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Existence and uniqueness Theorem for SDEs

Existence and Uniqueness Theorem for SDE’s
Let T > 0, b(·, ·) : [0,T ]×Rn → Rn and σ(·, ·) :
[0,T ]×Rn → Rn×m be measurable functions such that:

1) E
[
|Z |2

]
< ∞ and Z independent of B.

2) Linear growth property

|b (t, x)|+ |σ (t, x)| ≤ C (1 + |x |) , x ∈ Rn, t ∈ [0,T ]

3) Lipschitz property

|b (t, x)− b (t, y)|+ |σ (t, x)− σ (t, y)| ≤ D |x − y | , x , y ∈ Rn, t ∈ [0,T ]

Then the SDE

Xt = Z +
∫ t

0
b (s,Xs) ds +

∫ t

0
σ (s,Xs) dBs (1)

has a unique solution. Exists a unique stoch. proc.
X = {Xt , 0 ≤ t ≤ T} continuous, adapted, which satisfies (1) and

E

[∫ T

0
|Xs |2 ds

]
< ∞.
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Existence and uniqueness Theorem for SDEs

Proof of the existence and uniqueness theorem

Consider the space L2a,T of processes adapted to the filtration

FZ
t := σ (Z ) ∪ Ft such that E

[∫ T
0 |Xs |2 ds

]
< ∞.

In this space, consider the norm:

‖X‖ =
(∫ T

0
e−λsE

[
|Xs |2

]
ds

) 1
2

,

where λ > 2D2 (T + 1) .

Define the operator L : L2a,T → L2a,T by:

(LX )t = Z +
∫ t

0
b (s,Xs) ds +

∫ t

0
σ (s,Xs) dBs
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Existence and uniqueness Theorem for SDEs

Proof of the theorem

By the linear growth of b and σ, the operator L is well defined.

By the Cauchy-Schwarz inequality and by Itô isometry, we have:

E
[
|(LX )t − (LY )t |

2
]
≤ 2E

[(∫ t

0
(b (s,Xs)− b (s,Ys)) ds

)2
]

+ 2E

[(∫ t

0
(σ (s,Xs)− σ (s,Ys)) dBs

)2
]

≤ 2TE

[∫ t

0
(b (s,Xs)− b (s,Ys))

2 ds

]
+

+ 2E

[∫ t

0
(σ (s,Xs)− σ (s,Ys))

2 ds

]
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Existence and uniqueness Theorem for SDEs

Proof of the theorem
By the Lipschitz property, we have:

E
[
|(LX )t − (LY )t |

2
]
≤ 2D2 (T + 1)E

[∫ t

0
(Xs − Ys)

2 ds

]
.

Define K = 2D2 (T + 1). Multiplying the previous inequality by e−λt

and integrating in [0,T ], we have∫ T

0
e−λtE

[
|(LX )t − (LY )t |

2
]
dt

≤ K
∫ T

0
e−λtE

[∫ t

0
(Xs − Ys)

2 ds

]
dt.

Interchanging the order of integration, we have

= K
∫ T

0

[∫ T

s
e−λtdt

]
E
[
(Xs − Ys)

2
]
ds

≤ K

λ

∫ T

0
e−λsE

[
(Xs − Ys)

2
]
ds
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Existence and uniqueness Theorem for SDEs

Proof of the theorem

Therefore

‖(LX )− (LY )‖ ≤
√

K

λ
‖X − Y ‖

Choosing λ > K , we have
√

K
λ < 1, and the operator L is a

contraction in the space L2a,T . Hence, by the fixed point theorem,
exists a unique fixed point to L and that fixed point is exactly the
solution of the SDE:

(LX )t = Xt .

See the book of Oksendal for a proof based on Picard approximations
and the Gronwall inequality.
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Existence and uniqueness Theorem for SDEs

Examples

The Geometric Brownian motion

St = S0 exp

[(
µ− σ2

2

)
t + σBt

]
We know that it is the solution of the SDE

dSt = µStdt + σStdBt ,

S0 = S0.

This SDE models the time evolution of the price of a risky financial
asset in the standard Black-Scholes model.
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Existence and uniqueness Theorem for SDEs

Example

Consider the Black-Scholes SDE with coefficients µ (t) and σ (t) > 0
depending on time:

dSt = St (µ (t) dt + σ (t) dBt) ,

S0 = S0.

How is the solution of this SDE?
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Existence and uniqueness Theorem for SDEs

Example

Let St = exp (Zt) and Zt = ln (St). By Itô formula with
f (x) = ln (x), we have:

dZt =
1

St
(St (µ (t) dt + σ (t) dBt))−

1

2S2
t

(
S2
t σ2 (t) dt

)
=

(
µ (t)− 1

2
σ2 (t)

)
dt + σ (t) dBt .

Hence,

Zt = Z0 +
∫ t

0

(
µ (s)− 1

2
σ2 (s)

)
ds +

∫ t

0
σ (s) dBs .

Therefore,

St = S0 exp

(∫ t

0

(
µ (s)− 1

2
σ2 (s)

)
ds +

∫ t

0
σ (s) dBs

)
.
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Ornstein-Uhlenbeck process with mean reversion

Orsntein-Uhlenbeck process with mean reversion

dXt = a (m− Xt) dt + σdBt ,

X0 = x .

a, σ > 0 and m ∈ R.

Solution of the associated homogeneous ODE dxt = −axtdt is
xt = xe−at .

Consider that the process is such that Xt = Yte
−at or Yt = Xte

at .

By the Itô formula applied to f (t, x) = xeat , we have

Yt = x +m
(
eat − 1

)
+ σ

∫ t

0
easdBs .

(ISEG) Stochastic Calculus - Part 10 10 / 1



Ornstein-Uhlenbeck process with mean reversion

Orsntein-Uhlenbeck process with mean reversion

Hence,

Xt = m+ (x −m) e−at + σe−at
∫ t

0
easdBs .

This is a Gaussian process, since it is a stochastic integral of the type∫ t
0 f (s) dBs , where f is a deterministic function.

Mean:
E [Xt ] = m+ (x −m) e−at
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Ornstein-Uhlenbeck process with mean reversion

Ornstein-Uhlenbeck process with mean reversion:

Covariance: by Itô isometry

Cov [Xt ,Xs ] = σ2e−a(t+s)E

[(∫ t

0
eardBr

)(∫ s

0
eardBr

)]
= σ2e−a(t+s)

∫ t∧s

0
e2ardr

=
σ2

2a

(
e−a|t−s | − e−a(t+s)

)
.

Note that

Xt ∼ N

[
m+ (x −m) e−at ,

σ2

2a

(
1− e−2at

)]
.
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Ornstein-Uhlenbeck process with mean reversion

Ornstein-Uhlenbeck with mean reversion:

When t → ∞, the distribution of Xt converges to

ν := N

[
m,

σ2

2a

]
.

which is the invariant or stationary distribution.

Note that if X0 has distribution ν then Xt has the same distribution ν
for all t.

(ISEG) Stochastic Calculus - Part 10 13 / 1

Financial applications of the O-U process with mean reversion

Financial applications of the Ornstein-Uhlenbeck process
with mean reversion

Vasicek model for the interest rate

drt = a (b− rt) dt + σdBt ,

with a, b, σ parameters.

Solution:

rt = b+ (r0 − b) e−at + σe−at
∫ t

0
easdBs .
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Financial applications of the O-U process with mean reversion

Financial applications of the Ornstein-Uhlenbeck process
with mean reversion:

Black-Scholes model with stochastic volatlity: consider that the
volatility σ (t) = f (Yt) is a function of a Ornstein-Uhlenbeck process
with mean reversion.

dYt = a (m− Yt) dt + βdWt ,

with a,m, β parameters and where {Wt , 0 ≤ t ≤ T} is a Brownian
motion.

The SDE that models the time evolution of the price of the risky
asset is

dSt = µStdt + f (Yt) StdBt

where {Bt , 0 ≤ t ≤ T} is a Brownian motion.and the Brownian
motions Wt and Bt may be correlated, i.e.,

E [BtWs ] = ρ (s ∧ t) .
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Financial applications of the O-U process with mean reversion

Example

Consider the SDE

Xt = x +
∫ t

0
f (s,Xs) ds +

∫ t

0
c (s)XsdBs ,

where f and c are continuous deterministic functions and f satisfies
the Lipschitz and linear growth conditions in x .

By the existence and uniqueness theorem for SDE’s, exists one unique
solution for this SDE.

How can we obtain the solution?
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Financial applications of the O-U process with mean reversion

Example

Consider the “integrating factor”

Ft = exp

(∫ t

0
c (s) dBs −

1

2

∫ t

0
c (s)2 ds

)
.

Note that Ft is a solution of the SDE if f = 0 and x = 1.

Suppose that Xt = FtYt or that Yt = (Ft)
−1 Xt . Then, by Itô

formula,
dYt = (Ft)

−1 f (t,FtYt) dt

and Y0 = x .

This equation for Y is a ODE with random coefficients (is a
deterministic ODE parametrized by ω ∈ Ω).
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Financial applications of the O-U process with mean reversion

Example

For example, if f (t, x) = f (t)x , then we have the ODE

dYt

dt
= f (t)Yt

and therefore

Yt = x exp

(∫ t

0
f (s) ds

)
.

Hence

Xt = x exp

(∫ t

0
f (s) ds +

∫ t

0
c (s) dBs −

1

2

∫ t

0
c (s)2 ds

)
.
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Linear SDE’s

Linear SDE’s

In general, a linear SDE has the form:

dXt = (a (t) + b (t)Xt) dt + (c (t) + d (t)Xt) dBt ,

X0 = x ,

where a, b, c , d are deterministic continuous functions.

How to obtain the solution of the SDE?
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Linear SDE’s

Linear SDE’s

Assume that
Xt = UtVt , (2)

where {
dUt = b(t)Utdt + d(t)UtdBt ,
dVt = α (t) dt + β (t) dBt .

and U0 = 1, V0 = x .

From a previous example, we know that

Ut = exp

(∫ t

0
b (s) ds +

∫ t

0
d (s) dBs −

1

2

∫ t

0
d (s)2 ds

)
(3)
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Linear SDE’s

Linear SDE’s

On the other hand, calculating the differential of (2), by Ito’s formula
with f (u, v) = uv , we have

dXt = VtdUt + UtdVt +
1

2
(dUt) (dVt) +

1

2
(dVt) (dUt)

= (b(t)Xt + α (t)Ut + β (t) d(t)Ut) dt + (d(t)Xt + β (t)Ut) dBt .

Comparing with the initial SDE for X , we have that

a (t) = α (t)Ut + β (t) d(t)Ut ,

c(t) = β (t)Ut .
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Linear SDE’s

Linear SDE’s

Hence

β (t) = c(t)U−1t ,

α (t) = [a (t)− c (t) d (t)]U−1t .

Therefore,

Xt = Ut

(
x +

∫ t

0
[a (s)− c (s) d (s)]U−1s ds +

∫ t

0
c (s)U−1s dBs

)
,

where Ut is given by (3).
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Linear SDE’s

SDE’s - Theorem of existence and uniqueness for the
one-dimensional case

In the one-dimensional case (n = 1), the Lipschitz condition for σ in
the existence and uniqueness theorem can be weakened if
σ (t, x) = σ (x) , b (t, x) = b (x) (coefficients do not depend on
time).

Assume that b satisfies the Lipschitz condition and the coefficient σ
satisfies the condition

|σ (x)− σ (y)| ≤ D |x − y |α , x , y ∈ R,

with α ≥ 1
2 . Then, exists one unique solution for the SDE.

As an example, the SDE for the Cox-Ingersoll-Ross (CIR) model for
interest rates

drt = a (b− rt) dt + σ
√
rtdBt

r0 = x ,

has one and only one solution.
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Linear SDE’s

Exercise

The Cox-Ingersoll-Ross (CIR) model for the interest rate R(t) is given
by

dR(t) = (α− βR (t)) dt + σ
√

R (t) dW (t) ,

where α, β and σ are positive constants. The CIR equation does not
have a solution in closed form. However, one can find the mean and
the variance of R (t) .

a) Calculate the mean value of R(t). (Hint: Let X (t) = eβtR(t) and
apply the It formula).
b) Calculate the variance of R(t). (Hint: Calculate d

(
X 2(t)

)
using the

Itô formula in the differential form and integrate).
c) Calculate lim

t→+∞
Var (R(t)) .
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