

Object Oriented Programming

Prof. Carlos J. Costa, PhD

Traditional Perspective

- The traditional perspective in software development had adopted is algorithm perspective.
- In this view, the main software building block are procedures or functions

Object oriented Approach

The main structural components of all systems are:

- Objects
- Class Objects

Main Concepts

- Classes,
- Objects, and
- Instances

Object

- Objects represent an entity and the basic building block.
- Object is something that takes up space in the real or conceptual world with which sombody may do things (Booch et al. 1999)
- The objects have :
 - Name (or ID)
 - state
 - Operations (or behavior)

Object

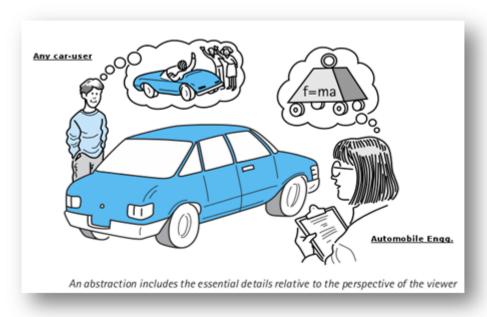

- Name (ID) The entire object must have a name that will differentiate from other objects in a context (eg my calculator)
- State An object has state, which involves the object's properties together with the values of these properties (eg connected calculator)
- Operations (behavior) can do something with the object or the object can do something with another object (eg calculator does sums)

Class

- A class is the description of a set of objects that share the same attributes, operations, relationships and semantics. (Eg calculators).
- Class is the blue print of an object.

Instance

- An object is an instance of a class.
- It is a concrete manifestation of an abstraction.
 (Eg " my calculator" is an instance of the class "calculating machines ").



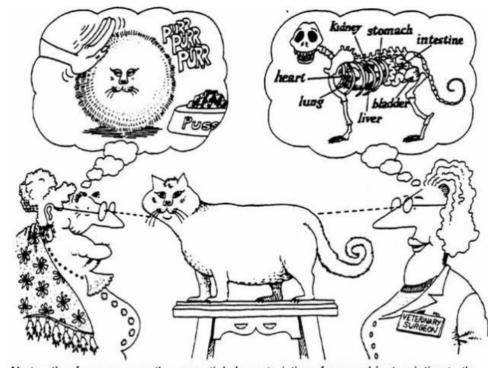
Main caracteristics of the approach

- The object oriented approach has as main characteristics:
 - encapsulation
 - abstraction
 - inheritance
 - polymorphism

Abstraction

 Abstraction is a principle which consists of ignoring the aspects of a subject that is not relevant for the present purpose, in order to concentrate on in those aspects that are really relevant.

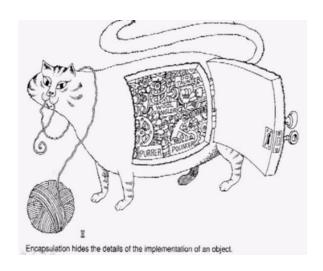
Abstraction


 Abstraction is the concise representation of a more complex object, focusing on the essential characteristics

of the object.

Good abstraction:

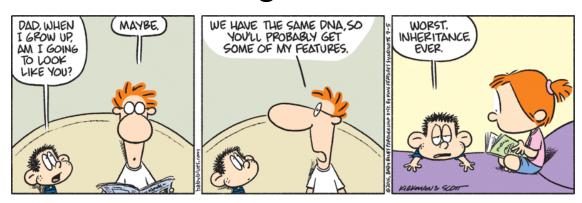
Appropriate (If there is a real need can be satisfied)


appropriate level

Abstraction focuses upon the essential characteristics of some object, relative to the perspective of the viewer.

Encapsulation

 Encapsulation is the mechanism of hiding the implementation of the object, so that other system components do not have access to what is happening inside the object.



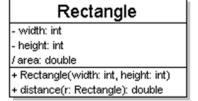
Encapsulation

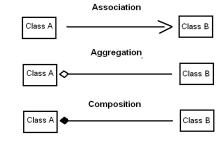
- This concept is associated with modularity, consisting in decomposing a system in a cohesive set of connected modules.
- Encapsulation is the mechanism of binding the data together and hiding them from outside world.
- Objects interact by message.

Inheritance

- Inheritance is a mechanism that allows an object to incorporate all or part of the definitions of another object as part of itself (eg "doctor" and "optometrist").
- Inheritance is the mechanism of making new classes from existing one.

Polymorphism


 The word polymorphism means having many forms. In programming, polymorphism means same function name (but different signatures) being uses for different types.


Class Diagrams

- Diagrams that allow analysist
 - to specify the static structure of a system
 - according to the object-oriented approach.
- Used to describe the class model

Class Diagrams

- Elements of a class diagram :
 - Classes
 - Relations between classes
 - Associations
 - Compositions
 - Aggregations
 - Generalizations

Classe

Campaign

code

description

annual Cost

expected cost

pay()

do Budget()

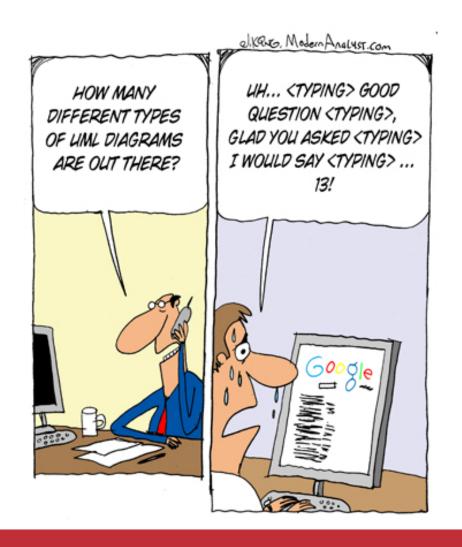
ID Class (Class Name)

- Refers to specific objects, but the must abstract
- Nouns associated with the textual description of a problem
- Choose carefully the names
- using singular

Attributes

- Values that characterize the objects of a class
- •Types : Real, Integer , Text, Boolean , Enumerated , ...

Operations


Behaviors of the class (service, method)

Relationship

- A relationship UML establishes the connection between elements
- A relationship is graphically represented by a given type of line.
- In object-oriented modeling the three most important types of relationships are:
 - Associations
 - Generalizations
 - Dependencies

Dependency

 A relationship of dependence, or simply dependence indicates that the change in the specification of an element can affect another element that uses it, but not necessarily the opposite.

Bibliography

- Bennet, S. McRobb, S & Farmer, R., Object Oriented Systems
 Analysis and Design using UML, MacGarw-Hill, 1999.
- Booch, G., Rumbaugh, J. & Jacobson, I, The Unified Modeling Language User Guide. Addison Wesley, 1999 (tradução portuguesa brasileira ____; UML Guia do Usuário; Campus, 2000).
- Costa, C. Desenvolvimento para Web, ITML Press, 2007
- Nunes, M & O'Neill, H. Fundamental de UML, FCA, 2001
- Silva, A & Videira, C., UML, Metodologias e Ferramentas CASE, Edições Centro Atlântico, 2001
- Terry, Q. Visual Modeling With Rational Rose 2000 and UML, Addison-Wesley. 2000.
- Oxford Dictionary of Computing, Oxford University Press.