

Financial Econometrics 2019

Practice Exam — Just for practice: not an example nor a model!

NAME	:	ID:
	Answer the quest to prove you perThroughout this	stions in the space provided supplying enough information formed the necessary computations. test, both ϵ_t and a_t represent a white noise process.
1. Class	sify the following	sentences as true or false.
i.	The process Z_t , C \Box True	lefined by $Z_t = 0.5Z_{t-1} + a_t - a_{t-2}$, has an AR unit root. \Box False
ii.	An autoregressive □ True	e process is never stationary but can be non-invertible. □ False
iii.		may be able to describe adequately the dynamics of a given time parameters than an AR model.
iv.	The assumption sustained by emp □ True	that financial markets' returns are normally distributed is strongly pirical evidence. □ False
v.	series.	t should be used for deciding about the existence of a trend in a time
		□ False g process $X_t = 2 + 0.5X_{t-1} - 0.3X_{t-2} + 0.3\epsilon_{t-1} + \epsilon_t$ where $\epsilon_t \sim N(0, 1)$. tionary? Justify your answer.

- (b) Is the process invertible? Justify your answer.
- (c) Compute the unconditional expected value of the process.

- **3**. Without using the operators *B* nor ∇ , write in equation form the process Y_t that follows an $ARIMA(1, 1, 1)(1, 0, 0)_4$ in terms of the observations $Y_t, Y_{t-1} \dots$, the noise $a_t, a_{t-1} \dots$, and the corresponding parameters ϕ_i, ϕ_i, θ_i , as applicable.
- **4**. The next figure presents SACF/SPACF of a quarterly time series. Which time series model do you think could be appropriate for this time series? Justify your option.

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
- b		1	0.253	0.253	3.8506	0.050
		2	-0.375	-0.470	12.465	0.002
L 🔲 L	· •	3	-0.101	0.216	13.104	0.004
		4	0.617	0.581	37.283	0.000
	1 1	5	0.404	-0.008	47.847	0.000
	1 🔲 1	6	-0.299	-0.184	53.759	0.000
	1 1	7	-0.266	0.127	58.523	0.000
1 Barriel	1 🗐 1	8	0.374	0.094	68.115	0.000
	1 1 1	9	0.467	-0.017	83.421	0.000
101	1 1 1	10	-0.094	0.077	84.049	0.000
		11	-0.374	-0.109	94.277	0.000
i pi	1 🛛 1	12	0.076	-0.087	94.708	0.000
	1 🗐 1	13	0.442	0.118	109.62	0.000
1 1 1	101	14	0.063	-0.099	109.93	0.000
	1 I I I	15	-0.318	0.041	118.01	0.000
1 🔲 1	1 🛛 1	16	-0.164	-0.092	120.21	0.000
	1 🗐 1	17	0.365	0.148	131.40	0.000
· 💷	1 1 1 1	18		-0.057	135.87	0.000
· 🗖 ·	וםי	19	-0.241		141.01	0.000
	1 1 1 1	20	-0.314		149.96	0.000
1 🔲 L	1 D 1	21	0.188	0.066	153.28	0.000
· 🗖	1 1	22		-0.177	160.47	0.000
· 🗖 ·	1 1 1 1	23	-0.175	-0.099	163.51 175.99	0.000

Figure 1: Correlogram of y_t

- **5**. Is a white noise process stationary to the second order (i.e., «wide sense stationary» or «weakly stationary» or «covariance stationary»)?
- **6**. Consider the process $y_t = 0.5 y_{t-2} + e_t + 0.1 e_{t-1}$
 - (a) Write the Wold representation form of y_t .
 - (b) What is the numerical value of $\gamma_0 = Var(Y_t)$?
 - (c) Compute the numerical value ρ_3 of the y_t process.

7. Consider the process $y_t = \mu + y_{t-1} + x_t$, in which $x_t \sim iid(0, \sigma^2)$. Show that the series ∇y_t is stationary and compute its mean and autocovariance function.

8. Briefly distinguish *ex-ante* from *ex-post* forecasting and explain the goal of the latter.

9. What is the goal of measures such as the AIC, AICc, BIC, and SIC?

- 10. We have observed 110 anual values of the CPI, z_t . Complete the spaces in order to explain the rational behind the following steps.
 - (a) Firstly, we took logs and obtaines $w_t = \log(z_t)$, in order to obtain a series which is ______in _____in _____.
 - (b) Then, we took the first differences $x_t = (1-B)w_t$ trying to obtain a _____ process.
 - (c) Then, we subtracted the sample mean $\bar{x} = 0.7$ to these x_t , in order to obtain a process with _____.
 - (d) Finally, we adjusted an AR(2) to the series (x_t -0.7), which is equivalent to assume that w_t is an ARIMA(_,_,).
 - (e) In order to verify whether the residuals are _____, we performed the Ljung-Box test.
 - (f) We have obtained $Q = n(n+2)\sum_{k=1}^{15}(109-k)^{-1}\hat{\rho}_k^2 = 11.243 < 23.362 = \chi^2_{0.05}(13)$, where $n = _$.
 - (g) This means we haven't rejected $H_0: \rho_1 = \rho_2 = \ldots = \rho_{15} = _$, for the residuals.
 - (h) That means we concluded that the model AR(2) is _____ for the data ($x_t 0.7$).

11. The next figures illustrate the time series plot, SACF/SPACF and part of the EViews output from statistical tests applied to the series Yields_10y.

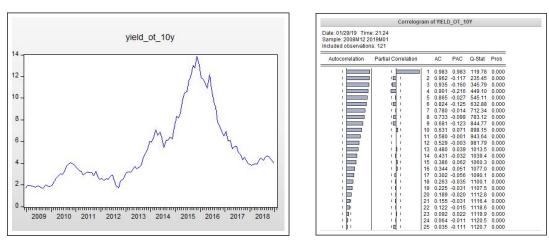
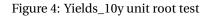



Figure 2: Yields_10y plot

Figure 3: Correlogram

Lag Length: 3 (Automatic - based on SIC, maxlag=12)							
			t-Statistic	Prob.*			
Augmented Dickey-Fulle	r test statistic		-1.794055	0.3819			
Test critical values:	1% level		-3.487046	To Post Adda			
	5% level		-2.886290				
	10% level		-2.580046				
*MacKinnon (1996) one-	sided p-value	S.					
Method: Least Squares Date: 01/29/19 Time: 21 Sample (adjusted): 5 12 Included observations: 1	1	tmente					
Date: 01/29/19 Time: 21 Sample (adjusted): 5 12	1	stments Std. Error	t-Statistic	Prob.			
Date: 01/29/19 Time: 21 Sample (adjusted): 5 12 Included observations: 1 Variable YIELDS_OT_10Y(-1)	1 17 after adjus Coefficient -0.024369	Std. Error 0.013583	-1.794055	0.0755			
Date: 01/29/19 Time: 21 Sample (adjusted): 5 12: Included observations: 1 Variable YIELDS_OT_10Y(-1) D(YIELDS_OT_10Y(-1))	1 17 after adjus Coefficient -0.024369 0.097548	Std. Error 0.013583 0.089977	-1.794055 1.084143	0.0755			
Date: 01/29/19 Time: 21 Sample (adjusted): 5 12 Included observations: 1 Variable YIELDS_OT_10Y(-1) D(YIELDS_OT_10Y(-1)) D(YIELDS_OT_10Y(-2))	1 17 after adjus Coefficient -0.024369 0.097548 0.184164	Std. Error 0.013583 0.089977 0.089141	-1.794055 1.084143 2.065990	0.0755 0.2806 0.0411			
Date: 01/29/19 Time: 21 Sample (adjusted): 5 12 Included observations: 1 Variable YIELDS_OT_10Y(-1) D(YIELDS_OT_10Y(-1)) D(YIELDS_OT_10Y(-2))	1 17 after adjus Coefficient -0.024369 0.097548	Std. Error 0.013583 0.089977	-1.794055 1.084143	0.0755			
Date: 01/29/19 Time: 21 Sample (adjusted): 5 12 Included observations: 1 Variable VIELDS_OT_10Y(-1) D(YIELDS_OT_10Y(-1)) D(YIELDS_OT_10Y(-3)) C	1 17 after adjus Coefficient -0.024369 0.097548 0.184164 0.279110 0.131151	Std. Error 0.013583 0.089977 0.089141 0.090435 0.081490	-1.794055 1.084143 2.065990 3.086316 1.609406	0.0755 0.2806 0.0411 0.0026 0.1103			
Date: 01/29/19 Time: 21 Sample (adjusted): 5 12: Included observations: 1 Variable YIELDS_OT_10Y(-1) D(YIELDS_OT_10Y(-2)) D(YIELDS_OT_10Y(-2)) D(YIELDS_OT_10Y(-3)) C R-squared	1 17 after adjus Coefficient -0.024369 0.097548 0.184164 0.279110 0.131151 0.168032	Std. Error 0.013583 0.089977 0.089141 0.090435 0.081490 Mean depen	-1.794055 1.084143 2.065990 3.086316 1.609406 dent var	0.0755 0.2806 0.0411 0.0026 0.1103 0.018120			
Date: 01/29/19 Time: 21 Sample (adjusted): 5 12: Included observations: 1 Variable YIELDS_OT_10Y(-1) D(YIELDS_OT_10Y(-1)) D(YIELDS_OT_10Y(-2)) D(YIELDS_OT_10Y(-3)) C R-squared Adjusted R-squared	1 17 after adjus Coefficient -0.024369 0.097548 0.184164 0.279110 0.131151 0.168032 0.138319	Std. Error 0.013583 0.089977 0.089141 0.090435 0.081490	-1.794055 1.084143 2.065990 3.086316 1.609406 dent var ent var	0.0755 0.2806 0.0411 0.0026 0.1103 0.018120 0.485999			
Date: 01/29/19 Time: 21 Sample (adjusted): 5 12: Included observations: 1 Variable VIELDS_OT_10Y(-1) D(YIELDS_OT_10Y(-1)) D(YIELDS_OT_10Y(-3)) C R-squared Adjusted R-squared S.E. of regression	1 17 after adjus Coefficient -0.024369 0.097548 0.184164 0.279110 0.131151 0.168032	Std. Error 0.013583 0.089977 0.089141 0.090435 0.081490 Mean depen S.D. depend	-1.794055 1.084143 2.065990 3.086316 1.609406 dent var ent var riterion	0.0755 0.2806 0.0411 0.0026 0.1103 0.018120			
Date: 01/29/19 Time: 21 Sample (adjusted); 5 12: Included observations: 1 Variable YIELDS_OT_10Y(-1) D(YIELDS_OT_10Y(-1)) D(YIELDS_OT_10Y(-2)) D(YIELDS_OT_10Y(-3)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	1 17 after adjus Coefficient -0.024369 0.097548 0.184164 0.279110 0.131151 0.168032 0.138319 0.451137	Std. Error 0.013583 0.089977 0.089141 0.090435 0.081490 Mean depen S.D. depend Akaike info c	-1.794055 1.084143 2.065990 3.086316 1.609406 dent var ent var riterion erion	0.0755 0.2806 0.0411 0.0026 0.1103 0.018120 0.485999 1.287704			
Date: 01/29/19 Time: 21 Sample (adjusted): 5 12 Included observations: 1 Variable	1 17 after adjus Coefficient -0.024369 0.097548 0.184164 0.279110 0.131151 0.168032 0.138319 0.451137 22.79475	Std. Error 0.013583 0.089977 0.089141 0.090435 0.081490 Mean depen S.D. depend Akaike info c Schwarz critte	-1.794055 1.084143 2.065990 3.086316 1.609406 dent var ent var riterion prion nn criter.	0.0755 0.2806 0.0411 0.0026 0.1103 0.018120 0.485999 1.287704 1.405745			

- (a) Just by inspection of Figure 2, do you think a random walk with a constant drift could be appropriate for the series? Why or why not?
- (b) On Figure 3, is the statistic Q_{24} indicating significance of the autocorrelations? Which one(s)? Answer it in one line.
- (c) Do you think that Yields_OT_10y is stationary? Justify your answer using the information provided in Figures 2, 3 and 4. In case you make use of a statistical testing procedure formalize the test: write the estimated equation, null and alternative hypotheses, test statistics, significance level, critical value/region, result and conclusion of the test.

12. The following figures present the outputs of an estimated model.

Dependent Variable: Y Method: ARMA Maximum Likelihood (OPG - BHHH) Sample: 2005Q1 2019Q1 Included observations: 57 Convergence achieved after 9 iterations Coefficient covariance computed using outer product of gradients							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
С	-0.003392	0.140974	-0.024058	0.9809			
AR(1)	0.391105	0.110596	3.536337	0.0009			
AR(2)	-0.492100	0.126729	-3.883084	0.0003			
R-squared	0.292294	Mean depend	lent var	0.005276			
Adjusted R-squared	0.252235	S.D. depende	ent var	1.372350			
S.E. of regression	1.186718			3.258830			
Sum squared resid	74.63990	Schwarz criterion		3.402202			
Log likelihood	-88.87666	Hannan-Quinn criter.		3.314549			
F-statistic	7.296604	Durbin-Watso	on stat	1.768559			
Prob(F-statistic)	0.000348			100 C 10 C			
Inverted AR Roots	.2067i	.20+.67i					

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
i 🗐 i	i <u> </u> i	1	0.102	0.102	0.6195	
· 🗖	i 🗖 i	2	0.239	0.231	4.1037	
1 1 1	I I	3	0.037	-0.006	4.1870	0.04
		4	0.479	0.450	18.751	0.000
	· • •	5	0.273	0.259	23.570	0.00
12 1		6	0.004	-0.256	23.572	0.000
E 1	1 🖬 1	7	-0.002	-0.116	23.572	0.000
U 🛄	i 🗖 i	8	0.278	0.206	28.876	0.00
· 🗖	1 I I I	9	0.254	0.049	33.394	0.00
1 1 1	1 1 1	10	0.059	-0.026	33.646	0.00
101	I I	11	-0.066	-0.003	33.965	0.00
1 1 1	1 🔲 1	12	0.049	-0.165	34.146	0.00
C 🔲 👘	1 1 1	13	0.275	0.100	39.909	0.00
1 1	101	14	-0.025	-0.052	39.958	0.00
U. 1	1 1 1	15	0.009	0.038	39.965	0.00
i 📰 👘 i	1 🔲 1	16	-0.171	-0.143	42.366	0.00
	L 🖬 L	17	0.264	0.112	48.208	0.00
1 I I	1 I I	18	0.006	0.001	48.211	0.00
- L - L	L L L	19	0.004	-0.021	48.212	0.00
	1 🔲 1	20	-0.248	-0.155	53.788	0.00
· 🔲 (1 1 1 1	21	0.124	0.059	55.235	0.00
1 1	1 1 1	22	0.020	-0.039	55.275	0.00
10		23		-0.215	56.443	0.00
· 🔤 👘 I	1.10	24	-0.216	0.070	61.219	0.00

Figure 5: Estimated model

Figure 6: Residuals correlogram

- (a) Write explicitly the standard mathematical form of the estimated equation with parameter estimates. Use approximations to three decimal places.
- (b) With the available information, do you think that this model is reasonably well specified? Justify your answer.
- (c) Given that the last three observations $z_T = 0.1$, $z_{T-1} = -0.5$ and $z_{T-2} = 0.5$ obtain the one step-ahead forecast $\hat{z}_{T+1|T}$. Use approximations to three decimal places.

13. Explain what is the volatility clustering effect present on financial time series.