Chapter 4 (chapter 5 from the textbook)

Wooldridge: Introductory Econometrics: A Modern Approach, 5e

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

- So far we focused on properties of OLS that hold for any sample
- Properties of OLS that hold for any sample/sample size
 - Expected values/unbiasedness under MLR.1 MLR.4
 - Variance formulas under MLR.1 MLR.5
 - Gauss-Markov Theorem under MLR.1 MLR.5
 - Exact sampling distributions/tests under MLR.1 MLR.6
- Properties of OLS that hold in large samples
 - Consistency under MLR.1 MLR.4
 - Asymptotic normality/tests under MLR.1 MLR.5

Without assuming normality of the error term!

1

Consistency

An estimator θ_n is consistent for a population parameter θ if

 $P(|\theta_n - \theta| < \epsilon) \rightarrow 1$ for arbitrary $\epsilon > 0$ and $n \rightarrow \infty$.

Alternative notation: $plim \ \theta_n = \theta \longleftarrow$

The estimate converges in probability to the true population value

Interpretation:

Consistency means that the probability that the estimate is arbitrarily close to the true population value can be made arbitrarily high by increasing the sample size

Consistency is a minimum requirement for sensible estimators

Theorem 5.1 (Consistency of OLS)

 $MLR.1-MLR.4 \Rightarrow plim \hat{\beta}_j = \beta_j, \quad j = 0, 1, \dots, k$

 For OLS to be consistent it is enough that the explanatory variables are not correlated with the error term which is less demanding than MLR.4

Asymptotic normality and large sample inference

- In practice, the normality assumption MLR.6 is often questionable
- If MLR.6 does not hold, the results of t- or F-tests may be wrong
- Fortunately, F- and t-tests still work if the sample size is large enough
- Also, OLS estimates are normal in large samples even without MLR.6

Theorem 5.2 (Asymptotic normality of OLS)

Under assumptions MLR.1 – MLR.5:

$$\frac{(\widehat{\beta}_j - \beta_j)}{se(\widehat{\beta}_j)} \stackrel{a}{\sim} N(0, 1) \stackrel{\boldsymbol{4}}{\sim}$$

In large samples, the standardized estimates are normally distributed

also plim $\hat{\sigma}^2 = \sigma^2$

4

Asymptotic normality of OLS with heteroscedasticity

Under assumptions MLR.1 – MLR.4:

$$\frac{\hat{\beta}_j - \beta_j}{se^*(\hat{\beta}_j)} \stackrel{\alpha}{\sim} N(0, 1)$$

- Practical consequences
 - In large samples, the t-distribution is close to the N(0,1) distribution
 - As a consequence, t-tests are valid in large samples without MLR.6
 - The same is true for confidence intervals and F-tests

6