Stochastic Calculus - part 16

ISEG

(ISEG)

Stochastic Calculus - part 16

1/14

Girsanov Theorem - What is it?

- The Girsanov theorem states, in it's simpler version, that the Brownian motion with drift: $\tilde{B}_t = B_t + \lambda t$, may be seen as a standard Brownian motion if we change the probability measure.
- In a broader way, the theorem states that if we change the drift coefficient of an It process then the law of the process does not radically change.

Changing the probability measure

• Assume that $L \ge 0$ is a random variable with mean 1 defined on the probab. space (Ω, \mathcal{F}, P) . Then

$$Q(A) = E\left[\mathbf{1}_{A}L\right]$$

defines a new probability measure It is clear that $Q(\Omega) = E[L] = 1$. • $Q(A) = E[\mathbf{1}_A L]$ is equivalent to

$$\int_{\Omega} \mathbf{1}_{\mathcal{A}} dQ = \int_{\Omega} \mathbf{1}_{\mathcal{A}} L dP.$$

• We say that L is the density of Q with respect to P and is written

$$\frac{dQ}{dP} = L$$

• L is also the Radon-Nikodym of Q with respect to P.

(ISEG)

Stochastic Calculus - part 16

3/14

Changing the probability measure

 The expected value of a r.v. X defined in the probability space (Ω, F, P) is calculated by the formula

$$E_Q[X] = E[XL].$$

• The probability measure Q is absolutely continuous with respect to P, which means that

$$P(A) = 0 \Longrightarrow Q(A) = 0.$$

• If the random variable L is strictly positive (L > 0), the measures P and Q are equivalent (that is, they are mutually absolutely continuous), which means that

$$P(A) = 0 \Longleftrightarrow Q(A) = 0.$$

Example - Simple Version of Girsanov Theorem

- Let X ~ N (m, σ²). Is there a probability measure Q with respect to which X ~ N (0, σ²)?
- Consider the r.v.

$$L = \exp\left(-\frac{m}{\sigma^2}X + \frac{m^2}{2\sigma^2}\right).$$

• It is easily verified that E[L] = 1. Consider the density of the normal distribution $N(m, \sigma^2)$ and it follows that

$$E[L] = \int_{-\infty}^{+\infty} \exp\left(-\frac{m}{\sigma^2}x + \frac{m^2}{2\sigma^2}\right) \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right) dx$$
$$= \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp\left(-\frac{x^2}{2\sigma^2}\right) dx = 1.$$

(ISEG)

Stochastic Calculus - part 16

5/14

Example - Simple version of the Girsanov theorem

Assume that Q has density L with respect to P. Then, in (Ω, F, Q),
 X has the characteristic function:

$$E_Q\left[e^{itX}\right] = E\left[e^{itX}L\right]$$
$$= \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp\left(itx - \frac{m}{\sigma^2}x + \frac{m^2}{2\sigma^2}\right) \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right) dx$$
$$= \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp\left(itx - \frac{x^2}{2\sigma^2}\right) dx = e^{-\frac{\sigma^2 t^2}{2}}.$$

Conclusion: $X \sim N(0, \sigma^2)$.

Girsanov Theorem - 1st version

- $\{B_t, t \in [0, T]\}$ is a Brownian motion.
- Fix a real number λ and consider the martingale

$$L_t = \exp\left(-\lambda B_t - \frac{\lambda^2}{2}t\right). \tag{1}$$

• Exercise: Prove that $\{L_t, t \in [0, T]\}$ is a positive martingale with expected value 1 and satisfies the SDE

$$L_t = 1 - \int_0^t \lambda L_s dB_s$$

(ISEG)

Stochastic Calculus - part 16

7/14

Girsanov Theorem - 1st version

• A r.v. $L_T = \exp\left(-\lambda B_T - \frac{\lambda^2}{2}T\right)$ is a density in $(\Omega, \mathcal{F}_T, P)$, and we can define a new probability measure

$$Q\left(A
ight)=E\left[\mathbf{1}_{A}L_{T}
ight]$$
 ,

for each $A \in \mathcal{F}_T$.

- As {L_t, t ∈ [0, T]} is a martingale, then L_t = exp (−λB_t − λ²/2 t) is a density in (Ω, F_t, P) and the probability measure Q has the density L_t.
- In fact, if $A \in \mathcal{F}_t$ then

$$Q(A) = E [\mathbf{1}_{A}L_{T}] = E [E [\mathbf{1}_{A}L_{T}|\mathcal{F}_{t}]]$$

= $E [\mathbf{1}_{A}E [L_{T}|\mathcal{F}_{t}]] = E [\mathbf{1}_{A}L_{t}],$

by the conditional expectation properties and the martingale property of $\{L_t, t \in [0, T]\}$.

(ISEG)

Girsanov Theorem - 1st version

Theorem

(Girsanov Theorem I): On the probability space $(\Omega, \mathcal{F}_T, Q)$, where Q is defined by $Q(A) = E[\mathbf{1}_A L_T]$, the stochastic process

$$\widetilde{B}_t = B_t + \lambda t$$

is a Brownian motion

(ISEG)

Stochastic Calculus - part 16

9/14

Technical Lemma

• We need the following lemma.

Lemma

Suppose X is a real r.v. and that \mathcal{G} is a σ -algebra such that:

$$E\left[e^{iuX}|\mathcal{G}
ight]=e^{-rac{u^2\sigma^2}{2}}.$$

Then the random variable X is independent from the σ -algebra \mathcal{G} and has normal distribution $N(0, \sigma^2)$.

The proof of the above lemma may be found in the lecture notes of Nualart, pgs. 63-64.

Proof of the Girsanov theorem

Proof.

It suffices to show that in $(\Omega, \mathcal{F}_T, Q)$, the increment $\widetilde{B}_t - \widetilde{B}_s$, with $s < t \leq T$, is independent from \mathcal{F}_s and has normal distribution N(0, t - s).

Taking into account the previous lemma, the result follows from the relation:

$$E_{Q}\left[\mathbf{1}_{A}e^{iu\left(\widetilde{B}_{t}-\widetilde{B}_{s}\right)}\right] = Q\left(A\right)e^{-\frac{u^{2}}{2}(t-s)},$$
(2)

for all s < t, $A \in \mathcal{F}_s$ and $u \in \mathbb{R}$. In fact, if (2) is verified, then, from the definition of conditional expectation and the previous lemma, $\left(\widetilde{B}_t - \widetilde{B}_s\right)$ is independent from \mathcal{F}_s and has normal distribution N(0, t - s). Now, we only need to prove the equality (2).

(ISEG)

Stochastic Calculus - part 16

11 / 14

Proof of the Girsanov Theorem

Proof.

(contin.) Proof of the equality (2):

$$\begin{split} E_Q \left[\mathbf{1}_A e^{iu \left(\widetilde{B}_t - \widetilde{B}_s \right)} \right] &= E \left[\mathbf{1}_A e^{iu \left(\widetilde{B}_t - \widetilde{B}_s \right)} L_t \right] \\ &= E \left[\mathbf{1}_A e^{iu (B_t - B_s) + iu\lambda(t-s) - \lambda(B_t - B_s) - \frac{\lambda^2}{2}(t-s)} L_s \right] \\ &= E \left[\mathbf{1}_A L_s \right] E \left[e^{(iu-\lambda)(B_t - B_s)} \right] e^{iu\lambda(t-s) - \frac{\lambda^2}{2}(t-s)} \\ &= Q(A) e^{\frac{(iu-\lambda)^2}{2}(t-s) + iu\lambda(t-s) - \frac{\lambda^2}{2}(t-s)} \\ &= Q(A) e^{-\frac{u^2}{2}(t-s)}, \end{split}$$

Where the definition of E_Q and L_t , independence of $(B_t - B_s)$ from L_s and A, and the definition of Q were used.

Girsanov Theorem - second version

Theorem

(Girsanov Theorem II): Let $\{\theta_t, t \in [0, T]\}$ be an adapted stochastic process that satisfies the Novikov condition:

$$E\left[\exp\left(\frac{1}{2}\int_{0}^{T}\theta_{t}^{2}dt\right)\right]<\infty.$$
(3)

Then, the stochastic process

$$\widetilde{B}_t = B_t + \int_0^t \theta_s ds$$

is a Brownian motion with respect to the measure Q defined by $Q(A) = E[\mathbf{1}_A L_T]$, where

$$L_t = \exp\left(-\int_0^t \theta_s dB_s - \frac{1}{2}\int_0^t \theta_s^2 ds\right)$$

(ISEG)

Stochastic Calculus - part 16

13/14

• Note that L_t satisfies the linear SDE

$$L_t = 1 - \int_0^t \theta_s L_s dB_s.$$

- It is necessary, for the process L_t to be a density, that E [L_t] = 1. However, condition (3) is sufficient to guarantee that this is in fact verified.
- The second version of the Girsanov theorem generalizes the first: note that, taking $\theta_t \equiv \lambda$, we obtain the previous version.