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Solutions

1. .

(a) Define Yt = ln (St). By Itô’s formula applied to f(x) = ln (x):

dYt =
∂f

∂x
(St)dSt +

1

2

∂2f

∂x2
(t, St) (dSt)

2

= e−tdt+ σdBt −
1

2
σ2dt

=

(
e−t − 1

2
σ2
)
dt+ σdBt.

where we have used (dBt)
2 = dt. Therefore

Yt = ln (S0) +

ˆ t

0

(
e−s − 1

2
σ2
)
ds+ σBt,

and

St = S0 exp

(
1− e−t − 1

2
σ2t+ σBt

)
.

Moreover,
E [St] = S0 exp

(
1− e−t

)
.

1



(b) We have
S3 = S0 exp (0.8902 + 0.2B3)

Since Bt ∼ N (0; t), then X := log
(
S3
S0

)
∼ N (0.8902; 0.12), we

have

P

(
S3
S0
≥ 1.20

)
= P (exp (X) ≥ 1.20)

= P (X ≥ ln (1.20)) = 0.9795.

2. .

(a) Normality assumption: market crashes appear more often than
one would expect from a normal distribution of the log-returns
(the empirical distribution has fat tails when compared to the
Normal). Moreover, days with very small changes also happen
more often than the normal distribution suggests (more peaked
distribution). The main advantage of considering the normal dis-
tribution is its mathematical tractability.

The fat tails and jumps justify the consideration of Lévy processes
(associated with fat tails) for modelling security prices.

(b) (i) There are good theoretical reasons to suppose that the ex-
pected returns per time unit should vary over time. It is rea-
sonable to suppose that investors will require a risk premium on
equities relative to bonds. As a result, if interest rates are high,
we might expect the expected value of returns to be high as well.
However, it is not easy to test this argument empirically.

(ii) Empirical data shows that volatility parameter is not constant
in time. The implied volatility obtained from option prices and
the examination of historic option prices suggests that volatility
expectations fluctuate markedly over time.

(iii) One unsettled empirical question is whether markets are
mean reverting, or not. A mean reverting market is one where
rises are more likely following a market fall, and falls are more
likely following a rise. There appears to be some evidence for
this, but the evidence rests heavily on the aftermath of a small
number of dramatic crashes. Furthermore, there also appears to
be some evidence of momentum effects, which imply that a rise
one day is more likely to be followed by another rise the next day.

(i) In the lognormal model, the expected value of returns per
time unit, or drift, is constant, which does not agree with the
theoretical argument given in (a). However, in this case it is
difficult to test empirically if it is really necessary to assume a
non-constant drift.
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(ii) In the lognormal model, the volatility is assumed to be con-
stant, in contradiction with empirical evidence.

(iii) The lognormal model is not mean reverting. However, there
is no strong empirical evidence of mean-reversion effects in stock
prices.

One class of models with the feature of non-constant volatility are
the ARCH models. Models with non-normal returns or stochastic
volatility models also satisfy this property.

3. .

(a) Strike:

Call option: a higher strike price means a lower intrinsic value.
A lower intrinsic value means a lower premium.

Put option: a higher strike price will mean a higher intrinsic value
and a higher premium.

Interest rates:

Call option: an increase in the risk-free rate of interest will result
in a higher value for the option because the money saved by
purchasing the option rather than the underlying share can be
invested at this higher rate of interest, thus increasing the value
of the option.

Put option: higher interest means a lower value (put options can
be purchased as a way of deferring the sale of a share: the money
is tied up for longer)

(b) For the call option, at time t, consider portfolio A: one European
call + cash Ke−r(T−t). At time T , the value of A is equal to
ST −K + K = ST if ST > K. If ST < K then the payoff from
portfolio A is 0+K > ST . Therefore the portfolio payoff≥ ST and
this implies, by the no arbitrage principle, that ct +Ke−r(T−t) ≥
St and the lower bound for the price of European call is

ct ≥ St −Ke−r(T−t).

(c) From the put-call parity (note that K = St = 15e), we have that

1 + 15e−0.04(
18
12) = pt + 15.

Therefore,

pt = −14 + 15e−0.06

= 0.1265e.

4. .
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(a) u = 1
d = 1

0.92 = 1.087. In order to obtain an arbitrage free model,
we must have d < er < u. Therefore

ln(0.92) < r < ln(1.087).

Or
−0.0834 < r < 0.0834.

Since r = 0.05, the model is arbitrage free. Binomial tree values:
10; 10.87, 9.2; 11.8157, 10, 8.464; 12.8437, 10.87, 9.2, 7.7869. If
r = 5%, then the risk-neutral probability for an up-movement is

q =
er − d
u− d

=
e0.05 − 0.92

1.087− 0.92
= 0.7861

Payoff function of the Financial Derivative:

max

{
exp

(
ST
5

)
− 8, 0

}
Payoff: V3

(
u3
)

= 5.0494, V3
(
u2d
)

= 0.7934, V3
(
ud2
)

= 0, V3
(
d3
)

=
0

Using the usual backward procedure with r = 0.05 and q = 0.7861

At time 2: V2
(
u2
)

= exp(−r)
[
qV3

(
u3
)

+ (1− q)V3
(
u2d
)]

=
3.9372, V2 (ud) = exp(−r)

[
qV3

(
u2d
)

+ (1− q)V3
(
ud2
)]

= 0.5933,
V2
(
d2
)

= 0,

At time 1: V1 (u) = exp(−r)
[
qV2

(
u2
)

+ (1− q)V2 (ud)
]

= 3.0648,
V1 (d) = exp(−r)

[
qV2 (ud) + (1− q)V2

(
d2
)]

= 0.4436,

At time 0, the price is V0 = exp(−r) [qV1 (u) + (1− q)V1 (d)] =
2.382.

(b) The conditions that must be met are (where δt is the time interval
of each step in the binomial model):

EQ

[
St+δt
St

]
= exp (rδt) , (1)

varQ

[
ln

(
St+δt
St

)]
= σ2δt (2)

Note also that in the binomial model:

EQ

[
St+δt
St

]
= qu+ (1− q) d.

And from Eq. (1), we get

q =
erδt − d
u− d

. (3)
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If we use Eq. (2) and the assumption u = 1/d, we obtain:

varQ

[
ln

(
St+δt
St

)]
= q (lnu)2 + (1− q) (− lnu)2 −

{
E

[
ln

(
St+δt
St

)]}2

= (lnu)2 −
{
E

[
ln

(
St+δt
St

)]}2

The last term involves terms of higher order than δt, i.e.
{
E
[
ln
(
St+δt
St

)]}2
≈

0 which tends to zero as δt→ 0 (assumption in the hint)

So, ignoring the terms of order higher than δt, we obtain:

(lnu)2 = σ2δt.

Solving, we obtain (σ is the volatility):

u = exp
(
σ
√
δt
)
, (4)

d = exp
(
−σ
√
δt
)
. (5)

5. .

(a) The assumptions underlying the Black-Scholes model are as fol-
lows:

1. The price of the underlying share follows a geometric Brownian
motion.

2. There are no risk-free arbitrage opportunities.

3. The risk-free rate of interest is constant, the same for all
maturities and the same for borrowing or lending.

4. Unlimited short selling (that is, negative holdings) is allowed.

5. There are no taxes or transaction costs.

6. The underlying asset can be traded continuously and in in-
finitesimally small numbers of units.

The general risk-neutral valuation formula for a derivative with
payoff X is

Vt = e−r(T−t)EQ [X|Ft] ,

where Q is the risk-neutral measure (or equivalent martingale
measure) and r is the risk-free interest rate.

(b) The price is given by

Vt = e−r(T−t)EQ
[

1

T − t0

ˆ T

t0

Sudu|Ft
]

= e−r(T−t)
1

T − t0

ˆ T

t0

EQ [Su|Ft] du
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The dynamics of the stock prices St under Q is given by the SDE

dSu = r Su du+ σ Su dZ̃u, u > t

St = s

This is a geometric Brownian motion and the solution is such
that:

Su = s exp

[(
r − σ2

2

)
(u− t) + σ

(
Z̃u − Z̃t

)]
,

and
EQ [Su|Ft] = EQ [Su|St] = Ste

r(u−t).

Therefore

Vt =
e−r(T−t)

T − t0

ˆ T

t0

Ste
r(u−t)du

=
e−r(T−t)St
(T − t0) r

[
er(T−t) − er(t0−t)

]
=

St
r (T − t0)

[1− exp (−r (T − t0))] .

6. .

(a) We have that zero-coupon bond prices are related to the spot-rate
and instantaneous forward-rate by:

R(t, T ) =
−1

T − t
logB(t, T ) if t < T

or
B(t, T ) = exp [−R(t, T )(T − t)] .

and

f(t, T ) = lim
S→T

F (t, T, S) = − ∂

∂T
logB (t, T ) .

or (integrating):

B (t, T ) = exp

[
−
ˆ T

t
f (t, u) du

]
.

By F (t, T, S) we represent the forward rate

F (t, T, S) =
1

S − T
log

B (t, T )

B (t, S)
for t < T < S.
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(b) The bond price is given by

B (t, T ) = exp
[
−
´ T
t f (t, u) du

]
= exp

[
−
´ T
t

(
0.04e−0.3(u−t) + 0.08(1− e−0.3(u−t))

)
du
]

= exp
[
−
´ T
t

(
0.08− 0.04e−0.3(u−t))

)
du
]

= exp
[
−0.08 (T − t)− 0.133e−0.3(T−t) + 0.133

]
.

Moreover, R(t, T ) = −1
T−t

[
−0.08 (T − t)− 0.133e−0.3(T−t) + 0.133

]
=

0.08− 0.133
[
1−e−0.3(T−t)

T−t

]
.

(c) The SDEs for the Vasicek model gives us a time-homogeneous
model. This implies lack of flexibility for pricing related con-
tracts. A simple way to get theoretical prices to match observed
market prices is to introduce some elements of time-inhomogeneity
into the model. The Hull & White (HW) model does this. This
model is similar to Vasicek model but now µ (t) is no longer a
constant. The HW model can even be extended to include a time-
varying deterministic σ (t). This allows us to calibrate the model
to traded option prices as well as zero-coupon bond prices. More-
over, since µ (t) is deterministic, the HW model is as tractable as
the Vasicek model.

The HW model suffers from the same drawback as the Vasicek
model: interest rates might become negative.

Plot for 6(b):
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