Master in Mathematical Finance, ISEG, University of Lisbon
 Stochastic Calculus

Final Exam; Exam duration: 2 hours; June, 11, 2018
Justify your answers and calculations

1. Consider a standard Brownian motion $B=\left\{B_{t}, t \geq 0\right\}$.
(a) Define the process X by

$$
X_{t}=e^{-\alpha t} \sin \left(\gamma B_{t}\right)+B_{t}^{2}-t,
$$

where α and γ are real parameters. Deduce how α and γ should be related for the process X to be a martingale. Give also an example of numerical values for α and γ such that X is a martingale.
(b) Let $\lambda>0$ be a constant. For what values of λ, is the process

$$
Y_{t}=\left\{\begin{array}{cc}
t^{\lambda} B_{\frac{1}{t}} & \text { if } t>0, \\
0 & \text { if } t=0 .
\end{array}\right.
$$

a standard Brownian motion? Show that for these values of λ, the process Y is indeed a standard Brownian motion.
2. Consider the n-dimensional Brownian motion $B=\left\{B_{t}, t \in[0, T]\right\}$ with $B_{t}=\left(B_{t}^{(1)}, B_{t}^{(2)}, \ldots, B_{t}^{(n)}\right) \in$ \mathbb{R}^{n}. Define the process

$$
Z_{t}=Z_{0} \exp \left(\sum_{i=1}^{n} \alpha_{i} t+\delta_{i} B_{t}^{(i)}\right),
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \delta_{1}, \delta_{2}, \ldots, \delta_{n}$ are real parameters. Show that $Z_{t}=C+K \int_{0}^{t} Z_{s} d s+$ $\int_{0}^{t} Z_{s}(\mathbf{v} \cdot d B)$, where C, K and $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ are constants and \cdot denotes the scalar (inner) product and express the constants C, K and \mathbf{v} in terms of the parameters $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ and $\delta_{1}, \delta_{2}, \ldots, \delta_{n}$ and Z_{0}.
3. Let $B=\left\{B_{t}, t \in[0, T]\right\}$ be a Brownian motion. Consider a SDE of the type

$$
\begin{aligned}
d X_{t} & =f\left(t, X_{t}\right) d t+g\left(t, X_{t}\right) d B_{t}, \\
X_{0} & =x>0,
\end{aligned}
$$

where $f(t, x)$ and $g(t, x)$ are continuous and deterministic functions.
(a) If $f\left(t, X_{t}\right)=5 X_{t}^{2}$ and $g\left(t, X_{t}\right) \equiv 0$, what can you say about the existence and uniqueness of solutions in the interval $[0, T]$? Explain your answer and, if possible, find the solution or solutions.
(b) Considering $f\left(t, X_{t}\right)=\sin (t) X_{t}$ and $g\left(t, X_{t}\right)=e^{-t} X_{t}$, with $X_{0}=2$, comment on the existence and uniqueness of solutions and solve the SDE.
4. Consider the boundary value problem with domain $[0, T] \times \mathbb{R}$:

$$
\begin{aligned}
\frac{\partial F}{\partial t}+6 x \frac{\partial F}{\partial x}+8 \frac{\partial^{2} F}{\partial x^{2}}+x & =0, \quad t>0, x \in \mathbb{R} \\
F(T, x) & =x^{2}
\end{aligned}
$$

(a) Show that the solution of the problem can be represented by the stochastic representation (Feynman-Kac) formula

$$
F(t, x)=\mathbb{E}_{t, x}\left[X_{T}^{2}\right]+\int_{t}^{T} \mathbb{E}_{t, x}\left[X_{s}\right] d s
$$

where X is a diffusion process that satisfies

$$
\begin{aligned}
d X_{s} & =6 X_{s} d s+4 X_{s} d B_{s}, \quad \text { if } s>t \\
X_{t} & =x
\end{aligned}
$$

Hint: Define X as the solution of the SDE above, assume that F actually solves the PDE, consider the process $Y_{s}=F\left(s, X_{s}\right)$ and apply the Itô formula.
(b) Deduce an explicit expression for the process X and for the solution $F(t, x)$ of the boundary value problem.
5. Consider the Black-Scholes model with a risky asset with price S_{t} and a riskless asset with price B_{t}. The assets follow the SDE's

$$
d S_{t}=0.1 S_{t} d t+0.25 S_{t} d \bar{W}_{t} \quad \text { e } \quad d B_{t}=0.05 B_{t} d t, \text { with } S_{0}=2, B_{0}=1
$$

where \bar{W} is a Brownian motion. Consider also a contingent claim (financial derivative) with payoff (at maturity T) given by $\chi=\Phi\left(S_{T}\right)=S_{T}^{4}+30 \ln \left(S_{T}\right)$. Write the SDE for S_{t} under que equivalent martingale measure (or risk neutral measure) \mathbb{Q}, specify also what is the density of \mathbb{Q} with respect to \mathbb{P} and calculate the price of the contingent claim (financial derivative) at time 0 with maturity 1 year.
6. Let $B=\left\{B_{t}, t \geq 0\right\}$ be a Brownian motion. Define the operator $\mathcal{K}: L_{a, T}^{2} \rightarrow L_{a, T}^{2}$ by

$$
(\mathcal{K} X)_{t}=\int_{0}^{t} b\left(X_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}\right) d B_{s}
$$

where the functions b and σ satisfy the Lipschitz and linear growth properties (as in the existence and uniqueness theorem for SDE's). In the space $L_{a, T}^{2}$ consider the norm

$$
\|X\|=\left(\int_{0}^{T} e^{-\lambda s} E\left[\left|X_{s}\right|^{2}\right] d s\right)^{\frac{1}{2}}
$$

where λ is a positive number. Show that if λ is large enough, then

$$
\|\mathcal{K} X-\mathcal{K} Y\| \leq C\|X-Y\|
$$

for a positive constant $C<1$ (and therefore the operator \mathcal{K} is a contraction in $L_{a, T}^{2}$).
Hint: You can start by showing that $E\left[\left|(\mathcal{K} X)_{t}-(\mathcal{K} Y)_{t}\right|^{2}\right] \leq C_{1} E\left[\int_{0}^{t}\left(X_{s}-Y_{s}\right)^{2} d s\right]$. Then you multiply the previous inequality by $e^{-\lambda t}$ and integrate in $[0, T]$.

Marks: 1(a):2.5, (b):2.0, 2:2.0, 3(a):2.25, (b):2.25, 4(a):2.5, (b):2.0, 5:2.5, 6:2.0

