Stochastic Calculus - part 2 Master programme in Mathematical Finance

ISEG

2016

(ISEG)

Stochastic Calculus - part 2

2016 1 / 15

Continuous processes

Definition

A s.p. $\{X_t; t \in T\}$ with values in \mathbb{R} and where $T \subset \mathbb{R}$ is an interval, is said to be continuous in probability (or stochastically continuous) at $t \in T$ if, for all $\varepsilon > 0$,

 $\lim_{s\to t} P\left[|X_s - X_t| > \varepsilon \right] = 0.$

Definition

Let $p \ge 1$. A s.p. $\{X_t; t \in T\}$ with values in \mathbb{R} and where $T \subset \mathbb{R}$ is an interval, and such that $E[|X_t|^p] < \infty$, is said to be continuous in mean of order p at $t \in T$ if

 $\lim_{s\to t} E\left[\left|X_s - X_t\right|^p\right] = 0.$

- The continuity in mean of order *p* implies the continuity in probability.
- The continuity in probability or in mean of order *p* does not imply the continuity of the trajectories of the process.

Example

The Poisson process $N = \{N_t, t \ge 0\}$ with intensity λ is a process with discontinuous trajectories. However it is continuous in mean of order 2 (or continuous in mean-square). Recall that $N_s - N_t \sim Poi(\lambda (s - t))$ and therefore (by the properties of the Poisson distribution)

$$\lim_{s \to t} E\left[\left|N_{s}-N_{t}\right|^{2}\right] = \lim_{s \to t} \left[\lambda\left(s-t\right)+\left(\lambda\left(s-t\right)\right)^{2}\right] = 0$$

• How to prove that a process has continuous trajectories?

(ISEG)

Stochastic Calculus - part 2

2016 3 / 15

Theorem

(Kolmogorov continuity criterion): Let $X = \{X_t; t \in T\}$ be a s.p. where T is a bounded interval and assume that exist p > 0 and $\alpha > 0$ such that

$$E\left[|X_t - X_s|^p\right] \le C |t - s|^{1+\alpha}.$$
(1)

Then, exists a version of X with continuous trajectories.

• More precisely, Eq. (1) implies that for each $\varepsilon > 0$ exists a r.v. G_{ε} such that (with probability 1 or a.s.)

$$|X_{t}(\omega) - X_{s}(\omega)| \leq G_{\varepsilon}(\omega) |t - s|^{\frac{1+\alpha}{p} - \varepsilon}$$
(2)

and $E[G_{\varepsilon}^{p}] < \infty$. That is, X has Hölder contínuous trajectories of order β for all $\beta < \frac{1+\alpha}{p}$.

• For a proof of this theorem, see Karatzas and Shreve, pages 53-54 (2nd edition).

Conditional probability

- Consider a probability space (Ω, \mathcal{F}, P) and let A and B be two events $A, B \in \mathcal{F}$ and P(B) > 0.
- Conditional probability of A given B:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
(3)

- The map $A \to P(A|B)$ defines a probability measure on the σ -algebra \mathcal{F} .
- Conditional expectation of X (integrable) given B:

$$E(X|B) = \frac{E[X\mathbf{1}_B]}{P(B)}.$$
(4)

(ISEG)

Stochastic Calculus - part 2

2016 5 / 15

Conditional expectation

Conditional expectation

• Let (Ω, \mathcal{F}, P) be a probability space and $\mathcal{B} \subset \mathcal{F}$ a σ -algebra.

Definition

(conditional expectation) The conditional expectation of an integrable r.v. X given \mathcal{B} (or $E(X|\mathcal{B})$) is an integrable r.v. Z such that:

- 1) Z is \mathcal{B} -measurable.
- 2 For each $A \in \mathcal{B}$ we have

$$E(Z\mathbf{1}_{A}) = E(X\mathbf{1}_{A})$$
(5)

If X is integrable (i.e. E [|X|] < ∞) then Z = E(X|B) exists and is unique (a.s.).

Definition

(generated σ -algebra): Let C be a class of subsets of Ω . Then, the smallest σ -algebra containing C is denoted by $\sigma(C)$ and is called the σ -algebra generated by C.

Definition

(σ -algebra generated by X): Let X be a r.v. Then the σ -algebra $\{X^{-1}(B) : B \in \mathcal{B}_{\mathbb{R}}\}$ is said to be the σ -algebra generated by X. (By $\mathcal{B}_{\mathbb{R}}$ we denote the Borel σ -algebra in \mathbb{R} -generated by the open sets)

• Properties:

1.

$$E(aX + bY|B) = aE(X|B) + bE(Y|B).$$
 (6)

2.

$$E(E(X|\mathcal{B})) = E(X).$$
(7)

3. If X and the σ -algebra \mathcal{B} are independent then:

$$E(X|\mathcal{B}) = E(X) \tag{8}_{7/15}$$

Stochastic Calculus - part 2 2016 7/15

(ISEG)

Conditional expectation

4. If X is \mathcal{B} -measurable (or if $\sigma(X) \subset \mathcal{B}$) then:

$$E(X|\mathcal{B}) = X. \tag{9}$$

5. If Y is \mathcal{B} -measurable (or if $\sigma(Y) \subset \mathcal{B}$) then

$$E(YX|\mathcal{B}) = YE(X|\mathcal{B})$$
(10)

6. Given two σ -algebras $\mathcal{C} \subset \mathcal{B}$ then

 $E(E(X|\mathcal{B})|\mathcal{C}) = E(E(X|\mathcal{C})|\mathcal{B}) = E(X|\mathcal{C})$ (11)

7. Consider two r.v. X and Z such that Z is \mathcal{B} -measurable and X is independent of \mathcal{B} . Let h(x, z) be a measurable function such that h(X, Z) is an integrable r.v. Then

$$E(h(X,Z)|\mathcal{B}) = E(h(X,z))|_{z=Z}.$$
(12)

Note: first calculate E(h(X, z)) for a fixed value z of Z and then replace z by Z.

(ISEG)

• Jensen inequality: If φ is a convex function such that $E\left[\left|\varphi\left(X
ight)
ight|
ight]<\infty$, then

$$\varphi(E(X|\mathcal{B})) \le E(\varphi(X)|\mathcal{B}).$$
(13)

• Particular case: If $E(|X|^p) < \infty$, $p \ge 1$,

$$|E(X|\mathcal{B})|^{p} \leq E(|X|^{p}|\mathcal{B}).$$

As a consequence, if $p \ge 1$,

$$E\left[\left|E(X|\mathcal{B})\right|^{p}\right] \le E(|X|^{p}).$$
(14)

• We can define for $C\in \mathcal{F}$,

$$P(C|\mathcal{B}) = E(\mathbf{1}_C|\mathcal{B}).$$

(ISEG)

Stochastic Calculus - part 2

9 2016 9 / 15

Conditional expectation

• The set of all squared integrable r.v. $(E[X^2] < \infty)$ - denoted by $L^2(\Omega, \mathcal{F}, P)$ - is a Hilbert space with the inner product

$$\langle X,Y
angle = E\left[XY
ight].$$

The set $L^{2}(\Omega, \mathcal{B}, P)$ is a subspace of $L^{2}(\Omega, \mathcal{F}, P)$.

Given X ∈ L² (Ω, F, P), we have that E(X|B) is the orthogonal projection of X in the subspace L² (Ω, B, P) and minimizes the mean-square distance from X to L² (Ω, B, P), in the sense that

$$E\left[\left(X - E(X|\mathcal{B})\right)^{2}\right] = \min_{Y \in L^{2}(\Omega, \mathcal{B}, P)} E\left[\left(X - Y\right)^{2}\right]$$
(15)

Examples and exercises

Example

Let X be a uniform r.v. with values on (0, 1]. Let $A = (0, \frac{1}{4}]$. Calculate E[X] and E[X|A].

$$E[X] = \int_0^1 xf(x) \, dx = \int_0^1 x \, dx = \frac{1}{2} \cdot E[X|A] = \frac{E(X\mathbf{1}_A)}{P(A)} = \frac{\int_0^{1/4} x \, dx}{1/4} = \frac{1}{8} \cdot \frac{1}{$$

			11
(ISEG)	Stochastic Calculus - part 2	2016	11 / 15

 Exercise: Prove that if X and the σ-algebra B are independent then
 E(X|B) = E(X)
 Solution: X and 1_A are independent if A ∈ B and

$$E[X\mathbf{1}_{A}] = E[X] E[\mathbf{1}_{A}] = E[X] P(A) = E[E[X] \mathbf{1}_{A}]$$

and, by definition of conditional expectation, $E(X|\mathcal{B})=E\left(X
ight)$.

• Exercise: Prove that if Y is \mathcal{B} -measurable then

$$E(YX|\mathcal{B}) = YE(X|\mathcal{B}).$$

Solution sketch: If $Y = \mathbf{1}_A$ with $A, B \in \mathcal{B}$ then, by definition of conditional expectation,

$$E [\mathbf{1}_A E(X|\mathcal{B})\mathbf{1}_B] = E [\mathbf{1}_{A \cap B} E(X|\mathcal{B})]$$

= $E [X\mathbf{1}_{A \cap B}] = E [\mathbf{1}_B\mathbf{1}_A X].$

Therefore $\mathbf{1}_A E(X|\mathcal{B}) = E[\mathbf{1}_A X|\mathcal{B}]$. In a similar whay, we obtain the result for $Y = \sum_{j=1}^m a_j \mathbf{1}_{A_j}$ (a simple r.v.). In the general case, we prove the result, approximating Y by a sequence of simple (and \mathcal{B} -measurable) random variables.

(ISEG)	Stoc

Stochastic Calculus - part 2

2016 13 / 15

Conditional expectation

• Exercise: Given $X \in L^2(\Omega, \mathcal{F}, P)$, show that $E(X|\mathcal{B})$ is the orthogonal projection of X in subspace $L^2(\Omega, \mathcal{B}, P)$ and that

$$E\left[(X - E(X|\mathcal{B}))^2\right] = \min_{Y \in L^2(\Omega, \mathcal{B}, P)} E\left[(X - Y)^2\right].$$

Solution:(1) $E(X|B) \in L^2(\Omega, B, P)$ since is B-measurable and by (14) we have that

$$E\left[\left|E(X|\mathcal{B})\right|^{2}\right] \leq E(|X|^{2}) < \infty.$$

(2) If $Z \in L^2(\Omega, \mathcal{B}, P)$ then, by properties 5 and 2 of cond. expect.:

$$E[(X - E(X|B))Z] = E[XZ] - E[E(X|B)Z]$$
$$= E[XZ] - E[E(XZ|B)]$$
$$= 0$$

and therefore $(X - E(X|\mathcal{B}))$ is orthogonal to $L^2(\Omega, \mathcal{B}, P)$.

(3) Since

$$E\left[(X-Y)^{2}\right] = E\left[(X-E(X|\mathcal{B}))^{2}\right] + E\left[(E(X|\mathcal{B})-Y)^{2}\right]$$

we have that $E\left[(X-Y)^{2}\right] \ge E\left[(X-E(X|\mathcal{B}))^{2}\right]$. Hence
 $E\left[(X-E(X|\mathcal{B}))^{2}\right] = \min_{Y \in L^{2}(\Omega,\mathcal{B},P)} E\left[(X-Y)^{2}\right].$

• Exercise: Prove properties 2, 4 and 6 of the conditional expectation.

(ISEG)

Stochastic Calculus - part 2

15 2016 15 / 15