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Chapter 9

Further Issues Using OLS with 
Time Series Data 

Wooldridge: Introductory Econometrics:        
A Modern Approach, 5e

(Ch. 11 of the textbook)
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The assumptions used so far seem to be too restrictive

Strict exogeneity, homoscedasticity, and no serial correlation are very 

demanding requirements, especially in the time series context

Statistical inference rests on the validity of the normality assumption

Much weaker assumptions are needed if the sample size is large

A key requirement  for large sample analysis of time series is that    

the time series in question are stationary and weakly dependent 

Stationary time series

Loosely speaking, a time series is stationary if its stochastic properties 

and its temporal dependence structure do not change over time
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Stationary stochastic processes

Covariance stationary processes

A stochastic process                                 is stationary, if for every 

collection of indices                                         the joint distribution of                                  

,                             is the same as that of                                             

for all integers            . 

A stochastic process                                 is covariance stationary, if its 

expected value, its variance, and its covariances are constant over time:

1) , 2) , and  3) .  
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Weakly dependent time series

Discussion of the weak dependence property

An implication of weak dependence is that the correlation between         

,   and          must converge to zero if    grows to infinity

For the LLN and the CLT to hold, the individual observations must not 

be too strongly related to each other; in particular their relation must 

become weaker (and this fast enough) the farther they are apart

Note that a series may be nonstationary but weakly dependent

A stochastic process                                 is weakly dependent , if          

is „almost independent“ of            if     grows to infinity (for all   ).
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Examples for weakly dependent time series

Moving average process of order one (MA(1))

Autoregressive process of order one (AR(1))

A trending series can be weakly dependent      trend stationary 

The process is weakly dependent because observations that are more than one
time period apart have nothing in common and are therefore uncorrelated.

The process is a short moving average of an i.i.d. series et

The process carries over to a certain extent the value of the
previous period (plus random shocks from an i.i.d. series et) 

If the stability condition holds, the process is weakly dependent because serial
correlation converges to zero as the distance between observations grows to infinity.
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Asymptotic properties of OLS

Assumption TS.1‘ (Linear in parameters)

Same as assumption TS.1 but now the dependent and independent 

variables are assumed to be stationary and weakly dependent

Assumption TS.2‘ (No perfect collinearity)

Same as assumption TS.2

Assumption TS.3‘ (Zero conditional mean)

Now the explanatory variables are assumed to be only contempo-

raneously exogenous rather than strictly exogenous, i.e.

The explanatory variables of the same period are
uninformative about the mean of the error term
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Theorem 11.1 (Consistency of OLS)

Why is it important to relax the strict exogeneity assumption?

Strict exogeneity is a serious restriction beause it rules out all kinds of 

dynamic relationships between explanatory variables and the error term

In particular, it rules out feedback from the dep. var. on future values of 

the explanat. variables (which is very common in economic contexts)

Strict exogeneity precludes the use of lagged dep. var. as regressors

Important note: For consistency it would even suffice to assume that the explanatory
variables are merely contemporaneously uncorrelated with the error term.
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Why do lagged dependent variables violate strict exogeneity?

OLS estimation in the presence of lagged dependent variables

Under contemporaneous exogeneity, OLS is consistent but biased

This is the simplest possible regression
model with a lagged dependent variable

Contemporanous exogeneity:

Strict exogeneity: Strict exogeneity would imply
that the error term is uncorre-
lated with all yt, t=1, … , n-1

This leads to a contradiction because:
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Assumption TS.4‘ (Homoscedasticity)

Assumption TS.5‘ (No serial correlation)

Theorem 11.2 (Asymptotic normality of OLS) 

Under assumptions TS.1‘ – TS.5‘, 

the OLS estimators are asymptotically normally distributed. 

the usual OLS standard errors,  t-statistics and F-statistics are 

asymptotically valid.

The errors are contemporaneously homoscedastic

Conditional on the explanatory variables in 
periods t and s, the errors are uncorrelated
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Example: Efficient Markets Hypothesis (EMH)

The EMH in a strict form states that information observable to the market prior to week t should
not help to predict the return during week t. A simplification assumes in addition that only past
returns are considered as relevant information to predict the return in week t.This implies that

A simple way to test the EMH is to specify an AR(1) model. Under the EMH assumption,TS.3‘ holds
so that an OLS regression can be used to test whether this week‘s returns depend on last week‘s.

There is no evidence against the
EMH. Including more lagged
returns yields similar results.
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Using trend-stationary series in regression analysis

Time series with deterministic time trends are nonstationary

If they are stationary around the trend and in addition weakly 

dependent, they are called trend-stationary processes

Trend-stationary processes also satisfy assumption TS.1‘

Using highly persistent time series in regression analysis

Unfortunately many economic time series violate weak dependence 

because they are highly persistent (= strongly dependent)

In this case OLS methods are generally invalid (unless the CLM hold)

In some cases transformations to weak dependence are possible
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Random walks

The value today is the accumulation of all past shocks plus an initial value. This is the reason why
the random walk is highly persistent: The effect of a shock will be contained in the series forever.

The random walk is called random walk because it wanders
from the previous position yt-1 by an i.i.d. random amount et

The random walk is not covariance stationary
because its variance and its covariance depend
on time. 

It is also not weakly dependent because the
correlation between observations vanishes very
slowly and this depends on how large t is.
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Examples for random walk realizations

The random walks
wander around with
no clear direction
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Three-month T-bill rate as a possible example for a random walk

A random walk is a special case
of a unit root process. 

Unit root processes are defined
as the random walk but et may
be an arbitrary weakly depen-
dent process. 

From an economic point of view
it is important to know whether
a time series is highly persistent. 
In highly persistent time series, 
shocks or policy changes have
lasting/permanent effects, in 
weakly dependent processes
their effects are transitory.

Analyzing Time Series:
Further Issues Using OLS

13



© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Random walks with drift

This leads to a linear time trend around which the series follows its random walk behaviour. As there
is no clear direction in which the random walk develops, it may also wander away from the trend. 

In addition to the usual random walk mechanism, there is
a deterministic increase/decrease (= drift) in each period

Otherwise, the random walk with drift has similar
properties as the random walk without drift.

Random walks with drift are not covariance statio-
nary and not weakly dependent.
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Sample path of a random walk with drift

Note that the series does not 
regularly return to the trend line.

Random walks with drift may be
good models for time series that
have an obvious trend but are not 
weakly dependent.
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Transformations on highly persistent time series

Order of integration

Weakly dependent time series are integrated of order zero (= I(0))

If a time series has to be differenced one time in order to obtain a 

weakly dependent series, it is called integrated of order one (= I(1))

Examples for I(1) processes

Differencing is often a way to achieve weak dependence

After differencing, the
resulting series are weakly
dependent (because et is
weakly dependent).
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Deciding whether a time series is I(1)

There are statistical tests for testing whether a time series is I(1)      

(= unit root tests); these will be covered in later chapters

Alternatively, look at the sample first order autocorrelation:

If the sample first order autocorrelation is close to one, this suggests 

that the time series may be highly persistent (= contains a unit root)

Alternatively, the series may have a deterministic trend

Both unit root and trend may be eliminated by differencing

Measures how strongly adjacent times series
observations are related to each other.

Analyzing Time Series:
Further Issues Using OLS

17



© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Example: Fertility equation

This equation could be estimated by OLS if the CLM assumptions hold. These may be questionable, 
so that one would have to resort to large sample analysis. For large sample analysis, the fertility
series and the series of the personal tax exemption have to be stationary and weakly dependent. 
This is questionable because the two series are highly persistent:

It is therefore better to estimate the equation in first differences. This makes sense because if the
equation holds in levels, it also has to hold in first differences:

Estimate of 

Analyzing Time Series:
Further Issues Using OLS

18



© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Example: Wages and productivity

It turns out that even after detrending, both series display sample autocorrelations
close to one so that estimating the equation in first differences seems more adequate:

The elasticity of hourly wage with respect
to output per hour (=productivity) seems
implausibly large. 

Include trend because both
series display clear trends.

This estimate of the elasticity of hourly
wage with respect to productivity makes
much more sense.
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Dynamically complete models

A model is said to be dynamically complete if enough lagged variab- les 

have been included as explanatory variables so that further lags   do not 

help to explain the dependent variable:

Dynamic completeness implies absence of serial correlation

If further lags actually belong in the regression, their omission will cause 

serial correlation (if the variables are serially correlated)

One can easily test for dynamic completeness

If lags cannot be excluded, this suggests there is serial correlation
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Sequential exogeneity

A set of explanatory variables is said to be sequentially exogenous if 

„enough“ lagged explanatory variables have been included:

Sequential exogeneity is weaker than strict exogeneity

Sequential exogeneity is equivalent to dynamic completeness if the 

explanatory variables contain a lagged dependent variable

Dynamic completeness implies sequential exogeneity 
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