ISEG - Lisbon School of Economics and Management ECONOMETRICS
 First Semester 2018/2019
 Exam
 February, 42019

Duration: 120 Minutes

Name:

Question:	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	Total
Points:	10	10	10	80	20	50	10	10	200

Justify all your answers and show your work on each problem on this test (except for multiple choice questions). Organize your work. Work scattered all over the page will receive very little credit. A correct answer in a multiple choice question is worth 10 points; an incorrect one is worth -2.5 points.
(10) 1. In the linear multiple regression model with an intercept, which of the following is TRUE:

The OLS minimizes the sum of residuals.
The R^{2} is not valid if the residuals are not normally distributed.
\bigcirc The sum of OLS residuals is always equal to zero.
\bigcirc None of the above.
2. Consider the equation $y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\ldots+\beta_{k} x_{i k}+u_{i} ; i=1, \ldots, n$ and the regression $\hat{u}_{i}^{2}=\alpha_{0}+\alpha_{1} x_{i 1}+\ldots+\alpha_{k} x_{i k}+v_{i}$, with \hat{u}_{i} the OLS residuals of the first equation. Then,
\bigcirc If $H_{0}: \alpha_{1}=\ldots=\alpha_{k}=0$ cannot be rejected, then $H_{0}: \beta_{1}=\ldots=\beta_{k}=0$ cannot be rejected as well.

O If $H_{0}: \alpha_{1}=\ldots=\alpha_{k}=0$ is rejected, then there is evidence that the OLS estimator for the first equation is efficient.
\bigcirc Testing $H_{0}: \alpha_{1}=\ldots=\alpha_{k}=0$ jointly leads to the same conclusions as testing $H_{0}: \alpha_{1}=0, \ldots, H_{0}: \alpha_{k}=0$ separately.
\bigcirc None of the above.
3. Consider the following equation, wage $_{i}=\beta_{0}+\delta_{0}$ female $_{i}+\delta_{1}$ male $_{i}+\beta_{1} e d u c_{i}+u_{i} ; i=1, \ldots, n$, where wage $_{i}$ is the hourly wage, female i_{i} is a dummy variable equal to 1 if the i th individual is a woman, male e_{i} is a dummy variable equal to 1 if the i th individual is a man and $e d u c_{i}$ is the number of years of education. Then this equation
\bigcirc is equivalent to the equation wage $_{i}=\beta_{0}+\gamma 0$ female $_{i}+\beta_{1}$ educ $_{i}+u_{i} ; i=1, \ldots, n$, with $\gamma_{0}=\delta_{0}-\beta_{0}$,
\bigcirc cannot be estimated due to perfect collinearity,
\bigcirc gives OLS estimates $\hat{\delta}_{0}=0$ when $\hat{\delta}_{1} \neq 0$,
none of the above.
4. To explain the price of an house the following model was specified:

$$
\begin{aligned}
\log \left(\text { price }_{i}\right)= & \beta_{0}+\beta_{1} \log \left(\text { lotsize }_{i}\right)+\beta_{2} \text { bedrooms }_{i}+\beta_{3} \text { garagepl }_{i}+ \\
& \beta_{4}\left(\text { bedrooms }_{i}-3\right) \times \text { garagepl }+\beta_{5} \text { airco }_{i}+u_{i}, \quad i=1, \ldots, 546
\end{aligned}
$$

where the variables have the following meaning:

- price is the sale price of a house;
- lotsize is the lot size of the property in square feet;
- bedrooms is the number of bedrooms;
- garagepl is the number of garage places;
- airco is equal to 1 if there is central air conditioning;

The estimated output of this equation is in Annex. Other results that may be necessary to solve the following questions are included in the Annex as well.
(a) Interpret the estimated coefficients $\hat{\beta}_{1}$ and $\hat{\beta}_{5}$, and test their individual significance.
(b) Estimate the effect of having one more garage place (holding the other factors fixed) on the price of the houses with 3 bedrooms and test its statistical significance.
\square
(c) Is the model in Equation 1 misspecified? Justify using an appropriate statistical test.
\square
(15)
(d) Equation 3 aims to perform a test. Identify and formalize the test. What can you conclude about it?
\square
(e) Given your results in the previous questions what can you conclude about the properties of OLS in Equation 1?
5. Consider the model,

$$
\begin{equation*}
y_{t}=\beta_{0}+\gamma_{1} x_{t-1}+\gamma_{2} x_{t-4}+\rho_{1} z_{t-2}+\rho_{2} z_{t-4}+u_{t} \tag{1}
\end{equation*}
$$

(b) Write the condition that makes model (1) dynamically complete.
\square
6. A researcher in Econometrics estimated the following equations, with quarterly data:

$$
\begin{gather*}
\widehat{\log \left(y_{t}\right)}=0.467+0.03 t-0.04 Q_{1 t}+0.02 Q_{2 t}+0.07 Q_{3 t}, \quad R^{2}=0.854, \quad n=100 \\
\hat{\hat{u}}_{t}=0.88 \hat{u}_{t-1} \tag{1.24}
\end{gather*}
$$

with $Q_{j t}, j=1,2,3,4$, the seasonal dummies, and \hat{u}_{t} the residuals of equation (2), and

$$
\begin{equation*}
\widehat{\log \left(y_{t}\right)}=0.587+0.05 t, \quad R^{2}=0.672, \quad n=100 \tag{4}
\end{equation*}
$$

(a) Interpret the estimated coefficient of variable t and variable $Q_{1 t}$ in equation (2).
(20) (b) Is there any statistical evidence of seasonality in equation (2)? Justify using an appropriate statistical test.
\square
(15) (c) Is there any statistical evidence of serial correlation in equation (2)? Justify using an appropriate statistical test.
(10) 7. Consider the following models,

$$
\begin{gather*}
y_{t}=y_{0}+\alpha_{0} t+e_{t}+e_{t-1}+\ldots+e_{1} \tag{5}\\
z_{t}=e_{t}-e_{t-1} \tag{6}\\
w_{t}=\alpha_{0}+\alpha_{1} t+e_{t} \tag{7}
\end{gather*}
$$

where e_{t} is a white noise process. Then,
\bigcirc only z_{t} is weak dependent,
\bigcirc only z_{t} and w_{t} are weakly dependent,
\bigcirc only y_{t} and w_{t} are weakly dependent.
\bigcirc None of the above.
(10) 8. If a model is dynamically complete then,
\bigcirc strict exogeneity is verified,
\bigcirc contemporaneous exogeneity is verified but not sequential exogeneity,
\bigcirc both, sequential exogeneity and contemporaneous exogeneity are verified,None of the above.

