loans).
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Listed bonds

Source: Moody’s (2009). Source: Moody’s (2003).
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