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Existence and uniqueness Theorem for SDEs

Existence and Uniqueness Theorem for SDE's
o Let T>0,b(--):[0, T] xR" - R" and (-, -) :
[0, T] x R"” — IR™™™ be measurable functions such that:
1) E [\2\2] < o0 and Z independent of B.

2) Linear growth property
1b(t,x)|+|o(t,x)| < C(1+|x]), xeR", t€|0,T]
3) Lipschitz property
b(t,x)—b(t,y)|+|o(t,x)—0c(t,y)| <D|x—y|, x,y e R", t €0, T]
Then the SDE
Xt:Z+/c)tb(s,Xs)ds+/()tU(s,Xs)st (1)

has a unique solution. Exists a unique stoch. proc.
X ={X:,0 <t < T} continuous, adapted, which satisfies (1) and

T 2
EU IX,| ds] < oo,
0
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Existence and uniqueness Theorem for SDEs

Proof of the existence and uniqueness theorem

o Consider the space L?,T of processes adapted to the filtration
F# :=0(Z)UF; such that E UOT | X;|? ds} < ©0.

o In this space, consider the norm:

Xl = ([ e x| os)

where A > 2D? (T +1) .

o Define the operator L : Lg,T — LjT by:

=

(LX), = Z—i—/otb(s,Xs)ds—i—/Ota(s,Xs) dB,
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Existence and uniqueness Theorem for SDEs

Proof of the theorem

o By the linear growth of b and o, the operator L is well defined.
o By the Cauchy-Schwarz inequality and by It6 isometry, we have:

(/ot (b(s,Xs) — b (s, Ys)) ds)2]

E|I(Lx), = (£Y), ] <26
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Existence and uniqueness Theorem for SDEs

Proof of the theorem

o By the Lipschitz property, we have:
t

E(I(£X), = (£Y), | <2D*(T+1)E [/O (Xs — Y5)2ds] .

o Define K = 2D? (T + 1). Multiplying the previous inequality by e=**
and integrating in [0, T], we have

[ e 1), ~ (£v), 7] d

<K/ ME U (X, —Ys)zds] dt.

Interchanging the order of integration, we have

_ K/T [/Te—“dt] E 06— v0)?] ds

S/\/ e HE[(X = Y0)? ] ds
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Existence and uniqueness Theorem for SDEs

Proof of the theorem

o Therefore

I(£X) = (£Y)]| < \/§HX ol

o Choosing A > K, we have \/% < 1, and the operator L is a

contraction in the space L?,T' Hence, by the fixed point theorem,
exists a unique fixed point to £ and that fixed point is exactly the
solution of the SDE:

(LX), = Xt.

o See the book of Oksendal for a proof based on Picard approximations
and the Gronwall inequality.
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Existence and uniqueness Theorem for SDEs

Examples

o The Geometric Brownian motion

0-2
St = Soexp [(‘M—7) t+UBt]

We know that it is the solution of the SDE

dSt = ‘ustdt + (TStdBt,
So = So.

This SDE models the time evolution of the price of a risky financial
asset in the standard Black-Scholes model.
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Existence and uniqueness Theorem for SDEs

Example

o Consider the Black-Scholes SDE with coefficients p (t) and o (t) > 0
depending on time:

So = So.

o How is the solution of this SDE?
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Existence and uniqueness Theorem for SDEs

Example

o Let S; = exp(Z:) and Z; = In(S;). By Itd formula with
f(x) = In(x), we have:

iz = L (S (u (D) dt o (D) dBt))—§(52 o (t) dt)

— (M (t) — %02 (t)) dt + o (t) dB.

Hence,

Zt:ZO—l-/Ot(,u( ——0’ )ds+/

o Therefore,

stzsoexp</ot(ﬂ()——‘7 >d5+/ )
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Ornstein-Uhlenbeck process with mean reversion

Orsntein-Uhlenbeck process with mean reversion

dXt = a(m—Xt) dt+0'dBt,
XOZX.
a,c >0and me R.

o Solution of the associated homogeneous ODE dx; = —ax;dt is
X = xe .

o Consider that the process is such that X; = Yte tor Yy = Xee?t,

o By the It6 formula applied to f (t, x) = xe?", we have

t
Y;: :x—I—m(eat— 1) —I—O’/ e dB;.
0
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Ornstein-Uhlenbeck process with mean reversion

Orsntein-Uhlenbeck process with mean reversion

o Hence,
t

Xe=m+ (x—m)e ¥+ (Te_at/ e®*dBs.
0

o This is a Gaussian process, since it is a stochastic integral of the type
fot f (s) dBs, where f is a deterministic function.

o Mean:
EXi]=m+ (x—m)e ™
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Ornstein-Uhlenbeck process with mean reversion

Ornstein-Uhlenbeck process with mean reversion:

o Covariance: by It0 isometry
t S
Cov [Xth] _ 0.2e—a(t—i—s)E [(/ eardBr) (/ eardBr)]
0 0
tAs
_ 0,2e—a(t-|—s)/ e22" dr
0
0-2
_ 7 (e—a|t—s| . e—a(t+s)> _

2a
Note that
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Ornstein-Uhlenbeck process with mean reversion

Ornstein-Uhlenbeck with mean reversion:

o When t — oo, the distribution of X; converges to

which is the invariant or stationary distribution.

o Note that if Xy has distribution v then X; has the same distribution v
for all t.
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Financial applications of the O-U process with mean reversion

Financial applications of the Ornstein-Uhlenbeck process
with mean reversion

o Vasicek model for the interest rate
drt = a(b— rt) dt+UdBt,

with a, b, o parameters.

o Solution: .

re=b+ (rp—b)e "+ Ue_at/ e dB;.
0

(ISEG) Stochastic Calculus - Part 10 14 /1



Financial applications of the O-U process with mean reversion

Financial applications of the Ornstein-Uhlenbeck process
with mean reversion:

o Black-Scholes model with stochastic volatlity: consider that the
volatility o (t) = f (Y}) is a function of a Ornstein-Uhlenbeck process
with mean reversion.

dYt = a<m — Yt> dt+l3th,

with a, m, B parameters and where {W;,0 <t < T} is a Brownian
motion.

o The SDE that models the time evolution of the price of the risky
asset is

dSt = ‘ustdt + f (Yt> StdBt

where {B;,0 < t < T} is a Brownian motion.and the Brownian
motions W; and B; may be correlated, i.e.,

E[BW,] =p(sAt).
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Financial applications of the O-U process with mean reversion

Example

o Consider the SDE
t t
Xt:x+/ f(s,Xs)ds+/ ¢ (s) X;dBs,
0 0

where f and c¢ are continuous deterministic functions and f satisfies
the Lipschitz and linear growth conditions in x.

o By the existence and uniqueness theorem for SDE'’s, exists one unique
solution for this SDE.

o How can we obtain the solution?
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Financial applications of the O-U process with mean reversion

Example

o Consider the “integrating factor”

t 1 t 5
F: = exp (/ c(s)dBs—= [ c(s) ds).
0 2 Jo

Note that F; is a solution of the SDE if f =0 and x = 1.

o Suppose that X; = F;Y; or that Y: = (Ft)_1 X:. Then, by It6
formula,

dY: = (F) 1 F (t, FtYy) dt

and Yy = x.
o This equation for Y is a ODE with random coefficients (is a
deterministic ODE parametrized by w € Q)).
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Financial applications of the O-U process with mean reversion

Example

o For example, if f(t, x) = f(t)x, then we have the ODE

@v,
dt

Y, = xexp (/Otf(s)ds).

1

X = xexp (/c)tf(s)ds—|—/()tc(s)d85—E/Otc(s)2ds).

= f(t)Y:

and therefore

Hence
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Linear SDE's

Linear SDE'’s

o In general, a linear SDE has the form:

dX: = (a(t) +b(t) Xe) dt + (c (t) + d (t) X¢) dB,
Xo = X,

where a, b, ¢, d are deterministic continuous functions.

o How to obtain the solution of the SDE?
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Linear SDE's

Linear SDE'’s

o Assume that
Xt — Ut Vt, (2)

where
dU; = b(t)Uedt + d(t)UrdBs,

and Uo = ]., Vo = X.

o From a previous example, we know that

U = exp (/Otb(s)ds—l—/otd(s)st—%/Otd(s)zds) (3)
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Linear SDE's

Linear SDE'’s

o On the other hand, calculating the differential of (2), by Ito’s formula
with f (u, v) = uv, we have

dX, = VidU + UpdVi + % (dUy) (dVe) + % (dVy) (dUs)
— (b(t)Xe+ 8 (£) Us + B (£) d(£) Up) e+ (d(£)Xe + B (£) Up) B

o Comparing with the initial SDE for X, we have that
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Linear SDE's
. !
Linear SDE's
o Hence

o Therefore,

Xe= U (et [Tla(o) ~ c(s)a (9] U Yot [ e(s) Ut )

where U is given by (3).
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Linear SDE's

SDE’s - Theorem of existence and uniqueness for the
one-dimensional case

o In the one-dimensional case (n = 1), the Lipschitz condition for ¢ in
the existence and uniqueness theorem can be weakened if
o (t,x) =0 (x),b(t,x) = b(x) (coefficients do not depend on
time).

o Assume that b satisfies the Lipschitz condition and the coefficient o
satisfies the condition

o(x) = (y)| <DIx—y|", x,y €R,
with o > % Then, exists one unique solution for the SDE.
o As an example, the SDE for the Cox-Ingersoll-Ross (CIR) model for
Interest rates
drt = a (b — rt) dt + U\/?tdBt
n — X,
has one and only one solution.
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Linear SDE's

Exercise

o The Cox-Ingersoll-Ross (CIR) model for the interest rate R(t) is given
by

dR(t) = (« — BR(t)) dt + o/ R (t) dW (1),

where «, B and o are positive constants. The CIR equation does not
have a solution in closed form. However, one can find the mean and
the variance of R (t).

a) Calculate the mean value of R(t). (Hint: Let X(t) = ePtR(t) and
apply the It formula).

b) Calculate the variance of R(t). (Hint: Calculate d (X?(t)) using the
1t6 formula in the differential form and integrate).

c) Calculate tIim Var (R(t)) .

——+o0
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