Heteroscedasticity

Chapter 7 (Ch. 8 of Textbook)

Wooldridge: Introductory Econometrics: A Modern Approach, 5e

Motivation

Assumption MLR.5

 $Var(u_i | x_{i1}, x_{i2}, ..., x_{ik}) = \sigma^2$

- With cross-section data this assumption is not verified often
- The conditional variance of the error term depends on the explanatory variables
 heteroscedasticity

 $Var(u_i \mid x_{i1}, x_{i2}, ..., x_{ik}) = h(x_{i1}, x_{i2}, ..., x_{ik}) = \sigma_i^2 \neq \sigma^2$

• It is a issue of the **conditional variance**

1

Consequences of heteroscedasticity for OLS

- OLS still unbiased and consistent under heteroscedastictiy!
- Also, interpretation of R-squared is not changed

<u>Unconditional error variance</u> is unaffected by heteroscedasticity (which refers to the <u>conditional</u> error variance)

- Heteroscedasticity **invalidates variance** formulas for OLS estimators
- The usual F-tests and t-tests are not valid under heteroscedasticity
- Under heteroscedasticity, OLS is no longer the best linear unbiased estimator (BLUE); there may be more efficient linear estimators

Heteroscedasticity-robust inference after OLS

- Formulas for OLS standard errors and related statistics have been developed that are robust to heteroscedasticity of unknown form
- All formulas are only valid in large samples
- Formula for heteroscedasticity-robust OLS standard error

$$\widehat{Var}(\widehat{\beta}_j) = \frac{\sum_{i=1}^n \widehat{r}_{ij}^2 \widehat{u}_i^2}{SSR_j^2}$$

Also called <u>White/Eicker standard errors</u>. They involve the squared residuals from the regression and from a regression of x_j on all other explanatory variables.

- Using these formulas, the usual t-test is valid asymptotically
- The usual F-statistic does not work under heteroscedasticity, but heteroscedasticity robust versions are available in most software

Example: Hourly wage equation

Example: Hourly wage equation in EVIEWS

Dependent Variable: LOG(WAGE) Method: Least Squares Included observations: 526 Dependent Variable: LOG(WAGE) Method: Least Squares Included observations: 526

White heteroskedasticity-consistent standard errors & covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
C FEMALE EDUC EXPER EXPER^2	0.390483 -0.337187 0.084136 0.038910 -0.000686	0.102210 0.036321 0.006957 0.004824 0.000107	3.820413 -9.283424 12.09407 8.066683 -6.388842	0.0001 0.0000 0.0000 0.0000 0.0000	C FEMALE EDUC EXPER EXPER^2	0.390483 -0.337187 0.084136 0.038910 -0.000686	0.108598 0.036184 0.007690 0.004675 0.000100	3.595658 -9.318715 10.94104 8.322568 -6.828754	0.0004 0.0000 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.399590 0.394981 0.413446 89.05862 -279.2720 86.68521 0.000000	Mean deper S.D. depend Akaike info Schwarz cri Hannan-Qu Durbin-Wat	ndent var dent var criterion terion inn criter. son stat	1.623268 0.531538 1.080882 1.121427 1.096757 1.775544	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.399590 0.394981 0.413446 89.05862 -279.2720 86.68521 0.000000 0.000000	Mean depender S.D. depender Akaike info crit Schwarz criter Hannan-Quinr Durbin-Watsor Wald F-statisti	ent var nt var terion ion n criter. n stat c	1.623268 0.531538 1.080882 1.121427 1.096757 1.775544 81.96798

Testing for heteroscedasticity

 It may still be interesting whether there is heteroscedasticity because then OLS may not be the most efficient linear estimator anymore

Breusch-Pagan test for heteroscedasticity

$$H_0: Var(u|\mathbf{x}_1, x_2, \dots, x_k) = Var(u|\mathbf{x}) = \sigma^2$$

$$Var(u|\mathbf{x}) = E(u^2|\mathbf{x}) - [E(u|\mathbf{x})]^2 = E(u^2|\mathbf{x})$$

$$\Rightarrow E(u^2|x_1, \dots, x_k) = E(u^2) = \sigma^2$$
The mean of u² must not vary with x₁, x₂, ..., x_k

6

Breusch-Pagan test for heteroscedasticity (cont.)

 $\hat{u}^2 = \delta_0 + \delta_1 x_1 + \dots + \delta_k x_k + error$

 $F = \frac{(R_{\hat{u}})/k}{(1 - R_{\hat{u}})/(n - k - 1)} \sim F_{k,n-k-1}$

 $H_0: \delta_1 = \delta_2 = \dots = \delta_k = 0 \checkmark$

Regress squared residuals on all explanatory variables and test whether this regression has explanatory power.

> A large test statistic (= a high Rsquared) is evidence against the null hypothesis.

$$LM = n R_{\hat{u}^2} \sim \chi_k^2 \checkmark$$

Alternative test statistic (= Lagrange multiplier statistic, LM). Again, high values of the test statistic (= high R-squared) lead to rejection of the null hypothesis that the expected value of u² is unrelated to the explanatory variables.

Example:

 \hat{u}^2 With \hat{u} the residual for the regression of log(wage)

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Included observations: 526

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.037480	0.068360	0.548268	0.5837
FEMALE	-0.013118	0.024292	-0.540000	0.5894
EDUC	0.005509	0.004653	1.183964	0.2370
EXPER	0.008761	0.003226	2.715742	0.0068
EXPER^2	-0.000169	7.18E-05	-2.358137	0.0187
R-squared	0.018981	Mean dep	0.169313	
Adjusted R-squared	0.011449	S.D. dependent var		0.278118
S.E. of regression	0.276521	Akaike info criterion		0.276402
Sum squared resid	39.83772	Schwarz criterion		0.316946
Log likelihood	- <u>67.693</u> 62	Hannan-Quinn criter.		0.292277
F-statistic	2.520076	Durbin-Watson stat		1.967219
Prob(F-statistic)	0.040375			

Test statistic

8

Example: Heteroscedasticity in housing price equations

White test for heteroscedasticity

Regress squared residuals on all explanatory variables, their squares, and interactions (here: example for k=3)

10

 $\hat{u}^2 = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + \delta_3 x_3 + \delta_4 x_1^2 + \delta_5 x_2^2 + \delta_6 x_3^2$

$$+\delta_7 x_1 x_2 + \delta_8 x_1 x_3 + \delta_9 x_2 x_3 + error$$

$$H_0: \delta_1 = \delta_2 = \dots = \delta_9 = 0 \leftarrow$$

 $LM = n \cdot R_{\hat{u}^2} \sim \chi_9^2 \checkmark$

The White test detects more general deviations from heteroscedasticity than the Breusch-Pagan test

Disadvantage of this form of the White test

 Including all squares and interactions leads to a large number of estimated parameters (e.g. k=6 leads to 27 parameters to be estimated) \dot{u}^2

With \hat{u} the residual for the regression of log(wage)

Test Equation: Dependent Variable RESID^2 Method: Least Squares Included observations: 526

Collinear test regressors dropped from specification

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.558137	0.268879	2.075795	0.0384
FEMALE	-0.125279	0.140393	-0.892343	0.3726
FEMALE*EDUC	0.012647	0.010043	1.259261	0.2085
FEMALE*EXPER	-0.003751	0.006530	-0.574430	0.5659
FEMALE*EXPER^2	4.52E-05	0.000146	0.310811	0.7561
EDUC^2	0.002544	0.001125	2.260940	0.0242
EDUC*EXPER	-2.69E-05	0.001256	-0.021411	0.9829
EDUC*EXPER^2	1.40E-05	2.73E-05	0.511937	0.6089
EDUC	-0.066880	0.033663	-1.986760	0.0475
EXPER^2	0.000813	0.001351	0.601774	0.5476
EXPER*EXPER^2	-2.99E-05	4.44E-05	-0.673824	0.5007
EXPER	-0.005241	0.021205	-0.247149	0.8049
EXPER^2^2	2.50E-07	4.70E-07	0.531774	0.5951
R-squared	0.037890	Mean depe	endent var	0.169313
Adjusted R-squared	0.015385	S.D. deper	ndent var	0.278118
S.E. of regression	0.275970	Akaike info	o criterion	0.287356
Sum squared resid	39.06984	Schwarz c	riterion	0.392772
Loa likelihood	-62 57470	Hannan-Q	uinn criter.	0.328631
F-statistic	1.683600	Durbin-Wa	tson stat	1.970279
Prob(F-statistic)	0.066942			
				Test statistic

11

Alternative form of the White test – Simplified White

This regression indirectly tests the dependence of the squared residuals on the explanatory variables, their squares, and interactions, because the predicted value of y and its square implicitly contain all of these terms.

$$H_0: \delta_1 = \delta_2 = 0, \ LM = n \cdot R_{\hat{u}^2} \sim \chi_2^2$$

 $\hat{u}^2 = \delta_0 + \delta_1 \hat{y} + \delta_2 \hat{y}^2 + error$

Example: Heteroscedasticity in (log) housing price equations

$$R_{\hat{u}^2}^2 = .0392, LM = 88(.0392) \approx 3.45, p-value_{LM} = .178$$

Example of Simplified White \hat{u}^2

With \hat{u} the residual for the regression of log(wage)

Test statistic

Dependent Variable: RESID^2 Method: Least Squares Included observations: 526

Variable	Coefficient	Std. Error	t-Statistic	Prob.
ŷ C	0.233483	0.209660	1.113627	0.2660
FIT	-0.187119	0.263787	-0.709356	0.4784
\hat{y}^2 FIT^2	0.087191	0.081226	1.073446	0.2836
R-squared	0.014904	Mean depe	0.169313	
Adjusted R-squared	0.011137	S.D. deper	0.278118	
S.E. of regression	0.276565	Akaike info	0.272944	
Sum squared resid	40.00326	Schwarz criterion		0.297271
Log likelihood	-68.78420	Hannan-Q	0.282469	
F-statistic	3.956441	Durbin-Wa	tson stat	1.943744
Prob(F-statistic)	0.019706	ノ		