
For nearly fve decades, Introduction to Operations Research has been the classic text on operations research. 
Tis edition provides more coverage of dramatic real-world applications than ever before. Te hallmark 
features continue to be clear and comprehensive coverage of fundamentals, an extensive set of interesting 
problems and cases, and a wealth of state-of-the-art, user-friendly software. 

New to the Tenth Edition 
•  A chapter on linear programming under uncertainty that includes topics such as robust optimization, 
chance constraints, and stochastic programming with recourse

•  A section on the recent rise of analytics together with operations research
•  Analytic Solver Platform for Education – exciting new software that provides an all-in-one package 
for formulating and solving many OR models in spreadsheets

Additional Features
Te text website (www.mhhe.com/hillier) contains many other software options, including: 

•  Student versions of the MPL Modeling System and its elite solvers, as well as an MPL tutorial and 
formulation examples from the text 

•  Student versions of LINGO and LINDO with many formulation examples from the text 
•  OR Tutor and IOR Tutorial for efciently learning various algorithms
•  Excel spreadsheet formulations and solutions, using either the standard Excel Solver or the Analytic 
Solver Platform for Education, for the examples in the text 

•  Many Excel templates for automatically solving a variety of models

Digital supplements ConnectPlus (125917400X) and LearnSmart (1259173992) have been added to this 
textbook package to make it convenient for students to learn the material and easier for instructors to assign 
and grade their work. See below for more on these products.

McGraw-Hill Connect® Engineering provides online presentation, assignment, 
and assessment solutions. A robust set of questions and activities are presented 
and aligned with the textbook’s learning outcomes. Integrate grade reports easily 

with Learning Management Systems (LMS), such as WebCT and Blackboard—and much more. 
ConnectPlus® Engineering provides students with all the advantages of Connect Engineering, plus 24/7 
online access to a media-rich eBook. www.mcgrawhillconnect.com

McGraw-Hill LearnSmart® is available as a standalone product or 
an integrated feature of McGraw-Hill Connect Engineering. It is an adaptive learning system designed to 
help students learn faster, study more efciently, and retain more knowledge for greater success. LearnSmart 
assesses a student’s knowledge of course content through a series of adaptive questions. It pinpoints concepts 
the student does not understand and maps out a personalized study plan for success. Tis innovative study 
tool also has features that allow instructors to see exactly what students have accomplished.  
www.mhlearnsmart.com

Powered by the intelligent and adaptive LearnSmart engine, 
SmartBook™ is the frst and only continuously adaptive reading experience available today. Distinguishing 
what students know from what they don’t, and honing in on concepts they are most likely to forget, SmartBook 
personalizes content for each student.  Reading is no longer a passive and linear experience but an engaging 
and dynamic one, where students are more likely to master and retain important concepts, coming to class 
better prepared. 
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INSTALLING ANALYTIC SOLVER PLATFORM 
FOR EDUCATION

Instructors:

A course code will enable your students to download and install Analytic Solver Plat-
form for Education with a semester-long (140 day) license, and will enable Frontline Sys-
tems to assist students with installation, and provide technical support to you during the
course. To set up a course code for your course, please email Frontline Systems at 
academic@solver.com, or call 775-831-0300, press 0, and ask for the Academic Coordi-
nator. Course codes MUST be renewed each year. The course code is free, and it can
usually be issued within 24 to 48 hours (often the same day).

Please give the course code, plus the instructions below, to your students. If you’re eval-
uating the book for adoption, you can use the course code yourself to download and in-
stall the software.

Students:

1) To download and install Analytic Solver Platform for Education from Frontline Sys-
tems to work with Excel for Windows, please visit: www.solver.com/student. Don’t try to
download from any other page.

If you have a Mac, you’ll need to install “dual-boot” or VM software, Microsoft Windows,
and Office or Excel for Windows first. Excel for Mac will NOT work. Learn more at
www.solver.com/using-frontline-solvers-macintosh.

2) Fill out the registration form on the page visited is step 1, supplying your name, school,
email address (key information will be sent to this address), course code (obtain this from
your instructor), and textbook code (enter HLIOR10). If you have this textbook but you
aren’t enrolled in a course, call 775-831-0300 and press 0 for assistance with the software.

3) On the download page, change 32-bit to 64-bit ONLY if you’ve confirmed that you
have 64-bit Excel. Click the Download Now button, and save the downloaded file (Sol-
verSetup.exe or SolverSetup64.exe).

Most users have 64-bit Windows and 32-bit Excel. For Excel 2007, always download Sol-
verSetup. In Excel 2010, choose File > Help and look in the lower right. In Excel 2013,
choose File > Account > About Excel and look at the top of the dialog. Download Sol-
verSetup64 ONLY if you see “64-bit” displayed.

4) Close any Excel windows you have open.

5) Run SolverSetup/SolverSetup64 to install the software. When prompted, enter the in-
stallation password and the license activation code contained in the email sent to the ad-
dress you entered on the form above.

If you have problems downloading or installing, please email support@solver.com or call
775-831-0300 and press 4 (tech support). Say that you have Analytic Solver Platform for
Education, and have your course code and textbook code available.

If you have problems setting up or solving your model, or interpreting the results, please
ask your instructor for assistance. Frontline Systems cannot help you with homework 
problems.
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PREFACE

When Jerry Lieberman and I started working on the first edition of this book 50 years
ago, our goal was to develop a pathbreaking textbook that would help establish the

future direction of education in what was then the emerging field of operations research.
Following publication, it was unclear how well this particular goal was met, but what did
become clear was that the demand for the book was far larger than either of us had an-
ticipated. Neither of us could have imagined that this extensive worldwide demand would
continue at such a high level for such an extended period of time.

The enthusiastic response to our first nine editions has been most gratifying. It was a
particular pleasure to have the field’s leading professional society, the international Institute
for Operations Research and the Management Sciences (INFORMS), award the 6th edition
honorable mention for the 1995 INFORMS Lanchester Prize (the prize awarded for the year’s
most outstanding English-language publication of any kind in the field of operations research). 

Then, just after the publication of the eighth edition, it was especially gratifying to
be the recipient of the prestigious 2004 INFORMS Expository Writing Award for this
book, including receiving the following citation:

Over 37 years, successive editions of this book have introduced more than one-half million
students to the field and have attracted many people to enter the field for academic activity
and professional practice. Many leaders in the field and many current instructors first learned
about the field via an edition of this book. The extensive use of international student edi-
tions and translations into 15 other languages has contributed to spreading the field around
the world. The book remains preeminent even after 37 years. Although the eighth edition
just appeared, the seventh edition had 46 percent of the market for books of its kind, and it
ranked second in international sales among all McGraw-Hill publications in engineering.

Two features account for this success. First, the editions have been outstanding from
students’ points of view due to excellent motivation, clear and intuitive explanations,
good examples of professional practice, excellent organization of material, very useful
supporting software, and appropriate but not excessive mathematics. Second, the editions
have been attractive from instructors’ points of view because they repeatedly infuse state-
of-the-art material with remarkable lucidity and plain language. For example, a wonderful
chapter on metaheuristics was created for the eighth edition.

When we began work on the book 50 years ago, Jerry already was a prominent mem-
ber of the field, a successful textbook writer, and the chairman of a renowned operations
research program at Stanford University. I was a very young assistant professor just start-
ing my career. It was a wonderful opportunity for me to work with and to learn from the
master. I will be forever indebted to Jerry for giving me this opportunity.

Now, sadly, Jerry is no longer with us. During the progressive illness that led to his death
14 years ago, I resolved that I would pick up the torch and devote myself to subsequent edi-
tions of this book, maintaining a standard that would fully honor Jerry. Therefore, I took early
retirement from my faculty responsibilities at Stanford in order to work full time on textbook
writing for the foreseeable future. This has enabled me to spend far more than the usual
amount of time in preparing each new edition. It also has enabled me to closely monitor new
trends and developments in the field in order to bring this edition completely up to date. This
monitoring has led to the choice of the major additions to the new edition outlined next.

xxii
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■ WHAT’S NEW IN THIS EDITION

• Analytic Solver Platform for Education. This edition continues to provide the option
of using Excel and its Solver (a product of Frontline Systems, Inc.) to formulate and
solve some operations research (OR) models. Frontline Systems also has developed some
advanced Excel-based software packages. One recently released package, Analytic
Solver Platform, is particularly exciting because of its tremendous versatility. It provides
strong capability for dealing with the types of OR models considered in most of the
chapters considered in this book, including linear programming, integer programming,
nonlinear programming, decision analysis, simulation, and forecasting. Rather than re-
quiring the use of a collection of Excel add-ins to deal with all of these areas (as in the
preceding edition), Analytic Solver Platform provides an all-in-one package for formu-
lating and solving many OR models in spreadsheets. We are delighted to have integrated
the student version of this package, Analytic Solver Platform for Education (ASPE),
into this new edition. A special arrangement has been made with Frontline Systems to
provide students with a free 140-day license for ASPE.

At the same time, we have integrated ASPE in such a way that it can readily be
skipped over without loss of continuity for those who do not wish to use spreadsheets.
A number of other attractive software options continue to be provided in this edition (as
described later). In addition, a relatively brief introduction to spreadsheet modeling can
also be obtained by only using Excel’s standard Solver. However, we believe that many
instructors and students will welcome the great power and versatility of ASPE.

• A New Section on Robust Optimization. OR models typically are formulated to help
select some future course of action, so the values of the model parameters need to be
based on a prediction of future conditions. This sometimes results in having a signifi-
cant amount of uncertainty about what the parameter values actually will turn out to be
when the optimal solution from the model is implemented. For problems where there
is no latitude for violating the constraints even a little bit, a relatively new technique
called robust optimization provides a way of obtaining a solution that is virtually guar-
anteed to be feasible and nearly optimal regardless of reasonable deviations of the pa-
rameter values from their estimated values. The new Section 7.4 introduces the robust
optimization approach when dealing with linear programming problems.

• A New Section on Chance Constraints. The new Section 7.5 continues the discussion
in Section 7.4 by turning to the case where there is some latitude for violating some
constraints a little bit without very serious complications. This leads to the option of us-
ing chance constraints, where each chance constraint modifies an original constraint by
only requiring that there be some very high probability that the original constraint will
be satisfied. When the original problem is a linear programming problem, each of these
chance constraints can be converted into a deterministic equivalent that still is a linear
programming constraint. Section 7.5 describes how this important idea is implemented.

• A New Section on Stochastic Programming with Recourse. Stochastic programming
provides still another way of reformulating a linear programming model (or another type
of model) where there is some uncertainty about what the values of the parameters will
turn out to be. This approach is particularly valuable for those problems where the 
decisions will be made in two (or more) stages, so the decisions in stage 2 can help
compensate for any stage 1 decisions that do not turn out as well as hoped because of
errors in estimating some parameter values. The new Section 7.6 describes stochastic
programming with recourse for dealing with such problems.

• A New Chapter on Linear Programming under Uncertainty That Includes These New
Sections. One of the key assumptions of linear programming (as for many other OR 
models) is the certainty assumption, which says that the value assigned to each parameter
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of a linear programming model is assumed to be a known constant. This is a convenient
assumption, but it seldom is satisfied precisely. One of the most important concepts to get
across in an introductory OR course is that (1) although it usually is necessary to make
some simplifying assumptions when formulating a model of a problem, (2) it then is very
important after solving the model to explore the impact of these simplifying assumptions.
This concept can be most readily conveyed in the context of linear programming because
of all the methodology that now has been developed for dealing with linear programming
under uncertainty. One key technique of this type is sensitivity analysis, but some other
relatively elementary techniques now have also been well developed, including particu-
larly the ones presented in the three new sections described above. Therefore, the old Chap-
ter 6 (Duality Theory and Sensitivity Analysis) now has been divided into two new chap-
ters—Chapter 6 (Duality Theory) and Chapter 7 (Linear Programming under Uncertainty).
The new Chapter 7 includes the three sections on sensitivity analysis in the old Chapter
6 but also adds the three new sections described above.

• A New Section on the Rise of Analytics Together with Operations Research. A 
particularly dramatic development in the field of operations research over the last several
years has been the great buzz throughout the business world about something called an-
alytics (or business analytics) and the importance of incorporating analytics into manage-
rial decision making. As it turns out, the discipline of analytics is closely related to the
discipline of operations research, although there are some differences in emphases. OR
can be thought of as focusing mainly on advanced analytics whereas analytics profes-
sionals might get more involved with less advanced aspects of the study. Some fads come
and go, but this appears to be a permanent shift in the direction of OR in the coming years.
In fact, we could even find analytics eventually replacing operations research as the com-
mon name for this integrated discipline. Because of this close and growing tie between
the two disciplines, it has become important to describe this relationship and to put it into
perspective in an introductory OR course. This has been done in the new Section 1.3.

• Many New or Revised Problems. A significant number of new problems have been
added to support the new topics and application vignettes. In addition, many of the
problems from the ninth edition have been revised. Therefore, an instructor who does
not wish to assign problems that were assigned in previous classes has a substantial
number from which to choose.

• A Reorganization to Reduce the Size of the Book. An unfortunate trend with early
editions of this book was that each new edition was significantly larger than the pre-
vious one. This continued until the seventh edition had become considerably larger than
is desirable for an introductory survey textbook. Therefore, I worked hard to substan-
tially reduce the size of the eighth edition and and then further reduced the size of the
ninth edition slightly. I also adopted the goal of avoiding any growth in subsequent edi-
tions. Indeed, this edition is 35 pages shorter than the ninth edition. This was accom-
plished through a variety of means. One was being careful not to add too much new
material. Another was deleting certain low-priority material, including the presentation
of parametric linear programming in conjunction with sensitivity analysis (it already
is covered later in Section 8.2) and a complicated dynamic programming example (the
Wyndor problem with three state variables) that can be solved much more easily in
other ways. Finally, and most importantly, 50 pages were saved by shifting two little-
used items (the chapter on Markov chains and the last two major sections on Markov
decision processes) to the supplements on the book’s website. Markov chains are a cen-
tral topic of probability theory and stochastic processes that have been borrowed as a
tool of operations research, so this chapter better fits as a reference in the supplements.

• Updating to Reflect the Current State of the Art. A special effort has been made 
to keep the book completely up to date. This included adding relatively new develop-
ments (the four new sections mentioned above) that now warrant consideration in an
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introductory survey course, as well as making sure that all the material in the ninth edi-
tion has been brought up to date. It also included carefully updating both the applica-
tion vignettes and selected references for each chapter.

■ OTHER SPECIAL FEATURES OF THIS BOOK

• An Emphasis on Real Applications. The field of operations research is continuing to
have a dramatic impact on the success of numerous companies and organizations around
the world. Therefore, one of the goals of this book is to tell this story clearly and thereby
excite students about the great relevance of the material they are studying. This goal is
pursued in four ways. One is the inclusion of many application vignettes scattered through-
out the book that describe in a few paragraphs how an actual application of operations
research had a powerful impact on a company or organization by using techniques like
those studied in that portion of the book. For each application vignette, a problem also
is included in the problems section of that chapter that requires the student to read the
full article describing the application and then answer some questions. Second, real ap-
plications also are briefly described (especially in Chapters 2 and 12) as part of the pre-
sentation of some OR technique to illustrate its use. Third, many cases patterned after
real applications are included at the end of chapters and on the book’s website. Fourth,
many selected references of award winning OR applications are given at the end of some
of the chapters. Once again, problems are included at the end of these chapters that re-
quire reading one or more of the articles describing these applications. The next bullet
point describes how students have immediate access to these articles.

• Links to Many Articles Describing Dramatic OR Applications. We are excited about
a partnership with The Institute for Operations Research and the Management Sciences
(INFORMS), our field’s preeminent professional society, to provide a link on this book’s
website to approximately 100 articles describing award winning OR applications, in-
cluding the ones described in all of the application vignettes. (Information about 
INFORMS journals, meetings, job bank, scholarships, awards, and teaching materials is
at www.informs.org.) These articles and the corresponding end-of-chapter problems pro-
vide instructors with the option of having their students delve into real applications that
dramatically demonstrate the relevance of the material being covered in the lectures. It
would even be possible to devote significant course time to discussing real applications.

• A Wealth of Supplementary Chapters and Sections on the Website. In addition to
the approximately 1,000 pages in this book, another several hundred pages of supple-
mentary material also are provided on this book’s website (as outlined in the table of
contents). This includes nine complete chapters and a considerable number of supple-
ments to chapters in the book, as well as a substantial number of additional cases. All
of the supplementary chapters include problems and selected references. Most of the
supplements to chapters also have problems. Today, when students think nothing of ac-
cessing material electronically, instructors should feel free to include some of this sup-
plementary material in their courses.

• Many Additional Examples Are Available. An especially important learning aid on
the book’s website is a set of Solved Examples for almost every chapter in the book.
We believe that most students will find the examples in the book fully adequate but that
others will feel the need to go through additional examples. These solved examples on
the website will provide the latter category of students the needed help, but without 
interrupting the flow of the material in the book on those many occasions when most
students don’t need to see an additional example. Many students also might find these
additional examples helpful when preparing for an examination. We recommend to in-
structors that they point out this important learning aid to their students.
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• Great Flexibility for What to Emphasize. We have found that there is great variabil-
ity in what instructors want to emphasize in an introductory OR survey course. They
might want to emphasize the mathematics and algorithms of operations research. Oth-
ers will emphasize model formulation with little concern for the details of the algorithms
needed to solve these models. Others want an even more applied course, with empha-
sis on applications and the role of OR in managerial decision making. Some instructors
will focus on the deterministic models of OR, while others will emphasize stochastic
models. There also are great differences in the kind of software (if any) that instructors
want their students to use. All of this helps to explain why the book is a relatively large
one. We believe that we have provided enough material to meet the needs of all of these
kinds of instructors. Furthermore, the book is organized in such a way that it is rela-
tively easy to pick and choose the desired material without loss of continuity. It even is
possible to provide great flexibility on the kind of software (if any) that instructors want
their students to use, as described below in the section on software options.

• A Customizable Version of the Text Also is Available. Because the text provides great
flexibility for what to emphasize, an instructor can easily pick and choose just certain
portions of the book to cover. Rather than covering nearly all of the 1,000 pages in the
book, perhaps you wish to use only a much smaller portion of the text. Fortunately, Mc-
Graw-Hill provides an option for using a considerably smaller and less expensive ver-
sion of the book that is customized to meet your needs. With McGraw-Hill Create™,
you can include only the chapters you want to cover. You also can easily rearrange chap-
ters, combine material from other content sources, and quickly upload content you have
written, like your course syllabus or teaching notes. If desired, you can use Create to
search for useful supplementary material in various other leading McGraw-Hill text-
books. For example, if you wish to emphasize spreadsheet modeling and applications,
we would recommend including some chapters from the Hillier-Hillier textbook, Intro-
duction to Management Science: A Modeling and Case Studies Approach with Spread-
sheets. Arrange your book to fit your teaching style. Create even allows you to person-
alize your book’s appearance by selecting the cover and adding your name, school, and
course information. Order a Create book and you’ll receive a complimentary print re-
view copy in 3–5 business days or a complimentary electronic review copy (eComp)
via e-mail in minutes. You can go to www.mcgrawhillcreate.com and register to expe-
rience how McGraw-Hill Create empowers you to teach your students your way.

■ A WEALTH OF SOFTWARE OPTIONS

A wealth of software options is provided on the book’s website www.mhhe.com/hillier as
outlined below:

• Excel spreadsheets: state-of-the-art spreadsheet formulations in Excel files for all rel-
evant examples throughout the book. The standard Excel Solver can solve most of these
examples.

• As described earlier, the powerful Analytic Solver Platform for Education (ASPE) to for-
mulate and solve a wide variety of OR models in an Excel environment.

• A number of Excel templates for solving basic models.
• Student versions of LINDO (a traditional optimizer) and LINGO (a popular algebraic

modeling language), along with formulations and solutions for all relevant examples
throughout the book.

• Student versions of MPL (a leading algebraic modeling language) along with an MPL Tu-
torial and MPL formulations and solutions for all relevant examples throughout the book.

• Student versions of several elite MPL solvers for linear programming, integer pro-
gramming, convex programming, global optimization, etc.

• Queueing Simulator (for the simulation of queueing systems).
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• OR Tutor for illustrating various algorithms in action.
• Interactive Operations Research (IOR) Tutorial for efficiently learning and executing

algorithms interactively, implemented in Java 2 in order to be platform independent. 

Numerous students have found OR Tutor and IOR Tutorial very helpful for learning
algorithms of operations research. When moving to the next stage of solving OR models
automatically, surveys have found instructors almost equally split in preferring one of the
following options for their students’ use: (1) Excel spreadsheets, including Excel’s Solver
(and now ASPE), (2) convenient traditional software (LINDO and LINGO), and (3) state-
of-the-art OR software (MPL and its elite solvers). For this edition, therefore, I have re-
tained the philosophy of the last few editions of providing enough introduction in the book
to enable the basic use of any of the three options without distracting those using another,
while also providing ample supporting material for each option on the book’s website.

Because of the power and versatility of ASPE, we no longer include a number of 
Excel-based software packages (Crystal Ball, Premium Solver for Education, TreePlan,
SensIt, RiskSim, and Solver Table) that were bundled with recent editions. ASPE alone
matches or exceeds the capabilities of all these previous packages.

Additional Online Resources

• A glossary for every book chapter.
• Data files for various cases to enable students to focus on analysis rather than inputting

large data sets.
• A test bank featuring moderately difficult questions that require students to show their

work is being provided to instructors. Many of the questions in this test bank have pre-
viously been used successfully as test questions by the authors. The test bank for this
new edition has been greatly expanded from the one for the 9th edition, so many new
test questions now are available to instructors.

• A solutions manual and image files for instructors.

■ POWERFUL NEW ONLINE RESOURCES

CourseSmart Provides an eBook Version of This Text

This text is available as an eBook at www.CourseSmart.com. At CourseSmart you can
take advantage of significant savings off the cost of a print textbook, reduce their impact
on the environment, and gain access to powerful web tools for learning. CourseSmart
eBooks can be viewed online or downloaded to a computer. The eBooks allow readers to
do full text searches, add highlighting and notes, and share notes with others. Course-
Smart has the largest selection of eBooks available anywhere. Visit www.CourseSmart.com
to learn more and to try a sample chapter.

McGraw-Hill Connect®

The online resources for this edition include McGraw-Hill Connect, a web-based assign-
ment and assessment platform that can help students to perform better in their coursework
and to master important concepts. With Connect, instructors can deliver assignments,
quizzes, and tests easily online. Students can practice important skills at their own pace
and on their own schedule. Ask your McGraw-Hill Representative for more detail and
check it out at www.mcgrawhillconnect.com/engineering. 

McGraw-Hill LearnSmart®

McGraw-Hill LearnSmart® is an adaptive learning system designed to help students learn
faster, study more efficiently, and retain more knowledge for greater success. Through a
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series of adaptive questions, LearnSmart pinpoints concepts the student does not under-
stand and maps out a personalized study plan for success. It also lets instructors see ex-
actly what students have accomplished, and it features a built-in assessment tool for graded
assignments. Ask your McGraw-Hill Representative for more information, and visit
www.mhlearnsmart.com for a demonstration.

McGraw-Hill SmartBook™

Powered by the intelligent and adaptive LearnSmart engine, SmartBook is the first and only
continuously adaptive reading experience available today. Distinguishing what students know
from what they don’t, and honing in on concepts they are most likely to forget, SmartBook
personalizes content for each student. Reading is no longer a passive and linear experience but
an engaging and dynamic one, where students are more likely to master and retain important
concepts, coming to class better prepared. SmartBook includes powerful reports that identify
specific topics and learning objectives students need to study. These valuable reports also pro-
vide instructors insight into how students are progressing through textbook content and are
useful for identifying class trends, focusing precious class time, providing personalized feed-
back to students, and tailoring assessment. How does SmartBook work? Each SmartBook con-
tains four components: Preview, Read, Practice, and Recharge. Starting with an initial preview
of each chapter and key learning objectives, students read the material and are guided to top-
ics for which they need the most practice based on their responses to a continuously adapting
diagnostic. Read and practice continue until SmartBook directs students to recharge important
material they are most likely to forget to ensure concept mastery and retention.

The overall thrust of all the revision efforts has been to build upon the strengths of previ-
ous editions to more fully meet the needs of today’s students. These revisions make the
book even more suitable for use in a modern course that reflects contemporary practice in
the field. The use of software is integral to the practice of operations research, so the wealth
of software options accompanying the book provides great flexibility to the instructor in
choosing the preferred types of software for student use. All the educational resources ac-
companying the book further enhance the learning experience. Therefore, the book and its
website should fit a course where the instructor wants the students to have a single self-
contained textbook that complements and supports what happens in the classroom.

The McGraw-Hill editorial team and I think that the net effect of the revision has been
to make this edition even more of a “student’s book”—clear, interesting, and well-organized
with lots of helpful examples and illustrations, good motivation and perspective, easy-to-find
important material, and enjoyable homework, without too much notation, terminology, and
dense mathematics. We believe and trust that the numerous instructors who have used previ-
ous editions will agree that this is the best edition yet.

The prerequisites for a course using this book can be relatively modest. As with previ-
ous editions, the mathematics has been kept at a relatively elementary level. Most of Chaps.
1 to 15 (introduction, linear programming, and mathematical programming) require no math-
ematics beyond high school algebra. Calculus is used only in Chap. 13 (Nonlinear Pro-
gramming) and in one example in Chap. 11 (Dynamic Programming). Matrix notation is used
in Chap. 5 (The Theory of the Simplex Method), Chap. 6 (Duality Theory), Chap. 7 (Linear
Programming under Uncertainty), Sec. 8.4 (An Interior-Point Algorithm), and Chap. 13, but
the only background needed for this is presented in Appendix 4. For Chaps. 16 to 20 (prob-
abilistic models), a previous introduction to probability theory is assumed, and calculus is
used in a few places. In general terms, the mathematical maturity that a student achieves
through taking an elementary calculus course is useful throughout Chaps. 16 to 20 and for
the more advanced material in the preceding chapters.

■ THE USE OF THE BOOK
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PREFACE xxix

The content of the book is aimed largely at the upper-division undergraduate level
(including well-prepared sophomores) and at first-year (master’s level) graduate stu-
dents. Because of the book’s great flexibility, there are many ways to package the ma-
terial into a course. Chapters 1 and 2 give an introduction to the subject of operations
research. Chapters 3 to 15 (on linear programming and mathematical programming) may
essentially be covered independently of Chaps. 16 to 20 (on probabilistic models), and
vice-versa. Furthermore, the individual chapters among Chaps. 3 to 15 are almost in-
dependent, except that they all use basic material presented in Chap. 3 and perhaps in
Chap. 4. Chapters 6 and 7 and Sec. 8.2 also draw upon Chap. 5. Sections 8.1 and 8.2
use parts of Chaps. 6 and 7. Section 10.6 assumes an acquaintance with the problem
formulations in Secs. 9.1 and 9.3, while prior exposure to Secs. 8.3 and 9.2 is helpful
(but not essential) in Sec. 10.7. Within Chaps. 16 to 20, there is considerable flexibil-
ity of coverage, although some integration of the material is available.

An elementary survey course covering linear programming, mathematical programming,
and some probabilistic models can be presented in a quarter (40 hours) or semester by selec-
tively drawing from material throughout the book. For example, a good survey of the field can
be obtained from Chaps. 1, 2, 3, 4, 16, 17, 18, and 20, along with parts of Chaps. 10 to 14. A
more extensive elementary survey course can be completed in two quarters (60 to 80 hours)
by excluding just a few chapters, for example, Chaps. 8, 15, and 19. Chapters 1 to 9 (and per-
haps part of Chap. 10) form an excellent basis for a (one-quarter) course in linear program-
ming. The material in Chaps. 10 to 15 covers topics for another (one-quarter) course in other
deterministic models. Finally, the material in Chaps. 16 to 20 covers the probabilistic (sto-
chastic) models of operations research suitable for presentation in a (one-quarter) course. In
fact, these latter three courses (the material in the entire text) can be viewed as a basic one-
year sequence in the techniques of operations research, forming the core of a master’s degree
program. Each course outlined has been presented at either the undergraduate or graduate level
at Stanford University, and this text has been used in basically the manner suggested.

The book’s website will provide updates about the book, including an errata. To ac-
cess this site, visit www.mhhe.com/hillier.

I am indebted to an excellent group of reviewers who provided sage advice for the revision
process. This group included

Linda Chattin, Arizona State University
Antoine Deza, McMaster University
Jeff Kennington, Southern Methodist University
Adeel Khalid, Southern Polytechnic State University
James Luedtke, University of Wisconsin–Madison
Layek Abdel-Malek, New Jersey Institute of Technology
Jason Trobaugh, Washington University in St. Louis
Yiliu Tu, University of Calgary
Li Zhang, The Citadel
Xiang Zhou, City University of Hong Kong

In addition, thanks go to those instructors and students who sent email messages to pro-
vide their feedback on the 9th edition.

This edition was very much of a team effort. Our case writers, Karl Schmedders and
Molly Stephens (both graduates of our department), wrote 24 elaborate cases for the 7th
edition, and all of these cases continue to accompany this new edition. One of our depart-
ment’s former PhD students, Michael O’Sullivan, developed OR Tutor for the 7th edition
(and continued here), based on part of the software that my son Mark Hillier had developed
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for the 5th and 6th editions. Mark (who was born the same year as the first edition, earned
his PhD at Stanford, and now is a tenured Associate Professor of Quantitative Methods at
the University of Washington) provided both the spreadsheets and the Excel files (includ-
ing many Excel templates) once again for this edition, as well as the Queueing Simulator.
He also gave important help on the textual material involving ASPE and contributed greatly
to Chaps. 21 and 28 on the book’s website. In addition, he updated the 10th edition ver-
sion of the solutions manual. Earlier editions of this solutions manual were prepared in an
exemplary manner by a long sequence of PhD students from our department, including
Che-Lin Su for the 8th edition and Pelin Canbolat for the 9th edition. Che-Lin and Pelin
did outstanding work that nicely paved the way for Mark’s work on the solutions manual.
Last, but definitely not least, my dear wife, Ann Hillier (another Stanford graduate with a
minor in operations research), provided me with important help on an almost daily basis.
All the individuals named above were vital members of the team.

I also owe a great debt of gratitude to four individuals and their companies for pro-
viding the special software and related information for the book. Another Stanford PhD
graduate, William Sun (CEO of the software company Accelet Corporation), and his team
did a brilliant job of starting with much of Mark Hillier’s earlier software and implement-
ing it anew in Java 2 as IOR Tutorial for the 7th edition, as well as further enhancing IOR
Tutorial for the subsequent editions. Linus Schrage of the University of Chicago and LINDO
Systems (and who took an introductory operations research course from me 50 years ago)
provided LINGO and LINDO for the book’s website. He also supervised the further de-
velopment of LINGO/LINDO files for the various chapters as well as providing tutorial
material for the book’s website. Another long-time friend, Bjarni Kristjansson (who heads
Maximal Software), did the same thing for the MPL/Solvers files and MPL tutorial mate-
rial, as well as arranging to provide a student version of MPL and various elite solvers for
the book’s website. Still another friend, Daniel Flystra (head of Frontline Systems), has
arranged to provide users of this book with a free 140-day license to use a student version
of his company’s exciting new software package, Analytic Solver Platform. These four in-
dividuals and their companies—Accelet Corporation, LINDO Systems, Maximal Software,
and Frontline Systems—have made an invaluable contribution to this book.

I also am excited about the partnership with INFORMS that began with the 9th edi-
tion. Students can benefit greatly by reading about top-quality applications of opera-
tions research. This preeminent professional OR society is enabling this by providing a
link to the articles in Interfaces that describe the applications of OR that are summarized
in the application vignettes and other selected references of award winning OR applica-
tions provided in the book.

It was a real pleasure working with McGraw-Hill’s thoroughly professional editorial
and production staff, including Raghu Srinivasan (Global Publisher), Kathryn Neubauer Car-
ney (the Developmental Editor during most of the development of this edition), Vincent
Bradshaw (the Developmental Editor for the completion of this edition), and Mary Jane
Lampe (Content Project Manager).

Just as so many individuals made important contributions to this edition, I would like
to invite each of you to start contributing to the next edition by using my email address
below to send me your comments, suggestions, and errata to help me improve the book
in the future. In giving my email address, let me also assure instructors that I will con-
tinue to follow the policy of not providing solutions to problems and cases in the book to
anybody (including your students) who contacts me.

Enjoy the book.

Frederick S. Hillier
Stanford University (fhillier@stanford.edu)

May 2013
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11

1C H A P T E R

Introduction

■ 1.1 THE ORIGINS OF OPERATIONS RESEARCH

Since the advent of the industrial revolution, the world has seen a remarkable growth in the
size and complexity of organizations. The artisans’ small shops of an earlier era have
evolved into the billion-dollar corporations of today. An integral part of this revolutionary
change has been a tremendous increase in the division of labor and segmentation of man-
agement responsibilities in these organizations. The results have been spectacular. How-
ever, along with its blessings, this increasing specialization has created new problems,
problems that are still occurring in many organizations. One problem is a tendency for the
many components of an organization to grow into relatively autonomous empires with
their own goals and value systems, thereby losing sight of how their activities and objec-
tives mesh with those of the overall organization. What is best for one component fre-
quently is detrimental to another, so the components may end up working at cross
purposes. A related problem is that as the complexity and specialization in an organization
increase, it becomes more and more difficult to allocate the available resources to the vari-
ous activities in a way that is most effective for the organization as a whole. These kinds of
problems and the need to find a better way to solve them provided the environment for the
emergence of operations research (commonly referred to as OR).

The roots of OR can be traced back many decades,1 when early attempts were made to
use a scientific approach in the management of organizations. However, the beginning of
the activity called operations research has generally been attributed to the military services
early in World War II. Because of the war effort, there was an urgent need to allocate scarce
resources to the various military operations and to the activities within each operation in an
effective manner. Therefore, the British and then the U.S. military management called
upon a large number of scientists to apply a scientific approach to dealing with this and
other strategic and tactical problems. In effect, they were asked to do research on (military)
operations. These teams of scientists were the first OR teams. By developing effective
methods of using the new tool of radar, these teams were instrumental in winning the Air Bat-
tle of Britain. Through their research on how to better manage convoy and antisubmarine
operations, they also played a major role in winning the Battle of the North Atlantic. Sim-
ilar efforts assisted the Island Campaign in the Pacific.

1Selected Reference 7 provides an entertaining history of operations research that traces its roots as far back as
1564 by describing a considerable number of scientific contributions from 1564 to 2004 that influenced the sub-
sequent development of OR. Also see Selected References 1 and 6 for further details about this history.
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2 CHAPTER 1 INTRODUCTION

■ 1.2 THE NATURE OF OPERATIONS RESEARCH

As its name implies, operations research involves “research on operations.” Thus, opera-
tions research is applied to problems that concern how to conduct and coordinate the
operations (i.e., the activities) within an organization. The nature of the organization is
essentially immaterial, and in fact, OR has been applied extensively in such diverse areas
as manufacturing, transportation, construction, telecommunications, financial planning,
health care, the military, and public services, to name just a few. Therefore, the breadth of
application is unusually wide.

The research part of the name means that operations research uses an approach that
resembles the way research is conducted in established scientific fields. To a considerable
extent, the scientific method is used to investigate the problem of concern. (In fact, the term
management science sometimes is used as a synonym for operations research.) In particu-
lar, the process begins by carefully observing and formulating the problem, including gath-
ering all relevant data. The next step is to construct a scientific (typically mathematical)
model that attempts to abstract the essence of the real problem. It is then hypothesized that
this model is a sufficiently precise representation of the essential features of the situation

When the war ended, the success of OR in the war effort spurred interest in applying
OR outside the military as well. As the industrial boom following the war was running its
course, the problems caused by the increasing complexity and specialization in organiza-
tions were again coming to the forefront. It was becoming apparent to a growing number of
people, including business consultants who had served on or with the OR teams during the
war, that these were basically the same problems that had been faced by the military but in
a different context. By the early 1950s, these individuals had introduced the use of OR to a
variety of organizations in business, industry, and government. The rapid spread of OR
soon followed. (Selected Reference 6 recounts the development of the field of operations
research by describing the lives and contributions of 43 OR pioneers.)

At least two other factors that played a key role in the rapid growth of OR during this
period can be identified. One was the substantial progress that was made early in improving
the techniques of OR. After the war, many of the scientists who had participated on OR teams
or who had heard about this work were motivated to pursue research relevant to the field;
important advancements in the state of the art resulted. A prime example is the simplex method
for solving linear programming problems, developed by George Dantzig in 1947. Many of the
standard tools of OR, such as linear programming, dynamic programming, queueing theory,
and inventory theory, were relatively well developed before the end of the 1950s.

A second factor that gave great impetus to the growth of the field was the onslaught of
the computer revolution. A large amount of computation is usually required to deal most
effectively with the complex problems typically considered by OR. Doing this by hand
would often be out of the question. Therefore, the development of electronic digital com-
puters, with their ability to perform arithmetic calculations millions of times faster than a
human being can, was a tremendous boon to OR. A further boost came in the 1980s with
the development of increasingly powerful personal computers accompanied by good soft-
ware packages for doing OR. This brought the use of OR within the easy reach of much
larger numbers of people, and this progress further accelerated in the 1990s and into the
21st century. For example, the widely used spreadsheet package, Microsoft Excel, pro-
vides a Solver that will solve a variety of OR problems.Today, literally millions of individ-
uals have ready access to OR software. Consequently, a whole range of computers from
mainframes to laptops now are being routinely used to solve OR problems, including some
of enormous size.
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1.3 THE RISE OF ANALYTICS TOGETHER WITH OPERATIONS RESEARCH 3

that the conclusions (solutions) obtained from the model are also valid for the real prob-
lem. Next, suitable experiments are conducted to test this hypothesis, modify it as needed,
and eventually verify some form of the hypothesis. (This step is frequently referred to as
model validation.) Thus, in a certain sense, operations research involves creative scientific
research into the fundamental properties of operations. However, there is more to it than
this. Specifically, OR is also concerned with the practical management of the organization.
Therefore, to be successful, OR must also provide positive, understandable conclusions to
the decision maker(s) when they are needed.

Still another characteristic of OR is its broad viewpoint. As implied in the preceding
section, OR adopts an organizational point of view. Thus, it attempts to resolve the con-
flicts of interest among the components of the organization in a way that is best for the
organization as a whole. This does not imply that the study of each problem must give
explicit consideration to all aspects of the organization; rather, the objectives being sought
must be consistent with those of the overall organization.

An additional characteristic is that OR frequently attempts to search for a best solution
(referred to as an optimal solution) for the model that represents the problem under con-
sideration. (We say a best instead of the best solution because multiple solutions may be
tied as best.) Rather than simply improving the status quo, the goal is to identify a best pos-
sible course of action. Although it must be interpreted carefully in terms of the practical
needs of management, this “search for optimality” is an important theme in OR.

All these characteristics lead quite naturally to still another one. It is evident that no
single individual should be expected to be an expert on all the many aspects of OR work or
the problems typically considered; this would require a group of individuals having diverse
backgrounds and skills. Therefore, when a full-fledged OR study of a new problem is
undertaken, it is usually necessary to use a team approach. Such an OR team typically
needs to include individuals who collectively are highly trained in mathematics, statistics
and probability theory, economics, business administration, computer science, engineering
and the physical sciences, the behavioral sciences, and the special techniques of OR. The
team also needs to have the necessary experience and variety of skills to give appropriate
consideration to the many ramifications of the problem throughout the organization.

■ 1.3 THE RISE OF ANALYTICS TOGETHER WITH OPERATIONS RESEARCH
There has been great buzz throughout the business world in recent years about something
called analytics (or business analytics) and the importance of incorporating analytics into
managerial decision making. The primary impetus for this buzz was a series of articles and
books by Thomas H. Davenport, a renowned thought-leader who has helped hundreds of
companies worldwide to revitalize their business practices. He initially introduced the con-
cept of analytics in the January 2006 issue of the Harvard Business Review with an article,
“Competing on Analytics,” that now has been named as one of the ten must-read articles in
that magazine’s 90-year history. This article soon was followed by two best-selling books
entitled Competing on Analytics: The New Science of Winning and Analytics at Work:
Smarter Decisions, Better Results. (See Selected References 2 and 3 at the end of the chap-
ter for the citations.)

So what is analytics? The short (but oversimplified) answer is that it is basically oper-
ations research by another name. However, there are some differences in their relative
emphases. Furthermore, the strengths of the analytics approach are likely to be increas-
ingly incorporated into the OR approach as time goes on, so it will be instructive to
describe analytics a little further.
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4 CHAPTER 1 INTRODUCTION

Analytics fully recognizes that we have entered into the era of big data where massive
amounts of data now are commonly available to many businesses and organizations to help
guide managerial decision making. The current data surge is coming from sophisticated
computer tracking of shipments, sales, suppliers, and customers, as well as email, Web
traffic, and social networks. As indicated by the following definition, a primary focus of
analytics is on how to make the most effective use of all these data.

Analytics is the scientific process of transforming data into insight for making better 
decisions.

The application of analytics can be divided into three overlapping categories. One of
these is descriptive analytics, which involves using innovative techniques to locate the rel-
evant data and identify the interesting patterns in order to better describe and understand
what is going on now. One important technique for doing this is called data mining (as
described in Selected Reference 8). Some analytics professionals who specialize in
descriptive analytics are called data scientists.

A second (and more advanced) category is predictive analytics, which involves using
the data to predict what will happen in the future. Statistical forecasting methods, such as
those described in Chap. 27 (on the book’s website), are prominently used here. Simula-
tion (Chap. 20) also can be useful.

The final (and most advanced) category is prescriptive analytics, which involves using
the data to prescribe what should be done in the future. The powerful optimization tech-
niques of operations research described in many of the chapters of this book generally are
what are used here. 

Operations research analysts also often deal with all three of these categories, but not
very much with the first one, somewhat more with the second one, and then heavily with
the last one. Thus, OR can be thought of as focusing mainly on advanced analytics—
predictive and prescriptive activities—whereas analytics professionals might get more
involved than OR analysts with the entire business process, including what precedes the
first category (identifying a need) and what follows the last category (implementation).
Looking to the future, the two approaches should tend to merge over time. Because the
name analytics (or business analytics) is more meaningful to most people than the term
operations research, we might find that analytics may eventually replace operations
research as the common name for this integrated discipline.

Although analytics was initially introduced as a key tool for mainly business organi-
zations, it also can be a powerful tool in other contexts. As one example, analytics
(together with OR) played a key role in the 2012 presidential campaign in the United
States. The Obama campaign management hired a multi-disciplinary team of statisticians,
predictive modelers, data-mining experts, mathematicians, software programmers, and OR
analysts. It eventually built an entire analytics department five times as large as that of its
2008 campaign. With all this analytics input, the Obama team launched a full-scale and all-
front campaign, leveraging massive amounts of data from various sources to directly
micro-target potential voters and donors with tailored messages. The election had been
expected to be a very close one, but the Obama “ground game” that had been propelled by
descriptive and predictive analytics was given much of the credit for the clear-cut Obama
win. Based on this experience, both political parties undoubtedly will make extensive use
of analytics in the future in major political campaigns.

Another famous application of analytics is described in the book Moneyball (cited in
Selected Reference 10) and a subsequent 2011 movie with the same name that is based on
this book. They tell the true story of how the Oakland Athletics baseball team achieved
great success, despite having one of the smallest budgets in the major leagues, by using
various kinds of nontraditional data (referred to as sabermetrics) to better evaluate the
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potential of players available through a trade or the draft. Although these evaluations often
flew in the face of conventional baseball wisdom, both descriptive analytics and predictive
analytics were being used to identify overlooked players who could greatly help the team.
After witnessing the impact of analytics, many major league baseball teams now have
hired analytics professionals. Some other kinds of sports teams also are beginning to use
analytics. (Selected References 4 and 5 have 17 articles describing the application of ana-
lytics in various sports.)

These and numerous other success stories about the power of analytics and OR
together should lead to their ever-increasing use in the future. Meanwhile, OR already has
had a powerful impact, as described further in the next section.

■ 1.4 THE IMPACT OF OPERATIONS RESEARCH

Operations research has had an impressive impact on improving the efficiency of numerous
organizations around the world. In the process, OR has made a significant contribution to
increasing the productivity of the economies of various countries. There now are a few
dozen member countries in the International Federation of Operational Research Societies
(IFORS), with each country having a national OR society. Both Europe and Asia have fed-
erations of OR societies to coordinate holding international conferences and publishing
international journals in those continents. In addition, the Institute for Operations Research
and the Management Sciences (INFORMS) is an international OR society that is headquar-
tered in the United States. Just as in many other developed countries, OR is an important
profession in the United States. According to projections from the U.S. Bureau of Labor
Statistics for the year 2013, there are approximately 65,000 individuals working as opera-
tions research analysts in the United States with an average salary of about $79,000.

Because of the rapid rise of analytics described in the preceding section, INFORMS
has embraced analytics as an approach to decision making that largely overlaps and further
enriches the OR approach. Therefore, this leading OR society now includes an annual
Conference on Business Analytics and Operations Research among its major conferences.
It also provides a Certified Analytics Professional credential for those individuals who sat-
isfy certain criteria and pass an examination. In addition, INFORMS publishes many of the
leading journals in the field, including one called Analytics, and another, called Interfaces,
regularly publishes articles describing major OR studies and the impact they had on their
organizations.

To give you a better notion of the wide applicability of OR, we list some actual appli-
cations in Table 1.1 that have been described in Interfaces. Note the diversity of organiza-
tions and applications in the first two columns. The third column identifies the section
where an “application vignette” devotes several paragraphs to describing the application
and also references an article that provides full details. (You can see the first of these appli-
cation vignettes in this section.) The last column indicates that these applications typi-
cally resulted in annual savings in the many millions of dollars. Furthermore,
additional benefits not recorded in the table (e.g., improved service to customers and bet-
ter managerial control) sometimes were considered to be even more important than these
financial benefits. (You will have an opportunity to investigate these less tangible bene-
fits further in Probs. 1.3-1, 1.3-2, and 1.3-3.) A link to the articles that describe these
applications in detail is included on our website, www.mhhe.com/hillier.

Although most routine OR studies provide considerably more modest benefits than
the applications summarized in Table 1.1, the figures in the rightmost column of this table
do accurately reflect the dramatic impact that large, well-designed OR studies occasionally
can have.

1.4 THE IMPACT OF OPERATIONS RESEARCH 5
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An Application Vignette

FedEx Corporation is the world’s largest courier delivery
services company. Every working day, it delivers many
millions of documents, packages, and other items through-
out the United States and hundreds of countries and terri-
tories around the world. In some cases, these shipments
can be guaranteed overnight delivery by 10:30 A.M.
the next morning.

The logistical challenges involved in providing this
service are staggering. These millions of daily shipments
must be individually sorted and routed to the correct gen-
eral location (usually by aircraft) and then delivered to
the exact destination (usually by motorized vehicle) in an
amazingly short period of time. How is all this possible?

Operations research (OR) is the technological engine
that drives this company. Ever since its founding in 1973,
OR has helped make its major business decisions, includ-
ing equipment investment, route structure, scheduling,
finances, and location of facilities. After OR was credited
with literally saving the company during its early years, it
became the custom to have OR represented at the weekly

senior management meetings and, indeed, several of the
senior corporate vice presidents have come up from the
outstanding FedEx OR group.

FedEx has come to be acknowledged as a world-
class company. It routinely ranks among the top compa-
nies on Fortune Magazine’s annual listing of the
“World’s Most Admired Companies and this same maga-
zine named the firm as one of the top 100 companies to
work for in 2013.” It also was the first winner (in 1991) of
the prestigious prize now known as the INFORMS Prize,
which is awarded annually for the effective and repeated
integration of OR into organizational decision making 
in pioneering, varied, novel, and lasting ways. The 
company’s great dependence on OR has continued to the
present day.

Source: R. O. Mason, J. L. McKenney, W. Carlson, and 
D. Copeland, “Absolutely, Positively Operations Research: The
Federal Express Story,” Interfaces, 27(2): 17–36, March—April
1997. (A link to this article is provided on our website,
www.mhhe.com/hillier.)

■ TABLE 1.1 Applications of operations research to be described in application vignettes

Organization Area of Application Section Annual Savings

Federal Express Logistical planning of shipments 1.4 Not estimated
Continental Airlines Reassign crews to flights when schedule 2.2 $40 million

disruptions occur
Swift & Company Improve sales and manufacturing 3.1 $12 million

performance
Memorial Sloan-Kettering Design of radiation therapy 3.4 $459 million
Cancer Center
Welch’s Optimize use and movement of raw materials 3.5 $150,000
INDEVAL Settle all securities transactions in Mexico 3.6 $150 million
Samsung Electronics Reduce manufacturing times and inventory levels 4.3 $200 million more revenue
Pacific Lumber Company Long-term forest ecosystem management 7.2 $398 million NPV
Procter & Gamble Redesign the production and distribution system 9.1 $200 million
Canadian Pacific Railway Plan routing of rail freight 10.3 $100 million
Hewlett-Packard Product portfolio management 10.5 $180 million
Norwegian companies Maximize flow of natural gas through offshore 10.5 $140 million

pipeline network
United Airlines Reassign airplanes to flights when disruptions occur 10.6 Not estimated
U.S. Military Logistical planning of Operations Desert Storm 11.3 Not estimated
MISO Administer the transmission of electricity in 13 states 12.2 $700 million
Netherlands Railways Optimize operation of a railway network 12.2 $105 million
Taco Bell Plan employee work schedules at restaurants 12.5 $13 million
Waste Management Develop a route-management system for trash 12.7 $100 million

collection and disposal
Bank Hapoalim Group Develop a decision-support system for 13.1 $31 million more revenue

investment advisors
DHL Optimize the use of marketing resources 13.10 $22 million
Sears Vehicle routing and scheduling for home 14.2 $42 million

services and deliveries
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■ TABLE 1.1 Applications of operations research to be described in application vignettes (contd)

Organization Area of Application Section Annual Savings

Intel Corporation Design and schedule the product line 14.4 Not estimated
Conoco-Phillips Evaluate petroleum exploration projects 16.2 Not estimated
Workers’ Compensation Manage high-risk disability claims and rehabilitation 16.3 $4 million
Board
Westinghouse Evaluate research-and-development projects 16.4 Not estimated
KeyCorp Improve efficiency of bank teller service 17.6 $20 million
General Motors Improve efficiency of production lines 17.9 $90 million
Deere & Company Management of inventories throughout a 18.5 $1 billion less inventory

supply chain
Time Inc. Management of distribution channels for magazines 18.7 $3.5 million more profit
InterContinental Hotels Revenue management 18.8 $400 million more revenue
Bank One Corporation Management of credit lines and interest rates 19.2 $75 million more profit

for credit cards
Merrill Lynch Pricing analysis for providing financial services 20.2 $50 million more revenue
Sasol Improve the efficiency of its production processes 20.5 $23 million
FAA Manage air traffic flows in severe weather 20.5 $200 million

■ 1.5 ALGORITHMS AND OR COURSEWARE

An important part of this book is the presentation of the major algorithms (systematic solu-
tion procedures) of OR for solving certain types of problems. Some of these algorithms are
amazingly efficient and are routinely used on problems involving hundreds or thousands of
variables. You will be introduced to how these algorithms work and what makes them so
efficient. You then will use these algorithms to solve a variety of problems on a computer.
The OR Courseware contained on the book’s website (www.mhhe.com/hillier) will be a
key tool for doing all this.

One special feature in your OR Courseware is a program called OR Tutor. This pro-
gram is intended to be your personal tutor to help you learn the algorithms. It consists of
many demonstration examples that display and explain the algorithms in action. These
“demos” supplement the examples in the book.

In addition, your OR Courseware includes a special software package called
Interactive Operations Research Tutorial, or IOR Tutorial for short. Implemented in
Java, this innovative package is designed specifically to enhance the learning experience of
students using this book. IOR Tutorial includes many interactive procedures for executing
the algorithms interactively in a convenient format. The computer does all the routine cal-
culations while you focus on learning and executing the logic of the algorithm. You should
find these interactive procedures a very efficient and enlightening way of doing many of
your homework problems. IOR Tutorial also includes a number of other helpful proce-
dures, including some automatic procedures for executing algorithms automatically and
several procedures that provide graphical displays of how the solution provided by an algo-
rithm varies with the data of the problem.

In practice, the algorithms normally are executed by commercial software packages.
We feel that it is important to acquaint students with the nature of these packages that they
will be using after graduation. Therefore, your OR Courseware includes a wealth of mate-
rial to introduce you to four particularly popular software packages described next.
Together, these packages will enable you to solve nearly all the OR models encountered in
this book very efficiently. We have added our own automatic procedures to IOR Tutorial in
a few cases where these packages are not applicable.
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8 CHAPTER 1 INTRODUCTION

A very popular approach now is to use today’s premier spreadsheet package,
Microsoft Excel, to formulate small OR models in a spreadsheet format. Included with
standard Excel is an add-in, called Solver (a product of Frontline Systems, Inc.), that can
be used to solve many of these models. Your OR Courseware includes separate Excel files
for nearly every chapter in this book. Each time a chapter presents an example that can be
solved using Excel, the complete spreadsheet formulation and solution is given in that
chapter’s Excel files. For many of the models in the book, an Excel template also is pro-
vided that already includes all the equations necessary to solve the model. 

New with this edition of the textbook is a powerful software package from Frontline
Systems called Analytic Solver Platform for Education (ASPE), which is fully compat-
ible with Excel and Excel’s Solver. The recently released Analytic Solver Platform com-
bines all the capabilities of three other popular products from Frontline Systems: (1)
Premium Solver Platform (a powerful spreadsheet optimizer that includes five solvers for
linear, mixed-integer, nonlinear, non-smooth, and global optimization), (2) Risk Solver Pro
(for simulation and risk analysis), and (3) XLMiner (an Excel-based tool for data mining and
forecasting). It also has the ability to solve optimization models involving uncertainty and
recourse decisions, perform sensitivity analysis, and construct decision trees. It even has an
ultra-high-performance linear mixed-integer optimizer. The student version of Analytic
Solver Platform retains all these capabilities when dealing with smaller problems. Among
the special features of ASPE that are highlighted in this book  are a greatly enhanced ver-
sion of the basic Solver included with Excel (as described in Sec. 3.5), the ability to build
decision trees within Excel (as described in Sec. 16.5), and tools to build simulation mod-
els within Excel (as described in Sec. 20.6).

After many years, LINDO (and its companion modeling language LINGO) continues
to be a popular OR software package. Student versions of LINDO and LINGO now can be
downloaded free from the Web at www.lindo.com. This student version also is provided in
your OR Courseware. As for Excel, each time an example can be solved with this package,
all the details are given in a LINGO/LINDO file for that chapter in your OR Courseware.

When dealing with large and challenging OR problems, it is common to also use a
modeling system to efficiently formulate the mathematical model and enter it into the com-
puter. MPL is a user-friendly modeling system that includes a considerable number of elite
solvers for solving such problems very efficiently. These solvers include CPLEX,
GUROBI, CoinMP, and SULUM for linear and integer programming (Chaps. 3-10 and 12),
as well as CONOPT for convex programming (part of Chap. 13) and LGO for global opti-
mization (Sec. 13.10), among others. A student version of MPL, along with the student
version of its solvers, is available free by downloading it from the Web. For your conve-
nience, we also have included this student version (including the six solvers just men-
tioned) in your OR Courseware. Once again, all the examples that can be solved with this
package are detailed in MPL/Solvers files for the corresponding chapters in your OR
Courseware. Furthermore, academic users can apply to receive full-sized versions of MPL,
CPLEX, and GUROBI by going to their respective websites.2 This means that any acade-
mic users (professors or students) now can obtain professional versions of MPL with
CPLEX and GUROBI for use in their coursework.

We will further describe these four software packages and how to use them later (espe-
cially near the end of Chaps. 3 and 4). Appendix 1 also provides documentation for the OR
Courseware, including OR Tutor and IOR Tutorial.

To alert you to relevant material in OR Courseware, the end of each chapter from
Chap. 3 onward has a list entitled Learning Aids for This Chapter on our Website. As

2MPL: http://www.maximalsoftware.com/academic; CPLEX: http://www-03.ibm.com/ibm/university/academic/pub/
page/ban_ilog_programming; GUROBI: http://www.gurobi.com/products/licensing-and-pricing/academic-licensing 
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sonalized accounts of some of the key early theoretical and practical developments in the field),
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■ PROBLEMS

1.3-1. Select one of the applications of operations research
listed in Table 1.1. Read the article that is referenced in the
application vignette presented in the section shown in the third
column. (A link to all these articles is provided on our website,
www.mhhe.com/hillier.) Write a two-page summary of the
application and the benefits (including nonfinancial benefits) it
provided.
1.3-2. Select three of the applications of operations research listed
in Table 1.1. For each one, read the article that is referenced in the

application vignette presented in the section shown in the third col-
umn. (A link to all these articles is provided on our website,
www.mhhe.com/hillier.) For each one, write a one-page sum-
mary of the application and the benefits (including nonfinancial
benefits) it provided.
1.3-3. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 1.4. List
the various financial and nonfinancial benefits that resulted from
this study.

explained at the beginning of the problem section for each of these chapters, symbols also
are placed to the left of each problem number or part where any of this material (including
demonstration examples and interactive procedures) can be helpful.

Another learning aid provided on our website is a set of Solved Examples for each
chapter (from Chap. 3 onward). These complete examples supplement the examples in the
book for your use as needed, but without interrupting the flow of the material on those
many occasions when you don’t need to see an additional example. You also might find
these supplementary examples helpful when preparing for an examination. We always will
mention whenever a supplementary example on the current topic is included in the Solved
Examples section of the book’s website. To make sure you don’t overlook this mention, we
will boldface the words additional example (or something similar) each time.

The website also includes a glossary for each chapter.
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10

The bulk of this book is devoted to the mathematical methods of operations research (OR).
This is quite appropriate because these quantitative techniques form the main part of

what is known about OR. However, it does not imply that practical OR studies are primarily
mathematical exercises. As a matter of fact, the mathematical analysis often represents only
a relatively small part of the total effort required. The purpose of this chapter is to place
things into better perspective by describing all the major phases of a typical large OR study.

One way of summarizing the usual (overlapping) phases of an OR study is the following:

1. Define the problem of interest and gather relevant data.
2. Formulate a mathematical model to represent the problem.
3. Develop a computer-based procedure for deriving solutions to the problem from the

model.
4. Test the model and refine it as needed.
5. Prepare for the ongoing application of the model as prescribed by management.
6. Implement.

Each of these phases will be discussed in turn in the following sections.
The selected references at the end of the chapter include some award-winning OR

studies that provide excellent examples of how to execute these phases well. We will inter-
sperse snippets from some of these examples throughout the chapter. If you decide that you
would like to learn more about these award-winning applications of operations research, a
link to the articles that describe these OR studies in detail is included on the book’s web-
site, www.mhhe.com/hillier.

Overview of the Operations 
Research Modeling Approach

2C H A P T E R

■ 2.1 DEFINING THE PROBLEM AND GATHERING DATA

In contrast to textbook examples, most practical problems encountered by OR teams are
initially described to them in a vague, imprecise way. Therefore, the first order of business
is to study the relevant system and develop a well-defined statement of the problem to be
considered. This includes determining such things as the appropriate objectives, con-
straints on what can be done, interrelationships between the area to be studied and other

hil23453_ch02_010-024.qxd  1/15/70  7:34 AM  Page 10 Final PDF to printer



2.1 DEFINING THE PROBLEM AND GATHERING DATA 11

areas of the organization, possible alternative courses of action, time limits for making a
decision, and so on. This process of problem definition is a crucial one because it greatly
affects how relevant the conclusions of the study will be. It is difficult to extract a “right”
answer from the “wrong” problem!

The first thing to recognize is that an OR team normally works in an advisory capac-
ity. The team members are not just given a problem and told to solve it however they see fit.
Instead, they advise management (often one key decision maker). The team performs a
detailed technical analysis of the problem and then presents recommendations to manage-
ment. Frequently, the report to management will identify a number of alternatives that are
particularly attractive under different assumptions or over a different range of values of
some policy parameter that can be evaluated only by management (e.g., the trade-off
between cost and benefits). Management evaluates the study and its recommendations,
takes into account a variety of intangible factors, and makes the final decision based on its
best judgment. Consequently, it is vital for the OR team to get on the same wavelength as
management, including identifying the “right” problem from management’s viewpoint,
and to build the support of management for the course that the study is taking.

Ascertaining the appropriate objectives is a very important aspect of problem defini-
tion. To do this, it is necessary first to identify the member (or members) of management
who actually will be making the decisions concerning the system under study and then to
probe into this individual’s thinking regarding the pertinent objectives. (Involving the deci-
sion maker from the outset also is essential to build her or his support for the implementa-
tion of the study.)

By its nature, OR is concerned with the welfare of the entire organization rather than
that of only certain of its components. An OR study seeks solutions that are optimal for the
overall organization rather than suboptimal solutions that are best for only one component.
Therefore, the objectives that are formulated ideally should be those of the entire organiza-
tion. However, this is not always convenient. Many problems primarily concern only a por-
tion of the organization, so the analysis would become unwieldy if the stated objectives
were too general and if explicit consideration were given to all side effects on the rest of
the organization. Instead, the objectives used in the study should be as specific as they can
be while still encompassing the main goals of the decision maker and maintaining a rea-
sonable degree of consistency with the higher-level objectives of the organization.

For profit-making organizations, one possible approach to circumventing the problem
of suboptimization is to use long-run profit maximization (considering the time value of
money) as the sole objective. The adjective long-run indicates that this objective provides
the flexibility to consider activities that do not translate into profits immediately
(e.g., research and development projects) but need to do so eventually in order to be worth-
while. This approach has considerable merit. This objective is specific enough to be used
conveniently, and yet it seems to be broad enough to encompass the basic goal of profit-
making organizations. In fact, some people believe that all other legitimate objectives can
be translated into this one.

However, in actual practice, many profit-making organizations do not use this
approach. A number of studies of U.S. corporations have found that management tends to
adopt the goal of satisfactory profits, combined with other objectives, instead of focusing
on long-run profit maximization. Typically, some of these other objectives might be to
maintain stable profits, increase (or maintain) one’s share of the market, provide for prod-
uct diversification, maintain stable prices, improve worker morale, maintain family control
of the business, and increase company prestige. Fulfilling these objectives might achieve
long-run profit maximization, but the relationship may be sufficiently obscure that it may
not be convenient to incorporate them all into this one objective.
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12 CHAPTER 2 OVERVIEW OF THE OPERATIONS RESEARCH MODELING APPROACH

Furthermore, there are additional considerations involving social responsibilities that
are distinct from the profit motive. The five parties generally affected by a business firm
located in a single country are (1) the owners (stockholders, etc.), who desire profits (divi-
dends, stock appreciation, and so on); (2) the employees, who desire steady employment at
reasonable wages; (3) the customers, who desire a reliable product at a reasonable price;
(4) the suppliers, who desire integrity and a reasonable selling price for their goods; and
(5) the government and hence the nation, which desire payment of fair taxes and consider-
ation of the national interest. All five parties make essential contributions to the firm, and
the firm should not be viewed as the exclusive servant of any one party for the exploitation
of others. By the same token, international corporations acquire additional obligations to
follow socially responsible practices. Therefore, while granting that management’s prime
responsibility is to make profits (which ultimately benefits all five parties), we note that its
broader social responsibilities also must be recognized.

OR teams typically spend a surprisingly large amount of time gathering relevant data
about the problem. Much data usually are needed both to gain an accurate understanding of
the problem and to provide the needed input for the mathematical model being formulated
in the next phase of study. Frequently, much of the needed data will not be available when
the study begins, either because the information never has been kept or because what was
kept is outdated or in the wrong form. Therefore, it often is necessary to install a new
computer-based management information system to collect the necessary data on an ongo-
ing basis and in the needed form. The OR team normally needs to enlist the assistance of
various other key individuals in the organization, including information technology (IT)
specialists, to track down all the vital data. Even with this effort, much of the data may be
quite “soft,” i.e., rough estimates based only on educated guesses. Typically, an OR team
will spend considerable time trying to improve the precision of the data and then will make
do with the best that can be obtained.

With the widespread use of databases and the explosive growth in their sizes in recent
years, OR teams now frequently find that their biggest data problem is not that too little is
available but that there is too much data. There may be thousands of sources of data, and
the total amount of data may be measured in gigabytes or even terabytes. In this environ-
ment, locating the particularly relevant data and identifying the interesting patterns in
these data can become an overwhelming task. One of the newer tools of OR teams is a
technique called data mining that addresses this problem. Data mining methods search
large databases for interesting patterns that may lead to useful decisions. (Selected Refer-
ence 6 at the end of the chapter provides further background about data mining.)

Example. In the late 1990s, full-service financial services firms came under assault
from electronic brokerage firms offering extremely low trading costs. Merrill Lynch
responded by conducting a major OR study that led to a complete overhaul in how it
charged for its services, ranging from a full-service asset-based option (charge a fixed
percentage of the value of the assets held rather than for individual trades) to a low-cost
option for clients wishing to invest online directly. Data collection and processing played
a key role in the study. To analyze the impact of individual client behavior in response to
different options, the team needed to assemble a comprehensive 200 gigabyte client
database involving 5 million clients, 10 million accounts, 100 million trade records, and
250 million ledger records. This required merging, reconciling, filtering, and cleaning data
from numerous production databases. The adoption of the recommendations of the study
led to a one-year increase of nearly $50 billion in client assets held and nearly $80 million
more revenue. (Selected Reference A2 describes this study in detail. Also see Selected
References A1, A10, and A14 for other examples where data collection and processing
played a particularly key role in an award-winning OR study.)
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■ 2.2 FORMULATING A MATHEMATICAL MODEL

After the decision-maker’s problem is defined, the next phase is to reformulate this prob-
lem in a form that is convenient for analysis. The conventional OR approach for doing this
is to construct a mathematical model that represents the essence of the problem. Before
discussing how to formulate such a model, we first explore the nature of models in general
and of mathematical models in particular.

Models, or idealized representations, are an integral part of everyday life. Common
examples include model airplanes, portraits, globes, and so on. Similarly, models play an
important role in science and business, as illustrated by models of the atom, models of
genetic structure, mathematical equations describing physical laws of motion or chemical
reactions, graphs, organizational charts, and industrial accounting systems. Such models
are invaluable for abstracting the essence of the subject of inquiry, showing interrelation-
ships, and facilitating analysis.

Mathematical models are also idealized representations, but they are expressed in terms
of mathematical symbols and expressions. Such laws of physics as F = ma and E = mc2 are
familiar examples. Similarly, the mathematical model of a business problem is the system of
equations and related mathematical expressions that describe the essence of the problem.
Thus, if there are n related quantifiable decisions to be made, they are represented as
decision variables (say, x1, x2, . . . , xn) whose respective values are to be determined. The
appropriate measure of performance (e.g., profit) is then expressed as a mathematical func-
tion of these decision variables (for example, P = 3x1 + 2x2 + . . . + 5xn). This function is
called the objective function. Any restrictions on the values that can be assigned to these
decision variables are also expressed mathematically, typically by means of inequalities or
equations (for example, x1 + 3x1x2 + 2x2 � 10). Such mathematical expressions for the
restrictions often are called constraints. The constants (namely, the coefficients and right-
hand sides) in the constraints and the objective function are called the parameters of the
model. The mathematical model might then say that the problem is to choose the values of
the decision variables so as to maximize the objective function, subject to the specified con-
straints. Such a model, and minor variations of it, typifies the models used in OR.

Determining the appropriate values to assign to the parameters of the model (one
value per parameter) is both a critical and a challenging part of the model-building process.
In contrast to textbook problems where the numbers are given to you, determining para-
meter values for real problems requires gathering relevant data. As discussed in the pre-
ceding section, gathering accurate data frequently is difficult. Therefore, the value
assigned to a parameter often is, of necessity, only a rough estimate. Because of the uncer-
tainty about the true value of the parameter, it is important to analyze how the solution
derived from the model would change (if at all) if the value assigned to the parameter were
changed to other plausible values. This process is referred to as sensitivity analysis, as
discussed further in the next section (and much of Chap. 7).

Although we refer to “the” mathematical model of a business problem, real problems
normally don’t have just a single “right” model. Section 2.4 will describe how the process
of testing a model typically leads to a succession of models that provide better and better
representations of the problem. It is even possible that two or more completely different
types of models may be developed to help analyze the same problem.

You will see numerous examples of mathematical models throughout the remainder of
this book. One particularly important type that is studied in the next several chapters is the
linear programming model, where the mathematical functions appearing in both the
objective function and the constraints are all linear functions. In Chap. 3, specific linear
programming models are constructed to fit such diverse problems as determining (1) the
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mix of products that maximizes profit, (2) the design of radiation therapy that effectively
attacks a tumor while minimizing the damage to nearby healthy tissue, (3) the allocation of
acreage to crops that maximizes total net return, and (4) the combination of pollution
abatement methods that achieves air quality standards at minimum cost.

Mathematical models have many advantages over a verbal description of the problem.
One advantage is that a mathematical model describes a problem much more concisely.
This tends to make the overall structure of the problem more comprehensible, and it helps to
reveal important cause-and-effect relationships. In this way, it indicates more clearly what
additional data are relevant to the analysis. It also facilitates dealing with the problem in its
entirety and considering all its interrelationships simultaneously. Finally, a mathematical
model forms a bridge to the use of high-powered mathematical techniques and computers to
analyze the problem. Indeed, packaged software for both personal computers and main-
frame computers has become widely available for solving many mathematical models.

However, there are pitfalls to be avoided when you use mathematical models. Such a
model is necessarily an abstract idealization of the problem, so approximations and sim-
plifying assumptions generally are required if the model is to be tractable (capable of
being solved). Therefore, care must be taken to ensure that the model remains a valid rep-
resentation of the problem. The proper criterion for judging the validity of a model is
whether the model predicts the relative effects of the alternative courses of action with
sufficient accuracy to permit a sound decision. Consequently, it is not necessary to
include unimportant details or factors that have approximately the same effect for all the
alternative courses of action considered. It is not even necessary that the absolute magni-
tude of the measure of performance be approximately correct for the various alternatives,
provided that their relative values (i.e., the differences between their values) are suffi-
ciently precise. Thus, all that is required is that there be a high correlation between the
prediction by the model and what would actually happen in the real world. To ascertain
whether this requirement is satisfied, it is important to do considerable testing and conse-
quent modifying of the model, which will be the subject of Sec. 2.4. Although this testing
phase is placed later in the chapter, much of this model validation work actually is con-
ducted during the model-building phase of the study to help guide the construction of the
mathematical model.

In developing the model, a good approach is to begin with a very simple version and
then move in evolutionary fashion toward more elaborate models that more nearly reflect
the complexity of the real problem. This process of model enrichment continues only as
long as the model remains tractable. The basic trade-off under constant consideration is
between the precision and the tractability of the model. (See Selected Reference 9 for a
detailed description of this process.)

A crucial step in formulating an OR model is the construction of the objective func-
tion. This requires developing a quantitative measure of performance relative to each of the
decision maker’s ultimate objectives that were identified while the problem was being
defined. If there are multiple objectives, their respective measures commonly are then
transformed and combined into a composite measure, called the overall measure of 
performance. This overall measure might be something tangible (e.g., profit) correspond-
ing to a higher goal of the organization, or it might be abstract (e.g., utility). In the latter
case, the task of developing this measure tends to be a complex one requiring a careful
comparison of the objectives and their relative importance. After the overall measure of
performance is developed, the objective function is then obtained by expressing this mea-
sure as a mathematical function of the decision variables. Alternatively, there also are
methods for explicitly considering multiple objectives simultaneously, and one of these
(goal programming) is discussed in the supplement to Chap. 8.
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Example. The Netherlands government agency responsible for water control and public
works, the Rijkswaterstaat, commissioned a major OR study to guide the development of a
new national water management policy. The new policy saved hundreds of millions of dollars
in investment expenditures and reduced agricultural damage by about $15 million per year,
while decreasing thermal and algae pollution. Rather than formulating one mathematical
model, this OR study developed a comprehensive, integrated system of 50 models!
Furthermore, for some of the models, both simple and complex versions were developed. The
simple version was used to gain basic insights, including trade-off analyses. The complex
version then was used in the final rounds of the analysis or whenever greater accuracy or more
detailed outputs were desired. The overall OR study directly involved over 125 person-years
of effort (more than one-third in data gathering), created several dozen computer programs,
and structured an enormous amount of data. (Selected Reference A8 describes this study in
detail. Also see Selected References A3 and A9 for other examples where a large number of
mathematical models were effectively integrated in an award-winning OR study.)

■ 2.3 DERIVING SOLUTIONS FROM THE MODEL

After a mathematical model is formulated for the problem under consideration, the next phase
in an OR study is to develop a procedure (usually a computer-based procedure) for deriving
solutions to the problem from this model. You might think that this must be the major part of the
study, but actually it is not in most cases. Sometimes, in fact, it is a relatively simple step, in
which one of the standard algorithms (systematic solution procedures) of OR is applied on a
computer by using one of a number of readily available software packages. For experienced OR
practitioners, finding a solution is the fun part, whereas the real work comes in the preceding
and following steps, including the postoptimality analysis discussed later in this section.

Prior to its merger with United Airlines that was com-
pleted in 2012, Continental Airlines was a major U.S.
air carrier that transported passengers, cargo, and mail. It
operated more than 2,000 daily departures to well over
100 domestic destinations and nearly 100 foreign desti-
nations. Following the merger under the name of United
Airlines, the combined airline has a fleet of over 700 air-
craft serving up to 370 destinations.

Airlines like Continental (and now under its reincar-
nation as part of United Airlines) face schedule disrup-
tions daily because of unexpected events, including
inclement weather, aircraft mechanical problems, and
crew unavailability. These disruptions can cause flight
delays and cancellations. As a result, crews may not be in
position to service their remaining scheduled flights. 
Airlines must reassign crews quickly to cover open
flights and to return them to their original schedules in a
cost-effective manner while honoring all government
regulations, contractual obligations, and quality-of-life
requirements.

To address such problems, an OR team at Continen-
tal Airlines developed a detailed mathematical model for
reassigning crews to flights as soon as such emergencies
arise. Because the airline has thousands of crews and

daily flights, the model needed to be huge to consider all
possible pairings of crews with flights. Therefore, the
model has millions of decision variables and many thou-
sands of constraints. In its first year of use (mainly in
2001), the model was applied four times to recover from
major schedule disruptions (two snowstorms, a flood,
and the September 11 terrorist attacks). This led to
savings of approximately $40 million. Subsequent appli-
cations extended to many daily minor disruptions as well.

Although other airlines subsequently scrambled to
apply operations research in a similar way, this initial
advantage over other airlines in being able to recover
more quickly from schedule disruptions with fewer
delays and canceled flights left Continental Airlines in a
relatively strong position as the airline industry struggled
through a difficult period during the initial years of the
21st century. This initiative led to Continental winning
the prestigious First Prize in the 2002 international com-
petition for the Franz Edelman Award for Achievement in
Operations Research and the Management Sciences.

Source: G. Yu, M. Argüello, C. Song, S. M. McGowan, and 
A. White, “A New Era for Crew Recovery at Continental Air-
lines,” Interfaces, 33(1): 5–22, Jan.–Feb. 2003. (A link to this
article is provided on our website, www.mhhe.com/hillier.)

An Application Vignette
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Since much of this book is devoted to the subject of how to obtain solutions for vari-
ous important types of mathematical models, little needs to be said about it here. However,
we do need to discuss the nature of such solutions.

A common theme in OR is the search for an optimal, or best, solution. Indeed, many
procedures have been developed, and are presented in this book, for finding such solutions
for certain kinds of problems. However, it needs to be recognized that these solutions are
optimal only with respect to the model being used. Since the model necessarily is an ideal-
ized rather than an exact representation of the real problem, there cannot be any utopian
guarantee that the optimal solution for the model will prove to be the best possible solution
that could have been implemented for the real problem. There just are too many imponder-
ables and uncertainties associated with real problems. However, if the model is well for-
mulated and tested, the resulting solution should tend to be a good approximation to an
ideal course of action for the real problem. Therefore, rather than be deluded into demand-
ing the impossible, you should make the test of the practical success of an OR study hinge
on whether it provides a better guide for action than can be obtained by other means.

The late Herbert Simon (an eminent management scientist and a Nobel Laureate in
economics) pointed out that satisficing is much more prevalent than optimizing in actual
practice. In coining the term satisficing as a combination of the words satisfactory and
optimizing, Simon was describing the tendency of managers to seek a solution that is
“good enough” for the problem at hand. Rather than trying to develop an overall mea-
sure of performance to optimally reconcile conflicts between various desirable objec-
tives (including well-established criteria for judging the performance of different
segments of the organization), a more pragmatic approach may be used. Goals may be
set to establish minimum satisfactory levels of performance in various areas, based per-
haps on past levels of performance or on what the competition is achieving. If a solution
is found that enables all these goals to be met, it is likely to be adopted without further
ado. Such is the nature of satisficing.

The distinction between optimizing and satisficing reflects the difference between the-
ory and the realities frequently faced in trying to implement that theory in practice. In the
words of one of England’s pioneering OR leaders, Samuel Eilon, “Optimizing is the sci-
ence of the ultimate; satisficing is the art of the feasible.”1

OR teams attempt to bring as much of the “science of the ultimate” as possible to the
decision-making process. However, the successful team does so in full recognition of the
overriding need of the decision maker to obtain a satisfactory guide for action in a reason-
able period of time. Therefore, the goal of an OR study should be to conduct the study in an
optimal manner, regardless of whether this involves finding an optimal solution for the
model. Thus, in addition to pursuing the science of the ultimate, the team should also con-
sider the cost of the study and the disadvantages of delaying its completion, and then
attempt to maximize the net benefits resulting from the study. In recognition of this concept,
OR teams occasionally use only heuristic procedures (i.e., intuitively designed procedures
that do not guarantee an optimal solution) to find a good suboptimal solution. This is most
often the case when the time or cost required to find an optimal solution for an adequate
model of the problem would be very large. In recent years, great progress has been made in
developing efficient and effective metaheuristics that provide both a general structure and
strategy guidelines for designing a specific heuristic procedure to fit a particular kind of
problem. The use of metaheuristics (the subject of Chap. 14) is continuing to grow.

The discussion thus far has implied that an OR study seeks to find only one solution,
which may or may not be required to be optimal. In fact, this usually is not the case. An

1S. Eilon, “Goals and Constraints in Decision-making,” Operational Research Quarterly, 23: 3–15, 1972.
Address given at the 1971 annual conference of the Canadian Operational Research Society.
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optimal solution for the original model may be far from ideal for the real problem, so addi-
tional analysis is needed. Therefore, postoptimality analysis (analysis done after finding
an optimal solution) is a very important part of most OR studies. This analysis also is
sometimes referred to as what-if analysis because it involves addressing some questions
about what would happen to the optimal solution if different assumptions are made about
future conditions. These questions often are raised by the managers who will be making
the ultimate decisions rather than by the OR team.

The advent of powerful spreadsheet software now has frequently given spreadsheets a
central role in conducting postoptimality analysis. One of the great strengths of a spread-
sheet is the ease with which it can be used interactively by anyone, including managers, to
see what happens to the optimal solution (according to the current version of the model)
when changes are made to the model. This process of experimenting with changes in the
model also can be very helpful in providing understanding of the behavior of the model
and increasing confidence in its validity.

In part, postoptimality analysis involves conducting sensitivity analysis to determine
which parameters of the model are most critical (the “sensitive parameters”) in determin-
ing the solution. A common definition of sensitive parameter (used throughout this book)
is the following.

For a mathematical model with specified values for all its parameters, the model’s
sensitive parameters are the parameters whose value cannot be changed without changing
the optimal solution.

Identifying the sensitive parameters is important, because this identifies the parameters
whose value must be assigned with special care to avoid distorting the output of the model.

The value assigned to a parameter commonly is just an estimate of some quantity
(e.g., unit profit) whose exact value will become known only after the solution has been
implemented. Therefore, after the sensitive parameters are identified, special attention is
given to estimating each one more closely, or at least its range of likely values. One then
seeks a solution that remains a particularly good one for all the various combinations of
likely values of the sensitive parameters.

If the solution is implemented on an ongoing basis, any later change in the value of a
sensitive parameter immediately signals a need to change the solution.

In some cases, certain parameters of the model represent policy decisions (e.g.,
resource allocations). If so, there frequently is some flexibility in the values assigned to
these parameters. Perhaps some can be increased by decreasing others. Postoptimality
analysis includes the investigation of such trade-offs.

In conjunction with the study phase discussed in Sec. 2.4 (testing the model), postopti-
mality analysis also involves obtaining a sequence of solutions that comprises a series of
improving approximations to the ideal course of action. Thus, the apparent weaknesses in
the initial solution are used to suggest improvements in the model, its input data, and per-
haps the solution procedure. A new solution is then obtained, and the cycle is repeated. This
process continues until the improvements in the succeeding solutions become too small to
warrant continuation. Even then, a number of alternative solutions (perhaps solutions that
are optimal for one of several plausible versions of the model and its input data) may be pre-
sented to management for the final selection. As suggested in Sec. 2.1, this presentation of
alternative solutions would normally be done whenever the final choice among these alter-
natives should be based on considerations that are best left to the judgment of management.

Example. Consider again the Rijkswaterstaat OR study of national water management
policy for the Netherlands, introduced at the end of Sec. 2.2. This study did not conclude
by recommending just a single solution. Instead, a number of attractive alternatives were
identified, analyzed, and compared. The final choice was left to the Dutch political

2.3 DERIVING SOLUTIONS FROM THE MODEL 17
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process, culminating with approval by Parliament. Sensitivity analysis played a major role
in this study. For example, certain parameters of the models represented environmental
standards. Sensitivity analysis included assessing the impact on water management
problems if the values of these parameters were changed from the current environmental
standards to other reasonable values. Sensitivity analysis also was used to assess the
impact of changing the assumptions of the models, e.g., the assumption on the effect of
future international treaties on the amount of pollution entering the Netherlands. A variety
of scenarios (e.g., an extremely dry year or an extremely wet year) also were analyzed,
with appropriate probabilities assigned. (Also see Selected References A11 and A13 for
other examples where quickly deriving the appropriate kinds of solutions were a key part
of an award-winning OR application.)

■ 2.4 TESTING THE MODEL

Developing a large mathematical model is analogous in some ways to developing a large
computer program. When the first version of the computer program is completed, it
inevitably contains many bugs. The program must be thoroughly tested to try to find and
correct as many bugs as possible. Eventually, after a long succession of improved pro-
grams, the programmer (or programming team) concludes that the current program now is
generally giving reasonably valid results. Although some minor bugs undoubtedly remain
hidden in the program (and may never be detected), the major bugs have been sufficiently
eliminated that the program now can be reliably used.

Similarly, the first version of a large mathematical model inevitably contains many
flaws. Some relevant factors or interrelationships undoubtedly have not been incorporated
into the model, and some parameters undoubtedly have not been estimated correctly. This is
inevitable, given the difficulty of communicating and understanding all the aspects and sub-
tleties of a complex operational problem as well as the difficulty of collecting reliable data.
Therefore, before you use the model, it must be thoroughly tested to try to identify and cor-
rect as many flaws as possible. Eventually, after a long succession of improved models, the
OR team concludes that the current model now is giving reasonably valid results. Although
some minor flaws undoubtedly remain hidden in the model (and may never be detected), the
major flaws have been sufficiently eliminated so that the model now can be reliably used.

This process of testing and improving a model to increase its validity is commonly
referred to as model validation.

It is difficult to describe how model validation is done, because the process depends
greatly on the nature of the problem being considered and the model being used. However,
we make a few general comments, and then we give an example. (See Selected Reference 3
for a detailed discussion.)

Since the OR team may spend months developing all the detailed pieces of the model,
it is easy to “lose the forest for the trees.” Therefore, after the details (“the trees”) of the ini-
tial version of the model are completed, a good way to begin model validation is to take a
fresh look at the overall model (“the forest”) to check for obvious errors or oversights. The
group doing this review preferably should include at least one individual who did not par-
ticipate in the formulation of the model. Reexamining the definition of the problem and
comparing it with the model may help to reveal mistakes. It is also useful to make sure that
all the mathematical expressions are dimensionally consistent in the units used. Additional
insight into the validity of the model can sometimes be obtained by varying the values of
the parameters and/or the decision variables and checking to see whether the output from
the model behaves in a plausible manner. This is often especially revealing when the para-
meters or variables are assigned extreme values near their maxima or minima.
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A more systematic approach to testing the model is to use a retrospective test. When
it is applicable, this test involves using historical data to reconstruct the past and then
determining how well the model and the resulting solution would have performed if they
had been used. Comparing the effectiveness of this hypothetical performance with what
actually happened then indicates whether using this model tends to yield a significant
improvement over current practice. It may also indicate areas where the model has short-
comings and requires modifications. Furthermore, by using alternative solutions from the
model and estimating their hypothetical historical performances, considerable evidence
can be gathered regarding how well the model predicts the relative effects of alternative
courses of actions.

On the other hand, a disadvantage of retrospective testing is that it uses the same data
that guided the formulation of the model. The crucial question is whether the past is truly
representative of the future. If it is not, then the model might perform quite differently in
the future than it would have in the past.

To circumvent this disadvantage of retrospective testing, it is sometimes useful to 
further test the model by continuing the status quo temporarily. This provides new data that
were not available when the model was constructed. These data are then used in the same
ways as those described here to evaluate the model.

Documenting the process used for model validation is important. This helps to
increase confidence in the model for subsequent users. Furthermore, if concerns arise in
the future about the model, this documentation will be helpful in diagnosing where prob-
lems may lie.

Example. Consider an OR study done for IBM to integrate its national network of spare-
parts inventories to improve service support for IBM’s customers. This study resulted in a
new inventory system that improved customer service while reducing the value of IBM’s
inventories by over $250 million and saving an additional $20 million per year through
improved operational efficiency. A particularly interesting aspect of the model validation
phase of this study was the way that future users of the inventory system were incorporated
into the testing process. Because these future users (IBM managers in functional areas
responsible for implementation of the inventory system) were skeptical about the system
being developed, representatives were appointed to a user team to serve as advisers to the
OR team. After a preliminary version of the new system had been developed (based on a
multiechelon inventory model), a preimplementation test of the system was conducted.
Extensive feedback from the user team led to major improvements in the proposed system.
(Selected Reference A5 describes this study in detail.)

What happens after the testing phase has been completed and an acceptable model has been
developed? If the model is to be used repeatedly, the next step is to install a well-documented
system for applying the model as prescribed by management. This system will include the
model, solution procedure (including postoptimality analysis), and operating procedures
for implementation. Then, even as personnel changes, the system can be called on at regu-
lar intervals to provide a specific numerical solution.

This system usually is computer-based. In fact, a considerable number of computer pro-
grams often need to be used and integrated. Databases and management information systems
may provide up-to-date input for the model each time it is used, in which case interface pro-
grams are needed. After a solution procedure (another program) is applied to the model, addi-
tional computer programs may trigger the implementation of the results automatically. In

■ 2.5 PREPARING TO APPLY THE MODEL
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other cases, an interactive computer-based system called a decision support system is
installed to help managers use data and models to support (rather than replace) their decision
making as needed. Another program may generate managerial reports (in the language of
management) that interpret the output of the model and its implications for application.

In major OR studies, several months (or longer) may be required to develop, test, and
install this computer system. Part of this effort involves developing and implementing a
process for maintaining the system throughout its future use. As conditions change over
time, this process should modify the computer system (including the model) accordingly.

Example. The application vignette in Sec. 2.2 described an OR study done for Continental
Airlines that led to the formulation of a huge mathematical model for reassigning crews to
flights when schedule disruptions occur. Because the model needs to be applied immediately
when a disruption occurs, a decision support system called CrewSolver was developed to
incorporate both the model and a huge in-memory data store representing current operations.
CrewSolver enables a crew coordinator to input data about the schedule disruption and then to
use a graphical user interface to request an immediate solution for how to reassign crews to
flights. (Also see Selected References A4 and A6 for other examples where a decision support
system played a vital role in an award-winning OR application.)

20 CHAPTER 2 OVERVIEW OF THE OPERATIONS RESEARCH MODELING APPROACH

■ 2.6 IMPLEMENTATION

After a system is developed for applying the model, the last phase of an OR study is to
implement this system as prescribed by management. This phase is a critical one because
it is here, and only here, that the benefits of the study are reaped. Therefore, it is important
for the OR team to participate in launching this phase, both to make sure that model solu-
tions are accurately translated to an operating procedure and to rectify any flaws in the
solutions that are then uncovered.

The success of the implementation phase depends a great deal upon the support of both
top management and operating management. The OR team is much more likely to gain this
support if it has kept management well informed and encouraged management’s active
guidance throughout the course of the study. Good communications help to ensure that the
study accomplishes what management wanted, and also give management a greater sense of
ownership of the study, which encourages their support for implementation.

The implementation phase involves several steps. First, the OR team gives operating
management a careful explanation of the new system to be adopted and how it relates to
operating realities. Next, these two parties share the responsibility for developing the pro-
cedures required to put this system into operation. Operating management then sees that a
detailed indoctrination is given to the personnel involved, and the new course of action is
initiated. If successful, the new system may be used for years to come. With this in mind,
the OR team monitors the initial experience with the course of action taken and seeks to
identify any modifications that should be made in the future.

Throughout the entire period during which the new system is being used, it is impor-
tant to continue to obtain feedback on how well the system is working and whether the
assumptions of the model continue to be satisfied. When significant deviations from the
original assumptions occur, the model should be revisited to determine if any modifica-
tions should be made in the system. The postoptimality analysis done earlier (as described
in Sec. 2.3) can be helpful in guiding this review process.

Upon culmination of a study, it is appropriate for the OR team to document its
methodology clearly and accurately enough so that the work is reproducible. Replicability
should be part of the professional ethical code of the operations researcher. This condition
is especially crucial when controversial public policy issues are being studied.
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Example. This example illustrates how a successful implementation phase might need to
involve thousands of employees before undertaking the new procedures. Samsung Electronics
Corp. initiated a major OR study in March 1996 to develop new methodologies and
scheduling applications that would streamline the entire semiconductor manufacturing process
and reduce work-in-progress inventories. The study continued for over five years, culminating
in June 2001, largely because of the extensive effort required for the implementation phase.
The OR team needed to gain the support of numerous managers, manufacturing staff, and
engineering staff by training them in the principles and logic of the new manufacturing
procedures. Ultimately, more than 3,000 people attended training sessions. The new procedures
then were phased in gradually to build confidence. However, this patient implementation
process paid huge dividends. The new procedures transformed the company from being the
least efficient manufacturer in the semiconductor industry to becoming the most efficient. This
resulted in increased revenues of over $1 billion by the time the implementation of the OR
study was completed. (Selected Reference A12 describes this study in detail. Also see Selected
References A4, A5, and A7 for other examples where an elaborate implementation strategy was
a key to the success of an award-winning OR study.)

■ 2.7 CONCLUSIONS
Although the remainder of this book focuses primarily on constructing and solving mathe-
matical models, in this chapter we have tried to emphasize that this constitutes only a por-
tion of the overall process involved in conducting a typical OR study. The other phases
described here also are very important to the success of the study. Try to keep in perspec-
tive the role of the model and the solution procedure in the overall process as you move
through the subsequent chapters. Then, after gaining a deeper understanding of mathemat-
ical models, we suggest that you plan to return to review this chapter again in order to fur-
ther sharpen this perspective.

OR is closely intertwined with the use of computers. In the early years, these generally
were mainframe computers, but now personal computers and workstations are being
widely used to solve OR models.

In concluding this discussion of the major phases of an OR study, it should be empha-
sized that there are many exceptions to the “rules” prescribed in this chapter. By its very
nature, OR requires considerable ingenuity and innovation, so it is impossible to write
down any standard procedure that should always be followed by OR teams. Rather, the
preceding description may be viewed as a model that roughly represents how successful
OR studies are conducted.
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■ PROBLEMS

2.1-1. The example in Sec. 2.1 summarizes an award-winning OR
study done for Merrill Lynch. Read Selected Reference A2 that
describes this study in detail.
(a) Summarize the background that led to undertaking this study.
(b) Quote the one-sentence statement of the general mission of the

OR group (called the management science group) that con-
ducted this study.

(c) Identify the type of data that the management science group
obtained for each client.

(d) Identify the new pricing options that were provided to the com-
pany’s clients as a result of this study.

(e) What was the resulting impact on Merrill Lynch’s competitive
position?

2.1-2. Read Selected Reference A1 that describes an award-
winning OR study done for General Motors.
(a) Summarize the background that led to undertaking this study.
(b) What was the goal of this study?
(c) Describe how software was used to automate the collection of

the needed data.
(d) The improved production throughput that resulted from this

study yielded how much in documented savings and increased
revenue?

2.1-3. Read Selected Reference A14 that describes an OR study
done for the San Francisco Police Department.
(a) Summarize the background that led to undertaking this study.
(b) Define part of the problem being addressed by identifying the

six directives for the scheduling system to be developed.
(c) Describe how the needed data were gathered.
(d) List the various tangible and intangible benefits that resulted

from the study.

2.1-4. Read Selected Reference A10 that describes an OR study
done for the Health Department of New Haven, Connecticut.
(a) Summarize the background that led to undertaking this study.
(b) Outline the system developed to track and test each needle and

syringe in order to gather the needed data.
(c) Summarize the initial results from this tracking and testing

system.
(d) Describe the impact and potential impact of this study on pub-

lic policy.

2.2-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 2.2. List
the various financial and nonfinancial benefits that resulted from
this study.

2.2-2. Read Selected Reference A3 that describes an OR study
done for Swift & Company.
(a) Summarize the background that led to undertaking this study.
(b) Describe the purpose of each of the three general types of mod-

els formulated during this study.
(c) How many specific models does the company now use as a re-

sult of this study?

(d) List the various financial and nonfinancial benefits that resulted
from this study.

2.2-3. Read Selected Reference A8 that describes an OR study
done for the Rijkswaterstaat of the Netherlands. (Focus especially
on pp. 3–20 and 30–32.)
(a) Summarize the background that led to undertaking this study.
(b) Summarize the purpose of each of the five mathematical mod-

els described on pp. 10–18.
(c) Summarize the “impact measures” (measures of performance)

for comparing policies that are described on pp. 6–7 of this
article.

(d) List the various tangible and intangible benefits that resulted
from the study.

2.2-4. Read Selected Reference 5.
(a) Identify the author’s example of a model in the natural sci-

ences and of a model in OR.
(b) Describe the author’s viewpoint about how basic precepts of

using models to do research in the natural sciences can also be
used to guide research on operations (OR).

2.2-5. Read Selected Reference A9 that describes an award-
winning OR study done for Bombardier Flexjet.
(a) What was the objective of this study?
(b) As described on pages 53 and 58–59 of this reference, this OR

study is remarkable for combining a wide range of mathematical
models. Referring to the chapter titles in this book’s table of
contents, list these kinds of models.

(c) What are the financial benefits that resulted from this study?

2.3-1. Read Selected Reference A11 that describes an OR study
done for Philips Electronics.
(a) Summarize the background that led to undertaking this study.
(b) What was the purpose of this study?
(c) What were the benefits of developing software to support prob-

lem solving speedily?
(d) List the four steps in the collaborative-planning process that

resulted from this study.
(e) List the various financial and nonfinancial benefits that resulted

from this study.

2.3-2. Refer to Selected Reference 5.
(a) Describe the author’s viewpoint about whether the sole goal in

using a model should be to find its optimal solution.
(b) Summarize the author’s viewpoint about the complementary

roles of modeling, evaluating information from the model, and
then applying the decision maker’s judgment when deciding
on a course of action.

2.3-3. Read Selected Reference A13 that describes an OR study
done for Intel that won the 2011 Daniel H. Wagner Prize for
Excellence in Operations Research Practice.

(a) What is the problem being addressed? What is the objective of
the study?
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(b) Because of the complexity of the problem, it is practically
impossible to solve optimally. What kind of algorithm is used
instead to obtain a good suboptimal solution?

2.4-1. Refer to pp. 18–20 of Selected Reference A8 that describes 
an OR study done for the Rijkswaterstaat of the Netherlands. Describe
an important lesson that was gained from model validation in this
study.

2.4-2. Read Selected Reference 8. Summarize the author’s view-
point about the roles of observation and experimentation in the
model validation process.

2.4-3. Read pp. 603–617 of Selected Reference 3.
(a) What does the author say about whether a model can be com-

pletely validated?
(b) Summarize the distinctions made between model validity, data

validity, logical/mathematical validity, predictive validity, opera-
tional validity, and dynamic validity.

(c) Describe the role of sensitivity analysis in testing the operational
validity of a model.

(d) What does the author say about whether there is a validation
methodology that is appropriate for all models?

(e) Cite the page in the article that lists basic validation steps.

2.5-1. Read Selected Reference A6 that describes an OR study
done for Texaco.
(a) Summarize the background that led to undertaking this 

study.
(b) Briefly describe the user interface with the decision support

system OMEGA that was developed as a result of this study.
(c) OMEGA is constantly being updated and extended to reflect

changes in the operating environment. Briefly describe the var-
ious kinds of changes involved.

(d) Summarize how OMEGA is used.
(e) List the various tangible and intangible benefits that resulted

from the study.

2.5-2. Refer to Selected Reference A4 that describes an OR study
done for Yellow Freight System, Inc.
(a) Referring to pp. 147–149 of this article, summarize the back-

ground that led to undertaking this study.
(b) Referring to p. 150, briefly describe the computer system SYS-

NET that was developed as a result of this study. Also sum-
marize the applications of SYSNET.

(c) Referring to pp. 162–163, describe why the interactive aspects
of SYSNET proved important.

(d) Referring to p. 163, summarize the outputs from SYSNET.
(e) Referring to pp. 168–172, summarize the various benefits that

have resulted from using SYSNET.

2.6-1. Refer to pp. 163–167 of Selected Reference A4 that describes
an OR study done for Yellow Freight System, Inc., and the resulting
computer system SYSNET.
(a) Briefly describe how the OR team gained the support of up-

per management for implementing SYSNET.
(b) Briefly describe the implementation strategy that was developed.
(c) Briefly describe the field implementation.
(d) Briefly describe how management incentives and enforcement

were used in implementing SYSNET.

2.6-2. Read Selected Reference A5 that describes an OR study
done for IBM and the resulting computer system Optimizer.
(a) Summarize the background that led to undertaking this study.
(b) List the complicating factors that the OR team members

faced when they started developing a model and a solution
algorithm.

(c) Briefly describe the preimplementation test of Optimizer.
(d) Briefly describe the field implementation test.
(e) Briefly describe national implementation.
(f) List the various tangible and intangible benefits that resulted

from the study.

2.6-3. Read Selected Reference A7 that describes an OR study
done for TNT Express that won the 2012 Franz Edelman Award for
Achievement in Operations Research and the Management Sci-
ences. This study led to a worldwide global optimization (GO) pro-
gram for the company. A “GO Academy” then was established to
train the key employees who would implement the program.
(a) What is the main objective of the GO academy?
(b) How much time do the trainees devote to this program?
(c) What designation is given to graduating employees?

2.7-1. From the bottom part of the selected references given at the
end of the chapter, select one of these award-winning applications
of the OR modeling approach (excluding any that have been
assigned for other problems). Read this article and then write a
two-page summary of the application and the benefits (including
nonfinancial benefits) it provided.

2.7-2. From the bottom part of the selected references given at the
end of the chapter, select three of these award-winning applications
of the OR modeling approach (excluding any that have been
assigned for other problems). For each one, read this article and
write a one-page summary of the application and the benefits
(including nonfinancial benefits) it provided.

2.7-3. Read Selected Reference 4. The author describes 13 detailed
phases of any OR study that develops and applies a computer-
based model, whereas this chapter describes six broader phases.
For each of these broader phases, list the detailed phases that fall
partially or primarily within the broader phase.
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The development of linear programming has been ranked among the most important
scientific advances of the mid-20th century, and we must agree with this assessment.

Its impact since just 1950 has been extraordinary. Today it is a standard tool that has saved
many thousands or millions of dollars for many companies or businesses of even moder-
ate size in the various industrialized countries of the world, and its use in other sectors of
society has been spreading rapidly. A major proportion of all scientific computation on
computers is devoted to the use of linear programming. Dozens of textbooks have been
written about linear programming, and published articles describing important applica-
tions now number in the hundreds.

What is the nature of this remarkable tool, and what kinds of problems does it
address? You will gain insight into this topic as you work through subsequent examples.
However, a verbal summary may help provide perspective. Briefly, the most common type
of application involves the general problem of allocating limited resources among
competing activities in a best possible (i.e., optimal) way. More precisely, this problem
involves selecting the level of certain activities that compete for scarce resources that are
necessary to perform those activities. The choice of activity levels then dictates how much
of each resource will be consumed by each activity. The variety of situations to which this
description applies is diverse, indeed, ranging from the allocation of production facilities to
products to the allocation of national resources to domestic needs, from portfolio selection
to the selection of shipping patterns, from agricultural planning to the design of radiation
therapy, and so on. However, the one common ingredient in each of these situations is the
necessity for allocating resources to activities by choosing the levels of those activities.

Linear programming uses a mathematical model to describe the problem of concern.
The adjective linear means that all the mathematical functions in this model are required to
be linear functions. The word programming does not refer here to computer programming;
rather, it is essentially a synonym for planning. Thus, linear programming involves the
planning of activities to obtain an optimal result, i.e., a result that reaches the specified
goal best (according to the mathematical model) among all feasible alternatives.

Although allocating resources to activities is the most common type of application,
linear programming has numerous other important applications as well. In fact, any prob-
lem whose mathematical model fits the very general format for the linear programming
model is a linear programming problem. (For this reason, a linear programming problem
and its model often are referred to interchangeably as simply a linear program, or even as

25

3C H A P T E R

Introduction to Linear Programming
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■ 3.1 PROTOTYPE EXAMPLE
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just an LP.) Furthermore, a remarkably efficient solution procedure, called the simplex
method, is available for solving linear programming problems of even enormous size.
These are some of the reasons for the tremendous impact of linear programming in recent
decades.

Because of its great importance, we devote this and the next seven chapters specifically
to linear programming. After this chapter introduces the general features of linear program-
ming, Chaps. 4 and 5 focus on the simplex method. Chapters 6 and 7 discuss the further
analysis of linear programming problems after the simplex method has been initially applied.
Chapter 8 presents several widely used extensions of the simplex method and introduces an
interior-point algorithm that sometimes can be used to solve even larger linear programming
problems than the simplex method can handle. Chapters 9 and 10 consider some special
types of linear programming problems whose importance warrants individual study.

You also can look forward to seeing applications of linear programming to other areas
of operations research (OR) in several later chapters.

We begin this chapter by developing a miniature prototype example of a linear pro-
gramming problem. This example is small enough to be solved graphically in a straight-
forward way. Sections 3.2 and 3.3 present the general linear programming model and its
basic assumptions. Section 3.4 gives some additional examples of linear programming
applications. Section 3.5 describes how linear programming models of modest size can be
conveniently displayed and solved on a spreadsheet. However, some linear programming
problems encountered in practice require truly massive models. Section 3.6 illustrates how
a massive model can arise and how it can still be formulated successfully with the help of
a special modeling language such as MPL (its formulation is described in this section) or
LINGO (its formulation of this model is presented in Supplement 2 to this chapter on the
book’s website).

The WYNDOR GLASS CO. produces high-quality glass products, including windows and
glass doors. It has three plants. Aluminum frames and hardware are made in Plant 1, wood
frames are made in Plant 2, and Plant 3 produces the glass and assembles the products.

Because of declining earnings, top management has decided to revamp the company’s
product line. Unprofitable products are being discontinued, releasing production capacity
to launch two new products having large sales potential:

Product 1: An 8-foot glass door with aluminum framing
Product 2: A 4 � 6 foot double-hung wood-framed window

Product 1 requires some of the production capacity in Plants 1 and 3, but none in Plant 2.
Product 2 needs only Plants 2 and 3. The marketing division has concluded that the com-
pany could sell as much of either product as could be produced by these plants. However,
because both products would be competing for the same production capacity in Plant 3, it
is not clear which mix of the two products would be most profitable. Therefore, an OR
team has been formed to study this question.

The OR team began by having discussions with upper management to identify man-
agement’s objectives for the study. These discussions led to developing the following defi-
nition of the problem:

Determine what the production rates should be for the two products in order to maximize
their total profit, subject to the restrictions imposed by the limited production capacities
available in the three plants. (Each product will be produced in batches of 20, so the
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production rate is defined as the number of batches produced per week.) Any combination
of production rates that satisfies these restrictions is permitted, including producing none
of one product and as much as possible of the other.

The OR team also identified the data that needed to be gathered:

1. Number of hours of production time available per week in each plant for these new
products. (Most of the time in these plants already is committed to current products, so
the available capacity for the new products is quite limited.)

2. Number of hours of production time used in each plant for each batch produced of each
new product.

3. Profit per batch produced of each new product. (Profit per batch produced was cho-
sen as an appropriate measure after the team concluded that the incremental profit
from each additional batch produced would be roughly constant regardless of the
total number of batches produced. Because no substantial costs will be incurred to
initiate the production and marketing of these new products, the total profit from each
one is approximately this profit per batch produced times the number of batches
produced.)

Obtaining reasonable estimates of these quantities required enlisting the help of key
personnel in various units of the company. Staff in the manufacturing division provided the
data in the first category above. Developing estimates for the second category of data
required some analysis by the manufacturing engineers involved in designing the produc-
tion processes for the new products. By analyzing cost data from these same engineers and
the marketing division, along with a pricing decision from the marketing division, the
accounting department developed estimates for the third category.

Table 3.1 summarizes the data gathered.
The OR team immediately recognized that this was a linear programming problem of

the classic product mix type, and the team next undertook the formulation of the corre-
sponding mathematical model.

Swift & Company is a diversified protein-producing
business based in Greeley, Colorado. With annual sales of
over $8 billion, beef and related products are by far the
largest portion of the company’s business.

To improve the company’s sales and manufacturing
performance, upper management concluded that it needed
to achieve three major objectives. One was to enable the
company’s customer service representatives to talk to
their more than 8,000 customers with accurate informa-
tion about the availability of current and future inven-
tory while considering requested delivery dates and
maximum product age upon delivery. A second was to
produce an efficient shift-level schedule for each plant
over a 28-day horizon. A third was to accurately deter-
mine whether a plant can ship a requested order-line-item
quantity on the requested date and time given the

availability of cattle and constraints on the plant’s
capacity.

To meet these three challenges, an OR team devel-
oped an integrated system of 45 linear programming
models based on three model formulations to dynami-
cally schedule its beef-fabrication operations at five
plants in real time as it receives orders. The total audited
benefits realized in the first year of operation of this sys-
tem were $12.74 million, including $12 million due to
optimizing the product mix. Other benefits include a
reduction in orders lost, a reduction in price discounting,
and better on-time delivery.

Source: A. Bixby, B. Downs, and M. Self, “A Scheduling and
Capable-to-Promise Application for Swift & Company,” Inter-
faces, 36(1): 39–50, Jan.–Feb. 2006. (A link to this article is
provided on our website, www.mhhe.com/hillier.)

An Application Vignette
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■ TABLE 3.1 Data for the Wyndor Glass Co. problem

Production Time 
per Batch, Hours

Product
Production Time

Plant 1 2 Available per Week, Hours

1 1 0 4
2 0 2 12
3 3 2 18

Profit per batch $3,000 $5,000

28 CHAPTER 3 INTRODUCTION TO LINEAR PROGRAMMING

Formulation as a Linear Programming Problem

The definition of the problem given above indicates that the decisions to be made are the
number of batches of the respective products to be produced per week so as to maximize
their total profit. Therefore, to formulate the mathematical (linear programming) model for
this problem, let

Thus, x1 and x2 are the decision variables for the model. Using the bottom row of
Table 3.1, we obtain

Z � 3x1 � 5x2.

The objective is to choose the values of x1 and x2 so as to maximize Z � 3x1 � 5x2, subject
to the restrictions imposed on their values by the limited production capacities available in
the three plants. Table 3.1 indicates that each batch of product 1 produced per week uses
1 hour of production time per week in Plant 1, whereas only 4 hours per week are available.
This restriction is expressed mathematically by the inequality x1 � 4. Similarly, Plant 2
imposes the restriction that 2x2 � 12. The number of hours of production time used per
week in Plant 3 by choosing x1 and x2 as the new products’ production rates would be
3x1 � 2x2. Therefore, the mathematical statement of the Plant 3 restriction is 3x1 � 2x2 � 18.
Finally, since production rates cannot be negative, it is necessary to restrict the decision vari-
ables to be nonnegative: x1 � 0 and x2 � 0.

To summarize, in the mathematical language of linear programming, the problem is to
choose values of x1 and x2 so as to

subject to the restrictions

x1              � 4

2x2 � 12

3x1 � 2x2 � 18

and

(Notice how the layout of the coefficients of x1 and x2 in this linear programming model
essentially duplicates the information summarized in Table 3.1.)

x1 � 0,   x2 � 0.

Maximize   Z � 3x1 � 5x2 ,

two products

Z � total profit per week 1in thousands of dollars 2  from producing these

 x2 � number of batches of product 2 produced per week

 x1 � number of batches of product 1 produced per week
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■ FIGURE 3.1
Shaded area shows values of
(x1, x2) allowed by x1 � 0,
x2 � 0, x1 � 4.

This problem is a classic example of a resource-allocation problem, the most common
type of linear programming problem. The key characteristic of resource-allocation problems
is that most or all of their functional constraints are resource constraints. The right-hand side
of a resource constraint represents the amount available of some resource and the left-hand
side represents the amount used of that resource, so the left-hand side must be � the right-
hand side. Product-mix problems are one type of resource-allocation problem, but you will
see examples of resource-allocations problems of other types in Sec. 3.4 along with examples
of other categories of linear programming problems.

Graphical Solution

This very small problem has only two decision variables and therefore only two dimensions,
so a graphical procedure can be used to solve it. This procedure involves constructing a two-
dimensional graph with x1 and x2 as the axes. The first step is to identify the values of
(x1, x2) that are permitted by the restrictions. This is done by drawing each line that borders
the range of permissible values for one restriction. To begin, note that the nonnegativity
restrictions x1 � 0 and x2 � 0 require (x1, x2) to lie on the positive side of the axes (includ-
ing actually on either axis), i.e., in the first quadrant. Next, observe that the restriction
x1 � 4 means that (x1, x2) cannot lie to the right of the line x1 � 4. These results are shown
in Fig. 3.1, where the shaded area contains the only values of (x1, x2) that are still allowed.

In a similar fashion, the restriction 2x2 � 12 (or, equivalently, x2 � 6) implies that the
line 2x2 � 12 should be added to the boundary of the permissible region. The final restric-
tion, 3x1 � 2x2 � 18, requires plotting the points (x1, x2) such that 3x1 � 2x2 � 18 (another
line) to complete the boundary. (Note that the points such that 3x1 � 2x2 � 18 are those that
lie either underneath or on the line 3x1 � 2x2 � 18, so this is the limiting line above which
points do not satisfy the inequality.) The resulting region of permissible values of (x1, x2),
called the feasible region, is shown in Fig. 3.2. (The demo called Graphical Method in your
OR Tutor provides a more detailed example of constructing a feasible region.)

The final step is to pick out the point in this feasible region that maximizes the value
of Z � 3x1 � 5x2. To discover how to perform this step efficiently, begin by trial and error.
Try, for example, Z � 10 � 3x1 � 5x2 to see if there are in the permissible region any val-
ues of (x1, x2) that yield a value of Z as large as 10. By drawing the line 3x1 � 5x2 � 10
(see Fig. 3.3), you can see that there are many points on this line that lie within the region.
Having gained perspective by trying this arbitrarily chosen value of Z � 10, you should
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■ FIGURE 3.2
Shaded area shows the set of
permissible values of (x1, x2),
called the feasible region.
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Z � 36 � 3x1 � 5x2

Z � 20 � 3x1 � 5x2

Z � 10 � 3x1 � 5x2

2 4 x1

(2, 6)

■ FIGURE 3.3
The value of (x1, x2) that
maximizes 3x1 � 5x2 is (2, 6).

next try a larger arbitrary value of Z, say, Z � 20 � 3x1 � 5x2. Again, Fig. 3.3 reveals that
a segment of the line 3x1 � 5x2 � 20 lies within the region, so that the maximum permis-
sible value of Z must be at least 20.

Now notice in Fig. 3.3 that the two lines just constructed are parallel. This is no coin-
cidence, since any line constructed in this way has the form Z � 3x1 � 5x2 for the chosen
value of Z, which implies that 5x2 � �3x1 � Z or, equivalently,

x2 � � 

3

5
 x1 �

1

5
 Z
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This last equation, called the slope-intercept form of the objective function, demonstrates
that the slope of the line is ��

3
5

� (since each unit increase in x1 changes x2 by ��
3
5

�), whereas
the intercept of the line with the x2 axis is �

1
5

� Z (since x2 � �
1
5

� Z when x1 � 0). The fact that the
slope is fixed at ��

3
5

� means that all lines constructed in this way are parallel.
Again, comparing the 10 � 3x1 � 5x2 and 20 � 3x1 � 5x2 lines in Fig. 3.3, we note

that the line giving a larger value of Z (Z � 20) is farther up and away from the origin than
the other line (Z � 10). This fact also is implied by the slope-intercept form of the objec-
tive function, which indicates that the intercept with the x1 axis increases when the
value chosen for Z is increased.

These observations imply that our trial-and-error procedure for constructing lines in
Fig. 3.3 involves nothing more than drawing a family of parallel lines containing at least one
point in the feasible region and selecting the line that corresponds to the largest value of Z.
Figure 3.3 shows that this line passes through the point (2, 6), indicating that the optimal
solution is x1 � 2 and x2 � 6. The equation of this line is 3x1 � 5x2 � 3(2) � 5(6) � 36 � Z,
indicating that the optimal value of Z is Z � 36. The point (2, 6) lies at the intersection of the
two lines 2x2 � 12 and 3x1 � 2x2 � 18, shown in Fig. 3.2, so that this point can be calculated
algebraically as the simultaneous solution of these two equations.

Having seen the trial-and-error procedure for finding the optimal point (2, 6), you now
can streamline this approach for other problems. Rather than draw several parallel lines, it
is sufficient to form a single line with a ruler to establish the slope. Then move the ruler
with fixed slope through the feasible region in the direction of improving Z. (When the
objective is to minimize Z, move the ruler in the direction that decreases Z.) Stop moving
the ruler at the last instant that it still passes through a point in this region. This point is the
desired optimal solution.

This procedure often is referred to as the graphical method for linear programming. It
can be used to solve any linear programming problem with two decision variables. With con-
siderable difficulty, it is possible to extend the method to three decision variables but not more
than three. (The next chapter will focus on the simplex method for solving larger problems.)

Conclusions

The OR team used this approach to find that the optimal solution is x1 � 2, x2 � 6, with
Z � 36. This solution indicates that the Wyndor Glass Co. should produce products 1 and 2
at the rate of 2 batches per week and 6 batches per week, respectively, with a resulting total
profit of $36,000 per week. No other mix of the two products would be so profitable—
according to the model.

However, we emphasized in Chap. 2 that well-conducted OR studies do not simply
find one solution for the initial model formulated and then stop. All six phases described in
Chap. 2 are important, including thorough testing of the model (see Sec. 2.4) and postopti-
mality analysis (see Sec. 2.3).

In full recognition of these practical realities, the OR team now is ready to evaluate the
validity of the model more critically (to be continued in Sec. 3.3) and to perform sensitiv-
ity analysis on the effect of the estimates in Table 3.1 being different because of inaccurate
estimation, changes of circumstances, etc. (to be continued in Sec. 7.2).

Continuing the Learning Process with Your OR Courseware

This is the first of many points in the book where you may find it helpful to use your OR
Courseware on the book’s website. A key part of this courseware is a program called OR
Tutor. This program includes a complete demonstration example of the graphical method
introduced in this section. To provide you with another example of a model formulation
as well, this demonstration begins by introducing a problem and formulating a linear pro-
gramming model for the problem before then applying the graphical method step by step to

115 Z 2
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32 CHAPTER 3 INTRODUCTION TO LINEAR PROGRAMMING

solve the model. Like the many other demonstration examples accompanying other sections
of the book, this computer demonstration highlights concepts that are difficult to convey on
the printed page. You may refer to Appendix 1 for documentation of the software.

If you would like to see still more examples, you can go to the Solved Examples
section of the book’s website. This section includes a few examples with complete solu-
tions for almost every chapter as a supplement to the examples in the book and in OR
Tutor. The examples for the current chapter begin with a relatively straightforward prob-
lem that involves formulating a small linear programming model and applying the graphi-
cal method. The subsequent examples become progressively more challenging.

Another key part of your OR Courseware is a program called IOR Tutorial. This pro-
gram features many interactive procedures for interactively executing various solution
methods presented in the book, which enables you to focus on learning and executing the
logic of the method efficiently while the computer does the number crunching. Included is
an interactive procedure for applying the graphical method for linear programming. Once
you get the hang of it, a second procedure enables you to quickly apply the graphical
method for performing sensitivity analysis on the effect of revising the data of the problem.
You then can print out your work and results for your homework. Like the other procedures
in IOR Tutorial, these procedures are designed specifically to provide you with an effi-
cient, enjoyable, and enlightening learning experience while you do your homework.

When you formulate a linear programming model with more than two decision vari-
ables (so the graphical method cannot be used), the simplex method described in Chap. 4
enables you to still find an optimal solution immediately. Doing so also is helpful for
model validation, since finding a nonsensical optimal solution signals that you have made
a mistake in formulating the model.

We mentioned in Sec. 1.5 that your OR Courseware introduces you to four particularly
popular commercial software packages—Excel with its Solver, a powerful Excel add-in called
Analytical Solver Platform, LINGO/LINDO, and MPL/Solvers—for solving a variety of OR
models. All four packages include the simplex method for solving linear programming mod-
els. Section 3.5 describes how to use Excel to formulate and solve linear programming models
in a spreadsheet format with either Solver or Analytical Solver Platform for Education
(ASPE), descriptions of the other packages are provided in Sec. 3.6 (MPL and LINGO), Sup-
plements 1 and 2 to this chapter on the book’s website (LINGO), Sec. 4.8 (LINDO and vari-
ous solvers of MPL), and Appendix 4.1 (LINGO and LINDO). MPL, LINGO, and LINDO
tutorials also are provided on the book’s website. In addition, your OR Courseware includes
an Excel file, a LINGO/LINDO file, and an MPL/Solvers file showing how the respective
software packages can be used to solve each of the examples in this chapter.

■ 3.2 THE LINEAR PROGRAMMING MODEL
The Wyndor Glass Co. problem is intended to illustrate a typical linear programming prob-
lem (miniature version). However, linear programming is too versatile to be completely
characterized by a single example. In this section we discuss the general characteristics of
linear programming problems, including the various legitimate forms of the mathematical
model for linear programming.

Let us begin with some basic terminology and notation. The first column of Table 3.2
summarizes the components of the Wyndor Glass Co. problem. The second column then
introduces more general terms for these same components that will fit many linear pro-
gramming problems. The key terms are resources and activities, where m denotes the num-
ber of different kinds of resources that can be used and n denotes the number of activities
being considered. Some typical resources are money and particular kinds of machines,
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3.2 THE LINEAR PROGRAMMING MODEL 33

■ TABLE 3.2 Common terminology for linear programming

Prototype Example General Problem

Production capacities of plants Resources
3 plants m resources

Production of products Activities
2 products n activities
Production rate of product j, xj Level of activity j, xj

Profit Z Overall measure of performance Z

equipment, vehicles, and personnel. Examples of activities include investing in particular
projects, advertising in particular media, and shipping goods from a particular source to a
particular destination. In any application of linear programming, all the activities may be
of one general kind (such as any one of these three examples), and then the individual
activities would be particular alternatives within this general category.

As described in the introduction to this chapter, the most common type of application
of linear programming involves allocating resources to activities. The amount available of
each resource is limited, so a careful allocation of resources to activities must be made.
Determining this allocation involves choosing the levels of the activities that achieve the
best possible value of the overall measure of performance.

Certain symbols are commonly used to denote the various components of a linear pro-
gramming model. These symbols are listed below, along with their interpretation for the
general problem of allocating resources to activities.

bi � amount of resource i that is available for allocation to activities 
(for i � 1, 2, ..., m).

The model poses the problem in terms of making decisions about the levels of the activi-
ties, so x1, x2, . . . , xn are called the decision variables. As summarized in Table 3.3, the

 aij � amount of resource i consumed by each unit of activity j.

 cj � increase in Z that would result from each unit increase in level of activity j.

 xj � level of activity j 1for j � 1, 2, p , n 2 .
 Z � value of overall measure of performance.

■ TABLE 3.3 Data needed for a linear programming model involving 
the allocation of resources to activities

Resource Usage per Unit of Activity

Activity
Amount of 

Resource 1 2 . . . n Resource Available

1 a11 a12 . . . a1n b1

2 a21 a22 . . . a2n b2

. .

. . . . . . . . . . . . . .

. .
m am1 am2 . . . amn bm

Contribution to Z per c1 c2 . . . cn

unit of activity
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1This is called our standard form rather than the standard form because some textbooks adopt other forms.

values of cj, bi, and aij (for i � 1, 2, . . . , m and j � 1, 2, . . . , n) are the input constants for
the model. The cj, bi, and aij are also referred to as the parameters of the model.

Notice the correspondence between Table 3.3 and Table 3.1.

A Standard Form of the Model

Proceeding as for the Wyndor Glass Co. problem, we can now formulate the mathematical
model for this general problem of allocating resources to activities. In particular, this
model is to select the values for x1, x2, . . . , xn so as to

subject to the restrictions

and

We call this our standard form1 for the linear programming problem. Any situation whose
mathematical formulation fits this model is a linear programming problem.

Notice that the model for the Wyndor Glass Co. problem formulated in the preceding
section fits our standard form, with m � 3 and n � 2.

Common terminology for the linear programming model can now be summarized.
The function being maximized, c1x1 � c2x2 � · · · � cnxn, is called the objective function.
The restrictions normally are referred to as constraints. The first m constraints (those with
a function of all the variables ai1x1 � ai2x2 � · · · � ainxn on the left-hand side) are some-
times called functional constraints (or structural constraints). Similarly, the xj � 0
restrictions are called nonnegativity constraints (or nonnegativity conditions).

Other Forms

We now hasten to add that the preceding model does not actually fit the natural form of
some linear programming problems. The other legitimate forms are the following:

1. Minimizing rather than maximizing the objective function:

2. Some functional constraints with a greater-than-or-equal-to inequality:

3. Some functional constraints in equation form:

4. Deleting the nonnegativity constraints for some decision variables:

Any problem that mixes some or all of these forms with the remaining parts of the preced-
ing model is still a linear programming problem. Our interpretation of the words allocating

xj unrestricted in sign   for some values of j.

ai1x1 � ai2x2 � . . . � ainxn � bi   for some values of i.

ai1x1 � ai2x2 � . . . � ainxn � bi   for some values of i.

Minimize   Z � c1x1 � c2x2 � . . . � cnxn.

x1 � 0,  x2 � 0,  . . . , xn � 0.

a11x1 � a12x2 � . . . � a1nxn � b1

a21x1 � a22x2 � . . . � a2nxn � b2

o

am1x1 � am2x2 � . . . � amnxn � bm,

Maximize   Z � c1x1 � c2x2 � . . . � cnxn,
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limited resources among competing activities may no longer apply very well, if at all; but
regardless of the interpretation or context, all that is required is that the mathematical state-
ment of the problem fit the allowable forms. Thus, the concise definition of a linear pro-
gramming problem is that each component of its model fits either the standard form or one
of the other legitimate forms listed above.

Terminology for Solutions of the Model

You may be used to having the term solution mean the final answer to a problem, but the
convention in linear programming (and its extensions) is quite different. Here, any specifi-
cation of values for the decision variables (x1, x2, . . . , xn) is called a solution, regardless of
whether it is a desirable or even an allowable choice. Different types of solutions are then
identified by using an appropriate adjective.

A feasible solution is a solution for which all the constraints are satisfied.
An infeasible solution is a solution for which at least one constraint is violated.

In the example, the points (2, 3) and (4, 1) in Fig. 3.2 are feasible solutions, while the
points ( �1, 3) and (4, 4) are infeasible solutions.

The feasible region is the collection of all feasible solutions.

The feasible region in the example is the entire shaded area in Fig. 3.2.
It is possible for a problem to have no feasible solutions. This would have happened

in the example if the new products had been required to return a net profit of at least
$50,000 per week to justify discontinuing part of the current product line. The correspond-
ing constraint, 3x1 � 5x2 � 50, would eliminate the entire feasible region, so no mix of
new products would be superior to the status quo. This case is illustrated in Fig. 3.4.

Given that there are feasible solutions, the goal of linear programming is to find a best
feasible solution, as measured by the value of the objective function in the model.

■ FIGURE 3.4
The Wyndor Glass Co.
problem would have no
feasible solutions if the
constraint 3x1 � 5x2 � 50
were added to the problem.
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■ FIGURE 3.5
The Wyndor Glass Co.
problem would have multiple
optimal solutions if the
objective function were
changed to Z � 3x1 � 2x2.

An optimal solution is a feasible solution that has the most favorable value of the
objective function.

The most favorable value is the largest value if the objective function is to be maximized,
whereas it is the smallest value if the objective function is to be minimized.

Most problems will have just one optimal solution. However, it is possible to have more
than one. This would occur in the example if the profit per batch produced of product 2
were changed to $2,000. This changes the objective function to Z � 3x1 � 2x2, so that all
the points on the line segment connecting (2, 6) and (4, 3) would be optimal. This case is
illustrated in Fig. 3.5. As in this case, any problem having multiple optimal solutions
will have an infinite number of them, each with the same optimal value of the objective
function.

Another possibility is that a problem has no optimal solutions. This occurs only if
(1) it has no feasible solutions or (2) the constraints do not prevent improving the value of
the objective function (Z) indefinitely in the favorable direction (positive or negative).
The latter case is referred to as having an unbounded Z or an unbounded objective. To
illustrate, this case would result if the last two functional constraints were mistakenly
deleted in the example, as illustrated in Fig. 3.6.

We next introduce a special type of feasible solution that plays the key role when the
simplex method searches for an optimal solution.

A corner-point feasible (CPF) solution is a solution that lies at a corner of the
feasible region.

(CPF solutions are commonly referred to as extreme points (or vertices) by OR profes-
sionals, but we prefer the more suggestive corner-point terminology in an introductory
course.) Figure 3.7 highlights the five CPF solutions for the example.
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■ FIGURE 3.6
The Wyndor Glass Co.
problem would have no
optimal solutions if the only
functional constraint were
x1 ≤ 4, because x2 then could
be increased indefinitely in
the feasible region without
ever reaching the maximum
value of Z � 3x1 � 5x2.

■ FIGURE 3.7
The five dots are the five CPF
solutions for the Wyndor
Glass Co. problem.

Sections 4.1 and 5.1 will delve into the various useful properties of CPF solutions for
problems of any size, including the following relationship with optimal solutions.

Relationship between optimal solutions and CPF solutions: Consider any lin-
ear programming problem with feasible solutions and a bounded feasible region.
The problem must possess CPF solutions and at least one optimal solution. Fur-
thermore, the best CPF solution must be an optimal solution. Thus, if a problem
has exactly one optimal solution, it must be a CPF solution. If the problem has
multiple optimal solutions, at least two must be CPF solutions.
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■ 3.3 ASSUMPTIONS OF LINEAR PROGRAMMING

The example has exactly one optimal solution, (x1, x2) � (2, 6), which is a CPF solu-
tion. (Think about how the graphical method leads to the one optimal solution being a CPF
solution.) When the example is modified to yield multiple optimal solutions, as shown in
Fig. 3.5, two of these optimal solutions—(2, 6) and (4, 3)—are CPF solutions.

All the assumptions of linear programming actually are implicit in the model formulation
given in Sec. 3.2. In particular, from a mathematical viewpoint, the assumptions simply are
that the model must have a linear objective function subject to linear constraints. However,
from a modeling viewpoint, these mathematical properties of a linear programming model
imply that certain assumptions must hold about the activities and data of the problem being
modeled, including assumptions about the effect of varying the levels of the activities. It is
good to highlight these assumptions so you can more easily evaluate how well linear pro-
gramming applies to any given problem. Furthermore, we still need to see why the OR
team for the Wyndor Glass Co. concluded that a linear programming formulation provided
a satisfactory representation of the problem.

Proportionality

Proportionality is an assumption about both the objective function and the functional con-
straints, as summarized below.

Proportionality assumption: The contribution of each activity to the value of the
objective function Z is proportional to the level of the activity xj, as represented by
the cjxj term in the objective function. Similarly, the contribution of each activity
to the left-hand side of each functional constraint is proportional to the level of
the activity xj, as represented by the aijxj term in the constraint. Consequently, this
assumption rules out any exponent other than 1 for any variable in any term of
any function (whether the objective function or the function on the left-hand side
of a functional constraint) in a linear programming model.2

To illustrate this assumption, consider the first term (3x1) in the objective function
(Z � 3x1 � 5x2) for the Wyndor Glass Co. problem. This term represents the profit gener-
ated per week (in thousands of dollars) by producing product 1 at the rate of x1 batches per
week. The proportionality satisfied column of Table 3.4 shows the case that was assumed
in Sec. 3.1, namely, that this profit is indeed proportional to x1 so that 3x1 is the appropri-
ate term for the objective function. By contrast, the next three columns show different
hypothetical cases where the proportionality assumption would be violated.

Refer first to the Case 1 column in Table 3.4. This case would arise if there were start-up
costs associated with initiating the production of product 1. For example, there might be costs
involved with setting up the production facilities. There might also be costs associated with
arranging the distribution of the new product. Because these are one-time costs, they would
need to be amortized on a per-week basis to be commensurable with Z (profit in thousands of
dollars per week). Suppose that this amortization were done and that the total start-up cost
amounted to reducing Z by 1, but that the profit without considering the start-up cost would be
3x1. This would mean that the contribution from product 1 to Z should be 3x1 � 1 for x1 > 0,

2When the function includes any cross-product terms, proportionality should be interpreted to mean that changes
in the function value are proportional to changes in each variable (xj) individually, given any fixed values for all
the other variables. Therefore, a cross-product term satisfies proportionality as long as each variable in the term
has an exponent of 1 (However, any cross-product term violates the additivity assumption, discussed next.)
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■ TABLE 3.4 Examples of satisfying or violating proportionality

Profit from Product 1 ($000 per Week)

Proportionality Violated

Proportionality 
x1 Satisfied Case 1 Case 2 Case 3

0 0 0 0 0
1 3 2 3 3
2 6 5 7 5
3 9 8 12 6
4 12 11 18 6

3If the contribution from product 1 to Z were 3x1 � 1 for all x1 � 0, including x1 � 0, then the fixed constant,
�1, could be deleted from the objective function without changing the optimal solution and proportionality
would be restored. However, this “fix” does not work here because the �1 constant does not apply when x1 � 0.

whereas the contribution would be 3x1 � 0 when x1 � 0 (no start-up cost). This profit func-
tion,3 which is given by the solid curve in Fig. 3.8, certainly is not proportional to x1.

At first glance, it might appear that Case 2 in Table 3.4 is quite similar to Case 1.
However, Case 2 actually arises in a very different way. There no longer is a start-up cost,
and the profit from the first unit of product 1 per week is indeed 3, as originally assumed.
However, there now is an increasing marginal return; i.e., the slope of the profit function
for product 1 (see the solid curve in Fig. 3.9) keeps increasing as x1 is increased. This vio-
lation of proportionality might occur because of economies of scale that can sometimes be
achieved at higher levels of production, e.g., through the use of more efficient high-volume
machinery, longer production runs, quantity discounts for large purchases of raw materials,
and the learning-curve effect whereby workers become more efficient as they gain experi-
ence with a particular mode of production. As the incremental cost goes down, the incre-
mental profit will go up (assuming constant marginal revenue).

■ FIGURE 3.8
The solid curve violates the
proportionality assumption
because of the start-up cost
that is incurred when x1 is
increased from 0. The values
at the dots are given by the
Case 1 column of Table 3.4.
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■ FIGURE 3.9
The solid curve violates the
proportionality assumption
because its slope (the
marginal return from
product 1) keeps increasing
as x1 is increased. The values
at the dots are given by the
Case 2 column of Table 3.4.

■ FIGURE 3.10
The solid curve violates the
proportionality assumption
because its slope (the marginal
return from product 1) keeps
decreasing as x1 is increased.
The values at the dots are
given by the Case 3 column
in Table 3.4.

Referring again to Table 3.4, the reverse of Case 2 is Case 3, where there is a
decreasing marginal return. In this case, the slope of the profit function for product 1
(given by the solid curve in Fig. 3.10) keeps decreasing as x1 is increased. This violation of
proportionality might occur because the marketing costs need to go up more than propor-
tionally to attain increases in the level of sales. For example, it might be possible to sell
product 1 at the rate of 1 per week (x1 � 1) with no advertising, whereas attaining sales to
sustain a production rate of x1 � 2 might require a moderate amount of advertising, x1 � 3
might necessitate an extensive advertising campaign, and x1 � 4 might require also lower-
ing the price.

All three cases are hypothetical examples of ways in which the proportionality assump-
tion could be violated. What is the actual situation? The actual profit from producing prod-
uct 1 (or any other product) is derived from the sales revenue minus various direct and
indirect costs. Inevitably, some of these cost components are not strictly proportional to the
production rate, perhaps for one of the reasons illustrated above. However, the real question
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is whether, after all the components of profit have been accumulated, proportionality is a
reasonable approximation for practical modeling purposes. For the Wyndor Glass Co. prob-
lem, the OR team checked both the objective function and the functional constraints. The
conclusion was that proportionality could indeed be assumed without serious distortion.

For other problems, what happens when the proportionality assumption does not hold
even as a reasonable approximation? In most cases, this means you must use nonlinear
programming instead (presented in Chap. 13). However, we do point out in Sec. 13.8 that a
certain important kind of nonproportionality can still be handled by linear programming by
reformulating the problem appropriately. Furthermore, if the assumption is violated only
because of start-up costs, there is an extension of linear programming (mixed integer pro-
gramming) that can be used, as discussed in Sec.12.3 (the fixed-charge problem).

Additivity

Although the proportionality assumption rules out exponents other than 1, it does not pro-
hibit cross-product terms (terms involving the product of two or more variables). The addi-
tivity assumption does rule out this latter possibility, as summarized below.

Additivity assumption: Every function in a linear programming model (whether
the objective function or the function on the left-hand side of a functional con-
straint) is the sum of the individual contributions of the respective activities.

To make this definition more concrete and clarify why we need to worry about this
assumption, let us look at some examples. Table 3.5 shows some possible cases for the
objective function for the Wyndor Glass Co. problem. In each case, the individual contri-
butions from the products are just as assumed in Sec. 3.1, namely, 3x1 for product 1 and 5x2

for product 2. The difference lies in the last row, which gives the function value for Z when
the two products are produced jointly. The additivity satisfied column shows the case
where this function value is obtained simply by adding the first two rows (3 � 5 � 8), so
that Z � 3x1 � 5x2 as previously assumed. By contrast, the next two columns show hypo-
thetical cases where the additivity assumption would be violated (but not the proportional-
ity assumption).

Referring to the Case 1 column of Table 3.5, this case corresponds to an objective
function of Z � 3x1 � 5x2 � x1x2, so that Z � 3 � 5 � 1 � 9 for (x1, x2) � (1, 1), thereby
violating the additivity assumption that Z � 3 � 5. (The proportionality assumption still
is satisfied since after the value of one variable is fixed, the increment in Z from the other
variable is proportional to the value of that variable.) This case would arise if the two
products were complementary in some way that increases profit. For example, suppose
that a major advertising campaign would be required to market either new product pro-
duced by itself, but that the same single campaign can effectively promote both products
if the decision is made to produce both. Because a major cost is saved for the second

■ TABLE 3.5 Examples of satisfying or violating additivity for the objective function

Value of Z

Additivity Violated

(x1, x2) Additivity Satisfied Case 1 Case 2

(1, 0) 3 3 3
(0, 1) 5 5 5

(1, 1) 8 9 7
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■ TABLE 3.6 Examples of satisfying or violating additivity for a functional constraint

Amount of Resource Used

Additivity Violated

(x1, x2) Additivity Satisfied Case 3 Case 4

(2, 0) 6 6 6
(0, 3) 6 6 6

(2, 3) 12 15 10.8

product, their joint profit is somewhat more than the sum of their individual profits when
each is produced by itself.

Case 2 in Table 3.5 also violates the additivity assumption because of the extra term in
the corresponding objective function, Z � 3x1 � 5x2 � x1x2, so that Z � 3 � 5 � 1 � 7 for
(x1, x2) � (1, 1). As the reverse of the first case, Case 2 would arise if the two products
were competitive in some way that decreased their joint profit. For example, suppose that
both products need to use the same machinery and equipment. If either product were pro-
duced by itself, this machinery and equipment would be dedicated to this one use. How-
ever, producing both products would require switching the production processes back
and forth, with substantial time and cost involved in temporarily shutting down the pro-
duction of one product and setting up for the other. Because of this major extra cost,
their joint profit is somewhat less than the sum of their individual profits when each is
produced by itself.

The same kinds of interaction between activities can affect the additivity of the con-
straint functions. For example, consider the third functional constraint of the Wyndor Glass
Co. problem: 3x1 � 2x2 � 18. (This is the only constraint involving both products.) This
constraint concerns the production capacity of Plant 3, where 18 hours of production time
per week is available for the two new products, and the function on the left-hand side
(3x1 � 2x2) represents the number of hours of production time per week that would be
used by these products. The additivity satisfied column of Table 3.6 shows this case as is,
whereas the next two columns display cases where the function has an extra cross-product
term that violates additivity. For all three columns, the individual contributions from the
products toward using the capacity of Plant 3 are just as assumed previously, namely, 3x1

for product 1 and 2x2 for product 2, or 3(2) � 6 for x1 � 2 and 2(3) � 6 for x2 � 3. As was
true for Table 3.5, the difference lies in the last row, which now gives the total function
value for production time used when the two products are produced jointly.

For Case 3 (see Table 3.6), the production time used by the two products is given by
the function 3x1 � 2x2 � 0.5x1x2, so the total function value is 6 � 6 � 3 � 15 when
(x1, x2) � (2, 3), which violates the additivity assumption that the value is just 6 � 6 � 12.
This case can arise in exactly the same way as described for Case 2 in Table 3.5; namely,
extra time is wasted switching the production processes back and forth between the two
products. The extra cross-product term (0.5x1x2) would give the production time wasted
in this way. (Note that wasting time switching between products leads to a positive
cross-product term here, where the total function is measuring production time used,
whereas it led to a negative cross-product term for Case 2 because the total function
there measures profit.)

For Case 4 in Table 3.6, the function for production time used is 3x1 � 2x2 � 0.1x1
2x2,

so the function value for (x1, x2) � (2, 3) is 6 � 6 � 1.2 � 10.8. This case could arise in the
following way. As in Case 3, suppose that the two products require the same type of machin-
ery and equipment. But suppose now that the time required to switch from one product to
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the other would be relatively small. Because each product goes through a sequence of pro-
duction operations, individual production facilities normally dedicated to that product would
incur occasional idle periods. During these otherwise idle periods, these facilities can be used
by the other product. Consequently, the total production time used (including idle periods)
when the two products are produced jointly would be less than the sum of the production
times used by the individual products when each is produced by itself.

After analyzing the possible kinds of interaction between the two products illustrated
by these four cases, the OR team concluded that none played a major role in the actual
Wyndor Glass Co. problem. Therefore, the additivity assumption was adopted as a reason-
able approximation.

For other problems, if additivity is not a reasonable assumption, so that some of or all
the mathematical functions of the model need to be nonlinear (because of the cross-product
terms), you definitely enter the realm of nonlinear programming (Chap. 13).

Divisibility

Our next assumption concerns the values allowed for the decision variables.

Divisibility assumption: Decision variables in a linear programming model are
allowed to have any values, including noninteger values, that satisfy the func-
tional and nonnegativity constraints. Thus, these variables are not restricted to
just integer values. Since each decision variable represents the level of some
activity, it is being assumed that the activities can be run at fractional levels.

For the Wyndor Glass Co. problem, the decision variables represent production rates
(the number of batches of a product produced per week). Since these production rates can
have any fractional values within the feasible region, the divisibility assumption does hold.

In certain situations, the divisibility assumption does not hold because some of or all
the decision variables must be restricted to integer values. Mathematical models with this
restriction are called integer programming models, and they are discussed in Chap. 12.

Certainty

Our last assumption concerns the parameters of the model, namely, the coefficients in the
objective function cj, the coefficients in the functional constraints aij, and the right-hand
sides of the functional constraints bi.

Certainty assumption: The value assigned to each parameter of a linear program-
ming model is assumed to be a known constant.

In real applications, the certainty assumption is seldom satisfied precisely. Linear pro-
gramming models usually are formulated to select some future course of action. Therefore,
the parameter values used would be based on a prediction of future conditions, which
inevitably introduces some degree of uncertainty.

For this reason it is usually important to conduct sensitivity analysis after a solution
is found that is optimal under the assumed parameter values. As discussed in Sec. 2.3, one
purpose is to identify the sensitive parameters (those whose value cannot be changed with-
out changing the optimal solution), since any later change in the value of a sensitive para-
meter immediately signals a need to change the solution being used.

Sensitivity analysis plays an important role in the analysis of the Wyndor Glass Co.
problem, as you will see in Sec. 7.2. However, it is necessary to acquire some more back-
ground before we finish that story.

Occasionally, the degree of uncertainty in the parameters is too great to be amenable to
sensitivity analysis alone. Sections 7.4-7.6 describe other ways of dealing with linear pro-
gramming under uncertainty.
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The Assumptions in Perspective

We emphasized in Sec. 2.2 that a mathematical model is intended to be only an idealized
representation of the real problem. Approximations and simplifying assumptions generally
are required in order for the model to be tractable. Adding too much detail and precision
can make the model too unwieldy for useful analysis of the problem. All that is really
needed is that there be a reasonably high correlation between the prediction of the model
and what would actually happen in the real problem.

This advice certainly is applicable to linear programming. It is very common in real
applications of linear programming that almost none of the four assumptions hold com-
pletely. Except perhaps for the divisibility assumption, minor disparities are to be expected.
This is especially true for the certainty assumption, so sensitivity analysis normally is a
must to compensate for the violation of this assumption.

However, it is important for the OR team to examine the four assumptions for the
problem under study and to analyze just how large the disparities are. If any of the assump-
tions are violated in a major way, then a number of useful alternative models are available,
as presented in later chapters of the book. A disadvantage of these other models is that the
algorithms available for solving them are not nearly as powerful as those for linear pro-
gramming, but this gap has been closing in some cases. For some applications, the power-
ful linear programming approach is used for the initial analysis, and then a more
complicated model is used to refine this analysis.

As you work through the examples in Sec. 3.4, you will find it good practice to ana-
lyze how well each of the four assumptions of linear programming applies.

■ 3.4 ADDITIONAL EXAMPLES

The Wyndor Glass Co. problem is a prototype example of linear programming in several
respects: It is a resource-allocation problem (the most common type of linear programming
problem) because it involves allocating limited resources among competing activities. Fur-
thermore, its model fits our standard form and its context is the traditional one of improved
business planning. However, the applicability of linear programming is much wider. In this
section we begin broadening our horizons. As you study the following examples, note that it is
their underlying mathematical model rather than their context that characterizes them as linear
programming problems. Then give some thought to how the same mathematical model could
arise in many other contexts by merely changing the names of the activities and so forth.

These examples are scaled-down versions of actual applications. Like the Wyndor
problem and the demonstration example for the graphical method in OR Tutor, the first of
these examples has only two decision variables and so can be solved by the graphical
method. The new features are that it is a minimization problem and has a mixture of forms
for the functional constraints. (This example considerably simplifies the real situation
when designing radiation therapy, but the first application vignette in this section describes
the exciting impact that OR actually is having in this area.) The subsequent examples have
considerably more than two decision variables and so are more challenging to formulate.
Although we will mention their optimal solutions that are obtained by the simplex method,
the focus here is on how to formulate the linear programming model for these larger prob-
lems. Subsequent sections and the next chapter will turn to the question of the software
tools and the algorithm (usually the simplex method) that are used to solve such problems.

If you find that you need additional examples of formulating small and relatively
straightforward linear programming models before dealing with these more challenging
formulation examples, we suggest that you go back to the demonstration example for the
graphical method in OR Tutor and to the examples in the Solved Examples section for this
chapter on the book’s website.
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Design of Radiation Therapy

MARY has just been diagnosed as having a cancer at a fairly advanced stage. Specifically,
she has a large malignant tumor in the bladder area (a “whole bladder lesion”).

Mary is to receive the most advanced medical care available to give her every possible
chance for survival. This care will include extensive radiation therapy.

Radiation therapy involves using an external beam treatment machine to pass ionizing
radiation through the patient’s body, damaging both cancerous and healthy tissues. Nor-
mally, several beams are precisely administered from different angles in a two-dimensional
plane. Due to attenuation, each beam delivers more radiation to the tissue near the entry
point than to the tissue near the exit point. Scatter also causes some delivery of radiation to
tissue outside the direct path of the beam. Because tumor cells are typically microscopi-
cally interspersed among healthy cells, the radiation dosage throughout the tumor region
must be large enough to kill the malignant cells, which are slightly more radiosensitive, yet
small enough to spare the healthy cells. At the same time, the aggregate dose to critical tis-
sues must not exceed established tolerance levels, in order to prevent complications that
can be more serious than the disease itself. For the same reason, the total dose to the entire
healthy anatomy must be minimized.

Because of the need to carefully balance all these factors, the design of radiation ther-
apy is a very delicate process. The goal of the design is to select the combination of beams
to be used, and the intensity of each one, to generate the best possible dose distribution.
(The dose strength at any point in the body is measured in units called kilorads.) Once the
treatment design has been developed, it is administered in many installments, spread over
several weeks.

In Mary’s case, the size and location of her tumor make the design of her treatment an
even more delicate process than usual. Figure 3.11 shows a diagram of a cross section of
the tumor viewed from above, as well as nearby critical tissues to avoid. These tissues
include critical organs (e.g., the rectum) as well as bony structures (e.g., the femurs and
pelvis) that will attenuate the radiation. Also shown are the entry point and direction for the
only two beams that can be used with any modicum of safety in this case. (Actually, we are
simplifying the example at this point, because normally dozens of possible beams must be
considered.)

For any proposed beam of given intensity, the analysis of what the resulting radiation
absorption by various parts of the body would be requires a complicated process. In brief,
based on careful anatomical analysis, the energy distribution within the two-dimensional
cross section of the tissue can be plotted on an isodose map, where the contour lines repre-
sent the dose strength as a percentage of the dose strength at the entry point. A fine grid
then is placed over the isodose map. By summing the radiation absorbed in the squares
containing each type of tissue, the average dose that is absorbed by the tumor, healthy
anatomy, and critical tissues can be calculated. With more than one beam (administered
sequentially), the radiation absorption is additive.

After thorough analysis of this type, the medical team has carefully estimated the
data needed to design Mary’s treatment, as summarized in Table 3.7. The first column
lists the areas of the body that must be considered, and then the next two columns give
the fraction of the radiation dose at the entry point for each beam that is absorbed by the
respective areas on average. For example, if the dose level at the entry point for beam 1
is 1 kilorad, then an average of 0.4 kilorad will be absorbed by the entire healthy
anatomy in the two-dimensional plane, an average of 0.3 kilorad will be absorbed by
nearby critical tissues, an average of 0.5 kilorad will be absorbed by the various parts of
the tumor, and 0.6 kilorad will be absorbed by the center of the tumor. The last column
gives the restrictions on the total dosage from both beams that is absorbed on average by
the respective areas of the body. In particular, the average dosage absorption for the

■ FIGURE 3.11
Cross section of Mary’s 
tumor (viewed from above),
nearby critical tissues, and 
the radiation beams being 
used.
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Prostate cancer is the most common form of cancer diag-
nosed in men. It is estimated that there were nearly 240,000
new cases and nearly 30,000 deaths in just the United
States alone in 2013. Like many other forms of cancer,
radiation therapy is a common method of treatment for
prostate cancer, where the goal is to have a sufficiently
high radiation dosage in the tumor region to kill the
malignant cells while minimizing the radiation exposure
to critical healthy structures near the tumor. This treat-
ment can be applied through either external beam radia-
tion therapy (as illustrated by the first example in this
section) or brachytherapy, which involves placing approx-
imately 100 radioactive “seeds” within the tumor region.
The challenge is to determine the most effective three-
dimensional geometric pattern for placing these seeds.

Memorial Sloan-Kettering Cancer Center (MSKCC)
in New York City is the world’s oldest private cancer cen-
ter. An OR team from the Center for Operations Research
in Medicine and HealthCare at Georgia Institute of Tech-
nology worked with physicians at MSKCC to develop a
highly sophisticated next-generation method of optimiz-
ing the application of brachytherapy to prostrate cancer.
The underlying model fits the structure for linear pro-
gramming with one exception. In addition to having
the usual continuous variables that fit linear program-
ming, the model also has some binary variables (vari-
ables whose only possible values are 0 and 1). (This
kind of extension of linear programming to what is
called mixed-integer programming will be discussed in

Chap. 12.) The optimization is done in a matter of
minutes by an automated computerized planning sys-
tem that can be operated readily by medical personnel
when beginning the procedure of inserting the seeds
into the patient’s prostrate.

This breakthrough in optimizing the application of
brachytherapy to prostrate cancer is having a profound
impact on both health care costs and quality of life for
treated patients because of its much greater effectiveness
and the substantial reduction in side effects. When all
U.S. clinics adopt this procedure, it is estimated that the
annual cost savings will approximate $500 million due to
eliminating the need for a pretreatment planning meeting
and a postoperation CT scan, as well as providing a more
efficient surgical procedure and reducing the need to treat
subsequent side effects. It also is anticipated that this
approach can be extended to other forms of brachyther-
apy, such as treatment of breast, cervix, esophagus, bil-
iary tract, pancreas, head and neck, and eye.

This application of linear programming and its
extensions led to the OR team winning the prestigious
First Prize in the 2007 international competition for the
Franz Edelman Award for Achievement in Operations
Research and the Management Sciences.

Source: E. K. Lee and M. Zaider, “Operations Research
Advances Cancer Therapeutics,” Interfaces, 38(1): 5–25,
Jan.–Feb. 2008. (A link to this article is provided on our web-
site, www.mhhe.com/hillier.)

An Application Vignette

healthy anatomy must be as small as possible, the critical tissues must not exceed 2.7
kilorads, the average over the entire tumor must equal 6 kilorads, and the center of the
tumor must be at least 6 kilorads.

Formulation as a Linear Programming Problem. The decisions that need to
be made are the dosages of radiation at the two entry points. Therefore, the two decision
variables x1 and x2 represent the dose (in kilorads) at the entry point for beam 1 and
beam 2, respectively. Because the total dosage reaching the healthy anatomy is to be 

■ TABLE 3.7 Data for the design of Mary’s radiation therapy

Fraction of Entry Dose 
Absorbed by 

Area (Average)

Area Beam 1 Beam 2 Restriction on Total Average 
Dosage, Kilorads

Healthy anatomy 0.4 0.5 Minimize
Critical tissues 0.3 0.1 � 2.7
Tumor region 0.5 0.5 � 6
Center of tumor 0.6 0.4 � 6
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minimized, let Z denote this quantity. The data from Table 3.7 can then be used directly to
formulate the following linear programming model.4

subject to

and

Notice the differences between this model and the one in Sec. 3.1 for the Wyndor
Glass Co. problem. The latter model involved maximizing Z, and all the functional con-
straints were in � form. This new model does not fit this same standard form, but it does
incorporate three other legitimate forms described in Sec. 3.2, namely, minimizing Z, func-
tional constraints in � form, and functional constraints in � form.

However, both models have only two variables, so this new problem also can be solved
by the graphical method illustrated in Sec. 3.1. Figure 3.12 shows the graphical solution. The
feasible region consists of just the dark line segment between (6, 6) and (7.5, 4.5), because
the points on this segment are the only ones that simultaneously satisfy all the constraints.
(Note that the equality constraint limits the feasible region to the line containing this line seg-
ment, and then the other two functional constraints determine the two endpoints of the line
segment.) The dashed line is the objective function line that passes through the optimal
solution (x1, x2) � (7.5, 4.5) with Z � 5.25. This solution is optimal rather than the point
(6, 6) because decreasing Z (for positive values of Z) pushes the objective function line
toward the origin (where Z � 0). And Z � 5.25 for (7.5, 4.5) is less than Z � 5.4 for (6, 6).

Thus, the optimal design is to use a total dose at the entry point of 7.5 kilorads for
beam 1 and 4.5 kilorads for beam 2.

In contrast to the Wyndor problem, this one is not a resource-allocation problem. Instead,
it fits into a category of linear programming problems called cost–benefit–trade-off
problems. The key characteristic of such problems is that it seeks the best trade-off
between some cost and some benefit(s). In this particular example, the cost is the damage
to healthy anatomy and the benefit is the radiation reaching the center of the tumor. The
third functional constraint in this model is a benefit constraint, where the right-hand side
represents the minimum acceptable level of the benefit and the left-hand side represents
the level of the benefit achieved. This is the most important constraint, but the other two
functional constraints impose additional restrictions as well. (You will see two additional
examples of cost–benefit–trade-off problems later in this section.)

Regional Planning

The SOUTHERN CONFEDERATION OF KIBBUTZIM is a group of three kibbutzim
(communal farming communities) in Israel. Overall planning for this group is done in its

x1 � 0,   x2 � 0.

 0.6x1 � 0.4x2 � 6

 0.5x1 � 0.5x2 � 6

 0.3x1 � 0.1x2 � 2.7

Minimize   Z � 0.4x1 � 0.5x2 ,

4This model is much smaller than normally would be needed for actual applications. For the best results, a realistic
model might even need many tens of thousands of decision variables and constraints. For example, see H. E. Romeijn,
R. K. Ahuja, J. F. Dempsey, and A. Kumar, “A New Linear Programming Approach to Radiation Therapy Treatment
Planning Problems,” Operations Research, 54(2): 201–216, March–April 2006. For alternative approaches that
combine linear programming with other OR techniques (like the application vignette in this section), also see G. J.
Lim, M. C. Ferris, S. J. Wright, D. M. Shepard, and M. A. Earl, “An Optimization Framework for Conformal Radi-
ation Treatment Planning,” INFORMS Journal on Computing, 19(3): 366–380, Summer 2007.
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■ FIGURE 3.12
Graphical solution for the
design of Mary’s radiation
therapy.

Coordinating Technical Office. This office currently is planning agricultural production for
the coming year.

The agricultural output of each kibbutz is limited by both the amount of available irri-
gable land and the quantity of water allocated for irrigation by the Water Commissioner (a
national government official). These data are given in Table 3.8.

The crops suited for this region include sugar beets, cotton, and sorghum, and these
are the three being considered for the upcoming season. These crops differ primarily in
their expected net return per acre and their consumption of water. In addition, the Ministry
of Agriculture has set a maximum quota for the total acreage that can be devoted to each of
these crops by the Southern Confederation of Kibbutzim, as shown in Table 3.9.

■ TABLE 3.8 Resource data for the Southern Confederation of Kibbutzim

Kibbutz Usable Land (Acres) Water Allocation (Acre Feet)

1 400 600
2 600 800
3 300 375
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Because of the limited water available for irrigation, the Southern Confederation of
Kibbutzim will not be able to use all its irrigable land for planting crops in the upcoming
season. To ensure equity between the three kibbutzim, it has been agreed that every kibbutz
will plant the same proportion of its available irrigable land. For example, if kibbutz 1 plants
200 of its available 400 acres, then kibbutz 2 must plant 300 of its 600 acres, while kib-
butz 3 plants 150 acres of its 300 acres. However, any combination of the crops may be
grown at any of the kibbutzim. The job facing the Coordinating Technical Office is to plan
how many acres to devote to each crop at the respective kibbutzim while satisfying the
given restrictions. The objective is to maximize the total net return to the Southern 
Confederation of Kibbutzim as a whole.

Formulation as a Linear Programming Problem. The quantities to be decided upon
are the number of acres to devote to each of the three crops at each of the three kibbutzim.
The decision variables xj (j � 1, 2, . . . , 9) represent these nine quantities, as shown in
Table 3.10.

Since the measure of effectiveness Z is the total net return, the resulting linear pro-
gramming model for this problem is

subject to the following constraints:

1. Usable land for each kibbutz:

2. Water allocation for each kibbutz:

 3x3 � 2x6 � x9 � 375

 3x2 � 2x5 � x8 � 800

 3x1 � 2x4 � x7 � 600

 x3 � x6 � x9 � 300

 x2 � x5 � x8 � 600

 x1 � x4 � x7 � 400

Maximize   Z � 1,0001x1 � x2 � x3 2 � 7501x4 � x5 � x6 2 � 2501x7 � x8 � x9 2 ,

■ TABLE 3.9 Crop data for the Southern Confederation of Kibbutzim

Maximum Water Consumption Net Return
Crop Quota (Acres) (Acre Feet/Acre) ($/Acre)

Sugar beets 600 3 1,000
Cotton 500 2 750
Sorghum 325 1 250

■ TABLE 3.10 Decision variables for the Southern Confederation 
of Kibbutzim problem

Allocation (Acres)

Kibbutz

Crop 1 2 3

Sugar beets x1 x2 x3

Cotton x4 x5 x6

Sorghum x7 x8 x9
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50 CHAPTER 3 INTRODUCTION TO LINEAR PROGRAMMING

3. Total acreage for each crop:

4. Equal proportion of land planted:

5. Nonnegativity:

This completes the model, except that the equality constraints are not yet in an appropriate
form for a linear programming model because some of the variables are on the right-hand
side. Hence, their final form5 is

The Coordinating Technical Office formulated this model and then applied the sim-
plex method (developed in Chap. 4) to find an optimal solution

as shown in Table 3.11. The resulting optimal value of the objective function is Z = 633,

that is, a total net return of $633,333.33.

333 
1
3,

1x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 , x9 2 � a133 

1

3
, 100, 25, 100, 250, 150, 0, 0, 0b ,

 41x3 � x6 � x9 2 � 31x1 � x4 � x7 2 � 0

   1x2 � x5 � x8 2 � 21x3 � x6 � x9 2 � 0

 31x1 � x4 � x7 2 � 21x2 � x5 � x8 2 � 0

xj � 0,   for j � 1, 2, p , 9.

 
x3 � x6 � x9

300
�

x1 � x4 � x7

400

 
x2 � x5 � x8

600
�

x3 � x6 � x9

300

 
x1 � x4 � x7

400
�

x2 � x5 � x8

600

 x7 � x8 � x9 � 325
 x4 � x5 � x6 � 500
 x1 � x2 � x3 � 600

5Actually, any one of these equations is redundant and can be deleted if desired. Also, because of these equations,
any two of the usable land constraints also could be deleted because they automatically would be satisfied when
both the remaining usable land constraint and these equations are satisfied. However, no harm is done (except a
little more computational effort) by including unnecessary constraints, so you don’t need to worry about identify-
ing and deleting them in models you formulate.

■ TABLE 3.11 Optimal solution for the Southern Confederation 
of Kibbutzim problem

Best Allocation (Acres)

Kibbutz

Crop 1 2 3

Sugar beets 133�
1
3

� 100 25
Cotton 100 250 150
Sorghum 0 0 0
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This problem is another example (like the Wyndor problem) of a resource-allocation
problem. The first three categories of constraints all are resource constraints. The fourth
category then adds some side constraints.

Controlling Air Pollution

The NORI & LEETS CO., one of the major producers of steel in its part of the world, is
located in the city of Steeltown and is the only large employer there. Steeltown has grown and
prospered along with the company, which now employs nearly 50,000 residents. Therefore,
the attitude of the townspeople always has been, What’s good for Nori & Leets is good for the
town. However, this attitude is now changing; uncontrolled air pollution from the company’s
furnaces is ruining the appearance of the city and endangering the health of its residents.

A recent stockholders’ revolt resulted in the election of a new enlightened board of
directors for the company. These directors are determined to follow socially responsible
policies, and they have been discussing with Steeltown city officials and citizens’ groups
what to do about the air pollution problem. Together they have worked out stringent air
quality standards for the Steeltown airshed.

The three main types of pollutants in this airshed are particulate matter, sulfur oxides,
and hydrocarbons. The new standards require that the company reduce its annual emission of
these pollutants by the amounts shown in Table 3.12. The board of directors has instructed
management to have the engineering staff determine how to achieve these reductions in the
most economical way.

The steelworks has two primary sources of pollution, namely, the blast furnaces for
making pig iron and the open-hearth furnaces for changing iron into steel. In both cases the
engineers have decided that the most effective types of abatement methods are (1) increas-
ing the height of the smokestacks,6 (2) using filter devices (including gas traps) in the
smokestacks, and (3) including cleaner, high-grade materials among the fuels for the fur-
naces. Each of these methods has a technological limit on how heavily it can be used (e.g.,
a maximum feasible increase in the height of the smokestacks), but there also is consider-
able flexibility for using the method at a fraction of its technological limit.

Table 3.13 shows how much emission (in millions of pounds per year) can be elimi-
nated from each type of furnace by fully using any abatement method to its technological
limit. For purposes of analysis, it is assumed that each method also can be used less fully
to achieve any fraction of the emission-rate reductions shown in this table. Furthermore,
the fractions can be different for blast furnaces and for open-hearth furnaces. For either
type of furnace, the emission reduction achieved by each method is not substantially
affected by whether the other methods also are used.

After these data were developed, it became clear that no single method by itself could
achieve all the required reductions. On the other hand, combining all three methods at full
capacity on both types of furnaces (which would be prohibitively expensive if the company’s

■ TABLE 3.12 Clean air standards for the Nori & Leets Co.

Pollutant Required Reduction in Annual Emission Rate 
(Million Pounds)

Particulates 60
Sulfur oxides 150
Hydrocarbons 125

6This particular abatement method has become a controversial one. Because its effect is to reduce ground-level
pollution by spreading emissions over a greater distance, environmental groups contend that this creates more
acid rain by keeping sulfur oxides in the air longer. Consequently, the U.S. Environmental Protection Agency
adopted new rules in 1985 to remove incentives for using tall smokestacks.
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52 CHAPTER 3 INTRODUCTION TO LINEAR PROGRAMMING

■ TABLE 3.13 Reduction in emission rate (in millions of pounds per year) from the
maximum feasible use of an abatement method for Nori & Leets Co.

Taller Smokestacks Filters Better Fuels

Blast Open-Hearth Blast Open-Hearth Blast Open-Hearth
Pollutant Furnaces Furnaces Furnaces Furnaces Furnaces Furnaces

Particulates 12 9 25 20 17 13
Sulfur oxides 35 42 18 31 56 49
Hydrocarbons 37 53 28 24 29 20

products are to remain competitively priced) is much more than adequate. Therefore, the
engineers concluded that they would have to use some combination of the methods, per-
haps with fractional capacities, based upon the relative costs. Furthermore, because of the
differences between the blast and the open-hearth furnaces, the two types probably should
not use the same combination.

An analysis was conducted to estimate the total annual cost that would be incurred by
each abatement method. A method’s annual cost includes increased operating and mainte-
nance expenses as well as reduced revenue due to any loss in the efficiency of the produc-
tion process caused by using the method. The other major cost is the start-up cost (the
initial capital outlay) required to install the method. To make this one-time cost commen-
surable with the ongoing annual costs, the time value of money was used to calculate the
annual expenditure (over the expected life of the method) that would be equivalent in value
to this start-up cost.

This analysis led to the total annual cost estimates (in millions of dollars) given in
Table 3.14 for using the methods at their full abatement capacities. It also was determined
that the cost of a method being used at a lower level is roughly proportional to the fraction
of the abatement capacity given in Table 3.13 that is achieved. Thus, for any given fraction
achieved, the total annual cost would be roughly that fraction of the corresponding quan-
tity in Table 3.14.

The stage now was set to develop the general framework of the company’s plan for
pollution abatement. This plan specifies which types of abatement methods will be used
and at what fractions of their abatement capacities for (1) the blast furnaces and (2) the
open-hearth furnaces. Because of the combinatorial nature of the problem of finding a plan
that satisfies the requirements with the smallest possible cost, an OR team was formed to
solve the problem. The team adopted a linear programming approach, formulating the
model summarized next.

Formulation as a Linear Programming Problem. This problem has six decision
variables xj, j = 1, 2, . . . , 6, each representing the use of one of the three abatement meth-
ods for one of the two types of furnaces, expressed as a fraction of the abatement capacity
(so xj cannot exceed 1). The ordering of these variables is shown in Table 3.15. Because the

■ TABLE 3.14 Total annual cost from the maximum feasible use of an abatement
method for Nori & Leets Co. ($ millions)

Abatement Method Blast Furnaces Open-Hearth Furnaces

Taller smokestacks 8 10
Filters 7 6
Better fuels 11 9
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3.4 ADDITIONAL EXAMPLES 53

objective is to minimize total cost while satisfying the emission reduction requirements,
the data in Tables 3.12, 3.13, and 3.14 yield the following model:

subject to the following constraints:

1. Emission reduction:

2. Technological limit:

3. Nonnegativity:

The OR team used this model7 to find a minimum-cost plan

with Z � 32.16 (total annual cost of $32.16 million). Sensitivity analysis then was conducted
to explore the effect of making possible adjustments in the air standards given in Table 3.12,
as well as to check on the effect of any inaccuracies in the cost data given in Table 3.14. (This
story is continued in Case 7.1 at the end of Chap. 7.) Next came detailed planning and man-
agerial review. Soon after, this program for controlling air pollution was fully implemented
by the company, and the citizens of Steeltown breathed deep (cleaner) sighs of relief.

Like the radiation therapy problem, this is another example of a cost–benefit–trade-off
problem. The cost in this case is a monetary cost and the benefits are the various types of
pollution abatement. The benefit constraint for each type of pollutant has the amount of
abatement achieved on the left-hand side and the minimum acceptable level of abatement
on the right-hand side.

Reclaiming Solid Wastes

The SAVE-IT COMPANY operates a reclamation center that collects four types of solid
waste materials and treats them so that they can be amalgamated into a salable product.
(Treating and amalgamating are separate processes.) Three different grades of this product
can be made (see the first column of Table 3.16), depending upon the mix of the materials
used. Although there is some flexibility in the mix for each grade, quality standards may
specify the minimum or maximum amount allowed for the proportion of a material in the

1x1 , x2 , x3 , x4 , x5 , x6 2 � 11, 0.623, 0.343, 1, 0.048, 1 2 ,

xj � 0,   for j � 1, 2, . . . , 6.

xj � 1,   for j � 1, 2, . . . , 6

 37x1 � 53x2 � 28x3 � 24x4 � 29x5 � 20x6 � 125
 35x1 � 42x2 � 18x3 � 31x4 � 56x5 � 49x6 � 150
 12x1 � 9x2 � 25x3 � 20x4 � 17x5 � 13x6 � 60

Minimize   Z � 8x1 � 10x2 � 7x3 � 6x4 � 11x5 � 9x6 ,

■ TABLE 3.15 Decision variables (fraction of the maximum feasible use of an
abatement method) for Nori & Leets Co.

Abatement Method Blast Furnaces Open-Hearth Furnaces

Taller smokestacks x1 x2

Filters x3 x4

Better fuels x5 x6

7An equivalent formulation can express each decision variable in natural units for its abatement method; for
example, x1 and x2 could represent the number of feet that the heights of the smokestacks are increased.
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■ TABLE 3.16 Product data for Save-It Co.

Amalgamation Selling Price 
Grade Specification Cost per Pound ($) per Pound ($)

Material 1: Not more than 30% of total
A Material 2: Not less than 40% of total 3.00 8.50

Material 3: Not more than 50% of total
Material 4: Exactly 20% of total

Material 1: Not more than 50% of total
B Material 2: Not less than 10% of total 2.50 7.00

Material 4: Exactly 10% of total

C Material 1: Not more than 70% of total 2.00 5.50

product grade. (This proportion is the weight of the material expressed as a percentage of
the total weight for the product grade.) For each of the two higher grades, a fixed percentage
is specified for one of the materials. These specifications are given in Table 3.16 along with
the cost of amalgamation and the selling price for each grade.

The reclamation center collects its solid waste materials from regular sources and so is
normally able to maintain a steady rate for treating them. Table 3.17 gives the quantities
available for collection and treatment each week, as well as the cost of treatment, for each
type of material.

The Save-It Co. is solely owned by Green Earth, an organization devoted to dealing
with environmental issues, so Save-It’s profits are used to help support Green Earth’s activ-
ities. Green Earth has raised contributions and grants, amounting to $30,000 per week, to be
used exclusively to cover the entire treatment cost for the solid waste materials. The board
of directors of Green Earth has instructed the management of Save-It to divide this money
among the materials in such a way that at least half of the amount available of each mater-
ial is actually collected and treated. These additional restrictions are listed in Table 3.17.

Within the restrictions specified in Tables 3.16 and 3.17, management wants to deter-
mine the amount of each product grade to produce and the exact mix of materials to be
used for each grade. The objective is to maximize the net weekly profit (total sales income
minus total amalgamation cost), exclusive of the fixed treatment cost of $30,000 per week
that is being covered by gifts and grants.

Formulation as a Linear Programming Problem. Before attempting to construct a
linear programming model, we must give careful consideration to the proper definition of the
decision variables. Although this definition is often obvious, it sometimes becomes the crux
of the entire formulation. After clearly identifying what information is really desired and the
most convenient form for conveying this information by means of decision variables, we can
develop the objective function and the constraints on the values of these decision variables.

■ TABLE 3.17 Solid waste materials data for the Save-It Co.

Pounds per Treatment Cost 
Material Week Available per Pound ($) Additional Restrictions

1 3,000 3.00 1. For each material, at least half of the 
2 2,000 6.00 pounds per week available should be 
3 4,000 4.00 collected and treated.
4 1,000 5.00 2. $30,000 per week should be used 

to treat these materials.
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In this particular problem, the decisions to be made are well defined, but the appropri-
ate means of conveying this information may require some thought. (Try it and see if you
first obtain the following inappropriate choice of decision variables.)

Because one set of decisions is the amount of each product grade to produce, it would
seem natural to define one set of decision variables accordingly. Proceeding tentatively
along this line, we define

The other set of decisions is the mix of materials for each product grade. This mix is iden-
tified by the proportion of each material in the product grade, which would suggest defin-
ing the other set of decision variables as

However, Table 3.17 gives both the treatment cost and the availability of the materials by
quantity (pounds) rather than proportion, so it is this quantity information that needs to be
recorded in some of the constraints. For material j ( j � 1, 2, 3, 4),

For example, since Table 3.17 indicates that 3,000 pounds of material 1 is available per
week, one constraint in the model would be

Unfortunately, this is not a legitimate linear programming constraint. The expression on
the left-hand side is not a linear function because it involves products of variables. There-
fore, a linear programming model cannot be constructed with these decision variables.

Fortunately, there is another way of defining the decision variables that will fit the lin-
ear programming format. (Do you see how to do it?) It is accomplished by merely replac-
ing each product of the old decision variables by a single variable! In other words, define

and then we let the xij be the decision variables. Combining the xij in different ways yields
the following quantities needed in the model (for i = A, B, C; j = 1, 2, 3, 4).

The fact that this last expression is a nonlinear function does not cause a complication.
For example, consider the first specification for product grade A in Table 3.16 (the proportion
of material 1 should not exceed 30 percent). This restriction gives the nonlinear constraint

However, multiplying through both sides of this inequality by the denominator yields an
equivalent constraint

xA1 � 0.31xA1 � xA2 � xA3 � xA4 2 ,

xA1

xA1 � xA2 � xA3 � xA4
� 0.3.

 
xij

xi1 � xi2 � xi3 � xi4
� proportion of material j in product grade i.

 xAj � xBj � xCj � number of pounds of material j used per week.

 xi1 � xi2 � xi3 � xi4 � number of pounds of product grade i produced per week.

 � number of pounds of material j allocated to product grade i per week,

 xij � zijyi   1for i � A, B, C; j � 1, 2, 3, 4 2

zA1yA � zB1yB � zC1yC � 3,000.

Number of pounds of material j used per week � zAjyA � zBjyB � zCjyC .

zij � proportion of material j in product grade i   1i � A, B, C; j � 1, 2, 3, 4 2 .

yi � number of pounds of product grade i produced per week   1i � A, B, C 2 .
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so

which is a legitimate linear programming constraint.
With this adjustment, the three quantities given above lead directly to all the func-

tional constraints of the model. The objective function is based on management’s objective
of maximizing net weekly profit (total sales income minus total amalgamation cost) from
the three product grades. Thus, for each product grade, the profit per pound is obtained by
subtracting the amalgamation cost given in the third column of Table 3.16 from the selling
price in the fourth column. These differences provide the coefficients for the objective
function.

Therefore, the complete linear programming model is

subject to the following constraints:

1. Mixture specifications (second column of Table 3.16):

2. Availability of materials (second column of Table 3.17):

3. Restrictions on amounts treated (right side of Table 3.17):

4. Restriction on treatment cost (right side of Table 3.17):

5. Nonnegativity constraints:

xA1 � 0,   xA2 � 0,   . . . ,   xC4 � 0.

 � 51xA4 � xB4 � xC4 2 � 30,000.

 31xA1 � xB1 � xC1 2 � 61xA2 � xB2 � xC2 2 � 41xA3 � xB3 � xC3 2

 xA4 � xB4 � xC4 � 500   1material 4 2 .
 xA3 � xB3 � xC3 � 2,000   1material 3 2
 xA2 � xB2 � xC2 � 1,000   1material 2 2
 xA1 � xB1 � xC1 � 1,500   1material 1 2

 xA4 � xB4 � xC4 � 1,000   1material 4 2 .
 xA3 � xB3 � xC3 � 4,000   1material 3 2
 xA2 � xB2 � xC2 � 2,000   1material 2 2
 xA1 � xB1 � xC1 � 3,000   1material 1 2

 xC1 � 0.71xC1 � xC2 � xC3 � xC4 2    1grade C, material 1 2 .
 xB4 � 0.11xB1 � xB2 � xB3 � xB4 2    1grade B, material 4 2
 xB2 � 0.11xB1 � xB2 � xB3 � xB4 2    1grade B, material 2 2
 xB1 � 0.51xB1 � xB2 � xB3 � xB4 2    1grade B, material 1 2
 xA4 � 0.21xA1 � xA2 � xA3 � xA4 2    1grade A, material 4 2
 xA3 � 0.51xA1 � xA2 � xA3 � xA4 2    1grade A, material 3 2
 xA2 � 0.41xA1 � xA2 � xA3 � xA4 2    1grade A, material 2 2
 xA1 � 0.31xA1 � xA2 � xA3 � xA4 2    1grade A, material 1 2

 � 3.51xC1 � xC2 � xC3 � xC4 2 ,
 Maximize  Z � 5.51xA1 � xA2 � xA3 � xA4 2 � 4.51xB1 � xB2 � xB3 � xB4 2

0.7xA1 � 0.3xA2 � 0.3xA3 � 0.3xA4 � 0,
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This formulation completes the model, except that the constraints for the mixture
specifications need to be rewritten in the proper form for a linear programming model by
bringing all variables to the left-hand side and combining terms, as follows:

Mixture specifications:

An optimal solution for this model is shown in Table 3.18, and then these xij values are
used to calculate the other quantities of interest given in the table. The resulting optimal
value of the objective function is Z � 35,109.65 (a total weekly profit of $35,109.65).

The Save-It Co. problem is an example of a blending problem. The objective for a
blending problem is to find the best blend of ingredients into final products to meet certain
specifications. Some of the earliest applications of linear programming were for gasoline
blending, where petroleum ingredients were blended to obtain various grades of gasoline.
Other blending problems involve such final products as steel, fertilizer, and animal feed.
Such problems have a wide variety of constraints (some are resource constraints, some are
benefit constraints, and some are neither), so blended problems do not fall into either of the
two broad categories (resource allocation problems and cost–benefit–trade-off problems)
described earlier in this section.

Personnel Scheduling

UNION AIRWAYS is adding more flights to and from its hub airport, and so it needs to
hire additional customer service agents. However, it is not clear just how many more
should be hired. Management recognizes the need for cost control while also consistently
providing a satisfactory level of service to customers. Therefore, an OR team is studying
how to schedule the agents to provide satisfactory service with the smallest personnel cost.

Based on the new schedule of flights, an analysis has been made of the minimum num-
ber of customer service agents that need to be on duty at different times of the day to 

 0.3xC1 � 0.7xC2 � 0.7xC3 � 0.7xC4 � 0   1grade C, material 1 2 .
 �0.1xB1 � 0.1xB2 � 0.1xB3 � 0.9xB4 � 0   1grade B, material 4 2
 �0.1xB1 � 0.9xB2 � 0.1xB3 � 0.1xB4 � 0   1grade B, material 2 2

 0.5xB1 � 0.5xB2 � 0.5xB3 � 0.5xB4 � 0   1grade B, material 1 2
 �0.2xA1 � 0.2xA2 � 0.2xA3 � 0.8xA4 � 0   1grade A, material 4 2
 �0.5xA1 � 0.5xA2 � 0.5xA3 � 0.5xA4 � 0   1grade A, material 3 2
 �0.4xA1 � 0.6xA2 � 0.4xA3 � 0.4xA4 � 0   1grade A, material 2 2

 0.7xA1 � 0.3xA2 � 0.3xA3 � 0.3xA4 � 0   1grade A, material 1 2

■ TABLE 3.18 Optimal solution for the Save-It Co. problem

Pounds Used per Week

Material
Number of Pounds 

Grade 1 2 3 4 Produced per Week

A 412.3 859.6 447.4 429.8 2149
(19.2%) (40%) (20.8%) (20%)

B 2587.7 517.5 1552.6 517.5 5175
(50%) (10%) (30%) (10%)

C 0 0 0 0 0

Total 3000 1377 2000 947
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provide a satisfactory level of service. The rightmost column of Table 3.19 shows the num-
ber of agents needed for the time periods given in the first column. The other entries in this
table reflect one of the provisions in the company’s current contract with the union that
represents the customer service agents. The provision is that each agent work an 8-hour
shift 5 days per week, and the authorized shifts are

Shift 1: 6:00 A.M. to 2:00 P.M.
Shift 2: 8:00 A.M. to 4:00 P.M.
Shift 3: Noon to 8:00 P.M.
Shift 4: 4:00 P.M. to midnight
Shift 5: 10:00 P.M. to 6:00 A.M.

Checkmarks in the main body of Table 3.19 show the hours covered by the respective
shifts. Because some shifts are less desirable than others, the wages specified in the con-
tract differ by shift. For each shift, the daily compensation (including benefits) for each
agent is shown in the bottom row. The problem is to determine how many agents should be
assigned to the respective shifts each day to minimize the total personnel cost for agents,
based on this bottom row, while meeting (or surpassing) the service requirements given in
the rightmost column.

Formulation as a Linear Programming Problem. Linear programming problems
always involve finding the best mix of activity levels. The key to formulating this particular
problem is to recognize the nature of the activities.

Activities correspond to shifts, where the level of each activity is the number of
agents assigned to that shift. Thus, this problem involves finding the best mix of shift
sizes. Since the decision variables always are the levels of the activities, the five decision
variables here are

The main restrictions on the values of these decision variables are that the number of
agents working during each time period must satisfy the minimum requirement given in

xj � number of agents assigned to shift j,   for j � 1, 2, 3, 4, 5.

■ TABLE 3.19 Data for the Union Airways personnel scheduling problem

Time Periods Covered

Shift
Minimum Number of 

Time Period 1 2 3 4 5 Agents Needed

6:00 A.M. to 8:00 A.M. ✔ 48
8:00 A.M. to 10:00 A.M. ✔ ✔ 79
10:00 A.M. to noon ✔ ✔ 65
Noon to 2:00 P.M. ✔ ✔ ✔ 87
2:00 P.M. to 4:00 P.M. ✔ ✔ 64
4:00 P.M. to 6:00 P.M. ✔ ✔ 73
6:00 P.M. to 8:00 P.M. ✔ ✔ 82
8:00 P.M. to 10:00 P.M. ✔ 43
10:00 P.M. to midnight ✔ ✔ 52
Midnight to 6:00 A.M. ✔ 15

Daily cost per agent $170 $160 $175 $180 $195
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the rightmost column of Table 3.19. For example, for 2:00 P.M. to 4:00 P.M., the total num-
ber of agents assigned to the shifts that cover this time period (shifts 2 and 3) must be at
least 64, so

is the functional constraint for this time period.
Because the objective is to minimize the total cost of the agents assigned to the five

shifts, the coefficients in the objective function are given by the last row of Table 3.19.
Therefore, the complete linear programming model is

subject to

(6–8 A.M.)

(8–10 A.M.)

(10 A.M. to noon)
(Noon–2 P.M.)
(2–4 P.M.)
(4–6 P.M.)
(6–8 P.M.)
(8–10 P.M.)
(10 P.M.–midnight)
(Midnight–6 A.M.)

and

With a keen eye, you might have noticed that the third constraint, x1 � x2 � 65, actu-
ally is not necessary because the second constraint, x1 � x2 � 79, ensures that x1 � x2

will be larger than 65. Thus, x1 � x2 � 65 is a redundant constraint that can be deleted.
Similarly, the sixth constraint, x3 � x4 � 73, also is a redundant constraint because the
seventh constraint is x3 � x4 � 82. (In fact, three of the nonnegativity constraints—
x1 � 0, x4 � 0, x5 � 0—also are redundant constraints because of the first, eighth, and
tenth functional constraints: x1 � 48, x4 � 43, and x5 � 15. However, no computational
advantage is gained by deleting these three nonnegativity constraints.)

The optimal solution for this model is (x1, x2, x3, x4, x5) � (48, 31, 39, 43, 15). This
yields Z � 30,610, that is, a total daily personnel cost of $30,610.

This problem is an example where the divisibility assumption of linear programming
actually is not satisfied. The number of agents assigned to each shift needs to be an integer.
Strictly speaking, the model should have an additional constraint for each decision variable
specifying that the variable must have an integer value. Adding these constraints would
convert the linear programming model to an integer programming model (the topic of
Chap. 12).

Without these constraints, the optimal solution given above turned out to have integer
values anyway, so no harm was done by not including the constraints. (The form of the
functional constraints made this outcome a likely one.) If some of the variables had turned
out to be noninteger, the easiest approach would have been to round up to integer values.
(Rounding up is feasible for this example because all the functional constraints are in �
form with nonnegative coefficients.) Rounding up does not ensure obtaining an optimal
solution for the integer programming model, but the error introduced by rounding up such

xj � 0,   for j � 1, 2, 3, 4, 5.

 x5 � 15
 x4 � x5 � 52
 x4 � 43

 x3 � x4 � 82
 x3 � x4 � 73

 x2 � x3 � 64
 x1 � x2 � x3 � 87
 x1 � x2 � 65

 x1 � x2 � 79

 x1 � 48

Minimize   Z � 170x1 � 160x2 � 175x3 � 180x4 � 195x5 ,

x2 � x3 � 64
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large numbers would be negligible for most practical situations. Alternatively, integer pro-
gramming techniques described in Chap. 12 could be used to solve exactly for an optimal
solution with integer values.

Note that all of the functional constraints in this problem are benefit constraints. The
left-hand side of each of these constraints represents the benefit of having that number of
agents working during that time period and the right-hand side represents the minimum
acceptable level of that benefit. Since the objective is to minimize the total cost of the
agents, subject to the benefit constraints, this is another example (like the radiation therapy
and air pollution examples) of a cost–benefit–trade-off problem.

Distributing Goods through a Distribution Network

The Problem. The DISTRIBUTION UNLIMITED CO. will be producing the same new
product at two different factories, and then the product must be shipped to two warehouses,
where either factory can supply either warehouse. The distribution network available for
shipping this product is shown in Fig. 3.13, where F1 and F2 are the two factories, W1 and
W2 are the two warehouses, and DC is a distribution center. The amounts to be shipped
from F1 and F2 are shown to their left, and the amounts to be received at W1 and W2 are
shown to their right. Each arrow represents a feasible shipping lane. Thus, F1 can ship
directly to W1 and has three possible routes (F1 � DC � W2, F1 � F2 � DC � W2, and
F1 � W1 � W2) for shipping to W2. Factory F2 has just one route to W2 (F2 � DC � W2)
and one to W1 (F2 � DC � W2 � W1). The cost per unit shipped through each shipping
lane is shown next to the arrow. Also shown next to F1 � F2 and DC � W2 are the maxi-
mum amounts that can be shipped through these lanes. The other lanes have sufficient ship-
ping capacity to handle everything these factories can send.

The decision to be made concerns how much to ship through each shipping lane. The
objective is to minimize the total shipping cost.

Formulation as a Linear Programming Problem. With seven shipping lanes, we
need seven decision variables (xF1-F2, xF1-DC, xF1-W1, xF2-DC, xDC-W2, xW1-W2, xW2-W1) to
represent the amounts shipped through the respective lanes.

There are several restrictions on the values of these variables. In addition to the
usual nonnegativity constraints, there are two upper-bound constraints, xF1-F2 ≤ 10 and
xDC-W2 ≤ 80, imposed by the limited shipping capacities for the two lanes, F1 � F2 and
DC � W2. All the other restrictions arise from five net flow constraints, one for each of
the five locations. These constraints have the following form.

Net flow constraint for each location:

As indicated in Fig. 3.13, these required amounts are 50 for F1, 40 for F2, �30 for W1,
and �60 for W2.

What is the required amount for DC? All the units produced at the factories are ulti-
mately needed at the warehouses, so any units shipped from the factories to the distribution
center should be forwarded to the warehouses. Therefore, the total amount shipped from
the distribution center to the warehouses should equal the total amount shipped from the
factories to the distribution center. In other words, the difference of these two shipping
amounts (the required amount for the net flow constraint) should be zero.

Since the objective is to minimize the total shipping cost, the coefficients for the
objective function come directly from the unit shipping costs given in Fig. 3.13. Therefore,
by using money units of hundreds of dollars in this objective function, the complete linear
programming model is

Amount shipped out � amount shipped in � required amount.
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subject to the following constraints:

1. Net flow constraints:

2. Upper-bound constraints:

3. Nonnegativity constraints:

You will see this problem again in Sec. 10.6, where we focus on linear programming
problems of this type (called the minimum cost flow problem). In Sec. 10.7, we will solve
for its optimal solution:

xF1-F2 � 0,  xF1-DC � 40,  xF1-W1 � 10,  xF2-DC � 40,  xDC-W2 � 80,

xW1-W2 � 0,   xW2-W1 � 0.

xF1-F2 � 0,   xF1-DC � 0,   xF1-W1 � 0,   xF2-DC � 0,   xDC-W2 � 0,

xF1-F2 � 10,   xDC-W2 � 80

 � xDC-W2 � xW1-W2 � xW2-W1 � �60 1warehouse 2 2
 � xF1-W1 � xW1-W2 � xW2-W1 � �30 1warehouse 1 2

center 2
 � xF1-DC � xF2-DC � xDC-W2 � 0 1distribution

 �xF1-F2 � xF2-DC � 40 1factory 2 2
 xF1-F2 � xF1-DC � xF1-W1 � 50 1factory 1 2

� 3xW1-W2 � 2xW2-W1 ,

Minimize   Z � 2xF1-F2 � 4xF1-DC � 9xF1-W1 � 3xF2-DC � xDC-W2

■ FIGURE 3.13
The distribution network for
Distribution Unlimited Co.
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The resulting total shipping cost is $49,000.
This problem does not fit into any of the categories of linear programming problems

introduced so far. Instead, it is a fixed-requirements problem because its main con-
straints (the net flow constraints) all are fixed-requirement constraints. Because they are
equality constraints, each of these constraints imposes the fixed requirement that the net
flow out of that location is required to equal a certain fixed amount. Chapters 9 and 10
will focus on linear programming problems that fall into this new category of fixed-
requirements problems.

xW1-W2 � 0,  xW2-W1 � 20.

■ 3.5 FORMULATING AND SOLVING LINEAR PROGRAMMING 
MODELS ON A SPREADSHEET

Spreadsheet software, such as Excel and its Solver, is a popular tool for analyzing and
solving small linear programming problems. The main features of a linear programming
model, including all its parameters, can be easily entered onto a spreadsheet. However,
spreadsheet software can do much more than just display data. If we include some addi-
tional information, the spreadsheet can be used to quickly analyze potential solutions. For
example, a potential solution can be checked to see if it is feasible and what Z value (profit
or cost) it achieves. Much of the power of the spreadsheet lies in its ability to immediately
reveal the results of any changes made in the solution.

In addition, Solver can quickly apply the simplex method to find an optimal solution
for the model. We will describe how this is done in the latter part of this section.

To illustrate this process of formulating and solving linear programming models on a
spreadsheet, we now return to the Wyndor example introduced in Sec. 3.1.

Formulating the Model on a Spreadsheet

Figure 3.14 displays the Wyndor problem by transferring the data from Table 3.1 onto a
spreadsheet. (Columns E and F are being reserved for later entries described below.) We
will refer to the cells showing the data as data cells. These cells are lightly shaded to dis-
tinguish them from other cells in the spreadsheet.8

8Borders and cell shading can be added by using the borders menu button and the fill color menu button on the
Home tab.

■ FIGURE 3.14
The initial spreadsheet for the
Wyndor problem after
transferring the data from
Table 3.1 into data cells.
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You will see later that the spreadsheet is made easier to interpret by using range
names. A range name is a descriptive name given to a block of cells that immediately
identifies what is there. Thus, the data cells in the Wyndor problem are given the range
names UnitProfit (C4:D4), HoursUsedPerBatchProduced (C7:D9), and HoursAvailable
(G7:G9). Note that no spaces are allowed in a range name so each new word begins with a
capital letter. To enter a range name, first select the range of cells, then click in the name
box on the left of the formula bar above the spreadsheet and type a name.

Three questions need to be answered to begin the process of using the spreadsheet to
formulate a linear programming model for the problem.

1. What are the decisions to be made? For this problem, the necessary decisions are the
production rates (number of batches produced per week) for the two new products.

2. What are the constraints on these decisions? The constraints here are that the number of
hours of production time used per week by the two products in the respective plants
cannot exceed the number of hours available.

3. What is the overall measure of performance for these decisions? Wyndor’s overall mea-
sure of performance is the total profit per week from the two products, so the objective
is to maximize this quantity.

Figure 3.15 shows how these answers can be incorporated into the spreadsheet. Based
on the first answer, the production rates of the two products are placed in cells C12 and
D12 to locate them in the columns for these products just under the data cells. Since we
don’t know yet what these production rates should be, they are just entered as zeroes at this
point. (Actually, any trial solution can be entered, although negative production rates
should be excluded since they are impossible.) Later, these numbers will be changed while
seeking the best mix of production rates. Therefore, these cells containing the decisions to
be made are called changing cells. To highlight the changing cells, they are shaded and
have a border. (In the spreadsheet files contained in OR Courseware, the changing cells

Welch’s, Inc., is the world’s largest processor of Con-
cord and Niagara grapes, with net sales of $650 million
in 2012. Such products as Welch’s grape jelly and
Welch’s grape juice have been enjoyed by generations of
American consumers.

Every September, growers begin delivering grapes to
processing plants that then press the raw grapes into juice.
Time must pass before the grape juice is ready for conver-
sion into finished jams, jellies, juices, and concentrates.

Deciding how to use the grape crop is a complex task
given changing demand and uncertain crop quality and
quantity. Typical decisions include what recipes to use
for major product groups, the transfer of grape juice
between plants, and the mode of transportation for these
transfers.

Because Welch’s lacked a formal system for opti-
mizing raw material movement and the recipes used for
production, an OR team developed a preliminary linear
programming model. This was a large model with 8,000
decision variables that focused on the component level of
detail. Small-scale testing proved that the model worked.

To make the model more useful, the team then
revised it by aggregating demand by product group rather
than by component. This reduced its size to 324 decision
variables and 361 functional constraints. The model then
was incorporated into a spreadsheet.

The company has run the continually updated version
of this spreadsheet model each month since 1994 to provide
senior management with information on the optimal logis-
tics plan generated by the Solver. The savings from using
and optimizing this model were approximately $150,000 in
the first year alone. A major advantage of incorporating the
linear programming model into a spreadsheet has been the
ease of explaining the model to managers with differ-
ing levels of mathematical understanding. This has led
to a widespread appreciation of the operations research
approach for both this application and others.

Source: E. W. Schuster and S. J. Allen, “Raw Material Manage-
ment at Welch’s, Inc.,” Interfaces, 28(5): 13–24, Sept.–Oct.
1998. (A link to this article is provided on our website,
www.mhhe.com/hillier.)

An Application Vignette
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appear in bright yellow on a color monitor.) The changing cells are given the range name
BatchesProduced (C12:D12).

Using the answer to question 2, the total number of hours of production time used per
week by the two products in the respective plants is entered in cells E7, E8, and E9, just to
the right of the corresponding data cells. The Excel equations for these three cells are

where each asterisk denotes multiplication. Since each of these cells provides output that
depends on the changing cells (C12 and D12), they are called output cells.

Notice that each of the equations for the output cells involves the sum of two products.
There is a function in Excel called SUMPRODUCT that will sum up the product of each of
the individual terms in two different ranges of cells when the two ranges have the same
number of rows and the same number of columns. Each product being summed is the
product of a term in the first range and the term in the corresponding location in the second
range. For example, consider the two ranges, C7:D7 and C12:D12, so that each range has
one row and two columns. In this case, SUMPRODUCT (C7:D7, C12:D12) takes each of
the individual terms in the range C7:D7, multiplies them by the corresponding term in the
range C12:D12, and then sums up these individual products, as shown in the first equation
above. Using the range name BatchesProduced (C12:D12), the formula becomes
SUMPRODUCT (C7:D7, BatchesProduced). Although optional with such short equations,
this function is especially handy as a shortcut for entering longer equations.

Next, ≤ signs are entered in cells F7, F8, and F9 to indicate that each total value to
their left cannot be allowed to exceed the corresponding number in column G. The spread-
sheet still will allow you to enter trial solutions that violate the ≤ signs. However, these ≤
signs serve as a reminder that such trial solutions need to be rejected if no changes are
made in the numbers in column G.

Finally, since the answer to the third question is that the overall measure of perfor-
mance is the total profit from the two products, this profit (per week) is entered in cell G12.
Much like the numbers in column E, it is the sum of products,

Utilizing range names of TotalProfit (G12), ProfitPerBatch (C4:D4), and BatchesProduced
(C12:D12), this equation becomes

G12 � SUMPRODUCT 1C4:D4, C12:D12 2

 E9 � C9*C12 � D9*D12

 E8 � C8*C12 � D8*D12

 E7 � C7*C12 � D7*D12

■ FIGURE 3.15
The complete spreadsheet
for the Wyndor problem with
an initial trial solution (both
production rates equal to
zero) entered into the
changing cells (C12 and
D12).
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Range Name Cells
BatchesProduced C12:D12
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HoursUsed E7:E9
HoursUsedPerBatchProduced C7:D9
ProfitPerBatch C4:D4
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=SUMPRODUCT(ProfitPerBatch,BatchesProduced)
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This is a good example of the benefit of using range names for making the resulting equa-
tion easier to interpret. Rather than needing to refer to the spreadsheet to see what is in cells
G12, C4:D4, and C12:D12, the range names immediately reveal what the equation is doing.

TotalProfit (G12) is a special kind of output cell. It is the particular cell that is being
targeted to be made as large as possible when making decisions regarding production rates.
Therefore, TotalProfit (G12) is referred to as the objective cell. The objective cell is
shaded darker than the changing cells and is further distinguished by having a heavy bor-
der. (In the spreadsheet files contained in OR Courseware, this cell appears in orange on a
color monitor.)

The bottom of Fig. 3.16 summarizes all the formulas that need to be entered in the
Hours Used column and in the Total Profit cell. Also shown is a summary of the range
names (in alphabetical order) and the corresponding cell addresses.

This completes the formulation of the spreadsheet model for the Wyndor problem.
With this formulation, it becomes easy to analyze any trial solution for the production

rates. Each time production rates are entered in cells C12 and D12, Excel immediately
calculates the output cells for hours used and total profit. However, it is not necessary to
use trial and error. We shall describe next how Solver can be used to quickly find the opti-
mal solution.

Using Solver to Solve the Model

Excel includes a tool called Solver that uses the simplex method to find an optimal solu-
tion. ASPE (an Excel add-in available in your OR Courseware) includes a more advanced
version of Solver that can also be used to solve this same problem. ASPE’s Solver will be
described in the next subsection.

TotalProfit � SUMPRODUCT 1ProfitPerBatch, BatchesProduced 2

■ FIGURE 3.16
The spreadsheet model 
for the Wyndor problem,
including the formulas for 
the objective cell TotalProfit
(G12) and the other output
cells in column E, where the
goal is to maximize the
objective cell.
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To access the standard Solver for the first time, you need to install it. Click the Office
Button, choose Excel Options, then click on Add-Ins on the left side of the window, select
Manage Excel Add-Ins at the bottom of the window, and then press the Go button. Make
sure Solver is selected in the Add-Ins dialog box, and then it should appear on the Data tab.
For Excel 2011 (for the Mac), choose Add-Ins from the Tools menu and make sure that
Solver is selected.

To get started, an arbitrary trial solution has been entered in Fig. 3.16 by placing
zeroes in the changing cells. Solver will then change these to the optimal values after solv-
ing the problem.

This procedure is started by clicking on the Solver button on the Data tab. The Solver
dialog box is shown in Fig. 3.17.

Before Solver can start its work, it needs to know exactly where each component of
the model is located on the spreadsheet. The Solver dialog box is used to enter this infor-
mation. You have the choice of typing the range names, typing in the cell addresses, or
clicking on the cells in the spreadsheet.9 Figure 3.17 shows the result of using the first
choice, so TotalProfit (rather than G12) has been entered for the objective cell and Batch-
esProduced (rather than the range C12:D12) has been entered for the changing cells. Since
the goal is to maximize the objective cell, Max also has been selected.

■ FIGURE 3.17
This Solver dialog box
specifies which cells in
Fig. 3.16 are the objective cell
and the changing cells. It also
indicates that the objective
cell is to be maximized.

9If you select cells by clicking on them, they will first appear in the dialog box with their cell addresses and with
dollar signs (e.g., $C$9:$D$9). You can ignore the dollar signs. Solver will eventually replace both the cell
addresses and the dollar signs with the corresponding range name (if a range name has been defined for the given
cell addresses), but only after either adding a constraint or closing and reopening the Solver dialog box.
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Next, the cells containing the functional constraints need to be specified. This is done
by clicking on the Add button on the Solver dialog box. This brings up the Add Constraint
dialog box shown in Fig. 3.18. The ≤ signs in cells F7, F8, and F9 of Fig. 3.16 are a
reminder that the cells in HoursUsed (E7:E9) all need to be less than or equal to the cor-
responding cells in HoursAvailable (G7:G9). These constraints are specified for Solver by
entering HoursUsed (or E7:E9) on the left-hand side of the Add Constraint dialog box and
HoursAvailable (or G7:G9) on the right-hand side. For the sign between these two sides,
there is a menu to choose between <� (less than or equal), �, or >� (greater than or equal),
so <� has been chosen. This choice is needed even though ≤ signs were previously entered
in column F of the spreadsheet because Solver only uses the functional constraints that are
specified with the Add Constraint dialog box.

If there were more functional constraints to add, you would click on Add to bring up a
new Add Constraint dialog box. However, since there are no more in this example, the next
step is to click on OK to go back to the Solver dialog box.

Before asking Solver to solve the model, two more steps need to be taken. We need to
tell Solver that non-negativity constraints are needed for the changing cells to reject nega-
tive production rates. We also need to specify that this is a linear programming problem so
the simplex method can be used. This is demonstrated in Figure 3.19, where the Make
Unconstrained Variables Non-Negative option has been checked and the Solving Method
chosen is Simplex LP (rather than GRG Nonlinear or Evolutionary, which are used for solv-
ing nonlinear problems). The Solver dialog box shown in this figure now summarizes the
complete model.

Now you are ready to click on Solve in the Solver dialog box, which will start the
process of solving the problem in the background. After a fraction of a second (for a small
problem), Solver will then indicate the outcome. Typically, it will indicate that it has
found an optimal solution, as specified in the Solver Results dialog box shown in
Fig. 3.20. If the model has no feasible solutions or no optimal solution, the dialog box
will indicate that instead by stating that “Solver could not find a feasible solution” or that
“The Objective Cell values do not converge.” The dialog box also presents the option of
generating various reports. One of these (the Sensitivity Report) will be discussed later in
Secs. 4.7 and 7.3.

After solving the model, Solver replaces the original numbers in the changing cells
with the optimal numbers, as shown in Fig. 3.21. Thus, the optimal solution is to produce
two batches of doors per week and six batches of windows per week, just as was found by
the graphical method in Sec. 3.1. The spreadsheet also indicates the corresponding number
in the objective cell (a total profit of $36,000 per week), as well as the numbers in the out-
put cells HoursUsed (E7:E9).

■ FIGURE 3.18
The Add Constraint dialog
box after entering the set of
constraints, HoursUsed
(E7:E9) ≤ HoursAvailable
(G7:G9), which specifies that
cells E7, E8, and E9 in
Fig. 3.16 are required to be
less than or equal to cells G7,
G8, and G9, respectively.
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■ FIGURE 3.20
The Solver Results dialog box
that indicates that an optimal
solution has been found.

■ FIGURE 3.19
The Solver dialog box after
specifying the entire model in
terms of the spreadsheet.
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■ FIGURE 3.21
The spreadsheet obtained
after solving the Wyndor
problem.

At this point, you might want to check what would happen to the optimal solution if
any of the numbers in the data cells were changed to other possible values. This is easy to
do because Solver saves all the addresses for the objective cell, changing cells, constraints,
and so on when you save the file. All you need to do is make the changes you want in the
data cells and then click on Solve in the Solver dialog box again. (Sections 4.7 and 7.3 will
focus on this kind of sensitivity analysis, including how to use Solver’s Sensitivity Report
to expedite this type of what-if analysis.)

To assist you with experimenting with these kinds of changes, your OR Courseware
includes Excel files for this chapter (as for others) that provide a complete formulation and
solution of the examples here (the Wyndor problem and the ones in Sec. 3.4) in a spread-
sheet format. We encourage you to “play” with these examples to see what happens with
different data, different solutions, and so forth. You might also find these spreadsheets use-
ful as templates for solving homework problems.

In addition, we suggest that you use this chapter’s Excel files to take a careful look at
the spreadsheet formulations for some of the examples in Sec. 3.4. This will demonstrate
how to formulate linear programming models in a spreadsheet that are larger and more
complicated than for the Wyndor problem.

You will see other examples of how to formulate and solve various kinds of OR models
in a spreadsheet in later chapters. The supplementary chapters on the book’s website also
include a complete chapter (Chap. 21) that is devoted to the art of modeling in spreadsheets.
That chapter describes in detail both the general process and the basic guidelines for build-
ing a spreadsheet model. It also presents some techniques for debugging such models.
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Using ASPE’s Solver to Solve the Model

Frontline Systems, the original developer of the standard Solver included with Excel (hereafter
referred to as Excel’s Solver in this subsection), also has developed Premium versions of Solver
that provide greatly enhanced functionality. The company now features a particularly powerful
Premium Solver called Analytic Solver Platform. New with this edition, we are excited to pro-
vide access to the Excel add-in, Analytic Solver Platform for Education (ASPE) from Front-
line Systems. Instructions for installing this software are on the very first page of the book
(before the title page) and also on the book’s website, www.mhhe.com/hillier.

When ASPE is installed, a new tab is available on the Excel ribbon called Analytic
Solver Platform. Choosing this tab will reveal the ribbon shown in Figure 3.22. The but-
tons on this ribbon will be used to interact with ASPE. This same figure also reveals a nice
feature of ASPE—the Solver Options and Model Specifications pane (showing the objec-
tive cell, changing cells, constraints, etc.)—that can be seen alongside your main spread-
sheet, with both visible simultaneously. This pane can be toggled on (to see the model) or
off (to hide the model and leave more room for the spreadsheet) by clicking on the Model
button on the far left of the Analytic Solver Platform ribbon. Also, since the model was
already set up with Excel’s Solver in the previous subsection, it is already set up in the
ASPE Model pane, with the objective specified as TotalProfit (G12) with changing cells
BatchesProduced (C12:D12) and the constraints HoursUsed (E7:E9) <= HoursAvailable
(G7:G9). The data for Excel’s Solver and ASPE are compatible with each other. Making a
change with one makes the same change in the other. Thus, you can work with either
Excel’s Solver or ASPE, and then go back and forth, without losing any Solver data.

If the model had not been previously set up with Excel’s Solver, the steps for doing so
with ASPE are analogous to the steps used with Excel’s Solver as covered in the previous
subsection. In both cases, we need to specify the location of the objective cell, the chang-
ing cells, and the functional constraints, and then click to solve the model. However, the
user interface is somewhat different. ASPE uses the buttons on the Analytic Solver Plat-
form ribbon instead of the Solver dialog box. We will now walk you through the steps to
set up the Wyndor problem in ASPE.

To specify TotalProfit (G12) as the objective cell, select the cell in the spreadsheet and
then click on the Objective button on the Analytic Solver Platform ribbon. This will drop
down a menu where you can choose to minimize (Min) or maximize (Max) the objective
cell. Within the options of Min or Max are further options (Normal, Expected, VaR, etc.).
For now, we will always choose the Normal option.

To specify UnitsProduced (C12:D12) as the changing cells, select these cells in the
spreadsheet and then click on the Decisions button on the Analytic Solver Platform ribbon.
This will drop down a menu where you can choose various options (Plot, Normal,
Recourse). For linear programming, we will always choose the Normal option.

70 CHAPTER 3 INTRODUCTION TO LINEAR PROGRAMMING

■ FIGURE 3.22
The Analytic Solver Platform
Ribbon and spreadsheet for
the Wyndor problem
alongside the Solver Options
and Model Specifications
pane.
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Next the functional constraints need to be specified. For the Wyndor problem, the
functional constraints are HoursUsed (E7:E9) <= HoursAvailable (G7:G9). To enter these
constraints in ASPE, select the cells representing the left-hand side of these constraints
(HoursUsed, or E7:E9) and click the Constraints button on the Analytic Solver Platform
ribbon. This drops down a menu for various kinds of constraints. For linear programming
functional constraints, choose Normal Constraint and then the type of constraint desired
(either <=, =, or >=). For the Wyndor problem, choosing <= would then bring up the Add
Constraint dialog box much like the Add Constraint dialog box for Excel’s Solver (see
Figure 3.18). The constraint is then entered in the same way as with Excel’s Solver.

Changes to the model can easily be made within the Model pane shown on the right
side of Figure 3.22. For example, to delete an element of the model (e.g., the objective,
changing cells, or constraints), select that part of the model and then click on the red X
near the top of the Model pane. To change an element of the model, double-clicking on that
element in the Model pane will bring up a dialog box allowing you to make changes to that
part of the model.

Selecting the Engine tab at the top of the Model pane will show information about the
algorithm that will be used to solve the problem as well as a variety of options for that
algorithm. The drop-down menu at the top will allow you to choose the algorithm. For a
linear programming model (such as the Wyndor problem), you will want to choose the
Standard LP/Quadratic Engine. This is equivalent to the Simplex LP option in Excel’s
Solver. To make unconstrained variables nonnegative (as we did in Fig. 3.19 with Excel’s
Solver), be sure that the Assume Non-negative option is set to true. Fig. 3.23 shows the
model pane after making these selections.

Once the model is all set up in ASPE, the model would be solved by clicking on the
Optimize button on the Analytic Solver Platform ribbon. Just like Excel’s Solver, this will
then display the results of solving the model on the spreadsheet, as shown in Figure 3.24.
As seen in this figure, the Output tab of the Model pane also will show a summary of the
solution process, including the message (similar to Fig. 3.20) that “Solver found a solution.
All constraints and optimality conditions are satisfied.”

3.6  FORMULATING VERY LARGE LINEAR PROGRAMMING MODELS 71

■ FIGURE 3.23
The Engine tab of the Model
of ASPE includes options to
select the solver Engine
(Standard LP/Quadratic
Engine in this case) and to set
the Assume Non-negative
option to True.

■ FIGURE 3.24
The Output tab of the Model
pane shows a summary of the
solution process for the
Wyndor problem.

■ 3.6 FORMULATING VERY LARGE LINEAR PROGRAMMING MODELS

Linear programming models come in many different sizes. For the examples in Secs. 3.1
and 3.4, the model sizes range from three functional constraints and two decision vari-
ables (for the Wyndor and radiation therapy problems) up to 17 functional constraints and
12 decision variables (for the Save-It Company problem). The latter case may seem like a
rather large model. After all, it does take a substantial amount of time just to write down
a model of this size. However, by contrast, the models for the application vignettes pre-
sented in this chapter are much, much larger.
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Such model sizes are not at all unusual. Linear programming models in practice com-
monly have many hundreds or thousands of functional constraints. In fact, they occasion-
ally will have even millions of functional constraints. The number of decision variables
frequently is even larger than the number of functional constraints, and occasionally will
range well into the millions.

Formulating such monstrously large models can be a daunting task. Even a “medium-
sized” model with a thousand functional constraints and a thousand decision variables has
over a million parameters (including the million coefficients in these constraints). It simply
is not practical to write out the algebraic formulation, or even to fill in the parameters on a
spreadsheet, for such a model.

So how are these very large models formulated in practice? It requires the use of a
modeling language.

Modeling Languages

A mathematical modeling language is software that has been specifically designed for effi-
ciently formulating large mathematical models, including linear programming models.
Even with millions of functional constraints, they typically are of a relatively few types.
Similarly, the decision variables will fall into a small number of categories. Therefore,
using large blocks of data in databases, a modeling language will use a single expression to
simultaneously formulate all the constraints of the same type in terms of the variables of
each type. We will illustrate this process soon.

In addition to efficiently formulating large models, a modeling language will expedite
a number of model management tasks, including accessing data, transforming data into
model parameters, modifying the model whenever desired, and analyzing solutions from
the model. It also may produce summary reports in the vernacular of the decision makers,
as well as document the model’s contents.

Several excellent modeling languages have been developed over recent decades.
These include AMPL, MPL, OPL, GAMS, and LINGO.

The student version of one of these, MPL (short for Mathematical Programming Lan-
guage), is provided for you on the book’s website along with extensive tutorial material. As
subsequent versions are released in future years, the latest student version also can be
downloaded from the website, maximalsoftware.com. MPL is a product of Maximal Soft-
ware, Inc. One feature is extensive support for Excel in MPL. This includes both importing
and exporting Excel ranges from MPL. Full support also is provided for the Excel VBA
macro language as well as various programming languages, through OptiMax Component
Library, which now is included within MPL. This feature allows the user to fully integrate
MPL models into Excel and solve with any of the powerful solvers that MPL supports.

LINGO is a product of LINDO Systems, Inc., which also markets a spreadsheet-
add-in optimizer called What’sBest! that is designed for large industrial problems, as well
as a callable subroutine library called the LINDO API. The LINGO software includes as a
subset the LINDO interface that has been a popular introduction to linear programming for
many people. The student version of LINGO with the LINDO interface is part of the soft-
ware included on the book’s website. All of the LINDO Systems products can also be
downloaded from www.lindo.com. Like MPL, LINGO is a powerful general-purpose
modeling language. A notable feature of LINGO is its great flexibility for dealing with a
wide variety of OR problems in addition to linear programming. For example, when deal-
ing with highly nonlinear models, it contains a global optimizer that will find a globally
optimal solution. (More about this in Sec. 13.10.). The latest LINGO also has a built-in
programming language so you can do things like solve several different optimization prob-
lems as part of one run, which can be useful for such tasks as performing parametric analy-
sis (described in Secs. 4.7 and 8.2). In addition, LINGO has special capabilities for solving
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A key part of a country’s financial infrastructure is its
securities markets. By allowing a variety of financial insti-
tutions and their clients to trade stocks, bonds, and other
financial securities, they securities markets help fund both
public and private initiatives. Therefore, the efficient oper-
ation of its securities markets plays a crucial role in pro-
viding a platform for the economic growth of the country.

Each central securities depository and its system for
quickly settling security transactions are part of the opera-
tional backbone of securities markets and a key component
of financial system stability. In Mexico, an institution
called INDEVAL provides both the central securities
depository and its security settlement system for the
entire country. This security settlement system uses elec-
tronic book entries, modifying cash and securities bal-
ances, for the various parties in the transactions.

The total value of the securities transactions the INDE-
VAL settles averages over $250 billion daily. This makes
INDEVAL the main liquidity conduit for Mexico’s entire
financial sector. Therefore, it is extremely important that
INDEVAL’s system for clearing securities transactions be
an exceptionally efficient one that maximizes the amount of
cash that can be delivered almost instantaneously after the
transactions. Because of past dissatisfaction with this sys-
tem, INDEVAL’s Board of Directors ordered a major study
in 2005 to completely redesign the system.

Following more than 12,000 man-hours devoted to
this redesign, the new system was successfully launched
in November 2008. The core of the new system is a huge
linear programming model that is applied many times
daily to choose which of thousands of pending transac-
tions should be settled immediately with the depositor’s
available balances. Linear programming is ideally suited
for this application because huge models can be solved
quickly to maximize the value of the transactions settled
while taking into account the various relevant constraints.

This application of linear programming has substan-
tially enhanced and strengthened the Mexican financial
infrastructure by reducing its daily liquidity requirements
by $130 billion. It also reduces the intraday financing
costs for market participants by more than $150 million
annually. This application led to INDEVAL winning the
prestigious First Prize in the 2010 international competi-
tion for the Franz Edelman Award for Achievement in
Operations Research and the Management Sciences.

Source: D. Muñoz, M. de Lascurain, O. Romeo-Hernandez,
F. Solis, L. de los Santoz, A. Palacios-Brun, F. Herrería, and J.
Villaseñor, “INDEVAL Develops a New Operating and Settle-
ment System Using Operations Research,” Interfaces 41, no. 1
(January-February 2011), pp. 8–17. (A link to this article is pro-
vided on our Web site, www.mhhe.com/hillier.)

An Application Vignette

stochastic programming problems (the topic of Sec. 7.4), using a variety of functions for
most profitability distributions, and performing extensive graphing.

The book’s website includes MPL, LINGO and LINDO formulations for essentially
every example in this book to which these modeling languages and optimizers can be applied.

Now let us look at a simplified example that illustrates how a very large linear pro-
gramming model can arise.

An Example of a Problem with a Huge Model

Management of the WORLDWIDE CORPORATION needs to address a product-mix
problem, but one that is vastly more complex than the Wyndor product-mix problem intro-
duced in Sec. 3.1. This corporation has 10 plants in various parts of the world. Each of
these plants produces the same 10 products and then sells them within its region. The
demand (sales potential) for each of these products from each plant is known for each of
the next 10 months. Although the amount of a product sold by a plant in a given month
cannot exceed the demand, the amount produced can be larger, where the excess amount
would be stored in inventory (at some unit cost per month) for sale in a later month. Each
unit of each product takes the same amount of space in inventory, and each plant has some
upper limit on the total number of units that can be stored (the inventory capacity).

Each plant has the same 10 production processes (we’ll refer to them as machines),
each of which can be used to produce any of the 10 products. Both the production cost per
unit of a product and the production rate of the product (number of units produced per day
devoted to that product) depend on the combination of plant and machine involved (but not
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the month). The number of working days (production days available) varies somewhat
from month to month.

Since some plants and machines can produce a particular product either less expen-
sively or at a faster rate than other plants and machines, it is sometimes worthwhile to ship
some units of the product from one plant to another for sale by the latter plant. For each
combination of a plant being shipped from (the fromplant) and a plant being shipped to
(the toplant), there is a certain cost per unit shipped of any product, where this unit ship-
ping cost is the same for all the products.

Management now needs to determine how much of each product should be produced
by each machine in each plant during each month, as well as how much each plant should
sell of each product in each month and how much each plant should ship of each product
in each month to each of the other plants. Considering the worldwide price for each prod-
uct, the objective is to find the feasible plan that maximizes the total profit (total sales rev-
enue minus the sum of the total production costs, inventory costs, and shipping costs).

We should note again that this is a simplified example in a number of ways. We have
assumed that the number of plants, machines, products, and months are exactly the same
(10). In most real situations, the number of products probably will be far larger and the
planning horizon is likely to be considerably longer than 10 months, whereas the number
of “machines” (types of production processes) may be less than 10. We also have assumed
that every plant has all the same types of machines (production processes) and every
machine type can produce every product. In reality, the plants may have some differences
in terms of their machine types and the products they are capable of producing. The net
result is that the corresponding model for some corporations may be smaller than the one
for this example, but the model for other corporations may be considerably larger (perhaps
even vastly larger) than this one.

The Structure of the Resulting Model

Because of the inventory costs and the limited inventory capacities, it is necessary to keep
track of the amount of each product kept in inventory in each plant during each month.
Consequently, the linear programming model has four types of decision variables: produc-
tion quantities, inventory quantities, sales quantities, and shipping quantities. With 10
plants, 10 machines, 10 products, and 10 months, this gives a total of 21,000 decision vari-
ables, as outlined below.

Decision Variables.

10,000 production variables: one for each combination of a plant, machine, product, and
month 

1,000 inventory variables: one for each combination of a plant, product, and month
1,000 sales variables: one for each combination of a plant, product, and month 
9,000 shipping variables: one for each combination of a product, month, plant (the fromplant),

and another plant (the toplant)

Multiplying each of these decision variables by the corresponding unit cost or unit rev-
enue, and then summing over each type, the following objective function can be calculated:

Objective Function.

Maximize     Profit � total sales revenues � total cost,

where

Total cost � total production cost � total inventory cost � total shipping cost.
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When maximizing this objective function, the 21,000 decision variables need to sat-
isfy nonnegativity constraints as well as four types of functional constraints—production
capacity constraints, plant balance constraints (equality constraints that provide appropri-
ate values to the inventory variables), maximum inventory constraints, and maximum sales
constraints. As enumerated below, there are a total of 3,100 functional constraints, but all
the constraints of each type follow the same pattern.

Functional Constraints.

1,000 production capacity constraints (one for each combination of a plant, machine, and
month):

where the left-hand side is the sum of 10 fractions, one for each product, where each
fraction is that product’s production quantity (a decision variable) divided by the prod-
uct’s production rate (a given constant).

1,000 plant balance constraints (one for each combination of a plant, product, and month):

where the amount produced is the sum of the decision variables representing the pro-
duction quantities at the machines, the amount shipped in is the sum of the decision
variables representing the shipping quantities in from the other plants, and the amount
shipped out is the sum of the decision variables representing the shipping quantities
out to the other plants.

100 maximum inventory constraints (one for each combination of a plant and month):

where the left-hand side is the sum of the decision variables representing the inventory
quantities for the individual products.

1,000 maximum sales constraints (one for each combination of a plant, product, and month):

Now let us see how the MPL Modeling Language can formulate this huge model very
compactly.

Formulation of the Model in MPL

The modeler begins by assigning a title to the model and listing an index for each of the
entities of the problem, as illustrated below.

TITLE
Production_Planning;

INDEX

product := A1..A10;

month := (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct);

plant := p1..p10;

fromplant := plant;

toplant := plant;

machine := m1..m10;

Sales � demand.

Total inventory � inventory capacity,

inventory � amount shipped out,

Amount produced � inventory last month � amount shipped in � sales � current

Production days used � production days available,
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Except for the months, the entries on the right-hand side are arbitrary labels for the respec-
tive products, plants, and machines, where these same labels are used in the data files. Note
that a colon is placed after the name of each entry and a semicolon is placed at the end of
each statement (but a statement is allowed to extend over more than one line).

A big job with any large model is collecting and organizing the various types of data
into data files. A data file can be in either dense format or sparse format. In dense format,
the file will contain an entry for every combination of all possible values of the respective
indexes. For example, suppose that the data file contains the production rates for producing
the various products with the various machines (production processes) in the various
plants. In dense format, the file will contain an entry for every combination of a plant, a
machine, and a product. However, the entry may need to be zero for most of the combina-
tions because that particular plant may not have that particular machine or, even if it does,
that particular machine may not be capable of producing that particular product in that par-
ticular plant. The percentage of the entries in dense format that are nonzero is referred to as
the density of the data set. In practice, it is common for large data sets to have a density
under 5 percent, and it frequently is under 1 percent. Data sets with such a low density are
referred to as being sparse. In such situations, it is more efficient to use a data file in sparse
format. In this format, only the nonzero values (and an identification of the index values
they refer to) are entered into the data file. Generally, data are entered in sparse format
either from a text file or from corporate databases. The ability to handle sparse data sets
efficiently is one key for successfully formulating and solving large-scale optimization
models. MPL can readily work with data in either dense format or sparse format.

In the Worldwide Corp. example, eight data files are needed to hold the product prices,
demands, production costs, production rates, production days available, inventory costs,
inventory capacities, and shipping costs. We assume that these data files are available in
sparse format. The next step is to give a brief suggestive name to each one and to identify
(inside square brackets) the index or indexes for that type of data, as shown below.

DATA
Price[product]      := SPARSEFILE(“Price.dat”);
Demand[plant,   product,   month] := SPARSEFILE(“Demand.dat”);
ProdCost[plant, machine, product] := SPARSEFILE(“Produce.dat”, 4);
ProdRate[plant, machine, product] := SPARSEFILE(“Produce.dat”, 5);
ProdDaysAvail[month]     := SPARSEFILE(“ProdDays.dat”);
InvtCost[plant, product] := SPARSEFILE(“InvtCost.dat”);
InvtCapacity[plant]      := SPARSEFILE(“InvtCap.dat”);
ShipCost[fromplant, toplant]     := SPARSEFILE (“ShipCost.dat”);

To illustrate the contents of these data files, consider the one that provides produc-
tion costs and production rates. Here is a sample of the first few entries of SPARSEFILE
produce.dat:

!
! Produce.dat - Production Cost and Rate
!
! ProdCost[plant, machine, product]:
! ProdRate[plant, machine, product]:
!

p1, m11, A1, 73.30, 500,
p1, m11, A2, 52.90, 450,
p1, m12, A3, 65.40, 550,
p1, m13, A3, 47.60, 350,

Next, the modeler gives a short name to each type of decision variable. Following the
name, inside square brackets, is the index or indexes over which the subscripts run.
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VARIABLES
Produce[plant, machine, product, month] -> Prod;
Inventory[plant, product, month] -> Invt;
Sales[plant, product, month] -> Sale;
Ship[product, month, fromplant, toplant]

WHERE (fromplant 
� toplant);

In the case of the decision variables with names longer than four letters, the arrows on the right
point to four-letter abbreviations to fit the size limitations of many solvers. The last line indi-
cates that the fromplant subscript and toplant subscript are not allowed to have the same value.

There is one more step before writing down the model. To make the model easier to read,
it is useful first to introduce macros to represent the summations in the objective function.

MACROS
Total Revenue   := SUM(plant, product, month: Price*Sales);
TotalProdCost   := SUM(plant, machine, product, month:

ProdCost*Produce);
TotalInvtCost   := SUM(plant, product, month: 

InvtCost*Inventory);
TotalShipCost   := SUM(product, month, fromplant, toplant: 

ShipCost*Ship);
TotalCost       := TotalProdCost + TotalInvtCost + TotalShipCost;

The first four macros use the MPL keyword SUM to execute the summation involved. Fol-
lowing each SUM keyword (inside the parentheses) is, first, the index or indexes over
which the summation runs. Next (after the colon) is the vector product of a data vector (one
of the data files) times a variable vector (one of the four types of decision variables).

Now this model with 3,100 functional constraints and 21,000 decision variables can
be written down in the following compact form.

MODEL

MAX Profit = TotalRevenue – TotalCost;

SUBJECT TO
ProdCapacity[plant, machine, month] -> PCap:
SUM(product: Produce/ProdRate) <= ProdDaysAvail;

PlantBal[plant, product, month] -> PBal:
SUM(machine: Produce) + Inventory [month – 1]

+ SUM(fromplant: Ship[fromplant, toplant:= plant])
=

Sales + Inventory
+ SUM(toplant: Ship[fromplant:= plant, toplant]);

MaxInventory [plant, month] -> MaxI:
SUM(product: Inventory) <= InvtCapacity;

BOUNDS
Sales <= Demand;

END

For each of the four types of constraints, the first line gives the name for this type.
There is one constraint of this type for each combination of values for the indexes inside
the square brackets following the name. To the right of the brackets, the arrow points to a
four-letter abbreviation of the name that a solver can use. Below the first line, the general
form of constraints of this type is shown by using the SUM operator.

For each production capacity constraint, each term in the summation consists of a
decision variable (the production quantity of that product on that machine in that plant dur-
ing that month) divided by the corresponding production rate, which gives the number of
production days being used. Summing over the products then gives the total number of
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production days being used on that machine in that plant during that month, so this number
must not exceed the number of production days available.

The purpose of the plant balance constraint for each plant, product, and month is to give
the correct value to the current inventory variable, given the values of all the other decision
variables including the inventory level for the preceding month. Each of the SUM operators
in these constraints involves simply a sum of decision variables rather than a vector product.
This is the case also for the SUM operator in the maximum inventory constraints. By con-
trast, the left-hand side of the maximum sales constraints is just a single decision variable for
each of the 1,000 combinations of a plant, product, and month. (Separating these upper-
bound constraints on individual variables from the regular functional constraints is advanta-
geous because of the computational efficiencies that can be obtained by using the upper
bound technique described in Sec. 8.3.) No lower-bound constraints are shown here because
MPL automatically assumes that all 21,000 decision variables have nonnegativity constraints
unless nonzero lower bounds are specified. For each of the 3,100 functional constraints, note
that the left-hand side is a linear function of the decision variables and the right-hand side is
a constant taken from the appropriate data file. Since the objective function also is a linear
function of the decision variables, this model is a legitimate linear programming model.

To solve the model, MPL supports various leading solvers (software packages for
solving linear programming models and/or other OR models) that are installed in MPL. 
As already mentioned in Sec. 1.5, these solvers include CPLEX, GUROBI, CoinMP, and
SULUM, all of which can solve very large linear programming models with great effi-
ciency. The student version of MPL in your OR Courseware already has installed the stu-
dent version of these four solvers. For example, consider CLPEX. Its student version uses
the simplex method to solve linear programming models. Therefore, to solve such a model
formulated with MPL, all you have to do is choose Solve CPLEX from the Run menu or
press the Run Solve button in the Toolbar. You then can display the solution file in a view
window by pressing the View button at the bottom of the Status Window. For especially
large linear programming models, Sec. 1.5 points out how academic users can acquire full-
size versions of MPL with CPLEX and GUROBI for use in their coursework.

This brief introduction to MPL illustrates the ease with which modelers can use mod-
eling languages to formulate huge linear programming models in a clear, concise way. To
assist you in using MPL, an MPL Tutorial is included on the book’s website. This tutorial
goes through all the details of formulating smaller versions of the production planning
example considered here. You also can see elsewhere on the book’s website how all the
other linear programming examples in this chapter and subsequent chapters would be for-
mulated with MPL and solved by CPLEX.

The LINGO Modeling Language

LINGO is another popular modeling language featured in this book. The company, LINDO
Systems, that produces LINGO first became known for the easy-to-use optimizer, LINDO,
which is a subset of the LINGO software. LINDO Systems also produces a spreadsheet solver,
What’sBest!, and a callable solver library, the LINDO API. The student version of LINGO is
provided to you on the book’s website. (The latest trial versions of all of the above can be down-
loaded from www.lindo.com.) Both LINDO and What’sBest! share the LINDO API as the
solver engine. The LINDO API has solvers based on the simplex method and interior-point/bar-
rier algorithms (such as discussed in Secs. 4.9 and 8.4), special solvers for chance-constrained
models (Sec. 7.5) and stochastic programming problems (Sec. 7.6), and solvers for nonlinear
programming (Chap. 13), including even a global solver for nonconvex programming.

Like MPL, LINGO enables a modeler to efficiently formulate a huge model in a clear
compact fashion that separates the data from the model formulation. This separation means
that as changes occur in the data describing the problem that needs to be solved from day
to day (or even minute to minute), the user needs to change only the data and not be 
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concerned with the model formulation. You can develop a model on a small data set and
then when you supply the model with a large data set, the model formulation adjusts auto-
matically to the new data set.

LINGO uses sets as a fundamental concept. For example, in the Worldwide Corp. pro-
duction planning problem, the simple or “primitive” sets of interest are products, plants,
machines, and months. Each member of a set may have one or more attributes associated
with it, such as the price of a product, the inventory capacity of a plant, the production rate
of a machine, and the number of production days available in a month. Some of these
attributes are input data, while others, such as production and shipping quantities, are deci-
sion variables for the model. One can also define derived sets that are built from combina-
tions of other sets. As with MPL, the SUM operator is commonly used to write the
objective function and constraints in a compact form.

There is a hard copy manual available for LINGO. This entire manual also is avail-
able directly in LINGO via the Help command and can be searched in a variety of ways.

A supplement to this chapter on the book’s website describes LINGO further and
illustrates its use on a couple of small examples. A second supplement shows how LINGO
can be used to formulate the model for the Worldwide Corp. production planning example.
Appendix 4.1 at the end of Chap. 4 also provides an introduction to using both LINDO and
LINGO. In addition, a LINGO tutorial on the website provides the details needed for doing
basic modeling with this modeling language. The LINGO formulations and solutions for
the various examples in both this chapter and many other chapters also are included on the
website.

■ 3.7 CONCLUSIONS
Linear programming is a powerful technique for dealing with resource-allocation prob-
lems, cost–benefit–trade-off problems, and fixed-requirements problems, as well as other
problems having a similar mathematical formulation. It has become a standard tool of
great importance for numerous business and industrial organizations. Furthermore, almost
any social organization is concerned with similar types of problems in some context, and
there is a growing recognition of the extremely wide applicability of linear programming.

However, not all problems of these types can be formulated to fit a linear program-
ming model, even as a reasonable approximation. When one or more of the assumptions of
linear programming is violated seriously, it may then be possible to apply another mathe-
matical programming model instead, e.g., the models of integer programming (Chap. 12)
or nonlinear programming (Chap. 13).
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■ PROBLEMS

The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The demonstration example listed above may be helpful.
I: You may find it helpful to use the corresponding proce-

dure in IOR Tutorial (the printout records your work).
C: Use the computer to solve the problem by applying the

simplex method. The available software options for doing
this include Excel’s Solver and ASPE (Sec. 3.5), MPL/
Solvers (Sec. 3.6), LINGO (Supplements 1 and 2 to this
chapter on the book’s website and Appendix 4.1), and
LINDO (Appendix 4.1), but follow any instructions given
by your instructor regarding the option to use. When a
problem asks you to use Solver to solve the model, you
may use either Excel’s Solver or ASPE’s Solver.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

3.1-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 3.1.
Briefly describe how linear programming was applied in this study.
Then list the various financial and nonfinancial benefits that
resulted from this study.

D 3.1-2.* For each of the following constraints, draw a separate
graph to show the nonnegative solutions that satisfy this constraint.
(a) x1 � 3x2 � 6
(b) 4x1 � 3x2 � 12
(c) 4x1 � x2 � 8
(d) Now combine these constraints into a single graph to show the

feasible region for the entire set of functional constraints plus
nonnegativity constraints.

D 3.1-3. Consider the following objective function for a linear
programming model:

(a) Draw a graph that shows the corresponding objective function
lines for Z � 6, Z � 12, and Z � 18.

(b) Find the slope-intercept form of the equation for each of these
three objective function lines. Compare the slope for these three
lines. Also compare the intercept with the x2 axis.

3.1-4. Consider the following equation of a line:

20x1 � 40x2 � 400

(a) Find the slope-intercept form of this equation.
(b) Use this form to identify the slope and the intercept with the

x2 axis for this line.
(c) Use the information from part (b) to draw a graph of this line.

D,I 3.1-5.* Use the graphical method to solve the problem:

subject to

 x2 � 10

Maximize   Z � 2x1 � x2 ,

Maximize Z � 2x1 � 3x2

and

D,I 3.1-6. Use the graphical method to solve the problem:

subject to

and

3.1-7. The Whitt Window Company, a company with only three
employees, makes two different kinds of hand-crafted windows: a
wood-framed and an aluminum-framed window. The company
earns $300 profit for each wood-framed window and $150 profit
for each aluminum-framed window. Doug makes the wood frames
and can make 6 per day. Linda makes the aluminum frames and can
make 4 per day. Bob forms and cuts the glass and can make 48
square feet of glass per day. Each wood-framed window uses 6
square feet of glass and each aluminum-framed window uses 8
square feet of glass.

The company wishes to determine how many windows of each
type to produce per day to maximize total profit.
(a) Describe the analogy between this problem and the Wyndor

Glass Co. problem discussed in Sec. 3.1. Then construct and
fill in a table like Table 3.1 for this problem, identifying both
the activities and the resources.

(b) Formulate a linear programming model for this problem.
D,I (c) Use the graphical method to solve this model.
I (d) A new competitor in town has started making wood-framed

windows as well. This may force the company to lower the
price they charge and so lower the profit made for each wood-
framed window. How would the optimal solution change (if at
all) if the profit per wood-framed window decreases from $300
to $200? From $300 to 100? (You may find it helpful to use
the Graphical Analysis and Sensitivity Analysis procedure in
IOR Tutorial.)

I (e) Doug is considering lowering his working hours, which would
decrease the number of wood frames he makes per day. How
would the optimal solution change if he makes only 5 wood
frames per day? (You may find it helpful to use the Graphical
Analysis and Sensitivity Analysis procedure in IOR Tutorial.)

3.1-8. The WorldLight Company produces two light fixtures
(products 1 and 2) that require both metal frame parts and electrical

x1 � 0, x2 � 0.

  5x1 � 3x2 � 45
    x1 � x2 � 12
 �x1 � 2x2 � 15

Maximize   Z � 10x1 � 20x2 ,

x1 � 0,   x2 � 0.

 3x1 � x2 � 44
 x1 � x2 � 18

 2x1 � 5x2 � 60
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Productivity coefficient (in machine hours per unit)

Machine Type Product 1 Product 2 Product 3

Milling machine 9 3 5
Lathe 5 4 0
Grinder 3 0 2
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Work-Hours per Unit
Work-Hours 

Department Special Risk Mortgage Available

Underwriting 3 2 2400
Administration 0 1 800
Claims 2 0 1200

Available Time 
Machine Type (Machine Hours per Week)

Milling machine 500
Lathe 350
Grinder 150

components. Management wants to determine how many units of
each product to produce so as to maximize profit. For each unit of
product 1, 1 unit of frame parts and 2 units of electrical compo-
nents are required. For each unit of product 2, 3 units of frame parts
and 2 units of electrical components are required. The company has
200 units of frame parts and 300 units of electrical components.
Each unit of product 1 gives a profit of $1, and each unit of product
2, up to 60 units, gives a profit of $2. Any excess over 60 units of
product 2 brings no profit, so such an excess has been ruled out.
(a) Formulate a linear programming model for this problem.
D,I (b) Use the graphical method to solve this model. What is the

resulting total profit?

3.1-9. The Primo Insurance Company is introducing two new prod-
uct lines: special risk insurance and mortgages. The expected profit
is $5 per unit on special risk insurance and $2 per unit on mortgages.

Management wishes to establish sales quotas for the new
product lines to maximize total expected profit. The work require-
ments are as follows:

created considerable excess production capacity. Management is
considering devoting this excess capacity to one or more of three
products; call them products 1, 2, and 3. The available capacity
on the machines that might limit output is summarized in the fol-
lowing table:

(a) Formulate a linear programming model for this problem.
D,I (b) Use the graphical method to solve this model.
(c) Verify the exact value of your optimal solution from part (b)

by solving algebraically for the simultaneous solution of the
relevant two equations.

3.1-10. Weenies and Buns is a food processing plant which manu-
factures hot dogs and hot dog buns. They grind their own flour for
the hot dog buns at a maximum rate of 200 pounds per week. Each
hot dog bun requires 0.1 pound of flour. They currently have a con-
tract with Pigland, Inc., which specifies that a delivery of 800
pounds of pork product is delivered every Monday. Each hot dog
requires pound of pork product. All the other ingredients in the
hot dogs and hot dog buns are in plentiful supply. Finally, the labor
force at Weenies and Buns consists of 5 employees working full
time (40 hours per week each). Each hot dog requires 3 minutes of
labor, and each hot dog bun requires 2 minutes of labor. Each hot
dog yields a profit of $0.88, and each bun yields a profit of $0.33.

Weenies and Buns would like to know how many hot dogs
and how many hot dog buns they should produce each week so as
to achieve the highest possible profit.
(a) Formulate a linear programming model for this problem.
D,I (b) Use the graphical method to solve this model.

3.1-11.* The Omega Manufacturing Company has discontinued
the production of a certain unprofitable product line. This act

1
4

The number of machine hours required for each unit of the re-
spective products is

The sales department indicates that the sales potential for
products 1 and 2 exceeds the maximum production rate and that
the sales potential for product 3 is 20 units per week. The unit
profit would be $50, $20, and $25, respectively, on products 1, 2,
and 3. The objective is to determine how much of each product
Omega should produce to maximize profit.
(a) Formulate a linear programming model for this problem.
C (b) Use a computer to solve this model by the simplex

method.

D 3.1-12. Consider the following problem, where the value of c1

has not yet been ascertained.

subject to

and

Use graphical analysis to determine the optimal solution(s) for
(x1, x2) for the various possible values of c1(�	 
 c1 
 	).

D 3.1-13. Consider the following problem, where the value of k
has not yet been ascertained.

Maximize   Z � x1 � 2x2 ,

x1 � 0,   x2 � 0.

 x1 � 2x2 � 10
 x1 � x2 � 6

Maximize   Z � c1x1 � x2 ,
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subject to

and

The solution currently being used is x1 � 2, x2 � 3. Use graphi-
cal analysis to determine the values of k such that this solution ac-
tually is optimal.

D 3.1-14. Consider the following problem, where the values of c1

and c2 have not yet been ascertained.

subject to

and

Use graphical analysis to determine the optimal solution(s) for
(x1, x2) for the various possible values of c1 and c2. (Hint: Sepa-
rate the cases where c2 � 0, c2 � 0, and c2 
 0. For the latter two
cases, focus on the ratio of c1 to c2.)

3.2-1. The following table summarizes the key facts about two
products, A and B, and the resources, Q, R, and S, required to
produce them.

x1 � 0,   x2 � 0.

 �x1 � 2x2 � 2
 2x1  � x2 � 11

Maximize   Z � c1x1 � c2x2 ,

x1 � 0,   x2 � 0.

 kx1 � x2 � 2k � 3,  where k � 0
 x2 � 3

 �x1 � x2 � 2

Label each of the following statements as True or False, and
then justify your answer based on the graphical method. In each
case, give an example of an objective function that illustrates
your answer.
(a) If (3, 3) produces a larger value of the objective function than

(0, 2) and (6, 3), then (3, 3) must be an optimal solution.
(b) If (3, 3) is an optimal solution and multiple optimal solu-

tions exist, then either (0, 2) or (6, 3) must also be an opti-
mal solution.

(c) The point (0, 0) cannot be an optimal solution.

3.2-3.* This is your lucky day. You have just won a $20,000
prize. You are setting aside $8,000 for taxes and partying
expenses, but you have decided to invest the other $12,000.
Upon hearing this news, two different friends have offered you
an opportunity to become a partner in two different entrepre-
neurial ventures, one planned by each friend. In both cases, this
investment would involve expending some of your time next
summer as well as putting up cash. Becoming a full partner in
the first friend’s venture would require an investment of $10,000
and 400 hours, and your estimated profit (ignoring the value of
your time) would be $9,000. The corresponding figures for the
second friend’s venture are $8,000 and 500 hours, with an esti-
mated profit to you of $9,000. However, both friends are flexible
and would allow you to come in at any fraction of a full partner-
ship you would like. If you choose a fraction of a full partner-
ship, all the above figures given for a full partnership (money
investment, time investment, and your profit) would be multi-
plied by this same fraction.

Because you were looking for an interesting summer job any-
way (maximum of 600 hours), you have decided to participate in
one or both friends’ ventures in whichever combination would
maximize your total estimated profit. You now need to solve the
problem of finding the best combination.
(a) Describe the analogy between this problem and the Wyndor

Glass Co. problem discussed in Sec. 3.1. Then construct and
fill in a table like Table 3.1 for this problem, identifying both
the activities and the resources.

(b) Formulate a linear programming model for this problem.
D,I (c) Use the graphical method to solve this model. What is your

total estimated profit?

Resource Usage 
per Unit Produced

Amount of Resource
Resource Product A Product B Available

Q 2 1 2
R 1 2 2
S 3 3 4

Profit per unit 3 2

All the assumptions of linear programming hold.
(a) Formulate a linear programming model for this problem.
D,I (b) Solve this model graphically.
(c) Verify the exact value of your optimal solution from part (b)

by solving algebraically for the simultaneous solution of the
relevant two equations.

3.2-2. The shaded area in the following graph represents the feasi-
ble region of a linear programming problem whose objective func-
tion is to be maximized.

(6, 0) x1

(0, 2)

(0, 0)

x2
(6, 3)

(3, 3)
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D,I 3.2-4. Use the graphical method to find all optimal solutions
for the following model:

subject to

and

D 3.2-5. Use the graphical method to demonstrate that the follow-
ing model has no feasible solutions.

subject to

and

D 3.2-6. Suppose that the following constraints have been pro-
vided for a linear programming model.

–x1 � 3x2 � 30
–3x1 � x2 � 30

and

(a) Demonstrate that the feasible region is unbounded.
(b) If the objective is to maximize Z � � x1 � x2, does the model

have an optimal solution? If so, find it. If not, explain why not.
(c) Repeat part (b) when the objective is to maximize Z � x1 � x2.
(d) For objective functions where this model has no optimal solu-

tion, does this mean that there are no good solutions accord-
ing to the model? Explain. What probably went wrong when
formulating the model?

3.3-1. Reconsider Prob. 3.2-3. Indicate why each of the four
assumptions of linear programming (Sec. 3.3) appears to be reason-
ably satisfied for this problem. Is one assumption more doubtful
than the others? If so, what should be done to take this into account?

3.3-2. Consider a problem with two decision variables, x1 and x2,
which represent the levels of activities 1 and 2, respectively. For
each variable, the permissible values are 0, 1, and 2, where the fea-
sible combinations of these values for the two variables are deter-
mined from a variety of constraints. The objective is to maximize a

x1 � 0,   x2 � 0.

x1 � 0,   x2 � 0.

 �x1  � 2x2 � �1
 2x1  � x2 � �1

Maximize   Z � 5x1 � 7x2 ,

x1 � 0,   x2 � 0.

 8x1 � 12x2 � 450
 10x1 � 6x2 � 240
 15x1 � 5x2 � 300

Maximize   Z � 500x1 � 300x2 ,

certain measure of performance denoted by Z. The values of Z for
the possibly feasible values of (x1, x2) are estimated to be those
given in the following table:

Based on this information, indicate whether this problem com-
pletely satisfies each of the four assumptions of linear program-
ming. Justify your answers.

3.4-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 3.4.
Briefly describe how linear programming was applied in this study.
Then list the various financial and nonfinancial benefits that
resulted from this study.

3.4-2.* For each of the four assumptions of linear programming dis-
cussed in Sec. 3.3, write a one-paragraph analysis of how well you
feel it applies to each of the following examples given in Sec. 3.4:
(a) Design of radiation therapy (Mary).
(b) Regional planning (Southern Confederation of Kibbutzim).
(c) Controlling air pollution (Nori & Leets Co.).

3.4-3. For each of the four assumptions of linear programming dis-
cussed in Sec. 3.3, write a one-paragraph analysis of how well it
applies to each of the following examples given in Sec. 3.4.
(a) Reclaiming solid wastes (Save-It Co.).
(b) Personnel scheduling (Union Airways).
(c) Distributing goods through a distribution network (Distribu-

tion Unlimited Co.).

D,I 3.4-4. Use the graphical method to solve this problem:

subject to

and

D,I 3.4-5. Use the graphical method to solve this problem:

subject to

 x1 � 2x2 � 12

Minimize   Z � 3x1 � 2x2 ,

x1 � 0,   x2 � 0.

 x1 � x2 � 6
 2x1 � 3x2 � 6

 x1 � 2x2 � 10

Minimize   Z � 15x1 � 20x2 ,

x2

x1 0 1 2

0 0 4 8
1 3 8 13
2 6 12 18
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Minimum Number of Consultants 
Time of Day Required to Be on Duty

8 A.M.–noon 4
Noon–4 P.M. 8
4 P.M.–8 P.M. 10
8 P.M.–midnight 6
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and

D 3.4-6. Consider the following problem, where the value of c1

has not yet been ascertained.

subject to

and

Use graphical analysis to determine the optimal solution(s) for
(x1, x2) for the various possible values of c1.

D,I 3.4-7. Consider the following model:

subject to

and

(a) Use the graphical method to solve this model.
(b) How does the optimal solution change if the objective function

is changed to Z � 40x1 � 70x2? (You may find it helpful to
use the Graphical Analysis and Sensitivity Analysis procedure
in IOR Tutorial.)

(c) How does the optimal solution change if the third functional
constraint is changed to 2x1 � x2 � 15? (You may find it help-
ful to use the Graphical Analysis and Sensitivity Analysis pro-
cedure in IOR Tutorial.)

3.4-8. Ralph Edmund loves steaks and potatoes. Therefore, he has
decided to go on a steady diet of only these two foods (plus some
liquids and vitamin supplements) for all his meals. Ralph realizes
that this isn’t the healthiest diet, so he wants to make sure that he
eats the right quantities of the two foods to satisfy some key nutri-
tional requirements. He has obtained the nutritional and cost infor-
mation shown at the top of the next column. 

Ralph wishes to determine the number of daily servings (may
be fractional) of steak and potatoes that will meet these require-
ments at a minimum cost.
(a) Formulate a linear programming model for this problem.
D,I (b) Use the graphical method to solve this model.
C (c) Use a computer to solve this model by the simplex method.

x1 � 0,   x2 � 0.

 2x1 � x2 � 20
 x1 � x2 � 12

 2x1 � 3x2 � 30

Minimize   Z � 40x1 � 50x2 ,

x1 � 0,   x2 � 0.

 x1 � x2 � 2
 4x1 � x2 � 12

Maximize   Z � c1x1 � 2x2 ,

x1 � 0,   x2 � 0.

 2x1 � x2 � 8
 2x1 � 3x2 � 12

3.4-9. Web Mercantile sells many household products through an
online catalog. The company needs substantial warehouse space for
storing its goods. Plans now are being made for leasing warehouse
storage space over the next 5 months. Just how much space will be
required in each of these months is known. However, since these space
requirements are quite different, it may be most economical to lease
only the amount needed each month on a month-by-month basis. On
the other hand, the additional cost for leasing space for additional
months is much less than for the first month, so it may be less expen-
sive to lease the maximum amount needed for the entire 5 months.
Another option is the intermediate approach of changing the total
amount of space leased (by adding a new lease and/or having an old
lease expire) at least once but not every month.

The space requirement and the leasing costs for the various
leasing periods are as follows:

Grams of Ingredient 
per Serving

Daily Requirement
Ingredient Steak Potatoes (Grams)

Carbohydrates 5 15 � 50
Protein 20 5 � 40
Fat 15 2 � 60

Cost per serving $8 $4

Required Leasing Period Cost per Sq. Ft. 
Month Space (Sq. Ft.) (Months) Leased

1 30,000 1 $ 65
2 20,000 2 $100
3 40,000 3 $135
4 10,000 4 $160
5 50,000 5 $190

The objective is to minimize the total leasing cost for meeting the
space requirements.
(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.4-10. Larry Edison is the director of the Computer Center for
Buckly College. He now needs to schedule the staffing of the cen-
ter. It is open from 8 A.M. until midnight. Larry has monitored the
usage of the center at various times of the day, and determined that
the following number of computer consultants are required:
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Two types of computer consultants can be hired: full-time and
part-time. The full-time consultants work for 8 consecutive hours
in any of the following shifts: morning (8 A.M.–4 P.M.), afternoon
(noon–8 P.M.), and evening (4 P.M.–midnight). Full-time consultants
are paid $40 per hour.

Part-time consultants can be hired to work any of the four
shifts listed in the above table. Part-time consultants are paid
$30 per hour.

An additional requirement is that during every time period,
there must be at least 2 full-time consultants on duty for every part-
time consultant on duty.

Larry would like to determine how many full-time and how
many part-time workers should work each shift to meet the above
requirements at the minimum possible cost.
(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.4-11.* The Medequip Company produces precision medical
diagnostic equipment at two factories. Three medical centers have
placed orders for this month’s production output. The table below
shows what the cost would be for shipping each unit from each fac-
tory to each of these customers. Also shown are the number of units
that will be produced at each factory and the number of units
ordered by each customer.

Al wishes to know which investment plan maximizes the
amount of money that can be accumulated by the beginning of
year 6.
(a) All the functional constraints for this problem can be expressed

as equality constraints. To do this, let At, Bt, Ct, and Dt be the
amount invested in investment A, B, C, and D, respectively, at
the beginning of year t for each t where the investment is avail-
able and will mature by the end of year 5. Also let Rt be the
number of available dollars not invested at the beginning of
year t (and so available for investment in a later year). Thus,
the amount invested at the beginning of year t plus Rt must
equal the number of dollars available for investment at that
time. Write such an equation in terms of the relevant variables
above for the beginning of each of the 5 years to obtain the
five functional constraints for this problem.

(b) Formulate a complete linear programming model for this
problem.

C (c) Solve this model by the simplex model.

3.4-13. The Metalco Company desires to blend a new alloy of 
40 percent tin, 35 percent zinc, and 25 percent lead from several
available alloys having the following properties:

Unit Shipping Cost
To 

From Customer 1 Customer 2 Customer 3 Output

Factory 1 $600 $800 $700 400 units
Factory 2 $400 $900 $600 500 units

Order size 300 units 200 units 400 units

A decision now needs to be made about the shipping plan for
how many units to ship from each factory to each customer.
(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.4-12.* Al Ferris has $60,000 that he wishes to invest now in
order to use the accumulation for purchasing a retirement annuity
in 5 years. After consulting with his financial adviser, he has been
offered four types of fixed-income investments, which we will
label as investments A, B, C, D.

Investments A and B are available at the beginning of each
of the next 5 years (call them years 1 to 5). Each dollar invested
in A at the beginning of a year returns $1.40 (a profit of $0.40)
2 years later (in time for immediate reinvestment). Each dollar
invested in B at the beginning of a year returns $1.70 three years
later.

Investments C and D will each be available at one time in the
future. Each dollar invested in C at the beginning of year 2 returns
$1.90 at the end of year 5. Each dollar invested in D at the begin-
ning of year 5 returns $1.30 at the end of year 5.

Weight Space 
Capacity Capacity 

Compartment (Tons) (Cubic Feet)

Front 12 7,000
Center 18 9,000
Back 10 5,000

The objective is to determine the proportions of these alloys that
should be blended to produce the new alloy at a minimum cost.
(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.4-14* A cargo plane has three compartments for storing cargo:
front, center, and back. These compartments have capacity limits
on both weight and space, as summarized below:

Alloy

Property 1 2 3 4 5

Percentage of tin 60 25 45 20 50
Percentage of zinc 10 15 45 50 40
Percentage of lead 30 60 10 30 10

Cost ($/lb) 22 20 25 24 27

Furthermore, the weight of the cargo in the respective compart-
ments must be the same proportion of that compartment’s weight
capacity to maintain the balance of the airplane.
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The following four cargoes have been offered for shipment
on an upcoming flight as space is available:

The computer facility is to be open for operation from 8 A.M.
to 10 P.M. Monday through Friday with exactly one operator on
duty during these hours. On Saturdays and Sundays, the computer
is to be operated by other staff.

Because of a tight budget, Beryl has to minimize cost. She
wishes to determine the number of hours she should assign to each
operator on each day.
(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.4-16. Joyce and Marvin run a day care for preschoolers. They
are trying to decide what to feed the children for lunches. They
would like to keep their costs down, but also need to meet the
nutritional requirements of the children. They have already
decided to go with peanut butter and jelly sandwiches, and some
combination of graham crackers, milk, and orange juice. The
nutritional content of each food choice and its cost are given in the
table below.

Cargo Weight Volume Profit 
(Tons) (Cubic Feet/Ton) ($/Ton)

1 20 500 320
2 16 700 400
3 25 600 360
4 13 400 290

Any portion of these cargoes can be accepted. The objective is to
determine how much (if any) of each cargo should be accepted and
how to distribute each among the compartments to maximize the
total profit for the flight.
(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method to find one of its

multiple optimal solutions.

3.4-15. Oxbridge University maintains a powerful mainframe
computer for research use by its faculty, Ph.D. students, and
research associates. During all working hours, an operator must be
available to operate and maintain the computer, as well as to per-
form some programming services. Beryl Ingram, the director of the
computer facility, oversees the operation.

It is now the beginning of the fall semester, and Beryl is con-
fronted with the problem of assigning different working hours to
her operators. Because all the operators are currently enrolled in
the university, they are available to work only a limited number of
hours each day, as shown in the following table.

Maximum Hours of Availability

Operators Wage Rate Mon. Tue. Wed. Thurs. Fri.

K. C. $25/hour 6 0 6 0 6
D. H. $26/hour 0 6 0 6 0
H. B. $24/hour 4 8 4 0 4
S. C. $23/hour 5 5 5 0 5
K. S. $28/hour 3 0 3 8 0
N. K. $30/hour 0 0 0 6 2

There are six operators (four undergraduate students and two
graduate students). They all have different wage rates because of
differences in their experience with computers and in their pro-
gramming ability. The above table shows their wage rates, along
with the maximum number of hours that each can work each day.

Each operator is guaranteed a certain minimum number of
hours per week that will maintain an adequate knowledge of the
operation. This level is set arbitrarily at 8 hours per week for the
undergraduate students (K. C., D. H., H. B., and S. C.) and 7 hours
per week for the graduate students (K. S. and N. K.).

Calories Total Vitamin C Protein Cost
Food Item from Fat Calories (mg) (g) (¢)

Bread (1 slice) 10 70 0 3 5
Peanut butter 
(1 tbsp) 75 100 0 4 4

Strawberry jelly 
(1 tbsp) 0 50 3 0 7

Graham cracker 
(1 cracker) 20 60 0 1 8

Milk (1 cup) 70 150 2 8 15
Juice (1 cup) 0 100 120 1 35

The nutritional requirements are as follows. Each child should
receive between 400 and 600 calories. No more than 30 percent of
the total calories should come from fat. Each child should consume
at least 60 milligrams (mg) of vitamin C and 12 grams (g) of pro-
tein. Furthermore, for practical reasons, each child needs exactly
2 slices of bread (to make the sandwich), at least twice as much
peanut butter as jelly, and at least 1 cup of liquid (milk and/or
juice).

Joyce and Marvin would like to select the food choices for each
child which minimize cost while meeting the above requirements.
(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.5-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 3.5.
Briefly describe how linear programming was applied in this study.
Then list the various financial and nonfinancial benefits that
resulted from this study.

3.5-2.* You are given the following data for a linear programming
problem where the objective is to maximize the profit from allocat-
ing three resources to two nonnegative activities.
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Which feasible guess has the best objective function value?
C (d) Use Solver to solve the model by the simplex method.

3.5-4. You are given the following data for a linear programming
problem where the objective is to minimize the cost of conducting
two nonnegative activities so as to achieve three benefits that do
not fall below their minimum levels.

Resource Usage per 
Unit of Each Activity

Amount of Resource 
Resource Activity 1 Activity 2 Available

1 2 1 10
2 3 3 20
3 2 4 20

Contribution $20 $30
per unit

Contribution per unit � profit per unit of the activity.

(a) Formulate a linear programming model for this problem.
D,I (b) Use the graphical method to solve this model.
(c) Display the model on an Excel spreadsheet.
(d) Use the spreadsheet to check the following solutions:

(x1, x2) � (2, 2), (3, 3), (2, 4), (4, 2), (3, 4), (4, 3). Which of
these solutions are feasible? Which of these feasible solutions
has the best value of the objective function?

C (e) Use Solver to solve the model by the simplex method.
C (f) Use ASPE and its Solver to solve the model by the simplex

method.

3.5-3. Ed Butler is the production manager for the Bilco Corpora-
tion, which produces three types of spare parts for automobiles.
The manufacture of each part requires processing on each of two
machines, with the following processing times (in hours):

Part

Machine A B C

1 0.02 0.03 0.05
2 0.05 0.02 0.04

Each machine is available 40 hours per month. Each part manufac-
tured will yield a unit profit as follows:

Part

A B C

Profit $50 $40 $30

Ed wants to determine the mix of spare parts to produce in order
to maximize total profit.
(a) Formulate a linear programming model for this problem.
(b) Display the model on an Excel spreadsheet.
(c) Make three guesses of your own choosing for the optimal so-

lution. Use the spreadsheet to check each one for feasibility
and, if feasible, to find the value of the objective function. 

Benefit Contribution per
Unit of Each Activity Minimum 

Acceptable 
Benefit Activity 1 Activity 2 Level

1 5 3 60
2 2 2 30
3 7 9 126

Unit cost $60 $50

(a) Formulate a linear programming model for this problem.
D,J (b) Use the graphical method to solve this model.

(c) Display the model on an Excel spreadsheet.
(d) Use the spreadsheet to check the following solutions:

(x1, x2) � (7, 7), (7, 8), (8, 7), (8, 8), (8, 9), (9, 8). Which of
these solutions are feasible? Which of these feasible solutions
has the best value of the objective function?

C (e) Use Solver to solve this model by the simplex method.
C (f) Use ASPE and its Solver to solve the model by the simplex

method.

3.5-5.* Fred Jonasson manages a family-owned farm. To supple-
ment several food products grown on the farm, Fred also raises
pigs for market. He now wishes to determine the quantities of the
available types of feed (corn, tankage, and alfalfa) that should be
given to each pig. Since pigs will eat any mix of these feed types,
the objective is to determine which mix will meet certain nutri-
tional requirements at a minimum cost. The number of units of each
type of basic nutritional ingredient contained within a kilogram of
each feed type is given in the following table, along with the daily
nutritional requirements and feed costs:

Kilogram Kilogram Kilogram Minimum
Nutritional of of of Daily
Ingredient Corn Tankage Alfalfa Requirement

Carbohydrates 90 20 40 200
Protein 30 80 60 180
Vitamins 10 20 60 150

Cost $2.10 $1.80 $1.50

(a) Formulate a linear programming model for this problem.
(b) Display the model on an Excel spreadsheet.
(c) Use the spreadsheet to check if (x1, x2, x3) � (1, 2, 2) is a fea-

sible solution and, if so, what the daily cost would be for this
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Maureen wishes to determine the mix of investments in these as-
sets that will cover the cash-flow requirements while minimizing
the total amount invested.
(a) Formulate a linear programming model for this problem.
(b) Display the model on a spreadsheet.
(c) Use the spreadsheet to check the possibility of purchasing

100 units of Asset 1, 100 units of Asset 2, and 200 units of
Asset 3. How much cash flow would this mix of investments
generate 5, 10, and 20 years from now? What would be the
total amount invested?

(d) Take a few minutes to use a trial-and-error approach with the
spreadsheet to develop your best guess for the optimal solu-
tion. What is the total amount invested for your solution?

C (e) Use Solver to solve the model by the simplex method.
C (f) Use ASPE and its Solver to solve the model by the simplex

method.

3.6-1. The Philbrick Company has two plants on opposite sides of
the United States. Each of these plants produces the same two
products and then sells them to wholesalers within its half of the

diet. How many units of each nutritional ingredient would this
diet provide daily?

(d) Take a few minutes to use a trial-and-error approach with the
spreadsheet to develop your best guess for the optimal solu-
tion. What is the daily cost for your solution?

C (e) Use Solver to solve the model by the simplex method.
C (f) Use ASPE and its Solver to solve the model by the simplex

method.

3.5-6. Maureen Laird is the chief financial officer for the Alva
Electric Co., a major public utility in the midwest. The company
has scheduled the construction of new hydroelectric plants 5, 10,
and 20 years from now to meet the needs of the growing population
in the region served by the company. To cover at least the construc-
tion costs, Maureen needs to invest some of the company’s money
now to meet these future cash-flow needs. Maureen may purchase
only three kinds of financial assets, each of which costs $1 million
per unit. Fractional units may be purchased. The assets produce
income 5, 10, and 20 years from now, and that income is needed to
cover at least minimum cash-flow requirements in those years.
(Any excess income above the minimum requirement for each time
period will be used to increase dividend payments to shareholders
rather than saving it to help meet the minimum cash-flow require-
ment in the next time period.) The following table shows both the
amount of income generated by each unit of each asset and the
minimum amount of income needed for each of the future time
periods when a new hydroelectric plant will be constructed.

country. The orders from wholesalers have already been received
for the next 2 months (February and March), where the number of
units requested are shown below. (The company is not obligated to
completely fill these orders but will do so if it can without decreas-
ing its profits.)

Plant 1 Plant 2

Product February March February March

1 3,600 6,300 4,900 4,200
2 4,500 5,400 5,100 6,000

Each plant has 20 production days available in February and 23
production days available in March to produce and ship these prod-
ucts. Inventories are depleted at the end of January, but each plant
has enough inventory capacity to hold 1,000 units total of the two
products if an excess amount is produced in February for sale in
March. In either plant, the cost of holding inventory in this way is
$3 per unit of product 1 and $4 per unit of product 2.

Each plant has the same two production processes, each of
which can be used to produce either of the two products. The pro-
duction cost per unit produced of each product is shown below for
each process in each plant.

Plant 1 Plant 2

Product Process 1 Process 2 Process 1 Process 2

1 $62 $59 $61 $65
2 $78 $85 $89 $86

The production rate for each product (number of units produced
per day devoted to that product) also is given for each process in
each plant below.

Plant 1 Plant 2

Product Process 1 Process 2 Process 1 Process 2

1 100 140 130 110
2 120 150 160 130

The net sales revenue (selling price minus normal shipping
costs) the company receives when a plant sells the products to its
own customers (the wholesalers in its half of the country) is $83 per
unit of product 1 and $112 per unit of product 2. However, it also
is possible (and occasionally desirable) for a plant to make a ship-
ment to the other half of the country to help fill the sales of the other
plant. When this happens, an extra shipping cost of $9 per unit of
product 1 and $7 per unit of product 2 is incurred.

Income per Unit of Asset
Minimum Cash

Year Asset 1 Asset 2 Asset 3 Flow Required

5 $2 million $1 million $0.5 million $400 million
10 $0.5 million $0.5 million $1 million $100 million
20 0 $1.5 million $2 million $300 million
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Management now needs to determine how much of each prod-
uct should be produced by each production process in each plant
during each month, as well as how much each plant should sell of
each product in each month and how much each plant should ship
of each product in each month to the other plant’s customers. The
objective is to determine which feasible plan would maximize the
total profit (total net sales revenue minus the sum of the produc-
tion costs, inventory costs, and extra shipping costs).
(a) Formulate a complete linear programming model in algebraic

form that shows the individual constraints and decision vari-
ables for this problem.

C (b) Formulate this same model on an Excel spreadsheet instead.
Then use the Excel Solver to solve the model.

C (c) Use MPL to formulate this model in a compact form. Then
use a MPL solver to solve the model.

C (d) Use LINGO to formulate this model in a compact form. Then
use the LINGO solver to solve the model.

C 3.6-2. Reconsider Prob. 3.1-11.
(a) Use MPL/Solvers to formulate and solve the model for this

problem.
(b) Use LINGO to formulate and solve this model.

C 3.6-3. Reconsider Prob. 3.4-11.
(a) Use MPL/Solvers to formulate and solve the model for this

problem.
(b) Use LINGO to formulate and solve this model.

C 3.6-4. Reconsider Prob. 3.4-15.
(a) Use MPL/Solvers to formulate and solve the model for this

problem.
(b) Use LINGO to formulate and solve this model.

C 3.6-5. Reconsider Prob. 3.5-5.
(a) Use MPL/Solvers to formulate and solve the model for this

problem.
(b) Use LINGO to formulate and solve this model.

C 3.6-6. Reconsider Prob. 3.5-6.
(a) Use MPL/Solvers to formulate and solve the model for this

problem.
(b) Use LINGO to formulate and solve this model.

3.6-7. A large paper manufacturing company, the Quality Paper
Corporation, has 10 paper mills from which it needs to supply
1,000 customers. It uses three alternative types of machines and
four types of raw materials to make five different types of paper.
Therefore, the company needs to develop a detailed production 

distribution plan on a monthly basis, with an objective of minimiz-
ing the total cost of producing and distributing the paper during the
month. Specifically, it is necessary to determine jointly the amount
of each type of paper to be made at each paper mill on each type of
machine and the amount of each type of paper to be shipped from
each paper mill to each customer.

The relevant data can be expressed symbolically as follows:

Djk � number of units of paper type k demanded by customer
j,

rklm � number of units of raw material m needed to produce
1 unit of paper type k on machine type l,

Rim � number of units of raw material m available at paper
mill i,

ckl � number of capacity units of machine type l that will
produce 1 unit of paper type k,

Cil � number of capacity units of machine type l available
at paper mill i,

Pikl � production cost for each unit of paper type k produced
on machine type l at paper mill i,

Tijk � transportation cost for each unit of paper type k
shipped from paper mill i to customer j.

(a) Using these symbols, formulate a linear programming model
for this problem by hand.

(b) How many functional constraints and decision variables does
this model have?

C (c) Use MPL to formulate this problem.
C (d) Use LINGO to formulate this problem.

3.6-8. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 3.6.
Briefly describe how linear programming was applied in this study.
Then list the various financial and nonfinancial benefits that
resulted from this study.

3.7-1. From the bottom part of the selected references given at the
end of the chapter, select one of these award-winning applications
of linear programming. Read this article and then write a two-page
summary of the application and the benefits (including nonfinan-
cial benefits) it provided.

3.7-2. From the bottom part of the selected references given at the
end of the chapter, select three of these award-winning applications
of linear programming. For each one, read the article and then
write a one-page summary of the application and the benefits
(including nonfinancial benefits) it provided.

■ CASES

Automobile Alliance, a large automobile manufacturing
company, organizes the vehicles it manufactures into three
families: a family of trucks, a family of small cars, and a

CASE 3.1 Auto Assembly
family of midsized and luxury cars. One plant outside 
Detroit, MI, assembles two models from the family of mid-
sized and luxury cars. The first model, the Family
Thrillseeker, is a four-door sedan with vinyl seats, plastic in-
terior, standard features, and excellent gas mileage. It is 
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marketed as a smart buy for middle-class families with tight
budgets, and each Family Thrillseeker sold generates a mod-
est profit of $3,600 for the company. The second model, the
Classy Cruiser, is a two-door luxury sedan with leather seats,
wooden interior, custom features, and navigational capa-
bilities. It is marketed as a privilege of affluence for upper-
middle-class families, and each Classy Cruiser sold gener-
ates a healthy profit of $5,400 for the company.

Rachel Rosencrantz, the manager of the assembly plant,
is currently deciding the production schedule for the next
month. Specifically, she must decide how many Family
Thrillseekers and how many Classy Cruisers to assemble in
the plant to maximize profit for the company. She knows
that the plant possesses a capacity of 48,000 labor-hours dur-
ing the month. She also knows that it takes 6 labor-hours to
assemble one Family Thrillseeker and 10.5 labor-hours to
assemble one Classy Cruiser.

Because the plant is simply an assembly plant, the parts
required to assemble the two models are not produced at the
plant. They are instead shipped from other plants around the
Michigan area to the assembly plant. For example, tires,
steering wheels, windows, seats, and doors all arrive from
various supplier plants. For the next month, Rachel knows
that she will be able to obtain only 20,000 doors (10,000
left-hand doors and 10,000 right-hand doors) from the door
supplier. A recent labor strike forced the shutdown of that
particular supplier plant for several days, and that plant will
not be able to meet its production schedule for the next
month. Both the Family Thrillseeker and the Classy Cruiser
use the same door part.

In addition, a recent company forecast of the monthly
demands for different automobile models suggests that the
demand for the Classy Cruiser is limited to 3,500 cars.
There is no limit on the demand for the Family Thrillseeker
within the capacity limits of the assembly plant.

(a) Formulate and solve a linear programming problem to deter-
mine the number of Family Thrillseekers and the number of
Classy Cruisers that should be assembled.

Before she makes her final production decisions, Rachel
plans to explore the following questions independently ex-
cept where otherwise indicated.

(b) The marketing department knows that it can pursue a targeted
$500,000 advertising campaign that will raise the demand for
the Classy Cruiser next month by 20 percent. Should the cam-
paign be undertaken?

(c) Rachel knows that she can increase next month’s plant capacity
by using overtime labor. She can increase the plant’s labor-hour
capacity by 25 percent. With the new assembly plant capacity,
how many Family Thrillseekers and how many Classy Cruisers
should be assembled?

(d) Rachel knows that overtime labor does not come without an ex-
tra cost. What is the maximum amount she should be willing to
pay for all overtime labor beyond the cost of this labor at reg-
ular time rates? Express your answer as a lump sum.

(e) Rachel explores the option of using both the targeted advertis-
ing campaign and the overtime labor-hours. The advertising
campaign raises the demand for the Classy Cruiser by 20 per-
cent, and the overtime labor increases the plant’s labor-hour ca-
pacity by 25 percent. How many Family Thrillseekers and how
many Classy Cruisers should be assembled using the advertis-
ing campaign and overtime labor-hours if the profit from each
Classy Cruiser sold continues to be 50 percent more than for
each Family Thrillseeker sold?

(f) Knowing that the advertising campaign costs $500,000 and the
maximum usage of overtime labor-hours costs $1,600,000 be-
yond regular time rates, is the solution found in part (e) a wise
decision compared to the solution found in part (a)?

(g) Automobile Alliance has determined that dealerships are actu-
ally heavily discounting the price of the Family Thrillseekers
to move them off the lot. Because of a profit-sharing agreement
with its dealers, the company is therefore not making a profit
of $3,600 on the Family Thrillseeker but is instead making a
profit of $2,800. Determine the number of Family Thrillseek-
ers and the number of Classy Cruisers that should be assem-
bled given this new discounted price.

(h) The company has discovered quality problems with the Fam-
ily Thrillseeker by randomly testing Thrillseekers at the end
of the assembly line. Inspectors have discovered that in over
60 percent of the cases, two of the four doors on a Thrillseeker
do not seal properly. Because the percentage of defective
Thrillseekers determined by the random testing is so high, the
floor supervisor has decided to perform quality control tests
on every Thrillseeker at the end of the line. Because of the
added tests, the time it takes to assemble one Family
Thrillseeker has increased from 6 to 7.5 hours. Determine the
number of units of each model that should be assembled given
the new assembly time for the Family Thrillseeker.

(i) The board of directors of Automobile Alliance wishes to cap-
ture a larger share of the luxury sedan market and therefore
would like to meet the full demand for Classy Cruisers. They
ask Rachel to determine by how much the profit of her as-
sembly plant would decrease as compared to the profit found
in part (a). They then ask her to meet the full demand for
Classy Cruisers if the decrease in profit is not more than
$2,000,000.

(j) Rachel now makes her final decision by combining all the new
considerations described in parts (f), (g), and (h). What are her
final decisions on whether to undertake the advertising cam-
paign, whether to use overtime labor, the number of Family
Thrillseekers to assemble, and the number of Classy Cruisers
to assemble?
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■ PREVIEWS OF ADDED CASES ON OUR WEBSITE (www.mhhe.com/hillier)

CASE 3.2 Cutting Cafeteria Costs

This case focuses on a subject that is dear to the heart of
many students. How should the manager of a college cafe-
teria choose the ingredients of a casserole dish to make it
sufficiently tasty for the students while also minimizing
costs? In this case, linear programming models with only
two decision variables can be used to address seven specific
issues being faced by the manager.

CASE 3.3 Staffing a Call Center

California Children’s Hospital currently uses a confusing,
decentralized appointment and registration process for its
patients. Therefore, the decision has been made to central-
ize the process by establishing one call center devoted ex-
clusively to appointments and registration. The hospital
manager now needs to develop a plan for how many em-
ployees of each kind (full-time or part-time, English speak-
ing, Spanish speaking, or bilingual) should be hired for each
of several possible work shifts. Linear programming is
needed to find a plan that minimizes the total cost of pro-
viding a satisfactory level of service throughout the 14 hours
that the call center will be open each weekday. The model
requires more than two decision variables, so a software

package such as described in Sec. 3.5 or Sec. 3.6 will be
needed to solve the two versions of the model.

CASE 3.4 Promoting a Breakfast
Cereal

The vice president for marketing of the Super Grain Corpo-
ration needs to develop a promotional campaign for the com-
pany’s new breakfast cereal. Three advertising media have
been chosen for the campaign, but decisions now need to be
made regarding how much of each medium should be used.
Constraints include a limited advertising budget, a limited
planning budget, and a limited number of TV commercial
spots available, as well as requirements for effectively reach-
ing two special target audiences (young children and parents
of young children) and for making full use of a rebate pro-
gram. The corresponding linear programming model requires
more than two decision variables, so a software package such
as described in Sec. 3.5 or Sec. 3.6 will be needed to solve
the model. This case also asks for an analysis of how well
the four assumptions of linear programming are satisfied for
this problem. Does linear programming actually provide a
reasonable basis for managerial decision making in this sit-
uation? (Case 13.3 will provide a continuation of this case.)
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4C H A P T E R

Solving Linear Programming
Problems: The Simplex Method

We now are ready to begin studying the simplex method, a general procedure for
solving linear programming problems. Developed by the brilliant George Dantzig1

in 1947, it has proved to be a remarkably efficient method that is used routinely to solve
huge problems on today’s computers. Except for its use on tiny problems, this method is
always executed on a computer, and sophisticated software packages are widely available.
Extensions and variations of the simplex method also are used to perform postoptimality
analysis (including sensitivity analysis) on the model.

This chapter describes and illustrates the main features of the simplex method. The
first section introduces its general nature, including its geometric interpretation. The fol-
lowing three sections then develop the procedure for solving any linear programming
model that is in our standard form (maximization, all functional constraints in � form,
and nonnegativity constraints on all variables) and has only nonnegative right-hand sides
bi in the functional constraints. Certain details on resolving ties are deferred to Sec. 4.5,
and Sec. 4.6 describes how to adapt the simplex method to other model forms. Next we
discuss postoptimality analysis (Sec. 4.7), and describe the computer implementation of
the simplex method (Sec. 4.8). Section 4.9 then introduces an alternative to the simplex
method (the interior-point approach) for solving huge linear programming problems.

■ 4.1 THE ESSENCE OF THE SIMPLEX METHOD

The simplex method is an algebraic procedure. However, its underlying concepts are
geometric. Understanding these geometric concepts provides a strong intuitive feeling
for how the simplex method operates and what makes it so efficient. Therefore, before
delving into algebraic details, we focus in this section on the big picture from a geo-
metric viewpoint.

1Widely revered as perhaps the most important pioneer of operations research, George Dantzig is commonly re-
ferred to as the father of linear programming because of the development of the simplex method and many key
subsequent contributions. The authors had the privilege of being his faculty colleagues in the Department of Op-
erations Research at Stanford University for nearly 30 years. Dr. Dantzig remained professionally active right
up until he passed away in 2005 at the age of 90.
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To illustrate the general geometric concepts, we shall use the Wyndor Glass Co. ex-
ample presented in Sec. 3.1. (Sections 4.2 and 4.3 use the algebra of the simplex method
to solve this same example.) Section 5.1 will elaborate further on these geometric con-
cepts for larger problems.

To refresh your memory, the model and graph for this example are repeated in 
Fig. 4.1. The five constraint boundaries and their points of intersection are highlighted in
this figure because they are the keys to the analysis. Here, each constraint boundary is
a line that forms the boundary of what is permitted by the corresponding constraint. The
points of intersection are the corner-point solutions of the problem. The five that lie on
the corners of the feasible region—(0, 0), (0, 6), (2, 6), (4, 3), and (4, 0)—are the corner-
point feasible solutions (CPF solutions). [The other three—(0, 9), (4, 6), and (6, 0)—are
called corner-point infeasible solutions.]

In this example, each corner-point solution lies at the intersection of two constraint
boundaries. (For a linear programming problem with n decision variables, each of its corner-
point solutions lies at the intersection of n constraint boundaries.2) Certain pairs of the CPF
solutions in Fig. 4.1 share a constraint boundary, and other pairs do not. It will be impor-
tant to distinguish between these cases by using the following general definitions.

For any linear programming problem with n decision variables, two CPF solutions are 
adjacent to each other if they share n � 1 constraint boundaries. The two adjacent CPF
solutions are connected by a line segment that lies on these same shared constraint bound-
aries. Such a line segment is referred to as an edge of the feasible region.

Since n � 2 in the example, two of its CPF solutions are adjacent if they share one con-
straint boundary; for example, (0, 0) and (0, 6) are adjacent because they share the 
x1 � 0 constraint boundary. The feasible region in Fig. 4.1 has five edges, consisting of the
five line segments forming the boundary of this region. Note that two edges emanate from
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(6, 0)(4, 0)

(0, 6)

(0, 9)

(2, 6)

(4, 3)

(4, 6)

(0, 0)

Feasible
region

x1 � 0

3x1 � 2x2 � 18

x2 � 0

x1 � 4

2x2 � 12

Maximize Z � 3x1 � 5x2,
subject to

x1 �   4
� 12
� 18

2x2
2x23x1 �

and
x1 � 0, x2 � 0

x2

x1

■ FIGURE 4.1
Constraint boundaries and
corner-point solutions for the
Wyndor Glass Co. problem.

2Although a corner-point solution is defined in terms of n constraint boundaries whose intersection gives this
solution, it also is possible that one or more additional constraint boundaries pass through this same point.
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each CPF solution. Thus, each CPF solution has two adjacent CPF solutions (each lying at
the other end of one of the two edges), as enumerated in Table 4.1. (In each row of this table,
the CPF solution in the first column is adjacent to each of the two CPF solutions in the sec-
ond column, but the two CPF solutions in the second column are not adjacent to each other.)

One reason for our interest in adjacent CPF solutions is the following general prop-
erty about such solutions, which provides a very useful way of checking whether a CPF
solution is an optimal solution.

Optimality test: Consider any linear programming problem that possesses at
least one optimal solution. If a CPF solution has no adjacent CPF solutions that
are better (as measured by Z ), then it must be an optimal solution.

Thus, for the example, (2, 6) must be optimal simply because its Z � 36 is larger than 
Z � 30 for (0, 6) and Z � 27 for (4, 3). (We will delve further into why this property
holds in Sec. 5.1.) This optimality test is the one used by the simplex method for deter-
mining when an optimal solution has been reached.

Now we are ready to apply the simplex method to the example.

Solving the Example

Here is an outline of what the simplex method does (from a geometric viewpoint) to solve
the Wyndor Glass Co. problem. At each step, first the conclusion is stated and then the
reason is given in parentheses. (Refer to Fig. 4.1 for a visualization.)

Initialization: Choose (0, 0) as the initial CPF solution to examine. (This is a conve-
nient choice because no calculations are required to identify this CPF solution.)

Optimality Test: Conclude that (0, 0) is not an optimal solution. (Adjacent CPF so-
lutions are better.)

Iteration 1: Move to a better adjacent CPF solution, (0, 6), by performing the fol-
lowing three steps.

1. Considering the two edges of the feasible region that emanate from (0, 0), choose to move
along the edge that leads up the x2 axis. (With an objective function of Z � 3x1 � 5x2,
moving up the x2 axis increases Z at a faster rate than moving along the x1 axis.)

2. Stop at the first new constraint boundary: 2x2 � 12. [Moving farther in the direction
selected in step 1 leaves the feasible region; e.g., moving to the second new constraint
boundary hit when moving in that direction gives (0, 9), which is a corner-point 
infeasible solution.]

3. Solve for the intersection of the new set of constraint boundaries: (0, 6). (The equations
for these constraint boundaries, x1 � 0 and 2x2 � 12, immediately yield this solution.)

Optimality Test: Conclude that (0, 6) is not an optimal solution. (An adjacent CPF
solution is better.)

4.1 THE ESSENCE OF THE SIMPLEX METHOD 95

■ TABLE 4.1 Adjacent CPF solutions for each CPF 
solution of the Wyndor Glass Co. problem

CPF Solution Its Adjacent CPF Solutions

(0, 0) (0, 6) and (4, 0)
(0, 6) (2, 6) and (0, 0)
(2, 6) (4, 3) and (0, 6)
(4, 3) (4, 0) and (2, 6)
(4, 0) (0, 0) and (4, 3)
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Iteration 2: Move to a better adjacent CPF solution, (2, 6), by performing the fol-
lowing three steps.

1. Considering the two edges of the feasible region that emanate from (0, 6), choose to
move along the edge that leads to the right. (Moving along this edge increases Z,
whereas backtracking to move back down the x2 axis decreases Z.)

2. Stop at the first new constraint boundary encountered when moving in that direction:
3x1 � 2x2 � 12. (Moving farther in the direction selected in step 1 leaves the feasible
region.)

3. Solve for the intersection of the new set of constraint boundaries: (2, 6). (The equa-
tions for these constraint boundaries, 3x1 � 2x2 � 18 and 2x2 � 12, immediately yield
this solution.)

Optimality Test: Conclude that (2, 6) is an optimal solution, so stop. (None of the
adjacent CPF solutions are better.)

This sequence of CPF solutions examined is shown in Fig. 4.2, where each circled num-
ber identifies which iteration obtained that solution. (See the Solved Examples section on
the book’s website for another example of how the simplex method marches through a
sequence of CPF solutions to reach the optimal solution.)

Now let us look at the six key solution concepts of the simplex method that provide
the rationale behind the above steps. (Keep in mind that these concepts also apply for
solving problems with more than two decision variables where a graph like Fig. 4.2 is not
available to help quickly find an optimal solution.)

The Key Solution Concepts

The first solution concept is based directly on the relationship between optimal solutions
and CPF solutions given at the end of Sec. 3.2.

Solution concept 1: The simplex method focuses solely on CPF solutions. For
any problem with at least one optimal solution, finding one requires only find-
ing a best CPF solution.3
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(4, 0)

(0, 6)
(2, 6)

(4, 3)

(0, 0)

Feasible
region

x1 

x2

Z � 30

Z � 36

Z � 27

Z � 12

Z � 0

21

0

■ FIGURE 4.2
This graph shows the
sequence of CPF solutions
(�, �, �) examined by the
simplex method for the
Wyndor Glass Co. problem.
The optimal solution (2, 6) is
found after just three
solutions are examined.

3The only restriction is that the problem must possess CPF solutions. This is ensured if the feasible region is
bounded.
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Since the number of feasible solutions generally is infinite, reducing the number of solu-
tions that need to be examined to a small finite number ( just three in Fig. 4.2) is a tremen-
dous simplification.

The next solution concept defines the flow of the simplex method.

Solution concept 2: The simplex method is an iterative algorithm (a systematic
solution procedure that keeps repeating a fixed series of steps, called an iteration,
until a desired result has been obtained) with the following structure.

Initialization: Set up to start iterations, including finding an initial
CPF solution.

Optimality test: Is the current CPF solution optimal?

If no If yes ⎯⎯⎯⎯→ Stop.

Iteration: Perform an iteration to find a better CPF solution.

When the example was solved, note how this flow diagram was followed through two
iterations until an optimal solution was found.

We next focus on how to get started.

Solution concept 3: Whenever possible, the initialization of the simplex method
chooses the origin (all decision variables equal to zero) to be the initial CPF so-
lution. When there are too many decision variables to find an initial CPF solu-
tion graphically, this choice eliminates the need to use algebraic procedures to
find and solve for an initial CPF solution.

Choosing the origin commonly is possible when all the decision variables have nonneg-
ativity constraints, because the intersection of these constraint boundaries yields the ori-
gin as a corner-point solution. This solution then is a CPF solution unless it is infeasible
because it violates one or more of the functional constraints. If it is infeasible, special pro-
cedures described in Sec. 4.6 are needed to find the initial CPF solution.

The next solution concept concerns the choice of a better CPF solution at each iteration.

Solution concept 4: Given a CPF solution, it is much quicker computationally
to gather information about its adjacent CPF solutions than about other CPF so-
lutions. Therefore, each time the simplex method performs an iteration to move
from the current CPF solution to a better one, it always chooses a CPF solution
that is adjacent to the current one. No other CPF solutions are considered. Con-
sequently, the entire path followed to eventually reach an optimal solution is along
the edges of the feasible region.

The next focus is on which adjacent CPF solution to choose at each iteration.

Solution concept 5: After the current CPF solution is identified, the simplex
method examines each of the edges of the feasible region that emanate from this
CPF solution. Each of these edges leads to an adjacent CPF solution at the other
end, but the simplex method does not even take the time to solve for the adjacent
CPF solution. Instead, it simply identifies the rate of improvement in Z that would
be obtained by moving along the edge. Among the edges with a positive rate of
improvement in Z, it then chooses to move along the one with the largest rate of
improvement in Z. The iteration is completed by first solving for the adjacent
CPF solution at the other end of this one edge and then relabeling this adjacent
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CPF solution as the current CPF solution for the optimality test and (if needed)
the next iteration.

At the first iteration of the example, moving from (0, 0) along the edge on the x1 axis
would give a rate of improvement in Z of 3 (Z increases by 3 per unit increase in x1),
whereas moving along the edge on the x2 axis would give a rate of improvement in Z of
5 (Z increases by 5 per unit increase in x2), so the decision is made to move along the lat-
ter edge. At the second iteration, the only edge emanating from (0, 6) that would yield a
positive rate of improvement in Z is the edge leading to (2, 6), so the decision is made to
move next along this edge.

The final solution concept clarifies how the optimality test is performed efficiently.

Solution concept 6: Solution concept 5 describes how the simplex method ex-
amines each of the edges of the feasible region that emanate from the current
CPF solution. This examination of an edge leads to quickly identifying the rate
of improvement in Z that would be obtained by moving along the edge toward
the adjacent CPF solution at the other end. A positive rate of improvement in Z
implies that the adjacent CPF solution is better than the current CPF solution,
whereas a negative rate of improvement in Z implies that the adjacent CPF so-
lution is worse. Therefore, the optimality test consists simply of checking whether
any of the edges give a positive rate of improvement in Z. If none do, then the
current CPF solution is optimal.

In the example, moving along either edge from (2, 6) decreases Z. Since we want to max-
imize Z, this fact immediately gives the conclusion that (2, 6) is optimal.
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Section 4.1 stressed the geometric concepts that underlie the simplex method. How-
ever, this algorithm normally is run on a computer, which can follow only algebraic
instructions. Therefore, it is necessary to translate the conceptually geometric proce-
dure just described into a usable algebraic procedure. In this section, we introduce the
algebraic language of the simplex method and relate it to the concepts of the pre-
ceding section.

The algebraic procedure is based on solving systems of equations. Therefore, the first
step in setting up the simplex method is to convert the functional inequality constraints
to equivalent equality constraints. (The nonnegativity constraints are left as inequalities
because they are treated separately.) This conversion is accomplished by introducing slack
variables. To illustrate, consider the first functional constraint in the Wyndor Glass Co.
example of Sec. 3.1,

x1 � 4.

The slack variable for this constraint is defined to be

x3 � 4 � x1,

which is the amount of slack in the left-hand side of the inequality. Thus,

x1 � x3 � 4.

Given this equation, x1 � 4 if and only if 4 � x1 � x3 � 0. Therefore, the original con-
straint x1 � 4 is entirely equivalent to the pair of constraints

x1 � x3 � 4 and x3 � 0.

■ 4.2 SETTING UP THE SIMPLEX METHOD
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Although both forms of the model represent exactly the same problem, the new form is
much more convenient for algebraic manipulation and for identification of CPF solutions.
We call this the augmented form of the problem because the original form has been aug-
mented by some supplementary variables needed to apply the simplex method.

If a slack variable equals 0 in the current solution, then this solution lies on the con-
straint boundary for the corresponding functional constraint. A value greater than 0 means
that the solution lies on the feasible side of this constraint boundary, whereas a value less
than 0 means that the solution lies on the infeasible side of this constraint boundary. A
demonstration of these properties is provided by the demonstration example in your OR
Tutor entitled Interpretation of the Slack Variables.

The terminology used in Section 4.1 (corner-point solutions, etc.) applies to the orig-
inal form of the problem. We now introduce the corresponding terminology for the aug-
mented form.

An augmented solution is a solution for the original variables (the decision vari-
ables) that has been augmented by the corresponding values of the slack variables.

For example, augmenting the solution (3, 2) in the example yields the augmented solu-
tion (3, 2, 1, 8, 5) because the corresponding values of the slack variables are x3 � 1,
x4 � 8, and x5 � 5.

A basic solution is an augmented corner-point solution.

To illustrate, consider the corner-point infeasible solution (4, 6) in Fig. 4.1. Augmenting
it with the resulting values of the slack variables x3 � 0, x4 � 0, and x5 � �6 yields the
corresponding basic solution (4, 6, 0, 0, �6).

The fact that corner-point solutions (and so basic solutions) can be either feasible or
infeasible implies the following definition:

A basic feasible (BF) solution is an augmented CPF solution.

Thus, the CPF solution (0, 6) in the example is equivalent to the BF solution (0, 6, 4,
0, 6) for the problem in augmented form.

The only difference between basic solutions and corner-point solutions (or between
BF solutions and CPF solutions) is whether the values of the slack variables are included.
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Maximize Z � 3x1 � 5x2,

subject to

x1 � 2x2 � 4

3x1 � 2x2 � 12

3x1 � 2x2 � 18

and

x1 � 0, x2 � 0.

Maximize Z � 3x1 � 5x2,

subject to

(1) x1 � x3 � 4

(2) 2x2 � x4 � 12

(3) 3x1 � 2x2 � x5 � 18

and

xj � 0, for j � 1, 2, 3, 4, 5.

4The slack variables are not shown in the objective function because the coefficients there are 0.

Upon the introduction of slack variables for the other functional constraints, the
original linear programming model for the example (shown below on the left) can now
be replaced by the equivalent model (called the augmented form of the model) shown
below on the right:

Original Form of the Model Augmented Form of the Model4
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For any basic solution, the corresponding corner-point solution is obtained simply by delet-
ing the slack variables. Therefore, the geometric and algebraic relationships between these
two solutions are very close, as described in Sec. 5.1.

Because the terms basic solution and basic feasible solution are very important parts
of the standard vocabulary of linear programming, we now need to clarify their algebraic
properties. For the augmented form of the example, notice that the system of functional
constraints has 5 variables and 3 equations, so

Number of variables � number of equations � 5 � 3 � 2.

This fact gives us 2 degrees of freedom in solving the system, since any two variables can be
chosen to be set equal to any arbitrary value in order to solve the three equations in terms of
the remaining three variables.5 The simplex method uses zero for this arbitrary value. Thus,
two of the variables (called the nonbasic variables) are set equal to zero, and then the si-
multaneous solution of the three equations for the other three variables (called the basic vari-
ables) is a basic solution. These properties are described in the following general definitions.

A basic solution has the following properties:

1. Each variable is designated as either a nonbasic variable or a basic variable.
2. The number of basic variables equals the number of functional constraints (now equa-

tions). Therefore, the number of nonbasic variables equals the total number of vari-
ables minus the number of functional constraints.

3. The nonbasic variables are set equal to zero.
4. The values of the basic variables are obtained as the simultaneous solution of the sys-

tem of equations (functional constraints in augmented form). (The set of basic vari-
ables is often referred to as the basis.)

5. If the basic variables satisfy the nonnegativity constraints, the basic solution is a BF
solution.

To illustrate these definitions, consider again the BF solution (0, 6, 4, 0, 6). This so-
lution was obtained before by augmenting the CPF solution (0, 6). However, another way
to obtain this same solution is to choose x1 and x4 to be the two nonbasic variables, and
so the two variables are set equal to zero. The three equations then yield, respectively,
x3 � 4, x2 � 6, and x5 � 6 as the solution for the three basic variables, as shown below
(with the basic variables in bold type):

x1 � 0 and x4 � 0 so
(1) x1 � x3 � 4 x3 � 4
(2) 2x2 � x4 � 12 x2 � 6
(3) 3x1 � 2x2 � x5 � 18 x5 � 6

Because all three of these basic variables are nonnegative, this basic solution (0, 6, 4,
0, 6) is indeed a BF solution. The Solved Examples section of the book’s website includes
another example of the relationship between CPF solutions and BF solutions.

Just as certain pairs of CPF solutions are adjacent, the corresponding pairs of BF so-
lutions also are said to be adjacent. Here is an easy way to tell when two BF solutions
are adjacent.

Two BF solutions are adjacent if all but one of their nonbasic variables are the same.
This implies that all but one of their basic variables also are the same, although perhaps
with different numerical values.
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5This method of determining the number of degrees of freedom for a system of equations is valid as long as the
system does not include any redundant equations. This condition always holds for the system of equations formed
from the functional constraints in the augmented form of a linear programming model.
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Consequently, moving from the current BF solution to an adjacent one involves switch-
ing one variable from nonbasic to basic and vice versa for one other variable (and
then adjusting the values of the basic variables to continue satisfying the system of
equations).

To illustrate adjacent BF solutions, consider one pair of adjacent CPF solutions in
Fig. 4.1: (0, 0) and (0, 6). Their augmented solutions, (0, 0, 4, 12, 18) and (0, 6, 4, 0, 6),
automatically are adjacent BF solutions. However, you do not need to look at Fig. 4.1 to
draw this conclusion. Another signpost is that their nonbasic variables, (x1, x2) and 
(x1, x4), are the same with just the one exception—x2 has been replaced by x4. Conse-
quently, moving from (0, 0, 4, 12, 18) to (0, 6, 4, 0, 6) involves switching x2 from non-
basic to basic and vice versa for x4.

When we deal with the problem in augmented form, it is convenient to consider and
manipulate the objective function equation at the same time as the new constraint equa-
tions. Therefore, before we start the simplex method, the problem needs to be rewritten
once again in an equivalent way:

Maximize Z,

subject to

(0) Z � 3x1 � 5x2 � 0
(1) x1 � x3 � 4
(2) 2x2 � x4 � 12
(3) 3x1 � 2x2 � x5 � 18

and

xj � 0, for j � 1, 2, . . . , 5.

It is just as if Eq. (0) actually were one of the original constraints; but because it already
is in equality form, no slack variable is needed. While adding one more equation, we also
have added one more unknown (Z) to the system of equations. Therefore, when using
Eqs. (1) to (3) to obtain a basic solution as described above, we use Eq. (0) to solve for
Z at the same time.

Somewhat fortuitously, the model for the Wyndor Glass Co. problem fits our stan-
dard form, and all its functional constraints have nonnegative right-hand sides bi. If this
had not been the case, then additional adjustments would have been needed at this point
before the simplex method was applied. These details are deferred to Sec. 4.6, and we
now focus on the simplex method itself.
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■ 4.3 THE ALGEBRA OF THE SIMPLEX METHOD
We continue to use the prototype example of Sec. 3.1, as rewritten at the end of Sec. 4.2,
for illustrative purposes. To start connecting the geometric and algebraic concepts of the
simplex method, we begin by outlining side by side in Table 4.2 how the simplex method
solves this example from both a geometric and an algebraic viewpoint. The geometric view-
point (first presented in Sec. 4.1) is based on the original form of the model (no slack vari-
ables), so again refer to Fig. 4.1 for a visualization when you examine the second column
of the table. Refer to the augmented form of the model presented at the end of Sec. 4.2
when you examine the third column of the table.

We now fill in the details for each step of the third column of Table 4.2.
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Initialization

The choice of x1 and x2 to be the nonbasic variables (the variables set equal to zero) for the
initial BF solution is based on solution concept 3 in Sec. 4.1. This choice eliminates the
work required to solve for the basic variables (x3, x4, x5) from the following system of
equations (where the basic variables are shown in bold type):

x1 � 0 and x2 � 0 so
(1) x1 � x3 � 4 x3 � 4
(2) 2x2 � x4 � 12 x4 � 12
(3) 3x1 � 2x2 � x5 � 18 x5 � 18

Thus, the initial BF solution is (0, 0, 4, 12, 18).
Notice that this solution can be read immediately because each equation has just one

basic variable, which has a coefficient of 1, and this basic variable does not appear in any
other equation. You will soon see that when the set of basic variables changes, the sim-
plex method uses an algebraic procedure (Gaussian elimination) to convert the equations
to this same convenient form for reading every subsequent BF solution as well. This form
is called proper form from Gaussian elimination.
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■ TABLE 4.2 Geometric and algebraic interpretations of how the simplex method
solves the Wyndor Glass Co. problem

Method
Sequence Geometric Interpretation Algebraic Interpretation

Initialization Choose (0, 0) to be the initial CPF Choose x1 and x2 to be the nonbasic 
solution. variables (� 0) for the initial BF 

solution: (0, 0, 4, 12, 18).
Optimality Not optimal, because moving along Not optimal, because increasing either 
test either edge from (0, 0) increases Z. nonbasic variable (x1 or x2) increases Z.

Iteration 1
Step 1 Move up the edge lying on the Increase x2 while adjusting other 

x2 axis. variable values to satisfy the system 
of equations.

Step 2 Stop when the first new constraint Stop when the first basic variable 
boundary (2x2 � 12) is reached. (x3, x4, or x5) drops to zero (x4).

Step 3 Find the intersection of the new pair With x2 now a basic variable and x4

of constraint boundaries: (0, 6) is the now a nonbasic variable, solve the 
new CPF solution. system of equations: (0, 6, 4, 0, 6) is 

the new BF solution.
Optimality Not optimal, because moving along the Not optimal, because increasing one 
test edge from (0, 6) to the right increases Z. nonbasic variable (x1) increases Z.

Iteration 2
Step 1 Move along this edge to the right. Increase x1 while adjusting other 

variable values to satisfy the system 
of equations.

Step 2 Stop when the first new constraint Stop when the first basic variable 
boundary (3x1 � 2x2 � 18) is reached. (x2, x3, or x5) drops to zero (x5).

Step 3 Find the intersection of the new pair With x1 now a basic variable and x5

of constraint boundaries: (2, 6) is the now a nonbasic variable, solve the 
new CPF solution. system of equations: (2, 6, 2, 0, 0) is 

the new BF solution.
Optimality (2, 6) is optimal, because moving (2, 6, 2, 0, 0) is optimal, because 
test along either edge from (2, 6) decreases Z. increasing either nonbasic variable 

(x4 or x5) decreases Z.
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Optimality Test

The objective function is

Z � 3x1 � 5x2,

so Z � 0 for the initial BF solution. Because none of the basic variables (x3, x4, x5) have
a nonzero coefficient in this objective function, the coefficient of each nonbasic variable
(x1, x2) gives the rate of improvement in Z if that variable were to be increased from zero
(while the values of the basic variables are adjusted to continue satisfying the system of
equations).6 These rates of improvement (3 and 5) are positive. Therefore, based on so-
lution concept 6 in Sec. 4.1, we conclude that (0, 0, 4, 12, 18) is not optimal.

For each BF solution examined after subsequent iterations, at least one basic variable
has a nonzero coefficient in the objective function. Therefore, the optimality test then will
use the new Eq. (0) to rewrite the objective function in terms of just the nonbasic variables,
as you will see later.

Determining the Direction of Movement (Step 1 of an Iteration)

Increasing one nonbasic variable from zero (while adjusting the values of the basic vari-
ables to continue satisfying the system of equations) corresponds to moving along one
edge emanating from the current CPF solution. Based on solution concepts 4 and 5 in
Sec. 4.1, the choice of which nonbasic variable to increase is made as follows:

6Note that this interpretation of the coefficients of the xj variables is based on these variables being on the right-
hand side, Z � 3x1 � 5x2. When these variables are brought to the left-hand side for Eq. (0), Z � 3x1 � 5x2 � 0,
the nonzero coefficients change their signs.

Samsung Electronics Corp., Ltd. (SEC) is a leading
merchant of dynamic and static random access memory
devices and other advanced digital integrated circuits. It
has been the world’s largest information technology com-
pany in revenues (well over $100 billion annually) since
2009, employing well over 200,000 people in over 
60 countries. Its site at Kiheung, South Korea (probably
the largest semiconductor fabrication site in the world)
fabricates more than 300,000 silicon wafers per month.

Cycle time is the industry’s term for the elapsed time
from the release of a batch of blank silicon wafers into
the fabrication process until completion of the devices
that are fabricated on those wafers. Reducing cycle times
is an ongoing goal since it both decreases costs and en-
ables offering shorter lead times to potential customers,
a real key to maintaining or increasing market share in a
very competitive industry.

Three factors present particularly major challenges
when striving to reduce cycle times. One is that the prod-
uct mix changes continually. Another is that the company
often needs to make substantial changes in the fab-out
schedule inside the target cycle time as it revises forecasts

of customer demand. The third is that the machines of a
general type are not homogenous so only a small number
of machines are qualified to perform each device-step.

An OR team developed a huge linear programming
model with tens of thousands of decision variables and
functional constraints to cope with these challenges. The
objective function involved minimizing back-orders and
finished-goods inventory. Despite the huge size of this
model, it was readily solved in minutes whenever needed
by using a highly sophisticated implementation of the
simplex method (and related techniques).

The ongoing implementation of this model enabled
the company to reduce manufacturing cycle times to fab-
ricate dynamic random access memory devices from
more than 80 days to less than 30 days. This tremendous
improvement and the resulting reduction in both manu-
facturing costs and sale prices enabled Samsung to cap-
ture an additional $200 million in annual sales revenue.

Source: R. C. Leachman, J. Kang, and Y. Lin: “SLIM: Short
Cycle Time and Low Inventory in Manufacturing at Samsung
Electronics,” Interfaces, 32(1): 61–77, Jan.–Feb. 2002. (A link to
this article is provided on our website, www.mhhe.com/hillier.)

An Application Vignette
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Z � 3x1 � 5x2

Increase x1? Rate of improvement in Z � 3.
Increase x2? Rate of improvement in Z � 5.
5 � 3, so choose x2 to increase.

As indicated next, we call x2 the entering basic variable for iteration 1.

At any iteration of the simplex method, the purpose of step 1 is to choose one nonbasic
variable to increase from zero (while the values of the basic variables are adjusted to con-
tinue satisfying the system of equations). Increasing this nonbasic variable from zero will
convert it to a basic variable for the next BF solution. Therefore, this variable is called
the entering basic variable for the current iteration (because it is entering the basis).

Determining Where to Stop (Step 2 of an Iteration)

Step 2 addresses the question of how far to increase the entering basic variable x2 before
stopping. Increasing x2 increases Z, so we want to go as far as possible without leaving
the feasible region. The requirement to satisfy the functional constraints in augmented
form (shown below) means that increasing x2 (while keeping the nonbasic variable x1 � 0)
changes the values of some of the basic variables as shown on the right.

x1 � 0, so
(1) x1 � x3 � 4 x3 � 4
(2) 2x2 � x4 � 12 x4 � 12 � 2x2

(3) 3x1 � 2x2 � x5 � 18 x5 � 18 � 2x2.

The other requirement for feasibility is that all the variables be nonnegative. The non-
basic variables (including the entering basic variable) are nonnegative, but we need to check
how far x2 can be increased without violating the nonnegativity constraints for the basic
variables.

x3 � 4 � 0 ⇒ no upper bound on x2.

x4 � 12 � 2x2 � 0 ⇒ x2 � �
1
2
2
� � 6 � minimum.

x5 � 18 � 2x2 � 0 ⇒ x2 � �
1
2
8
� � 9.

Thus, x2 can be increased just to 6, at which point x4 has dropped to 0. Increasing x2 be-
yond 6 would cause x4 to become negative, which would violate feasibility.

These calculations are referred to as the minimum ratio test. The objective of this
test is to determine which basic variable drops to zero first as the entering basic variable
is increased. We can immediately rule out the basic variable in any equation where the
coefficient of the entering basic variable is zero or negative, since such a basic variable
would not decrease as the entering basic variable is increased. [This is what happened
with x3 in Eq. (1) of the example.] However, for each equation where the coefficient of
the entering basic variable is strictly positive (� 0), this test calculates the ratio of the
right-hand side to the coefficient of the entering basic variable. The basic variable in the
equation with the minimum ratio is the one that drops to zero first as the entering basic
variable is increased.

At any iteration of the simplex method, step 2 uses the minimum ratio test to determine
which basic variable drops to zero first as the entering basic variable is increased. De-
creasing this basic variable to zero will convert it to a nonbasic variable for the next BF
solution. Therefore, this variable is called the leaving basic variable for the current iter-
ation (because it is leaving the basis).

Thus, x4 is the leaving basic variable for iteration 1 of the example.
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Solving for the New BF Solution (Step 3 of an Iteration)

Increasing x2 � 0 to x2 � 6 moves us from the initial BF solution on the left to the new
BF solution on the right.

Initial BF solution New BF solution
Nonbasic variables: x1 � 0, x2 � 0 x1 � 0, x4 � 0
Basic variables: x3 � 4, x4 � 12, x5 � 18 x3 � ?, x2 � 6, x5 � ?

The purpose of step 3 is to convert the system of equations to a more convenient form
(proper form from Gaussian elimination) for conducting the optimality test and (if needed)
the next iteration with this new BF solution. In the process, this form also will identify
the values of x3 and x5 for the new solution.

Here again is the complete original system of equations, where the new basic vari-
ables are shown in bold type (with Z playing the role of the basic variable in the objec-
tive function equation):

(0) Z � 3x1 � 5x2 � 0.
(1) x1 � x3 � 4.
(2) 2x2 � x4 � 12.
(3) 3x1 � 2x2 � x5 � 18.

Thus, x2 has replaced x4 as the basic variable in Eq. (2). To solve this system of equations
for Z, x2, x3, and x5, we need to perform some elementary algebraic operations to re-
produce the current pattern of coefficients of x4 (0, 0, 1, 0) as the new coefficients of x2.
We can use either of two types of elementary algebraic operations:

1. Multiply (or divide) an equation by a nonzero constant.
2. Add (or subtract) a multiple of one equation to (or from) another equation.

To prepare for performing these operations, note that the coefficients of x2 in the
above system of equations are �5, 0, 2, and 2, respectively, whereas we want these co-
efficients to become 0, 0, 1, and 0, respectively. To turn the coefficient of 2 in Eq. (2)
into 1, we use the first type of elementary algebraic operation by dividing Eq. (2) by 2
to obtain

(2) x2 � �
1
2

�x4 � 6.

To turn the coefficients of �5 and 2 into zeros, we need to use the second type of ele-
mentary algebraic operation. In particular, we add 5 times this new Eq. (2) to Eq. (0), and
subtract 2 times this new Eq. (2) from Eq. (3). The resulting complete new system of
equations is

(0) Z � 3x1 � �
5
2

�x4 � 30

(1) x1 � x3 � 4

(2) x2 � �
1
2

�x4 � 6

(3) 3x1 � x4 � x5 � 6.

Since x1 � 0 and x4 � 0, the equations in this form immediately yield the new BF solu-
tion, (x1, x2, x3, x4, x5) � (0, 6, 4, 0, 6), which yields Z � 30.

This procedure for obtaining the simultaneous solution of a system of linear equa-
tions is called the Gauss-Jordan method of elimination, or Gaussian elimination for
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short.7 The key concept for this method is the use of elementary algebraic operations to
reduce the original system of equations to proper form from Gaussian elimination, where
each basic variable has been eliminated from all but one equation (its equation) and has
a coefficient of �1 in that equation.

Optimality Test for the New BF Solution

The current Eq. (0) gives the value of the objective function in terms of just the current
nonbasic variables:

Z � 30 � 3x1 � �
5
2

�x4.

Increasing either of these nonbasic variables from zero (while adjusting the values of the
basic variables to continue satisfying the system of equations) would result in moving
toward one of the two adjacent BF solutions. Because x1 has a positive coefficient, in-
creasing x1 would lead to an adjacent BF solution that is better than the current BF solu-
tion, so the current solution is not optimal.

Iteration 2 and the Resulting Optimal Solution

Since Z � 30 � 3x1 � �
5
2

�x4, Z can be increased by increasing x1, but not x4. Therefore, step
1 chooses x1 to be the entering basic variable.

For step 2, the current system of equations yields the following conclusions about
how far x1 can be increased (with x4 � 0):

x3 � 4 � x1 � 0 ⇒ x1 � �
4
1

� � 4.

x2 � 6 � 0 ⇒ no upper bound on x1.

x5 � 6 � 3x1 � 0 ⇒ x1 � �
6
3

� � 2 � minimum.

Therefore, the minimum ratio test indicates that x5 is the leaving basic variable.
For step 3, with x1 replacing x5 as a basic variable, we perform elementary algebraic

operations on the current system of equations to reproduce the current pattern of coeffi-
cients of x5 (0, 0, 0, 1) as the new coefficients of x1. This yields the following new sys-
tem of equations:

(0) Z � �
3
2

�x4 � x5 � 36

(1) x3 � �
1
3

�x4 � �
1
3

�x5 � 2

(2) x2 � �
1
2

�x4 � 6

(3) x1 � �
1
3

�x4 � �
1
3

�x5 � 2.

Therefore, the next BF solution is (x1, x2, x3, x4, x5) � (2, 6, 2, 0, 0), yielding Z � 36. To
apply the optimality test to this new BF solution, we use the current Eq. (0) to express Z
in terms of just the current nonbasic variables:
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7Actually, there are some technical differences between the Gauss-Jordan method of elimination and Gaussian
elimination, but we shall not make this distinction.
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Z � 36 � �
3
2

�x4 � x5.

Increasing either x4 or x5 would decrease Z, so neither adjacent BF solution is as good as
the current one. Therefore, based on solution concept 6 in Sec. 4.1, the current BF solu-
tion must be optimal.

In terms of the original form of the problem (no slack variables), the optimal solu-
tion is x1 � 2, x2 � 6, which yields Z � 3x1 � 5x2 � 36.

To see another example of applying the simplex method, we recommend that you
now view the demonstration entitled Simplex Method—Algebraic Form in your OR Tutor.
This vivid demonstration simultaneously displays both the algebra and the geometry of the 
simplex method as it dynamically evolves step by step. Like the many other demonstration
examples accompanying other sections of the book (including the next section), this com-
puter demonstration highlights concepts that are difficult to convey on the printed page. In
addition, the Solved Examples section of the book’s website includes another example of
applying the simplex method.

To further help you learn the simplex method efficiently, the IOR Tutorial in your OR
Courseware includes a procedure entitled Solve Interactively by the Simplex Method.
This routine performs nearly all the calculations while you make the decisions step by
step, thereby enabling you to focus on concepts rather than get bogged down in a lot of
number crunching. Therefore, you probably will want to use this routine for your home-
work on this section. The software will help you get started by letting you know when-
ever you make a mistake on the first iteration of a problem.

After you learn the simplex method, you will want to simply apply an automatic com-
puter implementation of it to obtain optimal solutions of linear programming problems
immediately. For your convenience, we also have included an automatic procedure called
Solve Automatically by the Simplex Method in IOR Tutorial. This procedure is designed
for dealing with only textbook-sized problems, including checking the answer you got
with the interactive procedure. Section 4.8 will describe more powerful software options
for linear programming that also are provided on the book’s website.

The next section includes a summary of the simplex method for a more convenient
tabular form.

4.4 THE SIMPLEX METHOD IN TABULAR FORM 107

8A form more convenient for automatic execution on a computer is presented in Sec. 5.2.

The algebraic form of the simplex method presented in Sec. 4.3 may be the best one for
learning the underlying logic of the algorithm. However, it is not the most convenient form
for performing the required calculations. When you need to solve a problem by hand (or
interactively with your IOR Tutorial), we recommend the tabular form described in this
section.8

The tabular form of the simplex method records only the essential information, namely,
(1) the coefficients of the variables, (2) the constants on the right-hand sides of the equa-
tions, and (3) the basic variable appearing in each equation. This saves writing the sym-
bols for the variables in each of the equations, but what is even more important is the fact
that it permits highlighting the numbers involved in arithmetic calculations and recording
the computations compactly.

Table 4.3 compares the initial system of equations for the Wyndor Glass Co. problem
in algebraic form (on the left) and in tabular form (on the right), where the table on the
right is called a simplex tableau. The basic variable for each equation is shown in bold type

■ 4.4 THE SIMPLEX METHOD IN TABULAR FORM
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■ TABLE 4.3 Initial system of equations for the Wyndor Glass Co. problem

(a) Algebraic Form (b) Tabular Form

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

(0) Z � 3x1 � 5x2 � x3 � x4 � x5 � 0 Z (0) 1 �3 �5 0 0 0 0
(1) Z � 3x1 � 5x2 � x3 � x4 � x � 4 x3 (1) 0 �1 �0 1 0 0 4
(2) Z � 3x1 � 2x2 � x3 � x4 � x5 � 12 x4 (2) 0 �0 �2 0 1 0 12
(3) Z � 3x1 � 2x2 � x3 � x4 � x5 � 18 x5 (3) 0 �3 �2 0 0 1 18

on the left and in the first column of the simplex tableau on the right. [Although only the
xj variables are basic or nonbasic, Z plays the role of the basic variable for Eq. (0).] All
variables not listed in this basic variable column (x1, x2) automatically are nonbasic
variables. After we set x1 � 0, x2 � 0, the right-side column gives the resulting solution for
the basic variables, so that the initial BF solution is (x1, x2, x3, x4, x5) � (0, 0, 4, 12, 18)
which yields Z � 0.

The tabular form of the simplex method uses a simplex tableau to compactly display the
system of equations yielding the current BF solution. For this solution, each variable in
the leftmost column equals the corresponding number in the rightmost column (and vari-
ables not listed equal zero). When the optimality test or an iteration is performed, the only
relevant numbers are those to the right of the Z column.9 The term row refers to just a
row of numbers to the right of the Z column (including the right-side number), where row
i corresponds to Eq. (i).

We summarize the tabular form of the simplex method below and, at the same time,
briefly describe its application to the Wyndor Glass Co. problem. Keep in mind that the logic
is identical to that for the algebraic form presented in the preceding section. Only the form
for displaying both the current system of equations and the subsequent iteration has changed
(plus we shall no longer bother to bring variables to the right-hand side of an equation be-
fore drawing our conclusions in the optimality test or in steps 1 and 2 of an iteration).

Summary of the Simplex Method (and Iteration 1 for the Example)

Initialization. Introduce slack variables. Select the decision variables to be the initial
nonbasic variables (set equal to zero) and the slack variables to be the initial basic vari-
ables. (See Sec. 4.6 for the necessary adjustments if the model is not in our standard
form—maximization, only � functional constraints, and all nonnegativity constraints—
or if any bi values are negative.)

For the Example: This selection yields the initial simplex tableau shown in column (b)
of Table 4.3, so the initial BF solution is (0, 0, 4, 12, 18).

Optimality Test. The current BF solution is optimal if and only if every coefficient in
row 0 is nonnegative (� 0). If it is, stop; otherwise, go to an iteration to obtain the next
BF solution, which involves changing one nonbasic variable to a basic variable (step 1)
and vice versa (step 2) and then solving for the new solution (step 3).

For the Example: Just as Z � 3x1 � 5x2 indicates that increasing either x1 or x2 will
increase Z, so the current BF solution is not optimal, the same conclusion is drawn from

9For this reason, it is permissible to delete the Eq. and Z columns to reduce the size of the simplex tableau. We
prefer to retain these columns as a reminder that the simplex tableau is displaying the current system of equa-
tions and that Z is one of the variables in Eq. (0).
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the equation Z � 3x1 � 5x2 � 0. These coefficients of �3 and �5 are shown in row 0 in
column (b) of Table 4.3.

Iteration. Step 1: Determine the entering basic variable by selecting the variable
(automatically a nonbasic variable) with the negative coefficient having the largest ab-
solute value (i.e., the “most negative” coefficient) in Eq. (0). Put a box around the col-
umn below this coefficient, and call this the pivot column.

For the Example: The most negative coefficient is �5 for x2 (5 � 3), so x2 is to be
changed to a basic variable. (This change is indicated in Table 4.4 by the box around the
x2 column below �5.)

Step 2: Determine the leaving basic variable by applying the minimum ratio test.

Minimum Ratio Test

1. Pick out each coefficient in the pivot column that is strictly positive (� 0).
2. Divide each of these coefficients into the right-side entry for the same row.
3. Identify the row that has the smallest of these ratios.
4. The basic variable for that row is the leaving basic variable, so replace that vari-

able by the entering basic variable in the basic variable column of the next simplex
tableau.

Put a box around this row and call it the pivot row. Also call the number that is in both
boxes the pivot number.

For the Example: The calculations for the minimum ratio test are shown to the right
of Table 4.4. Thus, row 2 is the pivot row (see the box around this row in the first sim-
plex tableau of Table 4.5), and x4 is the leaving basic variable. In the next simplex tableau
(see the bottom of Table 4.5), x2 replaces x4 as the basic variable for row 2.

Step 3: Solve for the new BF solution by using elementary row operations (multi-
ply or divide a row by a nonzero constant; add or subtract a multiple of one row to an-
other row) to construct a new simplex tableau in proper form from Gaussian elimination
below the current one, and then return to the optimality test. The specific elementary row
operations that need to be performed are listed below.

1. Divide the pivot row by the pivot number. Use this new pivot row in steps 2 and 3.
2. For each other row (including row 0) that has a negative coefficient in the pivot column,

add to this row the product of the absolute value of this coefficient and the new pivot row.
3. For each other row that has a positive coefficient in the pivot column, subtract from

this row the product of this coefficient and the new pivot row.

4.4 THE SIMPLEX METHOD IN TABULAR FORM 109

■ TABLE 4.4 Applying the minimum ratio test to determine the first leaving basic
variable for the Wyndor Glass Co. problem

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side Ratio

Z (0) 1 �3 �5 0 0 0 0
x3 (1) 0 �1 �0 1 0 0 4

x4 (2) 0 �0 �2 0 1 0 12 � � 6 � minimum

x5 (3) 0 �3 �2 0 0 1 18 � � 9
18
�
2

12
�
2
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■ TABLE 4.6 First two simplex tableaux for the Wyndor Glass Co. problem

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �3 �5 0 �0 0 0
x3 (1) 0 �1 �0 1 �0 0 4

0
x4 (2) 0 �0 �2 0 �1 0 12
x5 (3) 0 �3 �2 0 �0 1 18

Z (0) 1 �3 �0 0 ��
5
2

� 0 30

x3 (1) 0 �1 �0 1 �0 0 4
1

x2 (2) 0 �0 �1 0 ��
1
2

� 0 6

x5 (3) 0 �3 �0 0 �1 1 6

For the Example: Since x2 is replacing x4 as a basic variable, we need to reproduce
the first tableau’s pattern of coefficients in the column of x4 (0, 0, 1, 0) in the second
tableau’s column of x2. To start, divide the pivot row (row 2) by the pivot number (2),
which gives the new row 2 shown in Table 4.5. Next, we add to row 0 the product, 5 times
the new row 2. Then we subtract from row 3 the product, 2 times the new row 2 (or equiv-
alently, subtract from row 3 the old row 2). These calculations yield the new tableau shown
in Table 4.6 for iteration 1. Thus, the new BF solution is (0, 6, 4, 0, 6), with Z � 30. We
next return to the optimality test to check if the new BF solution is optimal. Since the new
row 0 still has a negative coefficient (�3 for x1), the solution is not optimal, and so at
least one more iteration is needed.

Iteration 2 for the Example and the Resulting Optimal Solution

The second iteration starts anew from the second tableau of Table 4.6 to find the next BF
solution. Following the instructions for steps 1 and 2, we find x1 as the entering basic vari-
able and x5 as the leaving basic variable, as shown in Table 4.7.

For step 3, we start by dividing the pivot row (row 3) in Table 4.7 by the pivot num-
ber (3). Next, we add to row 0 the product, 3 times the new row 3. Then we subtract the
new row 3 from row 1.

We now have the set of tableaux shown in Table 4.8. Therefore, the new BF solution
is (2, 6, 2, 0, 0), with Z � 36. Going to the optimality test, we find that this solution is

■ TABLE 4.5 Simplex tableaux for the Wyndor Glass Co. problem after the 
first pivot row is divided by the first pivot number

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �3 �5 0 0 0 0
x3 (1) 0 �1 �0 1 0 0 4

0
x4 (2) 0 �0 �2 0 1 0 12
x5 (3) 0 �3 �2 0 0 1 18

Z (0) 1
x3 (1) 0

1
x2 (2) 0 �0 �1 0 �

1
2

� 0 6
x5 (3) 0
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■ TABLE 4.7 Steps 1 and 2 of iteration 2 for the Wyndor Glass Co. problem

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x4 x5 Side Ratio

Z (0) 1 �3 0 0 ��
5
2

� 0 30

x3 (1) 0 �1 0 1 �0 0 4 �
4
1

� � 4
1

x2 (2) 0 �0 1 0 ��
1
2

� 0 6

x5 (3) 0 �3 0 0 �1 1 6 �
6
3

� � 2 � minimum

■ TABLE 4.8 Complete set of simplex tableaux for the Wyndor Glass Co. problem

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �3 �5 0 �0 �0 0
x3 (1) 0 �1 �0 1 �0 �0 4

0
x4 (2) 0 �0 �2 0 �1 �0 12
x5 (3) 0 �3 �2 0 �0 �1 18

Z (0) 1 �3 �0 0 ��
5
2

� �0 30

x3 (1) 0 �1 �0 1 �0 �0 4
1

x2 (2) 0 �0 �1 0 ��
1
2

� �0 6

x5 (3) 0 �3 �0 0 �1 �1 6

Z (0) 1 �0 �0 0 ��
3
2

� �1 36

x3 (1) 0 �0 �0 1 ��
1
3

� ��
1
3

� 2
2

x2 (2) 0 �0 �1 0 ��
1
2

� �0 6

x1 (3) 0 �1 �0 0 ��
1
3

� ��
1
3

� 2

optimal because none of the coefficients in row 0 is negative, so the algorithm is finished.
Consequently, the optimal solution for the Wyndor Glass Co. problem (before slack vari-
ables are introduced) is x1 � 2, x2 � 6.

Now compare Table 4.8 with the work done in Sec. 4.3 to verify that these two forms
of the simplex method really are equivalent. Then note how the algebraic form is supe-
rior for learning the logic behind the simplex method, but the tabular form organizes the
work being done in a considerably more convenient and compact form. We generally use
the tabular form from now on.

An additional example of applying the simplex method in tabular form is available
to you in the OR Tutor. See the demonstration entitled Simplex Method—Tabular Form.
Another example also is included in the Solved Examples section of the book’s website.
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■ 4.5 TIE BREAKING IN THE SIMPLEX METHOD

You may have noticed in the preceding two sections that we never said what to do if the
various choice rules of the simplex method do not lead to a clear-cut decision, because of
either ties or other similar ambiguities. We discuss these details now.

Tie for the Entering Basic Variable

Step 1 of each iteration chooses the nonbasic variable having the negative coefficient with
the largest absolute value in the current Eq. (0) as the entering basic variable. Now suppose
that two or more nonbasic variables are tied for having the largest negative coefficient (in
absolute terms). For example, this would occur in the first iteration for the Wyndor Glass
Co. problem if its objective function were changed to Z � 3x1� 3x2, so that the initial
Eq. (0) became Z � 3x1 � 3x2 � 0. How should this tie be broken?

The answer is that the selection between these contenders may be made arbitrarily.
The optimal solution will be reached eventually, regardless of the tied variable chosen,
and there is no convenient method for predicting in advance which choice will lead there
sooner. In this example, the simplex method happens to reach the optimal solution (2, 6)
in three iterations with x1 as the initial entering basic variable, versus two iterations if x2

is chosen.

Tie for the Leaving Basic Variable—Degeneracy

Now suppose that two or more basic variables tie for being the leaving basic variable
in step 2 of an iteration. Does it matter which one is chosen? Theoretically it does, and
in a very critical way, because of the following sequence of events that could occur.
First, all the tied basic variables reach zero simultaneously as the entering basic vari-
able is increased. Therefore, the one or ones not chosen to be the leaving basic variable
also will have a value of zero in the new BF solution. (Note that basic variables with a
value of zero are called degenerate, and the same term is applied to the corresponding
BF solution.) Second, if one of these degenerate basic variables retains its value of zero
until it is chosen at a subsequent iteration to be a leaving basic variable, the corre-
sponding entering basic variable also must remain zero (since it cannot be increased
without making the leaving basic variable negative), so the value of Z must remain un-
changed. Third, if Z may remain the same rather than increase at each iteration, the sim-
plex method may then go around in a loop, repeating the same sequence of solutions
periodically rather than eventually increasing Z toward an optimal solution. In fact, ex-
amples have been artificially constructed so that they do become entrapped in just such
a perpetual loop.10

Fortunately, although a perpetual loop is theoretically possible, it has rarely been
known to occur in practical problems. If a loop were to occur, one could always get out
of it by changing the choice of the leaving basic variable. Furthermore, special rules11

have been constructed for breaking ties so that such loops are always avoided. However,
these rules frequently are ignored in actual application, and they will not be repeated here.
For your purposes, just break this kind of tie arbitrarily and proceed without worrying
about the degenerate basic variables that result.

10For further information about cycling around a perpetual loop, see J. A. J. Hall and K. I. M. McKinnon: “The
Simplest Examples Where the Simplex Method Cycles and Conditions Where EXPAND Fails to Prevent Cy-
cling,” Mathematical Programming, Series B, 100(1): 135–150, May 2004.
11See R. Bland: “New Finite Pivoting Rules for the Simplex Method,” Mathematics of Operations Research,
2: 103–107, 1977.
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No Leaving Basic Variable—Unbounded Z

In step 2 of an iteration, there is one other possible outcome that we have not yet dis-
cussed, namely, that no variable qualifies to be the leaving basic variable.12 This 
outcome would occur if the entering basic variable could be increased indefinitely with-
out giving negative values to any of the current basic variables. In tabular form, this
means that every coefficient in the pivot column (excluding row 0) is either negative
or zero.

As illustrated in Table 4.9, this situation arises in the example displayed in 
Fig. 3.6. In this example, the last two functional constraints of the Wyndor Glass Co.
problem have been overlooked and so are not included in the model. Note in Fig. 3.6
how x2 can be increased indefinitely (thereby increasing Z indefinitely) without ever
leaving the feasible region. Then note in Table 4.9 that x2 is the entering basic vari-
able but the only coefficient in the pivot column is zero. Because the minimum ratio
test uses only coefficients that are greater than zero, there is no ratio to provide a leav-
ing basic variable.

The interpretation of a tableau like the one shown in Table 4.9 is that the constraints
do not prevent the value of the objective function Z from increasing indefinitely, so the
simplex method would stop with the message that Z is unbounded. Because even linear
programming has not discovered a way of making infinite profits, the real message for
practical problems is that a mistake has been made! The model probably has been misfor-
mulated, either by omitting relevant constraints or by stating them incorrectly. Alternatively,
a computational mistake may have occurred.

Multiple Optimal Solutions

We mentioned in Sec. 3.2 (under the definition of optimal solution) that a problem can
have more than one optimal solution. This fact was illustrated in Fig. 3.5 by changing the
objective function in the Wyndor Glass Co. problem to Z � 3x1 � 2x2, so that every point
on the line segment between (2, 6) and (4, 3) is optimal. Thus, all optimal solutions are
a weighted average of these two optimal CPF solutions

(x1, x2) � w1(2, 6) � w2(4, 3),

where the weights w1 and w2 are numbers that satisfy the relationships

w1 � w2 � 1 and w1 � 0, w2 � 0.

For example, w1 � �
1
3

� and w2 � �
2
3

� give
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■ TABLE 4.9 Initial simplex tableau for the Wyndor Glass Co. problem 
without the last two functional constraints

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 Side Ratio

Z (0) 1 �3 �5 0 0 With x1 � 0 and x2 increasing,
x3 (1) 0 �1 �0 1 4 None x3 � 4 � 1x1 � 0x2 � 4 � 0.

12Note that the analogous case (no entering basic variable) cannot occur in step 1 of an iteration, because the
optimality test would stop the algorithm first by indicating that an optimal solution had been reached.
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(x1, x2) � �
1
3

�(2, 6) � �
2
3

�(4, 3) � ��
2
3

� � �
8
3

�, �
6
3

� � �
6
3

�� � ��
1
3
0
�, 4�

as one optimal solution.
In general, any weighted average of two or more solutions (vectors) where the

weights are nonnegative and sum to 1 is called a convex combination of these solu-
tions. Thus, every optimal solution in the example is a convex combination of (2, 6)
and (4, 3).

This example is typical of problems with multiple optimal solutions.

As indicated at the end of Sec. 3.2, any linear programming problem with multiple opti-
mal solutions (and a bounded feasible region) has at least two CPF solutions that are op-
timal. Every optimal solution is a convex combination of these optimal CPF solutions.
Consequently, in augmented form, every optimal solution is a convex combination of the
optimal BF solutions.

(Problems 4.5-5 and 4.5-6 guide you through the reasoning behind this conclusion.)
The simplex method automatically stops after one optimal BF solution is found.

However, for many applications of linear programming, there are intangible factors
not incorporated into the model that can be used to make meaningful choices between
alternative optimal solutions. In such cases, these other optimal solutions should be
identified as well. As indicated above, this requires finding all the other optimal BF
solutions, and then every optimal solution is a convex combination of the optimal BF
solutions.

After the simplex method finds one optimal BF solution, you can detect if there are
any others and, if so, find them as follows:

Whenever a problem has more than one optimal BF solution, at least one of the non-
basic variables has a coefficient of zero in the final row 0, so increasing any such vari-
able will not change the value of Z. Therefore, these other optimal BF solutions can
be identified (if desired) by performing additional iterations of the simplex method,
each time choosing a nonbasic variable with a zero coefficient as the entering basic
variable.13

To illustrate, consider again the case just mentioned, where the objective function in
the Wyndor Glass Co. problem is changed to Z � 3x1 � 2x2. The simplex method obtains
the first three tableaux shown in Table 4.10 and stops with an optimal BF solution. How-
ever, because a nonbasic variable (x3) then has a zero coefficient in row 0, we perform
one more iteration in Table 4.10 to identify the other optimal BF solution. Thus, the two
optimal BF solutions are (4, 3, 0, 6, 0) and (2, 6, 2, 0, 0), each yielding Z � 18. Notice
that the last tableau also has a nonbasic variable (x4) with a zero coefficient in row 0. This
situation is inevitable because the extra iteration does not change row 0, so this leaving
basic variable necessarily retains its zero coefficient. Making x4 an entering basic variable
now would only lead back to the third tableau. (Check this.) Therefore, these two are the
only BF solutions that are optimal, and all other optimal solutions are a convex combi-
nation of these two.

(x1, x2, x3, x4, x5) � w1(2, 6, 2, 0, 0) � w2(4, 3, 0, 6, 0),
w1 � w2 � 1, w1 � 0, w2 � 0.

13If such an iteration has no leaving basic variable, this indicates that the feasible region is unbounded and the
entering basic variable can be increased indefinitely without changing the value of Z.
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Thus far we have presented the details of the simplex method under the assumptions that
the problem is in our standard form (maximize Z subject to functional constraints in � form
and nonnegativity constraints on all variables) and that bi � 0 for all i � 1, 2, . . . , m.
In this section we point out how to make the adjustments required for other legitimate
forms of the linear programming model. You will see that all these adjustments can be
made during the initialization, so the rest of the simplex method can then be applied just
as you have learned it already.

The only serious problem introduced by the other forms for functional constraints
(the � or � forms, or having a negative right-hand side) lies in identifying an initial
BF solution. Before, this initial solution was found very conveniently by letting the
slack variables be the initial basic variables, so that each one just equals the nonneg-
ative right-hand side of its equation. Now, something else must be done. The standard
approach that is used for all these cases is the artificial-variable technique. This tech-
nique constructs a more convenient artificial problem by introducing a dummy variable
(called an artificial variable) into each constraint that needs one. This new variable is
introduced just for the purpose of being the initial basic variable for that equation. The
usual nonnegativity constraints are placed on these variables, and the objective func-
tion also is modified to impose an exorbitant penalty on their having values larger than
zero. The iterations of the simplex method then automatically force the artificial vari-
ables to disappear (become zero), one at a time, until they are all gone, after which the
real problem is solved.

4.6 ADAPTING TO OTHER MODEL FORMS 115

■ TABLE 4.10 Complete set of simplex tableaux to obtain all optimal BF solutions
for the Wyndor Glass Co. problem with c2 = 2

Coefficient of:
Basic Right Solution

Iteration Variable Eq. Z x1 x2 x3 x4 x5 Side Optimal?

Z (0) 1 �3 �2 �0 �0 �0 0 No
x3 (1) 0 �1 �0 �1 �0 �0 4

0
x4 (2) 0 �0 �2 �0 �1 �0 12
x5 (3) 0 �3 �2 �0 �0 �1 18

Z (0) 1 �0 �2 �3 �0 �0 12 No
x1 (1) 0 �1 �0 �1 �0 �0 4

1
x4 (2) 0 �0 �2 �0 �1 �0 12
x5 (3) 0 �0 �2 �3 �0 �1 6

Z (0) 1 �0 �0 �0 �0 �1 18 Yes
x1 (1) 0 �1 �0 �1 �0 �0 4

2
x4 (2) 0 �0 �0 �3 �1 �1 6

x2 (3) 0 �0 �1 ��
3
2

� �0 ��
1
2

� 3

Z (0) 1 �0 �0 �0 �0 �1 18 Yes

x1 (1) 0 �1 �0 �0 ��
1
3

� ��
1
3

� 2
Extra

x3 (2) 0 �0 �0 �1 ��
1
3

� ��
1
3

� 2

x2 (3) 0 �0 �1 �0 ��
1
2

� �0 6

■ 4.6 ADAPTING TO OTHER MODEL FORMS
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To illustrate the artificial-variable technique, first we consider the case where the only
nonstandard form in the problem is the presence of one or more equality constraints.

Equality Constraints

Any equality constraint

ai1x1 � ai2x2 � 	 	 	 � ainxn � bi

actually is equivalent to a pair of inequality constraints:

ai1x1 � ai2x2 � 	 	 	 � ainxn � bi

ai1x1 � ai2x2 � 	 	 	 � ainxn � bi.

However, rather than making this substitution and thereby increasing the number of con-
straints, it is more convenient to use the artificial-variable technique. We shall illustrate
this technique with the following example.

Example. Suppose that the Wyndor Glass Co. problem in Sec. 3.1 is modified to require
that Plant 3 be used at full capacity. The only resulting change in the linear programming
model is that the third constraint, 3x1 � 2x2 � 18, instead becomes an equality constraint

3x1 � 2x2 � 18,

so that the complete model becomes the one shown in the upper right-hand corner of
Fig. 4.3. This figure also shows in darker ink the feasible region which now consists of
just the line segment connecting (2, 6) and (4, 3).

After the slack variables still needed for the inequality constraints are introduced, the
system of equations for the augmented form of the problem becomes

(2, 6)

(4, 3)

x2

x1

Maximize Z � 3x1 � 5x2,
subject to x1 � 4

� 12
� 18

2x2
2x23x1 �

x1 �0, x2 �0and

0 2 4 6 8

2

4

6

8

10

■ FIGURE 4.3
When the third functional
constraint becomes an
equality constraint, the
feasible region for the
Wyndor Glass Co. problem
becomes the line segment
between (2, 6) and (4, 3).
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(0) Z � 3x1 � 5x2 � 0.
(1) x1 � x3 � 4.
(2) 2x2 � x4 � 12.
(3) 3x1 � 2x2 � 18.

Unfortunately, these equations do not have an obvious initial BF solution because there
is no longer a slack variable to use as the initial basic variable for Eq. (3). It is necessary
to find an initial BF solution to start the simplex method.

This difficulty can be circumvented in the following way.

Obtaining an Initial BF Solution. The procedure is to construct an artificial prob-
lem that has the same optimal solution as the real problem by making two modifications
of the real problem.

1. Apply the artificial-variable technique by introducing a nonnegative artificial vari-
able (call it xx�5)14 into Eq. (3), just as if it were a slack variable

(3) 3x1 � 2x2 � x�5 � 18.

2. Assign an overwhelming penalty to having xx�5 � 0 by changing the objective function
Z � 3x1 � 5x2 to

Z � 3x1 � 5x2 � Mx�5,

where M symbolically represents a huge positive number. (This method of forcing xx�5

to be xx�5 � 0 in the optimal solution is called the Big M method.)

Now find the optimal solution for the real problem by applying the simplex method to the
artificial problem, starting with the following initial BF solution:

Initial BF Solution
Nonbasic variables: x1 � 0, x2 � 0
Basic variables: x3 � 4, x4 � 12, xx�5 � 18.

Because xx�5 plays the role of the slack variable for the third constraint in the artificial
problem, this constraint is equivalent to 3x1 � 2x2 � 18 ( just as for the original Wyndor
Glass Co. problem in Sec. 3.1). We show below the resulting artificial problem (before
augmenting) next to the real problem.

The Real Problem The Artificial Problem
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Maximize Z � 3x1 � 5x2,

subject to

x1 � 2x2 � 4

3x1 � 2x2 � 12

3x1 � 2x2 � 18

and

x1 � 0, x2 � 0.

Define xx�5 � 18 � 3x1 � 2x2.

Maximize Z � 3x1 � 5x2 � Mxx�5,

subject to

(so 3x1 � 2x2 � x�5 � 4

(so 3x1 � 2x2 � x�5 � 12

(so 3x1 � 2x2 � x�5 � 18

(so 3x1 � 2x2 � x�5 � 18)

and

x1 � 0, x2 � 0, xx�5 � 0.

14We shall always label the artificial variables by putting a bar over them.

Therefore, just as in Sec. 3.1, the feasible region for (x1, x2) for the artificial problem is
the one shown in Fig. 4.4. The only portion of this feasible region that coincides with the
feasible region for the real problem is where x�5 � 0 (so 3x1 � 2x2 � 18).
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Figure 4.4 also shows the order in which the simplex method examines the CPF so-
lutions (or BF solutions after augmenting), where each circled number identifies which
iteration obtained that solution. Note that the simplex method moves counterclockwise here
whereas it moved clockwise for the original Wyndor Glass Co. problem (see Fig. 4.2). The
reason for this difference is the extra term �Mxx�5 in the objective function for the artificial
problem.

Before applying the simplex method and demonstrating that it follows the path shown
in Fig. 4.4, the following preparatory step is needed.

Converting Equation (0) to Proper Form. The system of equations after the arti-
ficial problem is augmented is

(0) Z � 3x1 � 5x2 � Mx�5 � 0
(1) x1 � x3 � 4
(2) 2x2 � x4 � 12
(3) 3x1 � 2x2 � x�5 � 18

where the initial basic variables (x3, x4, x�5) are shown in bold type. However, this system
is not yet in proper form from Gaussian elimination because a basic variable x�5 has a
nonzero coefficient in Eq. (0). Recall that all basic variables must be algebraically elimi-
nated from Eq. (0) before the simplex method can either apply the optimality test or find
the entering basic variable. This elimination is necessary so that the negative of the coef-
ficient of each nonbasic variable will give the rate at which Z would increase if that non-
basic variable were to be increased from 0 while adjusting the values of the basic variables
accordingly.

To algebraically eliminate x�5 from Eq. (0), we need to subtract from Eq. (0) the prod-
uct, M times Eq. (3).

New (0)

Z � 3x1 � 5x2 � Mx�5 � 0
�M(3x1� 2x2 �Mxx�5 � 18)

Z � (3M � 3)x1 � (2M � 5)x2 � �18M.
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(4, 0)

(0, 6)
(2, 6)

(4, 3)

(0, 0)

Feasible
region

x1

x2

Z � 30 � 6M

Z � 36

Z � 27

Z � 12 � 6M

Z � 0 � 18M

3

2

10

Maximize Z � 3x1 � 5x2 � Mx5,
subject to x1 � 4

� 12
� 18

2x2
2x23x1 �

x1 �0, x2 �0,and

Define x5 � 18 � 3x1 � 2x2.

x5 �0

■ FIGURE 4.4
This graph shows the feasible
region and the sequence of
CPF solutions (�, �, �, �)
examined by the simplex
method for the artificial
problem that corresponds to
the real problem of Fig. 4.3.
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Application of the Simplex Method. This new Eq. (0) gives Z in terms of just the
nonbasic variables (x1, x2),

Z � �18M � (3M � 3)x1 � (2M � 5)x2.

Since 3M � 3 � 2M � 5 (remember that M represents a huge number), increasing x1 in-
creases Z at a faster rate than increasing x2 does, so x1 is chosen as the entering basic vari-
able. This leads to the move from (0, 0) to (4, 0) at iteration 1, shown in Fig. 4.4, thereby
increasing Z by 4(3M � 3).

The quantities involving M never appear in the system of equations except for
Eq. (0), so they need to be taken into account only in the optimality test and when an en-
tering basic variable is determined. One way of dealing with these quantities is to assign
some particular (huge) numerical value to M and use the resulting coefficients in Eq. (0)
in the usual way. However, this approach may result in significant rounding errors that in-
validate the optimality test. Therefore, it is better to do what we have just shown, namely,
to express each coefficient in Eq. (0) as a linear function aM � b of the symbolic quan-
tity M by separately recording and updating the current numerical value of (1) the multi-
plicative factor a and (2) the additive term b. Because M is assumed to be so large that b
always is negligible compared with M when a 
 0, the decisions in the optimality test
and the choice of the entering basic variable are made by using just the multiplicative fac-
tors in the usual way, except for breaking ties with the additive factors.

Using this approach on the example yields the simplex tableaux shown in Table 4.11.
Note that the artificial variable x�5 is a basic variable (xx�5 � 0) in the first two tableaux
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■ TABLE 4.11 Complete set of simplex tableaux for the problem shown in Fig. 4.4

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x4 x�5 Side

Z (0) 1 �3M � 3 �2M � 5 �0 0 �0 �18M
x3 (1) 0 1 0 �1 0 �0 4

0
x4 (2) 0 0 2 �0 1 �0 12
x�5 (3) 0 3 2 �0 0 �1 18

Z (0) 1 0 �2M � 5 3M � 3 0 �0 �6M � 12
x1 (1) 0 1 0 �1 0 �0 4

1
x4 (2) 0 0 2 �0 1 �0 12
x�5 (3) 0 0 2 �3 0 �1 6

Z (0) 1 0 0 � 0 M � 27

x1 (1) 0 1 0 �1 0 �0 4
2

x4 (2) 0 0 0 �3 1 �1 6

x2 (3) 0 0 1 � 0 � 3

Z (0) 1 0 0 �0 ��
3
2

� M � 1 36

x1 (1) 0 1 0 �0 � � 2
3

x3 (2) 0 0 0 �1 � � 2

x2 (3) 0 0 1 �0 � �0 6
1
�
2

1
�
3

1
�
3

1
�
3

1
�
3

1
�
2

3
�
2

5
�
2

9
�
2
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120 CHAPTER 4 SOLVING LINEAR PROGRAMMING PROBLEMS: THE SIMPLEX METHOD

and a nonbasic variable (xx�5 � 0) in the last two. Therefore, the first two BF solutions for
this artificial problem are infeasible for the real problem whereas the last two also are BF
solutions for the real problem.

This example involved only one equality constraint. If a linear programming model
has more than one, each is handled in just the same way. (If the right-hand side is nega-
tive, multiply through both sides by �1 first.)

Negative Right-Hand Sides

The technique mentioned in the preceding sentence for dealing with an equality constraint
with a negative right-hand side (namely, multiply through both sides by �1) also works
for any inequality constraint with a negative right-hand side. Multiplying through both
sides of an inequality by �1 also reverses the direction of the inequality; i.e., � changes
to � or vice versa. For example, doing this to the constraint

x1 � x2 � �1 (that is, x1 � x2 � 1)

gives the equivalent constraint

�x1 � x2 � 1 (that is, x2 � 1 � x1)

but now the right-hand side is positive. Having nonnegative right-hand sides for all the
functional constraints enables the simplex method to begin, because (after augmenting)
these right-hand sides become the respective values of the initial basic variables, which
must satisfy nonnegativity constraints.

We next focus on how to augment � constraints, such as �x1 � x2 � 1, with the help
of the artificial-variable technique.

Functional Constraints in ≥ Form

To illustrate how the artificial-variable technique deals with functional constraints in �
form, we will use the model for designing Mary’s radiation therapy, as presented in Sec. 3.4.
For your convenience, this model is repeated below, where we have placed a box around the
constraint of special interest here.

Radiation Therapy Example

Minimize Z � 0.4x1 � 0.5x2,

subject to

0.3x1 � 0.1x2 � 2.7

0.5x1 � 0.5x2 � 6

0.6x1 � 0.4x2 � 6

and

x1 � 0, x2 � 0.

The graphical solution for this example (originally presented in Fig. 3.12) is repeated
here in a slightly different form in Fig. 4.5. The three lines in the figure, along with the
two axes, constitute the five constraint boundaries of the problem. The dots lying at the
intersection of a pair of constraint boundaries are the corner-point solutions. The only two
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5

10

0 5 10 x1

0.6x1 � 0.4x2 � 6

(6, 6)

(7.5, 4.5)

(8, 3)

0.3x1 � 0.1x2 � 2.7
0.5x1 � 0.5x2 � 6

                                        Dots � corner-point solutions
       Dark line segment � feasible region 

Optimal solution � (7.5, 4.5)

15

x2

27

■ FIGURE 4.5
Graphical display of the
radiation therapy example
and its corner-point
solutions.

corner-point feasible solutions are (6, 6) and (7.5, 4.5), and the feasible region is the line
segment connecting these two points. The optimal solution is (x1, x2) � (7.5, 4.5), with 
Z � 5.25.

We soon will show how the simplex method solves this problem by directly solving
the corresponding artificial problem. However, first we must describe how to deal with
the third constraint.

Our approach involves introducing both a surplus variable x5 (defined as x5 �
0.6x1 � 0.4x2 � 6) and an artificial variable x�6, as shown next.

0.6x1 � 0.4x2 � 6
� 0.6x1 � 0.4x2 � x5 � 6 (x5 � 0)
� 0.6x1 � 0.4x2 � x5 � x�6 � 6 (x5 � 0, xx�6 � 0).

Here x5 is called a surplus variable because it subtracts the surplus of the left-hand side
over the right-hand side to convert the inequality constraint to an equivalent equality 
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122 CHAPTER 4 SOLVING LINEAR PROGRAMMING PROBLEMS: THE SIMPLEX METHOD

constraint. Once this conversion is accomplished, the artificial variable is introduced just
as for any equality constraint.

After a slack variable x3 is introduced into the first constraint, an artificial variable
x�4 is introduced into the second constraint, and the Big M method is applied, so the com-
plete artificial problem (in augmented form) is

Minimize Z � 0.4x1 � 0.5x2 � Mxx�4 � Mxx�6,

subject to 0.3x1 � 0.1x2 � x3 � 2.7
0.5x1 � 0.5x2 � x�4 � 6
0.6x1 � 0.4x2 � xxx5 � x�6 � 6

and x1 � 0, x2 � 0, x3 � 0, x�4 � 0, x5 � 0, x�6 � 0.

Note that the coefficients of the artificial variables in the objective function are �M, in-
stead of �M, because we now are minimizing Z. Thus, even though xx�4 � 0 and/or x�6 � 0
is possible for a feasible solution for the artificial problem, the huge unit penalty of �M
prevents this from occurring in an optimal solution.

As usual, introducing artificial variables enlarges the feasible region. Compare below
the original constraints for the real problem with the corresponding constraints on (x1, x2)
for the artificial problem.

Constraints on (x1, x2) Constraints on (x1, x2)
for the Real Problem for the Artificial Problem

0.3x1 � 0.1x2 � 2.7 0.3x1 � 0.1x2 � 2.7
0.5x1 � 0.5x2 � 6 0.5x1 � 0.5x2 � 6 (� holds when xx�4 � 0)
0.6x1 � 0.4x2 � 6 No such constraint (except when xx�6 � 0)

x1 � 0, x2 � 0 x1 � 0, x2 � 0

Introducing the artificial variable xx�4 to play the role of a slack variable in the second con-
straint allows values of (x1, x2) below the 0.5x1 � 0.5x2 � 6 line in Fig. 4.5. Introducing
x5 and xx�6 into the third constraint of the real problem (and moving these variables to the
right-hand side) yields the equation

0.6x1 � 0.4x2 � 6 � x5 � xx�6.

Because both x5 and xx�6 are constrained only to be nonnegative, their difference x5 � xx�6

can be any positive or negative number. Therefore, 0.6x1 � 0.4x2 can have any value,
which has the effect of eliminating the third constraint from the artificial problem and al-
lowing points on either side of the 0.6x1 � 0.4x2 � 6 line in Fig. 4.5. (We keep the third
constraint in the system of equations only because it will become relevant again later, af-
ter the Big M method forces x�6 to be zero.) Consequently, the feasible region for the ar-
tificial problem is the entire polyhedron in Fig. 4.5 whose vertices are (0, 0), (9, 0),
(7.5, 4.5), and (0, 12).

Since the origin now is feasible for the artificial problem, the simplex method starts with
(0, 0) as the initial CPF solution, i.e., with (x1, x2, x3, xx�4, x5, x�6) � (0, 0, 2.7, 6, 0, 6) as the
initial BF solution. (Making the origin feasible as a convenient starting point for the simplex
method is the whole point of creating the artificial problem.) We soon will trace the entire
path followed by the simplex method from the origin to the optimal solution for both the ar-
tificial and real problems. But, first, how does the simplex method handle minimization?

Minimization

One straightforward way of minimizing Z with the simplex method is to exchange the
roles of the positive and negative coefficients in row 0 for both the optimality test and
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step 1 of an iteration. However, rather than changing our instructions for the simplex
method for this case, we present the following simple way of converting any minimiza-
tion problem to an equivalent maximization problem:

Minimizing Z � �
n

j�1
cjxj

is equivalent to

maximizing �Z � �
n

j�1
(�cj)xj;

i.e., the two formulations yield the same optimal solution(s).
The two formulations are equivalent because the smaller Z is, the larger �Z is, so the

solution that gives the smallest value of Z in the entire feasible region must also give the
largest value of �Z in this region.

Therefore, in the radiation therapy example, we make the following change in the
formulation:

� Minimize �Z � �0.4x1 � 0.5x2

� Maximize �Z � �0.4x1 � 0.5x2.

After artificial variables xx�4 and xx�6 are introduced and then the Big M method is applied,
the corresponding conversion is

� Minimize �Z � �0.4x1 � 0.5x2 � Mxx�4 � Mxxx�6

� Maximize �Z � �0.4x1 � 0.5x2 � Mxx�4 � Mxxx�6.

Solving the Radiation Therapy Example

We now are nearly ready to apply the simplex method to the radiation therapy example.
By using the maximization form just obtained, the entire system of equations is now

(0) �Z � 0.4x1 � 0.5x2 � Mx�4 � Mx�6 � 0
(1) 0.3x1 � 0.1x2 � x3 � 2.7
(2) 0.5x1 � 0.5x2 � x�4 � 6
(3) 0.6x1 � 0.4x2 � x5 � x�6 � 6.

The basic variables (x3, x�4, x�6) for the initial BF solution (for this artificial problem) are
shown in bold type.

Note that this system of equations is not yet in proper form from Gaussian elimina-
tion, as required by the simplex method, since the basic variables x�4 and x�6 still need to
be algebraically eliminated from Eq. (0). Because x�4 and x�6 both have a coefficient of M,
Eq. (0) needs to have subtracted from it both M times Eq. (2) and M times Eq. (3). The
calculations for all the coefficients (and the right-hand sides) are summarized below, where
the vectors are the relevant rows of the simplex tableau corresponding to the above sys-
tem of equations.

Row 0:
�M[0.4, 0.5, 0, M, 0, M, 0]
�M[0.5, 0.5, 0, 1, 0, 0, 6]
�M[0.6, 0.4, 0, 0, �1, 1, 6]

New row 0 � [�1.1M � 0.4, �0.9M � 0.5, 0, 0, M, 0, �12M]

The resulting initial simplex tableau, ready to begin the simplex method, is shown at
the top of Table 4.12. Applying the simplex method in just the usual way then yields the
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sequence of simplex tableaux shown in the rest of Table 4.12. For the optimality test and
the selection of the entering basic variable at each iteration, the quantities involving M
are treated just as discussed in connection with Table 4.11. Specifically, whenever M is
present, only its multiplicative factor is used, unless there is a tie, in which case the tie is
broken by using the corresponding additive terms. Just such a tie occurs in the last se-
lection of an entering basic variable (see the next-to-last tableau), where the coefficients
of x3 and x5 in row 0 both have the same multiplicative factor of ��

5
3

�. Comparing the ad-
ditive terms, �

1
6
1
� � �

7
3

� leads to choosing x5 as the entering basic variable.
Note in Table 4.12 the progression of values of the artificial variables x�4 and x�6 and

of Z. We start with large values, x�4 � 6 and x�6 � 6, with Z � 12M (�Z � �12M). The
first iteration greatly reduces these values. The Big M method succeeds in driving x�6 to
zero (as a new nonbasic variable) at the second iteration and then in doing the same to xx�4

at the next iteration. With both x�4 � 0 and x�6 � 0, the basic solution given in the last
tableau is guaranteed to be feasible for the real problem. Since it passes the optimality
test, it also is optimal.

Now see what the Big M method has done graphically in Fig. 4.6. The feasible re-
gion for the artificial problem initially has four CPF solutions—(0, 0), (9, 0), (0, 12), and
(7.5, 4.5)—and then replaces the first three with two new CPF solutions—(8, 3), (6, 6)—
after x�6 decreases to x�6 � 0 so that 0.6x1 � 0.4x2 � 6 becomes an additional constraint.
(Note that the three replaced CPF solutions—(0, 0), (9, 0), and (0, 12)—actually were
corner-point infeasible solutions for the real problem shown in Fig. 4.5.) Starting with the
origin as the convenient initial CPF solution for the artificial problem, we move around
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■ TABLE 4.12 The Big M method for the radiation therapy example

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x�4 x5 x�6 Side

Z (0) �1 �1.1M � 0.4 �0.9M � 0.5 �0.0 �0.0 M �0 �12M1
x3 (1) �0 0.3 0.1 �1.0 �0.0 �0 �0 �2.7

0
x�4 (2) �0 0.5 0.5 �0.0 �1.0 �0 �0 �6.0
x�6 (3) �0 0.6 0.4 �0.0 �0.0 �1 �1 �6.0

Z (0) �1 0.0 ��
1
3
6
0
�M � �

1
3

1
0
� �

1
3
1
�M � �

4
3

� �0.0 M �0 �2.1M � 3.6

x1 (1) �0 1.0 �
1
3

� ��
1
3
0
� �0.0 �0 �0 �9.0

1
x�4 (2) �0 0.0 �

1
3

� ��
5
3

� �1.0 �0 �0 �1.5

x�6 (3) �0 0.0 0.2 �2 �0.0 �1 �1 �0.6

Z (0) �1 0.0 0.0 ��
5
3

�M � �
7
3

� �0.0 ��
5
3

�M � �
1
6
1
� �

8
3

�M � �
1
6
1
� �0.5M � 4.7

x1 (1) �0 1.0 0.0 ��
2
3
0
� �0.0 ��

5
3

� ��
5
3

� �8.0
2

x�4 (2) �0 0.0 0.0 ��
5
3

� �1.0 ��
5
3

� ��
5
3

� �0.5

x2 (3) �0 0.0 1.0 �10.0 �0.0 �5 �5 �3.0

Z (0) �1 0.0 0.0 � 0.5 M � 1.1 �0 M �5.25
x1 (1) �0 1.0 0.0 � 5.0 �1.0 �0 �0 �7.51

3
x5 (2) �0 0.0 0.0 � 1.0 1 0.6 �1 �1 �0.31
x2 (3) �0 0.0 1.0 �5.0 �3.0 �0 �0 �4.51
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the boundary to three other CPF solutions—(9, 0), (8, 3), and (7.5, 4.5). The last of these
is the first one that also is feasible for the real problem. Fortuitously, this first feasible so-
lution also is optimal, so no additional iterations are needed.

For other problems with artificial variables, it may be necessary to perform additional
iterations to reach an optimal solution after the first feasible solution is obtained for the
real problem. (This was the case for the example solved in Table 4.11.) Thus, the Big M
method can be thought of as having two phases. In the first phase, all the artificial vari-
ables are driven to zero (because of the penalty of M per unit for being greater than zero)
in order to reach an initial BF solution for the real problem. In the second phase, all the
artificial variables are kept at zero (because of this same penalty) while the simplex method
generates a sequence of BF solutions for the real problem that leads to an optimal solu-
tion. The two-phase method described next is a streamlined procedure for performing these
two phases directly, without even introducing M explicitly.

The Two-Phase Method

For the radiation therapy example just solved in Table 4.12, recall its real objective 
function

Real problem: Minimize Z � 0.4x1 � 0.5x2.
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x2

(0, 0)
(9, 0) x1

(6, 6)

(7.5, 4.5) optimal

(8, 3)

(0, 12)
Z � 6 � 1.2M

Z � 0 � 12M

Z � 4.7 � 0.5M

Z � 3.6 � 2.1M

Z � 5.25

Z � 5.4

Feasible region for the artificial problem

This dark line segment is the feasible
region for the real problem
(x4 � 0, x6 � 0).

Constraints for the artificial problem:

 0.3x1 � 0.1x2 � 2.7
 0.5x1 � 0.5x2 � 6 (� holds when x4 � 0)
(0.6x1 � 0.4x2 � 6 when x6 � 0)

x1 � 0,  x2 � 0  (x4 � 0,  x6 � 0)

10

2

3

■ FIGURE 4.6
This graph shows the feasible
region and the sequence of
CPF solutions (�, �, �, �)
examined by the simplex
method (with the Big M
method) for the artificial
problem that corresponds to
the real problem of Fig. 4.5.
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However, the Big M method uses the following objective function (or its equivalent in
maximization form) throughout the entire procedure:

Big M method: Minimize Z � 0.4x1 � 0.5x2 � Mx�4 � Mx�6.

Since the first two coefficients are negligible compared to M, the two-phase method is
able to drop M by using the following two objective functions with completely different
definitions of Z in turn.

Two-phase method:

Phase 1: Minimize Z � x�4 � xx�6 (until x�4 � 0, x�6 � 0).
Phase 2: Minimize Z � 0.4x1 � 0.5x2 (with x�4 � 0, x�6 � 0).

The phase 1 objective function is obtained by dividing the Big M method objective func-
tion by M and then dropping the negligible terms. Since phase 1 concludes by obtaining
a BF solution for the real problem (one where x�4 � 0 and x�6 � 0), this solution is then
used as the initial BF solution for applying the simplex method to the real problem (with
its real objective function) in phase 2.

Before solving the example in this way, we summarize the general method.

Summary of the Two-Phase Method. Initialization: Revise the constraints of the
original problem by introducing artificial variables as needed to obtain an obvious initial
BF solution for the artificial problem.

Phase 1: The objective for this phase is to find a BF solution for the real problem.
To do this,

Minimize Z � � artificial variables, subject to revised constraints.

The optimal solution obtained for this problem (with Z � 0) will be a BF solution for the
real problem.

Phase 2: The objective for this phase is to find an optimal solution for the real prob-
lem. Since the artificial variables are not part of the real problem, these variables can now
be dropped (they are all zero now anyway).15 Starting from the BF solution obtained at
the end of phase 1, use the simplex method to solve the real problem.

For the example, the problems to be solved by the simplex method in the respective
phases are summarized below.

Phase 1 Problem (Radiation Therapy Example):

Minimize Z � x�4 � x�6,

subject to

0.3x1 � 0.1x2 � x3 � 2.7
0.5x1 � 0.5x2 � x�4 � 6
0.6x1 � 0.4x2 � xx5 � xx�6 � 6

and

x1 � 0, x2 � 0, x3 � 0, xx�4 � 0, x5 � 0, xx�6 � 0. 

Phase 2 Problem (Radiation Therapy Example):

Minimize Z � 0.4x1 � 0.5x2,

126 CHAPTER 4 SOLVING LINEAR PROGRAMMING PROBLEMS: THE SIMPLEX METHOD

15We are skipping over three other possibilities here: (1) artificial variables � 0 (discussed in the next subsec-
tion), (2) artificial variables that are degenerate basic variables, and (3) retaining the artificial variables as nonbasic
variables in phase 2 (and not allowing them to become basic) as an aid to subsequent postoptimality analysis.
Your IOR Tutorial allows you to explore these possibilities.
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subject to

0.3x1 � 0.1x2 � x3 � 2.7
0.5x1 � 0.5x2 � 6
0.6x1 � 0.4x2 � x5 � 6

and

x1 � 0, x2 � 0, x3 � 0, x5 � 0.

The only differences between these two problems are in the objective function and in the
inclusion (phase 1) or exclusion (phase 2) of the artificial variables x�4 and x�6. Without
the artificial variables, the phase 2 problem does not have an obvious initial BF solution.
The sole purpose of solving the phase 1 problem is to obtain a BF solution with xx�4 � 0
and x�6 � 0 so that this solution (without the artificial variables) can be used as the initial
BF solution for phase 2.

Table 4.13 shows the result of applying the simplex method to this phase 1 problem.
[Row 0 in the initial tableau is obtained by converting Minimize Z � x�4 � xx�6 to Maxi-
mize (�Z) � �x�4 � x�6 and then using elementary row operations to eliminate the basic
variables x�4 and x�6 from �Z � x�4 � x�6 � 0.] In the next-to-last tableau, there is a tie for
the entering basic variable between x3 and x5, which is broken arbitrarily in favor of x3.
The solution obtained at the end of phase 1, then, is (x1, x2, x3, x�4, x5, x�6) � (6, 6, 0.3, 0,
0, 0) or, after x�4 and x�6 are dropped, (x1, x2, x3, x5) � (6, 6, 0.3, 0).

■ TABLE 4.13 Phase 1 of the two-phase method for the radiation therapy example

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x�4 x5 x�6 Side

Z (0) �1 �1.1 �0.9 �00 �0 �1 �0 �12
x3 (1) �0 �0.3 �0.1 �01 �0 �0 �0 �2.7

0
x�4 (2) �0 �0.5 �0.5 �00 �1 �0 �0 �6.0
x�6 (3) �0 �0.6 �0.4 �00 �0 �1 �1 �6.0

Z (0) �1 �0.0 ��
1
3

6
0
� ��

1
3
1
� �0 �1 �0 �2.1

x1 (1) �0 �1.0 ��
1
3

� ��
1
3
0
� �0 �0 �0 �9.0

1
x�4 (2) �0 �0.0 ��

1
3

� ��
5
3

� �1 �0 �0 �1.5

x�6 (3) �0 �0.0 �0.2 �2 �0 �1 �1 �0.6

Z (0) �1 �0.0 �0.0 ��
5
3

� �0 ��
5
3

� ��
8
3

� �0.5

x1 (1) �0 �1.0 �0.0 ��
2
3
0
� �0 ��

5
3

� ��
5
3

� �8.0
2

x�4 (2) �0 �0.0 �0.0 ��
5
3

� �1 ��
5
3

� ��
5
3

� �0.5

x2 (3) �0 �0.0 �1.0 �10 �0 �5 �5 �3.0

Z (0) �1 �0.0 �0.0 �00 �1 �0 �1 �0.0
x1 (1) �0 �1.0 �0.0 �00 �4 �5 �5 �6.0

3
x3 (2) �0 �0.0 �0.0 �01 ��

3
5

� �1 �1 �0.3

x2 (3) �0 �0.0 �1.0 �00 �6 �5 �5 �6.0
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As claimed in the summary, this solution from phase 1 is indeed a BF solution for the
real problem (the phase 2 problem) because it is the solution (after you set x5 � 0) to the
system of equations consisting of the three functional constraints for the phase 2 problem.
In fact, after deleting the x�4 and xx�6 columns as well as row 0 for each iteration, Table 4.13
shows one way of using Gaussian elimination to solve this system of equations by reduc-
ing the system to the form displayed in the final tableau.

Table 4.14 shows the preparations for beginning phase 2 after phase 1 is completed.
Starting from the final tableau in Table 4.13, we drop the artificial variables (x�4 and xx�6),
substitute the phase 2 objective function (�Z � �0.4x1 � 0.5x2 in maximization form)
into row 0, and then restore the proper form from Gaussian elimination (by algebraically
eliminating the basic variables x1 and x2 from row 0). Thus, row 0 in the last tableau is
obtained by performing the following elementary row operations in the next-to-last
tableau: from row 0 subtract both the product, 0.4 times row 1, and the product, 0.5 times
row 3. Except for the deletion of the two columns, note that rows 1 to 3 never change.
The only adjustments occur in row 0 in order to replace the phase 1 objective function by
the phase 2 objective function.

The last tableau in Table 4.14 is the initial tableau for applying the simplex method
to the phase 2 problem, as shown at the top of Table 4.15. Just one iteration then leads to
the optimal solution shown in the second tableau: (x1, x2, x3, x5) � (7.5, 4.5, 0, 0.3). This
solution is the desired optimal solution for the real problem of interest rather than the ar-
tificial problem constructed for phase 1.

Now we see what the two-phase method has done graphically in Fig. 4.7. Starting at
the origin, phase 1 examines a total of four CPF solutions for the artificial problem. The
first three actually were corner-point infeasible solutions for the real problem shown in
Fig. 4.5. The fourth CPF solution, at (6, 6), is the first one that also is feasible for the real
problem, so it becomes the initial CPF solution for phase 2. One iteration in phase 2 leads
to the optimal CPF solution at (7.5, 4.5).
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■ TABLE 4.14 Preparing to begin phase 2 for the radiation therapy example

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x�4 x5 x�6 Side

Z (0) �1 00. 0.0 0 �1 �0.0 �1 �0.0

Final Phase 1 x1 (1) �0 10. 0.0 0 �4 �5.0 �5 �6.0

tableau x3 (2) �0 00. 0.0 1 ��
3
5

� �1.0 �1 �0.3

x2 (3) �0 00. 1.0 0 �6 �5.0 �5 �6.0

Z (0) �1 00. 0.0 0 �0.0 �0.0
x1 (1) �0 10. 0.0 0 �5.0 �6.0Drop x�4 and xx�6 x3 (2) �0 00. 0.0 1 �1.0 �0.3
x2 (3) �0 00. 1.0 0 �5.0 �6.0

Z (0) �1 0.4 0.5 0 �0.0 �0.0
Substitute phase 2 x1 (1) �0 10. 0.0 0 �5.0 �6.0
objective function x3 (2) �0 00. 0.0 1 �1.0 �0.3

x2 (3) �0 00. 1.0 0 �5.0 �6.0

Z (0) �1 00. 0.0 0 �0.5 �5.4
Restore proper form x1 (1) �0 10. 0.0 0 �5.0 �6.0
from Gaussian elimination x3 (2) �0 00. 0.0 1 �1.0 �0.3

x2 (3) �0 00. 1.0 0 �5.0 �6.0
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If the tie for the entering basic variable in the next-to-last tableau of Table 4.13 had
been broken in the other way, then phase 1 would have gone directly from (8, 3) to (7.5,
4.5). After (7.5, 4.5) was used to set up the initial simplex tableau for phase 2, the optimality
test would have revealed that this solution was optimal, so no iterations would be done.

It is interesting to compare the Big M and two-phase methods. Begin with their ob-
jective functions.
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■ TABLE 4.15 Phase 2 of the two-phase method for the radiation therapy example

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x5 Side

Z (0) �1 0 0 �0.0 �0.5 �5.40
x1 (1) �0 1 0 �0.0 �5.0 �6.00

0
x3 (2) �0 0 0 �1.0 �1.0 �0.30
x2 (3) �0 0 1 �0.0 �5.0 �6.00

Z (0) �1 0 0 �0.5 �0.0 �5.25
x1 (1) �0 1 0 �5.0 �0.0 �7.50

1
x5 (2) �0 0 0 �1.0 �1.0 �0.30
x2 (3) �0 0 1 �5.0 �0.0 �4.50

x2

(0, 0)
(9, 0) x1

(6, 6)

(7.5, 4.5) optimal

(8, 3)

(0, 12)

Feasible region
for the artificial
problem (phase 1)

This dark line segment is the
feasible region for the real problem
(phase 2).

10

2

3
0

1

■ FIGURE 4.7
This graph shows the
sequence of CPF solutions for
phase 1 (�, �, �, �) and
then for phase 2 ( , )
when the two-phase method
is applied to the radiation
therapy example.
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Big M Method:

Minimize Z � 0.4x1 � 0.5x2 � Mx�4 � Mxx�6.

Two-Phase Method:

Phase 1: Minimize Z � xx�4 � x�6.
Phase 2: Minimize Z � 0.4x1 � 0.5x2.

Because the Mx�4 and Mx�6 terms dominate the 0.4x1 and 0.5x2 terms in the objective func-
tion for the Big M method, this objective function is essentially equivalent to the phase 1
objective function as long as x�4 and/or xx�6 is greater than zero. Then, when both x�4 � 0
and x�6 � 0, the objective function for the Big M method becomes completely equivalent
to the phase 2 objective function.

Because of these virtual equivalencies in objective functions, the Big M and two-
phase methods generally have the same sequence of BF solutions. The one possible
exception occurs when there is a tie for the entering basic variable in phase 1 of the
two-phase method, as happened in the third tableau of Table 4.13. Notice that the first
three tableaux of Tables 4.12 and 4.13 are almost identical, with the only difference
being that the multiplicative factors of M in Table 4.12 become the sole quantities in
the corresponding spots in Table 4.13. Consequently, the additive terms that broke the
tie for the entering basic variable in the third tableau of Table 4.12 were not present
to break this same tie in Table 4.13. The result for this example was an extra iteration
for the two-phase method. Generally, however, the advantage of having the additive
factors is minimal.

The two-phase method streamlines the Big M method by using only the multiplica-
tive factors in phase 1 and by dropping the artificial variables in phase 2. (The Big M
method could combine the multiplicative and additive factors by assigning an actual huge
number to M, but this might create numerical instability problems.) For these reasons, the
two-phase method is commonly used in computer codes.

The Solved Examples section on the book’s website provides another example of
applying both the Big M method and the two-phase method to the same problem.

No Feasible Solutions

So far in this section we have been concerned primarily with the fundamental problem
of identifying an initial BF solution when an obvious one is not available. You have
seen how the artificial-variable technique can be used to construct an artificial problem
and obtain an initial BF solution for this artificial problem instead. Use of either the
Big M method or the two-phase method then enables the simplex method to begin its
pilgrimage toward the BF solutions, and ultimately toward the optimal solution, for the
real problem.

However, you should be wary of a certain pitfall with this approach. There may be
no obvious choice for the initial BF solution for the very good reason that there are no
feasible solutions at all! Nevertheless, by constructing an artificial feasible solution, there
is nothing to prevent the simplex method from proceeding as usual and ultimately re-
porting a supposedly optimal solution.

Fortunately, the artificial-variable technique provides the following signpost to indi-
cate when this has happened:

If the original problem has no feasible solutions, then either the Big M method or phase 1
of the two-phase method yields a final solution that has at least one artificial variable greater
than zero. Otherwise, they all equal zero.
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To illustrate, let us change the first constraint in the radiation therapy example (see
Fig. 4.5) as follows:

0.3x1 � 0.1x2 � 2.7 � 0.3x1 � 0.1x2 � 1.8,

so that the problem no longer has any feasible solutions. Applying the Big M method just
as before (see Table 4.12) yields the tableaux shown in Table 4.16. (Phase 1 of the two-
phase method yields the same tableaux except that each expression involving M is re-
placed by just the multiplicative factor.) Hence, the Big M method normally would be
indicating that the optimal solution is (3, 9, 0, 0, 0, 0.6). However, since an artificial vari-
able x�6 � 0.6 � 0, the real message here is that the problem has no feasible solutions.16

Variables Allowed to Be Negative

In most practical problems, negative values for the decision variables would have no phys-
ical meaning, so it is necessary to include nonnegativity constraints in the formulations
of their linear programming models. However, this is not always the case. To illustrate,
suppose that the Wyndor Glass Co. problem is changed so that product 1 already is in
production, and the first decision variable x1 represents the increase in its production rate.
Therefore, a negative value of x1 would indicate that product 1 is to be cut back by that
amount. Such reductions might be desirable to allow a larger production rate for the new,
more profitable product 2, so negative values should be allowed for x1 in the model.

Since the procedure for determining the leaving basic variable requires that all the
variables have nonnegativity constraints, any problem containing variables allowed to be
negative must be converted to an equivalent problem involving only nonnegative vari-
ables before the simplex method is applied. Fortunately, this conversion can be done. The
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■ TABLE 4.16 The Big M method for the revision of the radiation therapy example that has no feasible solutions

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x�4 x5 x�6 Side

Z (0) �1 �1.1M � 0.4 �0.9M � 0.5 �0 �0.0 M 0 �12M
x3 (1) �0 0.3 0.1 �1 �0.0 �0 0 1.8

0
x�4 (2) �0 0.5 0.5 �0 �1.0 �0 0 6.0
x�6 (3) �0 0.6 0.4 �0 �0.0 �1 1 6.0

Z (0) �1 0.0 ��
1
3
6
0
�M � �

1
3

1
0
� �

1
3
1
�M � �

4
3

� �0.0 M 0 �5.4M � 2.4

x1 (1) �0 1.0 �
1
3

� ��
1
3
0
� �0.0 �0 0 6.0

1
x�4 (2) �0 0.0 �

1
3

� ��
5
3

� �1.0 �0 0 3.0

x�6 (3) �0 0.0 0.2 �2 �0.0 �1 1 2.4

Z (0) �1 0.0 0.0 M � 0.5 1.6M � 1.1 M 0 �0.6M � 5.7
x1 (1) �0 1.0 0.0 �5 �1.0 �0 0 3.0

2
x2 (2) �0 0.0 1.0 �5 �3.0 �0 0 9.0
x�6 (3) �0 0.0 0.0 �1 �0.6 �1 1 0.6

16Techniques have been developed (and incorporated into linear programming software) to analyze what causes
a large linear programming problem to have no feasible solutions so that any errors in the formulation can be
corrected. For example, see J. W. Chinneck: Feasibility and Infeasibility in Optimization: Algorithms and Com-
putational Methods, Springer Science + Business Media, New York, 2008.
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modification required for each variable depends upon whether it has a (negative) lower
bound on the values allowed. Each of these two cases is now discussed.

Variables with a Bound on the Negative Values Allowed. Consider any decision
variable xj that is allowed to have negative values which satisfy a constraint of the form

xj � Lj,

where Lj is some negative constant. This constraint can be converted to a nonnegativity
constraint by making the change of variables

xj � xj � Lj, so xj � 0.

Thus, xj � Lj would be substituted for xj throughout the model, so that the redefined de-
cision variable xj cannot be negative. (This same technique can be used when Lj is posi-
tive to convert a functional constraint xj � Lj to a nonnegativity constraint xj � 0.)

To illustrate, suppose that the current production rate for product 1 in the Wyndor
Glass Co. problem is 10. With the definition of x1 just given, the complete model at this
point is the same as that given in Sec. 3.1 except that the nonnegativity constraint x1 � 0
is replaced by

x1 � �10.

To obtain the equivalent model needed for the simplex method, this decision variable
would be redefined as the total production rate of product 1

x1 � x1 � 10,

which yields the changes in the objective function and constraints as shown:

� �

Variables with No Bound on the Negative Values Allowed. In the case where
xj does not have a lower-bound constraint in the model formulated, another approach is
required: xj is replaced throughout the model by the difference of two new nonnegative
variables

xj � xj
� � xj

�, where xj
� � 0, xj

� � 0.

Since xj
� and xj

� can have any nonnegative values, this difference xj
� � xj

� can have any
value (positive or negative), so it is a legitimate substitute for xj in the model. But after
such substitutions, the simplex method can proceed with just nonnegative variables.

The new variables xj
� and xj

� have a simple interpretation. As explained in the next
paragraph, each BF solution for the new form of the model necessarily has the property
that either xj

� � 0 or xj
� � 0 (or both). Therefore, at the optimal solution obtained by the

simplex method (a BF solution),

xj
� � �

xj
� � �

so that xj
� represents the positive part of the decision variable xj and xj

� its negative part
(as suggested by the superscripts).

if xj � 0,
otherwise;

⏐xj⏐
0

if xj � 0,
otherwise;

xj

0

Z � �30 � 3x1 � 5x2

2x1 � 2x2 � 14
3x1 � 2x2 � 12
3x1 � 2x2 � 48
x1 � 0, x2 � 0

Z � 3(x1 � 10) � 5x2

3(x1 � 10) � 2x2 � 4
3(x1 � 10) � 2x2 � 12
3(x1 � 10) � 2x2 � 18
x1 � 10 � �10, x2 � 0

Z � 3x1 � 5x2

3x1 � 2x2 � 4
3x1 � 2x2 � 12
3x1 � 2x2 � 18
x1 � �10, x2 � 0
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For example, if xj � 10, the above expressions give xj
� � 10 and xj

� � 0. This same
value of xj � xj

� � xj
� � 10 also would occur with larger values of xj

� and xj
� such that

xj
� � xj

� � 10. Plotting these values of xj
� and xj

� on a two-dimensional graph gives a
line with an endpoint at xj

� � 10, xj
� � 0 to avoid violating the nonnegativity constraints.

This endpoint is the only corner-point solution on the line. Therefore, only this endpoint
can be part of an overall CPF solution or BF solution involving all the variables of the
model. This illustrates why each BF solution necessarily has either xj

� � 0 or xj
� � 0 

(or both).
To illustrate the use of the xj

� and xj
�, let us return to the example introduced previ-

ously in this chapter where x1 is redefined as the increase over the current production rate
of 10 for product 1 in the Wyndor Glass Co. problem.

However, now suppose that the x1 � �10 constraint was not included in the original
model because it clearly would not change the optimal solution. (In some problems, cer-
tain variables do not need explicit lower-bound constraints because the functional con-
straints already prevent lower values.) Therefore, before the simplex method is applied,
x1 would be replaced by the difference

x1 � x1
� � x1

�, where x1
� � 0, x1

� � 0,

as shown:

�

From a computational viewpoint, this approach has the disadvantage that the new
equivalent model to be used has more variables than the original model. In fact, if all the
original variables lack lower-bound constraints, the new model will have twice as many
variables. Fortunately, the approach can be modified slightly so that the number of vari-
ables is increased by only one, regardless of how many original variables need to be re-
placed. This modification is done by replacing each such variable xj by

xj � xj � x�, where xj � 0, x� � 0,

instead, where x� is the same variable for all relevant j. The interpretation of x� in this
case is that �x� is the current value of the largest (in absolute terms) negative original
variable, so that xj is the amount by which xj exceeds this value. Thus, the simplex method
now can make some of the xj variables larger than zero even when x� � 0.

Maximize Z � 3x1
� � 3x1

� � 5x2,
subject to Z � 3x1

� � 3x1
� � 5x2 � 4

2x2 � 12
3x1

� � 3x1
� � 2x2 � 18

x1
� � 0, x1

� � 0, x2 � 0

Maximize Z � 3x1 � 5x2,
subject to Z � 3x1 � 5x2 � 4

2x2 � 12
3x1 � 2x2 � 18

x2 � 0 (only)
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■ 4.7 POSTOPTIMALITY ANALYSIS

We stressed in Secs. 2.3, 2.4, and 2.5 that postoptimality analysis—the analysis done 
after an optimal solution is obtained for the initial version of the model—constitutes a
very major and very important part of most operations research studies. The fact that
postoptimality analysis is very important is particularly true for typical linear program-
ming applications. In this section, we focus on the role of the simplex method in per-
forming this analysis.

Table 4.17 summarizes the typical steps in postoptimality analysis for linear pro-
gramming studies. The rightmost column identifies some algorithmic techniques that
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involve the simplex method. These techniques are introduced briefly here with the tech-
nical details deferred to later chapters.

Since you may not have the opportunity to cover these particular chapters, this sec-
tion has two objectives. One is to make sure that you have at least an introduction to these
important techniques; the other is to provide some helpful background if you do have the
opportunity to delve further into these topics later.

Reoptimization

As discussed in Sec. 3.6, linear programming models that arise in practice commonly are very
large, with hundreds, thousands, or even millions of functional constraints and decision vari-
ables. In such cases, many variations of the basic model may be of interest for considering
different scenarios. Therefore, after having found an optimal solution for one version of a lin-
ear programming model, we frequently must solve again (often many times) for the solution
of a slightly different version of the model. We nearly always have to solve again several times
during the model debugging stage (described in Secs. 2.3 and 2.4), and we usually have to do
so a large number of times during the later stages of postoptimality analysis as well.

One approach is simply to reapply the simplex method from scratch for each new ver-
sion of the model, even though each run may require hundreds or even thousands of itera-
tions for large problems. However, a much more efficient approach is to reoptimize. Reop-
timization involves deducing how changes in the model get carried along to the final simplex
tableau (as described in Secs. 5.3 and 7.1). This revised tableau and the optimal solution for
the prior model are then used as the initial tableau and the initial basic solution for solving
the new model. If this solution is feasible for the new model, then the simplex method is
applied in the usual way, starting from this initial BF solution. If the solution is not feasi-
ble, a related algorithm called the dual simplex method (described in Sec. 8.1) probably can
be applied to find the new optimal solution,17 starting from this initial basic solution.

The big advantage of this reoptimization technique over re-solving from scratch is
that an optimal solution for the revised model probably is going to be much closer to the
prior optimal solution than to an initial BF solution constructed in the usual way for the
simplex method. Therefore, assuming that the model revisions were modest, only a few
iterations should be required to reoptimize instead of the hundreds or thousands that may
be required when you start from scratch. In fact, the optimal solutions for the prior and
revised models are frequently the same, in which case the reoptimization technique requires
only one application of the optimality test and no iterations.
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17The one requirement for using the dual simplex method here is that the optimality test is still passed when ap-
plied to row 0 of the revised final tableau. If not, then still another algorithm called the primal-dual method can
be used instead.

■ TABLE 4.17 Postoptimality analysis for linear programming

Task Purpose Technique

Model debugging Find errors and weaknesses in model Reoptimization
Model validation Demonstrate validity of final model See Sec. 2.4
Final managerial Make appropriate division of organizational Shadow prices
decisions on resource resources between activities under study
allocations (the bi values) and other important activities

Evaluate estimates of Determine crucial estimates that may affect Sensitivity analysis
model parameters optimal solution for further study

Evaluate trade-offs Determine best trade-off Parametric linear
between model programming
parameters
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Shadow Prices

Recall that linear programming problems often can be interpreted as allocating resources
to activities. In particular, when the functional constraints are in � form, we interpreted
the bi (the right-hand sides) as the amounts of the respective resources being made 
available for the activities under consideration. In many cases, there may be some lat-
itude in the amounts that will be made available. If so, the bi values used in the initial
(validated) model actually may represent management’s tentative initial decision on how
much of the organization’s resources will be provided to the activities considered in the
model instead of to other important activities under the purview of management. From
this broader perspective, some of the bi values can be increased in a revised model, but
only if a sufficiently strong case can be made to management that this revision would
be beneficial.

Consequently, information on the economic contribution of the resources to the mea-
sure of performance (Z ) for the current study often would be extremely useful. The sim-
plex method provides this information in the form of shadow prices for the respective
resources.

The shadow price for resource i (denoted by yi*) measures the marginal value of this re-
source, i.e., the rate at which Z could be increased by (slightly) increasing the amount of
this resource (bi) being made available.18,19 The simplex method identifies this shadow
price by yi* � coefficient of the ith slack variable in row 0 of the final simplex tableau.

To illustrate, for the Wyndor Glass Co. problem,

Resource i � production capacity of Plant i (i � 1, 2, 3) being made available to the
two new products under consideration,

bi � hours of production time per week being made available in Plant i for
these new products.

Providing a substantial amount of production time for the new products would require 
adjusting the amount of production time still available for the current products, so choos-
ing the bi value is a difficult managerial decision. The tentative initial decision has been

b1 � 4, b2 � 12, b3 � 18,

as reflected in the basic model considered in Sec. 3.1 and in this chapter. However, man-
agement now wishes to evaluate the effect of changing any of the bi values.

The shadow prices for these three resources provide just the information that man-
agement needs. The final tableau in Table 4.8 yields

y1* � 0 � shadow price for resource 1,

y2* � � shadow price for resource 2,

y3* � 1 � shadow price for resource 3.

With just two decision variables, these numbers can be verified by checking graphically
that individually increasing any bi by 1 indeed would increase the optimal value of Z by
yi*. For example, Fig. 4.8 demonstrates this increase for resource 2 by reapplying the

3
�
2
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18The increase in bi must be sufficiently small that the current set of basic variables remains optimal since this
rate (marginal value) changes if the set of basic variables changes.
19In the case of a functional constraint in � or � form, its shadow price is again defined as the rate at which Z
could be increased by (slightly) increasing the value of bi, although the interpretation of bi now would normally
be something other than the amount of a resource being made available.
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graphical method presented in Sec. 3.1. The optimal solution, (2, 6) with Z � 36, changes
to (�

5
3

�, �
1
2
3
�) with Z � 37�

1
2

� when b2 is increased by 1 (from 12 to 13), so that

y2* � �Z � 37�
1
2

� � 36 � �
3
2

�.

Since Z is expressed in thousands of dollars of profit per week, y2* � �
3
2

� indicates that
adding 1 more hour of production time per week in Plant 2 for these two new products
would increase their total profit by $1,500 per week. Should this actually be done? It de-
pends on the marginal profitability of other products currently using this production time.
If there is a current product that contributes less than $1,500 of weekly profit per hour of
weekly production time in Plant 2, then some shift of production time to the new prod-
ucts would be worthwhile.

We shall continue this story in Sec. 7.2, where the Wyndor OR team uses shadow
prices as part of its sensitivity analysis of the model.

Figure 4.8 demonstrates that y2* � �
3
2

� is the rate at which Z could be increased by
increasing b2 slightly. However, it also demonstrates the common phenomenon that this
interpretation holds only for a small increase in b2. Once b2 is increased beyond 18, the
optimal solution stays at (0, 9) with no further increase in Z. (At that point, the set of basic
variables in the optimal solution has changed, so a new final simplex tableau will be
obtained with new shadow prices, including y2* � 0.)

Now note in Fig. 4.8 why y1* � 0. Because the constraint on resource 1, x1 � 4, is
not binding on the optimal solution (2, 6), there is a surplus of this resource. Therefore,
increasing b1 beyond 4 cannot yield a new optimal solution with a larger value of Z.

By contrast, the constraints on resources 2 and 3, 2x2 � 12 and 3x1 � 2x2 � 18, are
binding constraints (constraints that hold with equality at the optimal solution). Because
the limited supply of these resources (b2 � 12, b3 � 18) binds Z from being increased fur-
ther, they have positive shadow prices. Economists refer to such resources as scarce goods,
whereas resources available in surplus (such as resource 1) are free goods (resources with
a zero shadow price).
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■ FIGURE 4.8
This graph shows that the
shadow price is y2* � �

3
2

� for
resource 2 for the Wyndor
Glass Co. problem. The two
dots are the optimal
solutions for b2 � 12 or 
b2 � 13, and plugging these
solutions into the objective
function reveals that
increasing b2 by 1 increases
Z by y2* � �

3
2

�.
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The kind of information provided by shadow prices clearly is valuable to management
when it considers reallocations of resources within the organization. It also is very helpful
when an increase in bi can be achieved only by going outside the organization to purchase
more of the resource in the marketplace. For example, suppose that Z represents profit and
that the unit profits of the activities (the cj values) include the costs (at regular prices)
of all the resources consumed. Then a positive shadow price of yi* for resource i means
that the total profit Z can be increased by yi* by purchasing 1 more unit of this resource
at its regular price. Alternatively, if a premium price must be paid for the resource in the
marketplace, then yi* represents the maximum premium (excess over the regular price) that
would be worth paying.20

The theoretical foundation for shadow prices is provided by the duality theory de-
scribed in Chap. 6.

Sensitivity Analysis

When discussing the certainty assumption for linear programming at the end of Sec. 3.3,
we pointed out that the values used for the model parameters (the aij, bi, and cj identified
in Table 3.3) generally are just estimates of quantities whose true values will not become
known until the linear programming study is implemented at some time in the future. A
main purpose of sensitivity analysis is to identify the sensitive parameters (i.e., those
that cannot be changed without changing the optimal solution). The sensitive parameters
are the parameters that need to be estimated with special care to minimize the risk of ob-
taining an erroneous optimal solution. They also will need to be monitored particularly
closely as the study is implemented. If it is discovered that the true value of a sensitive
parameter differs from its estimated value in the model, this immediately signals a need
to change the solution.

How are the sensitive parameters identified? In the case of the bi, you have just seen
that this information is given by the shadow prices provided by the simplex method. In
particular, if yi* � 0, then the optimal solution changes if bi is changed, so bi is a sensitive
parameter. However, yi* � 0 implies that the optimal solution is not sensitive to at least
small changes in bi. Consequently, if the value used for bi is an estimate of the amount of
the resource that will be available (rather than a managerial decision), then the bi values
that need to be monitored more closely are those with positive shadow prices—especially
those with large shadow prices.

When there are just two variables, the sensitivity of the various parameters can be
analyzed graphically. For example, in Fig. 4.9, c1 � 3 can be changed to any other value
from 0 to 7.5 without the optimal solution changing from (2, 6). (The reason is that any
value of c1 within this range keeps the slope of Z � c1x1 � 5x2 between the slopes of the
lines 2x2 � 12 and 3x1 � 2x2 � 18.) Similarly, if c2 � 5 is the only parameter changed,
it can have any value greater than 2 without affecting the optimal solution. Hence, nei-
ther c1 nor c2 is a sensitive parameter. (The procedure called Graphical Method and Sen-
sitivity Analysis in IOR Tutorial enables you to perform this kind of graphical analysis
very efficiently.)

The easiest way to analyze the sensitivity of each of the aij parameters graphically is
to check whether the corresponding constraint is binding at the optimal solution. Because
x1 � 4 is not a binding constraint, any sufficiently small change in its coefficients 
(a11 � 1, a12 � 0) is not going to change the optimal solution, so these are not sensitive
parameters. On the other hand, both 2x2 � 12 and 3x1 � 2x2 � 18 are binding constraints,
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20If the unit profits do not include the costs of the resources consumed, then yi* represents the maximum total
unit price that would be worth paying to increase bi.
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so changing any one of their coefficients (a21 � 0, a22 � 2, a31 � 3, a32 � 2) is going to
change the optimal solution, and therefore these are sensitive parameters.

Typically, greater attention is given to performing sensitivity analysis on the bi and
cj parameters than on the aij parameters. On real problems with hundreds or thousands of
constraints and variables, the effect of changing one aij value is usually negligible, but
changing one bi or cj value can have real impact. Furthermore, in many cases, the aij

values are determined by the technology being used (the aij values are sometimes called
technological coefficients), so there may be relatively little (or no) uncertainty about their
final values. This is fortunate, because there are far more aij parameters than bi and cj pa-
rameters for large problems.

For problems with more than two (or possibly three) decision variables, you cannot
analyze the sensitivity of the parameters graphically as was just done for the Wyndor Glass
Co. problem. However, you can extract the same kind of information from the simplex
method. Getting this information requires using the fundamental insight described in
Sec. 5.3 to deduce the changes that get carried along to the final simplex tableau as a re-
sult of changing the value of a parameter in the original model. The rest of the procedure
is described and illustrated in Secs. 7.1 and 7.2.

Using Excel to Generate Sensitivity Analysis Information

Sensitivity analysis normally is incorporated into software packages based on the simplex
method. For example, when using an Excel spreadsheet to formulate and solve a linear
programming model, Solver will generate sensitivity analysis information upon request.
(The same exact information also is generated by ASPE’s Solver.) As was shown in 
Fig. 3.21, when Solver gives the message that it has found a solution, it also gives on the
right a list of three reports that can be provided. By selecting the second one (labeled “Sen-
sitivity”) after solving the Wyndor Glass Co. problem, you will obtain the sensitivity re-
port shown in Fig. 4.10. The upper table in this report provides sensitivity analysis in-
formation about the decision variables and their coefficients in the objective function. The
lower table does the same for the functional constraints and their right-hand sides.
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■ FIGURE 4.9
This graph demonstrates the
sensitivity analysis of c1 and
c2 for the Wyndor Glass Co.
problem. Starting with the
original objective function
line [where c1 � 3, c2 � 5,
and the optimal solution is
(2, 6)], the other two lines
show the extremes of how
much the slope of the
objective function line can
change and still retain (2, 6)
as an optimal solution. Thus,
with c2 � 5, the allowable
range for c1 is 0 � c1 � 7.5.
With c1 � 3, the allowable
range for c2 is c2 � 2.
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Look first at the upper table in this figure. The “Final Value” column indicates the
optimal solution. The next column gives the reduced costs. (We will not discuss these re-
duced costs now because the information they provide can also be gleaned from the rest
of the upper table.) The next three columns provide the information needed to identify the
allowable range for each coefficient cj in the objective function.

For any cj, its allowable range is the range of values for this coefficient over which the
current optimal solution remains optimal, assuming no change in the other coefficients.

The “Objective Coefficient” column gives the current value of each coefficient in units
of thousands of dollars, and then the next two columns give the allowable increase
and the allowable decrease from this value to remain within the allowable range. 
Therefore,

3 � 3 � c1 � 3 � 4.5, so 0 � c1 � 7.5

is the allowable range for c1 over which the current optimal solution will stay optimal (as-
suming c2 � 5), just as was found graphically in Fig. 4.9. Similarly, since Excel uses 
1E � 30 (1030) to represent infinity,

5 � 3 � c2 � 5 � �, so 2 � c2

is the allowable range for c2.
The fact that both the allowable increase and the allowable decrease are greater than

zero for the coefficient of both decision variables provides another useful piece of infor-
mation, as described below.

When the upper table in the sensitivity report generated by the Excel Solver indicates that
both the allowable increase and the allowable decrease are greater than zero for every ob-
jective coefficient, this is a signpost that the optimal solution in the “Final Value” column
is the only optimal solution. Conversely, having any allowable increase or allowable de-
crease equal to zero is a signpost that there are multiple optimal solutions. Changing the
corresponding coefficient a tiny amount beyond the zero allowed and re-solving provides
another optimal CPF solution for the original model.

Now consider the lower table in Fig. 4.10 that focuses on sensitivity analysis for the
three functional constraints. The “Final Value” column gives the value of each constraint’s
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■ FIGURE 4.10
The sensitivity report
provided by Solver for the
Wyndor Glass Co. problem.

Variable Cells

Final Reduced Objective Allowable Allowable
Cell Name Value Cost Coefficient Increase Decrease

$C$12 Batches Produced Doors 2 0 3 4.5 3
$D$12 Batches Produced Windows 6 0 5 1E+30 3

Constraints

Final Shadow Constraint Allowable Allowable
Cell Name Value Price R.H. Side Increase Decrease

$E$7 Plant 1 Used 2 0 4 1E+30 2
$E$8 Plant 2 Used 12 1.5 12 6 6
$E$9 Plant 3 Used 18 1 18 6 6

hil23453_ch04_093-162.qxd  1/15/70  7:42 AM  Page 139 Final PDF to printer



140 CHAPTER 4 SOLVING LINEAR PROGRAMMING PROBLEMS: THE SIMPLEX METHOD

left-hand side for the optimal solution. The next two columns give the shadow price and
the current value of the right-hand side (bi) for each constraint. When just one bi value is
then changed, the last two columns give the allowable increase or allowable decrease in
order to remain within its allowable range.

For any bi, its allowable range is the range of values for this right-hand side over which
the current optimal BF solution (with adjusted values21 for the basic variables) remains
feasible, assuming no change in the other right-hand sides. A key property of this range
of values is that the current shadow price for bi remains valid for evaluating the effect on
Z of changing bi only as long as bi remains within this allowable range.

Thus, using the lower table in Fig. 4.10, combining the last two columns with the current
values of the right-hand sides gives the following allowable ranges:

2 � b1

6 � b2 � 18
12 � b3 � 24.

This sensitivity report generated by Solver is typical of the sensitivity analysis infor-
mation provided by linear programming software packages. You will see in Appendix 4.1
that LINDO and LINGO provide essentially the same report. MPL/Solvers does also when
it is requested with the Solution File dialog box. Once again, this information obtained alge-
braically also can be derived from graphical analysis for this two-variable problem. (See Prob.
4.7-1.) For example, when b2 is increased from 12 in Fig. 4.8, the originally optimal CPF
solution at the intersection of two constraint boundaries 2x2 � b2 and 3x1 � 2x2 � 18 will
remain feasible (including x1 � 0) only for b2 � 18.

The Solved Examples section of the book’s website includes another example of 
applying sensitivity analysis (using both graphical analysis and the sensitivity report). 
Sections 7.1–7.3 also will delve into this type of analysis more deeply.

Parametric Linear Programming

Sensitivity analysis involves changing one parameter at a time in the original model to
check its effect on the optimal solution. By contrast, parametric linear programming
(or parametric programming for short) involves the systematic study of how the opti-
mal solution changes as many of the parameters change simultaneously over some range.
This study can provide a very useful extension of sensitivity analysis, e.g., to check the
effect of “correlated” parameters that change together due to exogenous factors such as
the state of the economy. However, a more important application is the investigation of
trade-offs in parameter values. For example, if the cj values represent the unit profits of
the respective activities, it may be possible to increase some of the cj values at the ex-
pense of decreasing others by an appropriate shifting of personnel and equipment among
activities. Similarly, if the bi values represent the amounts of the respective resources be-
ing made available, it may be possible to increase some of the bi values by agreeing to
accept decreases in some of the others.

In some applications, the main purpose of the study is to determine the most appro-
priate trade-off between two basic factors, such as costs and benefits. The usual approach

21Since the values of the basic variables are obtained as the simultaneous solution of a system of equations (the
functional constraints in augmented form), at least some of these values change if one of the right-hand sides
changes. However, the adjusted values of the current set of basic variables still will satisfy the nonnegativity
constraints, and so still will be feasible, as long as the new value of this right-hand side remains within its
allowable range. If the adjusted basic solution is still feasible, it also will still be optimal. We shall elaborate
further in Sec. 7.2.
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is to express one of these factors in the objective function (e.g., minimize total cost) and
incorporate the other into the constraints (e.g., benefits � minimum acceptable level), as
was done for the Nori & Leets Co. air pollution problem in Sec. 3.4. Parametric linear
programming then enables systematic investigation of what happens when the initial ten-
tative decision on the trade-off (e.g., the minimum acceptable level for the benefits) is
changed by improving one factor at the expense of the other.

The algorithmic technique for parametric linear programming is a natural extension
of that for sensitivity analysis, so it, too, is based on the simplex method. The procedure
is described in Sec. 8.2.
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22Do not try this at home. Attacking such a massive problem requires an especially sophisticated linear pro-
gramming system that uses the latest techniques for exploiting sparcity in the coefficient matrix as well as other
special techniques (e.g., crashing techniques for quickly finding an advanced initial BF solution). When prob-
lems are re-solved periodically after minor updating of the data, much time often is saved by using (or modi-
fying) the last optimal solution to provide the initial BF solution for the new run.

If the electronic computer had never been invented, you probably would have never heard of
linear programming and the simplex method. Even though it is possible to apply the simplex
method by hand (perhaps with the aid of a calculator) to solve tiny linear programming prob-
lems, the calculations involved are just too tedious to do this on a routine basis. However, the
simplex method is ideally suited for execution on a computer. It is the computer revolution
that has made possible the widespread application of linear programming in recent decades.

Implementation of the Simplex Method

Computer codes for the simplex method now are widely available for essentially all
modern computer systems. These codes commonly are part of a sophisticated software
package for mathematical programming that includes many of the procedures described
in subsequent chapters (including those used for postoptimality analysis).

These production computer codes do not closely follow either the algebraic form or
the tabular form of the simplex method presented in Secs. 4.3 and 4.4. These forms can
be streamlined considerably for computer implementation. Therefore, the codes use in-
stead a matrix form (usually called the revised simplex method ) that is especially well
suited for the computer. This form accomplishes exactly the same things as the algebraic
or tabular form, but it does this while computing and storing only the numbers that are
actually needed for the current iteration; and then it carries along the essential data in a
more compact form. The revised simplex method is described in Secs. 5.2 and 5.4.

The simplex method is used routinely to solve surprisingly large linear programming
problems. For example, powerful desktop computers (including workstations) commonly
are used to solve problems with hundreds of thousands, or even millions, of functional
constraints and a larger number of decision variables. Occasionally, successfully solved
problems have even tens of millions of functional constraints and decision variables.22

For certain special types of linear programming problems (such as the transportation,
assignment, and minimum cost flow problems to be described later in the book), even
larger problems now can be solved by specialized versions of the simplex method.

Several factors affect how long it will take to solve a linear programming problem by
the general simplex method. The most important one is the number of ordinary functional
constraints. In fact, computation time tends to be roughly proportional to the cube of this
number, so that doubling this number may multiply the computation time by a factor of
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approximately 8. By contrast, the number of variables is a relatively minor factor.23 Thus,
doubling the number of variables probably will not even double the computation time. A
third factor of some importance is the density of the table of constraint coefficients (i.e.,
the proportion of the coefficients that are not zero), because this affects the computation
time per iteration. (For large problems encountered in practice, it is common for the den-
sity to be under 5 percent, or even under 1 percent, and this much “sparcity” tends to
greatly accelerate the simplex method.) One common rule of thumb for the number of it-
erations is that it tends to be roughly twice the number of functional constraints.

With large linear programming problems, it is inevitable that some mistakes and faulty
decisions will be made initially in formulating the model and inputting it into the com-
puter. Therefore, as discussed in Sec. 2.4, a thorough process of testing and refining the
model (model validation) is needed. The usual end product is not a single static model
that is solved once by the simplex method. Instead, the OR team and management typi-
cally consider a long series of variations on a basic model (sometimes even thousands of
variations) to examine different scenarios as part of postoptimality analysis. This entire
process is greatly accelerated when it can be carried out interactively on a desktop com-
puter. And, with the help of both mathematical programming modeling languages and im-
proving computer technology, this now is becoming common practice.

Until the mid-1980s, linear programming problems were solved almost exclusively
on mainframe computers. Since then, there has been an explosion in the capability of do-
ing linear programming on desktop computers, including personal computers as well as
workstations. Workstations, including some with parallel processing capabilities, now are
commonly used instead of mainframe computers to solve massive linear programming
models. The fastest personal computers are not lagging far behind, although solving huge
models usually requires additional memory. Even laptop computers now can solve fairly
large linear programming problems.

Linear Programming Software Featured in This Book

As described in Sec. 3.6, the student version of MPL in your OR Courseware provides a
student-friendly modeling laguage for efficiently formulating large programming models
(and related models) in a compact way. MPL also provides some elite solvers for solving
these models amazingly quickly. The student version of MPL in your OR Courseware in-
cludes the student version of four of these solvers—CPLEX, GUROBI, CoinMP, and SU-
LUM. The professional version of MPL frequently is used to solve huge linear program-
ming models with many thousands (or possibly even millions) of functional constrants
and decision variables. An MPL tutorial and numerous MPL examples are provided on
this book’s website.

LINDO (short for Linear, Interactive, and Discrete Optimizer) has a very long his-
tory in the realm of applications of linear programming and its extensions. The easy-to-
use LINDO interface is available as a subset of the LINGO optimization modeling pack-
age from LINDO Systems, www.lindo.com. The long-time popularity of LINDO is
partially due to its ease of use. For “textbook-sized” problems, the model can be entered
and solved in an intuitive, straightforward manner, so the LINDO interface provides a con-
venient tool for students to use. Although easy to use for small models, the professional
version of LINDO/LINGO can also solve huge models with many thousands (or possibly
even millions) of functional constraints and decision variables.

The OR Courseware provided on this book’s website contains a student version
of LINDO/LINGO, accompanied by an extensive tutorial. Appendix 4.1 provides a
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23This statement assumes that the revised simplex method described in Secs. 5.2 and 5.4 is being used.
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quick introduction. Additionally, the software contains extensive online help. The OR
Courseware also contains LINGO/LINDO formulations for the major examples used
in the book.

Spreadsheet-based solvers are becoming increasingly popular for linear programming
and its extensions. Leading the way is the basic Solver produced by Frontline Systems
for Microsoft Excel. In addition to Solver, Frontline Systems also has developed more
powerful Premium Solver products, including the very versatile Analytic Solver Platform
for Education (ASPE) that is included in you OR courseware. (ASPE has strong capabil-
ities for solving many types of OR problems in addition to linear programming.) Because
of the widespread use of spreadsheet packages such as Microsoft Excel today, these solvers
are introducing large numbers of people to the potential of linear programming for the
first time. For textbook-sized linear programming problems (and considerably larger prob-
lems as well), spreadsheets provide a convenient way to formulate and solve the model,
as described in Sec. 3.5. The more powerful spreadsheet solvers can solve fairly large
models with many thousand decision variables. However, when the spreadsheet grows to
an unwieldy size, a good modeling language and its solver may provide a more efficient
approach to formulating and solving the model.

Spreadsheets provide an excellent communication tool, especially when dealing with
typical managers who are very comfortable with this format but not with the algebraic
formulations of OR models. Therefore, optimization software packages and modeling lan-
guages now can commonly import and export data and results in a spreadsheet format.
For example, the MPL modeling language includes an enhancement (called the OptiMax
Component Library) that enables the modeler to create the feel of a spreadsheet model
for the user of the model while still using MPL to formulate the model very efficiently.

All the software, tutorials, and examples packed on the book’s website are providing
you with several attractive software options for linear programming (as well as some other
areas of operations research).

Available Software Options for Linear Programming

1. Demonstration examples (in OR Tutor) and both interactive and automatic procedures
in IOR Tutorial for efficiently learning the simplex method.

2. Excel and its Solver for formulating and solving linear programming models in a spread-
sheet format.

3. Analytic Solver Platform for Education (ASPE) for greatly extending the functionality
of Excel’s Solver.

4. A student version of MPL and its solvers—CPLEX, GUROBI, CoinMP, and SULUM—
for efficiently formulating and solving large linear programming models.

5. A student version of LINGO and its solver (shared with LINDO) for an alternative
way of efficiently formulating and solving large linear programming models.

Your instructor may specify which software to use. Whatever the choice, you will be gain-
ing experience with the kind of state-of-the-art software that is used by OR professionals.

4.9 THE INTERIOR POINT APPROACH 143

The most dramatic new development in operations research during the 1980s was the
discovery of the interior-point approach to solving linear programming problems. This
discovery was made in 1984 by a young mathematician at AT&T Bell Laboratories,
Narendra Karmarkar, when he successfully developed a new algorithm for linear pro-
gramming with this kind of approach. Although this particular algorithm experienced

■ 4.9 THE INTERIOR-POINT APPROACH TO SOLVING
LINEAR PROGRAMMING PROBLEMS
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24The procedure is called Solve Automatically by the Interior-Point Algorithm. The option menu provides two
choices for a certain parameter of the algorithm � (defined in Sec. 8.4). The choice used here is the default value
of � � 0.5.

only mixed success in competing with the simplex method, the key solution concept de-
scribed below appeared to have great potential for solving huge linear programming prob-
lems that might be beyond the reach of the simplex method. Many top researchers sub-
sequently worked on modifying Karmarkar’s algorithm to fully tap this potential. Much
progress was made (and continues to be made), and a number of powerful algorithms us-
ing the interior-point approach have been developed. Today, the more powerful software
packages that are designed for solving really large linear programming problems include
at least one algorithm using the interior-point approach along with the simplex method and
its variants. As research continues on these algorithms, their computer implementations
continue to improve. This has spurred renewed research on the simplex method, and its
computer implementations continue to improve as well. The competition between the two
approaches for supremacy in solving huge problems is continuing.

Now let us look at the key idea behind Karmarkar’s algorithm and its subsequent vari-
ants that use the interior-point approach.

The Key Solution Concept

Although radically different from the simplex method, Karmarkar’s algorithm does share
a few of the same characteristics. It is an iterative algorithm. It gets started by identify-
ing a feasible trial solution. At each iteration, it moves from the current trial solution to
a better trial solution in the feasible region. It then continues this process until it reaches
a trial solution that is (essentially) optimal.

The big difference lies in the nature of these trial solutions. For the simplex method, the
trial solutions are CPF solutions (or BF solutions after augmenting), so all movement is along
edges on the boundary of the feasible region. For Karmarkar’s algorithm, the trial solutions
are interior points, i.e., points inside the boundary of the feasible region. For this reason,
Karmarkar’s algorithm and its variants can be referred to as interior-point algorithms.

However, because of an early patent obtained on an early version of an interior-point
algorithm, such an algorithm now is commonly referred to as a barrier algorithm (or
barrier method). The term barrier is used because, from the perspective of a search whose
trial solutions are interior points, each constraint boundary is treated as a barrier. How-
ever, we will continue to use the more suggestive interior-point algorithm terminology.

To illustrate the interior-point approach, Fig. 4.11 shows the path followed by the
interior-point algorithm in your OR Courseware when it is applied to the Wyndor Glass Co.
problem, starting from the initial trial solution (1, 2). Note how all the trial solutions (dots)
shown on this path are inside the boundary of the feasible region as the path approaches the
optimal solution (2, 6). (All the subsequent trial solutions not shown also are inside the
boundary of the feasible region.) Contrast this path with the path followed by the simplex
method around the boundary of the feasible region from (0, 0) to (0, 6) to (2, 6).

Table 4.18 shows the actual output from IOR Tutorial for this problem.24 (Try it your-
self.) Note how the successive trial solutions keep getting closer and closer to the 
optimal solution, but never literally get there. However, the deviation becomes so infini-
tesimally small that the final trial solution can be taken to be the optimal solution for all
practical purposes. (The Solved Examples section on the book’s website shows the out-
put from IOR Tutorial for another example as well.)

Section 8.4 presents the details of the specific interior-point algorithm that is imple-
mented in IOR Tutorial.
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■ FIGURE 4.11
The curve from (1, 2) to 
(2, 6) shows a typical path
followed by an interior-point
algorithm, right through the
interior of the feasible region
for the Wyndor Glass Co.
problem.

■ TABLE 4.18 Output of interior-point algorithm in OR Courseware 
for Wyndor Glass Co. problem

Iteration x1 x2 Z

0 1 2 13
1 1.27298 4 23.8189
2 1.37744 5 29.1323
3 1.56291 5.5 32.1887
4 1.80268 5.71816 33.9989
5 1.92134 5.82908 34.9094
6 1.96639 5.90595 35.429
7 1.98385 5.95199 35.7115
8 1.99197 5.97594 35.8556
9 1.99599 5.98796 35.9278

10 1.99799 5.99398 35.9639
11 1.999 5.99699 35.9819
12 1.9995 5.9985 35.991
13 1.99975 5.99925 35.9955
14 1.99987 5.99962 35.9977
15 1.99994 5.99981 35.9989

Comparison with the Simplex Method

One meaningful way of comparing interior-point algorithms with the simplex method is to
examine their theoretical properties regarding computational complexity. Karmarkar has
proved that the original version of his algorithm is a polynomial time algorithm; that is,
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the time required to solve any linear programming problem can be bounded above by a
polynomial function of the size of the problem. Pathological counterexamples have been
constructed to demonstrate that the simplex method does not possess this property, so it
is an exponential time algorithm (i.e., the required time can be bounded above only by
an exponential function of the problem size). This difference in worst-case performance
is noteworthy. However, it tells us nothing about their comparison in average performance
on real problems, which is the more crucial issue.

The two basic factors that determine the performance of an algorithm on a real prob-
lem are the average computer time per iteration and the number of iterations. Our next
comparisons concern these factors.

Interior-point algorithms are far more complicated than the simplex method. Con-
siderably more extensive computations are required for each iteration to find the next trial
solution. Therefore, the computer time per iteration for an interior-point algorithm is many
times longer than that for the simplex method.

For fairly small problems, the numbers of iterations needed by an interior-point algo-
rithm and by the simplex method tend to be somewhat comparable. For example, on a prob-
lem with 10 functional constraints, roughly 20 iterations would be typical for either kind
of algorithm. Consequently, on problems of similar size, the total computer time for an in-
terior-point algorithm will tend to be many times longer than that for the simplex method.

On the other hand, a key advantage of interior-point algorithms is that large problems
do not require many more iterations than small problems. For example, a problem with
10,000 functional constraints probably will require well under 100 iterations. Even con-
sidering the very substantial computer time per iteration needed for a problem of this size,
such a small number of iterations makes the problem quite tractable. By contrast, the sim-
plex method might need 20,000 iterations and so might require a very large amount of
computer time. Therefore, interior-point algorithms might be faster than the simplex
method for such very large problems. When advancing to huge problems with hundreds
of thousands (or even millions) of functional constraints, interior-point algorithms tend to
become the best hope for solving the problem.

The reason for this very large difference in the number of iterations on huge prob-
lems is the difference in the paths followed. At each iteration, the simplex method moves
from the current CPF solution to an adjacent CPF solution along an edge on the bound-
ary of the feasible region. Huge problems have an astronomical number of CPF solutions.
The path from the initial CPF solution to an optimal solution may be a very circuitous
one around the boundary, taking only a small step each time to the next adjacent CPF so-
lution, so a huge number of steps may be required to reach an optimal solution. By con-
trast, an interior-point algorithm bypasses all this by shooting through the interior of the
feasible region toward an optimal solution. Adding more functional constraints adds more
constraint boundaries to the feasible region, but has little effect on the number of trial so-
lutions needed on this path through the interior. This frequently makes it possible for in-
terior-point algorithms to solve problems with a huge number of functional constraints.

A final key comparison concerns the ability to perform the various kinds of postop-
timality analysis described in Sec. 4.7. The simplex method and its extensions are very
well suited to, and are widely used for, this kind of analysis. Unfortunately, the interior-
point approach has limited capability in this area.25 Given the great importance of postop-
timality analysis, this is a key drawback of interior-point algorithms. However, we point
out next how the simplex method can be combined with the interior-point approach to
overcome this drawback.
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25However, research aimed at increasing this capability has made some progress. For example, see E. A. Yildirim
and M. J. Todd: “Sensitivity Analysis in Linear Programming and Semidefinite Programming Using Interior-Point
Methods,” Mathematical Programming, Series A, 90(2): 229–261, April 2001.
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Combining the Simplex Method with the Interior-Point Approach For
Postoptimality Analysis

As just mentioned, a key disadvantage of the interior-point approach is its limited capabil-
ity for performing postoptimality analysis. To overcome this drawback, researchers have 
developed procedures for switching over to the simplex method after an interior-point al-
gorithm has finished. Recall that the trial solutions obtained by an interior-point algorithm
keep getting closer and closer to an optimal solution (the best CPF solution), but never
quite get there. Therefore, a switching procedure requires identifying a CPF solution (or
BF solution after augmenting) that is very close to the final trial solution.

For example, by looking at Fig. 4.11, it is easy to see that the final trial solution in
Table 4.18 is very near the CPF solution (2, 6). Unfortunately, on problems with thou-
sands of decision variables (so no graph is available), identifying a nearby CPF (or BF)
solution is a very challenging and time-consuming task. However, good progress has been
made for developing a crossover algorithm for converting the solution obtained by an 
interior-point algorithm into a BF solution.

Once this nearby BF solution has been found, the optimality test for the simplex
method is applied to check whether this actually is the optimal BF solution. If it is not
optimal, some iterations of the simplex method are conducted to move from this BF so-
lution to an optimal solution. Generally, only a very few iterations (perhaps one) are needed
because the interior-point algorithm has brought us so close to an optimal solution. There-
fore, these iterations should be done quite quickly, even on problems that are too huge to
be solved from scratch. After an optimal solution is actually reached, the simplex method
and its variants are applied to help perform postoptimality analysis.

APPENDIX 4.1 AN INTRODUCTION TO USING LINDO AND LINGO 147

■ 4.10 CONCLUSIONS

The simplex method is an efficient and reliable algorithm for solving linear programming
problems. It also provides the basis for performing the various parts of postoptimality
analysis very efficiently.

Although it has a useful geometric interpretation, the simplex method is an algebraic pro-
cedure. At each iteration, it moves from the current BF solution to a better, adjacent BF so-
lution by choosing both an entering basic variable and a leaving basic variable and then us-
ing Gaussian elimination to solve a system of linear equations. When the current solution has
no adjacent BF solution that is better, the current solution is optimal and the algorithm stops.

We presented the full algebraic form of the simplex method to convey its logic, and
then we streamlined the method to a more convenient tabular form. To set up for starting
the simplex method, it is sometimes necessary to use artificial variables to obtain an initial
BF solution for an artificial problem. If so, either the Big M method or the two-phase method
is used to ensure that the simplex method obtains an optimal solution for the real problem.

Computer implementations of the simplex method and its variants have become so
powerful that they now are frequently used to solve huge linear programming problems.
Interior-point algorithms also provide a powerful tool for solving such problems.

■ APPENDIX 4.1 AN INTRODUCTION TO USING LINDO AND LINGO
The LINGO software can accept optimization models in either of two styles or syntax: (a) LINDO
syntax or (b) LINGO syntax. We will first describe LINDO syntax. The relative advantages of
LINDO syntax are that it is very easy and natural for simple linear and integer programming prob-
lems. It has been in wide use since 1981.

The LINDO syntax allows you to enter a model in a natural form, essentially as presented in
a textbook. For example, here is how the Wyndor Glass Co. example introduced in Sec. 3.1. is
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entered. Presuming you have installed LINGO, you click on the LINGO icon to start up LINGO
and then immediately type the following:

! Wyndor Glass Co. Problem. LINDO model
! X1 = batches of product 1 per week
! X2 = batches of product 2 per week
! Profit, in 1000 of dollars,

MAX  Profit) 3 X1 + 5 X2

Subject to 

! Production time
Plant1) X1 <= 4
Plant2) 2 X2 <= 12
Plant3) 3 X1 + 2 X2 <= 18
END

The first four lines, each starting with an exclamation point at the beginning, are simply com-
ments. The comment on the fourth line further clarifies that the objective function is expressed in
units of thousands of dollars. The number 1000 in this comment does not have the usual comma in
front of the last three digits because LINDO/LINGO does not accept commas. (LINDO syntax also
does not accept parentheses in algebraic expressions.) Lines five onward specify the model. The de-
cision variables can be either lowercase or uppercase. Uppercase usually is used so the variables
won’t be dwarfed by the following “subscripts.” Instead of X1 or X2, you may use more sugges-
tive names, such as the name of the product being produced; e.g., DOORS and WINDOWS, to rep-
resent the decision variable throughout the model.

The fifth line of the LINDO formulation indicates that the objective of the model is to maxi-
mize the objective function, 3x1 � 5x2. The word Profit followed by a parenthesis is optional. It
clarifies that the quantity being maximized is to be called Profit on the solution report.

The comment on the seventh line points out that the following constraints are on the produc-
tion times being used. The next three lines start by giving a name (again, optional, followed by a
parenthesis) for each of the functional constraints. These constraints are written in the usual way
except for the inequality signs.  Because most keyboards do not include � and � signs, LINDO
interprets either � or �� as � and either � or �� as �. (On keyboards that include � and �
signs, LINDO will not recognize them.)

The end of the constraints is signified by the word END. No nonnegativity constraints are stated
because LINDO automatically assumes that all variables are � 0. If, say, x1 had not had a non-
negativity constraint, this would be indicated by typing FREE X1 on the next line below END.

To solve this model in LINGO/LINDO, click on the red Bull’s Eye solve button at the top of
the LINGO window. Figure A4.1 shows the resulting “solution report.” The top lines indicate that
the best overall, or “global,” solution has been found, with an objective function value of 36, in two
iterations. Next come the values for x1 and x2 for the optimal solution.
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Global optimal solution found.

Objective value:                     36.00000

Total solver iterations:                             2

Variable Value Reduced Cost
X1 2.000000 0.000000
X2 6.000000 0.000000

Row Slack or Surplus Dual Price
PROFIT 36.00000 1.000000
PLANT1 2.000000 0.000000
PLANT2 0.000000 1.500000
PLANT3 0.000000 1.000000

■ FIGURE A4.1
The solution report provided
by LINDO syntax for the
Wyndor Glass Co. problem.
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The column to the right of the Values column gives the reduced costs. We have not discussed
reduced costs in this chapter because the information they provide can also be gleaned from the al-
lowable range for the coefficients in the objective function. These allowable ranges are readily
available (as you will see in the next figure). When the variable is a basic variable in the optimal
solution (as for both variables in the Wyndor problem), its reduced cost automatically is 0. When the
variable is a nonbasic variable, its reduced cost provides some interesting information. A variable
whose objective coefficient is “too small” in a maximizing model or “too large” in a minimizing
model will have a value of 0 in an optimal solution. The reduced cost indicates how much this co-
efficient needs to be increased (when maximizing) or decreased (when minimizing) before the op-
timal solution would change and this variable would become a basic variable. However, recall that
this same information already is available from the allowable range for the coefficient of this vari-
able in the objective function. The reduced cost (for a nonbasic variable) is just the allowable in-
crease (when maximizing) from the current value of this coefficient to remain within its allowable
range or the allowable decrease (when minimizing).

The bottom portion of Fig. A.4.1 provides information about the three functional constraints.
The Slack or Surplus column gives the difference between the two sides of each constraint.  The
Dual Price column gives, by another name, the shadow prices discussed in Sec. 4.7 for these con-
straints. (This alternate name comes from the fact found in Sec. 6.1 that these shadow prices are
just the optimal values of the dual variables introduced in Chap. 6.) Be aware, however, that LINDO
uses a different sign convention from the common one adopted elsewhere in this text (see footnote 19
regarding the definition of shadow price in Sec. 4.7). In particular, for minimization problems,
LINGO/LINDO shadow prices (dual prices) are the negative of ours.

After LINDO provides you with the solution report, you also have the option to do range (sen-
sitivity) analysis. Fig. A4.2 shows the range report, which is generated by clicking on: LINGO | Range.

Except for using units of thousand of dollars instead of dollars for the coefficients in the ob-
jective function, this report is identical to the last three columns of the table in the sensitivity re-
port generated by Solver, as shown earlier in Fig. 4.10.  Thus, as already discussed in Sec. 4.7, the
first two rows of numbers in this range report indicate that the allowable range for each coefficient
in the objective function (assuming no other change in the model) is

0 � c1 � 7.5
2 � c2

Similarly, the last three rows indicate that the allowable range for each right-hand side (assuming
no other change in the model) is

2 � b1

6 � b2 � 18
12 � b3 � 24

You can print the results in standard Windows fashion by clicking on Files | Print.

■ FIGURE A4.2
Range report provided by
LINDO for the Wyndor Glass
Co. problem.

Ranges in which the basis is unchanged:

Objective Coefficient Ranges
Current Allowable Allowable

Variable Coefficient Increase Decrease
X1 3.000000 4.500000 3.000000
X2 5.000000 INFINITY 3.000000

Righthand Side Ranges
Row Current Allowable Allowable

RHS Increase Decrease
PLANT1 4.000000 INFINITY 2.000000
PLANT2 12.000000 6.000000 6.000000
PLANT3 18.000000 6.000000 6.000000
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These are the basics for getting started with LINGO/LINDO. You can turn on or turn off the
generation of reports. For example, if the automatic generation of the standard solution report 
has been turned off (Terse mode), you can turn it back on by clicking on: LINGO | Options | 
Interface | Output level | Verbose | Apply. The ability to generate range reports can be turned on
or off by clicking on: LINGO | Options | General solver | Dual computations | Prices & Ranges |
Apply.

The second input style that LINGO supports is LINGO syntax.  LINGO syntax is dramatically
more powerful than LINDO syntax.  The advantages to using LINGO syntax are: (a) it allows ar-
bitrary mathematical expressions, including parentheses and all familiar mathematical operators such
as division, multiplication, log, sin, etc., (b) the ability to solve not just linear programming prob-
lems but also nonlinear programming problems, (c) scalability to large applications using subscripted
variables and sets, (d) the ability to read input data from a spreadsheet or database and send solu-
tion information back into a spreadsheet or database, (e) the ability to naturally represent sparse
relationships, (f) programming ability so that you can solve a series of models automatically as
when doing parametric analysis, (g) the ability to quickly formulate and solve both chance-
constrained programming problems (described in Sec.7.5) and stochastic programming problems
(described in Sec. 7.6). A formulation of the Wyndor problem in LINGO, using the subscript/sets
feature is:

! Wyndor Glass Co. Problem;

SETS:
PRODUCT: PPB, X; ! Each product has a profit/batch 

and amount;
RESOURCE: HOURSAVAILABLE; ! Each resource has a capacity;

! Each resource product combination has an hours/batch;
RXP(RESOURCE,PRODUCT): HPB; 

ENDSETS
DATA:
PRODUCT = DOORS  WINDOWS;    ! The products;

PPB =   3      5;      ! Profit per batch;

RESOURCE = PLANT1 PLANT2 PLANT3; 
HOURSAVAILABLE =   4      12    18;

HPB =   1  0   ! Hours per batch;
0  2
3  2;

ENDDATA
! Sum over all products j the profit per batch times batches 

produced;
MAX = @SUM( PRODUCT(j): PPB(j)*X(j));

@FOR( RESOURCE(i)): ! For each resource i...;
! Sum over all products j of hours per batch time batches 

produced...;
@SUM(RXP(i,j): HPB(i,j)*X(j)) <= HOURSAVAILABLE(i);

);

The original Wyndor problem has two products and three resources. If Wyndor expands to hav-
ing four products and five resources, it is a trivial change to insert the appropriate new data into the
DATA section.  The formulation of the model adjusts automatically.  The subscript/sets capability
also allows one to naturally represent three dimensional or higher models.  The large problem de-
scribed in Sec. 3.6 has five dimensions: plants, machines, products, regions/customers, and time pe-
riods. This would be hard to fit into a two-dimensional spreadsheet but is easy to represent in a
modeling language with sets and subscripts. In practice, for problems like that in Sec. 3.6, many of
the 10(10)(10)(10)(10) = 100,000 possible combinations of relationships do not exist; e.g., not 
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all plants can make all products, and not all customers demand all products. The subscript/sets 
capability in modeling languages make it easy to represent such sparse relationships.

For most models that you enter, LINGO will be able to detect automatically whether you are us-
ing LINDO syntax or LINGO syntax. You may choose your default syntax by clicking on: LINGO |
Options | Interface | File format | lng (for LINGO) or ltx (for LINDO).

LINGO includes an extensive online Help menu to give more details and examples. Supple-
ments 1 and 2 to Chapter 3 (shown on the book’s website) provide a relatively complete introduc-
tion to LINGO. The LINGO tutorial on the website also provides additional details. The
LINGO/LINDO files on the website for various chapters show LINDO/LINGO formulations for nu-
merous examples from most of the chapters.
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Solved Examples:

Examples for Chapter 4

Demonstration Examples in OR Tutor:

Interpretation of the Slack Variables
Simplex Method—Algebraic Form
Simplex Method—Tabular Form

Interactive Procedures in IOR Tutorial:

Enter or Revise a General Linear Programming Model
Set Up for the Simplex Method—Interactive Only
Solve Interactively by the Simplex Method
Interactive Graphical Method

Automatic Procedures in IOR Tutorial:

Solve Automatically by the Simplex Method
Solve Automatically by the Interior-Point Algorithm
Graphical Method and Sensitivity Analysis

An Excel Add-In:

Analytic Solver Platform for Education (ASPE)
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Files (Chapter 3) for Solving the Wyndor 
and Radiation Therapy Examples:

Excel Files
LINGO/LINDO File
MPL/Solvers File

Glossary for Chapter 4

See Appendix 1 for documentation of the software.

■ PROBLEMS
The symbols to the left of some of the problems (or their parts)
have the following meaning:
D: The corresponding demonstration example listed on the preced-

ing page may be helpful.
I: We suggest that you use the corresponding interactive procedure

listed on the preceding page (the printout records your work).
C: Use the computer with any of the software options available to

you (or as instructed by your instructor) to solve the problem
automatically. (See Sec. 4.8 for a listing of the options featured
in this book and on the book's website.)

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

4.1-1. Consider the following problem.

Maximize Z � x1 � 2x2,

subject to

x1 � 2
x2 � 2

x1 � x2 � 3

and

x1 � 0, x2 � 0.

(a) Plot the feasible region and circle all the CPF solutions.
(b) For each CPF solution, identify the pair of constraint bound-

ary equations that it satisfies.
(c) For each CPF solution, use this pair of constraint boundary

equations to solve algebraically for the values of x1 and x2 at
the corner point.

(d) For each CPF solution, identify its adjacent CPF solutions.
(e) For each pair of adjacent CPF solutions, identify the constraint

boundary they share by giving its equation.

4.1-2. Consider the following problem.

Maximize Z � 3x1 � 2x2,

subject to

2x1 � x2 � 6
x1 � 2x2 � 6

and

x1 � 0, x2 � 0.

D,I (a) Use the graphical method to solve this problem. Circle all
the corner points on the graph.

(b) For each CPF solution, identify the pair of constraint bound-
ary equations it satisfies.

(c) For each CPF solution, identify its adjacent CPF solutions.
(d) Calculate Z for each CPF solution. Use this information to

identify an optimal solution.
(e) Describe graphically what the simplex method does step by

step to solve the problem.

4.1-3. A certain linear programming model involving two activi-
ties has the feasible region shown below.

Feasible
region

8

8

6

6

4

4

2

20

(0, 6   )2
3

(5, 5)

(6, 4)

(8, 0)

Level of Activity 1

L
ev

el
 o

f 
A

ct
iv

ity
 2

The objective is to maximize the total profit from the two activi-
ties. The unit profit for activity 1 is $1,000 and the unit profit for
activity 2 is $2,000.
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(a) Calculate the total profit for each CPF solution. Use this in-
formation to find an optimal solution.

(b) Use the solution concepts of the simplex method given in
Sec. 4.1 to identify the sequence of CPF solutions that would
be examined by the simplex method to reach an optimal
solution.

4.1-4.* Consider the linear programming model (given in the back
of the book) that was formulated for Prob. 3.2-3.
(a) Use graphical analysis to identify all the corner-point solutions

for this model. Label each as either feasible or infeasible.
(b) Calculate the value of the objective function for each of the

CPF solutions. Use this information to identify an optimal
solution.

(c) Use the solution concepts of the simplex method given in Sec. 4.1
to identify which sequence of CPF solutions might be examined
by the simplex method to reach an optimal solution. (Hint: There
are two alternative sequences to be identified for this particular
model.)

4.1-5. Repeat Prob. 4.1-4 for the following problem.

Maximize Z � x1 � 2x2,

subject to

x1 � 3x2 � 8
x1 � x2 � 4

and

x1 � 0, x2 � 0.

4.1-6. Describe graphically what the simplex method does step by
step to solve the following problem.

Maximize Z � 2x1 � 3x2,

subject to

�3x1 � x2 � 1
�4x1 � 2x2 � 20
�4x1 � x2 � 10
�x1 � 2x2 � 5

and

x1 � 0, x2 � 0.

4.1-7. Describe graphically what the simplex method does step by
step to solve the following problem.

Minimize Z � 5x1 � 7x2,

subject to

2x1 � 3x2 � 42
3x1 � 4x2 � 60
x1 � x2 � 18

and

x1 � 0, x2 � 0.

4.1-8. Label each of the following statements about linear pro-
gramming problems as true or false, and then justify your answer.

(a) For minimization problems, if the objective function evaluated
at a CPF solution is no larger than its value at every adjacent
CPF solution, then that solution is optimal.

(b) Only CPF solutions can be optimal, so the number of optimal
solutions cannot exceed the number of CPF solutions.

(c) If multiple optimal solutions exist, then an optimal CPF solu-
tion may have an adjacent CPF solution that also is optimal
(the same value of Z).

4.1-9. The following statements give inaccurate paraphrases of the
six solution concepts presented in Sec. 4.1. In each case, explain
what is wrong with the statement.
(a) The best CPF solution always is an optimal solution.
(b) An iteration of the simplex method checks whether the current

CPF solution is optimal and, if not, moves to a new CPF 
solution.

(c) Although any CPF solution can be chosen to be the initial CPF
solution, the simplex method always chooses the origin.

(d) When the simplex method is ready to choose a new CPF so-
lution to move to from the current CPF solution, it only con-
siders adjacent CPF solutions because one of them is likely to
be an optimal solution.

(e) To choose the new CPF solution to move to from the current
CPF solution, the simplex method identifies all the adjacent
CPF solutions and determines which one gives the largest rate
of improvement in the value of the objective function.

4.2-1. Reconsider the model in Prob. 4.1-4.
(a) Introduce slack variables in order to write the functional con-

straints in augmented form.
(b) For each CPF solution, identify the corresponding BF solution

by calculating the values of the slack variables. For each BF
solution, use the values of the variables to identify the non-
basic variables and the basic variables.

(c) For each BF solution, demonstrate (by plugging in the solu-
tion) that, after the nonbasic variables are set equal to zero,
this BF solution also is the simultaneous solution of the sys-
tem of equations obtained in part (a).

4.2-2. Reconsider the model in Prob. 4.1-5. Follow the instructions
of Prob. 4.2-1 for parts (a), (b), and (c).
(d) Repeat part (b) for the corner-point infeasible solutions and the

corresponding basic infeasible solutions.
(e) Repeat part (c) for the basic infeasible solutions.

4.3-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 4.3.
Briefly describe the application of the simplex method in this study.
Then list the various financial and nonfinancial benefits that re-
sulted from this study.

D,I 4.3-2. Work through the simplex method (in algebraic form)
step by step to solve the model in Prob. 4.1-4.

4.3-3. Reconsider the model in Prob. 4.1-5.
(a) Work through the simplex method (in algebraic form) by hand

to solve this model.
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D,I (b) Repeat part (a) with the corresponding interactive routine
in your IOR Tutorial.

C (c) Verify the optimal solution you obtained by using a software
package based on the simplex method.

D,I 4.3-4.* Work through the simplex method (in algebraic form)
step by step to solve the following problem.

Maximize Z � 4x1 � 3x2 � 6x3,

subject to

3x1 � x2 � 3x3 � 30
2x1 � 2x2 � 3x3 � 40

and

x1 � 0, x2 � 0, x3 � 0.

D,I 4.3-5. Work through the simplex method (in algebraic form)
step by step to solve the following problem.

Maximize Z � x1 � 2x2 � 4x3,

subject to

3x1 � x2 � 5x3 � 10
x1 � 4x2 � x3 � 8

2x1 � 4x2 � 2x3 � 7

and

x1 � 0, x2 � 0, x3 � 0.

4.3-6. Consider the following problem.

Maximize Z � 5x1 � 3x2 � 4x3,

subject to

2x1 � x2 � x3 � 20
3x1 � x2 � 2x3 � 30

and

x1 � 0, x2 � 0, x3 � 0.

You are given the information that the nonzero variables in the op-
timal solution are x2 and x3.
(a) Describe how you can use this information to adapt the sim-

plex method to solve this problem in the minimum possible
number of iterations (when you start from the usual initial BF
solution). Do not actually perform any iterations.

(b) Use the procedure developed in part (a) to solve this problem
by hand. (Do not use your OR Courseware.)

4.3-7. Consider the following problem.

Maximize Z � 2x1 � 4x2 � 3x3,

subject to

x1 � 3x2 � 2x3 � 30
x1 � x2 � x3 � 24

3x1 � 5x2 � 3x3 � 60

and

x1 � 0, x2 � 0, x3 � 0.

You are given the information that x1 � 0, x2 � 0, and x3 � 0 in
the optimal solution.
(a) Describe how you can use this information to adapt the sim-

plex method to solve this problem in the minimum possible
number of iterations (when you start from the usual initial BF
solution). Do not actually perform any iterations.

(b) Use the procedure developed in part (a) to solve this problem
by hand. (Do not use your OR Courseware.)

4.3-8. Label each of the following statements as true or false, and
then justify your answer by referring to specific statements in the
chapter.
(a) The simplex method’s rule for choosing the entering basic vari-

able is used because it always leads to the best adjacent BF
solution (largest Z).

(b) The simplex method’s minimum ratio rule for choosing the
leaving basic variable is used because making another choice
with a larger ratio would yield a basic solution that is not
feasible.

(c) When the simplex method solves for the next BF solution, el-
ementary algebraic operations are used to eliminate each non-
basic variable from all but one equation (its equation) and to
give it a coefficient of �1 in that one equation.

D,I 4.4-1. Repeat Prob. 4.3-2, using the tabular form of the sim-
plex method.

D,I,C 4.4-2. Repeat Prob. 4.3-3, using the tabular form of the sim-
plex method.

4.4-3. Consider the following problem.

Maximize Z � 2x1 � x2,

subject to

x1 � x2 � 40
4x1 � x2 � 100

and

x1 � 0, x2 � 0.

(a) Solve this problem graphically in a freehand manner. Also
identify all the CPF solutions.

D,I (b) Now use IOR Tutorial to solve the problem graphically.
D (c) Use hand calculations to solve this problem by the simplex

method in algebraic form.
D,I (d) Now use IOR Tutorial to solve this problem interactively

by the simplex method in algebraic form.
D (e) Use hand calculations to solve this problem by the simplex

method in tabular form.
D,I (f) Now use IOR Tutorial to solve this problem interactively

by the simplex method in tabular form.
C (g) Use a software package based on the simplex method to

solve the problem.
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4.4-4. Repeat Prob. 4.4-3 for the following problem.

Maximize Z � 2x1 � 3x2,

subject to

x1 � 2x2 � 30
x1 � x2 � 20

and

x1 � 0, x2 � 0.

4.4-5. Consider the following problem.

Maximize Z � 2x1 � 4x2 � 3x3,

subject to

3x1 � 4x2 � 2x3 � 60
2x1 � x2 � 2x3 � 40
x1 � 3x2 � 2x3 � 80

and

x1 � 0, x2 � 0, x3 � 0.

D,I (a) Work through the simplex method step by step in algebraic
form.

D,I (b) Work through the simplex method step by step in tabular
form.

C (c) Use a software package based on the simplex method to
solve the problem.

4.4-6. Consider the following problem.

Maximize Z � 3x1 � 5x2 � 6x3,

subject to

2x1 � x2 � x3 � 4
x1 � 2x2 � x3 � 4
x1 � x2 � 2x3 � 4
x1 � x2 � x3 � 3

and

x1 � 0, x2 � 0, x3 � 0.

D,I (a) Work through the simplex method step by step in algebraic
form.

D,I (b) Work through the simplex method in tabular form.
C (c) Use a computer package based on the simplex method to

solve the problem.

D,I 4.4-7. Work through the simplex method step by step (in tab-
ular form) to solve the following problem.

Maximize Z � 2x1 � x2 � x3,

subject to

3x1 � x2 � x3 � 6
x1 � x2 � 2x3 � 1
x1 � x2 � x3 � 2

and

x1 � 0, x2 � 0, x3 � 0.

D,I 4.4-8. Work through the simplex method step by step to solve
the following problem.

Maximize Z � �x1 � x2 � 2x3,

subject to

� x1 � 2x2 � x3 � 20
�2x1 � 4x2 � 2x3 � 60
�2x1 � 3x2 � x3 � 50

and

x1 � 0, x2 � 0, x3 � 0.

4.5-1. Consider the following statements about linear program-
ming and the simplex method. Label each statement as true or false,
and then justify your answer.
(a) In a particular iteration of the simplex method, if there is a tie for

which variable should be the leaving basic variable, then the next
BF solution must have at least one basic variable equal to zero.

(b) If there is no leaving basic variable at some iteration, then the
problem has no feasible solutions.

(c) If at least one of the basic variables has a coefficient of zero
in row 0 of the final tableau, then the problem has multiple op-
timal solutions.

(d) If the problem has multiple optimal solutions, then the prob-
lem must have a bounded feasible region.

4.5-2. Suppose that the following constraints have been provided
for a linear programming model with decision variables x1 and x2.

�x1 � 3x2 � 30
�3x1 � x2 � 30

and

x1 � 0, x2 � 0.

(a) Demonstrate graphically that the feasible region is unbounded.
(b) If the objective is to maximize Z � �x1 � x2, does the model

have an optimal solution? If so, find it. If not, explain why not.
(c) Repeat part (b) when the objective is to maximize Z � x1 � x2.
(d) For objective functions where this model has no optimal solu-

tion, does this mean that there are no good solutions accord-
ing to the model? Explain. What probably went wrong when
formulating the model?

D,I (e) Select an objective function for which this model has no
optimal solution. Then work through the simplex method
step by step to demonstrate that Z is unbounded.

C (f) For the objective function selected in part (e), use a software
package based on the simplex method to determine that Z is
unbounded.

4.5-3. Follow the instructions of Prob. 4.5-2 when the constraints
are the following:

2x1 � x2 � 20
x1 � 2x2 � 20
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and

x1 � 0, x2 � 0.

D,I 4.5-4. Consider the following problem.

Maximize Z � 5x1 � x2 � 3x3 � 4x4,

subject to

� x1 � 2x2 � 4x3 � 3x4 � 20
�4x1 � 6x2 � 5x3 � 4x4 � 40
�2x1 � 3x2 � 3x3 � 8x4 � 50

and

x1 � 0, x2 � 0, x3 � 0, x4 � 0.

Work through the simplex method step by step to demonstrate that
Z is unbounded.

4.5-5. A basic property of any linear programming problem with
a bounded feasible region is that every feasible solution can be ex-
pressed as a convex combination of the CPF solutions (perhaps in
more than one way). Similarly, for the augmented form of the prob-
lem, every feasible solution can be expressed as a convex combi-
nation of the BF solutions.
(a) Show that any convex combination of any set of feasible so-

lutions must be a feasible solution (so that any convex combi-
nation of CPF solutions must be feasible).

(b) Use the result quoted in part (a) to show that any convex com-
bination of BF solutions must be a feasible solution.

4.5-6. Using the facts given in Prob. 4.5-5, show that the follow-
ing statements must be true for any linear programming problem
that has a bounded feasible region and multiple optimal solutions:
(a) Every convex combination of the optimal BF solutions must

be optimal.
(b) No other feasible solution can be optimal.

4.5-7. Consider a two-variable linear programming problem whose
CPF solutions are (0, 0), (6, 0), (6, 3), (3, 3), and (0, 2). (See Prob.
3.2-2 for a graph of the feasible region.)
(a) Use the graph of the feasible region to identify all the con-

straints for the model.
(b) For each pair of adjacent CPF solutions, give an example of an

objective function such that all the points on the line segment
between these two corner points are multiple optimal solutions.

(c) Now suppose that the objective function is Z � �x1 � 2x2. Use
the graphical method to find all the optimal solutions.

D,I (d) For the objective function in part (c), work through the sim-
plex method step by step to find all the optimal BF solu-
tions. Then write an algebraic expression that identifies all
the optimal solutions.

D,I 4.5-8. Consider the following problem.

Maximize Z � x1 � x2 � x3 � x4,

subject to

x1 � x2 � 3
x3 � x4 � 2

and

xj � 0, for j � 1, 2, 3, 4.

Work through the simplex method step by step to find all the op-
timal BF solutions.

4.6-1.* Consider the following problem.

Maximize Z � 2x1 � 3x2,

subject to

x1 � 2x2 � 4
x1 � x2 � 3

and

x1 � 0, x2 � 0.

D,I (a) Solve this problem graphically.
(b) Using the Big M method, construct the complete first simplex

tableau for the simplex method and identify the corresponding
initial (artificial) BF solution. Also identify the initial entering
basic variable and the leaving basic variable.

I (c) Continue from part (b) to work through the simplex method
step by step to solve the problem.

4.6-2. Consider the following problem.

Maximize Z � 4x1 � 2x2 � 3x3 � 5x4,

subject to

2x1 � 3x2 � 4x3 � 2x4 � 300
8x1 � x2 � x3 � 5x4 � 300

and

xj � 0, for j � 1, 2, 3, 4.

(a) Using the Big M method, construct the complete first simplex
tableau for the simplex method and identify the corresponding
initial (artificial) BF solution. Also identify the initial entering
basic variable and the leaving basic variable.

I (b) Work through the simplex method step by step to solve the
problem.

(c) Using the two-phase method, construct the complete first sim-
plex tableau for phase 1 and identify the corresponding initial
(artificial) BF solution. Also identify the initial entering basic
variable and the leaving basic variable.

I (d) Work through phase 1 step by step.
(e) Construct the complete first simplex tableau for phase 2.
I (f) Work through phase 2 step by step to solve the problem.
(g) Compare the sequence of BF solutions obtained in part (b) with

that in parts (d) and ( f ). Which of these solutions are feasible
only for the artificial problem obtained by introducing artificial
variables and which are actually feasible for the real problem?

C (h) Use a software package based on the simplex method to
solve the problem.

4.6-3.* Consider the following problem.

Minimize Z � 2x1 � 3x2 � x3,

hil23453_ch04_093-162.qxd  1/15/70  7:42 AM  Page 156 Final PDF to printer



PROBLEMS 157

subject to

x1 � 4x2 � 2x3 � 8
3x1 � 2x2 � 2x3 � 6

and

x1 � 0, x2 � 0, x3 � 0.

(a) Reformulate this problem to fit our standard form for a linear
programming model presented in Sec. 3.2.

I (b) Using the Big M method, work through the simplex method
step by step to solve the problem.

I (c) Using the two-phase method, work through the simplex
method step by step to solve the problem.

(d) Compare the sequence of BF solutions obtained in parts (b)
and (c). Which of these solutions are feasible only for the ar-
tificial problem obtained by introducing artificial variables and
which are actually feasible for the real problem?

C (e) Use a software package based on the simplex method to
solve the problem.

4.6-4. For the Big M method, explain why the simplex method
never would choose an artificial variable to be an entering basic
variable once all the artificial variables are nonbasic.

4.6-5. Consider the following problem.

Maximize Z � 90x1 � 70x2,

subject to

2x1 � x2 � 2
x1 � x2 � 2

and

x1 � 0, x2 � 0.

(a) Demonstrate graphically that this problem has no feasible
solutions.

C (b) Use a computer package based on the simplex method to
determine that the problem has no feasible solutions.

I (c) Using the Big M method, work through the simplex method
step by step to demonstrate that the problem has no feasible
solutions.

I (d) Repeat part (c) when using phase 1 of the two-phase method.

4.6-6. Follow the instructions of Prob. 4.6-5 for the following 
problem.

Minimize Z � 5,000x1 � 7,000x2,

subject to

�2x1 � x2 � 1
� x1 � 2x2 � 1

and

x1 � 0, x2 � 0.

4.6-7. Consider the following problem.

Maximize Z � 2x1 � 5x2 � 3x3,

subject to

x1 � 2x2 � x3 � 20
2x1 � 4x2 � x3 � 50

and

x1 � 0, x2 � 0, x3 � 0.

(a) Using the Big M method, construct the complete first simplex
tableau for the simplex method and identify the corresponding
initial (artificial) BF solution. Also identify the initial entering
basic variable and the leaving basic variable.

I (b) Work through the simplex method step by step to solve the
problem.

I (c) Using the two-phase method, construct the complete first
simplex tableau for phase 1 and identify the corresponding
initial (artificial) BF solution. Also identify the initial enter-
ing basic variable and the leaving basic variable.

I (d) Work through phase 1 step by step.
(e) Construct the complete first simplex tableau for phase 2.
I (f) Work through phase 2 step by step to solve the problem.
(g) Compare the sequence of BF solutions obtained in part (b) with

that in parts (d) and ( f ). Which of these solutions are feasible
only for the artificial problem obtained by introducing artificial
variables and which are actually feasible for the real problem?

C (h) Use a software package based on the simplex method to solve
the problem.

4.6-8. Consider the following problem.

Minimize Z � 2x1 � x2 � 3x3,

subject to

5x1 � 2x2 � 7x3 � 420
3x1 � 2x2 � 5x3 � 280

and

x1 � 0, x2 � 0, x3 � 0.

I (a) Using the two-phase method, work through phase 1 step by
step.

C (b) Use a software package based on the simplex method to
formulate and solve the phase 1 problem.

I (c) Work through phase 2 step by step to solve the original 
problem.

C (d) Use a software package based on the simplex method to
solve the original problem.

4.6-9.* Consider the following problem.

Minimize Z � 3x1 � 2x2 � 4x3,

subject to

2x1 � x2 � 3x3 � 60
3x1 � 3x2 � 5x3 � 120

and

x1 � 0, x2 � 0, x3 � 0.
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I (a) Using the Big M method, work through the simplex method
step by step to solve the problem.

I (b) Using the two-phase method, work through the simplex
method step by step to solve the problem.

(c) Compare the sequence of BF solutions obtained in parts (a)
and (b). Which of these solutions are feasible only for the ar-
tificial problem obtained by introducing artificial variables and
which are actually feasible for the real problem?

C (d) Use a software package based on the simplex method to
solve the problem.

4.6-10. Follow the instructions of Prob. 4.6-9 for the following
problem.

Minimize Z � 3x1 � 2x2 � 7x3,

subject to

�x1 � x2 � x3 � 10
2x1 � x2 � x3 � 10

and

x1 � 0, x2 � 0, x3 � 0.

4.6-11. Label each of the following statements as true or false, and
then justify your answer.
(a) When a linear programming model has an equality constraint,

an artificial variable is introduced into this constraint in order
to start the simplex method with an obvious initial basic solu-
tion that is feasible for the original model.

(b) When an artificial problem is created by introducing artificial
variables and using the Big M method, if all artificial variables
in an optimal solution for the artificial problem are equal to
zero, then the real problem has no feasible solutions.

(c) The two-phase method is commonly used in practice because
it usually requires fewer iterations to reach an optimal solution
than the Big M method does.

4.6-12. Consider the following problem.

Maximize Z � x1 � 4x2 � 2x3,

subject to

4x1 � x2 � 2x3 � 5
�x1 � x2 � 2x3 � 10

and

x2 � 0, x3 � 0

(no nonnegativity constraint for x1).
(a) Reformulate this problem so all variables have nonnegativity

constraints.
D,I (b) Work through the simplex method step by step to solve the

problem.
C (c) Use a software package based on the simplex method to

solve the problem.

4.6-13.* Consider the following problem.

Maximize Z � �x1 � 4x2,

subject to

�3x1 � x2 � �6

� x1 � 2x2 � �4
� x1 � 2x2 � �3

(no lower bound constraint for x1).
D,I (a) Solve this problem graphically.
(b) Reformulate this problem so that it has only two functional

constraints and all variables have nonnegativity constraints.
D,I (c) Work through the simplex method step by step to solve the

problem.

4.6-14. Consider the following problem.

Maximize Z � �x1 � 2x2 � x3,

subject to

3x2 � x3 � 120
x1 � x2 � 4x3 � 80

�3x1 � x2 � 2x3 � 100

(no nonnegativity constraints).
(a) Reformulate this problem so that all variables have nonnega-

tivity constraints.
D,I (b) Work through the simplex method step by step to solve the

problem.
C (c) Use a computer package based on the simplex method to

solve the problem.

4.6-15. This chapter has described the simplex method as applied to
linear programming problems where the objective function is to be
maximized. Section 4.6 then described how to convert a minimiza-
tion problem to an equivalent maximization problem for applying the
simplex method. Another option with minimization problems is to
make a few modifications in the instructions for the simplex method
given in the chapter in order to apply the algorithm directly.
(a) Describe what these modifications would need to be.
(b) Using the Big M method, apply the modified algorithm devel-

oped in part (a) to solve the following problem directly by
hand. (Do not use your OR Courseware.)

Minimize Z � 3x1 � 8x2 � 5x3,

subject to

3x1 � 3x2 � 4x3 � 70
3x1 � 5x2 � 2x3 � 70

and

x1 � 0, x2 � 0, x3 � 0.

4.6-16. Consider the following problem.

Maximize Z � �2x1 � x2 � 4x3 � 3x4,

subject to

x1 � x2 � 3x3 � 2x4 � �4
x1 � x2 � x3 � x4 � �1

2x1 � x2 � x3 � x4 � �2
x1 � 2x2 � x3 � 2x4 � �2

and

x2 � 0, x3 � 0, x4 � 0

(no nonnegativity constraint for x1).
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(a) Reformulate this problem to fit our standard form for a linear
programming model presented in Sec. 3.2.

(b) Using the Big M method, construct the complete first simplex
tableau for the simplex method and identify the corresponding
initial (artificial) BF solution. Also identify the initial entering
basic variable and the leaving basic variable.

(c) Using the two-phase method, construct row 0 of the first sim-
plex tableau for phase 1.

C (d) Use a computer package based on the simplex method to
solve the problem.

I 4.6-17. Consider the following problem.

Maximize Z � 4x1 � 5x2 � 3x3,

subject to

x1 � x2 � 2x3 � 20
15x1 � 6x2 � 5x3 � 50

x1 � 3x2 � 5x3 � 30

and

x1 � 0, x2 � 0, x3 � 0.

Work through the simplex method step by step to demonstrate that
this problem does not possess any feasible solutions.

4.7-1. Refer to Fig. 4.10 and the resulting allowable range for the
respective right-hand sides of the Wyndor Glass Co. problem given
in Sec. 3.1. Use graphical analysis to demonstrate that each given
allowable range is correct.

4.7-2. Reconsider the model in Prob. 4.1-5. Interpret the right-hand
side of the respective functional constraints as the amount avail-
able of the respective resources.
I (a) Use graphical analysis as in Fig. 4.8 to determine the shadow

prices for the respective resources.
I (b) Use graphical analysis to perform sensitivity analysis on this

model. In particular, check each parameter of the model to de-
termine whether it is a sensitive parameter (a parameter whose
value cannot be changed without changing the optimal solution)
by examining the graph that identifies the optimal solution.

I (c) Use graphical analysis as in Fig. 4.9 to determine the allow-
able range for each cj value (coefficient of xj in the objective
function) over which the current optimal solution will remain
optimal.

I (d) Changing just one bi value (the right-hand side of functional
constraint i) will shift the corresponding constraint boundary.
If the current optimal CPF solution lies on this constraint
boundary, this CPF solution also will shift. Use graphical analy-
sis to determine the allowable range for each bi value over
which this CPF solution will remain feasible.

C (e) Verify your answers in parts (a), (c), and (d) by using a com-
puter package based on the simplex method to solve the prob-
lem and then to generate sensitivity analysis information.

4.7-3. You are given the following linear programming problem.

Maximize Z � 4x1 � 2x2,

subject to

2x1 � 3x2 � 16 (resource 1)

x1 � 3x2 � 17 (resource 2)
x1  x2 � 5 (resource 3)

and

x1 � 0, x2 � 0.

D,I (a) Solve this problem graphically.
(b) Use graphical analysis to find the shadow prices for the resources.
(c) Determine how many additional units of resource 1 would be

needed to increase the optimal value of Z by 15.

4.7-4. Consider the following problem.

Maximize Z � x1 � 7x2 � 3x3,

subject to

�2x1 � x2 � x3 � 4 (resource 1)
�4x1 � 3x2 � x3 � 2 (resource 2)
�3x1 � 2x2 � x3 � 3 (resource 3)

and

x1 � 0, x2 � 0, x3 � 0.

D,I (a) Work through the simplex method step by step to solve the
problem.

(b) Identify the shadow prices for the three resources and describe
their significance.

C (c) Use a software package based on the simplex method to
solve the problem and then to generate sensitivity infor-
mation. Use this information to identify the shadow price
for each resource, the allowable range for each objective
function coefficient, and the allowable range for each right-
hand side.

4.7-5.* Consider the following problem.

Maximize Z � 2x1 � 2x2 � 3x3,

subject to

�x1 � x2 � x3 � 4 (resource 1)
2x1 � x2 � x3 � 2 (resource 2)

x1 � x2 � 3x3 � 12 (resource 3)

and

x1 � 0, x2 � 0, x3 � 0.

D,I (a) Work through the simplex method step by step to solve the
problem.

(b) Identify the shadow prices for the three resources and describe
their significance.

C (c) Use a software package based on the simplex method to
solve the problem and then to generate sensitivity infor-
mation. Use this information to identify the shadow price
for each resource, the allowable range for each objective
function coefficient and the allowable range for each right-
hand side.

4.7-6. Consider the following problem.

Maximize Z � 5x1 � 4x2 � x3 � 3x4,
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subject to

3x1 � 2x2 � 3x3 � x4 � 24 (resource 1)
3x1 � 3x2 � x3 � 3x4 � 36 (resource 2)

and

x1 � 0, x2 � 0, x3 � 0, x4 � 0.

D,I (a) Work through the simplex method step by step to solve the
problem.

(b) Identify the shadow prices for the two resources and describe
their significance.

C (c) Use a software package based on the simplex method to solve
the problem and then to generate sensitivity information. Use

this information to identify the shadow price for each re-
source, the allowable range for each objective function
coefficient, and the allowable range for each right-hand
side.

4.9.1. Use the interior-point algorithm in your IOR Tutorial 
to solve the model in Prob. 4.1-4. Choose � � 0.5 from the Op-
tion menu, use (x1, x2) � (0.1, 0.4) as the initial trial solution, and
run 15 iterations. Draw a graph of the feasible region, and then
plot the trajectory of the trial solutions through this feasible region.

4.9-2. Repeat Prob. 4.9-1 for the model in Prob. 4.1-5.

Labor and
Clothing Item Materials Requirements Price Machine Cost

Tailored wool slacks 3 yards of wool $300 $160
2 yards of acetate for lining

Cashmere sweater 1.5 yards of cashmere $450 $150
Silk blouse 1.5 yards of silk $180 $100
Silk camisole 0.5 yard of silk $120 $ 60
Tailored skirt 2 yards of rayon $270 $120

1.5 yards of acetate for lining
Wool blazer 2.5 yards of wool $320 $140

1.5 yards of acetate for lining

■ CASES

CASE 4.1 Fabrics and Fall Fashions
From the tenth floor of her office building, Katherine Rally
watches the swarms of New Yorkers fight their way through
the streets infested with yellow cabs and the sidewalks lit-
tered with hot dog stands. On this sweltering July day, she
pays particular attention to the fashions worn by the various
women and wonders what they will choose to wear in the
fall. Her thoughts are not simply random musings; they are
critical to her work since she owns and manages TrendLines,
an elite women’s clothing company.

Today is an especially important day because she must
meet with Ted Lawson, the production manager, to decide
upon next month’s production plan for the fall line. Specif-
ically, she must determine the quantity of each clothing
item she should produce given the plant’s production ca-
pacity, limited resources, and demand forecasts. Accurate
planning for next month’s production is critical to fall
sales since the items produced next month will appear in
stores during September, and women generally buy the
majority of the fall fashions when they first appear in 
September.

She turns back to her sprawling glass desk and looks at
the numerous papers covering it. Her eyes roam across the
clothing patterns designed almost six months ago, the lists
of materials requirements for each pattern, and the lists of
demand forecasts for each pattern determined by customer
surveys at fashion shows. She remembers the hectic and
sometimes nightmarish days of designing the fall line and
presenting it at fashion shows in New York, Milan, and Paris.
Ultimately, she paid her team of six designers a total of
$860,000 for their work on her fall line. With the cost of hir-
ing runway models, hair stylists, and makeup artists, sewing
and fitting clothes, building the set, choreographing and re-
hearsing the show, and renting the conference hall, each of
the three fashion shows cost her an additional $2,700,000.

She studies the clothing patterns and material require-
ments. Her fall line consists of both professional and casual
fashions. She determined the prices for each clothing item
by taking into account the quality and cost of material, the
cost of labor and machining, the demand for the item, and
the prestige of the TrendLines brand name.

The fall professional fashions include:
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Labor and
Clothing Item Materials Requirements Price Machine Cost

Velvet pants 3 yards of velvet $350 $175
2 yards of acetate for lining

Cotton sweater 1.5 yards of cotton $130 $ 60
Cotton miniskirt 0.5 yard of cotton $ 75 $ 40
Velvet shirt 1.5 yards of velvet $200 $160
Button-down blouse 1.5 yards of rayon $120 $ 90

Material Price per yard

Wool $ 9.00
Acetate $ 1.50
Cashmere $60.00
Silk $13.00
Rayon $ 2.25
Velvet $12.00
Cotton $ 2.50

The fall casual fashions include:

She knows that for the next month, she has ordered
45,000 yards of wool, 28,000 yards of acetate, 9,000 yards
of cashmere, 18,000 yards of silk, 30,000 yards of rayon,
20,000 yards of velvet, and 30,000 yards of cotton for pro-
duction. The prices of the materials are as follows:

shirts. TrendLines does not want to produce more than the
forecasted demand because once the pants and shirts go out
of style, the company cannot sell them. TrendLines can pro-
duce less than the forecasted demand, however, since the
company is not required to meet the demand. The cashmere
sweater also has limited demand because it is quite expen-
sive, and TrendLines knows it can sell at most 4,000 cash-
mere sweaters. The silk blouses and camisoles have limited
demand because many women think silk is too hard to care
for, and TrendLines projects that it can sell at most 12,000
silk blouses and 15,000 silk camisoles.

The demand forecasts also indicate that the wool
slacks, tailored skirts, and wool blazers have a great demand
because they are basic items needed in every professional
wardrobe. Specifically, the demand for wool slacks is 7,000
pairs of slacks, and the demand for wool blazers is 5,000
blazers. Katherine wants to meet at least 60 percent of the
demand for these two items in order to maintain her loyal
customer base and not lose business in the future. Although
the demand for tailored skirts could not be estimated,
Katherine feels she should make at least 2,800 of them.

(a) Ted is trying to convince Katherine not to produce any velvet
shirts since the demand for this fashion fad is quite low. He
argues that this fashion fad alone accounts for $500,000 of the
fixed design and other costs. The net contribution (price of
clothing item � materials cost � labor cost) from selling the
fashion fad should cover these fixed costs. Each velvet shirt
generates a net contribution of $22. He argues that given the
net contribution, even satisfying the maximum demand will not
yield a profit. What do you think of Ted’s argument?

(b) Formulate and solve a linear programming problem to maximize
profit given the production, resource, and demand constraints.

Before she makes her final decision, Katherine plans to ex-
plore the following questions independently except where
otherwise indicated.

(c) The textile wholesaler informs Katherine that the velvet can-
not be sent back because the demand forecasts show that the

Any material that is not used in production can be sent back
to the textile wholesaler for a full refund, although scrap ma-
terial cannot be sent back to the wholesaler.

She knows that the production of both the silk blouse
and cotton sweater leaves leftover scraps of material. Specif-
ically, for the production of one silk blouse or one cotton
sweater, 2 yards of silk and cotton, respectively, are needed.
From these 2 yards, 1.5 yards are used for the silk blouse
or the cotton sweater and 0.5 yard is left as scrap material.
She does not want to waste the material, so she plans to use
the rectangular scrap of silk or cotton to produce a silk
camisole or cotton miniskirt, respectively. Therefore, when-
ever a silk blouse is produced, a silk camisole is also pro-
duced. Likewise, whenever a cotton sweater is produced, a
cotton miniskirt is also produced. Note that it is possible to
produce a silk camisole without producing a silk blouse and
a cotton miniskirt without producing a cotton sweater.

The demand forecasts indicate that some items have
limited demand. Specifically, because the velvet pants and
velvet shirts are fashion fads, TrendLines has forecasted that
it can sell only 5,500 pairs of velvet pants and 6,000 velvet
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demand for velvet will decrease in the future. Katherine can
therefore get no refund for the velvet. How does this fact change
the production plan?

(d) What is an intuitive economic explanation for the difference be-
tween the solutions found in parts (b) and (c)?

(e) The sewing staff encounters difficulties sewing the arms and
lining into the wool blazers since the blazer pattern has an awk-
ward shape and the heavy wool material is difficult to cut and
sew. The increased labor time to sew a wool blazer increases
the labor and machine cost for each blazer by $80. Given this
new cost, how many of each clothing item should TrendLines
produce to maximize profit?

(f) The textile wholesaler informs Katherine that since another tex-
tile customer canceled his order, she can obtain an extra 10,000
yards of acetate. How many of each clothing item should Trend-
Lines now produce to maximize profit?

(g) TrendLines assumes that it can sell every item that was not sold
during September and October in a big sale in November at 60
percent of the original price. Therefore, it can sell all items in
unlimited quantity during the November sale. (The previously
mentioned upper limits on demand concern only the sales dur-
ing September and October.) What should the new production
plan be to maximize profit?

■ PREVIEWS OF ADDED CASES ON OUR WEBSITE (www.mhhe.com/hillier)

CASE 4.2 New Frontiers
AmeriBank will soon begin offering Web banking to its cus-
tomers. To guide its planning for the services to provide over
the Internet, a survey will be conducted with four different
age groups in three types of communities. AmeriBank is im-
posing a number of constraints on how extensively each age
group and each community should be surveyed. Linear pro-
gramming is needed to develop a plan for the survey that
will minimize its total cost while meeting all the survey con-
straints under several different scenarios.

CASE 4.3 Assigning Students to Schools
After deciding to close one of its middle schools, the Spring-
field school board needs to reassign all of next year’s middle
school students to the three remaining middle schools. Many

of the students will be bused, so minimizing the total busing
cost is one objective. Another is to minimize the inconve-
nience and safety concerns for the students who will walk
or bicycle to school. Given the capacities of the three
schools, as well as the need to roughly balance the number
of students in the three grades at each school, how can lin-
ear programming be used to determine how many students
from each of the city’s six residential areas should be as-
signed to each school? What would happen if each entire
residential area must be assigned to the same school? (This
case will be continued in Cases 7.3 and 12.4.)
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5C H A P T E R

The Theory of the Simplex Method

Chapter 4 introduced the basic mechanics of the simplex method. Now we shall delve a
little more deeply into this algorithm by examining some of its underlying theory. The

first section further develops the general geometric and algebraic properties that form the
foundation of the simplex method. We then describe the matrix form of the simplex method,
which streamlines the procedure considerably for computer implementation. Next we use
this matrix form to present a fundamental insight about a property of the simplex method
that enables us to deduce how changes that are made in the original model get carried along
to the final simplex tableau. This insight will provide the key to the important topics of
Chap. 6 (duality theory) and Secs. 7.1–7.3 (sensitivity analysis). The chapter then con-
cludes by presenting the revised simplex method, which further streamlines the matrix
form of the simplex method. Commercial computer codes of the simplex method normally
are based on the revised simplex method.

■ 5.1 FOUNDATIONS OF THE SIMPLEX METHOD
Section 4.1 introduced corner-point feasible (CPF) solutions and the key role they play
in the simplex method. These geometric concepts were related to the algebra of the simplex
method in Secs. 4.2 and 4.3. However, all this was done in the context of the Wyndor
Glass Co. problem, which has only two decision variables and so has a straightforward
geometric interpretation. How do these concepts generalize to higher dimensions when
we deal with larger problems? We address this question in this section.

We begin by introducing some basic terminology for any linear programming prob-
lem with n decision variables. While we are doing this, you may find it helpful to refer to
Fig. 5.1 (which repeats Fig. 4.1) to interpret these definitions in two dimensions (n � 2).

Terminology

It may seem intuitively clear that optimal solutions for any linear programming problem
must lie on the boundary of the feasible region, and in fact, this is a general property.
Because boundary is a geometric concept, our initial definitions clarify how the bound-
ary of the feasible region is identified algebraically.

The constraint boundary equation for any constraint is obtained by replacing
its �, �, or � sign with an � sign.
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Consequently, the form of a constraint boundary equation is ai1x1 � ai2x2 � � � � �
ainxn � bi for functional constraints and xj � 0 for nonnegativity constraints. Each such
equation defines a “flat” geometric shape (called a hyperplane) in n-dimensional space,
analogous to the line in two-dimensional space and the plane in three-dimensional space.
This hyperplane forms the constraint boundary for the corresponding constraint. When
the constraint has either a � or a � sign, this constraint boundary separates the points
that satisfy the constraint (all the points on one side up to and including the constraint
boundary) from the points that violate the constraint (all those on the other side of the
constraint boundary). When the constraint has an � sign, only the points on the constraint
boundary satisfy the constraint.

For example, the Wyndor Glass Co. problem has five constraints (three functional
constraints and two nonnegativity constraints), so it has the five constraint boundary equa-
tions shown in Fig. 5.1. Because n � 2, the hyperplanes defined by these constraint bound-
ary equations are simply lines. Therefore, the constraint boundaries for the five constraints
are the five lines shown in Fig. 5.1.

The boundary of the feasible region contains just those feasible solutions that satisfy one
or more of the constraint boundary equations.

Geometrically, any point on the boundary of the feasible region lies on one or more of
the hyperplanes defined by the respective constraint boundary equations. Thus, in Fig. 5.1,
the boundary consists of the five darker line segments.

Next, we give a general definition of CPF solution in n-dimensional space.

A corner-point feasible (CPF) solution is a feasible solution that does not lie
on any line segment1 connecting two other feasible solutions.

As this definition implies, a feasible solution that does lie on a line segment connecting two
other feasible solutions is not a CPF solution. To illustrate when n � 2, consider Fig. 5.1.
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(6, 0)(4, 0)

(0, 6)

(0, 9)

(2, 6)

(4, 3)

(0, 0)

Feasible
region

x1 � 0

3x1 � 2x2 � 18

x2 � 0

x1 � 4

2x2 � 12

Maximize Z � 3x1 � 5x2,
subject to

x1 �   4
� 12
� 18

2x2
2x23x1 �

x1 � 0, 0    x2      �
and

(4, 6)

■ FIGURE 5.1
Constraint boundaries,
constraint boundary
equations, and corner-point
solutions for the Wyndor
Glass Co. problem.

1An algebraic expression for a line segment is given in Appendix 2.
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The point (2, 3) is not a CPF solution, because it lies on various such line segments, e.g.,
it is the midpoint on the line segment connecting (0, 3) and (4, 3). Similarly, (0, 3) is not
a CPF solution, because it is the midpoint on the line segment connecting (0, 0) and 
(0, 6). However, (0, 0) is a CPF solution, because it is impossible to find two other feasi-
ble solutions that lie on completely opposite sides of (0, 0). (Try it.)

When the number of decision variables n is greater than 2 or 3, this definition for
CPF solution is not a very convenient one for identifying such solutions. Therefore, it will
prove most helpful to interpret these solutions algebraically. For the Wyndor Glass Co.
example, each CPF solution in Fig. 5.1 lies at the intersection of two (n � 2) constraint
lines; i.e., it is the simultaneous solution of a system of two constraint boundary equa-
tions. This situation is summarized in Table 5.1, where defining equations refer to the
constraint boundary equations that yield (define) the indicated CPF solution.

For any linear programming problem with n decision variables, each CPF solu-
tion lies at the intersection of n constraint boundaries; i.e., it is the simultaneous
solution of a system of n constraint boundary equations.

However, this is not to say that every set of n constraint boundary equations chosen
from the n � m constraints (n nonnegativity and m functional constraints) yields a CPF
solution. In particular, the simultaneous solution of such a system of equations might vi-
olate one or more of the other m constraints not chosen, in which case it is a corner-point
infeasible solution. The example has three such solutions, as summarized in Table 5.2.
(Check to see why they are infeasible.)

5.1 FOUNDATIONS OF THE SIMPLEX METHOD 165

■ TABLE 5.1 Defining equations for each 
CPF solution for the 
Wyndor Glass Co. problem

CPF Solution Defining Equations

(0, 0) x1 � 0
x2 � 0

(0, 6) x1 � 0
2x2 � 12

(2, 6) 2x2 � 12
3x1 � 2x2 � 18

(4, 3) 3x1 � 2x2 � 18
x1 � 4

(4, 0) x1 � 4
x2 � 0

■ TABLE 5.2 Defining equations for each 
corner-point infeasible 
solution for the Wyndor 
Glass Co. problem

Corner-Point Defining
Infeasible Solution Equations

(0, 9) x1 � 0
3x1 � 2x2 � 18

(4, 6) 2x2 � 12
x1 � 4

(6, 0) 3x1 � 2x2 � 18
x2 � 0
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Furthermore, a system of n constraint boundary equations might have no solution at
all. This occurs twice in the example, with the pairs of equations (1) x1 � 0 and x1 � 4
and (2) x2 � 0 and 2x2 � 12. Such systems are of no interest to us.

The final possibility (which never occurs in the example) is that a system of n constraint
boundary equations has multiple solutions because of redundant equations. You need not be
concerned with this case either, because the simplex method circumvents its difficulties.

We also should mention that it is possible for more than one system of n constraint
boundary equations to yield the same CP solution. This would happen if a CPF solution
that lies at the intersection of n constraint boundaries also happens to have one or more
other constraint boundaries that pass through this same point. For example, if the x1 � 4
constraint in the Wyndor Glass Co. problem (where n � 2) were to be replaced by x1 � 2,
note in Fig. 5.1 how the CPF solution (2, 6) lies at the intersection of three constraint bound-
aries instead of just two. Therefore, this solution can be derived from any one of three pairs
of constraint boundary equations. (This is an example of the degeneracy discussed in a dif-
ferent context in Sec. 4.5.)

To summarize for the example, with five constraints and two variables, there are
10 pairs of constraint boundary equations. Five of these pairs became defining equa-
tions for CPF solutions (Table 5.1), three became defining equations for corner-point
infeasible solutions (Table 5.2), and each of the final two pairs had no solution.

Adjacent CPF Solutions

Section 4.1 introduced adjacent CPF solutions and their role in solving linear program-
ming problems. We now elaborate.

Recall from Chap. 4 that (when we ignore slack, surplus, and artificial variables) each
iteration of the simplex method moves from the current CPF solution to an adjacent one.
What is the path followed in this process? What really is meant by adjacent CPF solu-
tion? First we address these questions from a geometric viewpoint, and then we turn to
algebraic interpretations.

These questions are easy to answer when n � 2. In this case, the boundary of the fea-
sible region consists of several connected line segments forming a polygon, as shown in
Fig. 5.1 by the five darker line segments. These line segments are the edges of the feasi-
ble region. Emanating from each CPF solution are two such edges leading to an adjacent
CPF solution at the other end. (Note in Fig. 5.1 how each CPF solution has two adjacent
ones.) The path followed in an iteration is to move along one of these edges from one end
to the other. In Fig. 5.1, the first iteration involves moving along the edge from (0, 0) to
(0, 6), and then the next iteration moves along the edge from (0, 6) to (2, 6). As Table 5.1
illustrates, each of these moves to an adjacent CPF solution involves just one change in
the set of defining equations (constraint boundaries on which the solution lies).

When n � 3, the answers are slightly more complicated. To help you visualize what
is going on, Fig. 5.2 shows a three-dimensional drawing of a typical feasible region when
n � 3, where the dots are the CPF solutions. This feasible region is a polyhedron rather than
the polygon we had with n � 2 (Fig. 5.1), because the constraint boundaries now are planes
rather than lines. The faces of the polyhedron form the boundary of the feasible region, where
each face is the portion of a constraint boundary that satisfies the other constraints as well.
Note that each CPF solution lies at the intersection of three constraint boundaries (sometimes
including some of the x1 � 0, x2 � 0, and x3 � 0 constraint boundaries for the nonnegativity
constraints), and the solution also satisfies the other constraints. Such intersections that do not
satisfy one or more of the other constraints yield corner-point infeasible solutions instead.

The darker line segment in Fig. 5.2 depicts the path of the simplex method on a typ-
ical iteration. The point (2, 4, 3) is the current CPF solution to begin the iteration, and
the point (4, 2, 4) will be the new CPF solution at the end of the iteration. The point 
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(2, 4, 3) lies at the intersection of the x2 � 4, x1 � x2 � 6, and �x1 � 2x3 � 4 constraint
boundaries, so these three equations are the defining equations for this CPF solution. If
the x2 � 4 defining equation were removed, the intersection of the other two constraint
boundaries (planes) would form a line. One segment of this line, shown as the dark line
segment from (2, 4, 3) to (4, 2, 4) in Fig. 5.2, lies on the boundary of the feasible region,
whereas the rest of the line is infeasible. This line segment is an edge of the feasible
region, and its endpoints (2, 4, 3) and (4, 2, 4) are adjacent CPF solutions.

For n � 3, all the edges of the feasible region are formed in this way as the feasible
segment of the line lying at the intersection of two constraint boundaries, and the two
endpoints of an edge are adjacent CPF solutions. In Fig. 5.2 there are 15 edges of the fea-
sible region, and so there are 15 pairs of adjacent CPF solutions. For the current CPF so-
lution (2, 4, 3), there are three ways to remove one of its three defining equations to obtain
an intersection of the other two constraint boundaries, so there are three edges emanating
from (2, 4, 3). These edges lead to (4, 2, 4), (0, 4, 2), and (2, 4, 0), so these are the CPF
solutions that are adjacent to (2, 4, 3).

For the next iteration, the simplex method chooses one of these three edges, say, the
darker line segment in Fig. 5.2, and then moves along this edge away from (2, 4, 3) until it
reaches the first new constraint boundary, x1 � 4, at its other endpoint. [We cannot continue
farther along this line to the next constraint boundary, x2 � 0, because this leads to a corner-
point infeasible solution—(6, 0, 5).] The intersection of this first new constraint boundary
with the two constraint boundaries forming the edge yields the new CPF solution (4, 2, 4).

When n � 3, these same concepts generalize to higher dimensions, except the con-
straint boundaries now are hyperplanes instead of planes. Let us summarize.

Consider any linear programming problem with n decision variables and a bounded feasible
region. A CPF solution lies at the intersection of n constraint boundaries (and satisfies the
other constraints as well). An edge of the feasible region is a feasible line segment that
lies at the intersection of n � 1 constraint boundaries, where each endpoint lies on one
additional constraint boundary (so that these endpoints are CPF solutions). Two CPF so-
lutions are adjacent if the line segment connecting them is an edge of the feasible region.
Emanating from each CPF solution are n such edges, each one leading to one of the n ad-
jacent CPF solutions. Each iteration of the simplex method moves from the current CPF
solution to an adjacent one by moving along one of these n edges.
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(4, 0, 4)

(4, 2, 4)

(4, 0, 0)

(4, 2, 0)

(2, 4, 0)(0, 4, 0)
x2

x1 

x3

(0, 4, 2)

(0, 0, 2)

(0, 0, 0)

Constraints

x1 � 4
x2 � 4

x1 � x2 � 6
�x1 � 2x3 � 4

x1 � 0,  x2 � 0,  x3 � 0

(2, 4, 3)

■ FIGURE 5.2
Feasible region and CPF
solutions for a three-variable
linear programming
problem.
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When you shift from a geometric viewpoint to an algebraic one, intersection of con-
straint boundaries changes to simultaneous solution of constraint boundary equations.
The n constraint boundary equations yielding (defining) a CPF solution are its defining
equations, where deleting one of these equations yields a line whose feasible segment is
an edge of the feasible region.

We next analyze some key properties of CPF solutions and then describe the implica-
tions of all these concepts for interpreting the simplex method. However, while the summary
on the previous page is fresh in your mind, let us give you a preview of its implications.
When the simplex method chooses an entering basic variable, the geometric interpretation is
that it is choosing one of the edges emanating from the current CPF solution to move along.
Increasing this variable from zero (and simultaneously changing the values of the other ba-
sic variables accordingly) corresponds to moving along this edge. Having one of the basic
variables (the leaving basic variable) decrease so far that it reaches zero corresponds to reach-
ing the first new constraint boundary at the other end of this edge of the feasible region.

Properties of CPF Solutions

We now focus on three key properties of CPF solutions that hold for any linear pro-
gramming problem that has feasible solutions and a bounded feasible region.

Property 1: (a) If there is exactly one optimal solution, then it must be a CPF
solution. (b) If there are multiple optimal solutions (and a bounded feasible re-
gion), then at least two must be adjacent CPF solutions.

Property 1 is a rather intuitive one from a geometric viewpoint. First consider Case (a),
which is illustrated by the Wyndor Glass Co. problem (see Fig. 5.1) where the one opti-
mal solution (2, 6) is indeed a CPF solution. Note that there is nothing special about this
example that led to this result. For any problem having just one optimal solution, it al-
ways is possible to keep raising the objective function line (hyperplane) until it just touches
one point (the optimal solution) at a corner of the feasible region.

We now give an algebraic proof for this case.

Proof of Case (a) of Property 1: We set up a proof by contradiction by assum-
ing that there is exactly one optimal solution and that it is not a CPF solution.
We then show below that this assumption leads to a contradiction and so cannot
be true. (The solution assumed to be optimal will be denoted by x*, and its ob-
jective function value by Z*.)

Recall the definition of CPF solution (a feasible solution that does not lie
on any line segment connecting two other feasible solutions). Since we have as-
sumed that the optimal solution x* is not a CPF solution, this implies that there
must be two other feasible solutions such that the line segment connecting them
contains the optimal solution. Let the vectors x	 and x
 denote these two other
feasible solutions, and let Z1 and Z2 denote their respective objective function
values. Like each other point on the line segment connecting x	 and x
,

x* � �x
 � (1 � �)x	

for some value of � such that 0 � � � 1. (For example, if x* is the midpoint be-
tween x	 and x
, then � � 0.5.) Thus, since the coefficients of the variables are
identical for Z*, Z1, and Z2, it follows that

Z* � �Z2 � (1 � �)Z1.

Since the weights � and 1 � � add to 1, the only possibilities for how Z*, Z1, and
Z2 compare are (1) Z* � Z1 � Z2, (2) Z1 � Z* � Z2, and (3) Z1 � Z* � Z2. The first
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possibility implies that x	 and x
 also are optimal, which contradicts the assumption
that there is exactly one optimal solution. Both the latter possibilities contradict the
assumption that x* (not a CPF solution) is optimal. The resulting conclusion is that
it is impossible to have a single optimal solution that is not a CPF solution.

Now consider Case (b), which was demonstrated in Sec. 3.2 under the definition of
optimal solution by changing the objective function in the example to Z � 3x1 � 2x2 (see
Fig. 3.5 in Sec. 3.2). What then happens when you are solving graphically is that the
objective function line keeps getting raised until it contains the line segment connecting
the two CPF solutions (2, 6) and (4, 3). The same thing would happen in higher di-
mensions except that an objective function hyperplane would keep getting raised until
it contained the line segment(s) connecting two (or more) adjacent CPF solutions. As a
consequence, all optimal solutions can be obtained as weighted averages of optimal CPF
solutions. (This situation is described further in Probs. 4.5-5 and 4.5-6.)

The real significance of Property 1 is that it greatly simplifies the search for an op-
timal solution because now only CPF solutions need to be considered. The magnitude of
this simplification is emphasized in Property 2.

Property 2: There are only a finite number of CPF solutions.

This property certainly holds in Figs. 5.1 and 5.2, where there are just 5 and 10 CPF
solutions, respectively. To see why the number is finite in general, recall that each CPF so-
lution is the simultaneous solution of a system of n out of the m � n constraint boundary
equations. The number of different combinations of m � n equations taken n at a time is

� � � ,

which is a finite number. This number, in turn, in an upper bound on the number of CPF
solutions. In Fig. 5.1, m � 3 and n � 2, so there are 10 different systems of two equa-
tions, but only half of them yield CPF solutions. In Fig. 5.2, m � 4 and n � 3, which
gives 35 different systems of three equations, but only 10 yield CPF solutions.

Property 2 suggests that, in principle, an optimal solution can be obtained by exhaus-
tive enumeration; i.e., find and compare all the finite number of CPF solutions. Unfortu-
nately, there are finite numbers, and then there are finite numbers that (for all practical
purposes) might as well be infinite. For example, a rather small linear programming prob-
lem with only m � 50 and n � 50 would have 100!/(50!)2 � 1029 systems of equations to
be solved! By contrast, the simplex method would need to examine only approximately
100 CPF solutions for a problem of this size. This tremendous savings can be obtained be-
cause of the optimality test given in Sec. 4.1 and restated here as Property 3.

Property 3: If a CPF solution has no adjacent CPF solutions that are better (as
measured by Z ), then there are no better CPF solutions anywhere. Therefore,
such a CPF solution is guaranteed to be an optimal solution (by Property 1), as-
suming only that the problem possesses at least one optimal solution (guaranteed
if the problem possesses feasible solutions and a bounded feasible region).

To illustrate Property 3, consider Fig. 5.1 for the Wyndor Glass Co. example. For the
CPF solution (2, 6), its adjacent CPF solutions are (0, 6) and (4, 3), and neither has a bet-
ter value of Z than (2, 6) does. This outcome implies that none of the other CPF solutions—
(0, 0) and (4, 0)—can be better than (2, 6), so (2, 6) must be optimal.

By contrast, Fig. 5.3 shows a feasible region that can never occur for a linear pro-
gramming problem (since the continuation of the constraint boundary lines that pass

(m � n)!
�

m!n!
m � n
�

n
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through ( �
8
3

�, 5) would chop off part of this region) but that does violate Property 3. The prob-
lem shown is identical to the Wyndor Glass Co. example (including the same objective
function) except for the enlargement of the feasible region to the right of ( �

8
3

�, 5).
Consequently, the adjacent CPF solutions for (2, 6) now are (0, 6) and (�

8
3

�, 5), and again
neither is better than (2, 6). However, another CPF solution (4, 5) now is better than (2, 6),
thereby violating Property 3. The reason is that the boundary of the feasible region goes
down from (2, 6) to ( �

8
3

�, 5) and then “bends outward” to (4, 5), beyond the objective func-
tion line passing through (2, 6).

The key point is that the kind of situation illustrated in Fig. 5.3 can never occur in
linear programming. The feasible region in Fig. 5.3 implies that the 2x2 � 12 and 3x1 �
2x2 � 18 constraints apply for 0 � x1 � �

8
3

�. However, under the condition that �
8
3

� � x1 � 4,
the 3x1 � 2x2 � 18 constraint is dropped and replaced by x2 � 5. Such “conditional con-
straints” just are not allowed in linear programming.

The basic reason that Property 3 holds for any linear programming problem is that the
feasible region always has the property of being a convex set2, as defined in Appendix 2
and illustrated in several figures there. For two-variable linear programming problems,
this convex property means that the angle inside the feasible region at every CPF solu-
tion is less than 180°. This property is illustrated in Fig. 5.1, where the angles at (0, 0),
(0, 6), and (4, 0) are 90° and those at (2, 6) and (4, 3) are between 90° and 180°. By con-
trast, the feasible region in Fig. 5.3 is not a convex set, because the angle at ( �

8
3

�, 5) is more
than 180°. This is the kind of “bending outward” at an angle greater than 180° that can
never occur in linear programming. In higher dimensions, the same intuitive notion of
“never bending outward” (a basic property of a convex set) continues to apply.
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x12 4

2

4

6

x2

(0, 0)

(0, 6) (2, 6)

(4, 5)

(4, 0)

( 8
3 , 5)

Z � 36 � 3x1 � 5x2

Feasible
region

2If you already are familiar with convex sets, note that the set of solutions that satisfy any linear programming
constraint (whether it be an inequality or equality constraint) is a convex set. For any linear programming prob-
lem, its feasible region is the intersection of the sets of solutions that satisfy its individual constraints. Since the
intersection of convex sets is a convex set, this feasible region necessarily is a convex set.

■ FIGURE 5.3
Modification of the Wyndor
Glass Co. problem that
violates both linear
programming and Property 3
for CPF solutions in linear
programming.
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■ TABLE 5.3 Indicating variables for constraint boundary equations*

Constraint
Type of Form of Constraint in Boundary Indicating

Constraint Constraint Augmented Form Equation Variable

Nonnegativity xj � 0 xj � 0 xj � 0 xj

Functional (�) �
n

j�1
aijxj � bi �

n

j�1
aijxj � xn�i � bi �

n

j�1
aijxj � bi xn�i

Functional (�) �
n

j�1
aijxj � bi �

n

j�1
aijxj � x�n�i � bi �

n

j�1
aijxj � bi x�n�i

Functional (�) �
n

j�1
aijxj � bi �

n

j�1
aijxj � x�n�i � xsi

� bi �
n

j�1
aijxj � bi x�n�i � xsi

∗Indicating variable � 0 ⇒ constraint boundary equation satisfied; 
indicating variable  0 ⇒ constraint boundary equation violated.

To clarify the significance of a convex feasible region, consider the objective function
hyperplane that passes through a CPF solution that has no adjacent CPF solutions that are
better. [In the original Wyndor Glass Co. example, this hyperplane is the objective function
line passing through (2, 6).] All these adjacent solutions [(0, 6) and (4, 3) in the example]
must lie either on the hyperplane or on the unfavorable side (as measured by Z ) of the
hyperplane. The feasible region being convex means that its boundary cannot “bend out-
ward” beyond an adjacent CPF solution to give another CPF solution that lies on the fa-
vorable side of the hyperplane. So Property 3 holds.

Extensions to the Augmented Form of the Problem

For any linear programming problem in our standard form (including functional constraints
in � form), the appearance of the functional constraints after slack variables are intro-
duced is as follows:

(1) a11x1 � a12x2 � � � � � a1nxn � xn�1 � b1

(2) a21x1 � a22x2 � � � � � a2nxn � xn�2 � b2

�����������������������������������������������������������������������
(m) am1x1 � am2x2� � � � � amnxn � xn�m � bm,

where xn�1, xn�2, . . . , xn�m are the slack variables. For other linear programming prob-
lems, Sec. 4.6 described how essentially this same appearance (proper form from Gaussian
elimination) can be obtained by introducing artificial variables, etc. Thus, the original so-
lutions (x1, x2, . . . , xn) now are augmented by the corresponding values of the slack or
artificial variables (xn�1, xn�2, . . . , xn�m) and perhaps some surplus variables as well. This
augmentation led in Sec. 4.2 to defining basic solutions as augmented corner-point solutions
and basic feasible solutions (BF solutions) as augmented CPF solutions. Consequently, the
preceding three properties of CPF solutions also hold for BF solutions.

Now let us clarify the algebraic relationships between basic solutions and corner-point
solutions. Recall that each corner-point solution is the simultaneous solution of a system
of n constraint boundary equations, which we called its defining equations. The key ques-
tion is: How do we tell whether a particular constraint boundary equation is one of the
defining equations when the problem is in augmented form? The answer, fortunately, is
a simple one. Each constraint has an indicating variable that completely indicates (by
whether its value is zero) whether that constraint’s boundary equation is satisfied by the
current solution. A summary appears in Table 5.3. For the type of constraint in each row
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of the table, note that the corresponding constraint boundary equation (fourth column) is
satisfied if and only if this constraint’s indicating variable (fifth column) equals zero. In
the last row (functional constraint in � form), the indicating variable x�n�i � xsi

actually
is the difference between the artificial variable x�n�i and the surplus variable xsi

.
Thus, whenever a constraint boundary equation is one of the defining equations for

a corner-point solution, its indicating variable has a value of zero in the augmented form
of the problem. Each such indicating variable is called a nonbasic variable for the corre-
sponding basic solution. The resulting conclusions and terminology (already introduced
in Sec. 4.2) are summarized next.

Each basic solution has m basic variables, and the rest of the variables are non-
basic variables set equal to zero. (The number of nonbasic variables equals n plus
the number of surplus variables.) The values of the basic variables are given by
the simultaneous solution of the system of m equations for the problem in aug-
mented form (after the nonbasic variables are set to zero). This basic solution is
the augmented corner-point solution whose n defining equations are those indicated
by the nonbasic variables. In particular, whenever an indicating variable in the fifth
column of Table 5.3 is a nonbasic variable, the constraint boundary equation in the
fourth column is a defining equation for the corner-point solution. (For functional
constraints in � form, at least one of the two supplementary variables x�n�i and xsi
always is a nonbasic variable, but the constraint boundary equation becomes a defin-
ing equation only if both of these variables are nonbasic variables.)

Now consider the basic feasible solutions. Note that the only requirements for a so-
lution to be feasible in the augmented form of the problem are that it satisfy the system
of equations and that all the variables be nonnegative.

A BF solution is a basic solution where all m basic variables are nonnegative (� 0).
A BF solution is said to be degenerate if any of these m variables equals zero.

Thus, it is possible for a variable to be zero and still not be a nonbasic variable for the
current BF solution. (This case corresponds to a CPF solution that satisfies another con-
straint boundary equation in addition to its n defining equations.) Therefore, it is neces-
sary to keep track of which is the current set of nonbasic variables (or the current set of
basic variables) rather than to rely upon their zero values.

We noted earlier that not every system of n constraint boundary equations yields a
corner-point solution, because the system may have no solution or it may have multiple
solutions. For analogous reasons, not every set of n nonbasic variables yields a basic solu-
tion. However, these cases are avoided by the simplex method.

To illustrate these definitions, consider the Wyndor Glass Co. example once more. Its
constraint boundary equations and indicating variables are shown in Table 5.4.

172 CHAPTER 5 THE THEORY OF THE SIMPLEX METHOD

■ TABLE 5.4 Indicating variables for the constraint boundary equations of the
Wyndor Glass Co. problem*

Constraint in Constraint Boundary Indicating
Constraint Augmented Form Equation Variable

x1 � 0 x1 � 0 x1 � 0 x1

x2 � 0 x2 � 0 x2 � 0 x2

x1 � 4 (1) 2x1 � 2x2 � x3x3x3 � 24 x1 � 4 x3

2x2 � 12 (2) 3x1 � 2x2 � x3x4x3 � 12 2x2 � 12 x4

3x1 � 2x2 � 18 (3) 3x1 � 2x2 � x3x3x5 � 18 3x1 � 2x2 � 18 x5

∗Indicating variable � 0 ⇒ constraint boundary equation satisfied; 
indicating variable  0 ⇒ constraint boundary equation violated.
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Augmenting each of the CPF solutions (see Table 5.1) yields the BF solutions listed
in Table 5.5. This table places adjacent BF solutions next to each other, except for the pair
consisting of the first and last solutions listed. Notice that in each case the nonbasic vari-
ables necessarily are the indicating variables for the defining equations. Thus, adjacent
BF solutions differ by having just one different nonbasic variable. Also notice that each
BF solution is the simultaneous solution of the system of equations for the problem in
augmented form (see Table 5.4) when the nonbasic variables are set equal to zero.

Similarly, the three corner-point infeasible solutions (see Table 5.2) yield the three
basic infeasible solutions shown in Table 5.6.

The other two sets of nonbasic variables, (1) x1 and x3 and (2) x2 and x4, do not yield
a basic solution, because setting either pair of variables equal to zero leads to having no
solution for the system of Eqs. (1) to (3) given in Table 5.4. This conclusion parallels the
observation we made early in this section that the corresponding sets of constraint bound-
ary equations do not yield a solution.

The simplex method starts at a BF solution and then iteratively moves to a better
adjacent BF solution until an optimal solution is reached. At each iteration, how is the
adjacent BF solution reached?

For the original form of the problem, recall that an adjacent CPF solution is reached
from the current one by (1) deleting one constraint boundary (defining equation) from the
set of n constraint boundaries defining the current solution, (2) moving away from the
current solution in the feasible direction along the intersection of the remaining n � 1
constraint boundaries (an edge of the feasible region), and (3) stopping when the first new
constraint boundary (defining equation) is reached.
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■ TABLE 5.5 BF solutions for the Wyndor Glass Co. problem

Defining Nonbasic
CPF Solution Equations BF Solution Variables

(0, 0) x1 � 0 (0, 0, 4, 12, 18) x1

x2 � 0 x2

(0, 6) x1 � 0 (0, 6, 4, 0, 6) x1

2x2 � 12 x4

(2, 6) 2x2 � 12 (2, 6, 2, 0, 0) x4

3x1 � 2x2 � 18 x5

(4, 3) 3x1 � 2x2 � 18 (4, 3, 0, 6, 0) x5

x1 � 4 x3

(4, 0) x1 � 4 (4, 0, 0, 12, 6) x3

x2 � 0 x2

■ TABLE 5.6 Basic infeasible solutions for the Wyndor Glass Co. problem

Corner-Point Defining Basic Infeasible Nonbasic
Infeasible Solution Equations Solution Variables

(0, 9) x1 � 0 (0, 9, 4, �6, 0) x1

3x1 � 2x2 � 18 x5

(4, 6) 2x2 � 12 (4, 6, 0, 0, �6) x4

x1 � 4 x3

(6, 0) 3x1 � 2x2 � 18 (6, 0, �2, 12, 0) x5

x2 � 0 x2
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Equivalently, in our new terminology, the simplex method reaches an adjacent BF so-
lution from the current one by (1) deleting one variable (the entering basic variable) from
the set of n nonbasic variables defining the current solution, (2) moving away from the
current solution by increasing this one variable from zero (and adjusting the other basic
variables to still satisfy the system of equations) while keeping the remaining n � 1
nonbasic variables at zero, and (3) stopping when the first of the basic variables (the leav-
ing basic variable) reaches a value of zero (its constraint boundary). With either interpre-
tation, the choice among the n alternatives in step 1 is made by selecting the one that
would give the best rate of improvement in Z (per unit increase in the entering basic vari-
able) during step 2.

Table 5.7 illustrates the close correspondence between these geometric and alge-
braic interpretations of the simplex method. Using the results already presented in Secs.
4.3 and 4.4, the fourth column summarizes the sequence of BF solutions found for the
Wyndor Glass Co. problem, and the second column shows the corresponding CPF so-
lutions. In the third column, note how each iteration results in deleting one constraint
boundary (defining equation) and substituting a new one to obtain the new CPF solu-
tion. Similarly, note in the fifth column how each iteration results in deleting one non-
basic variable and substituting a new one to obtain the new BF solution. Furthermore,
the nonbasic variables being deleted and added are the indicating variables for the defin-
ing equations being deleted and added in the third column. The last column displays
the initial system of equations [excluding Eq. (0)] for the augmented form of the prob-
lem, with the current basic variables shown in bold type. In each case, note how setting
the nonbasic variables equal to zero and then solving this system of equations for the
basic variables must yield the same solution for (x1, x2) as the corresponding pair of
defining equations in the third column.

The Solved Examples section of the book’s website provides another example of de-
veloping the type of information given in Table 5.7 for a minimization problem.
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■ TABLE 5.7 Sequence of solutions obtained by the simplex method for the 
Wyndor Glass Co. problem

CPF Defining Nonbasic Functional Constraints
Iteration Solution Equations BF Solution Variables in Augmented Form

0 (0, 0) x1 � 0 (0, 0, 4, 12, 18) x1 � 0 x1 � 2x2 � x3 � 4
x2 � 0 x2 � 0 2x2 � x4 � 12

3x1 � 2x2 � x5 � 18

1 (0, 6) x1 � 0 (0, 6, 4, 0, 6) x1 � 0 x1 � 2x2 � x3 � 4
2x2 � 12 x4 � 0 2x2 � x4 � 12

3x1 � 2x2 � x5 � 18

2 (2, 6) 2x2 � 12 (2, 6, 2, 0, 0) x4 � 0 x1 � 2x2 � x3 � 4
3x1 � 2x2 � 18 x5 � 0 2x2 � x4 � 12

3x1 � 2x2 � x5 � 18

■ 5.2 THE SIMPLEX METHOD IN MATRIX FORM
Chapter 4 describes the simplex method in both an algebraic form and a tabular form.
Further insight into the theory and power of the simplex method can be obtained by ex-
amining its matrix form. We begin by introducing matrix notation to represent linear pro-
gramming problems. (See Appendix 4 for a review of matrices.)
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To help you distinguish between matrices, vectors, and scalars, we consistently use
BOLDFACE CAPITAL letters to represent matrices, boldface lowercase letters to
represent vectors, and italicized letters in ordinary print to represent scalars. We also use
a boldface zero (0) to denote a null vector (a vector whose elements all are zero) in ei-
ther column or row form (which one should be clear from the context), whereas a zero in
ordinary print (0) continues to represent the number zero.

Using matrices, our standard form for the general linear programming model given
in Sec. 3.2 becomes

where c is the row vector

c � [c1, c2, . . . , cn],

x, b, and 0 are the column vectors such that

x � , b � , 0 � ,

and A is the matrix

A � .

To obtain the augmented form of the problem, introduce the column vector of slack 
variables

xs �

so that the constraints become

[A, I] � � � b and � � � 0,

where I is the m � m identity matrix, and the null vector 0 now has n � m elements. (We
comment at the end of the section about how to deal with problems that are not in our
standard form.)

Solving for a Basic Feasible Solution

Recall that the general approach of the simplex method is to obtain a sequence of
improving BF solutions until an optimal solution is reached. One of the key features of
the matrix form of the simplex method involves the way in which it solves for each new
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BF solution after identifying its basic and nonbasic variables. Given these variables, the
resulting basic solution is the solution of the m equations

[A, I] � � � b,

in which the n nonbasic variables from the n � m elements of

� �
are set equal to zero. Eliminating these n variables by equating them to zero leaves a 
set of m equations in m unknowns (the basic variables). This set of equations can be de-
noted by

BxB � b,

where the vector of basic variables

xB �

is obtained by eliminating the nonbasic variables from

� � ,

and the basis matrix

B �

is obtained by eliminating the columns corresponding to coefficients of nonbasic variables
from [A, I]. (In addition, the elements of xB and, therefore, the columns of B may be
placed in a different order when the simplex method is executed.)

The simplex method introduces only basic variables such that B is nonsingular, so
that B�1 always will exist. Therefore, to solve BxB � b, both sides are premultiplied 
by B�1:

B�1BxB � B�1b.

Since B�1B � I, the desired solution for the basic variables is

Let cB be the vector whose elements are the objective function coefficients (including
zeros for slack variables) for the corresponding elements of xB. The value of the objec-
tive function for this basic solution is then

Example. To illustrate this method of solving for a BF solution, consider again the
Wyndor Glass Co. problem presented in Sec. 3.1 and solved by the original simplex method
in Table 4.8. In this case,

Z � cBxB � cBB�1b.

xB � B�1b.
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c � [3, 5], [A, I] � , b � , x � � � , xs � .

Referring to Table 4.8, we see that the sequence of BF solutions obtained by the simplex
method is the following:

Iteration 0

xB � , B � � B�1, so � � ,

cB � [0, 0, 0], so Z � [0, 0, 0] � 0.

Iteration 1

xB � , B � , B�1 � ,

so

� � ,

cB � [0, 5, 0], so Z � [0, 5, 0] � 30.

Iteration 2

xB � , B � , B�1 � ,

so

� � ,

cB � [0, 5, 3], so Z � [0, 5, 3] � 36.
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Matrix Form of the Current Set of Equations

The last preliminary before we summarize the matrix form of the simplex method is to
show the matrix form of the set of equations appearing in the simplex tableau for any it-
eration of the original simplex method.

For the original set of equations, the matrix form is

� � � � �.

This set of equations also is exhibited in the first simplex tableau of Table 5.8.
The algebraic operations performed by the simplex method (multiply an equation by

a constant and add a multiple of one equation to another equation) are expressed in ma-
trix form by premultiplying both sides of the original set of equations by the appropriate
matrix. This matrix would have the same elements as the identity matrix, except that each
multiple for an algebraic operation would go into the spot needed to have the matrix mul-
tiplication perform this operation. Even after a series of algebraic operations over several
iterations, we still can deduce what this matrix must be (symbolically) for the entire se-
ries by using what we already know about the right-hand sides of the new set of equa-
tions. In particular, after any iteration, xB � B�1b and Z � cBB�1b, so the right-hand sides
of the new set of equations have become

� � � � �� � � � � .

Because we perform the same series of algebraic operations on both sides of the orig-
inal set of equations, we use this same matrix that premultiplies the original right-hand
side to premultiply the original left-hand side. Consequently, since

� �� � � � � ,
cBB�1
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■ TABLE 5.8 Initial and later simplex tableaux in matrix form

Coefficient of:
Basic Right

Iteration Variable Eq. Z Original Variables Slack Variables Side

0 Z (0) 1 �c 0 0
xB (1, 2, . . . , m) 0 A I b

Any Z (0) 1 cBB
�1A � c cBB

�1 cBB
�1b

xB (1, 2, . . . , m) 0 B�1 A B�1 B�1b
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the desired matrix form of the set of equations after any iteration is

� � � � �.

The second simplex tableau of Table 5.8 also exhibits this same set of equations.

Example. To illustrate this matrix form for the current set of equations, we will show
how it yields the final set of equations resulting from iteration 2 for the Wyndor Glass
Co. problem. Using the B�1 and cB given for iteration 2 at the end of the preceding sub-
section, we have

B�1A � � ,

cBB�1 � [0, 5, 3] � [0, �
3
2

�, 1],

cBB�1A � c � [0, 5, 3] � [3, 5] � [0, 0].

Also, by using the values of xB � B�1b and Z � cBB�1b calculated at the end of the pre-
ceding subsection, these results give the following set of equations:

� ,

as shown in the final simplex tableau in Table 4.8.

The matrix form of the set of equations after any iteration (as shown in the box just be-
fore the above example) provides the key to the execution of the matrix form of the simplex
method. The matrix expressions shown in these equations (or in the bottom part of Table 5.8)
provide a direct way of calculating all the numbers that would appear in the current set of
equations (for the algebraic form of the simplex method) or in the current simplex tableau
(for the tableau form of the simplex method). The three forms of the simplex method make
exactly the same decisions (entering basic variable, leaving basic variable, etc.) step after step
and iteration after iteration. The only difference between these forms is in the methods used
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to calculate the numbers needed to make those decisions. As summarized below, the matrix
form provides a convenient and compact way of calculating these numbers without carrying
along a series of systems of equations or a series of simplex tableaux.

Summary of the Matrix Form of the Simplex Method

1. Initialization: Introduce slack variables, etc., to obtain the initial basic variables, as de-
scribed in Chap. 4. This yields the initial xB, cB, B, and B�1 (where B � I � B�1 under
our current assumption that the problem being solved fits our standard form). Then go to
the optimality test.

2. Iteration:
Step 1. Determine the entering basic variable: Refer to the coefficients of the

nonbasic variables in  Eq. (0) that were obtained in the preceding application of
the optimality test below. Then (just as described in Sec. 4.4), select the variable
with the negative coefficient having the largest absolute value as the entering ba-
sic variable.

Step 2. Determine the leaving basic variable: Use the matrix expressions, B�1A
(for the coefficients of the original variables) and B�1 (for the coefficients of the slack
variables), to calculate the coefficients of the entering basic variable in every equation
except Eq. (0). Also use the preceding calculation of xB � B�1b (see Step 3) to iden-
tify the right-hand sides of these equations. Then (just as described in Sec. 4.4), use
the minimum ratio test to select the leaving basic variable.

Step 3. Determine the new BF solution: Update the basis matrix B by replacing
the column for the leaving basic variable by the corresponding column in [A, I] for
the entering basic variable. Also make the corresponding replacements in xB and cB.
Then derive B�1 (as illustrated in Appendix 4) and set xB � B�1b.

3. Optimality test: Use the matrix expressions, cB B�1A � c (for the coefficients of the
original variables) and cB B�1 (for the coefficients of the slack variables), to calculate the
coefficients of the nonbasic variables in Eq. (0). The current BF solution is optimal if and
only if all of these coefficients are nonnegative. If it is optimal, stop. Otherwise, go to an
iteration to obtain the next BF solution.

Example. We already have performed some of the above matrix calculations for the
Wyndor Glass Co. problem earlier in this section. We now will put all the pieces together
in applying the full simplex method in matrix form to this problem. As a starting point,
recall that

c = [3, 5], [A, I] � , b � .

Initialization
The initial basic variables are the slack variables, so (as already noted for Iteration 0 for
the first example in this section)

xB � � , cB � [0, 0, 0], B � � B�1.
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Optimality test
The coefficients of the nonbasic variables (x1 and x2) are

cBB�1A � c � [0, 0] � [3, 5] � [�3, �5]

so these negative coefficients indicate that the initial BF solution (xB = b) is not optimal.

Iteration 1
Since �5 is larger in absolute value than �3, the entering basic variable is x2. Perform-
ing only the relevant portion of a matrix multiplication, the coefficients of x2 in every
equation except Eq. (0) are

B�1A �

and the right-hand side of these equations are given by the value of xB shown in the ini-
tialization step. Therefore, the minimum ratio test indicates that the leaving basic variable
is x4 since 12/2 � 18/2. Iteration 1 for the first example in this section already shows the
resulting updated B, xB, cB, and B�1, namely,

B � , B�1 � , xB � � B�1b � , cB � [0, 5, 0],

so x2 has replaced x4 in xB , in providing an element of cB from [3, 5, 0, 0, 0], and in pro-
viding a column from [A, I] in B.

Optimality test
The nonbasic variables now are x1 and x4 , and their coefficients in Eq. (0) are

For x1: cBB�1A � c � [0, 5, 0]  � [3, 5] = [�3, —]

For x4: cBB�1 � [0, 5, 0]  � [—, 5/2, —]

Since x1 has a negative coefficient, the current BF is not optimal, so we go on to the next
iteration.

Iteration 2:
Since x1 is the one nonbasic variable with a negative coefficient in Eq. (0), it now be-
comes the entering basic variable. Its coefficients in the other equations are

B�1A � �
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Also using xB obtained at the end of the preceding iteration, the minimum ratio test indi-
cates that x5 is the leaving basic variable since 6/3 � 4/1. Iteration 2 for the first exam-
ple in this section already shows the resulting updated B, B�1, xB, and cB, namely,

B � , B�1 � , xB � = B�1b � , cB � [0, 5, 3],

so x1 has replaced x5 in xB , in providing an element of cB from [3, 5, 0, 0, 0], and in pro-
viding a column from [A,I] in B.

Optimality test
The nonbasic variables now are x4 and x5. Using the calculations already shown for the
second example in this section, their coefficients in Eq. (0) are 3/2 and 1, respectively.
Since neither of these coefficients are negative, the current BF solution (x1 = 2, x2 = 6,
x3 = 2, x4 = 0, x5 = 0) is optimal and the procedure terminates.

Final Observations

The above example illustrates that the matrix form of the simplex method uses just a few
matrix expressions to perform all the needed calculations. These matrix expressions are
summarized in the bottom part of Table 5.8. A fundamental insight from this table is that
it is only necessary to know the current B�1 and cBB�1, which appear in the slack vari-
ables portion of the current simplex tableau, in order to calculate all the other numbers in
this tableau in terms of the original parameters (A, b, and c) of the model being solved.
When dealing with the final simplex tableau, this insight proves to be a particularly valu-
able one, as will be described in the next section.

A drawback of the matrix form of the simplex method as it has been outlined in this
section is that it is necessary to derive B�1, the inverse of the updated basis matrix, at
the end of each iteration. Although routines are available for inverting small square (non-
singular) matrices (and this can even be done readily by hand for 2 x 2  or perhaps 3 x 3
matrices), the time required to invert matrices grows very rapidly with the size of the ma-
trices. Fortunately, there is a much more efficient procedure available for updating B�1

from one iteration to the next rather than inverting the new basis matrix from scratch.
When this procedure is incorporated into the matrix form of the simplex method, this
improved version of the matrix form is conventionally called the revised simplex method.
This is the version of the simplex method (along with further improvements) that  nor-
mally is used in commercial software for linear programming. We will describe the pro-
cedure for updating B�1 in Sec. 5.4.

The Solved Examples section of the book’s website gives another example of ap-
plying the matrix form of the simplex method. This example also incorporates the effi-
cient procedure for updating B�1 at each iteration instead of inverting the updated basis
matrix from scratch, so the full-fledged revised simplex method is applied.

Finally, we should  remind you that the description of the matrix form of the simplex
method throughout this section has assumed that the problem being solved fits our stan-
dard form for the general linear programming model given in Sec. 3.2. However, the mod-
ifications for other forms of the model are relatively straightforward. The initialization
step would be conducted just as was described in Sec. 4.6 for either the algebraic form
or tabular form of the simplex method. When this step involves introducing artificial vari-
ables to obtain an initial BF solution (and thereby to obtain an identity matrix as the ini-
tial basis matrix), these variables are included among the m elements of xs.
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■ 5.3 A FUNDAMENTAL INSIGHT
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We shall now focus on a property of the simplex method (in any form) that has been re-
vealed by the matrix form of the simplex method in Sec. 5.2. This fundamental insight
provides the key to both duality theory (Chap. 6) and sensitivity analysis (Secs. 7.1–7.3),
two very important parts of linear programming.

We shall first describe this insight when the problem being solved fits our stan-
dard form for linear programming models (Sec. 3.2) and then discuss how to adapt to
other forms later. The insight is based directly on Table 5.8 in Sec. 5.2, as described
below.

The insight provided by Table 5.8: Using matrix notation, Table 5.8 gives the
rows of the initial simplex tableau as [–c, 0, 0] for row 0 and [A, I, b] for the rest
of the rows. After any iteration, the coefficients of the slack variables in the cur-
rent simplex tableau become cBB�1 for row 0 and B�1 for the rest of the rows,
where B is the current basis matrix. Examining the rest of the current simplex
tableau, the insight is that these coefficients of the slack variables immediately
reveal how the entire rows of the current simplex tableau have been obtained
from the rows in the initial simplex tableau. In particular, after any iteration,

Row 0 � [–c, 0, 0] + cBB�1[A, I, b]

Rows 1 to m � B�1[A, I, b]

We shall describe the applications of this insight at the end of this section. These appli-
cations are particularly important only when we are dealing with the final simplex tableau
after the optimal solution has been obtained. Therefore, we will focus hereafter on dis-
cussing the “fundamental insight” just in terms of the optimal solution.

To distinguish between the matrix notation used after any iteration (B�1, etc.) and
the corresponding notation after just the last iteration, we now introduce the following
notation for the latter case.

When B is the basis matrix for the optimal solution found by the simplex method, let

S* � B�1 = coefficients of the slack variables in rows 1 to m

A* � B�1A = coefficients of the original variables in rows 1 to m

y* � cBB�1 = coefficients of the slack variables in row 0

z* � cBB�1A, so z* – c � coefficients of the original variables in row 0

Z* � cBB�1b = optimal value of the objective function

b* � B�1b � optimal right-hand sides of rows 1 to m

The bottom half of Table 5.9 shows where each of these symbols fits in the final simplex
tableau.  To illustrate all the notation, the top half of Table 5.9 includes the initial tableau
for the Wyndor Glass Co. problem  and the bottom half includes the final tableau for this
problem.

Referring to this again, suppose now that you are given the initial tableau, t and T,
and just y* and S* from the final tableau. How can this information alone be used to cal-
culate the rest of the final tableau? The answer is provided by the fundamental insight
summarized below.

Fundamental Insight

(1) t* � t � y*T � [y*A � c y* y*b].
(2) T* � S*T � [S*A S* S*b].
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Thus, by knowing the parameters of the model in the initial tableau (c, A, and b) and only
the coefficients of the slack variables in the final tableau (y* and S*), these equations en-
able calculating all the other numbers in the final tableau.

Now let us summarize the mathematical logic behind the two equations for the fun-
damental insight. To derive Eq. (2), recall that the entire sequence of algebraic operations
performed by the simplex method (excluding those involving row 0) is equivalent to pre-
multiplying T by some matrix, call it M. Therefore,

T* � MT,

but now we need to identify M. By writing out the component parts of T and T*, this
equation becomes

[A* S* b*] � M [A I b]
� [MA M Mb].

Because the middle (or any other) component of these equal matrices must be the same,
it follows that M � S*, so Eq. (2) is a valid equation.

Equation (1) is derived in a similar fashion by noting that the entire sequence of al-
gebraic operations involving row 0 amounts to adding some linear combination of the
rows in T to t, which is equivalent to adding to t some vector times T. Denoting this vec-
tor by v, we thereby have

t* � t � vT,

but v still needs to be identified. Writing out the component parts of t and t* yields

[z* � c y* Z*] � [�c 0 0] � v [A I b]
� [�c � vA v vb].

Equating the middle component of these equal vectors gives v � y*, which validates Eq. (1).
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■ TABLE 5.9 General notation for initial and final
simplex tableaux in matrix form,
illustrated by the Wyndor Glass 
Co. problem

Initial Tableau

Row 0: t � [�3, �5 0, 0, 0 0] � [�c 0 0].

Other rows: T � � [A I b].

Combined: � � � � � .

Final Tableau

Row 0: t* � [0, 0 0, �
3
2

�, 1 36] � [z* � c y* Z*].

Other rows: T* � � [A* S* b*].

Combined: � � � � � .
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Adapting to Other Model Forms

Thus far, the fundamental insight has been described under the assumption that the 
original model is in our standard form, described in Sec. 3.2. However, the above mathe-
matical logic now reveals just what adjustments are needed for other forms of the original
model. The key is the identity matrix I in the initial tableau, which turns into S* in the fi-
nal tableau. If some artificial variables must be introduced into the initial tableau to serve
as initial basic variables, then it is the set of columns (appropriately ordered) for all the ini-
tial basic variables (both slack and artificial) that forms I in this tableau. (The columns for
any surplus variables are extraneous.) The same columns in the final tableau provide S* for
the T* � S*T equation and y* for the t* � t � y*T equation. If M’s were introduced into
the preliminary row 0 as coefficients for artificial variables, then the t for the t* � t � y*T
equation is the row 0 for the initial tableau after these nonzero coefficients for basic vari-
ables are algebraically eliminated. (Alternatively, the preliminary row 0 can be used for t,
but then these M’s must be subtracted from the final row 0 to give y*.) (See Prob. 5.3-9.)

Applications

The fundamental insight has a variety of important applications in linear programming.
One of these applications involves the revised simplex method, which is based mainly on
the matrix form of the simplex method presented in Sec. 5.2. As described in this pre-
ceding section (see Table 5.8), this method used B�1 and the initial tableau to calculate
all the relevant numbers in the current tableau for every iteration. It goes even further than
the fundamental insight by using B�1 to calculate y* itself as y* � cBB�1.

Another application involves the interpretation of the shadow prices ( y1*, y2*, . . . , y*m)
described in Sec. 4.7. The fundamental insight reveals that Z* (the value of Z for the
optimal solution) is

Z* � y*b � �
m

i�1
yi*bi,

so, e.g.,

Z* � 0b1 � �
3
2

�b2 � b3

for the Wyndor Glass Co. problem. This equation immediately yields the interpretation
for the yi* values given in Sec. 4.7.

Another group of extremely important applications involves various postoptimality
tasks (reoptimization technique, sensitivity analysis, parametric linear programming—
described in Sec. 4.7) that investigate the effect of making one or more changes in the
original model. In particular, suppose that the simplex method already has been applied
to obtain an optimal solution (as well as y* and S*) for the original model, and then these
changes are made. If exactly the same sequence of algebraic operations were to be ap-
plied to the revised initial tableau, what would be the resulting changes in the final tableau?
Because y* and S* don’t change, the fundamental insight reveals the answer immediately.

One particularly common type of postoptimality analysis involves investigating pos-
sible changes in b. The elements of b often represent managerial decisions about the
amounts of various resources being made available to the activities under consideration
in the linear programming model. Therefore, after the optimal solution has been obtained
by the simplex method, management often wants to explore what would happen if some
of these managerial decisions on resource allocations were to be changed in various ways.
By using the formulas,

5.3 A FUNDAMENTAL INSIGHT 185

hil23453_ch05_163-196.qxd  1/15/70  7:44 AM  Page 185 Final PDF to printer



xB � S*b
Z* � y*b,

you can see exactly how the optimal BF solution changes (or whether it becomes infea-
sible because of negative variables), as well as how the optimal value of the objective
function changes, as a function of b. You do not have to reapply the simplex method over
and over for each  new b, because the coefficients of the slack variables tell all!

For example, consider the change from b2 � 12 to b2 � 13 as illustrated in Fig. 4.8
for the Wyndor Glass Co. problem. It is not necessary to solve for the new optimal solu-
tion (x1, x2) � (�

5
3

�, �
1
2
3
�) because the values of the basic variables in the final tableau (b*) are

immediately revealed by the fundamental insight:

� b* � S*b � � .

There is an even easier way to make this calculation. Since the only change is in the sec-
ond component of b (�b2 � 1), which gets premultiplied by only the second column of
S*, the change in b* can be calculated as simply

�b* � �b2 � ,

so the original values of the basic variables in the final tableau (x3 � 2, x2 � 6, x1 � 2)
now become

� � � .

(If any of these new values were negative, and thus infeasible, then the reoptimization
technique described in Sec. 4.7 would be applied, starting from this revised final tableau.)
Applying incremental analysis to the preceding equation for Z* also immediately yields

�Z* � �
3
2

��b2 � �
3
2

�.

The fundamental insight can be applied to investigating other kinds of changes in the
original model in a very similar fashion; it is the crux of the sensitivity analysis proce-
dure described in Secs. 7.1-7.3.

You also will see in the next chapter that the fundamental insight plays a key role in
the very useful duality theory for linear programming.
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■ 5.4 THE REVISED SIMPLEX METHOD

The revised simplex method is based directly on the matrix form of the simplex method
presented in Sec. 5.2. However, as mentioned at the end of that section, the difference
is that the revised simplex method incorporates a key improvement into the matrix
form. Instead of needing to invert the new basis matrix B after each iteration, which
is computationally expensive for large matrices, the revised simplex method uses a much
more efficient procedure that simply updates B�1 from one iteration to the next. We fo-
cus on describing and illustrating this procedure in this section.
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This procedure is based on two properties of the simplex method. One is described
in the insight provided by Table 5.8 at the beginning of Sec. 5.3. In particular, after any
iteration, the coefficients of the slack variables for all the rows except row 0 in the cur-
rent simplex tableau become B�1, where B is the current basis matrix. This property al-
ways holds as long as the problem being solved fits our standard form described in
Sec. 3.2 for linear programming models. (For nonstandard forms where artificial variables
need to be introduced, the only difference is that it is the set of appropriately ordered
columns that form an identity matrix I below row 0 in the initial simplex tableau that then
provides B�1 in any subsequent tableau.)

The other relevant property of the simplex method is that step 3 of an iteration changes
the numbers in the simplex tableau, including the numbers giving B�1, only by performing
the elementary algebraic operations (such as dividing an equation by a constant or subtract-
ing a multiple of some equation from another equation) that are needed to restore proper form
from Gaussian elimination. Therefore, all that is needed to update B�1 from one iteration to
the next is to obtain the new B�1 (denote it by B�1

new) from the old B�1 (denote it by B�1
old)

by performing the usual algebraic operations on B�1
old that the algebraic form of the simplex

method would perform on the entire system of equations (except Eq. (0)) for this iteration.
Thus, given the choice of the entering basic variable and leaving basic variable from steps 1
and 2 of an iteration, the procedure is to apply step 3 of an iteration (as described in Secs.
4.3 and 4.4) to the B�1 portion of the current simplex tableau or system of equations.

To describe this procedure formally, let

xk � entering basic variable,

a	ik � coefficient of xk in current Eq. (i), for i � 1, 2, . . . , m (identified in step 2 of
an iteration),

r � number of equation containing the leaving basic variable.

Recall that the new set of equations [excluding Eq. (0)] can be obtained from the preceding
set by subtracting a	ik /a	rk times Eq. (r) from Eq. (i), for all i � 1, 2, . . . , m except i � r, and
then dividing Eq. (r) by a	rk. Therefore, the element in row i and column j of B�1

new is

(B�1
old)ij � �

a
a
	r

	ik
k

�(B�1
old)rj if i  r,

(B�1
new)ij � 	�

a
1
	rk
�(B�1

old)rj if i � r.

These formulas are expressed in matrix notation as

B�1
new � EB�1

old,

where matrix E is an identity matrix except that its rth column is replaced by the vector

��
a
a
	r

	ik
k

� if i  r,

� � , where �i � 	�
a
1
	rk
� if i � r.

Thus, E � [U1, U2, . . . , Ur�1, �, Ur�1, . . . , Um], where the m elements of each of the
Ui column vectors are 0 except for a 1 in the ith position.3
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3 This form of the new basis inverse as the product of E and the old basis inverse is referred to as the product
form of the inverse. After repeated iterations, the new basis inverse then is the product of a sequence of E ma-
trices and the original basis inverse. Another efficient procedure for obtaining the current basis inverse, that we
will not describe, is a modified form of Gaussian elimination called LU Factorization.
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Example. We shall illustrate this procedure by applying it to the Wyndor Glass Co.
problem. We already have applied the matrix form of the simplex method to this same
problem in Sec. 5.2, so we will refer to the results obtained there for each iteration (the
entering basic variable, leaving basic variable, etc.) for the information needed to apply
the procedure.

Iteration 1
We found in Sec. 5.2 that the initial B�1 � I, the entering basic variable is x2 (so k � 2),
the coefficients of x2 in Eqs. 1, 2, and 3 are a12 � 0, a22 = 2, and a32 � 2, the leaving
basic variable is x4, and the number of the equation containing x4 is r � 2. To obtain the
new B�1,

� � � ,

so

B�1 � � .

Iteration 2
We found in Sec. 5.2 for this iteration that the entering basic variable is x1 (so k = 1), the
coefficients of x1 in the current Eqs. 1, 2, and 3 are a'11 = 1, a'21 = 0, and a'31 = 3, the
leaving basic variable is x5, and the number of the equation containing x5 is r = 3. These
results yield

� � �

Therefore, the new B�1 is

B�1 � � .

No more iterations are needed at this point, so this example is finished.

Since the revised simplex method consists of combining this procedure for updat-
ing B�1 at each iteration with the rest of the matrix form of the simplex method pre-
sented in Sec. 5.2, combining this example with the one in Sec. 5.2 applying the matrix
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form to the same problem provides a complete example of applying the revised simplex
method. As mentioned at the end of Sec. 5.2, the Solved Examples section of the book’s
website also gives another example of applying the revised simplex method.

Let us conclude this section by summarizing the advantages of the revised simplex
method over the algebraic or tabular form of the simplex method. One advantage is that the
number of arithmetic computations may be reduced. This is especially true when the A ma-
trix contains a large number of zero elements (which is usually the case for the large prob-
lems arising in practice). The amount of information that must be stored at each iteration is
less, sometimes considerably so. The revised simplex method also permits the control of the
rounding errors inevitably generated by computers. This control can be exercised by peri-
odically obtaining the current B�1 by directly inverting B. Furthermore, some of the postop-
timality analysis problems discussed in Sec. 4.7 and the end of Sec.5.3 can be handled
more conveniently with the revised simplex method. For all these reasons, the revised sim-
plex method is usually the preferable form of the simplex method for computer execution.
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■ 5.5 CONCLUSIONS

Although the simplex method is an algebraic procedure, it is based on some fairly sim-
ple geometric concepts. These concepts enable one to use the algorithm to examine only
a relatively small number of BF solutions before reaching and identifying an optimal 
solution.

Chapter 4 describes how elementary algebraic operations are used to execute the al-
gebraic form of the simplex method, and then how the tableau form of the simplex method
uses the equivalent elementary row operations in the same way. Studying the simplex
method in these forms is a good way of getting started in learning its basic concepts. 
However, these forms of the simplex method do not provide the most efficient form for
execution on a computer. Matrix operations are a faster way of combining and executing
elementary algebraic operations or row operations. Therefore, the matrix form of the sim-
plex method provides an effective way of adapting the simplex method for computer im-
plementation. The revised simplex method provides a further improvement for computer
implementation by combining the matrix form of the simplex method with an efficient
procedure for updating the inverse of the current basis matrix from iteration to iteration.

The final simplex tableau includes complete information on how it can be algebraically
reconstructed directly from the initial simplex tableau. This fundamental insight has some
very important applications, especially for postoptimality analysis.
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Solved Examples:

Examples for Chapter 5

A Demonstration Example in OR Tutor:

Fundamental Insight

Interactive Procedures in IOR Tutorial:

Interactive Graphical Method
Enter or Revise a General Linear Programming Model
Set Up for the Simplex Method—Interactive Only
Solve Interactively by the Simplex Method

Automatic Procedures in IOR Tutorial:

Solve Automatically by the Simplex Method
Graphical Method and Sensitivity Analysis

Files (Chapter 3) for Solving the Wyndor Example:

Excel Files
LINGO/LINDO File
MPL/Solvers File

Glossary for Chapter 5

See Appendix 1 for documentation of the software.
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■ LEARNING AIDS FOR THIS CHAPTER ON OUR WEBSITE (www.mhhe.com/hillier)

■ PROBLEMS

The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The demonstration example listed above may be helpful.
I: You can check some of your work by using procedures listed

above.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

5.1-1.* Consider the following problem.

Maximize Z � 3x1 � 2x2,

subject to

2x1 � x2 � 6
x1 � 2x2 � 6

and

x1 � 0, x2 � 0.

I (a) Solve this problem graphically. Identify the CPF solutions by
circling them on the graph.

(b) Identify all the sets of two defining equations for this problem.
For each set, solve (if a solution exists) for the corresponding
corner-point solution, and classify it as a CPF solution or 
corner-point infeasible solution.

(c) Introduce slack variables in order to write the functional
constraints in augmented form. Use these slack variables to
identify the basic solution that corresponds to each corner-point
solution found in part (b).

(d) Do the following for each set of two defining equations from
part (b): Identify the indicating variable for each defining equa-
tion. Display the set of equations from part (c) after deleting
these two indicating (nonbasic) variables. Then use the latter
set of equations to solve for the two remaining variables (the
basic variables). Compare the resulting basic solution to the
corresponding basic solution obtained in part (c).

(e) Without executing the simplex method, use its geometric inter-
pretation (and the objective function) to identify the path
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Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 0 �1 �3 0 �2 0 20
x4 (1) 0 0 �4 �5 1 �3 0 30

1
x1 (2) 0 1 �1 �2 0 �1 0 10
x6 (3) 0 0 �2 �3 0 �1 1 10
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(sequence of CPF solutions) it would follow to reach the
optimal solution. For each of these CPF solutions in turn, iden-
tify the following decisions being made for the next iteration:
(i) which defining equation is being deleted and which is be-
ing added; (ii) which indicating variable is being deleted (the
entering basic variable) and which is being added (the leaving
basic variable).

5.1-2. Repeat Prob. 5.1-1 for the model in Prob. 3.1-6.

5.1-3. Consider the following problem.

Maximize Z � 2x1 � 3x2,

subject to

�3x1 � x2 � 1
4x1 � 2x2 � 20

�4x1 � x2 � 10
�x1 � 2x2 � 5

and

x1 � 0, x2 � 0.

I (a) Solve this problem graphically. Identify the CPF solutions by
circling them on the graph.

(b) Develop a table giving each of the CPF solutions and the cor-
responding defining equations, BF solution, and nonbasic vari-
ables. Calculate Z for each of these solutions, and use just this
information to identify the optimal solution.

(c) Develop the corresponding table for the corner-point infeasi-
ble solutions, etc. Also identify the sets of defining equations
and nonbasic variables that do not yield a solution.

5.1-4. Consider the following problem.

Maximize Z � 2x1 � x2 � x3,

subject to

3x1 � x2 � x3 � 60
x1 � x2 � 2x3 � 10
x1 � x2 � x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.

After slack variables are introduced and then one complete itera-
tion of the simplex method is performed, the following simplex
tableau is obtained.

(a) Identify the CPF solution obtained at iteration 1.
(b) Identify the constraint boundary equations that define this CPF

solution.

5.1-5. Consider the three-variable linear programming problem
shown in Fig. 5.2.
(a) Construct a table like Table 5.1, giving the set of defining equa-

tions for each CPF solution.
(b) What are the defining equations for the corner-point infeasi-

ble solution (6, 0, 5)?
(c) Identify one of the systems of three constraint boundary

equations that yields neither a CPF solution nor a corner-
point infeasible solution. Explain why this occurs for this
system.

5.1-6. Consider the following problem.

Minimize Z � 3x1 � 2x2,

subject to

2x1 � x2 � 10
�3x1 � 2x2 � 6

x1 � x2 � 6

and

x1 � 0, x2 � 0.

(a) Identify the 10 sets of defining equations for this problem. 
For each one, solve (if a solution exists) for the corresponding
corner-point solution, and classify it as a CPF solution or a
corner-point infeasible solution.

(b) For each corner-point solution, give the corresponding basic
solution and its set of nonbasic variables.

5.1-7. Reconsider the model in Prob. 3.1-5.
(a) Identify the 15 sets of defining equations for this problem. For

each one, solve (if a solution exists) for the corresponding
corner-point solution, and classify it as a CPF solution or a
corner-point infeasible solution.

(b) For each corner-point solution, give the corresponding basic
solution and its set of nonbasic variables.

5.1-8. Each of the following statements is true under most cir-
cumstances, but not always. In each case, indicate when the state-
ment will not be true and why.
(a) The best CPF solution is an optimal solution.
(b) An optimal solution is a CPF solution.
(c) A CPF solution is the only optimal solution if none of its ad-

jacent CPF solutions are better (as measured by the value of
the objective function).

5.1-9. Consider the original form (before augmenting) of a linear
programming problem with n decision variables (each with a non-
negativity constraint) and m functional constraints. Label each of
the following statements as true or false, and then justify your an-
swer with specific references (including page citations) to mater-
ial in the chapter.
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(a) If a feasible solution is optimal, it must be a CPF solution.
(b) The number of CPF solutions is at least

�
(m

m
�
!n

n
!
)!

�.

(c) If a CPF solution has adjacent CPF solutions that are better (as
measured by Z), then one of these adjacent CPF solutions must
be an optimal solution.

5.1-10. Label each of the following statements about linear pro-
gramming problems as true or false, and then justify your answer.
(a) If a feasible solution is optimal but not a CPF solution, then

infinitely many optimal solutions exist.
(b) If the value of the objective function is equal at two different

feasible points x* and x**, then all points on the line segment
connecting x* and x** are feasible and Z has the same value
at all those points.

(c) If the problem has n variables (before augmenting), then the
simultaneous solution of any set of n constraint boundary equa-
tions is a CPF solution.

5.1-11. Consider the augmented form of linear programming prob-
lems that have feasible solutions and a bounded feasible region.
Label each of the following statements as true or false, and then
justify your answer by referring to specific statements (with page
citations) in the chapter.
(a) There must be at least one optimal solution.
(b) An optimal solution must be a BF solution.
(c) The number of BF solutions is finite.

5.1-12.* Reconsider the model in Prob. 4.6-9. Now you are given
the information that the basic variables in the optimal solution are
x2 and x3. Use this information to identify a system of three con-
straint boundary equations whose simultaneous solution must be
this optimal solution. Then solve this system of equations to ob-
tain this solution.

5.1-13. Reconsider Prob. 4.3-6. Now use the given information and
the theory of the simplex method to identify a system of three con-
straint boundary equations (in x1, x2, x3) whose simultaneous solu-
tion must be the optimal solution, without applying the simplex
method. Solve this system of equations to find the optimal solution.

5.1-14. Consider the following problem.

Maximize Z � 2x1 � 2x2 � 3x3,

subject to

2x1 � x2 � 2x3 � 4
x1 � x2 � x3 � 3

and

x1 � 0, x2 � 0, x3 � 0.

Let x4 and x5 be the slack variables for the respective functional
constraints. Starting with these two variables as the basic variables

for the initial BF solution, you now are given the information that
the simplex method proceeds as follows to obtain the optimal so-
lution in two iterations: (1) In iteration 1, the entering basic vari-
able is x3 and the leaving basic variable is x4; (2) in iteration 2, the
entering basic variable is x2 and the leaving basic variable is x5.
(a) Develop a three-dimensional drawing of the feasible region for

this problem, and show the path followed by the simplex
method.

(b) Give a geometric interpretation of why the simplex method fol-
lowed this path.

(c) For each of the two edges of the feasible region traversed
by the simplex method, give the equation of each of the
two constraint boundaries on which it lies, and then give
the equation of the additional constraint boundary at each
endpoint.

(d) Identify the set of defining equations for each of the three CPF
solutions (including the initial one) obtained by the simplex
method. Use the defining equations to solve for these solutions.

(e) For each CPF solution obtained in part (d ), give the corre-
sponding BF solution and its set of nonbasic variables. Explain
how these nonbasic variables identify the defining equations
obtained in part (d ).

5.1-15. Consider the following problem.

Maximize Z � 3x1 � 4x2 � 2x3,

subject to

x1 � x2 � x3 � 20
x1 � 2x2 � x3 � 30

and

x1 � 0, x2 � 0, x3 � 0.

Let x4 and x5 be the slack variables for the respective functional
constraints. Starting with these two variables as the basic vari-
ables for the initial BF solution, you now are given the
information that the simplex method proceeds as follows to ob-
tain the optimal solution in two iterations: (1) In iteration 1, the
entering basic variable is x2 and the leaving basic variable is x5;
(2) in iteration 2, the entering basic variable is x1 and the leav-
ing basic variable is x4.

Follow the instructions of Prob. 5.1-14 for this situation.

5.1-16. By inspecting Fig. 5.2, explain why Property 1b for CPF
solutions holds for this problem if it has the following objective
function.
(a) Maximize Z � x3.
(b) Maximize Z � �x1 � 2x3.

5.1-17. Consider the three-variable linear programming problem
shown in Fig. 5.2.
(a) Explain in geometric terms why the set of solutions satisfying

any individual constraint is a convex set, as defined in
Appendix 2.
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(b) Use the conclusion in part (a) to explain why the entire feasi-
ble region (the set of solutions that simultaneously satisfies
every constraint) is a convex set.

5.1-18. Suppose that the three-variable linear programming prob-
lem given in Fig. 5.2 has the objective function

Maximize Z � 3x1 � 4x2 � 3x3.

Without using the algebra of the simplex method, apply just its
geometric reasoning (including choosing the edge giving the max-
imum rate of increase of Z ) to determine and explain the path it
would follow in Fig. 5.2 from the origin to the optimal solution.

5.1-19. Consider the three-variable linear programming problem
shown in Fig. 5.2.
(a) Construct a table like Table 5.4, giving the indicating variable

for each constraint boundary equation and original constraint.
(b) For the CPF solution (2, 4, 3) and its three adjacent CPF so-

lutions (4, 2, 4), (0, 4, 2), and (2, 4, 0), construct a table like
Table 5.5, showing the corresponding defining equations, BF
solution, and nonbasic variables.

(c) Use the sets of defining equations from part (b) to demonstrate
that (4, 2, 4), (0, 4, 2), and (2, 4, 0) are indeed adjacent to 
(2, 4, 3), but that none of these three CPF solutions are adja-
cent to each other. Then use the sets of nonbasic variables from
part (b) to demonstrate the same thing.

5.1-20. The formula for the line passing through (2, 4, 3) and 
(4, 2, 4) in Fig. 5.2 can be written as

(2, 4, 3) � �[(4, 2, 4) � (2, 4, 3)] � (2, 4, 3) � �(2, �2, 1),

where 0 � � � 1 for just the line segment between these points.
After augmenting with the slack variables x4, x5, x6, x7 for the re-
spective functional constraints, this formula becomes

(2, 4, 3, 2, 0, 0, 0) � �(2, �2, 1, �2, 2, 0, 0).

Use this formula directly to answer each of the following questions,
and thereby relate the algebra and geometry of the simplex method as
it goes through one iteration in moving from (2, 4, 3) to (4, 2, 4). (You
are given the information that it is moving along this line segment.)
(a) What is the entering basic variable?
(b) What is the leaving basic variable?
(c) What is the new BF solution?

5.1-21. Consider a two-variable mathematical programming prob-
lem that has the feasible region shown on the graph, where the six
dots correspond to CPF solutions. The problem has a linear ob-
jective function, and the two dashed lines are objective function
lines passing through the optimal solution (4, 5) and the second-
best CPF solution (2, 5). Note that the nonoptimal solution (2, 5)
is better than both of its adjacent CPF solutions, which violates
Property 3 in Sec. 5.1 for CPF solutions in linear programming.
Demonstrate that this problem cannot be a linear programming
problem by constructing the feasible region that would result if the
six line segments on the boundary were constraint boundaries for
linear programming constraints.

5.2-1. Consider the following problem.

Maximize Z � 8x1 � 4x2 � 6x3 � 3x4 � 9x5,

subject to

x1 � 2x2 � 3x3 � 3x4 � x5 � 180 (resource 1)
4x1 � 3x2 � 2x3 � x4 � x5 � 270 (resource 2)
x1 � 3x2 � 2x3 � x4 � 3x5 � 180 (resource 3)

and

xj � 0, j � 1, . . . , 5.

You are given the facts that the basic variables in the optimal so-
lution are x3, x1, and x5 and that

�1

� �
2
1
7
� .

(a) Use the given information to identify the optimal solution.
(b) Use the given information to identify the shadow prices for the

three resources.

I 5.2-2.* Work through the matrix form of the simplex method
step by step to solve the following problem.

Maximize Z � 5x1 � 8x2 � 7x3 � 4x4 � 6x5,

subject to

2x1 � 3x2 � 3x3 � 2x4 � 2x5 � 20
3x1 � 5x2 � 4x3 � 2x4 � 4x5 � 30

⎤⎥⎥⎥⎦

1

�3

10

�3

9

�3

11

�6

2

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

0

1

3

1

4

1

3

2

0

⎡⎢⎢⎢⎣

x1

1

0 1 2 3 4

2

3

4

5
(2, 5) (4, 5)

x2
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and

xj � 0, j � 1, 2, 3, 4, 5.

5.2-3. Reconsider Prob. 5.1-1. For the sequence of CPF solutions
identified in part (e), construct the basis matrix B for each of the
corresponding BF solutions. For each one, invert B manually, use
this B�1 to calculate the current solution, and then perform the next
iteration (or demonstrate that the current solution is optimal).

I 5.2-4. Work through the matrix form of the simplex method step
by step to solve the model given in Prob. 4.1-5.

I 5.2-5. Work through the matrix form of the simplex method step
by step to solve the model given in Prob. 4.7-6.

D 5.3-1.* Consider the following problem.

Maximize Z � x1 � x2 � 2x3,

subject to

2x1 � 2x2 � 3x3 � 5
x1 � x2 � x3 � 3
x1 � x2 � x3 � 2

and

x1 � 0, x2 � 0, x3 � 0.

Let x4, x5, and x6 denote the slack variables for the respective con-
straints. After you apply the simplex method, a portion of the fi-
nal simplex tableau is as follows:

and

x1 � 0, x2 � 0, x3 � 0, x4 � 0.

Let x5 and x6 denote the slack variables for the respective con-
straints. After you apply the simplex method, a portion of the fi-
nal simplex tableau is as follows:

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 1 1 0

x2 (1) 0 1 3 0
x6 (2) 0 0 1 1
x3 (3) 0 1 2 0

(a) Use the fundamental insight presented in Sec. 5.3 to identify
the missing numbers in the final simplex tableau. Show your
calculations.

(b) Identify the defining equations of the CPF solution corre-
sponding to the optimal BF solution in the final simplex tableau.

D 5.3-2. Consider the following problem.

Maximize Z � 4x1 � 3x2 � x3 � 2x4,

subject to

4x1 � 2x2 � x3 � x4 � 5
3x1 � x2 � 2x3 � x4 � 4

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 �1 �1

x2 (1) 0 �1 �1
x4 (2) 0 �1 �2

(a) Use the fundamental insight presented in Sec. 5.3 to identify
the missing numbers in the final simplex tableau. Show your
calculations.

(b) Identify the defining equations of the CPF solution corre-
sponding to the optimal BF solution in the final simplex
tableau.

D 5.3-3. Consider the following problem.

Maximize Z � 6x1 � x2 � 2x3,

subject to

�2x1 � 2x2 � �
1
2

�x3 � 2

�4x1 � 2x2 � �
3
2

�x3 � 3

�2x1 � 2x2 � �
1
2

�x3 � 1

and

x1 � 0, x2 � 0, x3 � 0.

Let x4, x5, and x6 denote the slack variables for the respective con-
straints. After you apply the simplex method, a portion of the final
simplex tableau is as follows:

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 �2 0 �2

x5 (1) 0 �1 1 �2
x3 (2) 0 �2 0 �4
x1 (3) 0 �1 0 �1
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Use the fundamental insight presented in Sec. 5.3 to identify the miss-
ing numbers in the final simplex tableau. Show your calculations.

D 5.3-4. Consider the following problem.

Maximize Z � 20x1 � 6x2 � 8x3,

subject to

8x1 � 2x2 � 3x3 � 200
4x1 � 3x2 � 100
2x1 � x3 � 50
2x1 � 3x2 x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.

Let x4, x5, x6, and x7 denote the slack variables for the first through
fourth constraints, respectively. Suppose that after some number of
iterations of the simplex method, a portion of the current simplex
tableau is as follows:

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 x7 Side

Z (0) 1 ��
9
4

� ��
1
2

� 0 0

x1 (1) 0 ��
1
3
6
� ��

1
8

� 0 0

x2 (2) 0 ��
1
4

� ��
1
2

� 0 0

x6 (3) 0 ��
3
8

� ��
1
4

� 1 0

x7 (4) 0 �0 �0 0 1

(a) Use the fundamental insight presented in Sec. 5.3 to identify
the missing numbers in the current simplex tableau. Show your
calculations.

(b) Indicate which of these missing numbers would be generated
by the matrix form of the simplex method to perform the next
iteration.

(c) Identify the defining equations of the CPF solution corre-
sponding to the BF solution in the current simplex tableau.

D 5.3-5. Consider the following problem.

Maximize Z � c1x1 � c2x2 � c3x3,

subject to

x1 � 2x2 � x3 � b
2x1 � x2 � 3x3 � 2b

and

x1 � 0, x2 � 0, x3 � 0.

Note that values have not been assigned to the coefficients in the
objective function (c1, c2, c3), and that the only specification for
the right-hand side of the functional constraints is that the second
one (2b) be twice as large as the first (b).

Now suppose that your boss has inserted her best estimate of
the values of c1, c2, c3, and b without informing you and then has
run the simplex method. You are given the resulting final simplex
tableau below (where x4 and x5 are the slack variables for the
respective functional constraints), but you are unable to read the
value of Z*.

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �
1
7
0
� 0 0 ��

3
5

� ��
4
5

� Z*

x2 (1) 0 �
1
5

� 1 0 ��
3
5

� ��
1
5

� 1

x3 (2) 0 �
3
5

� 0 1 ��
1
5

� ��
2
5

� 3

(a) Use the fundamental insight presented in Sec. 5.3 to identify
the value of (c1, c2, c3) that was used.

(b) Use the fundamental insight presented in Sec. 5.3 to identify
the value of b that was used.

(c) Calculate the value of Z* in two ways, where one way uses
your results from part (a) and the other way uses your result
from part (b). Show your two methods for finding Z*.

5.3-6. For iteration 2 of the example in Sec. 5.3, the following ex-
pression was shown:

Final row 0 � [�3, �5 0, 0, 0 0]

� [0, �
3
2

�, 1] .

Derive this expression by combining the algebraic operations (in
matrix form) for iterations 1 and 2 that affect row 0.

5.3-7. Most of the description of the fundamental insight presented
in Sec. 5.3 assumes that the problem is in our standard form. Now
consider each of the following other forms, where the additional
adjustments in the initialization step are those presented in Sec. 4.6,
including the use of artificial variables and the Big M method where
appropriate. Describe the resulting adjustments in the fundamen-
tal insight.
(a) Equality constraints
(b) Functional constraints in � form
(c) Negative right-hand sides
(d) Variables allowed to be negative (with no lower bound)

⎤⎥⎥⎥⎦

4

12

18

0

0

1

0

1

0

1

0

0

0

2

2

1

0

3

⎡⎢⎢⎢⎣
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Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x�5 x6 x�7 Side

Z (0) �1 �4M � 2 �6M � 3 �2M � 2 M 0 M 0 �14M

x�5 (1) �0 1 4 2 �1 1 �0 0 8
x�7 (2) �0 3 2 0 �0 0 �1 1 6

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x�5 x6 x�7 Side

Z (0) �1 M � 0.5 M � 0.5

x2 (1) �0 � 0.3 �0.1
x1 (2) �0 �0.2 �0.4

5.3-8. Reconsider the model in Prob. 4.6-5. Use artificial variables
and the Big M method to construct the complete first simplex
tableau for the simplex method, and then identify the columns that
will contain S* for applying the fundamental insight in the final
tableau. Explain why these are the appropriate columns.

5.3-9. Consider the following problem.

Minimize Z � 2x1 � 3x2 � 2x3,

subject to

x1 � 4x2 � 2x3 � 8
3x1 � 2x2 � 6

and

x1 � 0, x2 � 0, x3 � 0.

Let x4 and x6 be the surplus variables for the first and second con-
straints, respectively. Let x�5 and x�7 be the corresponding artificial
variables. After you make the adjustments described in Sec. 4.6 for
this model form when using the Big M method, the initial simplex
tableau ready to apply the simplex method is as follows:

initial simplex tableau given above. Derive M and v for this
problem.

(c) When you apply the t* � t � vT equation, another option is
to use t � [2, 3, 2, 0, M, 0, M, 0], which is the preliminary
row 0 before the algebraic elimination of the nonzero coeffi-
cients of the initial basic variables x�5 and x�7. Repeat part (b)
for this equation with this new t. After you derive the new v,
show that this equation yields the same final row 0 for this
problem as the equation derived in part (b).

(d) Identify the defining equations of the CPF solution corre-
sponding to the optimal BF solution in the final simplex
tableau.

5.3-10. Consider the following problem.

Maximize Z � 3x1 � 7x2 � 2x3,

subject to

�2x1 � 2x2 � x3 � 10
�3x1 � x2 � x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.

You are given the fact that the basic variables in the optimal solu-
tion are x1 and x3.
(a) Introduce slack variables, and then use the given information

to find the optimal solution directly by Gaussian elimination.
(b) Extend the work in part (a) to find the shadow prices.
(c) Use the given information to identify the defining equations of

the optimal CPF solution, and then solve these equations to
obtain the optimal solution.

(d) Construct the basis matrix B for the optimal BF solution,
invert B manually, and then use this B�1 to solve for the
optimal solution and the shadow prices y*. Then apply the
optimality test for the matrix form of the simplex method to
verify that this solution is optimal.

(e) Given B�1 and y* from part (d), use the fundamental insight pre-
sented in Sec. 5.3 to construct the complete final simplex tableau.

5.4-1. Consider the model given in Prob. 5.2-2. Let x6 and x7 be the
slack variables for the first and second constraints, respectively. You
are given the information that x2 is the entering basic variable and x7

is the leaving basic variable for the first iteration of the simplex
method and then x4 is the entering basic variable and x6 is the leav-
ing basic variable for the second (final) iteration. Use the procedure
presented in Sec. 5.4 for updating B�1 from one iteration to the  next
to find B�1 after the first iteration and then after the second iteration.

I 5.4-2.* Work through the revised simplex method step by step to
solve the model given in Prob. 4.3-4.

I 5.4-3. Work through the revised simplex method step by step to
solve the model given in Prob. 4.7-5.

I 5.4-4. Work through the revised simplex method step by step to
solve the model given in Prob. 3.1-6.

After you apply the simplex method, a portion of the final simplex
tableau is as follows:

(a) Based on the above tableaux, use the fundamental insight pre-
sented in Sec. 5.3 to identify the missing numbers in the final
simplex tableau. Show your calculations.

(b) Examine the mathematical logic presented in Sec. 5.3 to vali-
date the fundamental insight (see the T* � MT and t* �
t � vT equations and the subsequent derivations of M and v).
This logic assumes that the original model fits our standard
form, whereas the current problem does not fit this form. Show
how, with minor adjustments, this same logic applies to the
current problem when t is row 0 and T is rows 1 and 2 in the
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197

6C H A P T E R

Duality Theory

One of the most important discoveries in the early development of linear programming
was the concept of duality and its many important ramifications. This discovery re-

vealed that every linear programming problem has associated with it another linear pro-
gramming problem called the dual. The relationships between the dual problem and the
original problem (called the primal) prove to be extremely useful in a variety of ways.
For example, you soon will see that the shadow prices described in Sec. 4.7 actually are
provided by the optimal solution for the dual problem. We shall describe many other valu-
able applications of duality theory in this chapter as well.

For greater clarity, the first three sections discuss duality theory under the as-
sumption that the primal linear programming problem is in our standard form (but with
no restriction that the bi values need to be positive). Other forms are then discussed in
Sec. 6.4. We begin the chapter by introducing the essence of duality theory and its ap-
plications. We then describe the economic interpretation of the dual problem (Sec. 6.2)
and delve deeper into the relationships between the primal and dual problems (Sec. 6.3).
Section 6.5 focuses on the role of duality theory in sensitivity analysis. (As discussed
in detail in the next chapter, sensitivity analysis involves the analysis of the effect on
the optimal solution if changes occur in the values of some of the parameters of the
model.)

■ 6.1 THE ESSENCE OF DUALITY THEORY

Given our standard form for the primal problem at the left (perhaps after conversion from
another form), its dual problem has the form shown to the right.
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Thus, with the primal problem in maximization form, the dual problem is in minimization
form instead. Furthermore, the dual problem uses exactly the same parameters as the pri-
mal problem, but in different locations, as summarized below.

1. The coefficients in the objective function of the primal problem are the right-hand sides
of the functional constraints in the dual problem.

2. The right-hand sides of the functional constraints in the primal problem are the coef-
ficients in the objective function of the dual problem.

3. The coefficients of a variable in the functional constraints of the primal problem are
the coefficients in a functional constraint of the dual problem.

To highlight the comparison, now look at these same two problems in matrix notation (as
introduced at the beginning of Sec. 5.2), where c and y � [y1, y2, . . . , ym] are row vec-
tors but b and x are column vectors.

Primal Problem Dual Problem

198 CHAPTER 6 DUALITY THEORY

Maximize Z � �
n

j�1
cjxj,

subject to

�
n

j�1
aijxj � bi, for i � 1, 2, . . . , m

and

xj � 0, for j � 1, 2, . . . , n.

Minimize W � �
m

i�1
biyi,

subject to

�
m

i�1
aijyi � cj, for j � 1, 2, . . . , n

and

yi � 0, for i � 1, 2, . . . , m.

Maximize Z � cx,

subject to

Ax � b

and

x � 0.

Minimize W � yb,

subject to

yA � c

and

y � 0.

Primal Problem Dual Problem

To illustrate, the primal and dual problems for the Wyndor Glass Co. example of Sec. 3.1
are shown in Table 6.1 in both algebraic and matrix form.

The primal-dual table for linear programming (Table 6.2) also helps to highlight
the correspondence between the two problems. It shows all the linear programming pa-
rameters (the aij, bi, and cj) and how they are used to construct the two problems. All the
headings for the primal problem are horizontal, whereas the headings for the dual prob-
lem are read by turning the book sideways. For the primal problem, each column (ex-
cept the right-side column) gives the coefficients of a single variable in the respective
constraints and then in the objective function, whereas each row (except the bottom one)
gives the parameters for a single contraint. For the dual problem, each row (except the
right-side row) gives the coefficients of a single variable in the respective constraints and
then in the objective function, whereas each column (except the rightmost one) gives the
parameters for a single constraint. In addition, the right-side column gives the right-hand
sides for the primal problem and the objective function coefficients for the dual problem,
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■ TABLE 6.2 Primal-dual table for linear programming, illustrated by the Wyndor
Glass Co. example

(a) General Case

Primal Problem

Coefficient of:
Right

x1 x2
… xn Side

y1 a11 a12
… a1n � b1

y2 a21 a22
… a2n � b2

� �
ym am1 am2

… amn � bm

VI VI … VI
c1 c2

… cnR
ig

h
t

Si
d

e

D
u

al
 P

ro
b

le
m

C
o

ef
fi

ci
en

t
o

f:

C
oe

ffi
ci

en
ts

fo
r 

O
bj

ec
tiv

e
Fu

nc
tio

n
(M

in
im

iz
e)

Coefficients for 
Objective Function 

(Maximize)

(b) Wyndor Glass Co. Example

x1 x2

y1 1 0 � 4
y2 0 2 � 12
y3 3 2 � 18

VI VI
3 5

■ TABLE 6.1 Primal and dual problems for the Wyndor Glass Co. example

Maximize Z � 3x1 � 5x2,

subject to

3x1 � 2x2 � 4

3x1 � 2x2 � 12

3x1 � 2x2 � 18

and x1 � 0, x2 � 0.

Minimize W � 4y1 � 12y2 � 18y3,

subject to

y12y2 � 3y3 � 3

2y2 � 2y3 � 5

and

y1 � 0, y2 � 0, y3 � 0.

Maximize Z � [3, 5]� �,
subject to

� � �

and

� � � � �.0

0

x1

x2

⎤
⎥
⎥
⎦

4

12

18

⎡
⎢
⎢
⎣

x1

x2

⎤
⎥
⎥
⎦

0

2

2

1

0

3

⎡
⎢
⎢
⎣

x1

x2 Minimize W � [y1, y2, y3]

subject to

[y1, y2, y3] � [3, 5]

and

[y1, y2, y3] � [0, 0, 0].

⎤
⎥
⎥
⎦

0

2

2

1

0

3

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

4

12

18

⎡
⎢
⎢
⎣

Primal Problem Dual Problem
in Algebraic Form in Algebraic Form

Primal Problem Dual Problem
in Matrix Form in Matrix Form
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whereas the bottom row gives the objective function coefficients for the primal problem
and the right-hand sides for the dual problem.

Consequently, we now have the following general relationships between the primal
and dual problems.

1. The parameters for a (functional) constraint in either problem are the coefficients of a
variable in the other problem.

2. The coefficients in the objective function of either problem are the right-hand sides for
the other problem.

Thus, there is a direct correspondence between these entities in the two problems, as sum-
marized in Table 6.3. These correspondences are a key to some of the applications of du-
ality theory, including sensitivity analysis.

The Solved Examples section of the book’s website provides another example of us-
ing the primal-dual table to construct the dual problem for a linear programming model.

Origin of the Dual Problem

Duality theory is based directly on the fundamental insight (particularly with regard to
row 0) presented in Sec. 5.3. To see why, we continue to use the notation introduced in
Table 5.9 for row 0 of the final tableau, except for replacing Z* by W* and dropping the
asterisks from z* and y* when referring to any tableau. Thus, at any given iteration of the
simplex method for the primal problem, the current numbers in row 0 are denoted as
shown in the (partial) tableau given in Table 6.4. For the coefficients of x1, x2, . . . , xn,
recall that z � (z1, z2, . . . , zn) denotes the vector that the simplex method added to the
vector of initial coefficients, �c, in the process of reaching the current tableau. (Do not
confuse z with the value of the objective function Z.) Similarly, since the initial coeffi-
cients of xn�1, xn�2, . . . , xn�m in row 0 all are 0, y � (y1, y2, . . . , ym) denotes the vec-
tor that the simplex method has added to these coefficients. Also recall [see Eq. (1) in the
statement of the fundamental insight in Sec. 5.3] that the fundamental insight led to the
following relationships between these quantities and the parameters of the original model:

W � yb � �
m

i�1
biyi ,

z � yA, so zj � �
m

i�1
aijyi , for j � 1, 2, . . . , n.

200 CHAPTER 6 DUALITY THEORY

■ TABLE 6.3 Correspondence between 
entities in primal and 
dual problems

One Problem Other Problem

Constraint i ←⎯⎯→ Variable i
Objective function ←⎯⎯→ Right-hand sides

■ TABLE 6.4 Notation for entries in row 0 of a simplex tableau

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2
… xn xn�1 xn�2

… xn�m Side

Any Z (0) 1 z1 � c1 z2 � c2
… zn � cn y1 y2

… ym W
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To illustrate these relationships with the Wyndor example, the first equation gives 
W � 4y1 � 12y2 � 18y3, which is just the objective function for the dual problem shown
in the upper right-hand box of Table 6.1. The second set of equations give z1 � y1 � 3y3

and z2 � 2y2 � 2y3, which are the left-hand sides of the functional constraints for this
dual problem. Thus, by subtracting the right-hand sides of these � constraints (c1 � 3 and 
c2 � 5), (z1 � c1) and (z2 � c2) can be interpreted as being the surplus variables for these
functional constraints.

The remaining key is to express what the simplex method tries to accomplish (accord-
ing to the optimality test) in terms of these symbols. Specifically, it seeks a set of basic
variables, and the corresponding BF solution, such that all coefficients in row 0 are non-
negative. It then stops with this optimal solution. Using the notation in Table 6.4, this goal
is expressed symbolically as follows:

Condition for Optimality:
zj � cj � 0 for j � 1, 2, . . . , n,

yi � 0 for i � 1, 2, . . . , m.

After we substitute the preceding expression for zj, the condition for optimality says that
the simplex method can be interpreted as seeking values for y1, y2, . . . , ym such that

6.1 THE ESSENCE OF DUALITY THEORY 201

W � �
m

i�1
biyi,

subject to

�
m

i�1
aijyi � cj, for j � 1, 2, . . . , n

and

yi � 0, for i � 1, 2, . . . , m.

But, except for lacking an objective for W, this problem is precisely the dual problem! To
complete the formulation, let us now explore what the missing objective should be.

Since W is just the current value of Z, and since the objective for the primal problem
is to maximize Z, a natural first reaction is that W should be maximized also. However,
this is not correct for the following rather subtle reason: The only feasible solutions for this
new problem are those that satisfy the condition for optimality for the primal problem.
Therefore, it is only the optimal solution for the primal problem that corresponds to a
feasible solution for this new problem. As a consequence, the optimal value of Z in the
primal problem is the minimum feasible value of W in the new problem, so W should be
minimized. (The full justification for this conclusion is provided by the relationships we de-
velop in Sec. 6.3.) Adding this objective of minimizing W gives the complete dual problem.

Consequently, the dual problem may be viewed as a restatement in linear program-
ming terms of the goal of the simplex method, namely, to reach a solution for the primal
problem that satisfies the optimality test. Before this goal has been reached, the corre-
sponding y in row 0 (coefficients of slack variables) of the current tableau must be in-
feasible for the dual problem. However, after the goal is reached, the corresponding y must
be an optimal solution (labeled y*) for the dual problem, because it is a feasible solution
that attains the minimum feasible value of W. This optimal solution (y1*, y2*, . . . , ym*)
provides for the primal problem the shadow prices that were described in Sec. 4.7. Fur-
thermore, this optimal W is just the optimal value of Z, so the optimal objective function
values are equal for the two problems. This fact also implies that cx � yb for any x and
y that are feasible for the primal and dual problems, respectively.
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To illustrate, the left-hand side of Table 6.5 shows row 0 for the respective itera-
tions when the simplex method is applied to the Wyndor Glass Co. example. In each
case, row 0 is partitioned into three parts: the coefficients of the decision variables (x1, x2),
the coefficients of the slack variables (x3, x4, x5), and the right-hand side (value of Z). Since
the coefficients of the slack variables give the corresponding values of the dual variables
(y1, y2, y3), each row 0 identifies a corresponding solution for the dual problem, as shown
in the y1, y2, and y3 columns of Table 6.5. To interpret the next two columns, recall that
(z1 � c1) and (z2 � c2) are the surplus variables for the functional constraints in the dual
problem, so the full dual problem after augmenting with these surplus variables is

Minimize W � 4y1 � 12y2 � 18y3,

subject to

y1 � 3y3 � (z1 � c1) � 3
2y2 � 2y3 � (z2 � c2) � 5

and

y1 � 0, y2 � 0, y3 � 0.

Therefore, by using the numbers in the y1, y2, and y3 columns, the values of these surplus
variables can be calculated as

z1 � c1 � y1 � 3y3 � 3,
z2 � c2 � 2y2 � 2y3 � 5.

Thus, a negative value for either surplus variable indicates that the corresponding con-
straint is violated. Also included in the rightmost column of the table is the calculated
value of the dual objective function W � 4y1 � 12y2 � 18y3.

As displayed in Table 6.4, all these quantities to the right of row 0 in Table 6.5 al-
ready are identified by row 0 without requiring any new calculations. In particular, note
in Table 6.5 how each number obtained for the dual problem already appears in row 0 in
the spot indicated by Table 6.4.

For the initial row 0, Table 6.5 shows that the corresponding dual solution 
(y1, y2, y3) � (0, 0, 0) is infeasible because both surplus variables are negative. The first it-
eration succeeds in eliminating one of these negative values, but not the other. After two it-
erations, the optimality test is satisfied for the primal problem because all the dual variables
and surplus variables are nonnegative. This dual solution (y1*, y2*, y3*) � (0, �

3
2

�, 1) is optimal
(as could be verified by applying the simplex method directly to the dual problem), so the
optimal value of Z and W is Z* � 36 � W*.
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■ TABLE 6.5 Row 0 and corresponding dual solution for each iteration 
for the Wyndor Glass Co. example

Primal Problem Dual Problem

Iteration Row 0 y1 y2 y3 z1 � c1 z2 � c2 W

0 [�3, �5 0, 0, 0 0] 0 0 0 �3 �5 0

1 [�3, �0 0, �
5
2

�, 0 30] 0 �
5
2

� 0 �3 �0 30

2 [�0, �0 0, �
3
2

�, 1 36] 0 �
3
2

� 1 �0 �0 36
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Summary of Primal-Dual Relationships

Now let us summarize the newly discovered key relationships between the primal and dual
problems.

Weak duality property: If x is a feasible solution for the primal problem and y
is a feasible solution for the dual problem, then

cx � yb.

For example, for the Wyndor Glass Co. problem, one feasible solution is x1 � 3, x2 � 3,
which yields Z � cx � 24, and one feasible solution for the dual problem is y1 � 1,
y2 � 1, y3 � 2, which yields a larger objective function value W � yb � 52. These are just
sample feasible solutions for the two problems. For any such pair of feasible solutions, this
inequality must hold because the maximum feasible value of Z � cx (36) equals the min-
imum feasible value of the dual objective function W � yb, which is our next property.

Strong duality property: If x* is an optimal solution for the primal problem
and y* is an optimal solution for the dual problem, then

cx* � y*b.

Thus, these two properties imply that cx � yb for feasible solutions if one or both of them
are not optimal for their respective problems, whereas equality holds when both are optimal.

The weak duality property describes the relationship between any pair of solutions
for the primal and dual problems where both solutions are feasible for their respective
problems. At each iteration, the simplex method finds a specific pair of solutions for the
two problems, where the primal solution is feasible but the dual solution is not feasible
(except at the final iteration). Our next property describes this situation and the relation-
ship between this pair of solutions.

Complementary solutions property: At each iteration, the simplex method si-
multaneously identifies a CPF solution x for the primal problem and a comple-
mentary solution y for the dual problem (found in row 0, the coefficients of the
slack variables), where

cx � yb.

If x is not optimal for the primal problem, then y is not feasible for the dual 
problem.

To illustrate, after one iteration for the Wyndor Glass Co. problem, x1 � 0, x2 � 6, and 
y1 � 0, y2 � �

5
2

�, y3 � 0, with cx � 30 � yb. This x is feasible for the primal problem, but
this y is not feasible for the dual problem (since it violates the constraint, y1 � 3y3 � 3).

The complementary solutions property also holds at the final iteration of the simplex
method, where an optimal solution is found for the primal problem. However, more can
be said about the complementary solution y in this case, as presented in the next property.

Complementary optimal solutions property: At the final iteration, the simplex
method simultaneously identifies an optimal solution x* for the primal problem
and a complementary optimal solution y* for the dual problem (found in row
0, the coefficients of the slack variables), where

cx* � y*b.

The yi* are the shadow prices for the primal problem.

For the example, the final iteration yields x1* � 2, x2* � 6, and y1* � 0, y2* � �
3
2

�, y3* � 1,
with cx* � 36 � y*b.
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We shall take a closer look at some of these properties in Sec. 6.3. There you will see
that the complementary solutions property can be extended considerably further. In partic-
ular, after slack and surplus variables are introduced to augment the respective problems,
every basic solution in the primal problem has a complementary basic solution in the dual
problem. We already have noted that the simplex method identifies the values of the sur-
plus variables for the dual problem as zj � cj in Table 6.4. This result then leads to an ad-
ditional complementary slackness property that relates the basic variables in one problem
to the nonbasic variables in the other (Tables 6.7 and 6.8), but more about that later.

In Sec. 6.4, after describing how to construct the dual problem when the primal prob-
lem is not in our standard form, we discuss another very useful property, which is sum-
marized as follows:

Symmetry property: For any primal problem and its dual problem, all relation-
ships between them must be symmetric because the dual of this dual problem is
this primal problem.

Therefore, all the preceding properties hold regardless of which of the two problems is
labeled as the primal problem. (The direction of the inequality for the weak duality prop-
erty does require that the primal problem be expressed or reexpressed in maximization
form and the dual problem in minimization form.) Consequently, the simplex method can
be applied to either problem, and it simultaneously will identify complementary solutions
(ultimately a complementary optimal solution) for the other problem.

So far, we have focused on the relationships between feasible or optimal solutions in
the primal problem and corresponding solutions in the dual problem. However, it is pos-
sible that the primal (or dual) problem either has no feasible solutions or has feasible so-
lutions but no optimal solution (because the objective function is unbounded). Our final
property summarizes the primal-dual relationships under all these possibilities.

Duality theorem: The following are the only possible relationships between the
primal and dual problems.

1. If one problem has feasible solutions and a bounded objective function (and
so has an optimal solution), then so does the other problem, so both the weak
and strong duality properties are applicable.

2. If one problem has feasible solutions and an unbounded objective function
(and so no optimal solution), then the other problem has no feasible solutions.

3. If one problem has no feasible solutions, then the other problem has either no
feasible solutions or an unbounded objective function.

Applications

As we have just implied, one important application of duality theory is that the dual prob-
lem can be solved directly by the simplex method in order to identify an optimal solution
for the primal problem. We discussed in Sec. 4.8 that the number of functional constraints
affects the computational effort of the simplex method far more than the number of vari-
ables does. If m 	 n, so that the dual problem has fewer functional constraints (n) than
the primal problem (m), then applying the simplex method directly to the dual problem
instead of the primal problem probably will achieve a substantial reduction in computa-
tional effort.

The weak and strong duality properties describe key relationships between the primal
and dual problems. One useful application is for evaluating a proposed solution for the pri-
mal problem. For example, suppose that x is a feasible solution that has been proposed for
implementation and that a feasible solution y has been found by inspection for the dual
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problem such that cx � yb. In this case, x must be optimal without the simplex method
even being applied! Even if cx � yb, then yb still provides an upper bound on the optimal
value of Z, so if yb � cx is small, intangible factors favoring x may lead to its selection
without further ado.

One of the key applications of the complementary solutions property is its use in
the dual simplex method presented in Sec. 8.1. This algorithm operates on the primal
problem exactly as if the simplex method were being applied simultaneously to the dual
problem, which can be done because of this property. Because the roles of row 0 and
the right side in the simplex tableau have been reversed, the dual simplex method re-
quires that row 0 begin and remain nonnegative while the right side begins with some
negative values (subsequent iterations strive to reach a nonnegative right side). Conse-
quently, this algorithm occasionally is used because it is more convenient to set up the
initial tableau in this form than in the form required by the simplex method. Further-
more, it frequently is used for reoptimization (discussed in Sec. 4.7), because changes
in the original model lead to the revised final tableau fitting this form. This situation is
common for certain types of sensitivity analysis, as you will see in the next chapter.

In general terms, duality theory plays a central role in sensitivity analysis. This role
is the topic of Sec. 6.5.

Another important application is its use in the economic interpretation of the dual prob-
lem and the resulting insights for analyzing the primal problem. You already have seen one
example when we discussed shadow prices in Sec. 4.7. Section 6.2 describes how this in-
terpretation extends to the entire dual problem and then to the simplex method.

6.2 ECONOMIC INTERPRETATION OF DUALITY 205

1Actually, several slightly different interpretations have been proposed. The one presented here seems to us to
be the most useful because it also directly interprets what the simplex method does in the primal problem.

■ 6.2 ECONOMIC INTERPRETATION OF DUALITY

The economic interpretation of duality is based directly upon the typical interpretation for
the primal problem (linear programming problem in our standard form) presented in Sec. 3.2.
To refresh your memory, we have summarized this interpretation of the primal problem in
Table 6.6.

Interpretation of the Dual Problem

To see how this interpretation of the primal problem leads to an economic interpretation
for the dual problem,1 note in Table 6.4 that W is the value of Z (total profit) at the cur-
rent iteration. Because

W � b1y1 � b2y2 � . . . � bmym,

■ TABLE 6.6 Economic interpretation of the primal problem

Quantity Interpretation

xj Level of activity j ( j � 1, 2, . . . , n)
cj Unit profit from activity j
Z Total profit from all activities
bi Amount of resource i available (i � 1, 2, . . . , m)
aij Amount of resource i consumed by each unit of activity j
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each biyi can thereby be interpreted as the current contribution to profit by having bi units
of resource i available for the primal problem. Thus,

The dual variable yi is interpreted as the contribution to profit per unit of resource
i (i � 1, 2, . . . , m), when the current set of basic variables is used to obtain the
primal solution.

In other words, the yi values (or yi
* values in the optimal solution) are just the shadow

prices discussed in Sec. 4.7.
For example, when iteration 2 of the simplex method finds the optimal solution for

the Wyndor problem, it also finds the optimal values of the dual variables (as shown in
the bottom row of Table 6.5) to be y1* � 0, y2* � �

3
2

�, and y3* � 1. These are precisely the
shadow prices found in Sec. 4.7 for this problem through graphical analysis. Recall that
the resources for the Wyndor problem are the production capacities of the three plants
being made available to the two new products under consideration, so that bi is the num-
ber of hours of production time per week being made available in Plant i for these
new products, where i � 1, 2, 3. As discussed in Sec. 4.7, the shadow prices indicate
that individually increasing any bi by 1 would increase the optimal value of the ob-
jective function (total weekly profit in units of thousands of dollars) by yi

*. Thus, yi
*

can be interpreted as the contribution to profit per unit of resource i when using the
optimal solution.

This interpretation of the dual variables leads to our interpretation of the overall dual
problem. Specifically, since each unit of activity j in the primal problem consumes aij

units of resource i,


m
i�1 ai jyi is interpreted as the current contribution to profit of the mix of resources

that would be consumed if 1 unit of activity j were used ( j � 1, 2, . . . , n).

For the Wyndor problem, 1 unit of activity j corresponds to producing 1 batch of product
j per week, where j � 1, 2. The mix of resources consumed by producing 1 batch of prod-
uct 1 is 1 hour of production time in Plant 1 and 3 hours in Plant 3. The corresponding
mix per batch of product 2 is 2 hours each in Plants 2 and 3. Thus, y1 � 3y3 and 2y2 � 2y3

are interpreted as the current contributions to profit (in thousands of dollars per week) of
these respective mixes of resources per batch produced per week of the respective products.

For each activity j, this same mix of resources (and more) probably can be used in
other ways as well, but no alternative use should be considered if it is less profitable than
1 unit of activity j. Since cj is interpreted as the unit profit from activity j, each functional
constraint in the dual problem is interpreted as follows:


m
i�1 aijyi � cj says that the actual contribution to profit of the above mix of re-

sources must be at least as much as if they were used by 1 unit of activity j; oth-
erwise, we would not be making the best possible use of these resources.

For the Wyndor problem, the unit profits (in thousands of dollars per week) are c1 � 3
and c2 � 5, so the dual functional constraints with this interpretation are y1 � 3y3 � 3 
and 2y2 � 2y3 � 5. Similarly, the interpretation of the nonnegativity constraints is the 
following:

yi � 0 says that the contribution to profit of resource i (i � 1, 2, . . . , m) must
be nonnegative: otherwise, it would be better not to use this resource at all.

The objective

Minimize W � �
m

i�1
biyi
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can be viewed as minimizing the total implicit value of the resources consumed by the
activities. For the Wyndor problem, the total implicit value (in thousands of dollars per
week) of the resources consumed by the two products is W � 4y1 � 12y2 � 18y3.

This interpretation can be sharpened somewhat by differentiating between basic and
nonbasic variables in the primal problem for any given BF solution (x1, x2, . . . , xn�m).
Recall that the basic variables (the only variables whose values can be nonzero) always
have a coefficient of zero in row 0. Therefore, referring again to Table 6.4 and the ac-
companying equation for zj, we see that

�
m

i�1
aijyi � cj, if xj 	 0 ( j � 1, 2, . . . , n),

yi � 0, if xn�i 	 0 (i � 1, 2, . . . , m).

(This is one version of the complementary slackness property discussed in Sec. 6.3.) The
economic interpretation of the first statement is that whenever an activity j operates at a
strictly positive level (xj 	 0), the marginal value of the resources it consumes must equal
(as opposed to exceeding) the unit profit from this activity. The second statement implies
that the marginal value of resource i is zero (yi � 0) whenever the supply of this resource
is not exhausted by the activities (xn�i 	 0). In economic terminology, such a resource is
a “free good”; the price of goods that are oversupplied must drop to zero by the law of
supply and demand. This fact is what justifies interpreting the objective for the dual prob-
lem as minimizing the total implicit value of the resources consumed, rather than the re-
sources allocated.

To illustrate these two statements, consider the optimal BF solution (2, 6, 2, 0, 0) for
the Wyndor problem. The basic variables are x1, x2, and x3, so their coefficients in row 0
are zero, as shown in the bottom row of Table 6.5. This bottom row also gives the corre-
sponding dual solution: y1* � 0, y2* � �

3
2

�, y3* � 1, with surplus variables (z1* � c1) � 0 and
(z2* � c2) � 0. Since x1 	 0 and x2 	 0, both these surplus variables and direct calcula-
tions indicate that y1* � 3y3* � c1 � 3 and 2y2* � 2y3* � c2 � 5. Therefore, the value of
the resources consumed per batch of the respective products produced does indeed equal
the respective unit profits. The slack variable for the constraint on the amount of Plant 1
capacity used is x3 	 0, so the marginal value of adding any Plant 1 capacity would be
zero (y1* � 0).

Interpretation of the Simplex Method

The interpretation of the dual problem also provides an economic interpretation of what
the simplex method does in the primal problem. The goal of the simplex method is to
find how to use the available resources in the most profitable feasible way. To attain
this goal, we must reach a BF solution that satisfies all the requirements on profitable
use of the resources (the constraints of the dual problem). These requirements com-
prise the condition for optimality for the algorithm. For any given BF solution, the
requirements (dual constraints) associated with the basic variables are automatically
satisfied (with equality). However, those associated with nonbasic variables may or
may not be satisfied.

In particular, if an original variable xj is nonbasic so that activity j is not used, then
the current contribution to profit of the resources that would be required to undertake each
unit of activity j

�
m

i�1
aijyi
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208 CHAPTER 6 DUALITY THEORY

may be smaller than, larger than, or equal to the unit profit cj obtainable from the activ-
ity. If it is smaller, so that zj � cj � 0 in row 0 of the simplex tableau, then these resources
can be used more profitably by initiating this activity. If it is larger (zj � cj 	 0), then
these resources already are being assigned elsewhere in a more profitable way, so they
should not be diverted to activity j. If zj � cj � 0, there would be no change in profitability
by initiating activity j.

Similarly, if a slack variable xn�i is nonbasic so that the total allocation bi of resource
i is being used, then yi is the current contribution to profit of this resource on a marginal
basis. Hence, if yi � 0, profit can be increased by cutting back on the use of this resource
(i.e., increasing xn�i). If yi 	 0, it is worthwhile to continue fully using this resource,
whereas this decision does not affect profitability if yi � 0.

Therefore, what the simplex method does is to examine all the nonbasic variables in
the current BF solution to see which ones can provide a more profitable use of the re-
sources by being increased. If none can, so that no feasible shifts or reductions in the
current proposed use of the resources can increase profit, then the current solution must
be optimal. If one or more can, the simplex method selects the variable that, if increased
by 1, would improve the profitability of the use of the resources the most. It then actu-
ally increases this variable (the entering basic variable) as much as it can until the mar-
ginal values of the resources change. This increase results in a new BF solution with a
new row 0 (dual solution), and the whole process is repeated.

The economic interpretation of the dual problem considerably expands our ability to
analyze the primal problem. However, you already have seen in Sec. 6.1 that this inter-
pretation is just one ramification of the relationships between the two problems. In 
Sec. 6.3, we delve into these relationships more deeply.

2You might wonder why we do not also introduce artificial variables into these constraints as discussed in
Sec. 4.6. The reason is that these variables have no purpose other than to change the feasible region tem-
porarily as a convenience in starting the simplex method. We are not interested now in applying the simplex
method to the dual problem, and we do not want to change its feasible region.

■ 6.3 PRIMAL–DUAL RELATIONSHIPS

Because the dual problem is a linear programming problem, it also has corner-point so-
lutions. Furthermore, by using the augmented form of the problem, we can express these
corner-point solutions as basic solutions. Because the functional constraints have the
� form, this augmented form is obtained by subtracting the surplus (rather than adding
the slack) from the left-hand side of each constraint j ( j � 1, 2, . . . , n).2 This surplus is

zj � cj � �
m

i�1
aijyi � cj , for j � 1, 2, . . . , n.

Thus, zj�cj plays the role of the surplus variable for constraint j (or its slack variable if
the constraint is multiplied through by �1). Therefore, augmenting each corner-point so-
lution (y1, y2, . . . , ym) yields a basic solution (y1, y2, . . . , ym, z1 � c1, z2 � c2, . . . ,
zn � cn) by using this expression for zj � cj. Since the augmented form of the dual
problem has n functional constraints and n � m variables, each basic solution has n basic
variables and m nonbasic variables. (Note how m and n reverse their previous roles
here because, as Table 6.3 indicates, dual constraints correspond to primal variables and
dual variables correspond to primal constraints.)
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Complementary Basic Solutions

One of the important relationships between the primal and dual problems is a direct cor-
respondence between their basic solutions. The key to this correspondence is row 0 of the
simplex tableau for the primal basic solution, such as shown in Table 6.4 or 6.5. Such a
row 0 can be obtained for any primal basic solution, feasible or not, by using the formu-
las given in the bottom part of Table 5.8.

Note again in Tables 6.4 and 6.5 how a complete solution for the dual problem (includ-
ing the surplus variables) can be read directly from row 0. Thus, because of its coefficient in
row 0, each variable in the primal problem has an associated variable in the dual problem,
as summarized in Table 6.7, first for any problem and then for the Wyndor problem.

A key insight here is that the dual solution read from row 0 must also be a basic so-
lution! The reason is that the m basic variables for the primal problem are required to have
a coefficient of zero in row 0, which thereby requires the m associated dual variables to
be zero, i.e., nonbasic variables for the dual problem. The values of the remaining n (ba-
sic) variables then will be the simultaneous solution to the system of equations given at
the beginning of this section. In matrix form, this system of equations is z � c � yA � c,
and the fundamental insight of Sec. 5.3 actually identifies its solution for z � c and y as
being the corresponding entries in row 0.

Because of the symmetry property quoted in Sec. 6.1 (and the direct association be-
tween variables shown in Table 6.7), the correspondence between basic solutions in the
primal and dual problems is a symmetric one. Furthermore, a pair of complementary ba-
sic solutions has the same objective function value, shown as W in Table 6.4.

Let us now summarize our conclusions about the correspondence between primal and
dual basic solutions, where the first property extends the complementary solutions prop-
erty of Sec. 6.1 to the augmented forms of the two problems and then to any basic solu-
tion (feasible or not) in the primal problem.

Complementary basic solutions property: Each basic solution in the primal
problem has a complementary basic solution in the dual problem, where their
respective objective function values (Z and W) are equal. Given row 0 of the sim-
plex tableau for the primal basic solution, the complementary dual basic solution
(y, z � c) is found as shown in Table 6.4.

The next property shows how to identify the basic and nonbasic variables in this com-
plementary basic solution.

Complementary slackness property: Given the association between variables
in Table 6.7, the variables in the primal basic solution and the complementary
dual basic solution satisfy the complementary slackness relationship shown in
Table 6.8. Furthermore, this relationship is a symmetric one, so that these two
basic solutions are complementary to each other.

6.3 PRIMAL-DUAL RELATIONSHIPS 209

■ TABLE 6.7 Association between variables in primal and dual problems

Primal Variable Associated Dual Variable

Any problem
(Decision variable) xj zj � cj (surplus variable) j � 1, 2, . . . , n
(Slack variable) xn�i yi (decision variable) i � 1, 2, . . . , m

Decision variables: x1 z1 � c1 (surplus variables)
Decision variables: x2 z2 � c2

Wyndor problem Slack variables:    x3 y1 (decision variables)
Decision variables: x4 y2

Decision variables: x5 y3
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■ TABLE 6.8 Complementary slackness 
relationship for complementary 
basic solutions

Primal Associated
Variable Dual Variable

Basic Nonbasic (m variables)
Nonbasic Basic (n variables)

■ TABLE 6.9 Complementary basic solutions for the Wyndor Glass Co. example

Primal Problem Dual Problem

No. Basic Solution Feasible? Z � W Feasible? Basic Solution

1 (0, 0, 4, 12, 18) Yes 0 No (0, 0, 0, �3, �5)
2 (4, 0, 0, 12, 6) Yes 12 No (3, 0, 0, 0, �5)
3 (6, 0, �2, 12, 0) No 18 No (0, 0, 1, 0, �3)

4 (4, 3, 0, 6, 0) Yes 27 No ���
9
2

�, 0, �
5
2

�, 0, 0�
5 (0, 6, 4, 0, 6) Yes 30 No �0, �

5
2

�, 0, �3, 0�
6 (2, 6, 2, 0, 0) Yes 36 Yes �0, �

3
2

�, 1, 0, 0�
7 (4, 6, 0, 0, �6) No 42 Yes �3, �

5
2

�, 0, 0, 0�
8 (0, 9, 4, �6, 0) No 45 Yes �0, 0, �

5
2

�, �
9
2

�, 0�

The reason for using the name complementary slackness for this latter property is that
it says (in part) that for each pair of associated variables, if one of them has slack in its
nonnegativity constraint (a basic variable 	 0), then the other one must have no slack (a
nonbasic variable � 0). We mentioned in Sec. 6.2 that this property has a useful economic
interpretation for linear programming problems.

Example. To illustrate these two properties, again consider the Wyndor Glass Co. prob-
lem of Sec. 3.1. All eight of its basic solutions (five feasible and three infeasible) are
shown in Table 6.9. Thus, its dual problem (see Table 6.1) also must have eight basic so-
lutions, each complementary to one of these primal solutions, as shown in Table 6.9.

The three BF solutions obtained by the simplex method for the primal problem are the
first, fifth, and sixth primal solutions shown in Table 6.9. You already saw in Table 6.5 how
the complementary basic solutions for the dual problem can be read directly from row 0,
starting with the coefficients of the slack variables and then the original variables. The other
dual basic solutions also could be identified in this way by constructing row 0 for each of
the other primal basic solutions, using the formulas given in the bottom part of Table 5.8.

Alternatively, for each primal basic solution, the complementary slackness property
can be used to identify the basic and nonbasic variables for the complementary dual ba-
sic solution, so that the system of equations given at the beginning of the section can be
solved directly to obtain this complementary solution. For example, consider the next-to-
last primal basic solution in Table 6.9, (4, 6, 0, 0, �6). Note that x1, x2, and x5 are basic
variables, since these variables are not equal to 0. Table 6.7 indicates that the associated
dual variables are (z1 � c1), (z2 � c2), and y3. Table 6.8 specifies that these associated dual
variables are nonbasic variables in the complementary basic solution, so

z1 � c1 � 0, z2 � c2 � 0, y3 � 0.
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6.3 PRIMAL-DUAL RELATIONSHIPS 211

Consequently, the augmented form of the functional constraints in the dual problem,

y1 � 3y3 � (z1 � c1) � 3
2y2 � 2y3 � (z2 � c2) � 5,

reduce to

y1 � 0 � 0 � 3
2y2 � 0 � 0 � 5,

so that y1 � 3 and y2 � �
5
2

�. Combining these values with the values of 0 for the nonbasic
variables gives the basic solution (3, �

5
2

�, 0, 0, 0), shown in the rightmost column and next-
to-last row of Table 6.9. Note that this dual solution is feasible for the dual problem be-
cause all five variables satisfy the nonnegativity constraints.

Finally, notice that Table 6.9 demonstrates that (0, �
3
2

�, 1, 0, 0) is the optimal solution
for the dual problem, because it is the basic feasible solution with minimal W (36).

Relationships between Complementary Basic Solutions

We now turn our attention to the relationships between complementary basic solutions,
beginning with their feasibility relationships. The middle columns in Table 6.9 provide
some valuable clues. For the pairs of complementary solutions, notice how the yes or no
answers on feasibility also satisfy a complementary relationship in most cases. In partic-
ular, with one exception, whenever one solution is feasible, the other is not. (It also is
possible for neither solution to be feasible, as happened with the third pair.) The one ex-
ception is the sixth pair, where the primal solution is known to be optimal. The explana-
tion is suggested by the Z � W column. Because the sixth dual solution also is optimal
(by the complementary optimal solutions property), with W � 36, the first five dual so-
lutions cannot be feasible because W � 36 (remember that the dual problem objective is
to minimize W). By the same token, the last two primal solutions cannot be feasible be-
cause Z 	 36.

This explanation is further supported by the strong duality property that optimal pri-
mal and dual solutions have Z � W.

Next, let us state the extension of the complementary optimal solutions property of
Sec. 6.1 for the augmented forms of the two problems.

Complementary optimal basic solutions property: An optimal basic solution
in the primal problem has a complementary optimal basic solution in the dual
problem, where their respective objective function values (Z and W) are equal.
Given row 0 of the simplex tableau for the optimal primal solution, the comple-
mentary optimal dual solution (y*, z* � c) is found as shown in Table 6.4.

To review the reasoning behind this property, note that the dual solution (y*, z* � c)
must be feasible for the dual problem because the condition for optimality for the pri-
mal problem requires that all these dual variables (including surplus variables) be non-
negative. Since this solution is feasible, it must be optimal for the dual problem by the
weak duality property (since W � Z, so y*b � cx* where x* is optimal for the primal
problem).

Basic solutions can be classified according to whether they satisfy each of two con-
ditions. One is the condition for feasibility, namely, whether all the variables (including
slack variables) in the augmented solution are nonnegative. The other is the condition
for optimality, namely, whether all the coefficients in row 0 (i.e., all the variables in the
complementary basic solution) are nonnegative. Our names for the different types of
basic solutions are summarized in Table 6.10. For example, in Table 6.9, primal basic
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212 CHAPTER 6 DUALITY THEORY

solutions 1, 2, 4, and 5 are suboptimal, 6 is optimal, 7 and 8 are superoptimal, and 3 is
neither feasible nor superoptimal.

Given these definitions, the general relationships between complementary basic so-
lutions are summarized in Table 6.11. The resulting range of possible (common) values
for the objective functions (Z � W) for the first three pairs given in Table 6.11 (the last
pair can have any value) is shown in Fig. 6.1. Thus, while the simplex method is dealing

■ TABLE 6.11 Relationships between complementary basic solutions

Both Basic Solutions
Primal Basic Complementary

Solution Dual Basic Solution Primal Feasible? Dual Feasible?

Suboptimal Superoptimal Yes No
Optimal Optimal Yes Yes
Superoptimal Suboptimal No Yes
Neither feasible Neither feasible No No
nor superoptimal nor superoptimal

■ TABLE 6.10 Classification of basic solutions

Satisfies Condition 
for Optimality?

Yes No

Yes Optimal Suboptimal
Feasible?

No Superoptimal Neither feasible nor superoptimal

Primal problem Dual problem

n

�
j�1

cjxj � Z
m

�
i �1

bi yi W � 

Superoptimal Suboptimal

Suboptimal Superoptimal

(optimal) Z* (optimal) W*

■ FIGURE 6.1
Range of possible values of 
Z � W for certain types of
complementary basic
solutions.
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■ TABLE 6.12 Conversions to standard form for linear programming models

Nonstandard Form Equivalent Standard Form

Minimize Z Maximize (�Z)

�
n

j�1
aijxj � bi ��

n

j�1
aijxj � �bi

�
n

j�1
aijxj � bi �

n

j�1
aijxj � bi and ��

n

j�1
aijxj � �bi

xj unconstrained in sign xj
� � xj

�, xj
� � 0, xj

� � 0

■ 6.4 ADAPTING TO OTHER PRIMAL FORMS

Thus far it has been assumed that the model for the primal problem is in our standard
form. However, we indicated at the beginning of the chapter that any linear programming
problem, whether in our standard form or not, possesses a dual problem. Therefore, this
section focuses on how the dual problem changes for other primal forms.

Each nonstandard form was discussed in Sec. 4.6, and we pointed out how it is pos-
sible to convert each one to an equivalent standard form if so desired. These conversions
are summarized in Table 6.12. Hence, you always have the option of converting any model
to our standard form and then constructing its dual problem in the usual way. To illus-
trate, we do this for our standard dual problem (it must have a dual also) in Table 6.13.
Note that what we end up with is just our standard primal problem! Since any pair of pri-
mal and dual problems can be converted to these forms, this fact implies that the dual of
the dual problem always is the primal problem. Therefore, for any primal problem and its
dual problem, all relationships between them must be symmetric. This is just the sym-
metry property already stated in Sec. 6.1 (without proof), but now Table 6.13 demon-
strates why it holds.

One consequence of the symmetry property is that all the statements made earlier in
the chapter about the relationships of the dual problem to the primal problem also hold
in reverse.

directly with suboptimal basic solutions and working toward optimality in the primal prob-
lem, it is simultaneously dealing indirectly with complementary superoptimal solutions
and working toward feasibility in the dual problem. Conversely, it sometimes is more con-
venient (or necessary) to work directly with superoptimal basic solutions and to move to-
ward feasibility in the primal problem, which is the purpose of the dual simplex method
described in Sec. 8.1.

The third and fourth columns of Table 6.11 introduce two other common terms that
are used to describe a pair of complementary basic solutions. The two solutions are said
to be primal feasible if the primal basic solution is feasible, whereas they are called dual
feasible if the complementary dual basic solution is feasible for the dual problem. Using
this terminology, the simplex method deals with primal feasible solutions and strives to-
ward achieving dual feasibility as well. When this is achieved, the two complementary
basic solutions are optimal for their respective problems.

These relationships prove very useful, particularly in sensitivity analysis, as you will
see in the next chapter.
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Another consequence is that it is immaterial which problem is called the primal and
which is called the dual. In practice, you might see a linear programming problem fit-
ting our standard form being referred to as the dual problem. The convention is that the
model formulated to fit the actual problem is called the primal problem, regardless of
its form.

Our illustration of how to construct the dual problem for a nonstandard primal prob-
lem did not involve either equality constraints or variables unconstrained in sign. Actu-
ally, for these two forms, a shortcut is available. It is possible to show (see Probs. 6.4-7
and 6.4-2a) that an equality constraint in the primal problem should be treated just like
a � constraint in constructing the dual problem except that the nonnegativity constraint
for the corresponding dual variable should be deleted (i.e., this variable is unconstrained
in sign). By the symmetry property, deleting a nonnegativity constraint in the primal prob-
lem affects the dual problem only by changing the corresponding inequality constraint to
an equality constraint.

Another shortcut involves functional constraints in � form for a maximization prob-
lem. The straightforward (but longer) approach would begin by converting each such con-
straint to � form

�
n

j�1
aijxj � bi ⎯→ � �

n

j�1
aijxj � �bi.

Constructing the dual problem in the usual way then gives �aij as the coefficient of
yi in functional constraint j (which has � form) and a coefficient of �bi in the objec-
tive function (which is to be minimized), where yi also has a nonnegativity constraint
yi � 0. Now suppose we define a new variable yi� � �yi. The changes caused by ex-
pressing the dual problem in terms of yi� instead of yi are that (1) the coefficients of
the variable become ai j for functional constraint j and bi for the objective function and
(2) the constraint on the variable becomes yi� � 0 (a nonpositivity constraint). The
shortcut is to use yi� instead of yi as a dual variable so that the parameters in the orig-
inal constraint (aij and bi) immediately become the coefficients of this variable in the
dual problem.

214 CHAPTER 6 DUALITY THEORY

■ TABLE 6.13 Constructing the dual of the 
dual problem

Minimize W � yb,

subject to

yA � c

and

y � 0.

Maximize (�W) � �yb,

subject to

�yA � �c

and

y � 0.

Dual Problem Converted to Standard Form

Maximize Z � cx,

subject to

Ax � b

and

x � 0.

Minimize (�Z) � �cx,

subject to

�Ax � �b

and

x � 0.

Converted to 
Standard Form Its Dual Problem

⎯→

⎯→

⎯
→
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Here is a useful mnemonic device for remembering what the forms of dual constraints
should be. With a maximization problem, it might seem sensible for a functional constraint
to be in � form, slightly odd to be in � form, and somewhat bizarre to be in � form.
Similarly, for a minimization problem, it might seem sensible to be in � form, slightly odd
to be in � form, and somewhat bizarre to be in � form. For the constraint on an individ-
ual variable in either kind of problem, it might seem sensible to have a nonnegativity con-
straint, somewhat odd to have no constraint (so the variable is unconstrained in sign), and
quite bizarre for the variable to be restricted to be less than or equal to zero. Now recall
the correspondence between entities in the primal and dual problems indicated in Table 6.3;
namely, functional constraint i in one problem corresponds to variable i in the other prob-
lem, and vice versa. The sensible-odd-bizarre method, or SOB method for short, says
that the form of a functional constraint or the constraint on a variable in the dual problem
should be sensible, odd, or bizarre, depending on whether the form for the corresponding
entity in the primal problem is sensible, odd, or bizarre. Here is a summary.

The SOB Method for Determining the Form of Constraints in the Dual.3

1. Formulate the primal problem in either maximization form or minimization form, and
then the dual problem automatically will be in the other form.

2. Label the different forms of functional constraints and of constraints on individual vari-
ables in the primal problem as being sensible, odd, or bizarre according to Table 6.14. The
labeling of the functional constraints depends on whether the problem is a maximization
problem (use the second column) or a minimization problem (use the third column).

3. For each constraint on an individual variable in the dual problem, use the form that
has the same label as for the functional constraint in the primal problem that corre-
sponds to this dual variable (as indicated by Table 6.3).

4. For each functional constraint in the dual problem, use the form that has the same la-
bel as for the constraint on the corresponding individual variable in the primal prob-
lem (as indicated by Table 6.3).

The arrows between the second and third columns of Table 6.14 spell out the corre-
spondence between the forms of constraints in the primal and dual. Note that the corre-
spondence always is between a functional constraint in one problem and a constraint on
an individual variable in the other problem. Since the primal problem can be either a max-
imization or minimization problem, where the dual then will be of the opposite type, the
second column of the table gives the form for whichever is the maximization problem and
the third column gives the form for the other problem (a minimization problem).

To illustrate, consider the radiation therapy example presented at the beginning of
Sec. 3.4. To show the conversion in both directions in Table 6.14, we begin with the max-
imization form of this model as the primal problem, before using the (original) mini-
mization form.

The primal problem in maximization form is shown on the left side of Table 6.15. By
using the second column of Table 6.14 to represent this problem, the arrows in this table
indicate the form of the dual problem in the third column. These same arrows are used in
Table 6.15 to show the resulting dual problem. (Because of these arrows, we have placed
the functional constraints last in the dual problem rather than in their usual top position.)

6.4 ADAPTING TO OTHER PRIMAL FORMS 215

3This particular mnemonic device (and a related one) for remembering what the forms of the dual constraints
should be has been suggested by Arthur T. Benjamin, a mathematics professor at Harvey Mudd College. An in-
teresting and wonderfully bizarre fact about Professor Benjamin himself is that he is one of the world’s great
human calculators who can perform such feats as quickly multiplying six-digit numbers in his head. For a
further discussion and derivation of the SOB method, see A. T. Benjamin: “Sensible Rules for Remembering
Duals — The S-O-B Method,” SIAM Review, 37(1): 85–87, 1995.
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Beside each constraint in both problems, we have inserted (in parentheses) an S, O, or B to
label the form as sensible, odd, or bizarre. As prescribed by the SOB method, the label for
each dual constraint always is the same as for the corresponding primal constraint.

However, there was no need (other than for illustrative purposes) to convert the pri-
mal problem to maximization form. Using the original minimization form, the equivalent
primal problem is shown on the left side of Table 6.16. Now we use the third column of
Table 6.14 to represent this primal problem, where the arrows indicate the form of the
dual problem in the second column. These same arrows in Table 6.16 show the resulting
dual problem on the right side. Again, the labels on the constraints show the application
of the SOB method.

Just as the primal problems in Tables 6.15 and 6.16 are equivalent, the two dual prob-
lems also are completely equivalent. The key to recognizing this equivalency lies in the
fact that the variables in each version of the dual problem are the negative of those in the
other version (y1� � �y1, y2� � �y2, y3 � �y3�). Therefore, for each version, if the vari-
ables in the other version are used instead, and if both the objective function and the con-
straints are multiplied through by �1, then the other version is obtained. (Problem 6.4-5
asks you to verify this.)

If you would like to see another example of using the SOB method to construct a
dual problem, one is given in the Solved Examples section of the book’s website.

If the simplex method is to be applied to either a primal or a dual problem that has
any variables constrained to be nonpositive (for example, y3� � 0 in the dual problem of
Table 6.15), this variable may be replaced by its nonnegative counterpart (for example,
y3 � �y3�).
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■ TABLE 6.14 Corresponding primal-dual forms

Primal Problem Dual Problem
Label (or Dual Problem) (or Primal Problem)

Maximize Z (or W) Minimize W (or Z)

Constraint i: Variable yi (or xi):
Sensible � form yi � 0
Odd � form Unconstrained  
Bizarre � form yi� � 0

Variable xj (or yj): Constraint j:
Sensible xj � 0 � form
Odd Unconstrained � form
Bizarre xj� � 0 � form

←⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→
←⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→
←⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→

←⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→
←⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→
←⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→

■ TABLE 6.15 One primal-dual form for the radiation therapy example

Maximize �Z � �0.4x1 � 0.5x2,

subject to

(S) 0.3x1 � 0.1x2 � 2.7
(O) 0.5x1 � 0.5x2 � 6
(B) 0.6x1 � 0.4x2 � 6

and

(S) x1 � 0
(S) x2 � 0

Minimize W � 2.7y1 � 6y2 � 6y3�,

subject to

y1 � 0 (S)
y2 unconstrained in sign (O)
y3� � 0 (B)

and

0.3y1 � 0.5y2 � 0.6y3� � �0.4 (S)
0.1y1 � 0.5y2 � 0.4y3� � �0.5 (S)

Primal Problem Dual Problem

←⎯⎯⎯⎯→
←⎯⎯⎯⎯→
←⎯⎯⎯⎯→

←⎯⎯⎯⎯→
←⎯⎯⎯⎯→
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When artificial variables are used to help the simplex method solve a primal prob-
lem, the duality interpretation of row 0 of the simplex tableau is the following: Since ar-
tificial variables play the role of slack variables, their coefficients in row 0 now provide
the values of the corresponding dual variables in the complementary basic solution for the
dual problem. Since artificial variables are used to replace the real problem with a more
convenient artificial problem, this dual problem actually is the dual of the artificial prob-
lem. However, after all the artificial variables become nonbasic, we are back to the real
primal and dual problems. With the two-phase method, the artificial variables would need
to be retained in phase 2 in order to read off the complete dual solution from row 0. With
the Big M method, since M has been added initially to the coefficient of each artificial
variable in row 0, the current value of each corresponding dual variable is the current co-
efficient of this artificial variable minus M.

For example, look at row 0 in the final simplex tableau for the radiation therapy
example, given at the bottom of Table 4.12. After M is subtracted from the coefficients
of the artificial variables x�4 and x�6, the optimal solution for the corresponding dual prob-
lem given in Table 6.15 is read from the coefficients of x3, x�4, and x�6 as (y1, y2, y3�)
� (0.5, �1.1, 0). As usual, the surplus variables for the two functional constraints are
read from the coefficients of x1 and x2 as z1 � c1 � 0 and z2 � c2 � 0.

■ TABLE 6.16 The other primal-dual form for the radiation therapy example

Minimize Z � 0.4x1 � 0.5x2,

subject to

(B) 0.3x1 � 0.1x2 � 2.7
(O) 0.5x1 � 0.5x2 � 6
(S) 0.6x1 � 0.4x2 � 6

and

(S) x1 � 0
(S) x2 � 0

Maximize W � 2.7y1� � 6y2� � 6y3,

subject to

y1� � 0 (B)
y2� unconstrained in sign (O)
y3 � 0 (S)

and

0.3y1� � 0.5y2� � 0.6y3 � 0.4 (S)
0.1y1� � 0.5y2� � 0.4y3 � 0.6 (S)

Primal Problem Dual Problem

←⎯⎯⎯⎯→
←⎯⎯⎯⎯→
←⎯⎯⎯⎯→

←⎯⎯⎯⎯→
←⎯⎯⎯⎯→

■ 6.5 THE ROLE OF DUALITY THEORY IN SENSITIVITY ANALYSIS

As described further in the next chapter, sensitivity analysis basically involves investi-
gating the effect on the optimal solution if changes occur in the values of the model pa-
rameters aij, bi, and cj. However, changing parameter values in the primal problem also
changes the corresponding values in the dual problem. Therefore, you have your choice
of which problem to use to investigate each change. Because of the primal-dual rela-
tionships presented in Secs. 6.1 and 6.3 (especially the complementary basic solutions
property), it is easy to move back and forth between the two problems as desired. In
some cases, it is more convenient to analyze the dual problem directly in order to de-
termine the complementary effect on the primal problem. We begin by considering two
such cases.

Changes in the Coefficients of a Nonbasic Variable

Suppose that the changes made in the original model occur in the coefficients of a vari-
able that was nonbasic in the original optimal solution. What is the effect of these changes
on this solution? Is it still feasible? Is it still optimal?

hil23453_ch06_197-224.qxd  1/15/70  7:46 AM  Page 217 Final PDF to printer



Because the variable involved is nonbasic (value of zero), changing its coefficients
cannot affect the feasibility of the solution. Therefore, the open question in this case is
whether it is still optimal. As Tables 6.10 and 6.11 indicate, an equivalent question is whether
the complementary basic solution for the dual problem is still feasible after these changes
are made. Since these changes affect the dual problem by changing only one constraint,
this question can be answered simply by checking whether this complementary basic so-
lution still satisfies this revised constraint.

We shall illustrate this case in the corresponding subsection of Sec. 7.2 after devel-
oping a relevant example. The Solved Examples section of the book’s website also gives
another example for both this case and the next one.

Introduction of a New Variable

As indicated in Table 6.6, the decision variables in the model typically represent the lev-
els of the various activities under consideration. In some situations, these activities were
selected from a larger group of possible activities, where the remaining activities were not
included in the original model because they seemed less attractive. Or perhaps these other
activities did not come to light until after the original model was formulated and solved.
Either way, the key question is whether any of these previously unconsidered activities
are sufficiently worthwhile to warrant initiation. In other words, would adding any of these
activities to the model change the original optimal solution?

Adding another activity amounts to introducing a new variable, with the appropriate
coefficients in the functional constraints and objective function, into the model. The only
resulting change in the dual problem is to add a new constraint (see Table 6.3).

After these changes are made, would the original optimal solution, along with the
new variable equal to zero (nonbasic), still be optimal for the primal problem? As for the
preceding case, an equivalent question is whether the complementary basic solution for
the dual problem is still feasible. And, as before, this question can be answered simply
by checking whether this complementary basic solution satisfies one constraint, which in
this case is the new constraint for the dual problem.

To illustrate, suppose for the Wyndor Glass Co. problem introduced in Sec. 3.1 that
a possible third new product now is being considered for inclusion in the product line.
Letting xnew represent the production rate for this product, we show the resulting revised
model as follows:

Maximize Z � 3x1 � 5x2 � 4xnew,

subject to

x1 � 2x2 � 2xnew � 4
3x1 � 2x2 � 3xnew � 12
3x1 � 2x2 � xnew � 18

and

x1 � 0, x2 � 0, xnew � 0.

After we introduced slack variables, the original optimal solution for this problem with-
out xnew (given by Table 4.8) was (x1, x2, x3, x4, x5) � (2, 6, 2, 0, 0). Is this solution, along
with xnew � 0, still optimal?

To answer this question, we need to check the complementary basic solution for the dual
problem. As indicated by the complementary optimal basic solutions property in Sec. 6.3,
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this solution is given in row 0 of the final simplex tableau for the primal problem, using
the locations shown in Table 6.4 and illustrated in Table 6.5. Therefore, as given in both
the bottom row of Table 6.5 and the sixth row of Table 6.9, the solution is

(y1, y2, y3, z1 � c1, z2 � c2) � �0, �
3
2

�, 1, 0, 0�.

(Alternatively, this complementary basic solution can be derived in the way that was 
illustrated in Sec. 6.3 for the complementary basic solution in the next-to-last row of 
Table 6.9.)

Since this solution was optimal for the original dual problem, it certainly satisfies the
original dual constraints shown in Table 6.1. But does it satisfy this new dual constraint?

2y1 � 3y2 � y3 � 4

Plugging in this solution, we see that

2(0) � 3��
3
2

�� � (1) � 4

is satisfied, so this dual solution is still feasible (and thus still optimal). Consequently, the
original primal solution (2, 6, 2, 0, 0), along with xnew � 0, is still optimal, so this third
possible new product should not be added to the product line.

This approach also makes it very easy to conduct sensitivity analysis on the coefficients
of the new variable added to the primal problem. By simply checking the new dual constraint,
you can immediately see how far any of these parameter values can be changed before they
affect the feasibility of the dual solution and so the optimality of the primal solution.

Other Applications

Already we have discussed two other key applications of duality theory to sensitivity analy-
sis, namely, shadow prices and the dual simplex method. As described in Secs. 4.7 and
6.2, the optimal dual solution (y1*, y2*, . . . , ym*) provides the shadow prices for the 
respective resources that indicate how Z would change if (small) changes were made in
the bi (the resource amounts). The resulting analysis will be illustrated in some detail in
Sec. 7.2.

In more general terms, the economic interpretation of the dual problem and of the sim-
plex method presented in Sec. 6.2 provides some useful insights for sensitivity analysis.

When we investigate the effect of changing the bi or the aij values (for basic vari-
ables), the original optimal solution may become a superoptimal basic solution (as de-
fined in Table 6.10) instead. If we then want to reoptimize to identify the new optimal
solution, the dual simplex method (discussed at the end of Secs. 6.1 and 6.3) should be
applied, starting from this basic solution. (This important variant of the simplex method
will be described in Sec. 8.1.)

We mentioned in Sec. 6.1 that sometimes it is more efficient to solve the dual prob-
lem directly by the simplex method in order to identify an optimal solution for the pri-
mal problem. When the solution has been found in this way, sensitivity analysis for the
primal problem then is conducted by applying the procedure described in Sections 7.1 
and 7.2 directly to the dual problem and then inferring the complementary effects on 
the primal problem (e.g., see Table 6.11). This approach to sensitivity analysis is rela-
tively straightforward because of the close primal-dual relationships described in Secs. 6.1
and 6.3.
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Every linear programming problem has associated with it a dual linear programming
problem. There are a number of very useful relationships between the original (primal)
problem and its dual problem that enhance our ability to analyze the primal problem. For
example, the economic interpretation of the dual problem gives shadow prices that mea-
sure the marginal value of the resources in the primal problem and provides an interpreta-
tion of the simplex method. Because the simplex method can be applied directly to either
problem in order to solve both of them simultaneously, considerable computational effort
sometimes can be saved by dealing directly with the dual problem. Duality theory, including
the dual simplex method (Sec. 8.1) for working with superoptimal basic solutions, also
plays a major role in sensitivity analysis.
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The symbols to the left of some of the problems (or their parts)
have the following meaning:

I: We suggest that you use the corresponding interactive pro-
cedure just listed (the printout records your work).

C: Use the computer with any of the software options available
to you (or as instructed by your instructor) to solve the prob-
lem automatically.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

6.1-1.* Construct the dual problem for each of the following lin-
ear programming models fitting our standard form.
(a) Model in Prob. 3.1-6
(b) Model in Prob. 4.7-5

6.1-2. Consider the linear programming model in Prob. 4.5-4.
(a) Construct the primal-dual table and the dual problem for this

model.
(b) What does the fact that Z is unbounded for this model imply

about its dual problem?

6.1-3. For each of the following linear programming models, give
your recommendation on which is the more efficient way (proba-
bly) to obtain an optimal solution: by applying the simplex method
directly to this primal problem or by applying the simplex method
directly to the dual problem instead. Explain.
(a) Maximize Z � 10x1 � 4x2 � 7x3,

subject to

3x1 � x2 � 2x3 � 25
x1 � 2x2 � 3x3 � 25

5x1 � x2 � 2x3 � 40
x1 � x2 � x3 � 90

2x1 � x2 � x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.

(b) Maximize Z � 2x1 � 5x2 � 3x3 � 4x4 � x5,

subject to

x1 � 3x2 � 2x3 � 3x4 � x5 � 6
4x1 � 6x2 � 5x3 � 7x4 � x5 � 15

and

xj � 0, for j � 1, 2, 3, 4, 5.

6.1-4. Consider the following problem.

Maximize Z � �x1 � 2x2 � x3,

subject to

x1 � x2 � 2x3 � 12
x1 � x2 � x3 � 1

and

x1 � 0, x2 � 0, x3 � 0.

(a) Construct the dual problem.
(b) Use duality theory to show that the optimal solution for the

primal problem has Z � 0.

6.1-5. Consider the following problem.

Maximize Z � 2x1 � 6x2 � 9x3,

subject to

x1  � x3 � 3 (resource 1)
x1x2 � 2x3 � 5 (resource 2)

and

x1 � 0, x2 � 0, x3 � 0.

(a) Construct the dual problem for this primal problem.
I (b) Solve the dual problem graphically. Use this solution to iden-

tify the shadow prices for the resources in the primal problem.
C (c) Confirm your results from part (b) by solving the primal

problem automatically by the simplex method and then iden-
tifying the shadow prices.

6.1-6. Follow the instructions of Prob. 6.1-5 for the following 
problem.

Maximize Z � x1 � 3x2 � 2x3,

subject to

2x1 � 2x2 � 2x3 � 6 (resource 1)
2x1 �x2 � 2x3 � 4 (resource 2)

and

x1 � 0, x2 � 0, x3 � 0.

6.1-7. Consider the following problem.

Maximize Z � x1 � 2x2,

subject to

�x1 � x2 � �2
4x1 � x2 �   4

and

x1 � 0, x2 � 0.

I (a) Demonstrate graphically that this problem has no feasible
solutions.

(b) Construct the dual problem.
I (c) Demonstrate graphically that the dual problem has an un-

bounded objective function.
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■ PROBLEMS
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I 6.1-8. Construct and graph a primal problem with two decision
variables and two functional constraints that has feasible solutions
and an unbounded objective function. Then construct the dual prob-
lem and demonstrate graphically that it has no feasible solutions.

I 6.1-9. Construct a pair of primal and dual problems, each with
two decision variables and two functional constraints, such that
both problems have no feasible solutions. Demonstrate this prop-
erty graphically.

6.1-10. Construct a pair of primal and dual problems, each with
two decision variables and two functional constraints, such that the
primal problem has no feasible solutions and the dual problem has
an unbounded objective function.

6.1-11. Use the weak duality property to prove that if both the pri-
mal and the dual problem have feasible solutions, then both must
have an optimal solution.

6.1-12. Consider the primal and dual problems in our standard
form presented in matrix notation at the beginning of Sec. 6.1. Use
only this definition of the dual problem for a primal problem in
this form to prove each of the following results.
(a) The weak duality property presented in Sec. 6.1.
(b) If the primal problem has an unbounded feasible region that

permits increasing Z indefinitely, then the dual problem has no
feasible solutions.

6.1-13. Consider the primal and dual problems in our standard
form presented in matrix notation at the beginning of Sec. 6.1. Let
y* denote the optimal solution for this dual problem. Suppose that
b is then replaced by b�. Let x� denote the optimal solution for the
new primal problem. Prove that

cx� � y*b�.     

6.1-14. For any linear programming problem in our standard form
and its dual problem, label each of the following statements as true
or false and then justify your answer.
(a) The sum of the number of functional constraints and the num-

ber of variables (before augmenting) is the same for both the
primal and the dual problems.

(b) At each iteration, the simplex method simultaneously identi-
fies a CPF solution for the primal problem and a CPF solution
for the dual problem such that their objective function values
are the same.

(c) If the primal problem has an unbounded objective function,
then the optimal value of the objective function for the dual
problem must be zero.

6.2-1. Consider the simplex tableaux for the Wyndor Glass Co.
problem given in Table 4.8. For each tableau, give the economic
interpretation of the following items:
(a) Each of the coefficients of the slack variables (x3, x4, x5) in

row 0
(b) Each of the coefficients of the decision variables (x1, x2) in 

row 0
(c) The resulting choice for the entering basic variable (or the de-

cision to stop after the final tableau)

6.3-1.* Consider the following problem.

Maximize Z � 6x1 � 8x2,

subject to

5x1 � 2x2 � 20
x1 � 2x2 � 10

and

x1 � 0, x2 � 0.

(a) Construct the dual problem for this primal problem.
(b) Solve both the primal problem and the dual problem graphi-

cally. Identify the CPF solutions and corner-point infeasible
solutions for both problems. Calculate the objective function
values for all these solutions.

(c) Use the information obtained in part (b) to construct a table
listing the complementary basic solutions for these problems.
(Use the same column headings as for Table 6.9.)

I (d) Work through the simplex method step by step to solve the
primal problem. After each iteration (including iteration 0),
identify the BF solution for this problem and the comple-
mentary basic solution for the dual problem. Also identify
the corresponding corner-point solutions.

6.3-2. Consider the model with two functional constraints and
two variables given in Prob. 4.1-5. Follow the instructions of
Prob. 6.3-1 for this model.

6.3-3. Consider the primal and dual problems for the Wyndor Glass
Co. example given in Table 6.1. Using Tables 5.5, 5.6, 6.8, and 6.9,
construct a new table showing the eight sets of nonbasic variables
for the primal problem in column 1, the corresponding sets of as-
sociated variables for the dual problem in column 2, and the set of
nonbasic variables for each complementary basic solution in the
dual problem in column 3. Explain why this table demonstrates the
complementary slackness property for this example.

6.3-4. Suppose that a primal problem has a degenerate BF solu-
tion (one or more basic variables equal to zero) as its optimal so-
lution. What does this degeneracy imply about the dual problem?
Why? Is the converse also true?

6.3-5. Consider the following problem.

Maximize Z � 2x1 � 4x2,

subject to

x1 � x2 � 1

and

x1 � 0, x2 � 0.

(a) Construct the dual problem, and then find its optimal solution
by inspection.

(b) Use the complementary slackness property and the optimal
solution for the dual problem to find the optimal solution for
the primal problem.
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(c) Suppose that c1, the coefficient of x1 in the primal objective
function, actually can have any value in the model. For what
values of c1 does the dual problem have no feasible solutions?
For these values, what does duality theory then imply about
the primal problem?

6.3-6. Consider the following problem.

Maximize Z � 2x1 � 7x2 � 4x3,

subject to

x1 � 2x2 � x3 � 10
3x1 � 3x2 � 2x3 � 10

and

x1 � 0, x2 � 0, x3 � 0.

(a) Construct the dual problem for this primal problem.
(b) Use the dual problem to demonstrate that the optimal value of

Z for the primal problem cannot exceed 25.
(c) It has been conjectured that x2 and x3 should be the basic vari-

ables for the optimal solution of the primal problem. Directly
derive this basic solution (and Z ) by using Gaussian elimina-
tion. Simultaneously derive and identify the complementary
basic solution for the dual problem by using Eq. (0) for 
the primal problem. Then draw your conclusions about whether
these two basic solutions are optimal for their respective 
problems.

I (d) Solve the dual problem graphically. Use this solution to
identify the basic variables and the nonbasic variables for
the optimal solution of the primal problem. Directly derive
this solution, using Gaussian elimination.

6.3-7.* Reconsider the model of Prob. 6.1-3b.
(a) Construct its dual problem.
I (b) Solve this dual problem graphically.
(c) Use the result from part (b) to identify the nonbasic variables

and basic variables for the optimal BF solution for the primal
problem.

(d) Use the results from part (c) to obtain the optimal solution for
the primal problem directly by using Gaussian elimination to
solve for its basic variables, starting from the initial system of
equations [excluding Eq. (0)] constructed for the simplex
method and setting the nonbasic variables to zero.

(e) Use the results from part (c) to identify the defining equations
(see Sec. 5.1) for the optimal CPF solution for the primal prob-
lem, and then use these equations to find this solution.

6.3-8. Consider the model given in Prob. 5.3-10.
(a) Construct the dual problem.
(b) Use the given information about the basic variables in the

optimal primal solution to identify the nonbasic variables
and basic variables for the optimal dual solution.

(c) Use the results from part (b) to identify the defining equations
(see Sec. 5.1) for the optimal CPF solution for the dual prob-
lem, and then use these equations to find this solution.

I (d) Solve the dual problem graphically to verify your results
from part (c).

6.3-9. Consider the model given in Prob. 3.1-5.
(a) Construct the dual problem for this model.
(b) Use the fact that (x1, x2) � (13, 5) is optimal for the primal

problem to identify the nonbasic variables and basic variables
for the optimal BF solution for the dual problem.

(c) Identify this optimal solution for the dual problem by directly
deriving Eq. (0) corresponding to the optimal primal solution
identified in part (b). Derive this equation by using Gaussian
elimination.

(d) Use the results from part (b) to identify the defining equations
(see Sec. 5.1) for the optimal CPF solution for the dual prob-
lem. Verify your optimal dual solution from part (c) by check-
ing to see that it satisfies this system of equations.

6.3-10. Suppose that you also want information about the dual
problem when you apply the matrix form of the simplex method
(see Sec. 5.2) to the primal problem in our standard form.
(a) How would you identify the optimal solution for the dual 

problem?
(b) After obtaining the BF solution at each iteration, how would

you identify the complementary basic solution in the dual
problem?

6.4-1. Consider the following problem.

Maximize Z � x1 � x2,

subject to

x1 � 2x2 � 10
2x1 � x2 � 2

and

x2 � 0 (x1 unconstrained in sign).

(a) Use the SOB method to construct the dual problem.
(b) Use Table 6.12 to convert the primal problem to our standard

form given at the beginning of Sec. 6.1, and construct the cor-
responding dual problem. Then show that this dual problem is
equivalent to the one obtained in part (a).

6.4-2. Consider the primal and dual problems in our standard form
presented in matrix notation at the beginning of Sec. 6.1. Use only
this definition of the dual problem for a primal problem in this
form to prove each of the following results.
(a) If the functional constraints for the primal problem Ax � b

are changed to Ax � b, the only resulting change in the dual
problem is to delete the nonnegativity constraints, y � 0. (Hint:
The constraints Ax � b are equivalent to the set of constraints
Ax � b and Ax � b.)

(b) If the functional constraints for the primal problem Ax � b are
changed to Ax � b, the only resulting change in the dual prob-
lem is that the nonnegativity constraints y � 0 are replaced by
nonpositivity constraints y � 0, where the current dual variables
are interpreted as the negative of the original dual variables.

PROBLEMS 223
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(Hint: The constraints Ax � b are equivalent to �Ax � �b.)
(c) If the nonnegativity constraints for the primal problem x � 0

are deleted, the only resulting change in the dual problem is
to replace the functional constraints yA � c by yA � c. (Hint:
A variable unconstrained in sign can be replaced by the dif-
ference of two nonnegative variables.)

6.4-3.* Construct the dual problem for the linear programming
problem given in Prob. 4.6-3.

6.4-4. Consider the following problem.

Minimize Z � x1 � 2x2,

subject to

�2x1 � x2 � 1
x1 � 2x2 � 1

and

x1 � 0, x2 � 0.

(a) Construct the dual problem.
I (b) Use graphical analysis of the dual problem to determine

whether the primal problem has feasible solutions and, if so,
whether its objective function is bounded.

6.4-5. Consider the two versions of the dual problem for the radi-
ation therapy example that are given in Tables 6.15 and 6.16. Re-
view in Sec. 6.4 the general discussion of why these two versions
are completely equivalent. Then fill in the details to verify this
equivalency by proceeding step by step to convert the version in
Table 6.15 to equivalent forms until the version in Table 6.16 is
obtained.

6.4-6. For each of the following linear programming models, use
the SOB method to construct its dual problem.
(a) Model in Prob. 4.6-7
(b) Model in Prob. 4.6-16

6.4-7. Consider the model with equality constraints given in Prob.
4.6-2.
(a) Construct its dual problem.
(b) Demonstrate that the answer in part (a) is correct (i.e., equality

constraints yield dual variables without nonnegativity constraints)
by first converting the primal problem to our standard form (see
Table 6.12), then constructing its dual problem, and next con-
verting this dual problem to the form obtained in part (a).

6.4-8.* Consider the model without nonnegativity constraints
given in Prob. 4.6-14.
(a) Construct its dual problem.
(b) Demonstrate that the answer in part (a) is correct (i.e., variables

without nonnegativity constraints yield equality constraints in
the dual problem) by first converting the primal problem to our
standard form (see Table 6.12), then constructing its dual prob-
lem, and finally converting this dual problem to the form ob-
tained in part (a).

6.4-9. Consider the dual problem for the Wyndor Glass Co. ex-
ample given in Table 6.1. Demonstrate that its dual problem is the
primal problem given in Table 6.1 by going through the conver-
sion steps given in Table 6.13.

6.4-10. Consider the following problem.

Minimize Z � �x1 � 3x2,

subject to

�x1 � 2x2 � 2
�x1 � x2 � 4

and

x1 � 0, x2 � 0.

I (a) Demonstrate graphically that this problem has an unbounded
objective function.

(b) Construct the dual problem.
I (c) Demonstrate graphically that the dual problem has no feasi-

ble solutions.

6.5-1. Consider the model of Prob. 7.2-2. Use duality theory di-
rectly to determine whether the current basic solution remains op-
timal after each of the following independent changes.
(a) The change in part (e) of Prob. 7.2-2
(b) The change in part (g) of Prob. 7.2-2

6.5-2. Consider the model of Prob. 7.2-4. Use duality theory di-
rectly to determine whether the current basic solution remains op-
timal after each of the following independent changes.
(a) The change in part (b) of Prob. 7.2-4
(b) The change in part (d ) of Prob. 7.2-4

6.5-3. Reconsider part (d ) of Prob. 7.2-6. Use duality theory di-
rectly to determine whether the original optimal solution is still
optimal. 

224 CHAPTER 6 DUALITY THEORY
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225

7C H A P T E R

Linear Programming 
under Uncertainty

One of the key assumptions of linear programming described in Sec. 3.3 is the  certainty
assumption, which says that the value assigned to each parameter of a linear program-
ming model is assumed to be a  known constant. This is a convenient assumption, but it
seldom is satisfied precisely. These models typically are formulated to select some future
course of action, so the parameter values need to be based on a prediction of future con-
ditions. This sometimes results in having a significant amount of uncertainty about what
the parameter values actually will turn to be when the optimal solution from the model is
implemented. We now turn our attention to introducing some techniques for dealing with
this uncertainty.

The most important of these techniques is  sensitivity analysis. As previously men-
tioned in Secs. 2.3, 3.3, and 4.7, sensitivity analysis is an important part of most linear
programming studies. One purpose is to determine the effect on the optimal solution from
the model if some of the estimates of the parameter values turn out to be wrong. This
analysis often will identify some parameters that need to be estimated more carefully be-
fore applying the model. It may also identify a new solution that performs better for most
plausible values of the parameters. Furthermore, certain parameter values (such as 
resource amounts) may represent  managerial decisions, in which case the choice of the
parameter values may be the main issue to be studied, which can be done through sensi-
tivity analysis. 

The basic procedure for sensitivity analysis (which is based on the fundamental in-
sight of Sec. 5.3) is summarized in Sec. 7.1 and illustrated in Sec. 7.2. Section 7.3 fo-
cuses on how to use spreadsheets to perform sensitivity analysis in a straightforward way.
(If you don’t have much time to devote to this chapter, it is feasible to read only Sec. 7.3
to obtain a relatively brief introduction to sensitivity analysis.)

The remainder of the chapter introduces some other important techniques for dealing
with linear programming under uncertainty. For problems where there is no latitude at all
for violating the constraints even a little bit, the  robust optimization approach described
in Sec. 7.4 provides a way of obtaining a solution that is virtually guaranteed to be 
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The work of the operations research team usually is not even nearly done when the sim-
plex method has been successfully applied to identify an optimal solution for the model.
As we pointed out at the end of Sec. 3.3, one assumption of linear programming is that
all the parameters of the model (aij, bi, and cj) are known constants. Actually, the param-
eter values used in the model normally are just estimates based on a prediction of future
conditions. The data obtained to develop these estimates often are rather crude or non-
existent, so that the parameters in the original formulation may represent little more than
quick rules of thumb provided by busy line personnel. The data may even represent de-
liberate overestimates or underestimates to protect the interests of the estimators.

Thus, the successful manager and operations research staff will maintain a healthy
skepticism about the original numbers coming out of the computer and will view them in
many cases as only a starting point for further analysis of the problem. An “optimal” so-
lution is optimal only with respect to the specific model being used to represent the real
problem, and such a solution becomes a reliable guide for action only after it has been
verified as performing well for other reasonable representations of the problem. Fur-
thermore, the model parameters (particularly bi) sometimes are set as a result of man-
agerial policy decisions (e.g., the amount of certain resources to be made available to the
activities), and these decisions should be reviewed after their potential consequences are
recognized.

For these reasons it is important to perform sensitivity analysis to investigate the ef-
fect on the optimal solution provided by the simplex method if the parameters take on
other possible values. Usually there will be some parameters that can be assigned any rea-
sonable value without the optimality of this solution being affected. However, there may
also be parameters with likely alternative values that would yield a new optimal solution.
This situation is particularly serious if the original solution would then have a substan-
tially inferior value of the objective function, or perhaps even be infeasible!

Therefore, one main purpose of sensitivity analysis is to identify the sensitive 
parameters (i.e., the parameters whose values cannot be changed without changing the
optimal solution). For coefficients in the objective function that are not categorized as sen-
sitive, it is also very helpful to determine the range of values of the coefficient over which
the optimal solution will remain unchanged. (We call this range of values the allowable
range for that coefficient.) In some cases, changing the right-hand side of a functional con-
straint can affect the feasibility of the optimal BF solution. For such parameters, it is use-
ful to determine the range of values over which the optimal BF solution (with adjusted val-
ues for the basic variables) will remain feasible. (We call this range of values the allowable
range for the right-hand side involved.) This range of values also is the range over which
the current shadow price for the corresponding constraint remains valid. In the next sec-
tion, we will describe the specific procedures for obtaining this kind of information.

226 CHAPTER 7 LINEAR PROGRAMMING UNDER UNCERTAINTY

■ 7.1 THE ESSENCE OF SENSITIVITY ANALYSIS

feasible and nearly optimal regardless of reasonable deviations of the parameter values
from their estimated values. When there is latitude for violating some constraints a little
bit without very serious complications, chance constraints introduced in Sec. 7.5 can be
used. A chance constraint modifies an original constraint by only requiring that there be
some very high probability that the original constraint will be satin two (or more) stages,
so the decisions in stage 2 can help compensate for any stage 1 decisions that do not turn
out as well as hoped because of errors in estimating some parameter values. Section 7.6
describes  stochastic programming with recourse for dealing with such problems.
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7.1 THE ESSENCE OF SENSITIVITY ANALYSIS 227

Such information is invaluable in two ways. First, it identifies the more important
parameters, so that special care can be taken to estimate them closely and to select a
solution that performs well for most of their likely values. Second, it identifies the para-
meters that will need to be monitored particularly closely as the study is implemented. If
it is discovered that the true value of a parameter lies outside its allowable range, this
immediately signals a need to change the solution.

For small problems, it would be straightforward to check the effect of a variety of
changes in parameter values simply by reapplying the simplex method each time to see
if the optimal solution changes. This is particularly convenient when using a spreadsheet
formulation. Once Solver has been set up to obtain an optimal solution, all you have to
do is make any desired change on the spreadsheet and then click on the Solve button
again.

However, for larger problems of the size typically encountered in practice, sensi-
tivity analysis would require an exorbitant computational effort if it were necessary to
reapply the simplex method from the beginning to investigate each new change in a pa-
rameter value. Fortunately, the fundamental insight discussed in Sec. 5.3 virtually elim-
inates computational effort. The basic idea is that the fundamental insight immediately
reveals just how any changes in the original model would change the numbers in the fi-
nal simplex tableau (assuming that the same sequence of algebraic operations originally
performed by the simplex method were to be duplicated ). Therefore, after making a few
simple calculations to revise this tableau, we can check easily whether the original op-
timal BF solution is now nonoptimal (or infeasible). If so, this solution would be used
as the initial basic solution to restart the simplex method (or dual simplex method) to
find the new optimal solution, if desired. If the changes in the model are not major, only
a very few iterations should be required to reach the new optimal solution from this
“advanced” initial basic solution.

To describe this procedure more specifically, consider the following situation. The
simplex method already has been used to obtain an optimal solution for a linear 
programming model with specified values for the bi, cj, and aij parameters. To initiate
sensitivity analysis, at least one of the parameters is changed. After the changes are made,
let b�i, c�j, and a�ij denote the values of the various parameters. Thus, in matrix notation,

b � b�, c � c�, A � A�,

for the revised model.
The first step is to revise the final simplex tableau to reflect these changes. In par-

ticular, we want to find the revised final tableau that would result if exactly the same al-
gebraic operations (including the same multiples of rows being added to or subtracted
from other rows) that led from the initial tableau to the final tableau were repeated when
starting from the new initial tableau. (This isn’t necessarily the same as reapplying the
simplex method since the changes in the initial tableau might cause the simplex method
to change some of the algebraic operations being used.) Continuing to use the notation
presented in Table 5.9, as well as the accompanying formulas for the fundamental insight
[(1) t* � t � y*T and (2) T* � S*T], the revised final tableau is calculated from y* and
S* (which have not changed) and the new initial tableau, as shown in Table 7.1. Note that
y* and S* together are the coefficients of the slack variables in the final simplex tableau,
where the vector y* (the dual variables) equals these coefficients in row 0 and the matrix
S* gives these coefficients in the other rows of the tableau. Thus, simply by using y*, S*,
and the revised numbers in the initial tableau, Table 7.1 reveals how the revised numbers
in the rest of the final tableau are calculated immediately without having to repeat any al-
gebraic operations.
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(�3, 12)

3x1 � 2x2 � 18

2x1 � 2x2 � 18

2x2 � 12

x1 � 4

2x2 � 24

x2 � 0

(2, 6)

(0, 9) optimal 

■ FIGURE 7.1
Shift of the final corner-point
solution from (2, 6) to 
(�3, 12) for Variation 1 of
the Wyndor Glass Co. model
where c1 � 3 � 4, 
a31 � 3 � 2, and 
b2 � 12 � 24.

Example (Variation 1 of the Wyndor Model). To illustrate, suppose that the first
revision in the model for the Wyndor Glass Co. problem of Sec. 3.1 is the one shown in
Table 7.2.

Thus, the changes from the original model are c1 � 3 � 4, a31 � 3 � 2, and
b2 � 12 � 24. Figure 7.1 shows the graphical effect of these changes. For the original
model, the simplex method already has identified the optimal CPF solution as (2, 6),

228 CHAPTER 7 LINEAR PROGRAMMING UNDER UNCERTAINTY

■ TABLE 7.1 Revised final simplex tableau resulting from changes in original model

Coefficient of:

Eq. Z Original Variables Slack Variables Right Side

(0) 1 �c� 0 0
New initial tableau

(1, 2, . . . , m) 0 A� I b�

(0) 1 z* � c� � y*A� � c� y* Z* � y*b�
Revised final tableau

(1, 2, . . . , m) 0 A* � S*A� S* b* � S*b�
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7.1 THE ESSENCE OF SENSITIVITY ANALYSIS 229

lying at the intersection of the two constraint boundaries, shown as dashed lines 2x2 � 12
and 3x1 � 2x2 � 18. Now the revision of the model has shifted both of these constraint bound-
aries as shown by the dark lines 2x2 � 24 and 2x1 � 2x2 � 18. Consequently, the previous
CPF solution (2, 6) now shifts to the new intersection (�3, 12), which is a corner-point
infeasible solution for the revised model. The procedure described in the preceding para-
graphs finds this shift algebraically (in augmented form). Furthermore, it does so in a man-
ner that is very efficient even for huge problems where graphical analysis is impossible.

To carry out this procedure, we begin by displaying the parameters of the revised
model in matrix form:

c� � [4, 5], A� � , b� � .

The resulting new initial simplex tableau is shown at the top of Table 7.3. Below this
tableau is the original final tableau (as first given in Table 4.8). We have drawn dark boxes
around the portions of this final tableau that the changes in the model definitely do not
change, namely, the coefficients of the slack variables in both row 0 (y*) and the rest of
the rows (S*). Thus,

y* � [0, �
3
2

�, 1], S* � .

These coefficients of the slack variables necessarily are unchanged with the same alge-
braic operations originally performed by the simplex method because the coefficients of
these same variables in the initial tableau are unchanged.

However, because other portions of the initial tableau have changed, there will be
changes in the rest of the final tableau as well. Using the formulas in Table 7.1, we cal-
culate the revised numbers in the rest of the final tableau as follows:

z* � c� � [0, �
3
2

�, 1] � [4, 5] � [�2, 0], Z* � [0, �
3
2

�, 1] � 54,
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■ TABLE 7.2 The original model and the first revised model (variation 1) for
conducting sensitivity analysis on the Wyndor Glass Co. model

Maximize Z � [3, 5] � �,
subject to

� � �

and

x � 0.
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A* � � ,

b* � � .

The resulting revised final tableau is shown at the bottom of Table 7.3.
Actually, we can substantially streamline these calculations for obtaining the revised

final tableau. Because none of the coefficients of x2 changed in the original model (tableau),
none of them can change in the final tableau, so we can delete their calculation. Several
other original parameters (a11, a21, b1, b3) also were not changed, so another shortcut is
to calculate only the incremental changes in the final tableau in terms of the incremental
changes in the initial tableau, ignoring those terms in the vector or matrix multiplication
that involve zero change in the initial tableau. In particular, the only incremental changes
in the initial tableau are �c1 � 1, �a31 � �1, and �b2 � 12, so these are the only terms
that need be considered. This streamlined approach is shown below, where a zero or dash
appears in each spot where no calculation is needed.

⎤
⎥
⎥
⎥
⎦

6

12

�2

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

4

24

18

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

��
1
3

�

0
�
1
3

�

�
1
3

�

�
1
2

�

��
1
3

�

1

0

0

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

0

1

0

�
1
3

�

0
�
2
3

�

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

0

2

2

1

0

2

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

��
1
3

�

0
�
1
3

�

�
1
3

�

�
1
2

�

��
1
3

�

1

0

0

⎡
⎢
⎢
⎢
⎣

230 CHAPTER 7 LINEAR PROGRAMMING UNDER UNCERTAINTY

■ TABLE 7.3 Obtaining the revised final simplex tableau for Variation 1 of the
Wyndor Glass Co. model

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �4 �5 0 0 0 0

New initial tableau
x3 (1) 0 1 0 1 0 0 4
x4 (2) 0 0 2 0 1 0 24
x5 (3) 0 2 2 0 0 1 18

Z (0) 1 0 0 0 �
3
2

� 1 36

Final tableau for
x3 (1) 0 0 0 1 �

1
3

� ��
1
3

� 2

original model
x2 (2) 0 0 1 0 �

1
2

� 0 6

x1 (3) 0 1 0 0 ��
1
3

� �
1
3

� 2

Z (0) 1 �2 0 0 �
3
2

� 1 54

x3 (1) 0 �
1
3

� 0 1 �
1
3

� ��
1
3

� 6
Revised final tableau

x2 (2) 0 0 1 0 �
1
2

� 0 12

x1 (3) 0 �
2
3

� 0 0 ��
1
3

� �
1
3

� �2
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�(z* � c) � y* �A � �c � [0, �
3
2

�, 1] � [1, —] � [�2, —].

�Z* � y* �b � [0, �
3
2

�, 1] � 18.

�A* � S* �A � � .

�b* � S* �b � � .

Adding these increments to the original quantities in the final tableau (middle of Table 7.3)
then yields the revised final tableau (bottom of Table 7.3).

This incremental analysis also provides a useful general insight, namely, that changes
in the final tableau must be proportional to each change in the initial tableau. We illustrate
in the next section how this property enables us to use linear interpolation or extrapolation
to determine the range of values for a given parameter over which the final basic solution
remains both feasible and optimal.

After obtaining the revised final simplex tableau, we next convert the tableau to proper
form from Gaussian elimination (as needed). In particular, the basic variable for row i
must have a coefficient of 1 in that row and a coefficient of 0 in every other row (in-
cluding row 0) for the tableau to be in the proper form for identifying and evaluating the
current basic solution. Therefore, if the changes have violated this requirement (which can
occur only if the original constraint coefficients of a basic variable have been changed),
further changes must be made to restore this form. This restoration is done by using Gauss-
ian elimination, i.e., by successively applying step 3 of an iteration for the simplex method
(see Chap. 4) as if each violating basic variable were an entering basic variable. Note that
these algebraic operations may also cause further changes in the right-side column, so
that the current basic solution can be read from this column only when the proper form
from Gaussian elimination has been fully restored.

For the example, the revised final simplex tableau shown in the top half of Table 7.4
is not in proper form from Gaussian elimination because of the column for the basic vari-
able x1. Specifically, the coefficient of x1 in its row (row 3) is �

2
3

� instead of 1, and it has
nonzero coefficients (�2 and �

1
3

�) in rows 0 and 1. To restore proper form, row 3 is mul-
tiplied by �

3
2

�; then 2 times this new row 3 is added to row 0 and �
1
3

� times new row 3 is sub-
tracted from row 1. This yields the proper form from Gaussian elimination shown in the
bottom half of Table 7.4, which now can be used to identify the new values for the cur-
rent (previously optimal) basic solution:

(x1, x2, x3, x4, x5) � (�3, 12, 7, 0, 0).

Because x1 is negative, this basic solution no longer is feasible. However, it is superoptimal
(as defined in Table 6.10), and so dual feasible, because all the coefficients in row 0 still are non-
negative. Therefore, the dual simplex method (presented in Sec. 8.1) can be used to reoptimize
(if desired), by starting from this basic solution. (The sensitivity analysis procedure in IOR 
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Tutorial includes this option.) Referring to Fig. 7.1 (and ignoring slack variables), the dual sim-
plex method uses just one iteration to move from the corner-point solution (�3, 12) to the opti-
mal CPF solution (0, 9). (It is often useful in sensitivity analysis to identify the solutions that are
optimal for some set of likely values of the model parameters and then to determine which of
these solutions most consistently performs well for the various likely parameter values.)

If the basic solution (�3, 12, 7, 0, 0) had been neither primal feasible nor dual fea-
sible (i.e., if the tableau had negative entries in both the right-side column and row 0), ar-
tificial variables could have been introduced to convert the tableau to the proper form for
an initial simplex tableau.1

The General Procedure. When one is testing to see how sensitive the original optimal
solution is to the various parameters of the model, the common approach is to check each
parameter (or at least cj and bi) individually. In addition to finding allowable ranges as de-
scribed in the next section, this check might include changing the value of the parameter
from its initial estimate to other possibilities in the range of likely values (including the end-
points of this range). Then some combinations of simultaneous changes of parameter val-
ues (such as changing an entire functional constraint) may be investigated. Each time one
(or more) of the parameters is changed, the procedure described and illustrated here would
be applied. Let us now summarize this procedure.

Summary of Procedure for Sensitivity Analysis

1. Revision of model: Make the desired change or changes in the model to be investigated next.
2. Revision of final tableau: Use the fundamental insight (as summarized by the formu-

las on the bottom of Table 7.1) to determine the resulting changes in the final simplex
tableau. (See Table 7.3 for an illustration.)

3. Conversion to proper form from Gaussian elimination: Convert this tableau to the
proper form for identifying and evaluating the current basic solution by applying (as
necessary) Gaussian elimination. (See Table 7.4 for an illustration.)
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■ TABLE 7.4 Converting the revised final simplex tableau to proper form from
Gaussian elimination for Variation 1 of the Wyndor Glass Co. model

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �2 0 0 �
3
2

� 1 54

Revised final
x3 (1) 0 �

1
3

� 0 1 �
1
3

� ��
1
3

� 6

tableau
x2 (2) 0 0 1 0 �

1
2

� 0 12

x1 (3) 0 �
2
3

� 0 0 ��
1
3

� �
1
3

� �2

Z (0) 1 0 0 0 �
1
2

� 2 48

Converted to proper
x3 (1) 0 0 0 1 �

1
2

� ��
1
2

� 7

form
x2 (2) 0 0 1 0 �

1
2

� 0 12

x1 (3) 0 1 0 0 ��
1
2

� �
1
2

� �3

1There also exists a primal-dual algorithm that can be directly applied to such a simplex tableau without any
conversion.
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4. Feasibility test: Test this solution for feasibility by checking whether all its basic vari-
able values in the right-side column of the tableau still are nonnegative.

5. Optimality test: Test this solution for optimality (if feasible) by checking whether all
its nonbasic variable coefficients in row 0 of the tableau still are nonnegative.

6. Reoptimization: If this solution fails either test, the new optimal solution can be ob-
tained (if desired) by using the current tableau as the initial simplex tableau (and mak-
ing any necessary conversions) for the simplex method or dual simplex method.

The interactive routine entitled sensitivity analysis in IOR Tutorial will enable you to
efficiently practice applying this procedure. In addition, a demonstration in OR Tutor (also
entitled sensitivity analysis) provides you with another example.

For problems with only two decision variables, graphical analysis provides an alter-
native to the above algebraic procedure for performing sensitivity analysis. IOR Tutorial
includes a procedure called Graphical Method and Sensitivity Analysis for performing
such graphical analysis efficiently.

In the next section, we shall discuss and illustrate the application of the above al-
gebraic procedure to each of the major categories of revisions in the original model. We
also will use graphical analysis to illuminate what is being accomplished algebraically.
This discussion will involve, in part, expanding upon the example introduced in this
section for investigating changes in the Wyndor Glass Co. model. In fact, we shall begin
by individually checking each of the preceding changes. At the same time, we shall
integrate some of the applications of duality theory to sensitivity analysis discussed in
Sec. 6.5.
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■ 7.2 APPLYING SENSITIVITY ANALYSIS

Sensitivity analysis often begins with the investigation of changes in the values of bi, the
amount of resource i (i � 1, 2, . . . , m) being made available for the activities under con-
sideration. The reason is that there generally is more flexibility in setting and adjusting
these values than there is for the other parameters of the model. As already discussed in
Secs. 4.7 and 6.2, the economic interpretation of the dual variables (the yi) as shadow
prices is extremely useful for deciding which changes should be considered.

Case 1—Changes in bi

Suppose that the only changes in the current model are that one or more of the bi param-
eters (i � 1, 2, . . . , m) has been changed. In this case, the only resulting changes in the
final simplex tableau are in the right-side column. Consequently, the tableau still will be
in proper form from Gaussian elimination and all the nonbasic variable coefficients in
row 0 still will be nonnegative. Therefore, both the conversion to proper form from Gaussian
elimination and the optimality test steps of the general procedure can be skipped. After
revising the right-side column of the tableau, the only question will be whether all the
basic variable values in this column still are nonnegative (the feasibility test).

As shown in Table 7.1, when the vector of the bi values is changed from b to b�, the
formulas for calculating the new right-side column in the final tableau are

Right side of final row 0: Z* � y*b�,
Right side of final rows 1, 2, . . . , m: b* � S*b�.

(See the bottom of Table 7.1 for the location of the unchanged vector y* and matrix S*
in the final tableau.) The first equation has a natural economic interpretation that relates
to the economic interpretation of the dual variables presented at the beginning of Sec. 6.2.
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The vector y* gives the optimal values of the dual variables, where these values are in-
terpreted as the shadow prices of the respective resources. In particular, when Z* repre-
sents the profit from using the optimal primal solution x* and each bi represents the amount
of resource i being made available, yi* indicates how much the profit could be increased
per unit increase in bi (for small increases in bi).

Example (Variation 2 of the Wyndor Model). Sensitivity analysis is begun for the
original Wyndor Glass Co. problem introduced in Sec. 3.1 by examining the optimal 
values of the yi dual variables ( y1* � 0, y2* � �

3
2

�, y3* � 1). These shadow prices give the 
marginal value of each resource i (the available production capacity of Plant i) for the ac-
tivities (two new products) under consideration, where marginal value is expressed in the
units of Z (thousands of dollars of profit per week). As discussed in Sec. 4.7 (see Fig. 4.8),
the total profit from these activities can be increased $1,500 per week ( y2* times $1,000
per week) for each additional unit of resource 2 (hour of production time per week in Plant
2) that is made available. This increase in profit holds for relatively small changes that do
not affect the feasibility of the current basic solution (and so do not affect the yi* values).

Consequently, the OR team has investigated the marginal profitability from the other
current uses of this resource to determine if any are less than $1,500 per week. This in-
vestigation reveals that one old product is far less profitable. The production rate for this
product already has been reduced to the minimum amount that would justify its marketing
expenses. However, it can be discontinued altogether, which would provide an additional
12 units of resource 2 for the new products. Thus, the next step is to determine the profit
that could be obtained from the new products if this shift were made. This shift changes
b2 from 12 to 24 in the linear programming model. Figure 7.2 shows the graphical effect
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■ FIGURE 7.2
Feasible region for Variation
2 of the Wyndor Glass Co.
model where b2 � 12 → 24.
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of this change, including the shift in the final corner-point solution from (2, 6) to (�2, 12).
(Note that this figure differs from Fig. 7.1, which depicts Variation 1 of the Wyndor model,
because the constraint 3x1 � 2x2 � 18 has not been changed here.)

Thus, for Variation 2 of the Wyndor model, the only revision in the original model is
the following change in the vector of the bi values:

b � ⎯→ b� � .

so only b2 has a new value.

Analysis of Variation 2. When the fundamental insight (Table 7.1) is applied, the ef-
fect of this change in b2 on the original final simplex tableau (middle of Table 7.3) is that
the entries in the right-side column change to the following values:

Z* � y*b� � [0, �
3
2

�, 1] � 54,

b* � S*b� � � , so � .

Equivalently, because the only change in the original model is �b2 � 24 � 12 � 12,
incremental analysis can be used to calculate these same values more quickly. Incremental
analysis involves calculating just the increments in the tableau values caused by the change
(or changes) in the original model, and then adding these increments to the original values.
In this case, the increments in Z* and b* are

�Z* � y*�b � y* � y* ,

�b* � S* �b � S* � S* .

Therefore, using the second component of y* and the second column of S*, the only cal-
culations needed are

�Z* � �
3
2

�(12) � 18, so Z* � 36 � 18 � 54,

�b1* � �
1
3

�(12) � 4, so b1* � 2 � 4 � 6,

�b2* � �
1
2

�(12) � 6, so b2* � 6 � 6 � 12,

�b3* � ��
1
3

�(12) � �4, so b3* � 2 � 4 � �2,

where the original values of these quantities are obtained from the right-side column in
the original final tableau (middle of Table 7.3). The resulting revised final tableau corre-
sponds completely to this original final tableau except for replacing the right-side column
with these new values.
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Therefore, the current (previously optimal) basic solution has become

(x1, x2, x3, x4, x5) � (�2, 12, 6, 0, 0),

which fails the feasibility test because of the negative value. The dual simplex method 
described in Sec. 8.1 now can be applied, starting with this revised simplex tableau, to
find the new optimal solution. This method leads in just one iteration to the new final sim-
plex tableau shown in Table 7.5. (Alternatively, the simplex method could be applied from
the beginning, which also would lead to this final tableau in just one iteration in this case.)
This tableau indicates that the new optimal solution is

(x1, x2, x3, x4, x5) � (0, 9, 4, 6, 0),

with Z � 45, thereby providing an increase in profit from the new products of 9 units
($9,000 per week) over the previous Z � 36. The fact that x4 � 6 indicates that 6 of the
12 additional units of resource 2 are unused by this solution.

Based on the results with b2 � 24, the relatively unprofitable old product will be dis-
continued and the unused 6 units of resource 2 will be saved for some future use. Since
y3* still is positive, a similar study is made of the possibility of changing the allocation of
resource 3, but the resulting decision is to retain the current allocation. Therefore, the cur-
rent linear programming model at this point (Variation 2) has the parameter values and
optimal solution shown in Table 7.5. This model will be used as the starting point for in-
vestigating other types of changes in the model later in this section. However, before turn-
ing to these other cases, let us take a broader look at the current case.

The Allowable Range for a Right-Hand Side. Although �b2 � 12 proved to be too
large an increase in b2 to retain feasibility (and so optimality) with the basic solution where
x1, x2, and x3 are the basic variables (middle of Table 7.3), the above incremental analysis
shows immediately just how large an increase is feasible. In particular, note that

b1* � 2 � �
1
3

� �b2,

b2* � 6 � �
1
2

� �b2,

b3* � 2 � �
1
3

� �b2,

where these three quantities are the values of x3, x2, and x1, respectively, for this basic so-
lution. The solution remains feasible, and so optimal, as long as all three quantities remain
nonnegative.

2 � �
1
3

� �b2 � 0 ⇒ �
1
3

� �b2 � �2 ⇒ �b2 � �6,

■ TABLE 7.5 Data for Variation 2 of the Wyndor Glass Co. model

Final Simplex Tableau after Reoptimization

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �
9
2

� 0 0 0 �
5
2

� 45

x3 (1) 0 1 0 1 0 0 4

x2 (2) 0 �
3
2

� 1 0 0 �
1
2

� 9

x4 (3) 0 �3 0 0 1 �1 6

c1 � 3, c2 � 5 (n � 2)
a11 � 1, a12 � 0, b1 � 4
a21 � 0, a22 � 2, b2 � 24
a31 � 3, a32 � 2, b3 � 18

Model Parameters
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Prior to its acquisition by the Humboldt Redwood Com-
pany in 2008, the Pacific Lumber Company (PALCO)
was a large timber-holding company with headquarters in
Scotia, California. The company had over 200,000 acres
of highly productive forest lands that supported five mills
located in Humboldt County in northern California. The
lands included some of the most spectacular redwood
groves in the world that have been given or sold at low
cost to be preserved as parks. PALCO managed the
remaining lands intensively for sustained timber produc-
tion, subject to strong forest practice laws. Since
PALCO’s forests were home to many species of wildlife,
including endangered species such as spotted owls and
marbled murrelets, the provisions of the federal Endan-
gered Species Act also needed to be carefully observed.

To obtain a sustained yield plan for the entire landhold-
ing, PALCO management contracted with a team of OR con-
sultants to develop a 120-year, 12-period, long-term forest
ecosystem management plan. The OR team performed this
task by formulating and applying a linear programming

model to optimize the company’s overall timberland opera-
tions and profitability after satisfying the various constraints.
The model was a huge one with approximately 8,500 func-
tional constraints and 353,000 decision variables.

A major challenge in applying the linear program-
ming model was the many uncertainties in estimating
what the parameters of the model should be. The major
factors causing these uncertainties were the continuing
fluctuations in market supply and demand, logging costs,
and environmental regulations. Therefore, the OR team
made extensive use of detailed sensitivity analysis. The
resulting sustained yield plan increased the company’s
present net worth by over $398 million while also gener-
ating a better mix of wildlife habitat acres.

Source: L. R. Fletcher, H. Alden, S. P. Holmen, D. P. Angelis,
and M. J. Etzenhouser: “Long-Term Forest Ecosystem Planning
at Pacific Lumber,” Interfaces, 29(1): 90–112, Jan–Feb. 1999.
(A link to this article is provided on our website,
www.mhhe.com/hillier.)

An Application Vignette

6 � �
1
2

� �b2 � 0 ⇒ �
1
2

� �b2 � �6 ⇒ �b2 � �12,

2 � �
1
3

� �b2 � 0 ⇒ 2 � �
1
3

� �b2 ⇒ �b2 � 6.

Therefore, since b2 � 12 � �b2, the solution remains feasible only if

�6 � �b2 � 6, that is, 6 � b2 � 18.

(Verify this graphically in Fig. 7.2.) As introduced in Sec. 4.7, this range of values for b2

is referred to as its allowable range.

For any bi, recall from Sec. 4.7 that its allowable range is the range of values
over which the current optimal BF solution2 (with adjusted values for the basic
variables) remains feasible. Thus, the shadow price for bi remains valid for eval-
uating the effect on Z of changing bi only as long as bi remains within this al-
lowable range. (It is assumed that the change in this one bi value is the only
change in the model.) The adjusted values for the basic variables are obtained
from the formula b* � S*b�. The calculation of the allowable range then is based
on finding the range of values of bi such that b* � 0.

Many linear programming software packages use this same technique for automati-
cally generating the allowable range for each bi. (A similar technique, discussed under
Cases 2a and 3, also is used to generate an allowable range for each cj.) In Chap. 4, we
showed the corresponding output for Solver and LINDO in Figs. 4.10 and A4.2, respec-
tively. Table 7.6 summarizes this same output with respect to the bi for the original 
Wyndor Glass Co. model. For example, both the allowable increase and allowable de-
crease for b2 are 6, that is, �6 � �b2 � 6. The analysis in the preceding paragraph shows
how these quantities were calculated.
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Analyzing Simultaneous Changes in Right-Hand Sides. When multiple bi values
are changed simultaneously, the formula b* � S*b� can again be used to see how the right-
hand sides change in the final tableau. If all these right-hand sides still are nonnegative, the
feasibility test will indicate that the revised solution provided by this tableau still is feasi-
ble. Since row 0 has not changed, being feasible implies that this solution also is optimal.

Although this approach works fine for checking the effect of a specific set of changes
in the bi, it does not give much insight into how far the bi can be simultaneously changed
from their original values before the revised solution will no longer be feasible. As part of
postoptimality analysis, the management of an organization often is interested in investi-
gating the effect of various changes in policy decisions (e.g., the amounts of resources be-
ing made available to the activities under consideration) that determine the right-hand sides.
Rather than considering just one specific set of changes, management may want to explore
directions of changes where some right-hand sides increase while others decrease. Shadow
prices are invaluable for this kind of exploration. However, shadow prices remain valid for
evaluating the effect of such changes on Z only within certain ranges of changes. For each
bi, the allowable range gives this range if none of the other bi are changing at the same time.
What do these allowable ranges become when some of the bi are changing simultaneously?

A partial answer to this question is provided by the following 100 percent rule, which
combines the allowable changes (increase or decrease) for the individual bi that are given
by the last two columns of a table like Table 7.6.

The 100 Percent Rule for Simultaneous Changes in Right-Hand Sides: The
shadow prices remain valid for predicting the effect of simultaneously changing
the right-hand sides of some of the functional constraints as long as the changes
are not too large. To check whether the changes are small enough, calculate for
each change the percentage of the allowable change (increase or decrease) for that
right-hand side to remain within its allowable range. If the sum of the percentage
changes does not exceed 100 percent, the shadow prices definitely will still be
valid. (If the sum does exceed 100 percent, then we cannot be sure.)

Example (Variation 3 of the Wyndor Model). To illustrate this rule, consider Vari-
ation 3 of the Wyndor Glass Co. model, which revises the original model by changing the
right-hand side vector as follows:

b � � b� � .

The calculations for the 100 percent rule in this case are

⎤
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⎥
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⎢
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■ TABLE 7.6 Typical software output for sensitivity analysis of the right-hand sides
for the original Wyndor Glass Co. model

Constraint Shadow Price Current RHS Allowable Increase Allowable Decrease

Plant 1 0.0 4 	 2
Plant 2 1.5 12 6 6
Plant 3 1.0 18 6 6

2When there is more than one optimal BF solution for the current model (before changing bi), we are referring
here to the one obtained by the simplex method.
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b2: 12 � 15. Percentage of allowable increase � 100 ��15 �
6

12
�� � 50%

b3: 18 � 15. Percentage of allowable decrease � 100 ��18 �
6

15
�� � 50%

Sum � 100%

Since the sum of 100 percent barely does not exceed 100 percent, the shadow prices def-
initely are valid for predicting the effect of these changes on Z. In particular, since the
shadow prices of b2 and b3 are 1.5 and 1, respectively, the resulting change in Z would be

�Z � 1.5(3) � 1(�3) � 1.5,

so Z* would increase from 36 to 37.5.
Figure 7.3 shows the feasible region for this revised model. (The dashed lines show

the original locations of the revised constraint boundary lines.) The optimal solution now
is the CPF solution (0, 7.5), which gives

Z � 3x1 � 5x2 � 0 � 5(7.5) � 37.5,

just as predicted by the shadow prices. However, note what would happen if either b2

were further increased above 15 or b3 were further decreased below 15, so that the sum
of the percentages of allowable changes would exceed 100 percent. This would cause the
previously optimal corner-point solution to slide to the left of the x2 axis (x1 
 0), so
this infeasible solution would no longer be optimal. Consequently, the old shadow prices
would no longer be valid for predicting the new value of Z*.

■ FIGURE 7.3
Feasible region for Variation
3 of the Wyndor Glass Co.
model where b2 � 12 � 15
and b3 � 18 � 15.
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Case 2a—Changes in the Coefficients of a Nonbasic Variable

Consider a particular variable xj (fixed j) that is a nonbasic variable in the optimal solu-
tion shown by the final simplex tableau. In Case 2a, the only change in the current model
is that one or more of the coefficients of this variable—cj, a1j , a2j , . . . , amj —have been
changed. Thus, letting c�j and a�ij denote the new values of these parameters, with A�j (col-
umn j of matrix A�) as the vector containing the a�ij, we have

cj ⎯→ c�j, Aj ⎯→ A�j

for the revised model.
As described at the beginning of Sec. 6.5, duality theory provides a very convenient

way of checking these changes. In particular, if the complementary basic solution y* in
the dual problem still satisfies the single dual constraint that has changed, then the orig-
inal optimal solution in the primal problem remains optimal as is. Conversely, if y* vio-
lates this dual constraint, then this primal solution is no longer optimal.

If the optimal solution has changed and you wish to find the new one, you can do so
rather easily. Simply apply the fundamental insight to revise the xj column (the only one
that has changed) in the final simplex tableau. Specifically, the formulas in Table 7.1 re-
duce to the following:

Coefficient of xj in final row 0: zj* � c�j � y*A�j � c�j,

Coefficient of xj in final rows 1 to m: Aj* � S*A�j.

With the current basic solution no longer optimal, the new value of zj* � cj now will be
the one negative coefficient in row 0, so restart the simplex method with xj as the initial
entering basic variable.

Note that this procedure is a streamlined version of the general procedure summa-
rized at the end of Sec. 7.1. Steps 3 and 4 (conversion to proper form from Gaussian elim-
ination and the feasibility test) have been deleted as irrelevant, because the only column
being changed in the revision of the final tableau (before reoptimization) is for the non-
basic variable xj. Step 5 (optimality test) has been replaced by a quicker test of optimal-
ity to be performed right after step 1 (revision of model). It is only if this test reveals that
the optimal solution has changed, and you wish to find the new one, that steps 2 and 6
(revision of final tableau and reoptimization) are needed.

Example (Variation 4 of the Wyndor Model). Since x1 is nonbasic in the current
optimal solution (see Table 7.5) for Variation 2 of the Wyndor Glass Co. model, the next
step in its sensitivity analysis is to check whether any reasonable changes in the estimates
of the coefficients of x1 could still make it advisable to introduce product 1. The set of
changes that goes as far as realistically possible to make product 1 more attractive would
be to reset c1 � 4 and a31 � 2. Rather than exploring each of these changes independently
(as is often done in sensitivity analysis), we will consider them together. Thus, the changes
under consideration are

c1 � 3 ⎯→ c�1 � 4, A1 � ⎯→ A�1 � .

These two changes in Variation 2 give us Variation 4 of the Wyndor model. Variation 4
actually is equivalent to Variation 1 considered in Sec. 7.1 and depicted in Fig. 7.1, since
Variation 1 combined these two changes with the change in the original Wyndor model
(b2 � 12 � 24) that gave Variation 2. However, the key difference from the treatment of
Variation 1 in Sec. 7.1 is that the analysis of Variation 4 treats Variation 2 as being the
original model, so our starting point is the final simplex tableau given in Table 7.5 where
x1 now is a nonbasic variable.
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The change in a31 revises the feasible region from that shown in Fig. 7.2 to the 
corresponding region in Fig. 7.4. The change in c1 revises the objective function from 
Z � 3x1 � 5x2 to Z � 4x1 � 5x2. Figure 7.4 shows that the optimal objective function
line Z � 45 � 4x1 � 5x2 still passes through the current optimal solution (0, 9), so this
solution remains optimal after these changes in a31 and c1.

To use duality theory to draw this same conclusion, observe that the changes in c1

and a31 lead to a single revised constraint for the dual problem, namely, the constraint
that a11y1 � a21y2 � a31y3 � c1. Both this revised constraint and the current y* (coeffi-
cients of the slack variables in row 0 of Table 7.5) are shown below:

y1* � 0, y2* � 0, y3* � �
5
2

�,

y1 � 3y3 � 3 ⎯→ y1 � 2y3 � 4,

0 � 2��
5
2

�� � 4.

Since y* still satisfies the revised constraint, the current primal solution (Table 7.5) is still
optimal.

Because this solution is still optimal, there is no need to revise the xj column in the
final tableau (step 2). Nevertheless, we do so below for illustrative purposes:

z1* � c�1 � y*A�1 � c1 � [0, 0, �
5
2

�] � 4 � 1.
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■ FIGURE 7.4
Feasible region for Variation
4 of the Wyndor model
where Variation 2 (Fig. 6.3)
has been revised so 
a31 � 3 � 2 and 
c1 � 3 � 4.
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A1* � S*A�1 � � .

The fact that z1* � c�1 � 0 again confirms the optimality of the current solution. Since 
z1* � c1 is the surplus variable for the revised constraint in the dual problem, this way of
testing for optimality is equivalent to the one used above.

This completes the analysis of the effect of changing the current model (Variation 2)
to Variation 4. Because any larger changes in the original estimates of the coefficients of
x1 would be unrealistic, the OR team concludes that these coefficients are insensitive pa-
rameters in the current model. Therefore, they will be kept fixed at their best estimates
shown in Table 7.5—c1 � 3 and a31 � 3—for the remainder of the sensitivity analysis.

The Allowable Range for an Objective Function Coefficient of a Nonbasic
Variable. We have just described and illustrated how to analyze simultaneous changes
in the coefficients of a nonbasic variable xj. It is common practice in sensitivity analysis
to also focus on the effect of changing just one parameter, cj. As introduced in Sec. 4.7,
this involves streamlining the above approach to find the allowable range for cj.

For any cj, recall from Sec. 4.7 that its allowable range is the range of values
over which the current optimal solution (as obtained by the simplex method for
the current model before cj is changed) remains optimal. (It is assumed that the
change in this one cj is the only change in the current model.) When xj is a
nonbasic variable for this solution, the solution remains optimal as long as
zj* � cj � 0, where zj* � y*Aj is a constant unaffected by any change in the value
of cj. Therefore, the allowable range for cj can be calculated as cj � y*Aj.

For example, consider the current model (Variation 2) for the Wyndor Glass Co. problem
summarized on the left side of Table 7.5, where the current optimal solution (with c1 � 3) is
given on the right side. When considering only the decision variables, x1 and x2, this op-
timal solution is (x1, x2) = (0, 9), as displayed in Fig. 7.2. When just c1 is changed, this
solution remains optimal as long as

c1 � y*A1 � [0, 0, �
5
2

�] � 7�
1
2

�,

so c1 � 7�
1
2

� is the allowable range.
An alternative to performing this vector multiplication is to note in Table 7.5 that z1* � c1

� �
9
2

� (the coefficient of x1 in row 0) when c1 � 3, so z1* � 3 � �
9
2

� � 7�
1
2

�. Since 
z1* � y*A1, this immediately yields the same allowable range.

Figure 7.2 provides graphical insight into why c1 � 7�
1
2

� is the allowable range. At 
c1 � 7�

1
2

�, the objective function becomes Z � 7.5x1 � 5x2 � 2.5(3x1 � 2x2), so the opti-
mal objective line will lie on top of the constraint boundary line 3x1 � 2x2 � 18 shown
in the figure. Thus, at this endpoint of the allowable range, we have multiple optimal so-
lutions consisting of the line segment between (0, 9) and (4, 3). If c1 were to be increased
any further (c1 � 7�

1
2

� ), only (4, 3) would be optimal. Consequently, we need c1 � 7�
1
2

� for
(0, 9) to remain optimal.

IOR Tutorial includes a procedure called Graphical Method and Sensitivity Analysis
that enables you to perform this kind of graphical analysis very efficiently.
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For any nonbasic decision variable xj, the value of zj* � cj sometimes is referred to
as the reduced cost for xj, because it is the minimum amount by which the unit cost of
activity j would have to be reduced to make it worthwhile to undertake activity j (increase
xj from zero). Interpreting cj as the unit profit of activity j (so reducing the unit cost in-
creases cj by the same amount), the value of zj* � cj thereby is the maximum allowable
increase in cj to keep the current BF solution optimal.

The sensitivity analysis information generated by linear programming software pack-
ages normally includes both the reduced cost and the allowable range for each coefficient
in the objective function (along with the types of information displayed in Table 7.6). This
was illustrated in Fig. 4.10 for Solver and in Figs. A4.1 and A4.2 for LINGO and LINDO.
Table 7.7 displays this information in a typical form for our current model (Variation 2
of the Wyndor Glass Co. model). The last three columns are used to calculate the allow-
able range for each coefficient, so these allowable ranges are

c1 � 3 � 4.5 � 7.5,
c2 � 5 � 3 � 2.

As was discussed in Sec. 4.7, if any of the allowable increases or decreases had turned
out to be zero, this would have been a signpost that the optimal solution given in the table
is only one of multiple optimal solutions. In this case, changing the corresponding coef-
ficient a tiny amount beyond the zero allowed and re-solving would provide another op-
timal CPF solution for the original model.

Thus far, we have described how to calculate the type of information in Table 7.7 for
only nonbasic variables. For a basic variable like x2, the reduced cost automatically is 0.
We will discuss how to obtain the allowable range for cj when xj is a basic variable un-
der Case 3.

Analyzing Simultaneous Changes in Objective Function Coefficients. Regard-
less of whether xj is a basic or nonbasic variable, the allowable range for cj is valid only
if this objective function coefficient is the only one being changed. However, when simul-
taneous changes are made in the coefficients of the objective function, a 100 percent rule
is available for checking whether the original solution must still be optimal. Much like the
100 percent rule for simultaneous changes in right-hand sides, this 100 percent rule com-
bines the allowable changes (increase or decrease) for the individual cj that are given by
the last two columns of a table like Table 7.7, as described below.

The 100 Percent Rule for Simultaneous Changes in Objective Function Co-
efficients: If simultaneous changes are made in the coefficients of the objective
function, calculate for each change the percentage of the allowable change (in-
crease or decrease) for that coefficient to remain within its allowable
range. If the sum of the percentage changes does not exceed 100 percent, the
original optimal solution definitely will still be optimal. (If the sum does exceed
100 percent, then we cannot be sure.)

Using Table 7.7 (and referring to Fig. 7.2 for visualization), this 100 percent rule says
that (0, 9) will remain optimal for Variation 2 of the Wyndor Glass Co. model even if we
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■ TABLE 7.7 Typical software output for sensitivity analysis of the objective
function coefficients for Variation 2 of the Wyndor Glass Co. model

Reduced Current Allowable Allowable
Variable Value Cost Coefficient Increase Decrease

x1 0 4.5 3 4.5 	

x2 9 0.0 5 	 3
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simultaneously increase c1 from 3 and decrease c2 from 5 as long as these changes are
not too large. For example, if c1 is increased by 1.5 (33�

1
3

� percent of the allowable change),
then c2 can be decreased by as much as 2 (66�

2
3

� percent of the allowable change). Simi-
larly, if c1 is increased by 3 (66�

2
3

� percent of the allowable change), then c2 can only be
decreased by as much as 1 (33�

1
3

� percent of the allowable change). These maximum changes
revise the objective function to either Z � 4.5x1 � 3x2 or Z � 6x1 � 4x2, which causes
the optimal objective function line in Fig. 7.2 to rotate clockwise until it coincides with
the constraint boundary equation 3x1 � 2x2 � 18.

In general, when objective function coefficients change in the same direction, it is
possible for the percentages of allowable changes to sum to more than 100 percent with-
out changing the optimal solution. We will give an example at the end of the discussion
of Case 3.

Case 2b—Introduction of a New Variable

After solving for the optimal solution, we may discover that the linear programming
formulation did not consider all the attractive alternative activities. Considering a new
activity requires introducing a new variable with the appropriate coefficients into the
objective function and constraints of the current model—which is Case 2b.

The convenient way to deal with this case is to treat it just as if it were Case 2a! This
is done by pretending that the new variable xj actually was in the original model with all
its coefficients equal to zero (so that they still are zero in the final simplex tableau) and
that xj is a nonbasic variable in the current BF solution. Therefore, if we change these
zero coefficients to their actual values for the new variable, the procedure (including any
reoptimization) does indeed become identical to that for Case 2a.

In particular, all you have to do to check whether the current solution still is optimal
is to check whether the complementary basic solution y* satisfies the one new dual con-
straint that corresponds to the new variable in the primal problem. We already have de-
scribed this approach and then illustrated it for the Wyndor Glass Co. problem in Sec. 6.5.

Case 3—Changes in the Coefficients of a Basic Variable

Now suppose that the variable xj (fixed j) under consideration is a basic variable in the
optimal solution shown by the final simplex tableau. Case 3 assumes that the only changes
in the current model are made to the coefficients of this variable.

Case 3 differs from Case 2a because of the requirement that a simplex tableau be
in proper form from Gaussian elimination. This requirement allows the column for a
nonbasic variable to be anything, so it does not affect Case 2a. However, for Case 3,
the basic variable xj must have a coefficient of 1 in its row of the simplex tableau and
a coefficient of 0 in every other row (including row 0). Therefore, after the changes in
the xj column of the final simplex tableau have been calculated,3 it probably will be
necessary to apply Gaussian elimination to restore this form, as illustrated in Table 7.4.
In turn, this step probably will change the value of the current basic solution and may
make it either infeasible or nonoptimal (so reoptimization may be needed). Conse-
quently, all the steps of the overall procedure summarized at the end of Sec. 7.1 are re-
quired for Case 3.

244 CHAPTER 7 LINEAR PROGRAMMING UNDER UNCERTAINTY

3For the relatively sophisticated reader, we should point out a possible pitfall for Case 3 that would be discov-
ered at this point. Specifically, the changes in the initial tableau can destroy the linear independence of the
columns of coefficients of basic variables. This event occurs only if the unit coefficient of the basic variable xj

in the final tableau has been changed to zero at this point, in which case more extensive simplex method cal-
culations must be used for Case 3.
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Before Gaussian elimination is applied, the formulas for revising the xj column are
the same as for Case 2a, as summarized below:

Coefficient of xj in final row 0: zj* � c�j � y*A�j � c�j.

Coefficient of xj in final rows 1 to m: Aj* � S*A�j.

Example (Variation 5 of the Wyndor Model). Because x2 is a basic variable in
Table 7.5 for Variation 2 of the Wyndor Glass Co. model, sensitivity analysis of its coef-
ficients fits Case 3. Given the current optimal solution (x1 � 0, x2 � 9), product 2 is the
only new product that should be introduced, and its production rate should be relatively
large. Therefore, the key question now is whether the initial estimates that led to the co-
efficients of x2 in the current model (Variation 2) could have overestimated the attrac-
tiveness of product 2 so much as to invalidate this conclusion. This question can be tested
by checking the most pessimistic set of reasonable estimates for these coefficients, which
turns out to be c2 � 3, a22 � 3, and a32 � 4. Consequently, the changes to be investigated
(Variation 5 of the Wyndor model) are

c2 � 5 ⎯→ c�2 � 3, A2 � ⎯→ A�2 � .

The graphical effect of these changes is that the feasible region changes from the one
shown in Fig. 7.2 to the one in Fig. 7.5. The optimal solution in Fig. 7.2 is (x1, x2)
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■ FIGURE 7.5
Feasible region for Variation
5 of the Wyndor model
where Variation 2 (Fig. 7.2)
has been revised so 
c2 � 5 � 3, a22 � 2 � 3,
and a32 � 2 � 4.
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� (0, 9), which is the corner-point solution lying at the intersection of the x1 � 0 and 
3x1 � 2x2 � 18 constraint boundaries. With the revision of the constraints, the corre-
sponding corner-point solution in Fig. 7.5 is (0, �

9
2

� ). However, this solution no longer is op-
timal, because the revised objective function of Z � 3x1 � 3x2 now yields a new optimal
solution of (x1, x2) � (4, �

3
2

� ).

Analysis of Variation 5. Now let us see how we draw these same conclusions 
algebraically. Because the only changes in the model are in the coefficients of x2, the only
resulting changes in the final simplex tableau (Table 7.5) are in the x2 column. Therefore,
the above formulas for Case 3 are used to recompute just this column.

z2 � c�2 � y*A�2 � c�2 � [0, 0, �
5
2

�] � 3 � 7.

A2* � S*A�2 � � .

(Equivalently, incremental analysis with �c2 � �2, �a22 � 1, and �a32 � 2 can be used
in the same way to obtain this column.)

The resulting revised final tableau is shown at the top of Table 7.8. Note that the new
coefficients of the basic variable x2 do not have the required values, so the conversion to
proper form from Gaussian elimination must be applied next. This step involves dividing
row 2 by 2, subtracting 7 times the new row 2 from row 0, and adding the new row 2 to
row 3.

The resulting second tableau in Table 7.8 gives the new value of the current basic
solution, namely, x3 � 4, x2 � �

9
2

�, x4 � �
2
2
1
� (x1 � 0, x5 � 0). Since all these variables are

nonnegative, the solution is still feasible. However, because of the negative coefficient
of x1 in row 0, we know that it is no longer optimal. Therefore, the simplex method would
be applied to this tableau, with this solution as the initial BF solution, to find the new
optimal solution. The initial entering basic variable is x1, with x3 as the leaving basic
variable. Just one iteration is needed in this case to reach the new optimal solution x1 � 4,
x2 � �

3
2

�, x4 � �
3
2
9
� (x3 � 0, x5 � 0), as shown in the last tableau of Table 7.8.

All this analysis suggests that c2, a22, and a32 are relatively sensitive parameters. 
However, additional data for estimating them more closely can be obtained only by con-
ducting a pilot run. Therefore, the OR team recommends that production of product 2 be
initiated immediately on a small scale (x2 � �

3
2

�) and that this experience be used to guide
the decision on whether the remaining production capacity should be allocated to prod-
uct 2 or product 1.

The Allowable Range for an Objective Function Coefficient of a Basic Variable.
For Case 2a, we described how to find the allowable range for any cj such that xj is a
nonbasic variable for the current optimal solution (before cj is changed). When xj is a ba-
sic variable instead, the procedure is somewhat more involved because of the need to con-
vert to proper form from Gaussian elimination before testing for optimality.

To illustrate the procedure, consider Variation 5 of the Wyndor Glass Co. model (with
c2 � 3, a22 � 3, a23 � 4) that is graphed in Fig. 7.5 and solved in Table 7.8. Since x2 is
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a basic variable for the optimal solution (with c2 � 3) given at the bottom of this table,
the steps needed to find the allowable range for c2 are the following:

1. Since x2 is a basic variable, note that its coefficient in the new final row 0 (see the bot-
tom tableau in Table 7.8) is automatically z2* � c2 � 0 before c2 is changed from its
current value of 3.

2. Now increment c2 � 3 by �c2 (so c2 � 3 � �c2). This changes the coefficient noted
in step 1 to z2* � c2 � ��c2, which changes row 0 to

Row 0 � �0, ��c2, �
3
4

�, 0, �
3
4

� �
3
2
3
��.

3. With this coefficient now not zero, we must perform elementary row operations to re-
store proper form from Gaussian elimination. In particular, add to row 0 the product,
�c2 times row 2, to obtain the new row 0, as shown below:

�0, ��c2, ��
3
4

�,�c2 0, �
3
4

��c2 �
3
2
3
��

� �0, ��c2, ��
3
4

��c2, 0, �
1
4

��c2 �
3
2

��c2�
New row 0 � �0, 0, �

3
4

� � �
3
4

��c2, 0, �
3
4

� � �
1
4

��c2 �
3
2
3
� � �

3
2

��c2�

New final tableau
after reoptimization
(only one iteration of
the simplex method
needed in this case)

■ TABLE 7.8 Sensitivity analysis procedure applied to Variation 5 of the 
Wyndor Glass Co. model

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �
9
2

� 7 0 0 �
5
2

� 45

Revised final tableau
x3 (1) 0 1 0 1 0 0 4

x2 (2) 0 �
3
2

� 2 0 0 �
1
2

� 9

x4 (3) 0 �3 �1 0 1 �1 6

Z (0) 1 ��
3
4

� 0 0 0 �
3
4

� �
2
2
7
�

Converted to proper form
x3 (1) 0 1 0 1 0 0 4

x2 (2) 0 �
3
4

� 1 0 0 �
1
4

� �
9
2

�

x4 (3) 0 ��
9
4

� 0 0 1 ��
3
4

� �
2
2
1
�

Z (0) 1 0 0 �
3
4

� 0 �
3
4

� �
3
2
3
�

x1 (1) 0 1 0 1 0 0 4

x2 (2) 0 0 1 ��
3
4

� 0 �
1
4

� �
3
2

�

x4 (3) 0 0 0 �
9
4

� 1 ��
3
4

� �
3
2
9
�
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4. Using this new row 0, solve for the range of values of �c2 that keeps the coefficients
of the nonbasic variables (x3 and x5) nonnegative.

�
3
4

� � �
3
4

� �c2 � 0 ⇒ �
3
4

� � �
3
4

� �c2 ⇒ �c2 � 1.

�
3
4

� � �
1
4

� �c2 � 0 ⇒ �
1
4

� �c2 � ��
3
4

� ⇒ �c2 � �3.

Thus, the range of values is �3 � �c2 � 1.
5. Since c2 � 3 � �c2, add 3 to this range of values, which yields

0 � c2 � 4

as the allowable range for c2.

With just two decision variables, this allowable range can be verified graphically by us-
ing Fig. 7.5 with an objective function of Z � 3x1 � c2x2. With the current value of 
c2 � 3, the optimal solution is (4, �

3
2

�). When c2 is increased, this solution remains optimal only
for c2 � 4. For c2 � 4, (0, �

9
2

�) becomes optimal (with a tie at c2 � 4), because of the constraint
boundary 3x1 � 4x2 � 18. When c2 is decreased instead, (4, �

3
2

�) remains optimal only for c2

� 0. For c2 � 0, (4, 0) becomes optimal because of the constraint boundary x1 � 4.
In a similar manner, the allowable range for c1 (with c2 fixed at 3) can be derived either

algebraically or graphically to be c1 � �
9
4

�. (Problem 7.2-10 asks you to verify this both ways.)
Thus, the allowable decrease for c1 from its current value of 3 is only �

3
4

�. However, it
is possible to decrease c1 by a larger amount without changing the optimal solution if c2

also decreases sufficiently. For example, suppose that both c1 and c2 are decreased by 1
from their current value of 3, so that the objective function changes from Z � 3x1 � 3x2

to Z � 2x1 � 2x2. According to the 100 percent rule for simultaneous changes in objec-
tive function coefficients, the percentages of allowable changes are 133�

1
3

� percent and
33�

1
3

� percent, respectively, which sum to far over 100 percent. However, the slope of the
objective function line has not changed at all, so (4, �

3
2

�) still is optimal.

Case 4—Introduction of a New Constraint

In this case, a new constraint must be introduced to the model after it has already been
solved. This case may occur because the constraint was overlooked initially or because
new considerations have arisen since the model was formulated. Another possibility is that
the constraint was deleted purposely to decrease computational effort because it appeared
to be less restrictive than other constraints already in the model, but now this impression
needs to be checked with the optimal solution actually obtained.

To see if the current optimal solution would be affected by a new constraint, all you
have to do is to check directly whether the optimal solution satisfies the constraint. If it
does, then it would still be the best feasible solution (i.e., the optimal solution), even if
the constraint were added to the model. The reason is that a new constraint can only elim-
inate some previously feasible solutions without adding any new ones.

If the new constraint does eliminate the current optimal solution, and if you want to
find the new solution, then introduce this constraint into the final simplex tableau (as an
additional row) just as if this were the initial tableau, where the usual additional variable
(slack variable or artificial variable) is designated to be the basic variable for this new
row. Because the new row probably will have nonzero coefficients for some of the other
basic variables, the conversion to proper form from Gaussian elimination is applied next,
and then the reoptimization step is applied in the usual way.
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2
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3x1 � 2x2 � 18

x1 � 4

2x2 � 24

x2 � 0

(0, 9)  

(0, 8) optimal  

Feasible
region

Just as for some of the preceding cases, this procedure for Case 4 is a streamlined ver-
sion of the general procedure summarized at the end of Sec. 7.1. The only question to be
addressed for this case is whether the previously optimal solution still is feasible, so step
5 (optimality test) has been deleted. Step 4 (feasibility test) has been replaced by a much
quicker test of feasibility (does the previously optimal solution satisfy the new constraint?)
to be performed right after step 1 (revision of model). It is only if this test provides a neg-
ative answer, and you wish to reoptimize, that steps 2, 3, and 6 are used (revision of final
tableau, conversion to proper form from Gaussian elimination, and reoptimization).

Example (Variation 6 of the Wyndor Model). To illustrate this case, we consider
Variation 6 of the Wyndor Glass Co. model, which simply introduces the new constraint

2x1 � 3x2 � 24

into the Variation 2 model given in Table 7.5. The graphical effect is shown in Fig. 7.6.
The previous optimal solution (0, 9) violates the new constraint, so the optimal solution
changes to (0, 8).

To analyze this example algebraically, note that (0, 9) yields 2x1 � 3x2 � 27 � 24, so
this previous optimal solution is no longer feasible. To find the new optimal solution, add
the new constraint to the current final simplex tableau as just described, with the slack vari-
able x6 as its initial basic variable. This step yields the first tableau shown in Table 7.9.
The conversion to proper form from Gaussian elimination then requires subtracting from
the new row the product, 3 times row 2, which identifies the current basic solution x3 � 4,
x2 � 9, x4 � 6, x6 � �3 (x1 � 0, x5 � 0), as shown in the second tableau. Applying the
dual simplex method (described in Sec. 8.1) to this tableau then leads in just one iteration
(more are sometimes needed) to the new optimal solution in the last tableau of Table 7.9.
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■ FIGURE 7.6
Feasible region for Variation
6 of the Wyndor model
where Variation 2 (Fig. 7.2)
has been revised by adding
the new constraint, 
2x1 � 3x2 � 24.
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With the help of Solver, spreadsheets provide an alternative, relatively straightforward way
of performing much of the sensitivity analysis described in Secs. 7.1 and 7.2. The spread-
sheet approach is basically the same for each of the cases considered in Sec. 7.2 for the
types of changes made in the original model. Therefore, we will focus on only the effect
of changes in the coefficients of the variables in the objective function (Cases 2a and 3
in Sec. 7.2). We will illustrate this effect by making changes in the original Wyndor model
formulated in Sec. 3.1, where the coefficients of x1 (number of batches of the new door
produced per week) and x2 (number of batches of the new window produced per week)
in the objective function are

c1 � 3 � profit (in thousands of dollars) per batch of the new type of door,
c2 � 5 � profit (in thousands of dollars) per batch of the new type of window.
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■ TABLE 7.9 Sensitivity analysis procedure applied to Variation 6 
of the Wyndor Glass Co. model

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 �
9
2

� 0 0 0 �
5
2

� 0 45

x3 (1) 0 1 0 1 0 0 0 4

Revised final tableau x2 (2) 0 �
3
2

� 1 0 0 �
1
2

� 0 9

x4 (3) 0 �3 0 0 1 �1 0 6
x6 New 0 2 3 0 0 0 1 24

Z (0) 1 �
9
2

� 0 0 0 �
5
2

� 0 45

x3 (1) 0 1 0 1 0 0 0 4

Converted to proper form x2 (2) 0 �
3
2

� 1 0 0 �
1
2

� 0 9

x4 (3) 0 �3 0 0 1 �1 0 6

x6 New 0 ��
5
2

� 0 0 0 ��
3
2

� 1 �3

Z (0) 1 �
1
3

� 0 0 0 0 �
5
3

� 40

x3 (1) 0 1 0 1 0 0 0 4

x2 (2) 0 �
2
3

� 1 0 0 0 �
1
3

� 8

x4 (3) 0 ��
4
3

� 0 0 1 0 ��
2
3

� 8

x5 New 0 �
5
3

� 0 0 0 1 ��
2
3

� 2

New final tableau
after reoptimization
(only one iteration of
dual simplex method
needed in this case)

■ 7.3 PERFORMING SENSITIVITY ANALYSIS ON A SPREADSHEET4

So far we have described how to test specific changes in the model parameters. An-
other common approach to sensitivity analysis, called parametric linear programming, is
to vary one or more parameters continuously over some interval(s) to see when the opti-
mal solution changes. We shall describe the algorithms for performing parametric linear
programming in Sec. 8.2.

4We have written this section in a way that can be understood without first reading either of the preceding sec-
tions in this chapter. However, Sec. 4.7 is important background for the latter part of this section.
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A B D

Wyndor Glass Co. Product-Mix Problem

Profit Per Batch ($000)

Plant 1
Plant 2
Plant 3

E

Hours
Used

2
12
18

F

<=
<=
<=

Batches Produced

C

Doors
3

1
0
3

Doors
2

Windows
5

0
2
2

Windows
6

G

Hours
Available

4
12
18

Total Profit ($000)
36

Hours Used Per Batch Produced

5
6
7
8
9

E
Hours
Used

=SUMPRODUCT(C7:D7,BatchesProduced)
=SUMPRODUCT(C8:D8,BatchesProduced)
=SUMPRODUCT(C9:D9,BatchesProduced)

11
12

G
Total Profit

=SUMPRODUCT(ProfitPerBatch,BatchesProduced)

Range Name Cells
BatchesProduced C12:D12
HoursAvailable G7:G9
HoursUsed E7:E9
HoursUsedPerBatchProduced C7:D9
ProfitPerBatch C4:D4
TotalProfit G12

To:Max
By Changing Variable Cells:

BatchesProduced
Subject to the Constraints:

HoursUsed<= HoursAvailable
Solver Options:

Make Variables Nonnegative
Solving Method: Simplex LP

Solver Parameters
Set Objective Cell:TotalProfit

For your convenience, the spreadsheet formulation of this model (Fig. 3.22) is repeated
here as Fig. 7.7. Note that the cells containing the quantities to be changed are Profit-
PerBatch (C4:D4). 

Spreadsheets actually provide three methods of performing sensitivity analysis. One
is to check the effect of an individual change in the model by simply making the change
on the spreadsheet and re-solving. A second is to systematically generate a table on a sin-
gle spreadsheet that shows the effect of a series of changes in one or two parameters of
the model. A third is to obtain and apply Excel’s sensitivity report. We describe each of
these methods in turn below.

Checking Individual Changes in the Model

One of the great strengths of a spreadsheet is the ease with which it can be used interac-
tively to perform various kinds of sensitivity analysis. Once Solver has been set up to ob-
tain an optimal solution, you can immediately find out what would happen if one of the
parameters of the model were changed to some other value. All you have to do is make
this change on the spreadsheet and then click on the Solve button again.

To illustrate, suppose that Wyndor management is quite uncertain about what the
profit per batch of doors (c1) will turn out to be. Although the figure of 3 given in Fig.
7.7 is considered to be a reasonable initial estimate, management feels that the true profit
could end up deviating substantially from this figure in either direction. However, the
range between c1 � 2 and c1 � 5 is considered fairly likely.
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■ FIGURE 7.7
The spreadsheet model and
the optimal solution
obtained for the original
Wyndor problem before
performing sensitivity
analysis.
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Figure 7.8 shows what would happen if the profit per batch of doors were to drop from
c1 � 3 to c1 � 2. Comparing with Fig. 7.7, there is no change at all in the optimal solution
for the product mix. In fact, the only changes in the new spreadsheet are the new value of c1

in cell C4 and a decrease of 2(in thousands of dollars) in the total profit shown in cell G12
(because each of the two batches of doors produced per week provides 1 thousand dollars less
profit). Because the optimal solution does not change, we now know that the original estimate
of c1 � 3 can be considerably too high without invalidating the model’s optimal solution.

But what happens if this estimate is too low instead? Figure 7.9 shows what would
happen if c1 were increased to c1 � 5. Again, there is no change in the optimal solution.
Therefore, we now know that the range of values of c1 over which the current optimal
solution remains optimal (i.e., the allowable range discussed in Sec. 7.2) includes the
range from 2 to 5 and may extend further.

Because the original value of c1 � 3 can be changed considerably in either direction
without changing the optimal solution, c1 is a relatively insensitive parameter. It is not
necessary to pin down this estimate with great accuracy in order to have confidence that
the model is providing the correct optimal solution.

This may be all the information that is needed about c1. However, if there is a good
possibility that the true value of c1 will turn out to be even outside this broad range from
2 to 5, further investigation would be desirable. How much higher or lower can c1 be be-
fore the optimal solution would change?

Figure 7.10 demonstrates that the optimal solution would indeed change if c1 is in-
creased all the way up to c1 � 10. Thus, we now know that this change occurs somewhere
between 5 and 10 during the process of increasing c1.
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9

10
11
12

A B C D E F G

Wyndor Glass Co. Product-Mix Problem

Doors Windows
Profit Per Batch ($000) 2 5

Hours Hours
Used Available

Plant 1 1 0 2 <= 4
Plant 2 0 2 12 <= 12

18 18Plant 3 3 2 <=

Doors Windows Total Profit ($000)
Batches Produced 2 6 34

Hours Used Per Batch Produced

■ FIGURE 7.8
The revised Wyndor problem
where the estimate of the
profit per batch of doors has
been decreased from 
c1 = 3 to c2 = 2, but no
change occurs in the optimal
solution for the product mix.

1
2
3
4
5
6
7
8
9

10
11
12

A B C D E F G

Wyndor Glass Co. Product-Mix Problem

Doors Windows
Profit Per Batch ($000) 5 5

Hours Hours
Used Available

Plant 1 1 0 2 <= 4
Plant 2 0 2 12 <= 12

18 18Plant 3 3 2 <=

Doors Windows Total Profit ($000)
Batches Produced 2 6 4

Hours Used Per Batch Produced

■ FIGURE 7.9
The revised Wyndor problem
where the estimate of the
profit per batch of doors has
been increased from
c1 � 3 to c1 � 5, but no
change occurs in the optimal
solution for the product mix.
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Using a Parameter Analysis Report to Do Sensitivity Analysis
Systematically

To pin down just when the optimal solution will change, we could continue selecting new
values of c1 at random. However, a better approach is to systematically consider a range
of values of c1. The Analytic Solver Platform for Education (ASPE), first introduced in
Sec. 3.5, can generate a parameter analysis report that is designed to do just this sort of
analysis. Instructions for installing ASPE are on a supplementary insert included with the
book and also on the bookís website, www.mhhe.com/hillier.

The data cell containing a parameter that will be systematically varied (ProfitPer-
BatchOfDoors in cell C4 in this case) is referred to as a parameter cell. A parameter
analysis report is used to show the results in the changing cells and/or the objective cell
for various trial values in the parameter cell. For each trial value, these results are ob-
tained by using Solver to re-solve the problem.

To generate a parameter analysis report, the first step is to define the parameter cell.
In this case, select cell C4 (the profit per batch of doors) and choose Optimization under
the Parameters menu on the ASPE ribbon.In the parameter cell dialog box, shown in
Fig.7.11,enter the range of trial values for the parameter cell.The entries shown specify
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1
2
3
4
5
6
7
8
9

10
11
12

A B C D E F G
Wyndor Glass Co. Product-Mix Problem

Doors Windows
Profit Per Batch ($000) 10 5

Hours Hours
Used Available

Plant 1 1 0 4 <= 4
Plant 2 0 2 6 <= 12
Plant 3 3 2 18 <= 18

Doors Windows Total Profit ($000)
Batches Produced 4 3 55

Hours Used Per Batch Produced

■ FIGURE 7.10
The revised Wyndor problem
where the estimate of the
profit per batch of doors has
been increased from 
C1 � 3 to C1 � 10, which
results in a change in the
optimal solution for the
product mix.

■ FIGURE 7.11 
The parameter cell dialog
box for c1 (cell C4) specifies
here that this parameter cell
for the Wyndor problem will
be systematically varied from
1 to 10.
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that c1 will be systematically varied from 1 to 10.  If desired, additional parameter cells
could be defined in this same way, but we will not do so at this point.

Next choose Optimization>Parameter Analysis under the Reports menu on the ASPE
ribbon. This brings up the dialog box shown in Fig. 7.12 that allows you to specify which
parameter cells to vary and which results to show. The choice of which parameter cells
to vary is made under Parameters in the bottom half of the dialog box. Clicking on (>>)
will select all of the parameter cells defined so far (moving them to the box on the right).
In the Wyndor example, only one parameter has been defined, so this causes the single
parameter cell (ProfitPerBatchOfDoors or cell C4) to appear on the right. If more para-
meter cells had been defined, particular parameter cells can be chosen for immediate analy-
sis by clicking on the + next to Wyndor to reveal the list of parameter cells that have been
defined in the Wyndor spreadsheet. Clicking on (>) then moves individual parameter cells
to the list on the right.

The choice of which results to show as the parameter cell is varied is made in the 
upper half of the dialog box. Clicking on (>)will cause all of the changing cells 
(DoorBatchesProduced or C12, and WindowBatchesProduced or D12) and the objective
cell (Total Profit or G12) to appear in the list on the right. To instead choose a subset of
these cells, click on the small + next to Variables (or Objective) to reveal a list of all the
changing cells (or objective cell) and then click on > to move that changing cell (or ob-
jective cell) to the right.

■ FIGURE 7.12
The dialog box for the
parameter analysis report
specifies here for the Wyndor
problem that the
ProfitPerBatchOfDoors (C4)
parameter cell will be varied
and that results from all the
changing cells
(DoorBatchesProduced and
WindowBatchesProduced)
and the objective cell
(TotalProfit) will be shown.
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Finally, enter the number of Major Axis Points to specify how many different values
of the parameter cell will be shown in the parameter analysis report. The values will be
spread evenly between the lower and upper values specified in the parameters cell dialog
box in Fig. 7.11. With 10 major axis points, a lower value of 1, and an upper value of 10,
the parameter analysis report will show results for c1 of 1, 2, 3,...10.

Clicking on the OK button generates the parameter analysis report shown in Fig. 7.13.
One at a time, the trial values listed in the first column of the table are put into the para-
meter cell (ProfitPerBatchOfDoors or C4) and then Solver is called on to re-solve the
problem. The optimal results for that particular trial value of the parameter cell are then
shown in the remaining columns—DoorBatchesProduced (C4), WindowsBatchesProduced
(D4), and TotalProfit (G12). This is repeated automatically for each remaining trial value
of the parameter cell. The end result (which happens very quickly for small problems) is
the completely-filled-in parameter analysis report shown in Fig. 7.13.

The parameter analysis report reveals that the optimal solution remains the same all the
way from c1 � 1 (and perhaps lower) to c1 � 7, but that a change occurs somewhere be-
tween 7 and 8. We next could systematically consider values of c1 between 7 and 8 to de-
termine more closely where the optimal solution changes. However, this is not necessary
since, as discussed a little later, a shortcut is to use the Excel sensitivity report to determine
exactly where the optimal solution changes.

Thus far, we have illustrated how to systematically investigate the effect of changing 
only c1 (cell C4 in Fig. 7.7). The approach is the same for c2 (cell D4). In fact, a parameter
analysis report can be used in this way to investigate the effect of changing any single data
cell in the model, including any cell in HoursAvailable (G7:G9) or HoursUsedPerBatchPro-
duced (C7:D9).

We next will illustrate how to investigate simultaneous changes in two data cells with
a spreadsheet, first by itself and then with the help of the a parameter analysis report.

Checking Two-Way Changes in the Model

When using the original estimates for c1 (3) and c2 (5), the optimal solution indicated by
the model (Fig. 7.7) is heavily weighted toward producing the windows (6 batches per
week) rather than the doors (only 2 batches per week). Suppose that Wyndor management
is concerned about this imbalance and feels that the problem may be that the estimate for
c1 is too low and the estimate for c2 is too high. This raises the question: If the estimates
are indeed off in these directions, would this lead to a more balanced product mix being
the most profitable one? (Keep in mind that it is the ratio of c1 to c2 that is relevant for
determining the optimal product mix, so having their estimates be off in the same direc-
tion with little change in this ratio is unlikely to change the optimal product mix.)
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ProfitPerBatchOfDoors1
2
3
4
5
6
7
8
9
10

A

1
2
3
4
5
6
7
8
9
10

2
2
2
2
2
2
2
4
4
4

32
34
36
38
40
42
44
47
51
5511

DoorBatchesProduced TotalProfit
B

6
6
6
6
6
6
6
3
3
3

WindowBatchesProduced
C D■ FIGURE 7.13

The parameter analysis report
that shows the effect of
systematically varying the
estimate of the profit per
batch of doors for the
Wyndor problem.
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This question can be answered in a matter of seconds simply by substituting new es-
timates of the profits per batch in the original spreadsheet in Fig. 7.7 and clicking on the
Solve button. Figure 7.14 shows that new estimates of 4.5 for doors and 4 for windows
causes no change at all in the solution for the optimal product mix. (The total profit does
change, but this occurs only because of the changes in the profits per batch.) Would even
larger changes in the estimates of profits per batch finally lead to a change in the optimal
product mix? Figure 7.15 shows that this does happen, yielding a relatively balanced 
product mix of (x1, x2) � (4, 3), when estimates of 6 for doors and 3 for windows are
used.

Figures 7.14 and 7.15 don’t reveal where the optimal product mix changes as the
profit estimates increase from 4.5 to 6 for doors and decrease from 4 to 3 for windows.
We next describe how a parameter analysis report can systematically help to pin this down
better.

Using a Two-Way Parameter Analysis Report (ASPE) for This Analysis

Using APSE, a two-way parameter analysis report, provides a way of systematically in-
vestigating the effect if the estimates of both profits per batch are inaccurate. This kind
of parameter analysis report shows the results in a single output cell for various trial val-
ues in two parameter cells. Therefore, for example, it can be used to show how TotalProfit
(G12) in Fig. 5.1 varies over a range of trial values in the two parameter cells, ProfitPer-
BatchOfDoors (C4) and ProfitPerBatchOfWindows (D4). For each pair of trial values in
these data cells, Solver is called on to re-solve the problem.
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A B C D E F G

Wyndor Glass Co. Product-Mix Problem

Doors Windows
Profit Per Batch ($000) 4.5 4

Hours Hours
Used Available

Plant 1 1 0 2 <= 4
Plant 2 0 2 12 <= 12
Plant 3 3 2 18 <= 18

Doors Windows Total Profit ($000)
Batches Produced 2 6 33

33 Hours Used Per Batch Produced

■ FIGURE 7.14
The revised Wyndor
problem where the
estimates of the profits per
batch of doors and
windows have been
changed to c1 � 4.5 and 
c2 � 4, respectively, but no
change occurs in the
optimal product mix.
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A B C D E F G

Wyndor Glass Co. Product-Mix Problem

Doors Windows
Profit Per Batch ($000) 6 3

Hours Hours
Used Available

Plant 1 1 0 4 <= 4
Plant 2 0 2 6 <= 12
Plant 3 3 2 18 <= 18

Doors Windows Total Profit ($000)
Batches Produced 4 3 33

Hours Used Per Batch Produced

■ FIGURE 7.15
The revised Wyndor problem
where the estimates of the
profits per batch of doors
and windows have been
changed to 6 and 3,
respectively, which results in
a change in the optimal
product mix.
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To create such a two-way parameter analysis report for the Wyndor problem, both
ProfitPerBatchOfDoors (C4) and ProfitPerBatchOfWindows (D4) need to be defined as
parameter cells. In turn, select cell C4 and D4, then choose Optimization under the 
Parameters menu on the ASPE ribbon, and then enter the range of trial values for each
parameter cell (as was done in Fig. 7.11 in the previous section). For this example, Prof-
itPerBatchOfDoors (C4) will be varied from 3 to 6 while ProfitPerBatchOfWindows (D4)
will be varied from 1 to 5.

Next, choose Optimization>Parameter Analysis under the reports menu on the ASPE
ribbon to bring up the dialog box shown in Fig. 7.16. For a two-way parameter analysis
report, two parameter cells are chosen, but only a single result can be shown. Under Para-
meters, clicking on (>>) chooses both of the defined parameter cells, ProfitPerBatchOf-
Doors (C4) and ProfitPerBatchOfWindows (D4). Under Results, click on (<<) to clear out
the list of cells on the right, click on the + next to Objective to reveal the objective cell
(TotalProfit or G12), select TotalProfit, and then click on > to move this cell to the right.

The next step is to choose the option in the menu at the bottom to Vary Two Selected
Parameters Independently. This will allow both parameter cells to be varied independently
over their entire ranges. The number of different values of the first parameter cell and the
second parameter cell to be shown in the parameter analysis report are entered in Major
Axis Points and Minor Axis Points, respectively. These values will be spread evenly over
the range of values specified in the parameter dialog box for each parameter cell. 
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■ FIGURE 7.16 
The dialog box for the
parameter analysis report
specifies here that the
ProfitPerBatchOfDoors (C4)
and ProfitPerBatchOfWindows
(D4) parameter cells will be
varied and results from the
objective cell, TotalProfit
(G12) will be shown for the
Wyndor problem.
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Therefore, choosing 4 and 5 for the respective number of values, as shown in Fig. 7.16,
will vary ProfitPerBatchOfDoors over the four values of 3, 4, 5, and 6 while simultane-
ously varying ProfitPerBatchOfWindows over the five values of 1, 2, 3, 4, and 5.

Clicking on the OK button generates the parameter analysis report shown in Fig.
7.17. The trial values for the respective parameter cells are listed in the first column and
first row of the table. For each combination of a trial value from the first column and
from the first row, Solver has solved for the value of the output cell of interest (the ob-
jective cell for this example) and entered it into the corresponding column and row of
the table. 

It also is possible to choose either DoorBatchesProduced (C12) or WindowBatches-
Produced (D12) instead of TotalProfit (G12), as the Result to show in the dialog box of
Fig. 7.16. A similar parameter analysis report then could have been generated to show ei-
ther the optimal number of doors to produce or the optimal number of windows to pro-
duce for each combination of values for the unit profits. These two parameter analysis re-
ports are shown in Fig. 7.18. The upper right-hand corner (cell F3) of both reports, taken
together, gives the optimal solution of (x1, x2) � (2, 6) when using the original profit 
estimates of 3 per batch of doors and 5 per batch of windows. Moving down from this
cell corresponds to increasing this estimate for doors while moving to the left amounts to
decreasing the estimate for windows. (The cells when moving up or to the right of H26
are not shown because these changes would only increase the attractiveness of (x1, x2)
� (2, 6) as the optimal solution.) Note that (x1, x2) � (2, 6) continues to be the optimal
solution for all the cells near H26. This indicates that the original estimates of profit per
batch would need to be very inaccurate indeed before the optimal product mix would
change.

TotalProfit
ProfitPerBatchOfDoors

ProfitPerBatchOfWindows1
2
3
4
5
6

18
1

15
19
23
27

2

22
26
30

24
3

26
29
33
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4

32
34
36

36
5

38
40
42

A B C D E F■ FIGURE 7.17 
The parameter analysis report
that shows how the optimal
TotalProfit (G12) changes
when systematically 
varying the estimate of both
the ProfitPerBatchOfDoors
(C4) and the
ProfitPerBatchOfWindows
(D4) for the Wyndor
problem.
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2
3
4
5
6

2
1
4
4
4
4

3
4
5
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2

4
4
4

2
3

2
4
4

2
4

2
2
2

2
5

2
2
2

A B C D E F

Window Batches Produced
Profit Per Batch Of Doors

Profit Per Batch Of Windows1
2
3
4
5
6

6
1
3
3
3
3

3
4
5
6

2

3
3
3

6
3

6
3
3

6
4

6
6
6

6
5

6
6
6

A B C D E F

■ FIGURE 7.18 
The pair of parameter
analysis reports that show
how the optimal number of
doors to produce (top
report) and the optimal
number of windows to
produce (bottom report)
change when systematically
varying the estimate of both
the unit profit for doors and
the unit profit for windows
for the Wyndor problem.
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Using the Sensitivity Report to Perform Sensitivity Analysis

You now have seen how some sensitivity analysis can be performed readily on a spread-
sheet either by interactively making changes in data cells and re-solving or by using a
parameter analysis report to generate similar information systematically. However, there
is a shortcut. Some of the same information (and more) can be obtained more quickly
and precisely by simply using the sensitivity report provided by Solver. (Essentially 
the same sensitivity report is a standard part of the output available from other 
linear programming software packages as well, including MPL/Solvers, LINDO, and
LINGO.)

Section 4.7 already has discussed the sensitivity report and how it is used to perform
sensitivity analysis. Figure 4.10 in that section shows the sensitivity report for the Wyndor
problem. Part of this report is shown here in Fig. 7.19. Rather than repeating Sec. 4.7, we
will focus here on illustrating how the sensitivity report can efficiently address the spe-
cific questions raised in the preceding subsections for the Wyndor problem.

The question considered in the first two subsections was how far the initial estimate
of 3 for c1 could be off before the current optimal solution, (x1, x2) � (2, 6), would change.
Figures 7.9 and 7.10 showed that the optimal solution would not change until c1 is raised
to somewhere between 5 and 10. Figure 7.13 then narrowed down the gap for where the
optimal solution changes to somewhere between 7 and 8. This figure also showed that if
the initial estimate of 3 for c1 is too high rather than too low, c1 would need to be dropped
to somewhere below 1 before the optimal solution would change.

Now look at how the portion of the sensitivity report in Figure 7.19 addresses this
same question. The DoorBatchesProduced row in this report provides the following
information about c1:

Current value of c1: 3.
Allowable increase in c1: 4.5. So c1 � 3 � 4.5 � 7.5
Allowable decrease in c1: 3. So c1 � 3 – 3 � 0.
Allowable range for c1: 0 � c1 � 7.5.

Therefore, if c1 is changed from its current value (without making any other change in
the model), the current solution (x1, x2) � (2, 6) will remain optimal so long as the new
value of c1 is within this allowable range, 0 � c1 � 7.5.

Figure 7.20 provides graphical insight into this allowable range. For the original value
of c1 � 3, the solid line in the figure shows the slope of the objective function line pass-
ing through (2, 6). At the lower end of the allowable range, where c1 � 0, the objective
function line that passes through (2, 6) now is line B in the figure, so every point on the line
segment between (0, 6) and (2, 6) is an optimal solution. For any value of c1 
 0, the ob-
jective function line will have rotated even further so that (0, 6) becomes the only optimal
solution. At the upper end of the allowable range, when c1 � 7.5, the objective function
line that passes through (2, 6) becomes line C, so every point on the line segment between
(2, 6) and (4, 3) becomes an optimal solution. For any value of c1 � 7.5, the objective 

Variable Cells

Final Reduced Objective Allowable Allowable
Cell Name Value Cost Coefficient Increase Decrease

$C$12 DoorBatchesProduced
$D$12 WindowBatchesProduced

2
6

0
0

3
5

4.5
1E+30

3
3

■ FIGURE 7.19
Part of the sensitivity report
generated by Solver for the
original Wyndor problem
(Fig. 6.3), where the last
three columns identify the
allowable ranges for the
profits per batch of doors
and windows.

hil23453_ch07_225-289.qxd  1/15/70  7:58 AM  Page 259 Final PDF to printer



function line is even steeper than line C, so (4, 3) becomes the only optimal solution. Con-
sequently, the original optimal solution, (x1, x2) � (2, 6) remains optimal only as long as
0 � c1 � 7.5.

The procedure called Graphical Method and Sensitivity Analysis in IOR Tutorial is
designed to help you perform this kind of graphical analysis. After you enter the model
for the original Wyndor problem, the module provides you with the graph shown in 
Fig. 7.20 (without the dashed lines). You then can simply drag one end of the objective
line up or down to see how far you can increase or decrease c1 before (x1, x2) � (2, 6)
will no longer be optimal.

Conclusion: The allowable range for c1 is 0 � c1 � 7.5, because 
(x1, x2) � (2, 6) remains optimal over this range but not beyond. (When c1 � 0
or c1 � 7.5, there are multiple optimal solutions, but (x1, x2) � (2, 6) still is one
of them.) With the range this wide around the original estimate of 3 (c1 � 3) for
the profit per batch of doors, we can be quite confident of obtaining the correct
optimal solution for the true profit.

Now let us turn to the question considered in the preceding two subsections. What
would happen if the estimate of c1 (3) were too low and the estimate of c2 (5) were too
high simultaneously? Specifically, how far can the estimates be off in these directions be-
fore the current optimal solution, (x1, x2) � (2, 6), would change?

Figure 7.14 showed that if c1 were increased by 1.5 (from 3 to 4.5) and C2 were 
decreased by 1 (from 5 to 4), the optimal solution would remain the same. Figure 7.15 then
indicated that doubling these changes would result in a change in the optimal solution. How-
ever, it is unclear where the change in the optimal solution occurs. Figure 7.18 provided fur-
ther information, but not a definitive answer to this question.

Fortunately, additional information can be gleaned from the sensitivity report (Fig. 7.19)
by using its allowable increases and allowable decreases in c1 and c2. The key is to apply
the following rule (as first stated in Sec. 7.2):
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x2

x1

(2,6) is optimal for 0 � C1 � 7.5

C1 � 3

C1 � 0

C1 � 7.5

■ FIGURE 7.20
The two dashed lines that
pass through solid constraint
boundary lines are the
objective function lines when
c1 (the profit per batch of
doors) is at an endpoint of
its allowable range, 0 � c1
� 7.5, since either line or
any objective function line in
between still yields 
(x1, x2) � (2, 6) as an
optimal solution for the
Wyndor problem.
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The 100 Percent Rule for Simultaneous Changes in Objective Function
Coefficients: If simultaneous changes are made in the coefficients of the ob-
jective function, calculate for each change the percentage of the allowable
change (increase or decrease) for that coefficient to remain within its allow-
able range. If the sum of the percentage changes does not exceed 100 percent,
the original optimal solution definitely will still be optimal. (If the sum does
exceed 100 percent, then we cannot be sure.)

This rule does not spell out what happens if the sum of the percentage changes does
exceed 100 percent. The consequence depends on the directions of the changes in the
coefficients. Remember that it is the ratios of the coefficients that are relevant for deter-
mining the optimal solution, so the original optimal solution might indeed remain opti-
mal even when the sum of the percentage changes greatly exceeds 100 percent if the
changes in the coefficients are in the same direction. Thus, exceeding 100 percent may or
may not change the optimal solution, but so long as 100 percent is not exceeded, the orig-
inal optimal solution definitely will still be optimal.

Keep in mind that we can safely use the entire allowable increase or decrease in a
single objective function coefficient only if none of the other coefficients have changed
at all. With simultaneous changes in the coefficients, we focus on the percentage of the
allowable increase or decrease that is being used for each coefficient.

To illustrate, consider the Wyndor problem again, along with the information 
provided by the sensitivity report in Fig. 7.19. Suppose now that the estimate of c1 has
increased from 3 to 4.5 while the estimate of c2 has decreased from 5 to 4. The calcula-
tions for the 100 percent rule now are

c1: 3 → 4.5.

Percentage of allowable increase � 100 ��4.5 – 3
4.5 �% � 33�

1
3

�%

c2: 5 → 4.

Percentage of allowable decrease � 100 ��5 –
3

4 �% � 33�
1
3

�%

Sum � 66�
2
3

�%.

Since the sum of the percentages does not exceed 100 percent, the original optimal solu-
tion (x1, x2) � (2, 6) definitely is still optimal, just as we found earlier in Fig. 6.14.

Now suppose that the estimate of c1 has increased from 3 to 6 while the estimate C2

has decreased from 5 to 3. The calculations for the 100 percent rule now are

c1: 3 → 6.

Percentage of allowable increase � 100 ��6 –
4.5

3 �% � 66�
2
3

�%

c2: 5 → 3.

Percentage of allowable decrease � 100 100 ��5 –
3

3 �% � 66�
2
3

�%

Sum � 133�
1
3

�%.
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Since the sum of the percentages now exceeds 100 percent, the 100 percent rule says that
we can no longer guarantee that (x1, x2) � (2, 6) is still optimal. In fact, we found earlier
in both Figs. 7.15 and 7.18 that the optimal solution has changed to (x1, x2) � (4, 3).

These results suggest how to find just where the optimal solution changes while c1

is being increased and c2 is being decreased by these relative amounts. Since 100 percent
is midway between 66�

2
3

� percent and 133�
1
3

� percent, the sum of the percentage changes will
equal 100 percent when the values of c1 and c2 are midway between their values in the
above cases. In particular, c1 � 5.25 is midway between 4.5 and 6 and c2 � 3.5 is mid-
way between 4 and 3. The corresponding calculations for the 100 percent rule are

c1: 3 → 5.25.

Percentage of allowable increase � 100 % ��5.25 –
4.5  

3� � 50%

c2: 5 → 3.5.

Percentage of allowable decrease � 100 ��5 –
3

3.5�% � 50%

Sum � 100%.

Although the sum of the percentages equals 100 percent, the fact that it does not exceed
100 percent guarantees that (x1, x2) � (2, 6) is still optimal. Figure 7.21 shows graphically
that both (2, 6) and (4, 3) are now optimal, as well as all the points on the line segment
connecting these two points. However. If c1 and c2 were to be changed any further from
their original values (so that the sum of the percentages exceeds 100 percent), the objec-
tive function line would be rotated so far toward the vertical that (x1, x2) � (4, 3) would
become the only optimal solution.

262 CHAPTER 7 LINEAR PROGRAMMING UNDER UNCERTAINTY

x2

x1

Profit � 31.5 � 5.25x1 � 3.5x2

since c1 � 5.25 and c2� 3.5

■ FIGURE 7.21
When the estimates of the
profits per batch of doors
and windows change to 
c1 � 5.25 and c2 � 3.5,
which lies at the edge of
what is allowed by the 100
percent rule, the graphical
method shows that (x1, x2)
� (2, 6) still is an optimal
solution, but now every other
point on the line segment
between this solution and (4,
3) also is optimal.
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At the same time, keep in mind that having the sum of the percentages of allowable
changes exceed 100 percent does not automatically mean that the optimal solution will
change. For example, suppose that the estimates of both unit profits are halved. The
resulting calculations for the 100 percent rule are

c1: 3 → 1.5.

Percentage of allowable decrease � 100 ��3 –
3

1.5 �% � 50%

c2: 5 → 2.5.

Percentage of allowable decrease � 100 ��5 –
3
2.5�% � 83�

1
3

�%

Sum � 133�
1
3

�%.

Even though this sum exceeds 100 percent, Fig. 7.22 shows that the original optimal
solution is still optimal. In fact, the objective function line has the same slope as the
original objective function line (the solid line in Fig. 7.20). This happens whenever pro-
portional changes are made to all the profit estimates, which will automatically lead to
the same optimal solution.
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x2

x1

Optimal solution
Profit � 18

� 1.5x1 � 2.5x2

■ FIGURE 7.22
When the estimates of the
profits per batch of doors
and windows change to 
c1 � 1.5 and c2 � 2.5 (half of
their original values), the
graphical method shows that
the optimal solution still is
(x1, x2) � (2, 6), even
though the 100 percent rule
says that the optimal solution
might change.
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Other Types of Sensitivity Analysis

This section has focused on how to use a spreadsheet to investigate the effect of changes
in only the coefficients of the variables in the objective function. One often is inter-
ested in investigating the effect of changes in the right-hand sides of the functional
constraints as well. Occasionally you might even want to check whether the optimal
solution would change if changes need to be made in some coefficients in the func-
tional constraints.

The spreadsheet approach for investigating these other kinds of changes in the model
is virtually the same as for the coefficients in the objective function. Once again, you can
try out any changes in the data cells by simply making these changes on the spreadsheet
and using Solver to re-solve the model. And once again, you can systematically check the
effect of a series of changes in any one or two data cells by using a parameter analysis 
report. As already described in Sec. 4.7, the sensitivity report generated by Solver (or any
other linear programming software package) also provides some valuable information, in-
cluding the shadow prices, regarding the effect of changing the right-hand side of any sin-
gle functional constraint. When changing a number of right-hand sides simultaneously,
there also is a “100 percent rule” for this case that is analogous to the 100 percent rule
for simultaneous changes in objective function constraints. (See the Case 1 portion of Sec.
7.2 for details about how to investigate the effect of changes in right-hand sides, includ-
ing the application of the 100 percent rule for simultaneous changes in right-hand sides.)

The Solved Examples section of the book’s website includes another example of us-
ing a spreadsheet to investigate the effect of changing individual right-hand sides.
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■ 7.4  ROBUST OPTIMIZATION
As described in the preceding sections, sensitivity analysis provides an important way of
dealing with uncertainty about the true values of the parameters in a linear programming
model. The main purpose of sensitivity analysis is to identify the sensitive parameters,
namely, those parameters that cannot be changed without changing the optimal solution.
This is valuable information since these are the parameters that need to be estimated with
special care to minimize the risk of obtaining an erroneous optimal solution.

However, this is not the end of the story for dealing with linear programming under
uncertainty. The true values of the parameters may not become known until considerably
later when the optimal solution (according to the model) is actually implemented. There-
fore, even after estimating the sensitive parameters as carefully as possible, significant es-
timation errors can occur for these parameters along with even larger estimation errors for
the other parameters. This can lead to unfortunate consequences. Perhaps the optimal so-
lution (according to the model) will not be optimal after all. In fact, it may not even be
feasible.

The seriousness of these unfortunate consequences depends somewhat on whether
there is any latitude in the functional constraints in the model. It is useful to make the fol-
lowing distinction between these constraints.

A soft constraint is a constraint that actually can be violated a little bit without
very serious complications. By contrast, a hard constraint is a constraint that
must be satisfied.

Robust optimization is especially designed for dealing with problems with hard constraints.
For very small linear programming problems, it often is not difficult to work around

the complications that the optimal solution with respect to the model may no longer be
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optimal, and may not even be feasible, when the time comes to implement the solution.
If the model contains only soft constraints, it may be OK to use a solution that is not quite
feasible (according to the model). Even if some or all of the constraints are hard con-
straints, the situation depends upon whether it is possible to make a last-minute adjust-
ment in the solution being implemented. (In some cases, the solution to be implemented
will be locked into place well in advance.) If this is possible, it may be easy to see how
to make a small adjustment in the solution to make it feasible. It may even be easy to see
how to adjust the solution a little bit to make it optimal.

However, the situation is quite different when dealing with the larger linear 
programming problems that are typically encountered in practice. For example, Selected
Reference 1 at the end of the chapter describes what happened when dealing with the
problems in a library of 94 large linear programming problems (hundreds or thousands of
constraints and variables). It was assumed that the parameters could be randomly in er-
ror by as much as 0.01 percent. Even with such tiny errors throughout the model, the op-
timal solution was found to be infeasible in 13 of these problems and badly so for 6 of
the problems. Furthermore, it was not possible to see how the solution could be adjusted
to make it feasible. If all the constraints in the model are hard constraints, this is a seri-
ous problem. Therefore, considering that the estimation errors for the parameters in many
realistic linear programming problems often would be much larger than 0.01 percent—
perhaps even 1 percent or more—there clearly is a need for a technique that will find a
very good solution that is virtually guaranteed to be feasible.

This is where the technique of robust optimization can play a key role.

The goal of robust optimization is to find a solution for the model that is vir-
tually guaranteed to remain feasible and near optimal for all plausible combina-
tions of the actual values for the parameters.

This is a daunting goal, but an elaborate theory of robust optimization now has been 
developed, as presented in Selected References 1 and 3. Much of this theory (including
various extensions of linear programming) is beyond the scope of this book, but we will
introduce the basic concept by considering the following straightforward case of inde-
pendent parameters.

Robust Optimization with Independent Parameters 

This case makes four basic assumptions:

1. Each parameter has a range of uncertainty surrounding its estimated value.
2. This parameter can take any value between the minimum and maximum specified by

this range of uncertainty.
3. This value is uninfluenced by the values taken on by the other parameters. 
4. All the functional constraints are in either � or � form.

To guarantee that the solution will remain feasible regardless of the values taken on by
these parameters within their ranges of uncertainty, we simply assign the most conserva-
tive value to each parameter as follows:

• For each functional constraint in � form, use the maximum value of each aij and the
minimum value of bi.

• For each functional constraint in � form, do the opposite of the above.
• For an objective function in maximization form, use the minimum value of each cj.
• For an objective function in minimization form, use the maximum value of each cj.

We now will illustrate this approach by returning again to the Wyndor example.
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Example

Continuing the prototype example for linear programming first introduced in Sec. 3.1, the
management of the Wyndor Glass Company now is negotiating with a wholesale distrib-
utor that specializes in the distribution of doors and windows. The goal is to arrange with
this distributor to sell all of the special new doors and windows (referred to as Products
1 and 2 in Sec. 3.1) after their production begins in the near future. The distributor is in-
terested but also is concerned that the volume of these doors and windows may be too
small to justify this special arrangement. Therefore, the distributor has asked Wyndor to
specify the minimum production rates of these products (measured by the number of
batches produced per week) that Wyndor will guarantee, where Wyndor would need to
pay a penalty if the rates fall below these minimum amounts.

Because these special new doors and windows have never been produced before,
Wyndor management realizes that the parameters of their linear programming model for-
mulated in Sec. 3.2 (and based on Table 3.1) are only estimates. For each product, the
production time per batch in each plant (the aij) may turn out to be significantly different
from the estimates given in Table 3.1. The same is true for the estimates of the profit per
batch (the cj). Arrangements currently are being made to reduce the production rates of
certain current products in order to free up production time in each plant for the two new
products. Therefore, there also is some uncertainty about how much production time will
be available in each of the plants (the bi) for the new products.

After further investigation, Wyndor staff now feels confident that they have identified
the minimum and maximum quantities that could be realized for each of the parameters
of the model after production begins. For each parameter, the range between this mini-
mum and maximum quantity is referred to as its range of uncertainty. Table 7.10 shows
the range of uncertainty for the respective parameters.

Applying the procedure for robust optimization with independent parameters outlined
in the preceding subsection, we now refer to these ranges of uncertainty to determine the
value of each parameter to use in the new linear programming model. In particular, we
choose the maximum value of each aij and the minimum value of each bi and cj. The re-
sulting model is shown below:

Maximize       Z = 2.5x1 � 4.5 x2,
subject to

1.2x1 � 3.6
2.2x2 � 11

3.5x1 � 2.5x2 � 16
and

x1 � 0, x2 � 0.    
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■ Table 7.10 Range of uncertainty for the parameters
of the Wyndor Glass Co. model

Parameter Range of Uncertainty

a11 0.8 – 1.2
a22 1.8 – 2.2
a31 2.5 – 3.5
a32 1.5 – 2.5
b1 3.6 – 4.4
b2 11 – 13
b3 16 – 20
c1 2.5 – 3.5
c2 4.5 – 5.5
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This model can be solved readily, including by the graphical method. Its optimal solution
is x1 = 1 and x2 = 5, with Z = 25 (a total profit of $25,000 per week). Therefore, Wyndor
management now can give the wholesale distributor a guarantee that Wyndor can provide
the distributor with a minimum of one batch of the special new door (Product 1) and five
batches of the special new window (Product 2) for sale per week.

Extensions

Although it is straightforward to use robust optimization when the parameters are inde-
pendent, it frequently is necessary to extend the robust optimization approach to other
cases where the final values of some parameters are influenced by the values taken on by
other parameters. Two such cases commonly arise.

One case is where the parameters in each column of the model (the coefficients of a
single variable or the right-hand sides) are not independent of each other but are inde-
pendent of the other parameters. For example, the profit per batch of each product (the
cj) in the Wyndor problem might be influenced by the production time per batch in each
plant (the aij) that is realized when production begins. Therefore, a number of scenarios
regarding the values of the coefficients of a single variable need to be considered. Simi-
larly, by shifting some personnel from one plant to another, it might be possible to in-
crease the production time available per week in one plant by decreasing this quantity in
another plant. This again could lead to a number of possible scenarios to be considered
regarding the different sets of values of the bi. Fortunately, linear programming still can
be used to solve the resulting robust optimization model.

The other common case is where the parameters in each row of the model are not in-
dependent of each other but are independent of the other parameters. For example, by
shifting personnel and equipment in Plant 3 for the Wyndor problem, it might be possi-
ble to decrease either a31 or a32 by increasing the other one (and perhaps even change b3

in the process). This would lead to considering a number of scenarios regarding the val-
ues of the parameters in that row of the model. Unfortunately, solving the resulting ro-
bust optimization model requires using something more complicated than linear 
programming.

We will not delve further into these or other cases. Selected References 1 and 3 pro-
vide details (including even how to apply robust optimization when the original model is
something more complicated than a linear programming model).

One drawback of the robust optimization approach is that it can be extremely con-
servative in tightening the model far more than is realistically necessary. This is espe-
cially true when dealing with large models with hundreds or thousands (perhaps even
millions) of parameters. However, Selected Reference 4 provides a good way of largely
overcoming this drawback when the uncertain parameters are some of the aij and either
all these parameters are independent or the only dependencies are within single columns
of aij. The basic idea is to recognize that the random variations from the estimated val-
ues of the uncertain aij shouldn't result in every variation going fully in the direction of
making it more difficult to achieve feasibility. Some of the variations will be negligible
(or even zero), some will go in the direction of making it easier to achieve feasibility,
and only some will go very far in the opposite direction. Therefore, it should be safe to
assume that only a modest number of the parameters will go strongly in the direction of
making it more difficult to achieve feasibility. Doing so will still lead to a feasible so-
lution with very high probability. Being able to choose this modest number also provides
the flexibility to achieve the desired trade-off between obtaining a very good solution
and virtually ensuring that this solution will turn out to be feasible when the solution is
implemented.
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The parameters of a linear programming model typically remain uncertain until the 
actual values of these parameters can be observed at some later time when the adopted
solution is implemented for the first time. The preceding section describes how robust 
optimization deals with this uncertainty by revising the values of the parameters in the
model to ensure that the resulting solution actually will be feasible when it finally is im-
plemented. This involves identifying an upper and lower bound on the possible value of
each uncertain parameter. The estimated value of the parameter then is replaced by
whichever of these two bounds make it more difficult to achieve feasibility.

This is a useful approach when dealing with hard constraints, i.e., those constraints
that must be satisfied. However, it does have certain shortcomings. One is that it might not
be possible to accurately identify an upper and lower bound for an uncertain parameter. In
fact, it might not even have an upper and lower bound. This is the case, for example, when
the underlying probability distribution for a parameter is a normal distribution, which has
long tails with no bounds. A related shortcoming is that when the underlying probability
distribution has long tails with no bounds, the tendency would be to assign values to the
bounds that are so wide that they would lead to overly conservative solutions.

Chance constraints are designed largely to deal with parameters whose distribution has
long tails with no bounds. For simplicity, we will deal with the relatively straightforward case
where the only uncertain parameters are the right-hand sides (the bi) where these bi are in-
dependent random variables with a normal distribution. We will denote the mean and stan-
dard deviation of this distribution for each bi by µi and �i respectively. To be specific, we also
assume that all the functional constraints are in � form. (The � form would be treated sim-
ilarly, but chance constraints aren't applicable when the original constraint is in = form.)

The Form of a Chance Constraint

When the original constraint is

�
n

j�1
aijxj � bi ,

the corresponding chance constraint says that we will only require the original constraint
to be satisfied with some very high probability. Let 

� � minimum acceptable probability that the original constraint will hold.

In other words, the chance constraint is

P{�
n

j�1
aijxj � bi} � �,

which says that the probability that the original constraint will hold must be at least �. 
It next is possible to replace this chance constraint by an equivalent constraint that is sim-
ply a linear programming constraint. In particular, because bi is the only random variable
in the chance constraint, where bi is assumed to have a normal distribution, this deter-
ministic equivalent of the chance constraint is

�
n

j�1
aijxj � mi � Ka�i,

where Ka is the constant in the table for the normal distribution given in Appendix 5 that
gives this probability a. For example,

K0.90 � �1.28, K0.95 � –1.645, and K0.99 � –2.33.
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Thus, if a = 0.95, the deterministic equivalent of the chance constraint becomes

�
n

j�1
aijxj � mi �1.645�i.

In other words, if mi corresponds to the original estimated value of bi, then reducing this
right-hand side by 1.645�i will ensure that the constraint will be satisfied with probabil-
ity at least 0.95. (This probability will be exactly 0.95 if this deterministic form holds with
equality but will be greater than 0.95 if the left-hand side is less than the right-hand side.)

Figure 7.23 illustrates what is going on here. This normal distribution represents the
probability density function of the actual value of bi that will be realized when the solu-
tion is implemented. The cross-hatched area (0.05) on the left side of the figure gives the
probability that bi will turn out to be less than mi �1.645�i, so the probability is 0.95 that
bi will be greater than this quantity. Therefore, requiring that the left-hand side of the con-
straint be � this quantity means that this left-hand side will be less than the final value
of bi at least 95 percent of the time.

Example

To illustrate the use of chance constraints, we return to the original version of the Wyn-
dor Glass Co. problem and its model as formulated in Sec. 3.1. Suppose now that there
is some uncertainty about how much production time will be available for the two new
products when their production begins in the three plants a little later. Therefore, b1, b2,
and b3 now are uncertain parameters (random variables) in the model. Assuming that these
parameters have a normal distribution, the first step is to estimate the mean and standard
deviation for each one. Table 3.1 gives the original estimate for how much production
time will be available per week in the three plants, so these quantities can be taken to be
the mean if they still seem to be the most likely available production times. The standard
deviation provides a measure of how much the actual production time available might 
deviate from this mean. In particular, the normal distribution has the property that ap-
proximately two-thirds of the distribution lay within one standard deviation of the mean.
Therefore, a good way to estimate the standard deviation of each bi is to ask how much
the actual available production time could turn out to deviate from the mean such that
there is a 2-in-3 chance that the deviation will not be larger than this.

Another important step is to select an appropriate value of � as defined above. This
choice depends on how serious it would be if an original constraint ends up being vio-
lated when the solution if implemented. How difficult would it be to make the necessary
adjustments if this were to happen? When dealing with soft constraints that actually 
can be violated a little bit without very serious complications, a value of approximately
� = 0.95 would be a common choice and that is what we will use in this example. (We
will discuss the case of hard constraints in the next subsection.)

Table 7.11 shows the estimates of the mean and standard deviation of each bi for this
example. The last two columns also show the original right-hand side (RHS) and the ad-
justed right-hand side for each of the three functional constraints.
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■ FIGURE 7.23 
The underlying distribution
of bi is assumed to have the
normal distribution shown
here.

�i 1 K��i �i

1 2 � 5 0.05
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Using the data in Table 7.11 to replace the three chance constraints by their deter-
ministic equivalents leads to the following linear programming model:

Maximize     Z = 3x1 + 5x2,
subject to

x1 � 3.671
2x2 � 11.178

3x1 + 2x2 � 16.355
and

x1 � 0, x2 � 0.

Its optimal solution is x1 = 1.726 and x2 = 5.589, with Z = 33.122 (a total profit of $33,122
per week). This total profit per week is a significant reduction from the $36,000 found
for the original version of the Wyndor model. However, by reducing the production rates
of the two new products from their original values of x1 = 2 and x2 = 6, we now have a
high probability that the new production plan actually will be feasible without needing to
make any adjustments when production gets under way.

We can estimate this high probability if we assume not only that the three bi have  nor-
mal distributions but also that these three distributions are statistically independent. The
new production plan will turn out to be feasible if all three of the original functional con-
straints are satisfied. For each of these constraints, the probability is at least 0.95 that it
will be satisfied, where the probability will be exactly 0.95 if the deterministic equivalent
of the corresponding chance constraint is satisfied with equality by the optimal solution for
the linear programming model. Therefore, the probability that all three constraints are 
satisfied is at least (0.95)3 = 0.857. However, only the second and third deterministic equiv-
alents are satisfied with equality in this case, so the probability that the first constraint 
will be satisfied is larger than 0.95. In the best case where this probability is essentially 1,
the probability that all three constraints will be satisfied is essentially (0.95)2 = 0.9025.
Consequently, the probability that the new production plan will turn out to be feasible is
somewhere between the lower bound of 0.857 and the upper bound of 0.9025. (In this
case, x1 = 1.726 is more that 11 standard deviations below 4, the mean of b1, so the prob-
ability of satisfying the first constraint is essentially 1, which means that  the probability
of satisfying all three constraints is essentially 0.9025.)

Dealing with Hard Constraints

Chance constraints are well suited for dealing with soft constraints, i.e., constraints that
actually can be violated a little bit without very serious complications. However, they also
might have a role to play when dealing with hard constraints, i.e., constraints that must
be satisfied. Recall that robust optimization described in the preceding section is espe-
cially designed for addressing problems with hard constraints. When bi is the uncertain
parameter in a hard constraint, robust optimization begins by estimating the upper bound
and the lower bound on bi. However, if the probability distribution of bi has long tails
with no bounds, such as with a normal distribution, it becomes impossible to set bounds
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■ TABLE 7.11 The data for the example of using chance constraints to adjust the
Wyndor Glass Co. model

Parameter Mean Standard Deviation Original RHS Adjusted RHS

bi 4 0.2 4 4 � 1.645 (0.2) � 3.671
b2 12 0.5 12 12 � 1.645 (0.5) � 11.178
b3 18 1 18 18 � 1.645 (1)   � 16.355
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on bi that will have zero probability of being violated. Therefore, an attractive alternative
approach is to replace such a constraint by a chance constraint with a very high value of
�, say, at least 0.99. Since K0.99 = –2.33, this would further reduce the right-hand sides
calculated in Table 7.10 to b1 = 3.534, b2 = 10.835, and b3 = 15.67.

Although � = 0.99 might seem reasonably safe, there is a hidden danger involved.
What we actually want is to have a very high probability that all the original constraints
will be satisfied. This probability is somewhat less than the probability that a specific sin-
gle original constraint will be satisfied and it can be much less if the number of functional
constraints is very large.

We described in the last paragraph of the preceding subsection how to calculate both
a lower bound and an upper bound on the probability that all the original constraints will
be satisfied. In particular, if there are M functional constraints with uncertain bi, the lower
bound is �M. After replacing the chance constraints by their deterministic equivalents and
solving for the optimal solution for the resulting linear programming problem, the next
step is to count the number of these deterministic equivalents that are satisfied with equal-
ity by this optimal solution. Denoting this number by N, the upper bound is �N. Thus,

�M � Probability that all the constraints will be satisfied � �N.

When using � � 0.99, these bounds on this probability can be less than desirable if M
and N are large. Therefore, for a problem with a large number of uncertain bi, it might be
advisable to use a value of � much closer to 1 than 0.99.

Extensions

Thus far, we have only considered the case where the only uncertain parameters are the
bi. If the coefficients in the objective function (the cj) also are uncertain parameters, it is
quite straightforward to deal with this case as well. In particular, after estimating the prob-
ability distribution of each cj, each of these parameters can be replaced by the mean of
this distribution. The quantity to be maximized or minimized then becomes the expected
value (in the statistical sense) of the objective function. Furthermore, this expected value
is a linear function, so linear programming still can be used to solve the model.

The case where the coefficients in the functional constraints (the aij) are uncertain
parameters is much more difficult. For each constraint, the deterministic equivalent of the
corresponding chance constraint now includes a complicated nonlinear expression. It is
not impossible to solve the resulting nonlinear programming model. In fact, LINGO has
special features for converting a deterministic model to a chance-constrained model with
probabilistic coefficients and then solving it. This can be done with any of the major prob-
ability distributions for the parameters of the model.

■ 7.6  STOCHASTIC PROGRAMMING WITH RECOURSE
Stochastic programming provides an important approach to linear programming under un-
certainty that (like chance constraints) began being developed as far back as the 1950's
and it continues to be widely used today. (By contrast, robust optimization described in
Sec. 7.4 only began significant development about the turn of the century.) It addresses
linear programming problems where there currently are uncertainties about the data of the
problem and about how the situation will evolve when the chosen solution is implemented
in the future. It assumes that probability distributions can be estimated for the random
variables in the problem and then these distributions are heavily used in the analysis.
Chance constraints sometimes are incorporated into the model. The goal often is to opti-
mize the expected value of the objective function over the long run.
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This approach is quite different from the robust optimization approach described in
Sec. 7.4. Robust optimization largely avoids using probability distributions by focusing
instead on the worst possible outcomes. Therefore, it tends to lead to very conservative
solutions. Robust optimization is especially designed for dealing with problems with hard
constraints (constraints that must be satisfied because there is no latitude for violating the
constraint even a little bit). By contrast, stochastic programming seeks solutions that 
will perform well on the average. There is no effort to play it safe with especially con-
servative solutions. Thus, stochastic programming is better suited for problems with soft
constraints (constraints that actually can be violated a little bit without very serious con-
sequences). If hard constraints are present, it will be important to be able to make last-
minute adjustments in the solution being implemented to reach feasibility.

Another key feature of stochastic programming is that it commonly addresses prob-
lems where some of the decisions can be delayed until later when the experience with the
initial decisions has eliminated some or all of the uncertainties in the problem. This is re-
ferred to as stochastic programming with recourse because corrective action can be taken
later to compensate for any undesirable outcomes with the initial decisions. With a two-
stage problem, some decisions are made now in stage 1, more information is obtained,
and then additional decisions are made later in stage 2. Multistage problems have multi-
ple stages over time where decisions are made as more information is obtained.

This section introduces the basic idea of stochastic programming with recourse for
two-stage problems. This idea is illustrated by the following simple version of the Wyn-
dor Glass Co. problem.

Example

The management of the Wyndor Glass Co. now has heard a rumor that a competitor is
planning to produce and market a special new product that would compete directly with
the company's new 4 � 6 foot double-hung wood-framed window (“product 2”). If this
rumor turns out to be true, Wyndor would need to make some changes in the design of
product 2 and also reduce its price in order to be competitive. However, if the rumor proves
to be false, then no change would be made in product 2 and all the data presented in Table
3.1 of Sec. 3.1 would still apply.

Therefore, there now are two alternative scenarios of the future that will affect man-
agement's decisions on how to proceed:

Scenario 1: The rumor about the competitor planning a competitive product turns out 
to be not true, so all the data in Table 3.1 still applies.

Scenario 2: This rumor turns out to be true, so Wyndor will need to modify product
2 and reduce its price.

Table 7.12 shows the new data that will apply under scenario 2.
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■ Table 7.12 Data for the Wyndor problem under scenario 2

Production Time per Batch, Hours 

Product

Production Times Available 
Plant 1 2 per Week, Hours

1 1 0 4
2 0 2 12
3 3 6 18

Profit per Batch $3,000 $1,000
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With this in mind, Wyndor management has decided to move ahead soon with pro-
ducing product 1 but to delay the decision regarding what to do about product 2 until it
learns which scenario is occurring. Using a second subscript to indicate the scenario, the
relevant decision variables now are

x1 � number of batches of product 1 produced per week,

x21 � number of batches of product 2 produced per week under scenario 1,

x22 � number of batches of the modified product 2 produced per week under 
scenario 2.

This is a two-stage problem because the production of product 1 will begin right away
in stage 1 but the production of some version of product 2 (whichever becomes relevant)
will only begin later in stage 2. However, by using stochastic programming with recourse,
we can formulate a model and solve now for the optimal value of all three decision vari-
ables. The chosen value of x1 will enable setting up the production facilities to immedi-
ately begin production of product 1 at that rate throughout stages 1 and 2. The chosen
value of x21 or x22 (whichever becomes relevant) will enable the planning to start regard-
ing the production of some version of product 2 at the indicated rate later in stage 2 when
it is learned which scenario is occurring.

This small stochastic programming problem only has one probability distribution as-
sociated with it, namely, the distribution about which scenario will occur. Based on the
information it has been able to acquire, Wyndor management has developed the follow-
ing estimates:

Probability that scenario 1 will occur = 1/4 = 0.25

Probability that scenario 2 will occur = 3/4 = 0.75

Not knowing which scenario will occur is unfortunate since the optimal solutions under
the two scenarios are quite different. In particular, if we knew that scenario 1 definitely
will occur, the appropriate model is the original Wyndor linear programming model for-
mulated in Sec. 3.1, which leads to the optimal solution, x1 = 2 and x21 = 6 with Z = 36.
On the other hand, if we knew that scenario 2 definitely will occur, then the appropriate
model would be the linear programming model,

Maximize Z = 3x1 + x22,
subject to

x1 � 4
2x22 � 12

3x1 � 6x22 � 18
and

x1 � 0, x22 � 0,

which yields its optimal solution, x1 = 4 and x22 = 1 with Z = 16.5.
However, we need to formulate a model that simultaneously considers both scenar-

ios. This model would include all the constraints under either scenario. Given the proba-
bilities of the two scenarios, the expected value (in the statistical sense) of the total profit
is calculated by weighting the total profit under each scenario by its probability. The re-
sulting stochastic programming model is

Maximize Z � 0.25(3x1 � 5x21) � 0.75(3x1 � x22)
� 3x1 � 1.25x21 � 0.75 x22,
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subject to
x1 � 4

2x21 � 12
2x22 � 12

3x1 + 2x21            � 18
3x1 + 6x22 � 18

and

x1 � 0, x21 � 0, x22 � 0

The optimal solution for this model is x1 = 4, x21 = 3, and x22 = 1, with Z = 16.5. In
words, the optimal plan is

Produce 4 batches of product 1 per week;

Produce 3 batches of the original version of product 2 per week later only if
scenario 1 occurs.

Produce 1 batch of the modified version of product 2 per week later only if
scenario 2 occurs.

Note that stochastic programming with recourse has enabled us to find a new opti-
mal plan that is very different from the original plan (produce 2 batches of product 1 per
week and 6 batches of the original version of product 2 per week) that was obtained in
Sec. 3.1 for the Wyndor problem.

Some Typical Applications

Like the above example, any application of stochastic programming with recourse involves
a problem where there are alternative scenarios about what will evolve in the future and
this uncertainty affects both immediate decisions and later decisions that are contingent
on which scenario is occurring. However, most applications lead to models that are much
larger (often vastly larger) than the one above. The example has only two stages, only one
decision to be made in stage 1, only two scenarios, and only one decision to be made in
stage 2. Many applications must consider a substantial number of possible scenarios, per-
haps will have more than two stages, and will require many decisions at each stage. The
resulting model might have hundreds or thousands of decision variables and functional
constraints. The reasoning though is basically the same as for this tiny example.

Stochastic programming with recourse has been widely used for many years. These
applications have arisen in a wide variety of areas. We briefly describe a few of these ar-
eas of application below.

Production planning often involves developing a plan for how to allocate various lim-
ited resources to the production of various products over a number of time periods into the
future. There are some uncertainties about how the future will evolve (demands for the
products, resource availabilities, etc.) that can be described in terms of a number of possi-
ble scenarios. It is important to take these uncertainties into account for developing the pro-
duction plan, including the product mix in the next time period. This plan also would make
the product mix in subsequent time periods contingent upon the information being obtained
about which scenario is occurring. The number of stages for the stochastic programming
formulation would equal the number of time periods under consideration.

Our next application involves a common marketing decision whenever a company de-
velops a new product. Because of the major advertising and marketing expense required
to introduce a new product to a national market, it may be unclear whether the product
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would be profitable. Therefore, the company's marketing department frequently chooses
to try out the product in a test market first before making the decision about whether to
go ahead with marketing the product nationally. The first decisions involve the plan (pro-
duction level, advertising level, etc.) for trying out the product in the test market. Then
there are various scenarios regarding how well the product is received in this test market.
Based on which scenario occurs, decisions next need to be made about whether to go
ahead with the product and, if so, what the plan should be for producing and marketing
the product nationally. Based on how well this goes, the next decisions might involve mar-
keting the product internationally. If so, this becomes a three-stage problem for stochas-
tic programming with recourse.

When making a series of risky financial investments, the performance of these in-
vestments may depend greatly on how some outside factor (the state of the economy, the
strength of a certain sector of the economy, the rise of new competitive companies, etc.)
that evolves over the lives of these investments. If so, a number of possible scenarios for
this evolution need to be considered. Decisions need to be made about how much to in-
vest in the first investment and then, contingent upon the information being obtained about
which scenario is occurring, how much to invest (if any) in each of the subsequent in-
vestment opportunities. This again fits right in with stochastic programming with recourse
over a number of stages.

The agricultural industry is one which faces great uncertainty as it approaches each
growing season. If the weather is favorable, the season can be very profitable. However,
if drought occurs, or there is too much rain, or a flood, or an early frost, etc., the crops
can be poor. A number of decisions about the number of acres to devote to each crop need
to be made early before anything is known about which weather scenario will occur. Then
the weather evolves and the crops (good or poor) need to be harvested, at which point ad-
ditional decisions need to be made about how much of each crop to sell, how much should
be retained as feed for livestock, how much seed to retain for the next season, etc. There-
fore, this is a two-stage problem to which stochastic programming with recourse can be
applied.

As these examples illustrate, when initial decisions need to be made in the face of
uncertainty, it can be very helpful to be able to make recourse decisions at a later stage
when the uncertainty is gone. These recourse decisions can help compensate for any un-
fortunate decisions made in the first stage.

Stochastic programming is not the only technique that can incorporate recourse into
the analysis. Robust optimization (described in Sec. 7.4) also can incorporate recourse.
Selected Reference 6 (cited at the end of the chapter) describes how a computer package
named ROME (an acronym for Robust Optimization Made Easy) can apply robust opti-
mization with recourse. It also describes examples in the areas of inventory management,
project management, and portfolio optimization.

Other software packages also are available for such techniques. For example, Ana-
lytic Solver Platform for Education in your OR Courseware has some functionality in ro-
bust optimization, chance constraints, and stochastic programming with recourse. LINGO
also has considerable functionality in these areas. For example, it has special features for
converting a deterministic model into a stochastic programming model and then solving
it. In fact, LINGO can solve multiperiod stochastic programming problems with an 
arbitrary sequence of “we make a decision, nature makes a random decision, we make a
recourse decision, nature makes another random decision, we make another recourse de-
cision, etc.” MPL has some functionality for stochastic programming with recourse as
well. Selected Reference 9 also provides information on solving very large applications
of stochastic programming with recourse.
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The values used for the parameters of a linear programming model generally are just es-
timates. Therefore, sensitivity analysis needs to be performed to investigate what happens
if these estimates are wrong. The fundamental insight of Sec. 5.3 provides the key to per-
forming this investigation efficiently. The general objectives are to identify the sensitive
parameters that affect the optimal solution, to try to estimate these sensitive parameters
more closely, and then to select a solution that remains good over the range of likely val-
ues of the sensitive parameters. Sensitivity analysis also can help guide managerial deci-
sions that affect the values of certain parameters (such as the amounts of the resources to
make available for the activities under consideration). These various kinds of sensitivity
analysis are an important part of most linear programming studies.

With the help of Solver, spreadsheets also provide some useful methods of performing
sensitivity analysis. One method is to repeatedly enter changes in one or more parameters
of the model into the spreadsheet and then click on the Solve button to see immediately if
the optimal solution changes. A second is to use ASPE in your OR Courseware to system-
atically check on the effect of making a series of changes in one or two parameters of the
model. A third is to use the sensitivity report provided by Solver to identify the allowable
range for the coefficients in the objective function, the shadow prices for the functional con-
straints, and the allowable range for each right-hand side over which its shadow price re-
mains valid. (Other software that applies the simplex method, including various software in
your OR Courseware, also provides such a sensitivity report upon request.)

Some other important techniques also are available for dealing with linear program-
ming problems where there is substantial uncertainty about what the true values of the
parameters will turn out to be. For problems that have only hard constraints (constraints
that must be satisfied), robust optimization will provide a solution that is virtually guar-
anteed to be feasible and nearly optimal for all plausible combinations of the actual val-
ues for the parameters. When dealing with soft constraints (constraints that actually can
be violated a little bit without serious complications), each such constraint can be replaced
by a chance constraint that only requires a very high probability that the original con-
straint will be satisfied. Stochastic programming with recourse is designed for dealing
with problems where decisions are made over two (or more) stages, so later decisions can
use updated information about the values of some of the parameters.

■ 7.7  CONCLUSIONS
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■ LEARNING AIDS FOR THIS CHAPTER ON OUR WEBSITE (www.mhhe.com/hillier)

Solved Examples:

Examples for Chapter 7

A Demonstration Example in OR Tutor:

Sensitivity Analysis

Interactive Procedures in IOR Tutorial:

Interactive Graphical Method
Enter or Revise a General Linear Programming Model
Solve Interactively by the Simplex Method
Sensitivity Analysis

Automatic Procedures in IOR Tutorial:

Solve Automatically by the Simplex Method
Graphical Method and Sensitivity Analysis

Excel Add-In:

Analytic Solver Platform for Education (ASPE)

Files (Chapter 3) for Solving the Wyndor Example:

Excel Files
LINGO/LINDO File
MPL/Solvers File

Glossary for Chapter 7

See Appendix 1 for documentation of the software.

■ PROBLEMS
The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The demonstration example just listed may be helpful.
I: We suggest that you use the corresponding interactive

procedure just listed (the printout records your work).
C: Use the computer with any of the software options

available to you (or as instructed by your instructor)
to solve the problem automatically.

E*: Use Excel, perhaps including the ASPE add-in.

An asterisk on the problem number indicates that at least a
partial answer is given in the back of the book.
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7.1-1.* Consider the following problem.

Maximize Z � 3x1 � x2 � 4x3,

subject to

6x1 � 3x2 � 5x3 � 25
3x1 � 4x2 � 5x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.

The corresponding final set of equations yielding the optimal so-
lution is

(0) Z � 2x2 � �
1
5

�x4 � �
3
5

�x5 � 17

(1) x1 � �
1
3

�x2 � �
1
3

�x4 � �
1
3

�x5 � �
5
3

�

(2) x2 � x3 � �
1
5

�x4 � �
2
5

�x5 � 3.

(a) Identify the optimal solution from this set of equations.
(b) Construct the dual problem.
I (c) Identify the optimal solution for the dual problem from the

final set of equations. Verify this solution by solving the dual
problem graphically.

(d) Suppose that the original problem is changed to

Maximize Z � 3x1 � 3x2 � 4x3,

subject to

6x1 � 2x2 � 5x3 � 25
3x1 � 3x2 � 5x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.

Use duality theory to determine whether the previous optimal
solution is still optimal.

(e) Use the fundamental insight presented in Sec. 5.3 to identify
the new coefficients of x2 in the final set of equations after it
has been adjusted for the changes in the original problem given
in part (d ).

(f) Now suppose that the only change in the original problem is
that a new variable xnew has been introduced into the model as
follows:

Maximize Z � 3x1 � x2 � 4x3 � 2xnew,

subject to

6x1 � 3x2 � 5x3 � 3xnew � 25
3x1 � 4x2 � 5x3 � 2xnew � 20

and

x1 � 0, x2 � 0, x3 � 0, xnew � 0.

Use duality theory to determine whether the previous optimal
solution, along with xnew � 0, is still optimal.

(g) Use the fundamental insight presented in Sec. 5.3 to identify
the coefficients of xnew as a nonbasic variable in the final set
of equations resulting from the introduction of xnew into the
original model as shown in part ( f ).

D,I 7.1-2. Reconsider the model of Prob. 7.1-1. You are now to
conduct sensitivity analysis by independently investigating each of
the following six changes in the original model. For each change,
use the sensitivity analysis procedure to revise the given final set
of equations (in tableau form) and convert it to proper form from
Gaussian elimination. Then test this solution for feasibility and for
optimality. (Do not reoptimize.)
(a) Change the right-hand side of constraint 1 to b1 � 10.
(b) Change the right-hand side of constraint 2 to b2 � 10.
(c) Change the coefficient of x2 in the objective function to c2 � 3.
(d) Change the coefficient of x3 in the objective function to c3 � 2.
(e) Change the coefficient of x2 in constraint 2 to a22 � 2.
(f) Change the coefficient of x1 in constraint 1 to a11 � 8.

D,I 7.1-3. Consider the following problem.

Minimize W � 5y1 � 4y2,

subject to

4y1 � 3y2 � 4
2y1 � y2 � 3
y1 � 2y2 � 1
y1 � y2 � 2

and

y1 � 0, y2 � 0.

Because this primal problem has more functional constraints than
variables, suppose that the simplex method has been applied di-
rectly to its dual problem. If we let x5 and x6 denote the slack vari-
ables for this dual problem, the resulting final simplex tableau is

For each of the following independent changes in the original pri-
mal model, you now are to conduct sensitivity analysis by directly
investigating the effect on the dual problem and then inferring the
complementary effect on the primal problem. For each change, ap-
ply the procedure for sensitivity analysis summarized at the end of
Sec. 7.1 to the dual problem (do not reoptimize), and then give
your conclusions as to whether the current basic solution for the
primal problem still is feasible and whether it still is optimal. Then
check your conclusions by a direct graphical analysis of the pri-
mal problem.

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 3 0 2 0 1 1 9
x2 (1) 0 1 1 �1 0 1 �1 1
x4 (2) 0 2 0 3 1 �1 2 3
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(a) Change the objective function to W � 3y1 � 5y2.
(b) Change the right-hand sides of the functional constraints to

3, 5, 2, and 3, respectively.
(c) Change the first constraint to 2y1 � 4y2 � 7.
(d) Change the second constraint to 5y1 � 2y2 � 10.

7.2-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 7.2.
Briefly describe how sensitivity analysis was applied in this study.
Then list the various financial and nonfinancial benefits that re-
sulted from the study.

D,I 7.2-2.* Consider the following problem.

Maximize Z � �5x1 � 5x2 � 13x3,

subject to

�x1 � x2 � 3x3 � 20
12x1 � 4x2 � 10x3 � 90

and

xj � 0 ( j � 1, 2, 3).

If we let x4 and x5 be the slack variables for the respective con-
straints, the simplex method yields the following final set of
equations:

(0) Z � 2x3 � 5x4 � 100.
(1) �x1 � x2 � 3x3 � x4 � 20.
(2) 16x1 � 2x3 � 4x4 � x5 � 10.

Now you are to conduct sensitivity analysis by independently in-
vestigating each of the following nine changes in the original
model. For each change, use the sensitivity analysis procedure to
revise this set of equations (in tableau form) and convert it to proper
form from Gaussian elimination for identifying and evaluating the
current basic solution. Then test this solution for feasibility and for
optimality. (Do not reoptimize.)
(a) Change the right-hand side of constraint 1 to

b1 � 30.

(b) Change the right-hand side of constraint 2 to

b2 � 70.

(c) Change the right-hand sides to

� � � � �.

(d) Change the coefficient of x3 in the objective function to

c3 � 8.

(e) Change the coefficients of x1 to

� .

(f) Change the coefficients of x2 to

� .

(g) Introduce a new variable x6 with coefficients

� .

(h) Introduce a new constraint 2x1 � 3x2 � 5x3 � 50. (Denote its
slack variable by x6.)

(i) Change constraint 2 to

10x1 � 5x2 � 10x3 � 100.

7.2-3.* Reconsider the model of Prob. 7.2-2. Suppose that the
right-hand sides of the functional constraints are changed to

20 � 2� (for constraint 1)

and

90 � � (for constraint 2),

where � can be assigned any positive or negative values.
Express the basic solution (and Z ) corresponding to the

original optimal solution as a function of �. Determine the
lower and upper bounds on � before this solution would be-
come infeasible.

D,I 7.2-4. Consider the following problem.

Maximize Z � 2x1 � 7x2 � 3x3,

subject to

x1 � 3x2 � 4x3 � 30
x1 � 4x2 � x3 � 10

and

x1 � 0, x2 � 0, x3 � 0.

By letting x4 and x5 be the slack variables for the respective con-
straints, the simplex method yields the following final set of
equations:

(0) Z � x2 � x3 � 2x5 � 20,
(1) � x2 � 5x3 � x4 � x5 � 20,
(2) x1 � 4x2 � x3 � x5 � 10.

Now you are to conduct sensitivity analysis by independently in-
vestigating each of the following seven changes in the original
model. For each change, use the sensitivity analysis procedure to
revise this set of equations (in tableau form) and convert it to
proper form from Gaussian elimination for identifying and eval-
uating the current basic solution. Then test this solution for fea-
sibility and for optimality. If either test fails, reoptimize to find a
new optimal solution.

(a) Change the right-hand sides to

⎤
⎥
⎥
⎦

10

3

5

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

c6

a16

a26

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

6

2

5

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

c2

a12

a22

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

�2

0

5

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

c1

a11

a21

⎡
⎢
⎢
⎣

10

100

b1

b2
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� � � � �.

(b) Change the coefficients of x3 to

� .

(c) Change the coefficients of x1 to

� .

(d) Introduce a new variable x6 with coefficients

� .

(e) Change the objective function to Z � x1 � 5x2 � 2x3.
(f) Introduce a new constraint 3x1 � 2x2 � 3x3 � 25.
(g) Change constraint 2 to x1 � 2x2 � 2x3 � 35.

7.2-5. Reconsider the model of Prob. 7.2-4. Suppose that the 
right-hand sides of the functional constraints are changed to

30 � 3� (for constraint 1)

and

10 � � (for constraint 2),

where � can be assigned any positive or negative values.
Express the basic solution (and Z) corresponding to the orig-

inal optimal solution as a function of �. Determine the lower and
upper bounds on � before this solution would become infeasible.

D,I 7.2-6. Consider the following problem.

Maximize Z � 2x1 � x2 � x3,

subject to

3x1 � 2x2 � 2x3 � 15
�x1 � x2 � x3 � 3

x1 � x2 � x3 � 4

and

x1 � 0, x2 � 0, x3 � 0.

If we let x4, x5, and x6 be the slack variables for the respective
constraints, the simplex method yields the following final set of
equations:

(0) Z � 2x3 � x4 � x5 � 18,
(1) x2 � 5x3 � x4 � 3x5 � 24,
(2) 2x3 � x5 � x6 � 7,
(3) x1 � 4x3 � x4 � 2x5 � 21.

Now you are to conduct sensitivity analysis by independently in-
vestigating each of the following eight changes in the original model.
For each change, use the sensitivity analysis procedure to revise this

set of equations (in tableau form) and convert it to proper form from
Gaussian elimination for identifying and evaluating the current ba-
sic solution. Then test this solution for feasibility and for optimal-
ity. If either test fails, reoptimize to find a new optimal solution.
(a) Change the right-hand sides to

� .

(b) Change the coefficient of x3 in the objective function to c3 � 2.
(c) Change the coefficient of x1 in the objective function to c1 � 3.
(d) Change the coefficients of x3 to

� .

(e) Change the coefficients of x1 and x2 to

� and � ,

respectively.
(f) Change the objective function to Z � 5x1 � x2 � 3x3.
(g) Change constraint 1 to 2x1 � x2 � 4x3 � 12.
(h) Introduce a new constraint 2x1 � x2 � 3x3 � 60.

C 7.2-7 Consider the Distribution Unlimited Co. problem pre-
sented in Sec. 3.4 and summarized in Fig. 3.13.

Although Fig. 3.13 gives estimated unit costs for shipping
through the various shipping lanes, there actually is some uncer-
tainty about what these unit costs will turn out to be. Therefore,
before adopting the optimal solution given at the end of Sec. 3.4,
management wants additional information about the effect of in-
accuracies in estimating these unit costs.

Use a computer package based on the simplex method to gen-
erate sensitivity analysis information preparatory to addressing the
following questions.
(a) Which of the unit shipping costs given in Fig. 3.13 has the

smallest margin for error without invalidating the optimal so-
lution given in Sec. 3.4? Where should the greatest effort be
placed in estimating the unit shipping costs?

(b) What is the allowable range for each of the unit shipping costs?
(c) How should these allowable ranges be interpreted to manage-

ment?
(d) If the estimates change for more than one of the unit shipping

costs, how can you use the generated sensitivity analysis infor-
mation to determine whether the optimal solution might change?

7.2-8. Consider the following problem.

Maximize Z � c1x1 � c2x2,

subject to

2x1 � x2 � b1

x1 � x2 � b2

⎤
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and

x1 � 0, x2 � 0.

Let x3 and x4 denote the slack variables for the respective func-
tional constraints. When c1 � 3, c2 � �2, b1 � 30, and b2 � 10,

the simplex method yields the following final simplex tableau.

I (a) Use graphical analysis to determine the allowable range for
c1 and c2.

(b) Use algebraic analysis to derive and verify your answers in
part (a).

I (c) Use graphical analysis to determine the allowable range for
b1 and b2.

(d) Use algebraic analysis to derive and verify your answers in
part (c)

C (e) Use a software package based on the simplex method to find
these allowable ranges.

I 7.2-9. Consider Variation 5 of the Wyndor Glass Co. model (see
Fig. 7.5 and Table 7.8), where the changes in the parameter values
given in Table 7.5 are c�2 � 3, a�22 � 3, and a�32 � 4. Use the for-
mula b* � S*b� to find the allowable range for each bi. Then in-
terpret each allowable range graphically.

I 7.2-10. Consider Variation 5 of the Wyndor Glass Co. model (see
Fig. 7.5 and Table 7.8), where the changes in the parameter values
given in Table 7.5 are c�2 � 3, a�22 � 3, and a�32 � 4. Verify both al-
gebraically and graphically that the allowable range for c1 is c1 � �

9
4

�.

7.2-11. For the problem given in Table 7.5, find the allowable range
for c2. Show your work algebraically, using the tableau given in
Table 7.5. Then justify your answer from a geometric viewpoint,
referring to Fig. 7.2.

7.2-12.* For the original Wyndor Glass Co. problem, use the last
tableau in Table 4.8 to do the following.
(a) Find the allowable range for each bi.
(b) Find the allowable range for c1 and c2.
C (c) Use a software package based on the simplex method to find

these allowable ranges.

7.2-13. For Variation 6 of the Wyndor Glass Co. model presented
in Sec. 7.2, use the last tableau in Table 7.9 to do the following.
(a) Find the allowable range for each bi.
(b) Find the allowable range for c1 and c2.
C (c) Use a software package based on the simplex method to find

these allowable ranges.

7.2-14. Consider the following problem.

Maximize Z � 2x1 � x2 � 3x3,

subject to

x1 � x2 � x3 � 3
x1 � 2x2 � x3 � 1
x1 � 2x2 � x3 � 2

and

x1 � 0, x2 � 0, x3 � 0.

Suppose that the Big M method (see Sec. 4.6) is used to obtain the
initial (artificial) BF solution. Let x�4 be the artificial slack variable
for the first constraint, x5 the surplus variable for the second con-
straint, x�6 the artificial variable for the second constraint, and x7

the slack variable for the third constraint. The corresponding final
set of equations yielding the optimal solution is

(0) Z � 5x2 � (M � 2)x�4 � Mx�6 � x7 � 8,
(1) x1 � x2 � x�4 � x7 � 1,
(2) 2x2 � x3 � x7 � 2,
(3) 3x2 � x�4 � x5 � x�6 � 2.

Suppose that the original objective function is changed to 
Z � 2x1 � 3x2 � 4x3 and that the original third constraint is
changed to 2x2 � x3 � 1. Use the sensitivity analysis procedure to
revise the final set of equations (in tableau form) and convert it to
proper form from Gaussian elimination for identifying and evalu-
ating the current basic solution. Then test this solution for feasi-
bility and for optimality. (Do not reoptimize.)

7.3-1. Consider the following problem.

Maximize Z � 2x1 � 5x2,

subject to

x1 � 2x2 � 10 (resource 1)
x1 � 3x2 � 12 (resource 2)

and

x1 � 0, x2 � 0,

where Z measures the profit in dollars from the two activities.
While doing sensitivity analysis, you learn that the estimates

of the unit profits are accurate only to within �50 percent. In other
words, the ranges of likely values for these unit profits are $1 to
$3 for activity 1 and $2.50 to $7.50 for activity 2.
E* (a) Formulate a spreadsheet model for this problem based on the

original estimates of the unit profits. Then use Solver to find
an optimal solution and to generate the sensitivity report.

E* (b) Use the spreadsheet and Solver to check whether this opti-
mal solution remains optimal if the unit profit for activity 1
changes from $2 to $1. From $2 to $3.

E* (c) Also check whether the optimal solution remains optimal
if the unit profit for activity 1 still is $2 but the unit profit
for activity 2 changes from $5 to $2.50. From $5 to $7.50.

E* (d) Use a parameter analysis report to systematically generate
the optimal solution and total profit as the unit profit of 
activity 1 increases in 20¢ increments from $1 to $3 
(without changing the unit profit of activity 2). Then do the
same as the unit profit of activity 2 increases in 50¢ incre-

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 Side

Z (0) 1 0 0 1 1 40
x2 (1) 0 0 1 1 �2 10
x1 (2) 0 1 0 1 �1 20
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ments from $2.50 to $7.50 (without changing the unit profit
of activity 1). Use these results to estimate the allowable
range for the unit profit of each activity.

I (e) Use the Graphical Method and Sensitivity Analysis proce-
dure in IOR Tutorial to estimate the allowable range for the
unit profit of each activity.

E* (f) Use the sensitivity report provided by Solver to find the al-
lowable range for the unit profit of each activity. Then use
these ranges to check your results in parts (b–e).

E* (g) Use a two-way parameter analysis report to systematically
generate the optimal solution as the unit profits of the two
activities are changed simultaneously as described in part (d).

I (h) Use the Graphical Method and Sensitivity Analysis procedure
in IOR Tutorial to interpret the results in part (g) graphically.

E* 7.3-2. Reconsider the model given in Prob. 7.3-1. While doing
sensitivity analysis, you learn that the estimates of the right-hand
sides of the two functional constraints are accurate only to within
�50 percent. In other words, the ranges of likely values for these
parameters are 5 to 15 for the first right-hand side and 6 to 18 for
the second right-hand side.
(a) After solving the original spreadsheet model, determine the

shadow price for the first functional constraint by increasing
its right-hand side by 1 and solving again.

(b) Use a parameter analysis report to generate the optimal solu-
tion and total profit as the right-hand side of the first functional
constraint is incremented by 1 from 5 to 15. Use this report to
estimate the allowable range for this right-hand side, i.e., the
range over which the shadow price obtained in part (a) is valid.

(c) Repeat part (a) for the second functional constraint.
(d) Repeat part (b) for the second functional constraint where its

right-hand side is incremented by 1 from 6 to 18.
(e) Use Solver’s sensitivity report to determine the shadow price

for each functional constraint and the allowable range for the
right-hand side of each of these constraints.

7.3-3. Consider the following problem.

Maximize Z � x1 � 2x2,

subject to

x1 � 3x2 � 8 (resource 1)
x1 � x2 � 4 (resource 2)

and

x1 � 0, x2 � 0,

where Z measures the profit in dollars from the two activities and
the right-hand sides are the number of units available of the re-
spective resources.
I (a) Use the graphical method to solve this model.
I (b) Use graphical analysis to determine the shadow price for

each of these resources by solving again after increasing the
amount of the resource available by 1.

E* (c) Use the spreadsheet model and Solver instead to do parts
(a) and (b).

E* (d) For each resource in turn, use a parameter analysis report
to systematically generate the optimal solution and the to-
tal profit when the only change is that the amount of that

resource available increases in increments of 1 from 4 less
than the original value up to 6 more than the current value.
Use these results to estimate the allowable range for the
amount available of each resource.

(e) Use Solver’s sensitivity report to obtain the shadow prices. Also
use this report to find the range for the amount of each resource
available over which the corresponding shadow price remains
valid.

(f) Describe why these shadow prices are useful when manage-
ment has the flexibility to change the amounts of the resources
being made available.

7.3-4.* One of the products of the G.A. Tanner Company is a spe-
cial kind of toy that provides an estimated unit profit of $3. Be-
cause of a large demand for this toy, management would like to in-
crease its production rate from the current level of 1,000 per day.
However, a limited supply of two subassemblies (A and B) from
vendors makes this difficult. Each toy requires two subassemblies
of type A, but the vendor providing these subassemblies would only
be able to increase its supply rate from the current 2,000 per day
to a maximum of 3,000 per day. Each toy requires only one sub-
assembly of type B, but the vendor providing these subassemblies
would be unable to increase its supply rate above the current level
of 1,000 per day. Because no other vendors currently are available
to provide these subassemblies, management is considering initiat-
ing a new production process internally that would simultaneously
produce an equal number of subassemblies of the two types to sup-
plement the supply from the two vendors. It is estimated that the
company’s cost for producing one subassembly of each type would
be $2.50 more than the cost of purchasing these subassemblies from
the two vendors. Management wants to determine both the pro-
duction rate of the toy and the production rate of each pair of sub-
assemblies (one A and one B) that would maximize the total profit.

The following table summarizes the data for the problem.

E* (a) Formulate and solve a spreadsheet model for this problem.
E* (b) Since the stated unit profits for the two activities are only

estimates, management wants to know how much each of
these estimates can be off before the optimal solution would
change. Begin exploring this question for the first activity
(producing toys) by using the spreadsheet and Solver to
manually generate a table that gives the optimal solution
and total profit as the unit profit for this activity increases
in 50¢ increments from $2 to $4. What conclusion can be
drawn about how much the estimate of this unit profit can

Resource Usage per 
Unit of Each Activity

Activity

Produce Produce Amount of
Resource Toys Subassemblies Resource Available

Subassembly A 2 –1 3,000
Subassembly B 1 –1 1,000
Unit profit $3 –$2.50
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differ in each direction from its original value of $3 before
the optimal solution would change?

E* (c) Repeat part (b) for the second activity (producing sub-
assemblies) by generating a table as the unit profit for this
activity increases in 50¢ increments from –$3.50 to –$1.50
(with the unit profit for the first activity fixed at $3).

E* (d) Use the parameter analysis report to systematically gener-
ate all the data requested in parts (b) and (c), except use
25¢ increments instead of 50¢ increments. Use these data
to refine your conclusions in parts (b) and (c).

I (e) Use the Graphical Method and Sensitivity Analysis proce-
dure in IOR Tutorial to determine how much the unit profit
of each activity can change in either direction (without
changing the unit profit of the other activity) before the
optimal solution would change. Use this information to specify
the allowable range for the unit profit of each activity.

E* (f) Use Solver’s sensitivity report to find the allowable range
for the unit profit of each activity.

E* (g) Use a two-way parameter analysis report to systematically
generate the optimal solution as the unit profits of the two
activities are changed simultaneously as described in parts
(b) and (c).

(h) Use the information provided by Solver’s sensitivity report to de-
scribe how far the unit profits of the two activities can change
simultaneously before the optimal solution might change.

E* 7.3-5. Reconsider Prob. 7.3-4. After further negotiations with
each vendor, management of the G.A. Tanner Co. has learned that
either of them would be willing to consider increasing their sup-
ply of their respective subassemblies over the previously stated
maxima (3,000 subassemblies of type A per day and 1,000 of type
B per day) if the company would pay a small premium over the
regular price for the extra subassemblies. The size of the premium
for each type of subassembly remains to be negotiated. The de-
mand for the toy being produced is sufficiently high so that 2,500
per day could be sold if the supply of subassemblies could be in-
creased enough to support this production rate. Assume that the
original estimates of unit profits given in Prob. 7.3-4 are accurate.
(a) Formulate and solve a spreadsheet model for this problem with

the original maximum supply levels and the additional constraint
that no more than 2,500 toys should be produced per day.

(b) Without considering the premium, use the spreadsheet and
Solver to determine the shadow price for the subassembly A
constraint by solving the model again after increasing the max-
imum supply by 1. Use this shadow price to determine the
maximum premium that the company should be willing to pay
for each subassembly of this type.

(c) Repeat part (b) for the subassembly B constraint.
(d) Estimate how much the maximum supply of subassemblies of

type A could be increased before the shadow price (and the cor-
responding premium) found in part (b) would no longer be valid
by using a parameter analysis report to generate the optimal so-
lution and total profit (excluding the premium) as the maximum
supply increases in increments of 100 from 3,000 to 4,000.

(e) Repeat part (d) for subassemblies of type B by using a para-
meter analysis report as the maximum supply increases in in-
crements of 100 from 1,000 to 2,000.

(f) Use Solver’s sensitivity report to determine the shadow price
for each of the subassembly constraints and the allowable range
for the right-hand side of each of these constraints.

E* 7.3-6.* Consider the Union Airways problem presented in
Sec. 3.4, including the data given in Table 3.19. The Excel files
for Chap. 3 include a spreadsheet that shows the formulation and
optimal solution for this problem. You are to use this spreadsheet
and Solver to do parts (a) to (g) below.

Management is about to begin negotiations on a new contract
with the union that represents the company’s customer service
agents. This might result in some small changes in the daily costs
per agent given in Table 3.19 for the various shifts. Several possible
changes listed below are being considered separately. In each case,
management would like to know whether the change might result in
the solution in the spreadsheet no longer being optimal. Answer this
question in parts (a) to (e) by using the spreadsheet and Solver di-
rectly. If the optimal solution changes, record the new solution.
(a) The daily cost per agent for Shift 2 changes from $160 to $165.
(b) The daily cost per agent for Shift 4 changes from $180 to $170.
(c) The changes in parts (a) and (b) both occur.
(d) The daily cost per agent increases by $4 for shifts 2, 4, and 5,

but decreases by $4 for shifts 1 and 3.
(e) The daily cost per agent increases by 2 percent for each shift.
(f) Use Solver to generate the sensitivity report for this problem.

Suppose that the above changes are being considered later
without having the spreadsheet model immediately available
on a computer. Show in each case how the sensitivity report
can be used to check whether the original optimal solution must
still be optimal.

(g) For each of the five shifts in turn, use a parameter analysis re-
port to systematically generate the optimal solution and total
cost when the only change is that the daily cost per agent on
that shift increases in $3 increments from $15 less than the
current cost up to $15 more than the current cost.

E* 7.3-7. Reconsider the Union Airways problem and its spread-
sheet model that was dealt with in Prob. 7.3-6.

Management now is considering increasing the level of ser-
vice provided to customers by increasing one or more of the
numbers in the rightmost column of Table 3.19 for the minimum
number of agents needed in the various time periods. To guide
them in making this decision, they would like to know what im-
pact this change would have on total cost.

Use Solver to generate the sensitivity report in preparation for
addressing the following questions.
(a) Which of the numbers in the rightmost column of Table 3.19

can be increased without increasing total cost? In each case,
indicate how much it can be increased (if it is the only one be-
ing changed) without increasing total cost.

(b) For each of the other numbers, how much would the total cost
increase per increase of 1 in the number? For each answer,
indicate how much the number can be increased (if it is the
only one being changed) before the answer is no longer valid.

(c) Do your answers in part (b) definitely remain valid if all the
numbers considered in part (b) are simultaneously increased
by one?
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(d) Do your answers in part (b) definitely remain valid if all 10
numbers are simultaneously increased by one?

(e) How far can all 10 numbers be simultaneously increased by
the same amount before your answers in part (b) may no longer
be valid?

7.3–8 David, LaDeana, and Lydia are the sole partners and work-
ers in a company which produces fine clocks. David and LaDeana
each are available to work a maximum of 40 hours per week at the
company, while Lydia is available to work a maximum of 20 hours
per week.

The company makes two different types of clocks: a grand-
father clock and a wall clock. To make a clock, David (a mechanical
engineer) assembles the inside mechanical parts of the clock while
LaDeana (a woodworker) produces the handcarved wood casings.
Lydia is responsible for taking orders and shipping the clocks. The
amount of time required for each of these tasks is shown below.

Each grandfather clock built and shipped yields a profit of $300,
while each wall clock yields a profit of $200.

The three partners now want to determine how many clocks of
each type should be produced per week to maximize the total profit.
(a) Formulate a linear programming model in algebraic form for

this problem.
I (b) Use the Graphical Method and Sensitivity Analysis proce-

dure in IOR Tutorial to solve the model. Then use this pro-
cedure to check if the optimal solution would change if the
unit profit for grandfather clocks is changed from $300 to
$375 (with no other changes in the model). Then check if
the optimal solution would change if, in addition to this
change in the unit profit for grandfather clocks, the estimated
unit profit for wall clocks also changes from $200 to $175.

E* (c) Formulate and solve this model on a spreadsheet.
E* (d) Use Solver to check the effect of the changes specified in

part (b).
E* (e) Use a parameter analysis report to systematically generate

the optimal solution and total profit as the unit profit for
grandfather clocks is increased in $20 increments from $150
to $450 (with no change in the unit profit for wall clocks).
Then do the same as the unit profit for wall clocks is in-
creased in $20 increments from $50 to $350 (with no change
in the unit profit for grandfather clocks). Use this informa-
tion to estimate the allowable range for the unit profit of
each type of clock.

E* (f) Use a two-way parameter analysis report to systematically
generate the optimal solution as the unit profits for the two
types of clocks are changed simultaneously as specified

in part (e), except use $50 increments instead of  $20 
increments.

E* (g) For each of the three partners in turn, use Solver the effect
on the optimal solution and the total profit if that partner
alone were to increase the maximum number of hours avail-
able to work per week by 5 hours.

E* (h) Use a parameter analysis report to systematically generate
the optimal solution and the total profit when the only change
is that David’s maximum number of hours available to work
per week changes to each of the following values: 35, 37, 39,
41, 43, 45. Then do the same when the only change is that
LaDeana’s number changes in the same way. Then do the
same when the only change is that Lydia’s number changes
to each of the following values: 15, 17, 19, 21, 23, 25.

E* (i) Generate Solver’s sensitivity report and use it to determine
the allowable range for the unit profit for each type of clock
and the allowable range for the maximum number of hours
each partner is available to work per week.

(j) To increase the total profit, the three partners have agreed that
one of them will slightly increase the maximum number of
hours available to work per week. The choice of which one will
be based on which one would increase the total profit the most.
Use the sensitivity report to make this choice. (Assume no
change in the original estimates of the unit profits.)

(k) Explain why one of the shadow prices is equal to zero.
(l) Can the shadow prices in the sensitivity report be validly used

to determine the effect if Lydia were to change her maximum
number of hours available to work per week from 20 to 25? If
so, what would be the increase in the total profit?

(m) Repeat part (l) if, in addition to the change for Lydia, David
also were to change his maximum number of hours available
to work per week from 40 to 35.

I (n) Use graphical analysis to verify your answer in part (m).

7.4-1. Reconsider the example illustrating the use of robust
optimization that was presented in Sec. 7.4. Wyndor 
management now feels that the analysis described in this 
example was overly conservative for three reasons: (1) it is
unlikely that the true value of a parameter will turn out to be
quite near either end of its range of uncertainty shown in
Table 7.10, (2) it is even more unlikely that the true values
of all the parameters in a constraint will turn out to simulta-
neously lean toward the undesirable end of their ranges of
uncertainty, and (3) there is a bit of latitude in each constraint
to compensate for violating the constraint by a tiny bit.

Therefore, Wyndor management has asked its staff
(you) to solve the model again while using ranges of un-
certainty that are half as wide as those shown in Table 7.10.
(a) What is the resulting optimal solution and how much

would this increase the total profit per week?
(b) If Wyndor would need to pay a penalty of $5000 per

week to the distributor if the production rates fall below
these new guaranteed minimum amounts, should 
Wyndor use these new guarantees?

Time Required

Task Grandfather Clock Wall Clock

Assemble clock mechanism 6 hours 4 hours
Carve wood casing 8 hours 4 hours
Shipping 3 hours 3 hours
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7.4-2. Consider the following problem.

Maximize  Z � c1x1 � c2x2,

subject to

a11x1 � a12x2 � b1

a21x1 � a22x2 � b2

and

x1 � 0, x2 � 0.

The estimates and ranges of uncertainty for the parameters
are shown in the next table.

(a) Use the graphical method to solve this model when us-
ing the estimates of the parameters.

(b) Now use robust optimization to formulate a conserva-
tive version of this model. Use the graphical method to
solve this model. Show the values of Z obtained in parts
(a) and (b) and then calculate the percentage change in
Z by replacing the original model by the robust opti-
mization model.

7.4.3. Follow the instructions of Prob. 7.4-2 when consider-
ing the following problem and the information provided
about its parameters in the table below.

Minimize Z = c1x1 + c2x2,

subject to the constraints shown at the top of the next column.

a11x1 � a12x2 � b1

a21x1 � a22x2 � b2

a31x1 � a32x2 � b3

and
x1 � 0, x2 � 0.

C 7.4-4. Consider the following problem.

Maximize  Z = 5x1 + c2x2 + c3x3,

subject to

a11x1 � 3x2 � 2x3 � b1

3x1 � a22x2 � x3 � b2

2x1 � 4x2 � a33x3 � 20 

and

x1 � 0, x2 � 0, x3 � 0.

The estimates and ranges of uncertainty for the uncertain
parameters are shown in the next table.

(a) Solve this model when using the estimates of the para-
meters.

(b) Now use robust optimization to formulate a conserva-
tive version of this model. Solve this model. Show the
values of Z obtained in parts (a) and (b) and then cal-
culate the percentage decrease in Z by replacing the orig-
inal model by the robust optimization model.

7.5-1. Reconsider the example illustrating the use of chance
constraints that was presented in Sec. 7.5. The concern is
that there is some uncertainty about how much production
time will be available for Wyndorís two new products when
their production begins in the three plants a little later. Table
7.11 shows the initial estimates of the mean and standard
deviation of the available production time per week in each
of the three plants.

Suppose now that a more careful investigation of these
available production times has considerably narrowed down the
range of what these times might turn out to be with any sig-
nificant likelihood. In particular, the means in Table 7.11 re-
main the same but the standard deviations have been cut in half.
However, to add more insurance that the original constraints

PROBLEMS 285

Parameter Estimate Range of Uncertainty

a11 1 0.9 – 1.1
a12 2 1.6 – 2.4
a21 2 1.8 – 2.2
a22 1 0.8 – 1.2
b1 9 8.5 – 9.5
b2 8 7.6 – 8.4
c1 3 2.7 – 3.3
c2 4 3.6 – 4.4

Parameter Estimate Range of Uncertainty

a11 10 6 – 12
a12 5 4 – 6
a21 –2 –3 to –1
a22 10 8 – 12
a31 5 4 – 6
a32 5 3 – 8
b1 50 45 – 60
b2 20 15 – 25
b3 30 27 – 32
c1 20 18 – 24
c2 15 12 – 18

Parameter Estimate Range of Uncertainty

a11 4 3.6 – 4.4
a22 �1 �1.4 to �0.6
a33 3 2.5 – 3.5
b1 30 27 – 33
b2 20 19 – 22
c2 �8 �9 to �7
c3 4 3 – 5
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still will hold when production begins, the value of a has been
increased to � � 0.99. It is still assumed that the available pro-
duction time in each plant has a normal distribution.
(a) Use probability expressions to write the three chance

constraints. Then show the deterministic equivalents of
these chance constraints.

(b) Solve the resulting linear programming model. How much
total profit per week would this solution provide to Wyn-
dor? Compare this total profit per week to what was ob-
tained for the example in Sec. 7.5. What is the increase
in total profit per week that was enabled by the more care-
ful investigation that cut the standard deviations in half?

7.5-2. Consider the following constraint whose right-hand
side b is assumed to have a normal distribution with a mean
of 100 and some standard deviation s.

30x1 � 20x2 � b

A quick investigation of the possible spread of the random
variable b has led to the estimate that s = 10. However, a
subsequent more careful investigation has greatly narrowed
down this spread, which has led to the refined estimate that
s = 2. After choosing a minimum acceptable probability
that the constraint will hold (denoted by a) this constraint
will be treated as a chance constraint.
(a) Use a probability expression to write the resulting chance

constraint. Then write its deterministic equivalent in
terms of s and K�.

(b) Prepare a table that compares the value of the right-hand
side of this deterministic equivalent for s = 10 and s = 2
when using a = 0.9, 0.95, 0.975, 0.99, and 0.99865.

7.5-3. Suppose that a linear programming problem has 20
functional constraints in inequality form such that their right-
hand sides (the bi) are uncertain parameters, so chance con-
straints with some a are introduced in place of these con-
straints. After next substituting the deterministic equivalents
of these chance constraints and solving the resulting new
linear programming model, its optimal solution is found to
satisfy 10 of these deterministic equivalents with equality
whereas there is some slack in the other 10 deterministic
equivalents. Answer the following questions under the as-
sumption that the 20 uncertain bi have mutually independent
normal distributions.
(a) When choosing a = 0.95, what are the lower bound and

upper bound on the probability that all of these 20 origi-
nal constraints will turn out to be satisfied by the optimal
solution for the new linear programming problem so this
solution actually will be feasible for the original problem.

(b) Now repeat part (a) with a = 0.99.

(c) Suppose that all 20 of these functional constraints are
considered to be hard constraints, i.e., constraints that
must be satisfied if at all possible. Therefore, the deci-
sion maker desires to use a value of a that will guaran-
tee a probability of at least 0.95 that the optimal solu-
tion for the new linear programming problem actually
will turn out to be feasible for the original problem. Use
trial and error to find the smallest value of a (to three
significant digits) that will provide the decision maker
with the desired guarantee.

7.5.4 Consider the following problem.

Maximize   Z � 20x1 � 30x2 � 25x3,

subject to

3x1 � 2x2 + x3 � b1

2x1 � 4x2 + 2x3 � b1

x1 � 3x2 + 5x3 � b3

and
x1 � 0, x2 � 0, x3 � 0,

where b1, b2, and b3 are uncertain parameters that have mu-
tually independent normal distributions. The mean and stan-
dard deviation of these parameters are (90, 3), (150, 6), and
(180, 9), respectively.
(a) The proposal has been made to use the solution, (x1, x2,

x3) = (7, 22, 19). What are the probabilities that the re-
spective functional constraints will be satisfied by this
solution? 

C (b) Formulate chance constraints for these three functional
constraints where a � 0.975 for the first constraint,
a � 0.95 for the second constraint, and a � 0.90 for
the third constraint. Then determine the deterministic
equivalents of the three chance constraints and solve
for the optimal solution for the resulting linear pro-
gramming model.

(c) Calculate the probability that the optimal solution for this
new linear programming model will turn out to be fea-
sible for the original problem. 

C 7.6-1. Reconsider the example illustrating the use of 
stochastic programming with recourse that was 
presented in Sec. 7.6. Wyndor management now has
obtained additional information about the rumor that
a competitor is planning to produce and market a spe-
cial new product that would compete directly with
Wyndor’s product 2. This information suggests that
it is less likely that the rumor is true than was orig-
inally thought. Therefore, the estimate of the proba-
bility that the rumor is true has been reduced to 0.5.
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Formulate the revised stochastic programming model
and solve for its optimal solution. Then describe the corre-
sponding optimal plan in words.

C 7.6-2. The situation is the same as described in Prob. 7.6-
1 except that Wyndor management does not consider the ad-
ditional information about the rumor to be reliable. There-
fore, they havenít yet decided whether their best estimate of
the probability that the rumor is true should be 0.5 or 0.75
or something in between. Consequently, they have asked you
to find the break-even point for this probability below which
the optimal plan presented in Sec. 7.6 will no longer be 
optimal. Use trial and error to find this break-even point
(rounded up to two decimal points). What is the new opti-
mal plan if the probability is a little less than this break-even
point?

C 7.6-3. The Royal Cola Company is considering develop-
ing a special new carbonated drink to add to its standard
product line of drinks for a couple years or so (after which
it probably would be replaced by another special drink).
However, it is unclear whether the new drink would be prof-
itable, so analysis is needed to determine whether to go
ahead with the development of the drink. If so, once the de-
velopment is completed, the new drink would be marketed
in a small regional test market to assess how popular the
drink would become. If the test market suggests that the
drink should become profitable, it then would be marketed
nationally.

Here are the relevant data. The cost of developing
the drink and then arranging to test it in the test market is
estimated to be $40 million. A total budget of $100 million
has been allocated to advertising the drink in both the test
market and nationally (if it goes national). A minimum of
$5 million is needed for advertising in the test market and
the maximum allowed for this purpose would be $10 mil-
lion, which would leave between $90 million and $95 mil-
lion for national advertising. To simplify the analysis, sales
in either the test market or nationally is assumed to be pro-
portional to the level of advertising there (while recogniz-
ing that the rate of additional sales would fall off after the
amount of advertising reaches a saturation level). Excluding
the fixed cost of $40 million, the net profit in the test mar-
ket is expected to be half the level of advertising.

To further simplify the analysis, the outcome of testing
the drink in the test market would fall into just three cate-
gories: (1) very favorable, (2) barely favorable, (3) unfavor-
able. The probabilities of these outcomes are estimated to
be 0.25, 0.25, and 0.50, respectively. If the outcome were

very favorable, the net profit after going national would be
expected to be about twice the level of advertising. The cor-
responding net profit if the outcome were barely favorable
would be about 0.2 times the level of advertising. If the out-
come were unfavorable, the drink would be dropped and so
would not be marketed nationally.

Use stochastic programming with recourse to formulate
a model for this problem. Assuming the company should go
ahead with developing the drink, solve the model to deter-
mine how much advertising should be done in the test mar-
ket and then how much advertising should be done nation-
ally (if any) under each of the three possible outcomes in
the test market. Finally, calculate the expected value (in the
statistical sense) of the total net profit from the drink, in-
cluding the fixed cost if the company goes ahead with de-
veloping the drink, where the company should indeed go
ahead only if the expected total net profit is positive.

C 7.6-4. Consider the following problem.

Minimize   Z = 5x1 + c2x2,

subject to

3x1 + a12x2 � 60
2x1 + a22x2 � 60

and

x1 � 0, x2 � 0,

where x1 represents the level of activity 1 and x2 represents
the level of activity 2. The values of c2, a12, and a22 have
not been determined yet. Only activity 1 needs to be un-
dertaken soon whereas activity 2 will be initiated somewhat
later. There are different scenarios that could unfold between
now and the time activity 2 is undertaken that would lead
to different values for c2, a12, and a22. Therefore, the goal
is to use all of this information to choose a value for x1 now
and to simultaneously determine a plan for choosing a value
of x2 later after seeing which scenario has occurred.

Three scenarios are considered plausible possibilities.
They are listed below, along with the values of c2, a12, and
a22 that would result from each one:

Scenario 1: c2 = 4, a12 = 2, and a22 = 3
Scenario 2: c2 = 6, a12 = 3, and a22 = 4
Scenario 3: c2 = 3, a12 = 2, and a22 = 1

These three scenarios are considered equally likely.
Use stochastic programming with recourse to formulate

the appropriate model for this problem and then to solve for
the optimal plan.

PROBLEMS 287
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■ CASES

CASE 7.1 Controlling Air Pollution
Refer to Sec. 3.4 (subsection entitled “Controlling Air
Pollution”) for the Nori & Leets Co. problem. After the OR
team obtained an optimal solution, we mentioned that the
team then conducted sensitivity analysis. We now continue
this story by having you retrace the steps taken by the OR
team, after we provide some additional background.

The values of the various parameters in the original for-
mulation of the model are given in Tables 3.12, 3.13, and
3.14. Since the company does not have much prior experi-
ence with the pollution abatement methods under consider-
ation, the cost estimates given in Table 3.14 are fairly rough,
and each one could easily be off by as much as 10 percent
in either direction. There also is some uncertainty about the
parameter values given in Table 3.13, but less so than for
Table 3.14. By contrast, the values in Table 3.12 are policy
standards, and so are prescribed constants.

However, there still is considerable debate about
where to set these policy standards on the required

reductions in the emission rates of the various 
pollutants. The numbers in Table 3.12 actually are pre-
liminary values tentatively agreed upon before learning what
the total cost would be to meet these standards. Both the city
and company officials agree that the final decision on these
policy standards should be based on the trade-off between
costs and benefits. With this in mind, the city has concluded
that each 10 percent increase in the policy standards over
the current values (all the numbers in Table 3.12) would be
worth $3.5 million to the city. Therefore, the city has agreed
to reduce the company’s tax payments to the city by $3.5
million for each 10 percent reduction in the policy standards
(up to 50 percent) that is accepted by the company.

Finally, there has been some debate about the relative
values of the policy standards for the three pollutants. As
indicated in Table 3.12, the required reduction for particu-
lates now is less than half of that for either sulfur oxides or
hydrocarbons. Some have argued for decreasing this dispar-
ity. Others contend that an even greater disparity is justified
because sulfur oxides and hydrocarbons cause considerably
more damage than particulates. Agreement has been reached

that this issue will be reexamined after information is ob-
tained about which trade-offs in policy standards (increas-
ing one while decreasing another) are available without
increasing the total cost.

(a) Use any available linear programming software to solve the
model for this problem as formulated in Sec. 3.4. In addition
to the optimal solution, obtain a sensitivity report for per-
forming postoptimality analysis. This output provides the ba-
sis for the following steps.

(b) Ignoring the constraints with no uncertainty about their para-
meter values (namely, xj � 1 for j � 1, 2, . . . , 6), identify the
parameters of the model that should be classified as sensitive
parameters. (Hint: See the subsection “Sensitivity Analysis”
in Sec. 4.7.) Make a resulting recommendation about which
parameters should be estimated more closely, if possible.

(c) Analyze the effect of an inaccuracy in estimating each cost pa-
rameter given in Table 3.14. If the true value is 10 percent less
than the estimated value, would this alter the optimal solution?
Would it change if the true value were 10 percent more than
the estimated value? Make a resulting recommendation about
where to focus further work in estimating the cost parameters
more closely.

(d) Consider the case where your model has been converted to
maximization form before applying the simplex method. Use
Table 6.14 to construct the corresponding dual problem, and
use the output from applying the simplex method to the pri-
mal problem to identify an optimal solution for this dual prob-
lem. If the primal problem had been left in minimization form,
how would this affect the form of the dual problem and the
sign of the optimal dual variables?

(e) For each pollutant, use your results from part (d) to specify the
rate at which the total cost of an optimal solution would change
with any small change in the required reduction in the annual
emission rate of the pollutant. Also specify how much this re-
quired reduction can be changed (up or down) without affect-
ing the rate of change in the total cost.

(f) For each unit change in the policy standard for particulates given
in Table 3.12, determine the change in the opposite direction
for sulfur oxides that would keep the total cost of an optimal
solution unchanged. Repeat this for hydrocarbons instead of sul-
fur oxides. Then do it for a simultaneous and equal change for
both sulfur oxides and hydrocarbons in the opposite direction
from particulates.
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■ PREVIEWS OF ADDED CASES ON OUR WEBSITE (www.mhhe.com/hillier)

CASE 7.2 Farm Management
The Ploughman family has owned and operated a 640-acre
farm for several generations. The family now needs to make
a decision about the mix of livestock and crops for the
coming year. By assuming that normal weather conditions
will prevail next year, a linear programming model can be
formulated and solved to guide this decision. However, ad-
verse weather conditions would harm the crops and greatly
reduce the resulting value. Therefore, considerable postop-
timality analysis is needed to explore the effect of several
possible scenarios for the weather next year and the impli-
cations for the family’s decision.

CASE 7.3 Assigning Students 
to Schools, Revisited
This case is a continuation of Case 4.3, which involved
the Springfield School Board assigning students from six
residential areas to the city’s three remaining middle
schools. After solving a linear programming model for

the problem with any software package, that package’s
sensitivity analysis report now needs to be used for two
purposes. One is to check on the effect of an increase in
certain bussing costs because of ongoing road construc-
tion in one of the residential areas. The other is to explore
the advisability of adding portable classrooms to increase
the capacity of one or more of the middle schools for a
few years.

CASE 7.4 Writing a Nontechnical
Memo
After setting goals for how much the sales of three products
should increase as a result of an upcoming advertising cam-
paign, the management of the Profit & Gambit Co. now wants
to explore the trade-off between advertising cost and increased
sales. Your first task is to perform the associated sensitivity
analysis. Your main task then is to write a nontechnical memo
to Profit & Gambit management presenting your results in the
language of management.
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8C H A P T E R

Other Algorithms for Linear
Programming

■ 8.1 THE DUAL SIMPLEX METHOD

The dual simplex method is based on the duality theory presented in Chap. 6. To describe the
basic idea behind this method, it is helpful to use some terminology introduced in 
Tables 6.10 and 6.11 of Sec. 6.3 for describing any pair of complementary basic solutions
in the primal and dual problems. In particular, recall that both solutions are said to be pri-
mal feasible if the primal basic solution is feasible, whereas they are called dual feasible

The key to the extremely widespread use of linear programming is the availability of
an exceptionally efficient algorithm—the simplex method—that will routinely solve

the large-size problems that typically arise in practice. However, the simplex method is
only part of the arsenal of algorithms regularly used by linear programming practitioners.
We now turn to these other algorithms.

This chapter begins with three algorithms that are, in fact, variants of the simplex method.
In particular, the next three sections introduce the dual simplex method (a modification par-
ticularly useful for sensitivity analysis), parametric linear programming (an extension for sys-
tematic sensitivity analysis), and the upper bound technique (a streamlined version of the
simplex method for dealing with variables having upper bounds). We will not go into the
kind of detail with these algorithms that we did with the simplex method in Chaps. 4 and 5.
The goal instead will be to briefly introduce their main ideas.

Section 4.9 introduced another algorithmic approach to linear programming—a type of
algorithm that moves through the interior of the feasible region. We describe this interior-
point approach further in Sec. 8.4.

A supplement to this chapter on the book’s website also introduces linear goal pro-
gramming. In this case, rather than having a single objective (maximize or minimize Z)
as for linear programming, the problem instead has several goals toward which we must
strive simultaneously. Certain formulation techniques enable converting a linear goal pro-
gramming problem back into a linear programming problem so that solution procedures
based on the simplex method can still be used. The supplement describes these techniques
and procedures.
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if the complementary dual basic solution is feasible for the dual problem. Also recall (as
indicated on the right side of Table 6.11) that each complementary basic solution is opti-
mal for its problem only if it is both primal feasible and dual feasible.

The dual simplex method can be thought of as the mirror image of the simplex method.
The simplex method deals directly with basic solutions in the primal problem that are pri-
mal feasible but not dual feasible. It then moves toward an optimal solution by striving
to achieve dual feasibility as well (the optimality test for the simplex method). By con-
trast, the dual simplex method deals with basic solutions in the primal problem that are
dual feasible but not primal feasible. It then moves toward an optimal solution by striv-
ing to achieve primal feasibility as well.

Furthermore, the dual simplex method deals with a problem as if the simplex method
were being applied simultaneously to its dual problem. If we make their initial basic so-
lutions complementary, the two methods move in complete sequence, obtaining comple-
mentary basic solutions with each iteration.

The dual simplex method is very useful in certain special types of situations. Ordinar-
ily it is easier to find an initial basic solution that is feasible than one that is dual feasible.
However, it is occasionally necessary to introduce many artificial variables to construct an
initial BF solution artificially. In such cases it may be easier to begin with a dual feasible
basic solution and use the dual simplex method. Furthermore, fewer iterations may be re-
quired when it is not necessary to drive many artificial variables to zero.

When dealing with a problem whose initial basic solutions (without artificial vari-
ables) are neither primal feasible nor dual feasible, it also is possible to combine the ideas
of the simplex method and dual simplex method into a primal-dual algorithm that strives
toward both primal feasibility and dual feasibility.

As we mentioned several times in Chaps. 6 and 7, as well as in Sec. 4.7, another
important primary application of the dual simplex method is its use in conjunction with
sensitivity analysis. Suppose that an optimal solution has been obtained by the simplex
method but that it becomes necessary (or of interest for sensitivity analysis) to make mi-
nor changes in the model. If the formerly optimal basic solution is no longer primal fea-
sible (but still satisfies the optimality test), you can immediately apply the dual simplex
method by starting with this dual feasible basic solution. (We will illustrate this at 
the end of this section.) Applying the dual simplex method in this way usually leads to
the new optimal solution much more quickly than would solving the new problem from
the beginning with the simplex method.

The dual simplex method also can be useful in solving certain huge linear program-
ming problems from scratch because it is such an efficient algorithm. Computational ex-
perience with the most powerful versions of linear programming solvers indicates that the
dual simplex method often is more efficient than the simplex method for solving partic-
ularly massive problems encountered in practice.

The rules for the dual simplex method are very similar to those for the simplex method.
In fact, once the methods are started, the only difference between them is in the criteria
used for selecting the entering and leaving basic variables and for stopping the algorithm.

To start the dual simplex method (for a maximization problem), we must have all the
coefficients in Eq. (0) nonnegative (so that the basic solution is dual feasible). The basic
solutions will be infeasible (except for the last one) only because some of the variables
are negative. The method continues to decrease the value of the objective function, always
retaining nonnegative coefficients in Eq. (0), until all the variables are nonnegative. Such
a basic solution is feasible (it satisfies all the equations) and is, therefore, optimal by the
simplex method criterion of nonnegative coefficients in Eq. (0).

The details of the dual simplex method are summarized next.
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Summary of the Dual Simplex Method

1. Initialization: After converting any functional constraints in � form to � form (by
multiplying through both sides by �1), introduce slack variables as needed to con-
struct a set of equations describing the problem. Find a basic solution such that the 
coefficients in Eq. (0) are zero for basic variables and nonnegative for nonbasic vari-
ables (so the solution is optimal if it is feasible). Go to the feasibility test.

2. Feasibility test: Check to see whether all the basic variables are nonnegative. If they are,
then this solution is feasible, and therefore optimal, so stop. Otherwise, go to an iteration.

3. Iteration:
Step 1 Determine the leaving basic variable: Select the negative basic variable

that has the largest absolute value.
Step 2 Determine the entering basic variable: Select the nonbasic variable

whose coefficient in Eq. (0) reaches zero first as an increasing multiple of the equa-
tion containing the leaving basic variable is added to Eq. (0). This selection is made
by checking the nonbasic variables with negative coefficients in that equation (the one
containing the leaving basic variable) and selecting the one with the smallest absolute
value of the ratio of the Eq. (0) coefficient to the coefficient in that equation.

Step 3 Determine the new basic solution: Starting from the current set of equa-
tions, solve for the basic variables in terms of the nonbasic variables by Gaussian elim-
ination. When we set the nonbasic variables equal to zero, each basic variable (and Z)
equals the new right-hand side of the one equation in which it appears (with a coeffi-
cient of �1). Return to the feasibility test.

To fully understand the dual simplex method, you must realize that the method pro-
ceeds just as if the simplex method were being applied to the complementary basic solutions
in the dual problem. (In fact, this interpretation was the motivation for constructing the
method as it is.) Step 1 of an iteration, determining the leaving basic variable, is equivalent
to determining the entering basic variable in the dual problem. The negative variable with
the largest absolute value corresponds to the negative coefficient with the largest absolute
value in Eq. (0) of the dual problem (see Table 6.3). Step 2, determining the entering basic
variable, is equivalent to determining the leaving basic variable in the dual problem. The co-
efficient in Eq. (0) that reaches zero first corresponds to the variable in the dual problem
that reaches zero first. The two criteria for stopping the algorithm are also complementary.

An Example

We shall now illustrate the dual simplex method by applying it to the dual problem for the
Wyndor Glass Co. (see Table 6.1). Normally this method is applied directly to the prob-
lem of concern (a primal problem). However, we have chosen this problem because you
have already seen the simplex method applied to its dual problem (namely, the primal prob-
lem1) in Table 4.8 so you can compare the two. To facilitate the comparison, we shall con-
tinue to denote the decision variables in the problem being solved by yi rather than xj.

In maximization form, the problem to be solved is

Maximize Z � �4y1 � 12y2 � 18y3,

subject to

y1 � 3y3 � 3
2y2 � 2y3 � 5

1Recall that the symmetry property in Sec. 6.1 points out that the dual of a dual problem is the original primal
problem.
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and

y1 � 0, y2 � 0, y3 � 0.

Since negative right-hand sides are now allowed, we do not need to introduce artificial vari-
ables to be the initial basic variables. Instead, we simply convert the functional 
constraints to � form and introduce slack variables to play this role. The resulting initial
set of equations is that shown for iteration 0 in Table 8.1. Notice that all the coefficients
in Eq. (0) are nonnegative, so the solution is optimal if it is feasible.

The initial basic solution is y1 � 0, y2 � 0, y3 � 0, y4 � �3, y5 � �5, with Z � 0,
which is not feasible because of the negative values. The leaving basic variable is y5 (5 � 3),
and the entering basic variable is y2 (12/2 � 18/2), which leads to the second set of equa-
tions, labeled as iteration 1 in Table 8.1. The corresponding basic solution is y1 � 0,
y2 � 	

5
2

	, y3 � 0, y4 � �3, y5 � 0, with Z � �30, which is not feasible.
The next leaving basic variable is y4, and the entering basic variable is y3 (6/3 � 4/1),

which leads to the final set of equations in Table 8.1. The corresponding basic solution is
y1 � 0, y2 � 	

3
2

	, y3 � 1, y4 � 0, y5 � 0, with Z � �36, which is feasible and therefore 
optimal.

Notice that the optimal solution for the dual of this problem2 is x*1 � 2, x*2 � 6,
x*3 � 2, x*4 � 0, x*5 � 0, as was obtained in Table 4.8 by the simplex method. We suggest
that you now trace through Tables 8.1 and 4.8 simultaneously and compare the comple-
mentary steps for the two mirror-image methods.

As mentioned earlier, an important primary application of the dual simplex method
is that it frequently can be used to quickly re-solve a problem when sensitivity analysis
results in making small changes in the original model. In particular, if the formerly opti-
mal basic solution is no longer primal feasible (one or more right-hand sides now are neg-
ative) but still satisfies the optimality test (no negative coefficients in Row 0), you can
immediately apply the dual simplex method by starting with this dual feasible basic so-
lution. For example, this situation arises when a new constraint that violates the formerly
optimal solution is added to the original model. To illustrate, suppose that the problem
solved in Table 8.1 originally did not include its first functional constraint (y1 � 3y3 � 3).

■ TABLE 8.1 Dual simplex method applied to the Wyndor Glass Co. dual problem

Coefficient of:
Basic Right

Iteration Variable Eq. Z y1 y2 y3 y4 y5 Side

Z (0) 1 4 12 18 0 0 0
0 y4 (1) 0 �1 0 �3 1 0 �3

y5 (2) 0 0 �2 �2 0 1 �5

Z (0) 1 4 0 6 0 6 �30
1 y4 (1) 0 �1 0 �3 1 0 �3

y2 (2) 0 0 1 1 0 �	
1
2

	 	
5
2

	

Z (0) 1 2 0 0 2 6 �36

2 y3 (1) 0 	
1
3

	 0 1 �	
1
3

	 0 1

y2 (2) 0 �	
1
3

	 1 0 	
1
3

	 �	
1
2

	 	
3
2

	

2The complementary optimal basic solutions property presented in Sec. 6.3 indicates how to read the optimal so-
lution for the dual problem from row 0 of the final simplex tableau for the primal problem. This same conclusion
holds regardless of whether the simplex method or the dual simplex method is used to obtain the final tableau.
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3See Appendix 2 for a definition and discussion of convex functions.

After deleting Row 1, the iteration 1 tableau in Table 8.1 shows that the resulting optimal
solution is y1 � 0, y2 � 	

5
2

	, y3 � 0, y5 � 0, with Z � �30. Now suppose that sensitivity
analysis leads to adding the originally omitted constraint, y1 � 3y3 � 3, which is vio-
lated by the original optimal solution since both y1 � 0 and y3 � 0. To find the new op-
timal solution, this constraint (including its slack variable y4) now would be added as
Row 1 of the middle tableau in Table 8.1. Regardless of whether this tableau had been
obtained by applying the simplex method or the dual simplex method to obtain the orig-
inal optimal solution (perhaps after many iterations), applying the dual simplex method
to this tableau leads to the new optimal solution in just one iteration.

If you would like to see another example of applying the dual simplex method, one
is provided in the Solved Examples section of the book’s website.

■ 8.2 PARAMETRIC LINEAR PROGRAMMING

At the end of Sec. 7.2 we mentioned that parametric linear programming provides an-
other useful way for conducting sensitivity analysis systematically by gradually changing
various model parameters simultaneously rather than changing them one at a time. We
shall now present the algorithmic procedure, first for the case where the cj parameters are
being changed and then where the bi parameters are varied.

Systematic Changes in the cj Parameters

For the case where the cj parameters are being changed, the objective function of the 
ordinary linear programming model

Z � �
n

j�1
cjxj

is replaced by

Z(�) � �
n

j�1
(cj��j�)xj,

where the �j are given input constants representing the relative rates at which the 
coefficients are to be changed. Therefore, gradually increasing � from zero changes the
coefficients at these relative rates.

The values assigned to the �j may represent interesting simultaneous changes of the cj

for systematic sensitivity analysis of the effect of increasing the magnitude of these changes.
They may also be based on how the coefficients (e.g., unit profits) would change together
with respect to some factor measured by �. This factor might be uncontrollable, e.g., the
state of the economy. However, it may also be under the control of the decision maker, e.g.,
the amount of personnel and equipment to shift from some of the activities to others.

For any given value of �, the optimal solution of the corresponding linear program-
ming problem can be obtained by the simplex method. This solution may have been ob-
tained already for the original problem where � � 0. However, the objective is to find the
optimal solution of the modified linear programming problem [maximize Z(�) subject to
the original constraints] as a function of �. Therefore, in the solution procedure you need
to be able to determine when and how the optimal solution changes (if it does) as � in-
creases from zero to any specified positive number.

Figure 8.1 illustrates how Z*(�), the objective function value for the optimal solution
(given �), changes as � increases. In fact, Z*(�) always has this piecewise linear and convex3

form (see Prob. 8.2-7). The corresponding optimal solution changes (as � increases) just at the
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values of � where the slope of the Z*(�) function changes. Thus, Fig. 8.1 depicts a problem
where three different solutions are optimal for different values of �, the first for 0 � � � �1,
the second for �1 � � � �2, and the third for � � �2. Because the value of each xj remains the
same within each of these intervals for �, the value of Z*(�) varies with � only because the
coefficients of the xj are changing as a linear function of �. The solution procedure is based
directly upon the sensitivity analysis procedure for investigating changes in the cj parameters
(Cases 2a and 3, Sec. 7.2). The only basic difference with parametric linear programming is
that the changes now are expressed in terms of � rather than as specific numbers.

Example. To illustrate the solution procedure, suppose that �1 � 2 and �2 � �1 for the
original Wyndor Glass Co. problem presented in Sec. 3.1, so that

Z(�) � (3 � 2�)x1 � (5 � �)x2.

We begin with the final simplex tableau for � � 0 in Table 4.8, as repeated here in the
first tableau of Table 8.2 (after setting � � 0). We see that its Eq. (0) is

(0) Z � 	
3
2

	x4 � x5 � 36.

The first step is to have the changes from the original (� � 0) coefficients added into this
Eq. (0) on the left-hand side:

(0) Z � 2�x1 � �x2 � 	
3
2

	x4 � x5 � 36.

Because both x1 and x2 are basic variables [appearing in Eqs. (3) and (2), respectively],
they both need to be eliminated algebraically from Eq. (0):

Z � 2�x1 � �x2 � 	
3
2

	x4 � x5 � 36

� 2� times Eq. (3)
� � times Eq. (2)

(0) Z � �	
3
2

	 � 	
7
6

	��x4 � �1 � 	
2
3

	��x5 � 36 � 2�.

The optimality test says that the current BF solution will remain optimal as long as
these coefficients of the nonbasic variables remain nonnegative:

	
3
2

	 � 	
7
6

	� � 0, for 0 � � � 	
9
7

	,

1 � 	
2
3

	� � 0, for all � � 0.

This entire procedure is summarized on the next page.

■ FIGURE 8.1
The objective function value
for an optimal solution as a
function of � for parametric
linear programming with
systematic changes in the 
cj parameters.

Z* ( )

0 1 2
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Therefore, after � is increased past � � 	
9
7

	, x4 would need to be the entering basic variable
for another iteration of the simplex method, which takes us from the first tableau in Table
8.2 to the second tableau. Then � would be increased further until another coefficient goes
negative, which occurs for the coefficient of x5 in the second tableau when � is increased
past � � 5. Another iteration of the simplex method then takes us to the final tableau  of
Table 8.2. Increasing � further past 5 never leads to a negative coefficient in Eq. (0), so
the procedure is completed.

Summary of the Parametric Linear Programming Procedure 
for Systematic Changes in the cj Parameters

1. Solve the problem with � � 0 by the simplex method.
2. Use the sensitivity analysis procedure (Cases 2a and 3, Sec. 7.2) to introduce the


cj � �j� changes into Eq. (0).
3. Increase � until one of the nonbasic variables has its coefficient in Eq. (0) go negative

(or until � has been increased as far as desired).
4. Use this variable as the entering basic variable for an iteration of the simplex method

to find the new optimal solution. Return to step 3.

Note in Table 8.2 how the first two steps of this procedure lead to the first tableau and then
steps 3 and 4 lead to the second tableau. Repeating steps 3 and 4 next leads to the final tableau.

Systematic Changes in the bi Parameters
For the case where the bi parameters change systematically, the one modification made
in the original linear programming model is that bi is replaced by bi � �i�, for i � 1,
2, . . . , m, where the �i are given input constants. Thus, the problem becomes

■ TABLE 8.2 The cj parametric linear programming procedure applied to the 
Wyndor Glass Co. example

Coefficient of:
Range Basic Right Optimal
of � Variable Eq. Z x1 x2 x3 x4 x5 Side Solution

Z(�) (0) 1 0 0 �0 	
9 �

6
7�

	 	
3 �

3
2�

	 36 � 2� x4 � 0

x5 � 0

0 � � � 	
9
7

	 x3 (1) 0 0 0 �1 �	
1
3

	 �	
1
3

	 2 x3 � 2

x2 (2) 0 0 1 �0 �	
1
2

	 �0 6 x2 � 6

x1 (3) 0 1 0 �0 �	
1
3

	 �	
1
3

	 2 x1 � 2

Z(�) (0) 1 0 0 	
�9

2
� 7�
	 0 	

5 �
2

�
	 27 � 5� x3 � 0

x5 � 0

	
9
7

	 � � � 5 x4 (1) 0 0 0 �3 1 �1 6 x4 � 6

x2 (2) 0 0 1 �	
3
2

	 0 �	
1
2

	 3 x2 � 3

x1 (3) 0 1 0 �1 0 �0 4 x1 � 4

Z(�) (0) 1 0 �5 � � 3 � 2� 0 �0 12 � 8� x2 � 0
x3 � 0

� � 5 x4 (1) 0 0 2 �0 1 �0 12 x4 � 12
x5 (2) 0 0 2 �3 0 �1 6 x5 � 6
x1 (3) 0 1 0 �1 0 �0 4 x1 � 4
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Maximize Z(�) � �
n

j�1
cjxj,

subject to

�
n

j�1
aijxj � bi � �i� for i � 1, 2, . . . , m

and

xj � 0 for j � 1, 2, . . . , n.

The goal is to identify the optimal solution as a function of �.
With this formulation, the corresponding objective function value Z*(�) always has

the piecewise linear and concave4 form shown in Fig. 8.2. (See Prob. 8.2-8.) The set of
basic variables in the optimal solution still changes (as � increases) only where the slope
of Z*(�) changes. However, in contrast to the preceding case, the values of these variables
now change as a (linear) function of � between the slope changes. The reason is that 
increasing � changes the right-hand sides in the initial set of equations, which then causes
changes in the right-hand sides in the final set of equations, i.e., in the values of the final
set of basic variables. Figure 8.2 depicts a problem with three sets of basic variables that
are optimal for different values of �, the first for 0 � � � �1, the second for �1 � � � �2,
and the third for � � �2. Within each of these intervals of �, the value of Z*(�) varies with
� despite the fixed coefficients cj because the xj values are changing.

The following solution procedure summary is very similar to that just presented for
systematic changes in the cj parameters. The reason is that changing the bi values is equiv-
alent to changing the coefficients in the objective function of the dual model. Therefore,
the procedure for the primal problem is exactly complementary to applying simultane-
ously the procedure for systematic changes in the cj parameters to the dual problem. 
Consequently, the dual simplex method (see Sec. 8.1) now would be used to obtain each
new optimal solution, and the applicable sensitivity analysis case (see Sec. 7.2) now is Case
1, but these differences are the only major differences.

Summary of the Parametric Linear Programming Procedure 
for Systematic Changes in the bi Parameters

1. Solve the problem with � � 0 by the simplex method.
2. Use the sensitivity analysis procedure (Case 1, Sec. 7.2) to introduce the �bi � �i�

changes to the right side column.

0

Z* ( )

1 2

■ FIGURE 8.2
The objective function value
for an optimal solution as a
function of � for parametric
linear programming with
systematic changes in the 
bi parameters.

4See Appendix 2 for a definition and discussion of concave functions.
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3. Increase � until one of the basic variables has its value in the right side column go
negative (or until � has been increased as far as desired).

4. Use this variable as the leaving basic variable for an iteration of the dual simplex
method to find the new optimal solution. Return to step 3.

Example. To illustrate this procedure in a way that demonstrates its duality relation-
ship with the procedure for systematic changes in the cj parameters, we now apply it to
the dual problem for the Wyndor Glass Co. (see Table 6.1). In particular, suppose that
�1 � 2 and �2 � �1 so that the functional constraints become

y1 � 3y3 � 3 � 2� or �y1 � 3y3 � �3 � 2�
2y2 � 2y3 � 5 � � or �2y2 � 2y3 � �5 � �.

Thus, the dual of this problem is just the example considered in Table 8.2.
This problem with � � 0 has already been solved in Table 8.1, so we begin with the

final simplex tableau given there. Using the sensitivity analysis procedure for Case 1,
Sec. 7.2, we find that the entries in the right side column of the tableau change to the 
values given below.

Z* � y*b� � [2, 6] � � � �36 � 2�,

b* � S*b� � � � � .

Therefore, the two basic variables in this tableau

y3 � 	
3 �

3
2�

	 and y2 � 	
9 �

6
7�

	

remain nonnegative for 0 � � � 	
9
7

	. Increasing � past � � 	
9
7

	 requires making y2 a leaving
basic variable for another iteration of the dual simplex method, and so on, as summarized
in Table 8.3.

⎤
⎥
⎥⎦

1 � 	
2
3
�
	

	
3
2

	 � 	
7
6
�

⎡
⎢⎢
⎣

�3 � 2�

�5 � �

⎤
⎥
⎥⎦

0

�	
1
2	

�	
1
3	

	
1
3	

⎡
⎢⎢
⎣

�3 � 2�

�5 � �

■ TABLE 8.3 The bi parametric linear programming procedure applied to the dual
of the Wyndor Glass Co. example

Coefficient of:
Range Basic Right Optimal
of � Variable Eq. Z y1 y2 y3 y4 y5 Side Solution

Z(�) (0) 1 2 0 0 2 6 �36 � 2� y1 � y4 � y5 � 0

0 � � � 	
9
7

	 y3 (1) 0 	
1
3

	 0 1 �	
1
3

	 0 	
3 �

3
2�

	 y3 � 	
3 �

3
2�

	

y2 (2) 0 �	
1
3

	 1 0 	
1
3

	 �	
1
2

	 	
9 �

6
7�

	 y2 � 	
9 �

6
7�

	

Z(�) (0) 1 0 6 0 4 3 �27 � 5� y2 � y4 � y5 � 0

	
9
7

	 � � � 5 y3 (1) 0 0 1 1 0 �	
1
2

	 	
5 �

2
�

	 y3 � 	
5 �

2
�

	

y1 (2) 0 1 �3 0 �1 	
3
2

	 	
�9

2
� 7�
	 y1 � 	

�9
2
� 7�
	

Z(�) (0) 1 0 12 6 4 0 �12 � 8� y2 � y3 � y4 � 0

� � 5 y5 (1) 0 0 �2 �2 0 1 �5 � � y5 � �5 � �
y1 (2) 0 1 0 3 �1 0 3 � 2� y1 � 3 � 2�
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5The upper bound technique assumes that the variables have the usual nonnegativity constraints in addition to
the upper bound constraints. If a variable has a lower bound other than 0, say, xj � Lj, then this constraint can
be converted into a nonnegativity constraint by making the change of variables, xj� � xj � Lj, so xj� � 0.

■ 8.3 THE UPPER BOUND TECHNIQUE

It is fairly common in linear programming problems for some of or all the individual xj

variables to have upper bound constraints

xj � uj,

where uj is a positive constant representing the maximum feasible value of xj. We pointed
out in Sec. 4.8 that the most important determinant of computation time for the simplex
method is the number of functional constraints, whereas the number of nonnegativity con-
straints is relatively unimportant. Therefore, having a large number of upper bound constraints
among the functional constraints greatly increases the computational effort required.

The upper bound technique avoids this increased effort by removing the upper bound
constraints from the functional constraints and treating them separately, essentially like
nonnegativity constraints.5 Removing the upper bound constraints in this way causes no
problems as long as none of the variables gets increased over its upper bound. The only
time the simplex method increases some of the variables is when the entering basic vari-
able is increased to obtain a new BF solution. Therefore, the upper bound technique sim-
ply applies the simplex method in the usual way to the remainder of the problem 
(i.e., without the upper bound constraints) but with the one additional restriction that each
new BF solution must satisfy the upper bound constraints in addition to the usual lower
bound (nonnegativity) constraints.

To implement this idea, note that a decision variable xj with an upper bound con-
straint xj � uj can always be replaced by

xj � uj � yj,

where yj would then be the decision variable. In other words, you have a choice be-
tween letting the decision variable be the amount above zero (xj) or the amount below 
uj (yj � uj � xj). (We shall refer to xj and yj as complementary decision variables.) 
Because

0 � xj � uj

it also follows that

0 � yj � uj.

Thus, at any point during the simplex method, you can either

1. Use xj, where 0 � xj � uj, or
2. Replace xj by uj � yj, where 0 � yj � uj.

The upper bound technique uses the following rule to make this choice:

Rule: Begin with choice 1.
Whenever xj � 0, use choice 1, so xj is nonbasic.

We suggest that you now trace through Tables 8.2 and 8.3 simultaneously to note the
duality relationship between the two procedures.

The Solved Examples section of the book’s website includes another example of the
procedure for systematic changes in the bi parameters.

hil23453_ch08_290-317.qxd  1/15/70  8:00 AM  Page 299 Final PDF to printer



300 CHAPTER 8 OTHER ALGORITHMS FOR LINEAR PROGRAMMING

Whenever xj � uj, use choice 2, so yj � 0 is nonbasic.
Switch choices only when the other extreme value of xj is reached.

Therefore, whenever a basic variable reaches its upper bound, you should switch choices
and use its complementary decision variable as the new nonbasic variable (the leaving ba-
sic variable) for identifying the new BF solution. Thus, the one substantive modification
being made in the simplex method is in the rule for selecting the leaving basic variable.

Recall that the simplex method selects as the leaving basic variable the one that would
be the first to become infeasible by going negative as the entering basic variable is in-
creased. The modification now made is to select instead the variable that would be the
first to become infeasible in any way, either by going negative or by going over the up-
per bound, as the entering basic variable is increased. (Notice that one possibility is that
the entering basic variable may become infeasible first by going over its upper bound, so
that its complementary decision variable becomes the leaving basic variable.) If the 
leaving basic variable reaches zero, then proceed as usual with the simplex method. 
However, if it reaches its upper bound instead, then switch choices and make its comple-
mentary decision variable the leaving basic variable.

An Example

To illustrate the upper bound technique, consider this problem:

Maximize Z � 2x1 � x2 � 2x3,

subject to

4x1 � x2 � 12
�2x1 � x3 � 4

and

0 � x1 � 4, 0 � x2 � 15, 0 � x3 � 6.

Thus, all three variables have upper bound constraints (u1 � 4, u2 � 15, u3 � 6).
The two equality constraints are already in proper form from Gaussian elimination for

identifying the initial BF solution (x1 � 0, x2 � 12, x3 � 4), and none of the variables in
this solution exceeds its upper bound, so x2 and x3 can be used as the initial basic variables
without artificial variables being introduced. However, these variables then need to be elim-
inated algebraically from the objective function to obtain the initial Eq. (0), as follows:

Z � 2(� (2x1 � x2 � 2x3 � 0
Z � 2(� (4x1 � x2 � 2x3 � 12)
Z � 2(� (2x1 � x2 � x3 � 4)

(0) Z � 2(� (2x1 � x2 � 2x3 � 20.

To start the first iteration, this initial Eq. (0) indicates that the initial entering basic
variable is x1. Since the upper bound constraints are not to be included, the entire initial
set of equations and the corresponding calculations for selecting the leaving basic variables
are those shown in Table 8.4. The second column shows how much the entering basic vari-
able x1 can be increased from zero before some basic variable (including x1) becomes in-
feasible. The maximum value given next to Eq. (0) is just the upper bound constraint for
x1. For Eq. (1), since the coefficient of x1 is positive, increasing x1 to 3 decreases the ba-
sic variable in this equation (x2) from 12 to its lower bound of zero. For Eq. (2), since the
coefficient of x1 is negative, increasing x1 to 1 increases the basic variable in this equation
(x3) from 4 to its upper bound of 6.
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6The basic approach for this variant actually was proposed in 1967 by a Russian mathematician I. I. Dikin and
then rediscovered soon after the appearance of Karmarkar’s work by a number of researchers, including E. R.
Barnes, T. M. Cavalier, and A. L. Soyster. Also see R. J. Vanderbei, M. S. Meketon, and B. A. Freedman, “A Mod-
ification of Karmarkar’s Linear Programming Algorithm,” Algorithmica, 1(4) (Special Issue on New Approaches
to Linear Programming): 395–407, 1986.

■ TABLE 8.4 Equations and calculations for the initial leaving basic variable in the
example for the upper bound technique

Initial Set of Equations Maximum Feasible Value of x1

(0) Z � 2x1 � x2 � x3 � 20 x1 � 4 (since u1 � 4)

(1) Z � 4x1 � x2 � x3 � 12 x1 � 	
1
4
2
	 � 3

(2) Z � 2x1 � x2 � x3 � 4 x1 � 	
6 �

2
4

	 � 1 � minimum (because u3 � 6)

Because Eq. (2) has the smallest maximum feasible value of x1 in Table 8.4, the ba-
sic variable in this equation (x3) provides the leaving basic variable. However, because x3

reached its upper bound, replace x3 by 6 � y3, so that y3 � 0 becomes the new nonbasic
variable for the next BF solution and x1 becomes the new basic variable in Eq. (2). This
replacement leads to the following changes in this equation:

(2) � 2x1 � x3 � 4
→ � 2x1 � 6 � y3 � 4
→ � 2x1 � y3 � �2

→ x1 � y3 � 1

Therefore, after we eliminate x1 algebraically from the other equations, the second com-
plete set of equations becomes

(0) Zx2x2 � y3 � 22
(1) Zx2x2 � 2y3 � 8

(2) Zx1x2 � 	
1
2

	y3 � 1.

The resulting BF solution is x1 � 1, x2 � 8, y3 � 0. By the optimality test, it also is an
optimal solution, so x1 � 1, x2 � 8, x3 � 6 � y3 � 6 is the desired solution for the orig-
inal problem.

If you would like to see another example of the upper bound technique, the Solved
Examples section of the book’s website includes one.

1
	
2

■ 8.4 AN INTERIOR-POINT ALGORITHM

In Sec. 4.9 we discussed a dramatic development in linear programming that occurred in
1984, namely, the invention by Narendra Karmarkar of AT&T Bell Laboratories of a pow-
erful algorithm for solving huge linear programming problems with an approach very dif-
ferent from the simplex method. We now introduce the nature of Karmarkar’s approach
by describing a relatively elementary variant (the “affine” or “affine-scaling” variant) of
his algorithm.6 (Your IOR Tutorial also includes this variant under the title, Solve Auto-
matically by the Interior-Point Algorithm.)

Throughout this section we shall focus on Karmarkar’s main ideas on an intuitive
level while avoiding mathematical details. In particular, we shall bypass certain details
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0 4 6 82

2

4

6

8

x2

x1

(0, 8) optimal

Z � 16 � x1 � 2x2

(3, 4)

(2, 2)

■ FIGURE 8.3
Example for the interior-point
algorithm.

that are needed for the full implementation of the algorithm (e.g., how to find an initial
feasible trial solution) but are not central to a basic conceptual understanding. The ideas
to be described can be summarized as follows:

Concept 1: Shoot through the interior of the feasible region toward an optimal solution.
Concept 2: Move in a direction that improves the objective function value at the fastest

possible rate.
Concept 3: Transform the feasible region to place the current trial solution near its cen-

ter, thereby enabling a large improvement when concept 2 is implemented.

To illustrate these ideas throughout the section, we shall use the following example:

Maximize Z � x1 � 2x2,

subject to

x1 � x2 � 8

and

x1 � 0, x2 � 0.

This problem is depicted graphically in Fig. 8.3, where the optimal solution is seen to be
(x1, x2) � (0, 8) with Z � 16. (We will describe the significance of the arrow in the 
figure shortly.)

You will see that our interior-point algorithm requires a considerable amount of work
to solve this tiny example. The reason is that the algorithm is designed to solve huge prob-
lems efficiently, but is much less efficient than the simplex method (or the graphical method
in this case) for small problems. However, having an example with only two variables will
allow us to depict graphically what the algorithm is doing.

The Relevance of the Gradient for Concepts 1 and 2

The algorithm begins with an initial trial solution that (like all subsequent trial solutions)
lies in the interior of the feasible region, i.e., inside the boundary of the feasible region.
Thus, for the example, the solution must not lie on any of the three lines (x1 � 0, x2 � 0,
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x1 � x2 � 8) that form the boundary of this region in Fig. 8.3. (A trial solution that lies
on the boundary cannot be used because this would lead to the undefined mathematical
operation of division by zero at one point in the algorithm.) We have arbitrarily chosen
(x1, x2) � (2, 2) to be the initial trial solution.

To begin implementing concepts 1 and 2, note in Fig. 8.3 that the direction of move-
ment from (2, 2) that increases Z at the fastest possible rate is perpendicular to (and to-
ward) the objective function line Z � 16 � x1 � 2x2. We have shown this direction by the
arrow from (2, 2) to (3, 4). Using vector addition, we have

(3, 4) � (2, 2) � (1, 2),

where the vector (1, 2) is the gradient of the objective function. (We will discuss gradi-
ents further in Sec. 13.5 in the broader context of nonlinear programming, where algo-
rithms similar to Karmarkar’s have long been used.) The components of (1, 2) are just the
coefficients in the objective function. Thus, with one subsequent modification, the gradi-
ent (1, 2) defines the ideal direction to which to move, where the question of the distance
to move will be considered later.

The algorithm actually operates on linear programming problems after they have been
rewritten in augmented form. Letting x3 be the slack variable for the functional constraint
of the example, we see that this form is

Maximize Z � x1 � 2x2,

subject to

x1 � x2 � x3 � 8

and

x1 � 0, x2 � 0, x3 � 0.

In matrix notation (slightly different from Chap. 5 because the slack variable now is in-
corporated into the notation), the augmented form can be written in general as

Maximize Z � cTx,

subject to

Ax � b

and

x � 0,

where

c � , x � , A � [1, 1, 1], b � [8], 0 �

for the example. Note that cT � [1, 2, 0] now is the gradient of the objective function.
The augmented form of the example is depicted graphically in Fig. 8.4. The feasible

region now consists of the triangle with vertices (8, 0, 0), (0, 8, 0), and (0, 0, 8). Points
in the interior of this feasible region are those where x1 � 0, x2 � 0, and x3 � 0. Each of
these three xj � 0 conditions has the effect of forcing (x1, x2) away from one of the three
lines forming the boundary of the feasible region in Fig. 8.3.
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(2, 2, 4)

(3, 4, 4)
(2, 3, 3)

8

x3

8 x1

(0, 8, 0) optimal 
x2

0

8
■ FIGURE 8.4
Example in augmented form
for the interior-point
algorithm.

Using the Projected Gradient to Implement Concepts 1 and 2

In augmented form, the initial trial solution for the example is (x1, x2, x3) � (2, 2, 4).
Adding the gradient (1, 2, 0) leads to

(3, 4, 4) � (2, 2, 4) � (1, 2, 0).

However, now there is a complication. The algorithm cannot move from (2, 2, 4) to (3, 4,
4), because (3, 4, 4) is infeasible! When x1 � 3 and x2 � 4, then x3 � 8 � x1 � x2 � 1 in-
stead of 4. The point (3, 4, 4) lies on the near side as you look down on the feasible tri-
angle in Fig. 8.4. Therefore, to remain feasible, the algorithm (indirectly) projects the point
(3, 4, 4) down onto the feasible triangle by dropping a line that is perpendicular to this 
triangle. A vector from (0, 0, 0) to (1, 1, 1) is perpendicular to this triangle, so the per-
pendicular line through (3, 4, 4) is given by the equation

(x1, x2, x3) � (3, 4, 4) � �(1, 1, 1),

where � is a scalar. Since the triangle satisfies the equation x1 � x2 � x3 � 8, this per-
pendicular line intersects the triangle at (2, 3, 3). Because

(2, 3, 3) � (2, 2, 4) � (0, 1, �1),
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the projected gradient of the objective function (the gradient projected onto the feasible
region) is (0, 1, �1). It is this projected gradient that defines the direction of movement
from (2, 2, 4) for the algorithm, as shown by the arrow in Fig. 8.4.

A formula is available for computing the projected gradient directly. By defining the
projection matrix P as

P � I � AT(AAT)�1A,

the projected gradient (in column form) is

cp � Pc.

Thus, for the example,

P � � �[1 1 1] �
�1

[1 1 1]

� � 	
1
3

	 [1 1 1]

� � 	
1
3

	 � ,

so

cp � � .

Moving from (2, 2, 4) in the direction of the projected gradient (0, 1, �1) involves
increasing � from zero in the formula

x � � 4�cp � � 4� ,

where the coefficient 4 is used simply to give an upper bound of 1 for � to maintain fea-
sibility (all xj � 0). Note that increasing � to � � 1 would cause x3 to decrease to 
x3 � 4 � 4(1)(�1) � 0, where � � 1 yields x3 � 0. Thus, � measures the fraction used
of the distance that could be moved before the feasible region is left.

How large should � be made for moving to the next trial solution? Because the in-
crease in Z is proportional to �, a value close to the upper bound of 1 is good for giving
a relatively large step toward optimality on the current iteration. However, the problem with
a value too close to 1 is that the next trial solution then is jammed against a constraint
boundary, thereby making it difficult to take large improving steps during subsequent itera-
tions. Therefore, it is very helpful for trial solutions to be near the center of the feasible 
region (or at least near the center of the portion of the feasible region in the vicinity of an
optimal solution), and not too close to any constraint boundary. With this in mind, Karmarkar
has stated for his algorithm that a value as large as � � 0.25 should be “safe.” In practice,
much larger values (for example, � � 0.9) sometimes are used. For the purposes of this
example (and the problems at the end of the chapter), we have chosen � � 0.5. (Your IOR
Tutorial uses � � 0.5 as the default value, but also has � � 0.9 available.)
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A Centering Scheme for Implementing Concept 3

We now have just one more step to complete the description of the algorithm, namely, a
special scheme for transforming the feasible region to place the current trial solution near
its center. We have just described the benefit of having the trial solution near the center,
but another important benefit of this centering scheme is that it keeps turning the direc-
tion of the projected gradient to point more nearly toward an optimal solution as the al-
gorithm converges toward this solution.

The basic idea of the centering scheme is straightforward—simply change the scale
(units) for each of the variables so that the trial solution becomes equidistant from the
constraint boundaries in the new coordinate system. (Karmarkar’s original algorithm uses
a more sophisticated centering scheme.)

For the example, there are three constraint boundaries in Fig. 8.3, each one cor-
responding to a zero value for one of the three variables of the problem in augmented
form, namely, x1 � 0, x2 � 0, and x3 � 0. In Fig. 8.4, see how these three constraint
boundaries intersect the Ax � b (x1 � x2 � x3 � 8) plane to form the boundary of the
feasible region. The initial trial solution is (x1, x2, x3) � (2, 2, 4), so this solution is
2 units away from the x1 � 0 and x2 � 0 constraint boundaries and 4 units away from
the x3 � 0 constraint boundary, when the units of the respective variables are used.
However, whatever these units are in each case, they are quite arbitrary and can be
changed as desired without changing the problem. Therefore, let us rescale the vari-
ables as follows:

x~1 � 	
x
2
1	, x~2 � 	

x
2
2	, x~3 � 	

x
4
3	

in order to make the current trial solution of (x1, x2, x3) � (2, 2, 4) become

(x~1, xx~2, xx~3) � (1, 1, 1).

In these new coordinates (substituting 2x~1 for x1, 2x~2 for x2, and 4x~3 for x3), the problem
becomes

Maximize Z � 2x~1 � 4x~2,

subject to

2x~1 � 2xx~2 � 4x~3 � 8

and

x~1 � 0, x~2 � 0, x~3 � 0,

as depicted graphically in Fig. 8.5.
Note that the trial solution (1, 1, 1) in Fig. 8.5 is equidistant from the three constraint

boundaries xx~1 � 0, x~2 � 0, x~3 � 0. For each subsequent iteration as well, the problem is
rescaled again to achieve this same property, so that the current trial solution always is
(1, 1, 1) in the current coordinates.

Summary and Illustration of the Algorithm

Now let us summarize and illustrate the algorithm by going through the first iteration for
the example, then giving a summary of the general procedure, and finally applying this
summary to a second iteration.

Iteration 1. Given the initial trial solution (x1, x2, x3) � (2, 2, 4), let D be the corre-
sponding diagonal matrix such that x � Dx~, so that
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Example after rescaling for
iteration 1.

D � .

The rescaled variables then are the components of

x~ � D�1x � � .

In these new coordinates, A and c have become

Ã � AD � [1 1 1] � [2 2 4],

c~ � Dc � � .

Therefore, the projection matrix is

P � I � ÃT(ÃÃT)�1Ã

P � � �[2 2 4] �
�1

[2 2 4]
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P � � 	
2
1
4
	 � ,

so that the projected gradient is

cp � Pc~ � � .

Define v as the absolute value of the negative component of cp having the largest absolute
value, so that v � ⏐�2⏐ � 2 in this case. Consequently, in the current coordinates, the
algorithm now moves from the current trial solution (x~1, x~2, x~3) � (1, 1, 1) to the next
trial solution

x~ � � 	
�
v

	cp � � 	
0
2
.5
	 � ,

as shown in Fig. 8.5. (The definition of v has been chosen to make the smallest compo-
nent of x~ equal to zero when � � 1 in this equation for the next trial solution.) In the orig-
inal coordinates, this solution is

� Dx~ � � .

This completes the iteration, and this new solution will be used to start the next iteration.
These steps can be summarized as follows for any iteration.

Summary of the Interior-Point Algorithm

1. Given the current trial solution (x1, x2, . . . , xn), set

D �

2. Calculate Ã � AD and c~ � Dc.
3. Calculate P � I � ÃT(ÃÃT)�1Ã and cp � Pc~.
4. Identify the negative component of cp having the largest absolute value, and set v equal

to this absolute value. Then calculate

x~ � � 	
�
v

	cp,

where � is a selected constant between 0 and 1 (for example, � � 0.5).
5. Calculate x � Dx~ as the trial solution for the next iteration (step 1). (If this trial solu-

tion is virtually unchanged from the preceding one, then the algorithm has virtually
converged to an optimal solution, so stop.)
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Now let us apply this summary to iteration 2 for the example.

Iteration 2
Step 1:
Given the current trial solution (x1, x2, x3) � (	

5
2

	, 	
7
2

	, 2), set

D � .

(Note that the rescaled variables are

� D�1x � � ,

so that the BF solutions in these new coordinates are

x~ � D�1 � , x~ � D�1 � ,

and

x~ � D�1 � ,

as depicted in Fig. 8.6.)
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■ FIGURE 8.6
Example after rescaling for
iteration 2.
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8
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■ FIGURE 8.7
Example after rescaling for
iteration 3.

Step 3:

P � and cp � .

Step 4:

⏐�	
4
1
1
5
	⏐ � ⏐�	

1
1
1
2
	⏐, so v � 	

4
1
1
5
	 and

x~ � � � � .

Step 5:

x � Dx~ � �

is the trial solution for iteration 3.
Since there is little to be learned by repeating these calculations for additional iter-

ations, we shall stop here. However, we do show in Fig. 8.7 the reconfigured feasible re-
gion after rescaling based on the trial solution just obtained for iteration 3. As always,
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the rescaling has placed the trial solution at (x~1, x~2, x~3) � (1, 1, 1), equidistant from the
x~1 � 0, x~2 � 0, and x~3 � 0 constraint boundaries. Note in Figs. 8.5, 8.6, and 8.7 how the
sequence of iterations and rescaling have the effect of “sliding” the optimal solution to-
ward (1, 1, 1) while the other BF solutions tend to slide away. Eventually, after enough
iterations, the optimal solution will lie very near (x~1, x~2, x~3) � (0, 1, 0) after rescaling,
while the other two BF solutions will be very far from the origin on the x~1 and x~3 axes.
Step 5 of that iteration then will yield a solution in the original coordinates very near the
optimal solution of (x1, x2, x3) � (0, 8, 0).

Figure 8.8 shows the progress of the algorithm in the original x1 � x2 coordinate sys-
tem before the problem is augmented. The three points—(x1, x2) � (2, 2), (2.5, 3.5), and
(2.08, 4.92)—are the trial solutions for initiating iterations 1, 2, and 3, respectively. We
then have drawn a smooth curve through and beyond these points to show the trajectory
of the algorithm in subsequent iterations as it approaches (x1, x2) � (0, 8).

The functional constraint for this particular example happened to be an inequality
constraint. However, equality constraints cause no difficulty for the algorithm, since it
deals with the constraints only after any necessary augmenting has been done to convert
them to equality form (Ax � b) anyway. To illustrate, suppose that the only change in the
example is that the constraint x1 � x2 � 8 is changed to x1 � x2 � 8. Thus, the feasible
region in Fig. 8.3 changes to just the line segment between (8, 0) and (0, 8). Given an ini-
tial feasible trial solution in the interior (x1 � 0 and x2 � 0) of this line segment—say,
(x1, x2) � (4, 4)—the algorithm can proceed just as presented in the five-step summary
with just the two variables and A � [1, 1]. For each iteration, the projected gradient points
along this line segment in the direction of (0, 8). With � � 	

1
2

	, iteration 1 leads from (4, 4)
to (2, 6), iteration 2 leads from (2, 6) to (1, 7), etc. (Problem 8.4-3 asks you to verify these
results.)

Although either version of the example has only one functional constraint, having more
than one leads to just one change in the procedure as already illustrated (other than more
extensive calculations). Having a single functional constraint in the example meant that A

(0, 8) optimal

0 2 4 6 8

2

4

6

8

x2

x1

(2, 2)

(2.5, 3.5)

(2.08, 4.92)

■ FIGURE 8.8
Trajectory of the interior-
point algorithm for the
example in the original 
x1-x2 coordinate system.
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had only a single row, so the (ÃÃT)�1 term in step 3 only involved taking the reciprocal
of the number obtained from the vector product ÃÃT. Multiple functional constraints mean
that A has multiple rows, so then the (ÃÃT)�1 term involves finding the inverse of the
matrix obtained from the matrix product ÃÃT.

To conclude, we need to add a comment to place the algorithm into better perspective.
For our extremely small example, the algorithm requires relatively extensive calculations
and then, after many iterations, obtains only an approximation of the optimal solution. By
contrast, the graphical procedure of Sec. 3.1 finds the optimal solution in Fig. 8.3 imme-
diately, and the simplex method requires only one quick iteration. However, do not let this
contrast fool you into downgrading the efficiency of the interior-point algorithm. This al-
gorithm is designed for dealing with big problems that may have many  thousands of func-
tional constraints. The simplex method typically requires thousands of iterations on such
problems. By “shooting” through the interior of the feasible region, the interior-point al-
gorithm tends to require a substantially smaller number of iterations (although with con-
siderably more work per iteration). This sometimes enables an interior-point algorithm to
efficiently solve huge linear programming problems that might even be beyond the 
reach of either the simplex method or the dual simplex method. Therefore, interior-point
algorithms similar to the one presented here plays an important role in linear programming.

See Sec. 4.9 for a comparison of the interior-point approach with the simplex
method. Section 4.9 also discusses the complementary roles of the interior-point ap-
proach and the simplex method, including how they can even be combined into a hybrid
algorithm.

Finally, we should emphasize that this section has provided only a conceptual intro-
duction to the interior-point approach to linear programming by describing a relatively el-
ementary variant of Karmakar’s path-breaking 1984 algorithm. Over the many subsequent
years, a number of top-notch researchers have developed many key advances in the inte-
rior-point approach. The resulting interior-point algorithms now are commonly referred
to as barrier algorithms (or barrier methods). Further coverage of this advanced topic is
beyond the scope of this book. However, the interested reader can find many details in
the selected references listed at the end of this chapter.

The dual simplex method and parametric linear programming are especially valuable for
postoptimality analysis, although they also can be very useful in other contexts.

The upper bound technique provides a way of streamlining the simplex method for
the common situation in which many or all of the variables have explicit upper bounds.
It can greatly reduce the computational effort for large problems.

Mathematical-programming computer packages usually include all three of these pro-
cedures, and they are widely used. Because their basic structure is based largely upon the
simplex method as presented in Chap. 4, they retain the exceptional computational effi-
ciency possessed by the simplex method.

Various other special-purpose algorithms also have been developed to exploit the spe-
cial structure of particular types of linear programming problems (such as those to be dis-
cussed in Chaps. 9 and 10). Much research continues to be done in this area.

Karmarkar’s interior-point algorithm initiated another key line of research into how
to solve linear programming problems. Variants of this algorithm now provide a power-
ful approach for efficiently solving some very large problems.

■ 8.5 CONCLUSIONS
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Set Up for the Simplex Method—Interactive Only
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The symbols to the left of some of the problems (or their parts)
have the following meaning:

I: We suggest that you use one of the procedures in IOR
Tutorial (the print-out records your work). For parametric
linear programming, this only applies to � � 0, after which
you should proceed manually.

C: Use the computer to solve the problem by using the au-
tomatic procedure for the interior-point algorithm in IOR
Tutorial.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

8.1-1. Consider the following problem.

Maximize Z � �x1 � x2,

subject to

x1 � x2 � 8
x2 � 3

�x1 � x2 � 2

and

x1 � 0, x2 � 0.

I (a) Solve this problem graphically.
(b) Use the dual simplex method manually to solve this problem.
(c) Trace graphically the path taken by the dual simplex method.

8.1-2.* Use the dual simplex method manually to solve the fol-
lowing problem.

Minimize Z � 5x1 � 2x2 � 4x3,

subject to

3x1 � x2 � 2x3 � 4
6x1 � 3x2 � 5x3 � 10

and

x1 � 0, x2 � 0, x3 � 0.

8.1-3. Use the dual simplex method manually to solve the following
problem.

Minimize Z � 7x1 � 2x2 � 5x3 � 4x4,

subject to

2x1 � 4x2 � 7x3 � x4 � 5
8x1 � 4x2 � 6x3 � 4x4 � 8
3x1 � 8x2 � x3 � 4x4 � 4

and

xj � 0, for j � 1, 2, 3, 4.

8.1-4. Consider the following problem.

Maximize Z � 3x1 � 2x2,

subject to

3x1 � x2 � 12
x1 � x2 � 6

5x1 � 3x2 � 27

and

x1 � 0, x2 � 0.

I (a) Solve by the original simplex method (in tabular form). Iden-
tify the complementary basic solution for the dual problem
obtained at each iteration.

(b) Solve the dual of this problem manually by the dual simplex
method. Compare the resulting sequence of basic solutions
with the complementary basic solutions obtained in part (a).

8.1-5. Consider the example for case 1 of sensitivity analysis given
in Sec. 7.2, where the initial simplex tableau of Table 4.8 is mod-
ified by changing b2 from 12 to 24, thereby changing the respec-
tive entries in the right-side column of the final simplex tableau to
54, 6, 12, and �2. Starting from this revised final simplex tableau,
use the dual simplex method to obtain the new optimal solution
shown in Table 7.5. Show your work.

8.1-6.* Consider part (a) of Prob. 7.2-2. Use the dual simplex method
manually to reoptimize, starting from the revised final tableau.

8.2-1.* Consider the following problem.

Maximize Z � 8x1 � 24x2,

subject to

x1 � 2x2 � 10
2x1 � x2 � 10

and

x1 � 0, x2 � 0.

Suppose that Z represents profit and that it is possible to modify
the objective function somewhat by an appropriate shifting of key
personnel between the two activities. In particular, suppose that
the unit profit of activity 1 can be increased above 8 (to a max-
imum of 18) at the expense of decreasing the unit profit of ac-
tivity 2 below 24 by twice the amount. Thus, Z can actually be
represented as

Z(�) � (8 � �)x1 � (24 � 2�)x2,

where � is also a decision variable such that 0 � � � 10.
I (a) Solve the original form of this problem graphically. Then ex-

tend this graphical procedure to solve the parametric exten-
sion of the problem; i.e., find the optimal solution and the
optimal value of Z(�) as a function of �, for 0 � � � 10.

I (b) Find an optimal solution for the original form of the prob-
lem by the simplex method. Then use parametric linear pro-
gramming to find an optimal solution and the optimal value
of Z(�) as a function of �, for 0 � � � 10. Plot Z(�).

■ PROBLEMS
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(c) Determine the optimal value of �. Then indicate how this op-
timal value could have been identified directly by solving only
two ordinary linear programming problems. (Hint: A convex
function achieves its maximum at an endpoint.)

I 8.2-2. Use parametric linear programming to find the optimal so-
lution for the following problem as a function of �, for 0 � � � 20.

Maximize Z(�) � (20 � 4�)x1 � (30 � 3�)x2 � 5x3,

subject to

3x1 � 3x2 � x3 � 30
8x1 � 6x2 � 4x3 � 75
6x1 � x2 � x3 � 45

and

x1 � 0, x2 � 0, x3 � 0.

I 8.2-3. Consider the following problem.

Maximize Z(�) � (10 � �)x1 � (12 � �)x2 � (7 � 2�)x3,

subject to

x1 � 2x2 � 2x3 � 30
x1 � x2 � x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.

(a) Use parametric linear programming to find an optimal solu-
tion for this problem as a function of �, for � � 0.

(b) Construct the dual model for this problem. Then find an opti-
mal solution for this dual problem as a function of �, for � � 0,
by the method described in the latter part of Sec. 8.2. Indicate
graphically what this algebraic procedure is doing. Compare the
basic solutions obtained with the complementary basic solutions
obtained in part (a).

I 8.2-4.* Use the parametric linear programming procedure for
making systematic changes in the bi parameters to find an opti-
mal solution for the following problem as a function of �, for 
0 � � � 25.

Maximize Z(�) � 2x1 � x2,

subject to

x1 � 10 � 2�
x1 � x2 � 25 � �

x2 � 10 � 2�

and

x1 � 0, x2 � 0.

Indicate graphically what this algebraic procedure is doing.

I 8.2-5. Use parametric linear programming to find an optimal so-
lution for the following problem as a function of �, for 0 � � � 30.

Maximize Z(�) � 5x1 � 6x2 � 4x3 � 7x4,

subject to

3x1 � 2x2 � x3 � 3x4 � 135 � 2�
2x1 � 4x2 � x3 � 2x4 � 78 � �
x1 � 2x2 � x3 � 2x4 � 30 � �

and

xj � 0, for j � 1, 2, 3, 4.

Then identify the value of � that gives the largest optimal value 
of Z(�).

8.2-6. Consider Prob. 7.2-3. Use parametric linear programming
to find an optimal solution as a function of � for �20 � � � 0.
(Hint: Substitute ��� for �, and then increase �� from zero.)

8.2-7. Consider the Z*(�) function shown in Fig. 8.1 for parametric
linear programming with systematic changes in the cj parameters.
(a) Explain why this function is piecewise linear.
(b) Show that this function must be convex.

8.2-8. Consider the Z*(�) function shown in Fig. 8.2 for parametric
linear programming with systematic changes in the bi parameters.
(a) Explain why this function is piecewise linear.
(b) Show that this function must be concave.

8.2-9. Let

Z* � max 	�
n

j�1
cjxj
,

subject to

�
n

j�1
aijxj � bi, for i � 1, 2, . . . , m,

and

xj � 0, for j � 1, 2, . . . , n

(where the aij, bi, and cj are fixed constants), and let (y1*, y2*, . . . ,
y*m) be the corresponding optimal dual solution. Then let

Z** � max 	�
n

j�1
cjxj
,

subject to

�
n

j�1
aijxj � bi � ki, for i � 1, 2, . . . , m,

and

xj � 0, for j � 1, 2, . . . , n,

where k1, k2, . . . , km are given constants. Show that

Z** � Z* � �
m

i�1
kiyi*.

8.3-1. Consider the following problem.

Maximize Z � 2x1 � x2,
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subject to

x1 � x2 � 5
x1 � 10

x2 � 10

and

x1 � 0, x2 � 0.

I (a) Solve this problem graphically.
(b) Use the upper bound technique manually to solve this problem.
(c) Trace graphically the path taken by the upper bound technique.

8.3-2.* Use the upper bound technique manually to solve the fol-
lowing problem.

Maximize Z � x1 � 3x2 � 2x3,

subject to

x2 � 2x3 � 1
2x1 � x2 � 2x3 � 8

x1 � 1
x2 � 3

x3 � 2

and

x1 � 0, x2 � 0, x3 � 0.

8.3-3. Use the upper bound technique manually to solve the fol-
lowing problem.

Maximize Z � 2x1 � 3x2 � 2x3 � 5x4,

subject to

2x1 � 2x2 � x3 � 2x4 � 5
x1 � 2x2 � 3x3 � 4x4 � 5

and

0 � xj � 1, for j � 1, 2, 3, 4.

8.3-4. Use the upper bound technique manually to solve the fol-
lowing problem.

Maximize Z � 2x1 � 5x2 � 3x3 � 4x4 � x5,

subject to

x1 � 3x2 � 2x3 � 3x4 � x5 � 6
4x1 � 6x2 � 5x3 � 7x4 � x5 � 15

and

0 � xj � 1, for j � 1, 2, 3, 4, 5.

8.3-5. Simultaneously use the upper bound technique and the dual
simplex method manually to solve the following problem.

Minimize Z � 3x1 � 4x2 � 2x3,

subject to

x1 � x2 � x3 � 15
x2 � x3 � 10

and

0 � x1 � 25, 0 � x2 � 5, 0 � x3 � 15.

C 8.4-1. Reconsider the example used to illustrate the interior-
point algorithm in Sec. 8.4. Suppose that (x1, x2) � (1, 3) were
used instead as the initial feasible trial solution. Perform two iter-
ations manually, starting from this solution. Then use the automatic
procedure in your IOR Tutorial to check your work.

8.4-2. Consider the following problem.

Maximize Z � 3x1 � x2,

subject to

x1 � x2 � 4

and

x1 � 0, x2 � 0.

I (a) Solve this problem graphically. Also identify all CPF solutions.
C (b) Starting from the initial trial solution (x1, x2) � (1, 1), per-

form four iterations of the interior-point algorithm presented
in Sec. 8.4 manually. Then use the automatic procedure in
your IOR Tutorial to check your work.

(c) Draw figures corresponding to Figs. 8.4, 8.5, 8.6, 8.7, and 8.8
for this problem. In each case, identify the basic (or corner-
point) feasible solutions in the current coordinate system. (Trial
solutions can be used to determine projected gradients.)

8.4-3. Consider the following problem.

Maximize Z � x1 � 2x2,

subject to

x1 � x2 � 8

and

x1 � 0, x2 � 0.

C (a) Near the end of Sec. 8.4, there is a discussion of what the
interior-point algorithm does on this problem when starting
from the initial feasible trial solution (x1, x2) � (4, 4). Ver-
ify the results presented there by performing two iterations
manually. Then use the automatic procedure in your IOR
Tutorial to check your work.

(b) Use these results to predict what subsequent trial solutions
would be if additional iterations were to be performed.

(c) Suppose that the stopping rule adopted for the algorithm in
this application is that the algorithm stops when two suc-
cessive trial solutions differ by no more than 0.01 in any
component. Use your predictions from part (b) to predict the
final trial solution and the total number of iterations required
to get there. How close would this solution be to the opti-
mal solution (x1, x2) � (0, 8)?
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8.4-4. Consider the following problem.

Maximize Z � x1 � x2,

subject to

x1 � 2x2 � 9
2x1 � x2 � 9

and

x1 � 0, x2 � 0.

I (a) Solve the problem graphically.
(b) Find the gradient of the objective function in the original 

x1-x2 coordinate system. If you move from the origin in the
direction of the gradient until you reach the boundary of the
feasible region, where does it lead relative to the optimal
solution?

C (c) Starting from the initial trial solution (x1, x2) � (1, 1), use
your IOR Tutorial to perform 10 iterations of the interior-
point algorithm presented in Sec. 8.4.

C (d) Repeat part (c) with � � 0.9.

8.4-5. Consider the following problem.

Maximize Z � 2x1 � 5x2 �7x3,

subject to

x1 � 2x2 � 3x3 � 6

and

x1 � 0, x2 � 0, x3 � 0.

I (a) Graph the feasible region.
(b) Find the gradient of the objective function, and then find the

projected gradient onto the feasible region.
(c) Starting from the initial trial solution (x1, x2, x3) � (1, 1, 1),

perform two iterations of the interior-point algorithm presented
in Sec. 8.4 manually.

C (d) Starting from this same initial trial solution, use your IOR
Tutorial to perform 10 iterations of this algorithm.

C 8.4-6. Starting from the initial trial solution (x1, x2) � (2, 2),
use your IOR Tutorial to apply 15 iterations of the interior-point
algorithm presented in Sec. 8.4 to the Wyndor Glass Co. prob-
lem presented in Sec. 3.1. Also draw a figure like Fig. 8.8 to show
the trajectory of the algorithm in the original x1-x2 coordinate
system.

PROBLEMS 317
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9C H A P T E R

The Transportation 
and Assignment Problems 

318

Chapter 3 emphasized the wide applicability of linear programming. We continue to
broaden our horizons in this chapter by discussing two particularly important (and re-

lated) types of linear programming problems. One type, called the transportation problem,
received this name because many of its applications involve determining how to optimally
transport goods. However, some of its important applications (e.g., production scheduling)
actually have nothing to do with transportation.

The second type, called the assignment problem, involves such applications as as-
signing people to tasks. Although its applications appear to be quite different from those
for the transportation problem, we shall see that the assignment problem can be viewed
as a special type of transportation problem.

The next chapter will introduce additional special types of linear programming prob-
lems involving networks, including the minimum cost flow problem (Sec. 10.6). There we
shall see that both the transportation and assignment problems actually are special cases
of the minimum cost flow problem. We introduce the network representation of the trans-
portation and assignment problems in this chapter.

Applications of the transportation and assignment problems tend to require a very
large number of constraints and variables, so a straightforward computer application of
the simplex method may require an exorbitant computational effort. Fortunately, a key
characteristic of these problems is that most of the aij coefficients in the constraints are
zeros, and the relatively few nonzero coefficients appear in a distinctive pattern. As a re-
sult, it has been possible to develop special streamlined algorithms that achieve dramatic
computational savings by exploiting this special structure of the problem. Therefore, it is
important to become sufficiently familiar with these special types of problems that you
can recognize them when they arise and apply the proper computational procedure.

To describe special structures, we shall introduce the table (matrix) of constraint coeffi-
cients shown in Table 9.1, where aij is the coefficient of the jth variable in the ith functional
constraint. Later, portions of the table containing only coefficients equal to zero will be in-
dicated by leaving them blank, whereas blocks containing nonzero coefficients will be shaded.

After presenting a prototype example for the transportation problem, we describe the
special structure in its model and give additional examples of its applications. Section 9.2
presents the transportation simplex method, a special streamlined version of the simplex
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9.1 THE TRANSPORTATION PROBLEM 319

method for efficiently solving transportation problems. (You will see in Sec. 10.7 that this
algorithm is related to the network simplex method, another streamlined version of the
simplex method for efficiently solving any minimum cost flow problem, including both
transportation and assignment problems.) Section 9.3 focuses on the assignment problem.
Section 9.4 then presents a specialized algorithm, called the Hungarian algorithm, for
solving only assignment problems very efficiently.

The book’s website also provides a supplement to this chapter. It is a complete case
study (including the analysis) that illustrates how a corporate decision regarding where to
locate a new facility (an oil refinery in this case) may require solving many transporta-
tion problems. (One of the cases for this chapter asks you to continue the analysis for an
extension of this case study.)

■ 9.1 THE TRANSPORTATION PROBLEM

Prototype Example

One of the main products of the P & T COMPANY is canned peas. The peas are pre-
pared at three canneries (near Bellingham, Washington; Eugene, Oregon; and Albert Lea,
Minnesota) and then shipped by truck to four distributing warehouses in the western
United States (Sacramento, California; Salt Lake City, Utah; Rapid City, South Dakota;
and Albuquerque, New Mexico), as shown in Fig. 9.1. Because the shipping costs are a
major expense, management is initiating a study to reduce them as much as possible. For
the upcoming season, an estimate has been made of the output from each cannery, and
each warehouse has been allocated a certain amount from the total supply of peas. This
information (in units of truckloads), along with the shipping cost per truckload for each
cannery-warehouse combination, is given in Table 9.2. Thus, there are a total of 300
truckloads to be shipped. The problem now is to determine which plan for assigning these
shipments to the various cannery-warehouse combinations would minimize the total ship-
ping cost.

By ignoring the geographical layout of the canneries and warehouses, we can pro-
vide a network representation of this problem in a simple way by lining up all the can-
neries in one column on the left and all the warehouses in one column on the right. This
representation is shown in Fig. 9.2. The arrows show the possible routes for the truck-
loads, where the number next to each arrow is the shipping cost per truckload for that
route. A square bracket next to each location gives the number of truckloads to be shipped
out of that location (so that the allocation into each warehouse is given as a negative
number).

The problem depicted in Fig. 9.2 is actually a linear programming problem of the
transportation problem type. To formulate the model, let Z denote total shipping cost, and
let xij (i � 1, 2, 3; j � 1, 2, 3, 4) be the number of truckloads to be shipped from cannery

■ TABLE 9.1 Table of
constraint coefficients
for linear programming

A �

⎤
⎥
⎥
⎥
⎦

a1n

a2n

amn

…
…

…

a12

a22

am2

a11

a21

am1

⎡
⎢
⎢
⎢
⎣

………………………
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Procter & Gamble (P&G) is the world’s largest and
most profitable consumer products company. It makes
and markets hundreds of brands of consumer goods
worldwide and had over $83 billion in sales in 2012. 
Fortune magazine ranked the company at 5th place in its
“World’s Most Admired Companies” list in 2011. 

The company has grown continuously over its long
history tracing back to the 1830s. To maintain and ac-
celerate that growth, a major OR study was undertaken
to strengthen P&G’s global effectiveness. Prior to the
study, the company’s supply chain consisted of hundreds
of suppliers, over 50 product categories, over 60 plants,
15 distribution centers, and over 1,000 customer zones.
However, as the company moved toward global brands,
management realized that it needed to consolidate plants
to reduce manufacturing expenses, improve speed to mar-
ket, and reduce capital investment. Therefore, the study
focused on redesigning the company’s production and

distribution system for its North American operations.
The result was a reduction in the number of North 
American plants by almost 20 percent, saving over $200
million in pretax costs per year.

A major part of the study revolved around formulat-
ing and solving transportation problems for individual
product categories. For each option regarding the plants
to keep open, and so forth, solving the corresponding
transportation problem for a product category showed
what the distribution cost would be for shipping the prod-
uct category from those plants to the distribution centers
and customer zones. 

Source: J. D. Camm, T. E. Chorman, F. A. Dill, J. R. Evans,
D. J. Sweeney, and G. W. Wegryn: “Blending OR/MS, Judg-
ment, and GIS: Restructuring P & G’s Supply Chain,” Inter-
faces, 27(1): 128–142, Jan.–Feb. 1997. (A link to this article is
provided on our website, www.mhhe.com/hillier.)

An Application Vignette

CANNERY 1
Bellingham

CANNERY 2
Eugene CANNERY 3

Albert Lea 

WAREHOUSE 4
Albuquerque

WAREHOUSE 3
Rapid City

WAREHOUSE 2
Salt Lake City

WAREHOUSE 1
Sacramento

■ FIGURE 9.1
Location of canneries and warehouses for the P & T Co. problem.
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9.1 THE TRANSPORTATION PROBLEM 321

i to warehouse j. Thus, the objective is to choose the values of these 12 decision variables
(the xij) so as to

Minimize Z � 464x11 � 513x12 � 654x13 � 867x14 � 352x21 � 416x22

� 690x23 � 791x24 � 995x31 � 682x32 � 388x33 � 685x34,

subject to the constraints

x11 � x12 � x13 � x14 � x21 � x21 � x21 � x21 � x21 � x21 � x21 � x21 � 75
� x21 � x21 � x21 � x21x21 � x22 � x23 � x24 � x21 � x21 � x21 � x21 � 125
� x21 � x21 � x21 � x21 � x21 � x21 � x21 � x21x31 � x32 � x33 � x34 � 100
x11 � x21 � x21 � x21 � x21 � x21 � x21 � x21 � x31 � x21 � x21 � x21 � 80
x11 � x12 � x21 � x21 � x21 � x22 � x21 � x21 �x21 � x32 � x21 � x21 � 65
x11 � x12 � x13 � x21 � x21 � x21 � x23 � x21 � x21 � x21 � x33 � x21 � 70
x11 � x12 � x13 � x14 � x21 � x21 � x21 � x24 � x21 � x21 � x21 � x34 � 85

and

xij � 0 (i � 1, 2, 3; j � 1, 2, 3, 4).

■ TABLE 9.2 Shipping data for P & T Co.

Shipping Cost ($) per Truckload

Warehouse

1 2 3 4 Output

1 464 513 654 867 75
Cannery 2 352 416 690 791 125

3 995 682 388 685 100

Allocation 80 65 70 85

[75]

[125]

[100]

[�80]

[�65]

[�70]

[�85]

C1

C2

C3 

W1

W2

W3

W4

464

352

995

867

654

513

416

690
791

682

388

685

■ FIGURE 9.2
Network representation of
the P & T Co. problem.
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322 CHAPTER 9 THE TRANSPORTATION AND ASSIGNMENT PROBLEMS

Table 9.3 shows the constraint coefficients. As you will see later in this section, it is the
special structure in the pattern of these coefficients that distinguishes this problem as a
transportation problem, not its context. However, we first will describe the various other
characteristics of the transportation problem model.

The Transportation Problem Model

To describe the general model for the transportation problem, we need to use terms that
are considerably less specific than those for the components of the prototype example. In
particular, the general transportation problem is concerned (literally or figuratively) with
distributing any commodity from any group of supply centers, called sources, to any group
of receiving centers, called destinations, in such a way as to minimize the total distribu-
tion cost. The correspondence in terminology between the prototype example and the gen-
eral problem is summarized in Table 9.4.

As indicated by the fourth and fifth rows of the table, each source has a certain 
supply of units to distribute to the destinations, and each destination has a certain 
demand for units to be received from the sources. The model for a transportation prob-
lem makes the following assumption about these supplies and demands:

The requirements assumption: Each source has a fixed supply of units, where
this entire supply must be distributed to the destinations. (We let si denote the
number of units being supplied by source i, for i � 1, 2, . . . , m.) Similarly, each
destination has a fixed demand for units, where this entire demand must be re-
ceived from the sources. (We let dj denote the number of units being received by
destination j, for j � 1, 2, . . . , n.)

This assumption holds for the P & T Co. problem since each cannery (source) has a fixed
output and each warehouse (destination) has a fixed allocation.

■ TABLE 9.4 Terminology for the transportation problem

Prototype Example General Problem

Truckloads of canned peas Units of a commodity
Three canneries m sources
Four warehouses n destinations
Output from cannery i Supply si from source i
Allocation to warehouse j Demand dj at destination j
Shipping cost per truckload from cannery Cost cij per unit distributed from source 
i to warehouse j i to destination j

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎧⎪
⎨⎪
⎩

⎧
⎨
⎩

■ TABLE 9.3 Constraint coefficients for P & T Co.

Coefficient of:

x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34

1 1 1 1
Cannery

1 1 1 1
constraints

1 1 1 1

A � 1 1 1
1 1 1 Warehouse

1 1 1 constraints
1 1 1
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9.1 THE TRANSPORTATION PROBLEM 323

This assumption that there is no leeway in the amounts to be sent or received means
that there needs to be a balance between the total supply from all sources and the total
demand at all destinations.

The feasible solutions property: A transportation problem will have feasible
solutions if and only if

�
m

i�1
si � �

n

j�1
dj.

Fortunately, these sums are equal for the P & T Co. since Table 9.2 indicates that the sup-
plies (outputs) sum to 300 truckloads and so do the demands (allocations).

In some real problems, the supplies actually represent maximum amounts (rather than
fixed amounts) to be distributed. Similarly, in other cases, the demands represent maxi-
mum amounts (rather than fixed amounts) to be received. Such problems do not quite fit
the model for a transportation problem because they violate the requirements assumption.
However, it is possible to reformulate the problem so that they then fit this model by in-
troducing a dummy destination or a dummy source to take up the slack between the ac-
tual amounts and maximum amounts being distributed. We will illustrate how this is done
with two examples at the end of this section.

The last row of Table 9.4 refers to a cost per unit distributed. This reference to a unit
cost implies the following basic assumption for any transportation problem:

The cost assumption: The cost of distributing units from any particular source to
any particular destination is directly proportional to the number of units distrib-
uted. Therefore, this cost is just the unit cost of distribution times the number of
units distributed. (We let cij denote this unit cost for source i and destination j.)

This assumption holds for the P & T Co. problem since the cost of shipping peas from
any cannery to any warehouse is directly proportional to the number of truckloads being
shipped.

The only data needed for a transportation problem model are the supplies, demands,
and unit costs. These are the parameters of the model. All these parameters can be sum-
marized conveniently in a single parameter table as shown in Table 9.5.

The model: Any problem (whether involving transportation or not) fits the
model for a transportation problem if it can be described completely in terms
of a parameter table like Table 9.5 and it satisfies both the requirements assump-
tion and the cost assumption. The objective is to minimize the total cost of distrib-
uting the units. All the parameters of the model are included in this parameter table.

■ TABLE 9.5 Parameter table for the transportation problem

Cost per Unit Distributed

Destination

1 2 … n Supply

1 c11 c12
… c1n s1

2 c21 c22
… c2n s2Source

� �

m cm1 cm2
… cmn sm

Demand d1 d2
… dn

…………………………………………………………………
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324 CHAPTER 9 THE TRANSPORTATION AND ASSIGNMENT PROBLEMS

Therefore, formulating a problem as a transportation problem only requires filling
out a parameter table in the format of Table 9.5. (The parameter table for the P & T Co.
problem is shown in Table 9.2.) Alternatively, the same information can be provided by
using the network representation of the problem shown in Fig. 9.3 (as was done in 
Fig. 9.2 for the P & T Co. problem). Some problems that have nothing to do with trans-
portation also can be formulated as a transportation problem in either of these two ways.
The Solved Examples section of the book’s website includes another example of such
a problem.

Since a transportation problem can be formulated simply by either filling out a para-
meter table or drawing its network representation, it is not necessary to write out a for-
mal mathematical model for the problem. However, we will go ahead and show you this
model once for the general transportation problem just to emphasize that it is indeed a
special type of linear programming problem.

Letting Z be the total distribution cost and xij (i � 1, 2, . . . , m; j � 1, 2, . . . , n) be
the number of units to be distributed from source i to destination j, the linear program-
ming formulation of this problem is

Minimize Z � �
m

i�1
�
n

j�1
cijxij,

subject to

�
n

j�1
xij � si for i � 1, 2, . . . , m,

D1 S1 [s1] [�d1]

S2 D2 [s2] [�d2]

Sm Dn [sm] [�dn]

c11

c22

c m1 

c m2 

cmn 

c
2n

c12

c
1n

c21

■ FIGURE 9.3
Network representation of
the transportation problem.
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9.1 THE TRANSPORTATION PROBLEM 325

�
m

i�1

xij � dj for j � 1, 2, . . . , n,

and

xij � 0, for all i and j.

Note that the resulting table of constraint coefficients has the special structure shown in 
Table 9.6. Any linear programming problem that fits this special formulation is of the trans-
portation problem type, regardless of its physical context. In fact, there have been numerous 
applications unrelated to transportation that have been fitted to this special structure, as we
shall illustrate in the next example later in this section. (The assignment problem described
in Sec. 9.3 is an additional example.) This is one of the reasons why the transportation prob-
lem is considered such an important special type of linear programming problem.

For many applications, the supply and demand quantities in the model (the si and dj)
have integer values, and implementation will require that the distribution quantities (the xij)
also have integer values. Fortunately, because of the special structure shown in Table 9.6,
all such problems have the following property:

Integer solutions property: For transportation problems where every si and dj

have an integer value, all the basic variables (allocations) in every basic feasible
(BF) solution (including an optimal one) also have integer values.

The solution procedure described in Sec. 9.2 deals only with BF solutions, so it auto-
matically will obtain an integer optimal solution for this case. (You will be able to see why
this solution procedure actually gives a proof of the integer solutions property after you
learn the procedure; Prob. 9.2-20 guides you through the reasoning involved.) Therefore,
it is unnecessary to add a constraint to the model that the xij must have integer values.

As with other linear programming problems, the usual software options (Excel
with either the standard Solver or ASPE, LINGO/LINDO, MPL/Solvers) are available
to you for setting up and solving transportation problems (and assignment problems),
as demonstrated in the files for this chapter in your OR Courseware. However, because
the Excel approach now is somewhat different from what you have seen previously,
we next describe this approach.

Using Excel to Formulate and Solve Transportation Problems

As described in Sec. 3.5, the process of using a spreadsheet to formulate a linear program-
ming model for a problem begins by developing answers to three questions. What are the
decisions to be made? What are the constraints on these decisions? What is the overall mea-
sure of performance for these decisions? Since a transportation problem is a special type of

■ TABLE 9.6 Constraint coefficients for the transportation problem

Coefficient of:

x11 x12
… x1n x21 x22

… x2n
… xm1 xm2

… xmn

1 1 … 1
1 1 … 1 Supply

constraints
1 1 … 1

A �
1 1 1

1 1 … 1 Demand
constraints

1 1 1

………

…
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎧⎪
⎨⎪
⎩

⎧⎪
⎨⎪
⎩
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326 CHAPTER 9 THE TRANSPORTATION AND ASSIGNMENT PROBLEMS

linear programming problem, addressing these questions also is a suitable starting point for
formulating this kind of problem on a spreadsheet. The design of the spreadsheet then re-
volves around laying out this information and the associated data in a logical way.

To illustrate, consider the P & T Co. problem again. The decisions to be made are
the number of truckloads of peas to ship from each cannery to each warehouse. The con-
straints on these decisions are that the total amount shipped from each cannery must equal
its output (the supply) and the total amount received at each warehouse must equal its al-
location (the demand). The overall measure of performance is the total shipping cost, so
the objective is to minimize this quantity.

This information leads to the spreadsheet model shown in Fig. 9.4. All the data pro-
vided in Table 9.2 are displayed in the following data cells: UnitCost (D5:G7), Supply
(J12:J14), and Demand (D17:G17). The decisions on shipping quantities are given by the
changing cells, ShipmentQuantity (D12:G14). The output cells are TotalShipped (H12:H14)
and TotalReceived (D15:G15), where the SUM functions entered into these cells are shown
near the bottom of Fig. 9.4. The constraints, TotalShipped (H12:H14) = Supply (J12:J14)
and TotalReceived (D15:G15) = Demand (D17:G17), have been specified on the spread-
sheet and entered into Solver. The objective cell is TotalCost (J17), where its SUMPROD-
UCT function is shown in the lower right-hand corner of Fig. 9.4. The Solver parameters
box specifies that the objective is to minimize this objective cell. Choosing the Make Vari-
ables Nonnegative option specifies that all shipment quantities must be nonnegative. The
Simplex LP solving method is chosen because this is a linear programming problem.

To begin the process of solving the problem, any value (such as 0) can be entered in
each of the changing cells. After clicking on the Solve button, Solver will use the sim-
plex method to solve the transportation problem and determine the best value for each of

2
1

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

P&T Co. Distribution Problem
A B C D E F G H I J

Unit Cost Destination (Warehouse)
Sacramento Salt Lake City Rapid City Albuquerque

Source Bellingham $464 $513 $654 $867
(Cannery) Eugene $352 $416 $690 $791

Albert Lea $995 $682 $388 $685

Shipment Quantity Destination (Warehouse)
(Truckloads) Sacramento Salt Lake City Rapid City Albuquerque Total Shipped Supply

Source Bellingham 0 20 0 55 75 = 75
(Cannery) Eugene 80 45 0 0 125 = 125

Albert Lea 0 0 70 30 100 = 100
Total Received 80 65 70 85

= = = = Total Cost
Demand 80 65 70 85 152,535$   

To:Min
By Changing Variable Cells:

ShipmentQuantity
Subject to the Constraints:

TotalReceived = Demand
TotalShipped = Supply

Solver Options:
Make Variables Nonnegative
Solving Method: Simplex LP

Solver Parameters
Set Objective Cell:Total Cost■ FIGURE 9.4

A spreadsheet formulation of
the P & T Co. problem as a
transportation problem,
including the objective cell
TotalCost (J17) and the other
output cells TotalShipped
(H12:H14) and TotalReceived
(D15:G15), as well as the
specifications needed to set
up the model. The changing
cells ShipmentQuantity
(D12:G14) show the optimal
shipping plan obtained by 
Solver.
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the decision variables. This optimal solution is shown in ShipmentQuantity (D12:G14) in
Fig. 9.4, along with the resulting value $152,535 in the objective cell TotalCost (J17).

Note that Solver simply uses the general simplex method to solve a transportation
problem rather than a streamlined version that is specially designed for solving trans-
portation problems very efficiently, such as the transportation simplex method presented
in the next section. Therefore, a software package that includes such a streamlined ver-
sion should solve a large transportation problem much faster than Solver.

We mentioned earlier that some problems do not quite fit the model for a transportation
problem because they violate the requirements assumption, but that it is possible to re-
formulate such a problem to fit this model by introducing a dummy destination or a dummy
source. When using Solver, it is not necessary to do this reformulation since the simplex
method can solve the original model where the supply constraints are in � form or the
demand constraints are in � form. (The Excel files for the next two examples in your OR
Courseware illustrate spreadsheet formulations that retain either the supply constraints or
the demand constraints in their original inequality form.) However, the larger the prob-
lem, the more worthwhile it becomes to do the reformulation and use the transportation
simplex method (or equivalent) instead with another software package.

The next two examples illustrate how to do this kind of reformulation.

An Example with a Dummy Destination

The NORTHERN AIRPLANE COMPANY builds commercial airplanes for various airline
companies around the world. The last stage in the production process is to produce the jet
engines and then to install them (a very fast operation) in the completed airplane frame.
The company has been working under some contracts to deliver a considerable number of
airplanes in the near future, and the production of the jet engines for these planes must
now be scheduled for the next four months.

To meet the contracted dates for delivery, the company must supply engines for in-
stallation in the quantities indicated in the second column of Table 9.7. Thus, the cumu-
lative number of engines produced by the end of months 1, 2, 3, and 4 must be at least
10, 25, 50, and 70, respectively.

The facilities that will be available for producing the engines vary according to other
production, maintenance, and renovation work scheduled during this period. The result-
ing monthly differences in the maximum number that can be produced and the cost 
(in millions of dollars) of producing each one are given in the third and fourth columns
of Table 9.7.

Because of the variations in production costs, it may well be worthwhile to produce
some of the engines a month or more before they are scheduled for installation, and this
possibility is being considered. The drawback is that such engines must be stored until
the scheduled installation (the airplane frames will not be ready early) at a storage cost
of $15,000 per month (including interest on expended capital) for each engine,1 as shown
in the rightmost column of Table 9.7.

The production manager wants a schedule developed for the number of engines to be
produced in each of the four months so that the total of the production and storage costs
will be minimized.

Formulation. One way to formulate a mathematical model for this problem is to let xj

be the number of jet engines to be produced in month j, for j � 1, 2, 3, 4. By using only

1For modeling purposes, assume that this storage cost is incurred at the end of the month for just those engines
that are being held over into the next month. Thus, engines that are produced in a given month for installation
in the same month are assumed to incur no storage cost.
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these four decision variables, the problem can be formulated as a linear programming
problem that does not fit the transportation problem type. (See Prob. 9.2-18.)

On the other hand, by adopting a different viewpoint, we can instead formulate the
problem as a transportation problem that requires much less effort to solve. This view-
point will describe the problem in terms of sources and destinations and then identify the
corresponding xij, cij, si, and dj. (See if you can do this before reading further.)

Because the units being distributed are jet engines, each of which is to be scheduled
for production in a particular month and then installed in a particular (perhaps different)
month,

Source i � production of jet engines in month i (i � 1, 2, 3, 4)

Destination j � installation of jet engines in month j ( j � 1, 2, 3, 4)

xij � number of engines produced in month i for installation in month j

cij � cost associated with each unit of xij

� �
si � ?

dj � number of scheduled installations in month j.

The corresponding (incomplete) parameter table is given in Table 9.8. Thus, it remains to
identify the missing costs and the supplies.

Since it is impossible to produce engines in one month for installation in an earlier
month, xij must be zero if i � j. Therefore, there is no real cost that can be associated with
such xij. Nevertheless, in order to have a well-defined transportation problem to which the
solution procedure of Sec. 9.2 can be applied, it is necessary to assign some value for the
unidentified costs. Fortunately, we can use the Big M method introduced in Sec. 4.6 to

if i � j
if i � j

cost per unit for production and any storage
?

■ TABLE 9.8 Incomplete parameter table for Northern Airplane Co.

Cost per Unit Distributed

Destination

1 2 3 4 Supply

1 1.080 1.095 1.110 1.125 ?
2 ? 1.110 1.125 1.140 ?

Source
3 ? ? 1.100 1.115 ?
4 ? ? ? 1.130 ?

Demand 10 15 25 20

■ TABLE 9.7 Production scheduling data for Northern Airplane Co.

Scheduled Maximum Unit Cost* Unit Cost*
Month Installations Production of Production of Storage

1 10 25 1.08 0.015
2 15 35 1.11 0.015
3 25 30 1.10 0.015
4 20 10 1.13

*Cost is expressed in millions of dollars.
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assign this value. Thus, we assign a very large number (denoted by M for convenience)
to the unidentified cost entries in Table 9.8 to force the corresponding values of xij to be
zero in the final solution.

The numbers that need to be inserted into the supply column of Table 9.8 are not ob-
vious because the “supplies,” the amounts produced in the respective months, are not fixed
quantities. In fact, the objective is to solve for the most desirable values of these production
quantities. Nevertheless, it is necessary to assign some fixed number to every entry in the
table, including those in the supply column, to have a transportation problem. A clue is pro-
vided by the fact that although the supply constraints are not present in the usual form, these
constraints do exist in the form of upper bounds on the amount that can be supplied, namely,

x11 � x12 � x13 � x14 � 25,

x21 � x22 � x23 � x24 � 35,

x31 � x32 � x33 � x34 � 30,

x41 � x42 � x43 � x44 � 10.

The only change from the standard model for the transportation problem is that these con-
straints are in the form of inequalities instead of equalities.

To convert these inequalities to equations in order to fit the transportation problem
model, we use the familiar device of slack variables, introduced in Sec. 4.2. In this con-
text, the slack variables are allocations to a single dummy destination that represent the
unused production capacity in the respective months. This change permits the supply in
the transportation problem formulation to be the total production capacity in the given
month. Furthermore, because the demand for the dummy destination is the total unused
capacity, this demand is

(25 � 35 � 30 � 10) � (10 � 15 � 25 � 20) � 30.

With this demand included, the sum of the supplies now equals the sum of the demands,
which is the condition given by the feasible solutions property for having feasible solutions.

The cost entries associated with the dummy destination should be zero because there
is no cost incurred by a fictional allocation. (Cost entries of M would be inappropriate
for this column because we do not want to force the corresponding values of xij to be
zero. In fact, these values need to sum to 30.)

The resulting final parameter table is given in Table 9.9, with the dummy destination
labeled as destination 5(D). By using this formulation, it is quite easy to find the optimal
production schedule by the solution procedure described in Sec. 9.2. (See Prob. 9.2-10
and its answer in the back of the book.)

■ TABLE 9.9 Complete parameter table for Northern Airplane Co.

Cost per Unit Distributed

Destination

1 2 3 4 5(D) Supply

1 1.080 1.095 1.110 1.125 0 25
2 M 1.110 1.125 1.140 0 35

Source
3 M M 1.100 1.115 0 30
4 M M M 1.130 0 10

Demand 10 15 25 20 30
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An Example with a Dummy Source

METRO WATER DISTRICT is an agency that administers water distribution in a large ge-
ographic region. The region is fairly arid, so the district must purchase and bring in water
from outside the region. The sources of this imported water are the Colombo, Sacron, and
Calorie rivers. The district then resells the water to users in the region. Its main customers
are the water departments of the cities of Berdoo, Los Devils, San Go, and Hollyglass.

It is possible to supply any of these cities with water brought in from any of the three
rivers, with the exception that no provision has been made to supply Hollyglass with Calo-
rie River water. However, because of the geographic layouts of the aqueducts and the cities
in the region, the cost to the district of supplying water depends upon both the source of
the water and the city being supplied. The variable cost per acre foot of water (in tens of
dollars) for each combination of river and city is given in Table 9.10. Despite these vari-
ations, the price per acre foot charged by the district is independent of the source of the
water and is the same for all cities.

The management of the district is now faced with the problem of how to allocate the
available water during the upcoming summer season. In units of 1 million acre feet, the
amounts available from the three rivers are given in the rightmost column of Table 9.10.
The district is committed to providing a certain minimum amount to meet the essential
needs of each city (with the exception of San Go, which has an independent source of
water), as shown in the minimum needed row of the table. The requested row indicates
that Los Devils desires no more than the minimum amount, but that Berdoo would like
to buy as much as 20 more, San Go would buy up to 30 more, and Hollyglass will take
as much as it can get.

Management wishes to allocate all the available water from the three rivers to the
four cities in such a way as to at least meet the essential needs of each city while mini-
mizing the total cost to the district.

Formulation. Table 9.10 already is close to the proper form for a parameter table, with
the rivers being the sources and the cities being the destinations. However, the one basic
difficulty is that it is not clear what the demands at the destinations should be. The amount
to be received at each destination (except Los Devils) actually is a decision variable, with
both a lower bound and an upper bound. This upper bound is the amount requested un-
less the request exceeds the total supply remaining after the minimum needs of the other
cities are met, in which case this remaining supply becomes the upper bound. Thus, in-
satiably thirsty Hollyglass has an upper bound of

(50 � 60 � 50) � (30 � 70 � 0) � 60.

Unfortunately, just like the other numbers in the parameter table of a transportation
problem, the demand quantities must be constants, not bounded decision variables. To

■ TABLE 9.10 Water resources data for Metro Water District

Cost (Tens of Dollars) per Acre Foot

Berdoo Los Devils San Go Hollyglass Supply

Colombo River 16 13 22 17 50
Sacron River 14 13 19 15 60
Calorie River 19 20 23 — 50

Minimum needed 30 70 0 10 (in units of 1
Requested 50 70 30 � million acre feet)
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begin resolving this difficulty, temporarily suppose that it is not necessary to satisfy the
minimum needs, so that the upper bounds are the only constraints on amounts to be al-
located to the cities. In this circumstance, can the requested allocations be viewed as the
demand quantities for a transportation problem formulation? After one adjustment, yes!
(Do you see already what the needed adjustment is?)

The situation is analogous to Northern Airplane Co.’s production scheduling prob-
lem, where there was excess supply capacity. Now there is excess demand capacity. Con-
sequently, rather than introducing a dummy destination to “receive” the unused supply
capacity, the adjustment needed here is to introduce a dummy source to “send” the un-
used demand capacity. The imaginary supply quantity for this dummy source would be
the amount by which the sum of the demands exceeds the sum of the real supplies:

(50 � 70 � 30 � 60) � (50 � 60 � 50) � 50.

This formulation yields the parameter table shown in Table 9.11, which uses units of
million acre feet and tens of millions of dollars. The cost entries in the dummy row are
zero because there is no cost incurred by the fictional allocations from this dummy source.
On the other hand, a huge unit cost of M is assigned to the Calorie River–Hollyglass spot.
The reason is that Calorie River water cannot be used to supply Hollyglass, and assign-
ing a cost of M will prevent any such allocation.

Now let us see how we can take each city’s minimum needs into account in this kind
of formulation. Because San Go has no minimum need, it is all set. Similarly, the for-
mulation for Hollyglass does not require any adjustments because its demand (60) ex-
ceeds the dummy source’s supply (50) by 10, so the amount supplied to Hollyglass from
the real sources will be at least 10 in any feasible solution. Consequently, its minimum
need of 10 from the rivers is guaranteed. (If this coincidence had not occurred, Hollyglass
would need the same adjustments that we shall have to make for Berdoo.)

Los Devils’ minimum need equals its requested allocation, so its entire demand of 70
must be filled from the real sources rather than the dummy source. This requirement calls
for the Big M method! Assigning a huge unit cost of M to the allocation from the dummy
source to Los Devils ensures that this allocation will be zero in an optimal solution.

Finally, consider Berdoo. In contrast to Hollyglass, the dummy source has an ade-
quate (fictional) supply to “provide” at least some of Berdoo’s minimum need in addition
to its extra requested amount. Therefore, since Berdoo’s minimum need is 30, adjustments
must be made to prevent the dummy source from contributing more than 20 to Berdoo’s
total demand of 50. This adjustment is accomplished by splitting Berdoo into two desti-
nations, one having a demand of 30 with a unit cost of M for any allocation from the
dummy source and the other having a demand of 20 with a unit cost of zero for the dummy
source allocation. This formulation gives the final parameter table shown in Table 9.12.

■ TABLE 9.11 Parameter table without minimum needs for Metro Water District

Cost (Tens of Millions of Dollars) per Unit Distributed

Destination

Berdoo Los Devils San Go Hollyglass Supply

Colombo River 16 13 22 17 50
Sacron River 14 13 19 15 60

Source
Calorie River 19 20 23 M 50
Dummy 0 0 0 0 50

Demand 50 70 30 60
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2For example, see K. Holmberg and H. Tuy: “A Production-Transportation Problem with Stochastic Demand
and Concave Production Costs,” Mathematical Programming Series A, 85: 157–179, 1999.

This problem will be solved in Sec. 9.2 to illustrate the solution procedure pre-
sented there.

Generalizations of the Transportation Problem

Even after the kinds of reformulations illustrated by the two preceding examples, some
problems involving the distribution of units from sources to destinations fail to satisfy the
model for the transportation problem. One reason may be that the distribution does not
go directly from the sources to the destinations but instead passes through transfer points
along the way. The Distribution Unlimited Co example in Sec. 3.4 (see Fig. 3.13) illus-
trates such a problem. In this case, the sources are the two factories and the destinations
are the two warehouses. However, a shipment from a particular factory to a particular
warehouse may first get transferred at a distribution center, or even at the other factory or
the other warehouse, before reaching its destination. The unit shipping costs differ for
these different shipping lanes. Furthermore, there are upper limits on how much can be
shipped through some of the shipping lanes. Although it is not a transportation problem,
this kind of problem still is a special type of linear programming problem, called the min-
imum cost flow problem, that will be discussed in Sec. 10.6. The network simplex method
described in Sec. 10.7 provides an efficient way of solving minimum cost flow problems.
A minimum cost flow problem that does not impose any upper limits on how much can be
shipped through the shipping lanes is referred to as a transshipment problem. Section 23.1
on the book’s website is devoted to discussing transshipment problems.

In other cases, the distribution may go directly from sources to destinations, but other
assumptions of the transportation problem may be violated. The cost assumption will be
violated if the cost of distributing units from any particular source to any particular 
destination is a nonlinear function of the number of units distributed. The requirements
assumption will be violated if either the supplies from the sources or the demands at the
destinations are not fixed. For example, the final demand at a destination may not become
known until after the units have arrived and then a nonlinear cost is incurred if the amount
received deviates from the final demand. If the supply at a source is not fixed, the cost of
producing the amount supplied may be a nonlinear function of this amount. For example,
a fixed cost may be part of the cost associated with a decision to open up a new source.
Considerable research has been done to generalize the transportation problem and its 
solution procedure in these kinds of directions.2

■ TABLE 9.12 Parameter table for Metro Water District

Cost (Tens of Millions of Dollars) per Unit Distributed

Destination

Berdoo (min.) Berdoo (extra) Los Devils San Go Hollyglass
1 2 3 4 5 Supply

Source Colombo River 1(D) 16 16 13 22 17 50
Source

Sacron River 2(D) 14 14 13 19 15 60
Source

Calorie River 3(D) 19 19 20 23 M 50
Source Dummy 4(D) M 0 M 0 0 50

Demand 30 20 70 30 60

hil23453_ch09_318-371.qxd  1/15/70  9:14 AM  Page 332 Final PDF to printer



9.2 A STREAMLINED SIMPLEX METHOD FOR THE TRANSPORTATION PROBLEM 333

■ 9.2 A STREAMLINED SIMPLEX METHOD 
FOR THE TRANSPORTATION PROBLEM

Because the transportation problem is just a special type of linear programming problem,
it can be solved by applying the simplex method as described in Chap. 4. However, you
will see in this section that some tremendous computational shortcuts can be taken in this
method by exploiting the special structure shown in Table 9.6. We shall refer to this stream-
lined procedure as the transportation simplex method.

As you read on, note particularly how the special structure is exploited to achieve great
computational savings. This will illustrate an important OR technique—streamlining an
algorithm to exploit the special structure in the problem at hand.

Setting Up the Transportation Simplex Method

To highlight the streamlining achieved by the transportation simplex method, let us first
review how the general (unstreamlined) simplex method would set up a transportation prob-
lem in tabular form. After constructing the table of constraint coefficients (see Table 9.6),
converting the objective function to maximization form, and using the Big M method
to introduce artificial variables z1, z2, . . . , zm�n into the m � n respective equality con-
straints (see Sec. 4.6), typical columns of the simplex tableau would have the form
shown in Table 9.13, where all entries not shown in these columns are zeros. [The one
remaining adjustment to be made before the first iteration of the simplex method is to
algebraically eliminate the nonzero coefficients of the initial (artificial) basic variables
in row 0.]

After any subsequent iteration, row 0 then would have the form shown in Table 9.14.
Because of the pattern of 0s and 1s for the coefficients in Table 9.13, by the fundamen-
tal insight presented in Sec. 5.3, ui and vj would have the following interpretation:

ui � multiple of original row i that has been subtracted (directly or indirectly) from
original row 0 by the simplex method during all iterations leading to the cur-
rent simplex tableau.

vj � multiple of original row m � j that has been subtracted (directly or indirectly)
from original row 0 by the simplex method during all iterations leading to the
current simplex tableau.

■ TABLE 9.13 Original simplex tableau before simplex method is applied 
to transportation problem

Coefficient of:
Basic Right

Variable Eq. Z … xij
… zi

… zm�j
… side

Z (0) �1 cij M M 0
(1)
�

zi (i) �0 1 1 si

�

zm�j (m � j) �0 1 1 dj

�

(m � n)
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Using the duality theory introduced in Chap. 6, another property of the ui and vj is that
they are the dual variables.3 If xij is a nonbasic variable, cij � ui � vj is interpreted as the
rate at which Z will change as xij is increased.

The Needed Information. To lay the groundwork for simplifying this setup, recall
what information is needed by the simplex method. In the initialization, an initial BF so-
lution must be obtained, which is done artificially by introducing artificial variables as the
initial basic variables and setting them equal to si and dj. The optimality test and step 1
of an iteration (selecting an entering basic variable) require knowing the current row 0,
which is obtained by subtracting a certain multiple of another row from the preceding
row 0. Step 2 (determining the leaving basic variable) must identify the basic variable that
reaches zero first as the entering basic variable is increased, which is done by comparing
the current coefficients of the entering basic variable and the corresponding right side.
Step 3 must determine the new BF solution, which is found by subtracting certain multi-
ples of one row from the other rows in the current simplex tableau.

Greatly Streamlined Ways of Obtaining This Information. Now, how does the
transportation simplex method obtain the same information in much simpler ways? This
story will unfold fully in the coming pages, but here are some preliminary answers.

First, no artificial variables are needed, because a simple and convenient procedure
(with several variations) is available for constructing an initial BF solution.

Second, the current row 0 can be obtained without using any other row simply by cal-
culating the current values of ui and vj directly. Since each basic variable must have a co-
efficient of zero in row 0, the current ui and vj are obtained by solving the set of equations

cij � ui � vj � 0 for each i and j such that xij is a basic variable.

(We will illustrate this straightforward procedure later when discussing the optimality test for
the transportation simplex method.) The special structure in Table 9.13 makes this convenient
way of obtaining row 0 possible by yielding cij � ui � vj as the coefficient of xij in Table 9.14.

Third, the leaving basic variable can be identified in a simple way without (explicitly)
using the coefficients of the entering basic variable. The reason is that the special structure
of the problem makes it easy to see how the solution must change as the entering basic
variable is increased. As a result, the new BF solution also can be identified immediately
without any algebraic manipulations on the rows of the simplex tableau. (You will see the
details when we describe how the transportation simplex method performs an iteration.)

The grand conclusion is that almost the entire simplex tableau (and the work of main-
taining it) can be eliminated! Besides the input data (the cij, si, and dj values), the only

■ TABLE 9.14 Row 0 of simplex tableau when simplex method is applied to
transportation problem

Coefficient of:
Basic Right

Variable Eq. Z … xij
… zi

… zm�j
… Side

Z (0) �1 cij � ui � vj M � ui M � vj ��
m

i�1
siui � �

n

j�1
djvj

3It would be easier to recognize these variables as dual variables by relabeling all these variables as yi and then
changing all the signs in row 0 of Table 9.14 by converting the objective function back to its original mini-
mization form.
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information needed by the transportation simplex method is the current BF solution,4 the
current values of ui and vj, and the resulting values of cij � ui � vj for nonbasic variables
xij. When you solve a problem by hand, it is convenient to record this information for
each iteration in a transportation simplex tableau, such as shown in Table 9.15. (Note
carefully that the values of xij and cij � ui � vj are distinguished in these tableaux by cir-
cling the former but not the latter.)

The Resulting Great Improvement in Efficiency. You can gain a fuller appreciation
for the great difference in efficiency and convenience between the simplex and the trans-
portation simplex methods by applying both to the same small problem (see Prob. 9.2-17).
However, the difference becomes even more pronounced for large problems that must be
solved on a computer. This pronounced difference is suggested somewhat by comparing
the sizes of the simplex and the transportation simplex tableaux. Thus, for a transportation
problem having m sources and n destinations, the simplex tableau would have m � n � 1
rows and (m � 1)(n � 1) columns (excluding those to the left of the xij columns), and the
transportation simplex tableau would have m rows and n columns (excluding the two ex-
tra informational rows and columns). Now try plugging in various values for m and n
(for example, m � 10 and n � 100 would be a rather typical medium-size transportation
problem), and note how the ratio of the number of cells in the simplex tableau to the
number in the transportation simplex tableau increases as m and n increase.

Initialization

Recall that the objective of the initialization is to obtain an initial BF solution. Because
all the functional constraints in the transportation problem are equality constraints, the
simplex method would obtain this solution by introducing artificial variables and using
them as the initial basic variables, as described in Sec. 4.6. The resulting basic solution

4Since nonbasic variables are automatically zero, the current BF solution is fully identified by recording just the
values of the basic variables. We shall use this convention from now on.

■ TABLE 9.15 Format of a transportation simplex tableau

Destination

1 2 ��� n Supply ui

1 ��� s1

2 ��� s2
Source

� ��� ��� ��� ��� �

m ��� sm

Demand d1 d2 ��� dn Z �

vj

Additional information to be added to each cell:
If xij is a If xij is a

basic variable nonbasic variable

c11

c21

cm1

c12

c22

cm2

c1n

c2n

cmn

xij cij � ui � vj

cij cij
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actually is feasible only for a revised version of the problem, so a number of iterations
are needed to drive these artificial variables to zero in order to reach the real BF solu-
tions. The transportation simplex method bypasses all this by instead using a simpler pro-
cedure to directly construct a real BF solution on a transportation simplex tableau.

Before outlining this procedure, we need to point out that the number of basic vari-
ables in any basic solution of a transportation problem is one fewer than you might ex-
pect. Ordinarily, there is one basic variable for each functional constraint in a linear
programming problem. For transportation problems with m sources and n destinations,
the number of functional constraints is m � n. However,

Number of basic variables � m � n � 1.

The reason is that the functional constraints are equality constraints, and this set of
m � n equations has one extra (or redundant) equation that can be deleted without chang-
ing the feasible region; i.e., any one of the constraints is automatically satisfied whenever
the other m � n � 1 constraints are satisfied. (This fact can be verified by showing that
any supply constraint exactly equals the sum of the demand constraints minus the sum of
the other supply constraints, and that any demand equation also can be reproduced by sum-
ming the supply equations and subtracting the other demand equations. See Prob. 9.2-19.)
Therefore, any BF solution appears on a transportation simplex tableau with exactly
m � n � 1 circled nonnegative allocations, where the sum of the allocations for each row
or column equals its supply or demand.5

The procedure for constructing an initial BF solution selects the m � n � 1 basic vari-
ables one at a time. After each selection, a value that will satisfy one additional constraint
(thereby eliminating that constraint’s row or column from further consideration for pro-
viding allocations) is assigned to that variable. Thus, after m � n � 1 selections, an en-
tire basic solution has been constructed in such a way as to satisfy all the constraints. A
number of different criteria have been proposed for selecting the basic variables. We pre-
sent and illustrate three of these criteria here, after outlining the general procedure.

General Procedure6 for Constructing an Initial BF Solution. To begin, all source
rows and destination columns of the transportation simplex tableau are initially under con-
sideration for providing a basic variable (allocation).

1. From the rows and columns still under consideration, select the next basic variable (al-
location) according to some criterion.

2. Make that allocation large enough to exactly use up the remaining supply in its row or
the remaining demand in its column (whichever is smaller).

3. Eliminate that row or column (whichever had the smaller remaining supply or demand)
from further consideration. (If the row and column have the same remaining supply and
demand, then arbitrarily select the row as the one to be eliminated. The column will be
used later to provide a degenerate basic variable, i.e., a circled allocation of zero.)

4. If only one row or only one column remains under consideration, then the procedure
is completed by selecting every remaining variable (i.e., those variables that were nei-
ther previously selected to be basic nor eliminated from consideration by eliminating

5However, note that any feasible solution with m � n � 1 nonzero variables is not necessarily a basic solution
because it might be the weighted average of two or more degenerate BF solutions (i.e., BF solutions having
some basic variables equal to zero). We need not be concerned about mislabeling such solutions as being basic,
however, because the transportation simplex method constructs only legitimate BF solutions.
6In Sec. 4.1 we pointed out that the simplex method is an example of the algorithms (systematic solution pro-
cedures) so prevalent in OR work. Note that this procedure also is an algorithm, where each successive execu-
tion of the (four) steps constitutes an iteration.
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their row or column) associated with that row or column to be basic with the only
feasible allocation. Otherwise, return to step 1.

Alternative Criteria for Step 1

1. Northwest corner rule: Begin by selecting x11 (that is, start in the northwest corner of
the transportation simplex tableau). Thereafter, if xij was the last basic variable selected,
then next select xi,j�1 (that is, move one column to the right) if source i has any sup-
ply remaining. Otherwise, next select xi�1,j (that is, move one row down).

Example. To make this description more concrete, we now illustrate the general pro-
cedure on the Metro Water District problem (see Table 9.12) with the northwest corner
rule being used in step 1. Because m � 4 and n � 5 in this case, the procedure would find
an initial BF solution having m � n � 1 � 8 basic variables.

As shown in Table 9.16, the first allocation is x11 � 30, which exactly uses up the
demand in column 1 (and eliminates this column from further consideration). This first
iteration leaves a supply of 20 remaining in row 1, so next select x1,1�1 � x12 to be a ba-
sic variable. Because this supply is no larger than the demand of 20 in column 2, all of
it is allocated, x12 � 20, and this row is eliminated from further consideration. (Row 1 is
chosen for elimination rather than column 2 because of the parenthetical instruction in
step 3.) Therefore, select x1�1,2 � x22 next. Because the remaining demand of 0 in col-
umn 2 is less than the supply of 60 in row 2, allocate x22 � 0 and eliminate column 2.

Continuing in this manner, we eventually obtain the entire initial BF solution
shown in Table 9.16, where the circled numbers are the values of the basic variables
(x11 � 30, . . . , x45 � 50) and all the other variables (x13, etc.) are nonbasic variables
equal to zero. Arrows have been added to show the order in which the basic variables (al-
locations) were selected. The value of Z for this solution is

Z � 16(30) � 16(20) � . . . � 0(50) � 2,470 � 10M.

2. Vogel’s approximation method: For each row and column remaining under consider-
ation, calculate its difference, which is defined as the arithmetic difference between
the smallest and next-to-the-smallest unit cost cij still remaining in that row or col-
umn. (If two unit costs tie for being the smallest remaining in a row or column, then

■ TABLE 9.16 Initial BF solution from the Northwest Corner Rule

Destination

1 2 3 4 5 Supply ui

1 30 20 50

2 0 60 60

Source

3 10 30 10 50

4(D) 50 50

Demand 30 20 70 30 60 Z � 2,470 � 10M

vj

16

14

19

M

16

14

19

0

13

13

20

M

22

19

23

0

17

15

M

0

⎯⎯→ ⎯→

⎯→

⎯→

⎯⎯→

⎯⎯→ ⎯⎯→
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the difference is 0.) In that row or column having the largest difference, select the
variable having the smallest remaining unit cost. (Ties for the largest difference, or
for the smallest remaining unit cost, may be broken arbitrarily.)

Example. Now let us apply the general procedure to the Metro Water District problem
by using the criterion for Vogel’s approximation method to select the next basic variable
in step 1. With this criterion, it is more convenient to work with parameter tables (rather
than with complete transportation simplex tableaux), beginning with the one shown in
Table 9.12. At each iteration, after the difference for every row and column remaining un-
der consideration is calculated and displayed, the largest difference is circled and the small-
est unit cost in its row or column is enclosed in a box. The resulting selection (and value)
of the variable having this unit cost as the next basic variable is indicated in the lower
right-hand corner of the current table, along with the row or column thereby being elim-
inated from further consideration (see steps 2 and 3 of the general procedure). The table
for the next iteration is exactly the same except for deleting this row or column and sub-
tracting the last allocation from its supply or demand (whichever remains).

Applying this procedure to the Metro Water District problem yields the sequence of
parameter tables shown in Table 9.17, where the resulting initial BF solution consists of
the eight basic variables (allocations) given in the lower right-hand corner of the respec-
tive parameter tables.

This example illustrates two relatively subtle features of the general procedure that war-
rant special attention. First, note that the final iteration selects three variables (x31, x32, and x33)
to become basic instead of the single selection made at the other iterations. The reason is that
only one row (row 3) remains under consideration at this point. Therefore, step 4 of the gen-
eral procedure says to select every remaining variable associated with row 3 to be basic.

Second, note that the allocation of x23 � 20 at the next-to-last iteration exhausts both
the remaining supply in its row and the remaining demand in its column. However, rather
than eliminate both the row and column from further consideration, step 3 says to elimi-
nate only the row, saving the column to provide a degenerate basic variable later. Column 3
is, in fact, used for just this purpose at the final iteration when x33 � 0 is selected as one
of the basic variables. For another illustration of this same phenomenon, see Table 9.16
where the allocation of x12 � 20 results in eliminating only row 1, so that column 2 is
saved to provide a degenerate basic variable, x22 � 0, at the next iteration.

Although a zero allocation might seem irrelevant, it actually plays an important role.
You will see soon that the transportation simplex method must know all m � n � 1 basic
variables, including those with value zero, in the current BF solution.

3. Russell’s approximation method: For each source row i remaining under consideration,
determine its u�i, which is the largest unit cost cij still remaining in that row. For each
destination column j remaining under consideration, determine its v�j, which is the largest
unit cost cij still remaining in that column. For each variable xij not previously selected
in these rows and columns, calculate 	ij � cij � u�i � v�j. Select the variable having the
largest (in absolute terms) negative value of 	ij. (Ties may be broken arbitrarily.)

Example. Using the criterion for Russell’s approximation method in step 1, we again
apply the general procedure to the Metro Water District problem (see Table 9.12). The re-
sults, including the sequence of basic variables (allocations), are shown in Table 9.18.

At iteration 1, the largest unit cost in row 1 is u�1 � 22, the largest in column 1 is 
v�1 � M, and so forth. Thus,

	11 � c11 � u�1 � v�1 � 16 � 22 � M � �6 � M.
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■ TABLE 9.17 Initial BF solution from Vogel’s approximation method

Destination
Row

1 2 3 4 5 Supply Difference

1 16 16 13 22 17 50 3
2 14 14 13 19 15 60 1Source 3 19 19 20 23 M 50 0
4(D) M 0 M 0 0 50 0

Demand 30 20 70 30 60 Select x44 � 30
Column difference 2 14 0 19 15 Eliminate column 4

Destination
Row

1 2 3 5 Supply Difference

1 16 16 13 17 50 3
2 14 14 13 15 60 1Source 3 19 19 20 M 50 0
4(D) M 0 M 0 20 0

Demand 30 20 70 60 Select x45 � 20
Column difference 2 14 0 15 Eliminate row 4(D)

Destination
Row

1 2 3 5 Supply Difference

1 16 16 13 17 50 3
Source 2 14 14 13 15 60 1

3 19 19 20 M 50 0

Demand 30 20 70 40 Select x13 � 50
Column difference 2 2 0 2 Eliminate row 1

Destination
Row

1 2 3 5 Supply Difference

2 14 14 13 15 60 1Source 3 19 19 20 M 50 0

Demand 30 20 20 40 Select x25 � 40
Column difference 5 5 7 M � 15 Eliminate column 5

Destination
Row

1 2 3 Supply Difference

2 14 14 13 20 1Source 3 19 19 20 50 0

Demand 30 20 20 Select x23 � 20
Column difference 5 5 7 Eliminate row 2

Destination

1 2 3 Supply

Source 3 19 19 20 50

Demand 30 20 0 Select x31 � 30
Select x32 � 20 Z � 2,460
Select x33 � 0
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7N. V. Reinfeld and W. R. Vogel: Mathematical Programming, Prentice-Hall, Englewood Cliffs, NJ, 1958.
8E. J. Russell: “Extension of Dantzig’s Algorithm to Finding an Initial Near-Optimal Basis for the Transporta-
tion Problem,” Operations Research, 17: 187–191, 1969.

Calculating all the 	ij values for i � 1, 2, 3, 4 and j � 1, 2, 3, 4, 5 shows that 	45 � 0 � 2M
has the largest negative value, so x45 � 50 is selected as the first basic variable (allocation).
This allocation exactly uses up the supply in row 4, so this row is eliminated from further
consideration.

Note that eliminating this row changes v�1 and v�3 for the next iteration. Therefore, the
second iteration requires recalculating the 	ij with j � 1, 3 as well as eliminating i � 4.
The largest negative value now is

	15 � 17 � 22 � M � �5 � M,

so x15 � 10 becomes the second basic variable (allocation), eliminating column 5 from
further consideration.

The subsequent iterations proceed similarly, but you may want to test your under-
standing by verifying the remaining allocations given in Table 9.18. As with the other pro-
cedures in this (and other) section(s), you should find your IOR Tutorial useful for doing
the calculations involved and illuminating the approach. (See the interactive procedure for
finding an initial BF solution.)

Comparison of Alternative Criteria for Step 1. Now let us compare these three
criteria for selecting the next basic variable. The main virtue of the northwest corner rule
is that it is quick and easy. However, because it pays no attention to unit costs cij, usually
the solution obtained will be far from optimal. (Note in Table 9.16 that x35 � 10 even
though c35 � M.) Expending a little more effort to find a good initial BF solution might
greatly reduce the number of iterations then required by the transportation simplex method
to reach an optimal solution (see Probs. 9.2-7 and 9.2-9). Finding such a solution is the
objective of the other two criteria.

Vogel’s approximation method has been a popular criterion for many years,7 partially
because it is relatively easy to implement by hand. Because the difference represents the
minimum extra unit cost incurred by failing to make an allocation to the cell having the
smallest unit cost in that row or column, this criterion does take costs into account in an
effective way.

Russell’s approximation method provides another excellent criterion8 that is still quick
to implement on a computer (but not manually). Although it is unclear as to which is more

■ TABLE 9.18 Initial BF solution from Russell’s approximation method

Largest
Iteration u�1 u�2 u�3 u�4 v�1 v�2 v�3 v�4 v�5 Negative �ij Allocation

1 22 19 M M M 19 M 23 M 	45 � �2M x45 � 50
2 22 19 M 19 19 20 23 M 	15 � �5 � M x15 � 10
3 22 19 23 19 19 20 23 	13 � �29 x13 � 40
4 19 23 19 19 20 23 	23 � �26 x23 � 30
5 19 23 19 19 23 	21 � �24* x21 � 30
6 Irrelevant x31 � 0

x32 � 20
x34 � 30

o     Z � 2,570

*Tie with 	22 � �24 broken arbitrarily.
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effective on average, this criterion frequently does obtain a better solution than Vogel’s.
(For the example, Vogel’s approximation method happened to find the optimal solution
with Z � 2,460, whereas Russell’s misses slightly with Z � 2,570.) For a large problem,
it may be worthwhile to apply both criteria and then use the better solution to start the it-
erations of the transportation simplex method.

One distinct advantage of Russell’s approximation method is that it is patterned di-
rectly after step 1 for the transportation simplex method (as you will see soon), which
somewhat simplifies the overall computer code. In particular, the u�i and v�j values have
been defined in such a way that the relative values of the cij � u�i � v�j estimate the rela-
tive values of cij � ui � vj that will be obtained when the transportation simplex method
reaches an optimal solution.

We now shall use the initial BF solution obtained in Table 9.18 by Russell’s approxi-
mation method to illustrate the remainder of the transportation simplex method. Thus, our
initial transportation simplex tableau (before we solve for ui and vj) is shown in Table 9.19.

The next step is to check whether this initial solution is optimal by applying the op-
timality test.

Optimality Test

Using the notation of Table 9.14, we can reduce the standard optimality test for the sim-
plex method (see Sec. 4.3) to the following for the transportation problem:

Optimality test: A BF solution is optimal if and only if cij � ui � vj � 0 for
every (i, j) such that xij is nonbasic.9

Thus, the only work required by the optimality test is the derivation of the values of ui

and vj for the current BF solution and then the calculation of these cij � ui � vj, as de-
scribed below.

■ TABLE 9.19 Initial transportation simplex tableau (before we obtain cij � ui � vj)
from Russell’s approximation method

Destination

1 2 3 4 5 Supply ui

1 40 10 50

2 30 30 60

Source

3 0 20 30 50

4(D) 50 50

Demand 30 20 70 30 60 Z � 2,570

vj

16

14

19

M

16

14

19

0

13

13

20

M

22

19

23

0

17

15

M

0

Iteration
0

9The one exception is that two or more equivalent degenerate BF solutions (i.e., identical solutions having dif-
ferent degenerate basic variables equal to zero) can be optimal with only some of these basic solutions satisfy-
ing the optimality test. This exception is illustrated later in the example (see the identical solutions in the last
two tableaux of Table 9.23, where only the latter solution satisfies the criterion for optimality).
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Since cij � ui � vj is required to be zero if xij is a basic variable, ui and vj satisfy the
set of equations

cij � ui � vj for each (i, j) such that xij is basic.

There are m � n � 1 basic variables, and so there are m � n � 1 of these equations. Since
the number of unknowns (the ui and vj) is m � n, one of these variables can be assigned
a value arbitrarily without violating the equations. The choice of this one variable and its
value does not affect the value of any cij � ui � vj, even when xij is nonbasic, so the only
(minor) difference it makes is in the ease of solving these equations. A convenient choice
for this purpose is to select the ui that has the largest number of allocations in its row
(break any tie arbitrarily) and to assign to it the value zero. Because of the simple struc-
ture of these equations, it is then very simple to solve for the remaining variables alge-
braically.

To demonstrate, we give each equation that corresponds to a basic variable in our ini-
tial BF solution.

x31: 19 � u3 � v1. Set u3 � 0, so v1 � 19,

x32: 19 � u3 � v2. Set u3 � 0, so v2 � 19,

x34: 23 � u3 � v4. Set u3 � 0, so v4 � 23.

x21: 14 � u2 � v1. Know v1 � 19, so u2 � �5.

x23: 13 � u2 � v3. Know u2 � � 5, so v3 � 18.

x13: 13 � u1 � v3. Know v3 � 18, so u1 � �5.

x15: 17 � u1 � v5. Know u1 � �5, so v5 � 22.

x45: 0 � u4 � v5. Know v5 � 22, so u4 � �22.

Setting u3 � 0 (since row 3 of Table 9.19 has the largest number of allocations—3) and
moving down the equations one at a time immediately give the derivation of values for the
unknowns shown to the right of the equations. (Note that this derivation of the ui and vj

values depends on which xij variables are basic variables in the current BF solution, so
this derivation will need to be repeated each time a new BF solution is obtained.)

Once you get the hang of it, you probably will find it even more convenient to solve
these equations without writing them down by working directly on the transportation sim-
plex tableau. Thus, in Table 9.19 you begin by writing in the value u3 � 0 and then pick-
ing out the circled allocations (x31, x32, x34) in that row. For each one you set vj � c3j and
then look for circled allocations (except in row 3) in these columns (x21). Mentally calculate
u2 � c21 � v1, pick out x23, set v3 � c23 � u2, and so on until you have filled in all the
values for ui and vj. (Try it.) Then calculate and fill in the value of cij � ui � vj for each
nonbasic variable xij (that is, for each cell without a circled allocation), and you will have
the completed initial transportation simplex tableau shown in Table 9.20.

We are now in a position to apply the optimality test by checking the values of 
cij � ui � vj given in Table 9.20. Because two of these values (c25 � u2 � v5 � �2 and
c44 � u4 � v4 � �1) are negative, we conclude that the current BF solution is not opti-
mal. Therefore, the transportation simplex method must next go to an iteration to find a
better BF solution.

An Iteration

As with the full-fledged simplex method, an iteration for this streamlined version must
determine an entering basic variable (step 1), a leaving basic variable (step 2), and then
identify the resulting new BF solution (step 3).
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Step 1: Find the Entering Basic Variable. Since cij � ui � vj represents the rate at
which the objective function will change as the nonbasic variable xij is increased, the en-
tering basic variable must have a negative cij � ui � vj value to decrease the total cost Z.
Thus, the candidates in Table 9.20 are x25 and x44. To choose between the candidates, se-
lect the one having the larger (in absolute terms) negative value of cij � ui � vj to be the
entering basic variable, which is x25 in this case.

Step 2: Find the Leaving Basic Variable. Increasing the entering basic variable from
zero sets off a chain reaction of compensating changes in other basic variables (alloca-
tions), in order to continue satisfying the supply and demand constraints. The first basic
variable to be decreased to zero then becomes the leaving basic variable.

With x25 as the entering basic variable, the chain reaction in Table 9.20 is the rela-
tively simple one summarized in Table 9.21. (We shall always indicate the entering basic
variable by placing a boxed plus sign in the center of its cell while leaving the corre-
sponding value of cij � ui � vj in the lower right-hand corner of this cell.) Increasing x25

by some amount requires decreasing x15 by the same amount to restore the demand of 60
in column 5. This change then requires increasing x13 by this same amount to restore the

■ TABLE 9.20 Completed initial transportation simplex tableau

Destination

1 2 3 4 5 Supply ui

1 40 10 50 �5

2 30 30 60 �5

Source

3 0 20 30 50 0

4(D) 50 50 �22

Demand 30 20 70 30 60 Z � 2,570

vj 19 19 18 23 22

16

14

19

M

16

14

19

0

13

13

20

M

22

19

23

0

17

15

M

0

Iteration
0

�2 �2

0

�4

�1

�2

�1�3

M � 22

M � 4M � 3

�2

■ TABLE 9.21 Part of initial transportation simplex tableau showing the chain
reaction caused by increasing the entering basic variable x25

Destination

3 4 5 Supply

1 … 40 � 10 � 50

Source

2 … 30 � � 60

… … … …

Demand 70 30 60

13

13

22

19

17

15

�2�1

�4
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supply of 50 in row 1. This change then requires decreasing x23 by this amount to re-
store the demand of 70 in column 3. This decrease in x23 successfully completes the
chain reaction because it also restores the supply of 60 in row 2. (Equivalently, we
could have started the chain reaction by restoring this supply in row 2 with the de-
crease in x23, and then the chain reaction would continue with the increase in x13 and
decrease in x15.)

The net result is that cells (2, 5) and (1, 3) become recipient cells, each receiving its
additional allocation from one of the donor cells, (1, 5) and (2, 3). (These cells are indi-
cated in Table 9.21 by the plus and minus signs.) Note that cell (1, 5) had to be the donor
cell for column 5 rather than cell (4, 5), because cell (4, 5) would have no recipient cell
in row 4 to continue the chain reaction. [Similarly, if the chain reaction had been started
in row 2 instead, cell (2, 1) could not be the donor cell for this row because the chain re-
action could not then be completed successfully after necessarily choosing cell (3, 1) as
the next recipient cell and either cell (3, 2) or (3, 4) as its donor cell.] Also note that, ex-
cept for the entering basic variable, all recipient cells and donor cells in the chain reac-
tion must correspond to basic variables in the current BF solution.

Each donor cell decreases its allocation by exactly the same amount as the entering
basic variable (and other recipient cells) is increased. Therefore, the donor cell that starts
with the smallest allocation—cell (1, 5) in this case (since 10 
 30 in Table 9.21)—must
reach a zero allocation first as the entering basic variable x25 is increased. Thus, x15 be-
comes the leaving basic variable.

In general, there always is just one chain reaction (in either direction) that can be
completed successfully to maintain feasibility when the entering basic variable is increased
from zero. This chain reaction can be identified by selecting from the cells having a ba-
sic variable: first the donor cell in the column having the entering basic variable, then the
recipient cell in the row having this donor cell, then the donor cell in the column having
this recipient cell, and so on until the chain reaction yields a donor cell in the row hav-
ing the entering basic variable. When a column or row has more than one additional ba-
sic variable cell, it may be necessary to trace them all further to see which one must be
selected to be the donor or recipient cell. (All but this one eventually will reach a dead
end in a row or column having no additional basic variable cell.) After the chain reaction
is identified, the donor cell having the smallest allocation automatically provides the leav-
ing basic variable. (In the case of a tie for the donor cell having the smallest allocation,
any one can be chosen arbitrarily to provide the leaving basic variable.)

Step 3: Find the New BF Solution. The new BF solution is identified simply by adding
the value of the leaving basic variable (before any change) to the allocation for each recipient
cell and subtracting this same amount from the allocation for each donor cell. In Table 9.21
the value of the leaving basic variable x15 is 10, so the portion of the transportation simplex
tableau in this table changes as shown in Table 9.22 for the new solution. (Since x15 is non-
basic in the new solution, its new allocation of zero is no longer shown in this new tableau.)

We can now highlight a useful interpretation of the cij � ui � vj quantities derived
during the optimality test. Because of the shift of 10 allocation units from the donor cells
to the recipient cells (shown in Tables 9.21 and 9.22), the total cost changes by

	Z � 10(15 � 17 � 13 � 13) � 10(�2) � 10(c25 � u2 � v5).

Thus, the effect of increasing the entering basic variable x25 from zero has been a cost
change at the rate of �2 per unit increase in x25. This is precisely what the value of 
c25 � u2 � v5 � �2 in Table 9.20 indicates would happen. In fact, another (but less effi-
cient) way of deriving cij � ui � vj for each nonbasic variable xij is to identify the chain
reaction caused by increasing this variable from 0 to 1 and then to calculate the resulting
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■ TABLE 9.22 Part of second transportation simplex tableau showing the changes
in the BF solution

Destination

3 4 5 Supply

1 … 50 50

Source
2 … 20 10 60

… … … …

Demand 70 30 60

13

13

22

19

17

15

cost change. This intuitive interpretation sometimes is useful for checking calculations
during the optimality test.

Before completing the solution of the Metro Water District problem, we now sum-
marize the rules for the transportation simplex method.

Summary of the Transportation Simplex Method

Initialization: Construct an initial BF solution by the procedure outlined earlier in this
section. Go to the optimality test.

Optimality test: Derive ui and vj by selecting the row having the largest number of 
allocations, setting its ui � 0, and then solving the set of equations 
cij � ui � vj for each (i, j) such that xij is basic. If cij � ui � vj � 0 for
every (i, j) such that xij is nonbasic, then the current solution is optimal,
so stop. Otherwise, go to an iteration.

Iteration:
1. Determine the entering basic variable: Select the nonbasic variable xij having the largest

(in absolute terms) negative value of cij � ui � vj.
2. Determine the leaving basic variable: Identify the chain reaction required to retain fea-

sibility when the entering basic variable is increased. From the donor cells, select the
basic variable having the smallest value.

3. Determine the new BF solution: Add the value of the leaving basic variable to the allo-
cation for each recipient cell. Subtract this value from the allocation for each donor cell.

Continuing to apply this procedure to the Metro Water District problem yields 
the complete set of transportation simplex tableaux shown in Table 9.23. Since all the 
cij � ui � vj values are nonnegative in the fourth tableau, the optimality test identifies the
set of allocations in this tableau as being optimal, which concludes the algorithm.

It would be good practice for you to derive the values of ui and vj given in the sec-
ond, third, and fourth tableaux. Try doing this by working directly on the tableaux. Also
check out the chain reactions in the second and third tableaux, which are somewhat more
complicated than the one you have seen in Table 9.21.

Special Features of This Example

Note three special points that are illustrated by this example. First, the initial BF solution
is degenerate because the basic variable x31 � 0. However, this degenerate basic variable
causes no complication, because cell (3, 1) becomes a recipient cell in the second tableau,
which increases x31 to a value greater than zero.
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Destination

1 2 3 4 5 Supply ui

1 50 50 �8

2 20 � 40 � 60 �8

Source

3 30 20 � 0 � 50 0

4(D) 30 � 20 � 50 �23

Demand 30 20 70 30 60 Z � 2,460

vj 19 19 21 23 23

16

14

19

M

16

14

19

0

13

13

20

M

22

19

23

0

17

15

M

0

Iteration
2

�5 �5

�3�3

�7 �2

�4

�1

�4

M � 23

M � 2M � 4

■ TABLE 9.23 Complete set of transportation simplex tableaux for the Metro
Water District problem

Destination

1 2 3 4 5 Supply ui

1 40 � 10 � 50 �5

2 30 30 � � 60 �5

Source

3 0 20 30 50 0

4(D) 50 50 �22

Demand 30 20 70 30 60 Z � 2,570

vj 19 19 18 23 22

16

14

19

M

16

14

19

0

13

13

20

M

22

19

23

0

17

15

M

0

Iteration
0

�2 �2

0

�4

�1

�2

�1�3

M � 22

M � 4M � 3

�2

Destination

1 2 3 4 5 Supply ui

1 50 50 �5

2 30 � 20 10 � 60 �5

Source

3 0 � 20 30 � 50 0

4(D) � 50 � 50 �20

Demand 30 20 70 30 60 Z � 2,550

vj 19 19 18 23 20

16

14

19

M

16

14

19

0

13

13

20

M

22

19

23

0

17

15

M

0

Iteration
1

�2 �2

0

�4 �2

�1

�2

�3�1

M � 20

M � 2M � 1
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Second, another degenerate basic variable (x34) arises in the third tableau because
the basic variables for two donor cells in the second tableau, cells (2, 1) and (3, 4),
tie for having the smallest value (30). (This tie is broken arbitrarily by selecting x21

as the leaving basic variable; if x34 had been selected instead, then x21 would have be-
come the degenerate basic variable.) This degenerate basic variable does appear to cre-
ate a complication subsequently, because cell (3, 4) becomes a donor cell in the third
tableau but has nothing to donate! Fortunately, such an event actually gives no cause
for concern. Since zero is the amount to be added to or subtracted from the alloca-
tions for the recipient and donor cells, these allocations do not change. However, the
degenerate basic variable does become the leaving basic variable, so it is replaced by
the entering basic variable as the circled allocation of zero in the fourth tableau. This
change in the set of basic variables changes the values of ui and vj. Therefore, if any
of the cij � ui � vj had been negative in the fourth tableau, the algorithm would have
gone on to make real changes in the allocations (whenever all donor cells have non-
degenerate basic variables).

Third, because none of the cij � ui � vj turned out to be negative in the fourth tableau,
the equivalent set of allocations in the third tableau is optimal also. Thus, the algorithm
executed one more iteration than was necessary. This extra iteration is a flaw that occa-
sionally arises in both the transportation simplex method and the simplex method be-
cause of degeneracy, but it is not sufficiently serious to warrant any adjustments to these
algorithms.

If you would like to see additional (smaller) examples of the application of the trans-
portation simplex method, two are available. One is the demonstration provided for the
transportation problem area in your OR Tutor. In addition, the Solved Examples section
of the book’s website includes another example of this type. Also provided in your IOR
Tutorial are both an interactive procedure and an automatic procedure for the transporta-
tion simplex method.

Now that you have studied the transportation simplex method, you are in a posi-
tion to check for yourself how the algorithm actually provides a proof of the integer so-
lutions property presented in Sec. 9.1. Problem 9.2-20 helps to guide you through the
reasoning.

■ TABLE 9.23 (Continued)

Destination

1 2 3 4 5 Supply ui

1 50 50 �7

2 20 40 60 �7

Source

3 30 20 0 50 0

4(D) 30 20 50 �22

Demand 30 20 70 30 60 Z � 2,460

vj 19 19 20 22 22

16

14

19

M

16

14

19

0

13

13

20

M

22

19

23

0

17

15

M

0

Iteration
3

�4 �4

�2�2

�7 �2

�4

�1

�3

M � 22

M � 2M � 3
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10For example, see L. J. LeBlanc, D. Randels, Jr., and T. K. Swann: “Heery International’s Spreadsheet Opti-
mization Model for Assigning Managers to Construction Projects,” Interfaces, 30(6): 95–106, Nov.–Dec. 2000.
Page 98 of this article also cites seven other applications of the assignment problem.

The assignment problem is a special type of linear programming problem where 
assignees are being assigned to perform tasks. For example, the assignees might be em-
ployees who need to be given work assignments. Assigning people to jobs is a common
application of the assignment problem.10 However, the assignees need not be people. They
also could be machines, or vehicles, or plants, or even time slots to be assigned tasks. The
first example below involves machines being assigned to locations, so the tasks in this
case simply involve holding a machine. A subsequent example involves plants being as-
signed products to be produced.

To fit the definition of an assignment problem, these kinds of applications need to be
formulated in a way that satisfies the following assumptions.

1. The number of assignees and the number of tasks are the same. (This number is de-
noted by n.)

2. Each assignee is to be assigned to exactly one task.
3. Each task is to be performed by exactly one assignee.
4. There is a cost cij associated with assignee i (i � 1, 2, . . . , n) performing task j

( j � 1, 2, . . . , n).
5. The objective is to determine how all n assignments should be made to minimize the

total cost.

Any problem satisfying all these assumptions can be solved extremely efficiently by al-
gorithms designed specifically for assignment problems.

The first three assumptions are fairly restrictive. Many potential applications do not
quite satisfy these assumptions. However, it often is possible to reformulate the problem
to make it fit. For example, dummy assignees or dummy tasks frequently can be used for
this purpose. We illustrate these formulation techniques in the examples.

Prototype Example

The JOB SHOP COMPANY has purchased three new machines of different types. There
are four available locations in the shop where a machine could be installed. Some of these
locations are more desirable than others for particular machines because of their proxim-
ity to work centers that will have a heavy work flow to and from these machines. (There
will be no work flow between the new machines.) Therefore, the objective is to assign the
new machines to the available locations to minimize the total cost of materials handling.
The estimated cost in dollars per hour of materials handling involving each of the ma-
chines is given in Table 9.24 for the respective locations. Location 2 is not considered
suitable for machine 2, so no cost is given for this case.

To formulate this problem as an assignment problem, we must introduce a dummy
machine for the extra location. Also, an extremely large cost M should be attached to the
assignment of machine 2 to location 2 to prevent this assignment in the optimal solution.
The resulting assignment problem cost table is shown in Table 9.25. This cost table con-
tains all the necessary data for solving the problem. The optimal solution is to assign ma-
chine 1 to location 4, machine 2 to location 3, and machine 3 to location 1, for a total
cost of $29 per hour. The dummy machine is assigned to location 2, so this location is
available for some future real machine.

■ 9.3 THE ASSIGNMENT PROBLEM
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We shall discuss how this solution is obtained after we formulate the mathematical
model for the general assignment problem.

The Assignment Problem Model

The mathematical model for the assignment problem uses the following decision variables:

xij � �
for i � 1, 2, . . . , n and j � 1, 2, . . . , n. Thus, each xij is a binary variable (it has value
0 or 1). As discussed at length in the chapter on integer programming (Chap. 12), binary
variables are important in OR for representing yes/no decisions. In this case, the yes/no
decision is: Should assignee i perform task j?

By letting Z denote the total cost, the assignment problem model is

Minimize Z � �
n

i�1
�
n

j�1
cijxij,

subject to

�
n

j�1
xij � 1 for i � 1, 2, . . . , n,

�
n

i�1
xij � 1 for j � 1, 2, . . . , n,

and

xij � 0, for all i and j
(xij binary, for all i and j).

if assignee i performs task j,
if not,

1
0

■ TABLE 9.24 Materials-handling cost data 
($) for Job Shop Co.

Location

1 2 3 4

1 13 16 12 11
Machine 2 15 — 13 20

3 5 7 10 6

■ TABLE 9.25 Cost table for the Job Shop Co. 
assignment problem

Task
(Location)

1 2 3 4

1 13 16 12 11
Assignee 2 15 M 13 20
(Machine) 3 5 7 10 6

4(D) 0 0 0 0
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The first set of functional constraints specifies that each assignee is to perform exactly
one task, whereas the second set requires each task to be performed by exactly one as-
signee. If we delete the parenthetical restriction that the xij be binary, the model clearly
is a special type of linear programming problem and so can be readily solved. Fortu-
nately, for reasons about to unfold, we can delete this restriction. (This deletion is the
reason that the assignment problem appears in this chapter rather than in the integer pro-
gramming chapter.)

Now compare this model (without the binary restriction) with the transportation prob-
lem model presented in the third subsection of Sec. 9.1 (including Table 9.6). Note how
similar their structures are. In fact, the assignment problem is just a special type of trans-
portation problem where the sources now are assignees and the destinations now are tasks
and where

Number of sources m � number of destinations n,

Every supply si � 1,

Every demand dj � 1.

Now focus on the integer solutions property in the subsection on the transporta-
tion problem model. Because si and dj are integers (� 1) now, this property implies
that every BF solution (including an optimal one) is an integer solution for an assign-
ment problem. The functional constraints of the assignment problem model prevent any
variable from being greater than 1, and the nonnegativity constraints prevent values less
than 0. Therefore, by deleting the binary restriction to enable us to solve an assign-
ment problem as a linear programming problem, the resulting BF solutions obtained
(including the final optimal solution) automatically will satisfy the binary restriction
anyway.

Just as the transportation problem has a network representation (see Fig. 9.3), the as-
signment problem can be depicted in a very similar way, as shown in Fig. 9.5. The first
column now lists the n assignees and the second column the n tasks. Each number in a
square bracket indicates the number of assignees being provided at that location in the
network, so the values are automatically 1 on the left, whereas the values of �1 on the
right indicate that each task is using up one assignee.

For any particular assignment problem, practitioners normally do not bother writing
out the full mathematical model. It is simpler to formulate the problem by filling out a
cost table (e.g., Table 9.25), including identifying the assignees and tasks, since this table
contains all the essential data in a far more compact form.

Problems occasionally arise that do not quite fit the model for an assignment prob-
lem because certain assignees will be assigned to more than one task. In this case, the
problem can be reformulated to fit the model by splitting each such assignee into sepa-
rate (but identical) new assignees where each new assignee will be assigned to exactly
one task. (Table 9.29 will illustrate this for a subsequent example.) Similarly, if a task is
to be performed by multiple assignees, that task can be split into separate (but identical)
new tasks where each new task is to be performed by exactly one assignee according to
the reformulated model. The Solved Examples section of the book’s website provides
another example that illustrates both cases and the resulting reformulation to fit the model
for an assignment problem. An alternative formulation as a transportation problem also
is shown.

Solution Procedures for Assignment Problems

Alternative solution procedures are available for solving assignment problems. Problems
that aren’t much larger than the Job Shop Co. example can be solved very quickly by the
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9.3 THE ASSIGNMENT PROBLEM 351

general simplex method, so it may be convenient to simply use a basic software package
(such as Excel and its Solver) that only employs this method. If this were done for the
Job Shop Co. problem, it would not have been necessary to add the dummy machine to
Table 9.25 to make it fit the assignment problem model. The constraints on the number
of machines assigned to each location would be expressed instead as

�
3

i�1
xij � 1 for j � 1, 2, 3, 4.

As shown in the Excel files for this chapter, a spreadsheet formulation for this example
would be very similar to the formulation for a transportation problem displayed in 
Fig. 9.4 except now all the supplies and demands would be 1 and the demand constraints
would be �1 instead of � 1.

However, large assignment problems can be solved much faster by using more spe-
cialized solution procedures, so we recommend using such a procedure instead of the gen-
eral simplex method for big problems.

Because the assignment problem is a special type of transportation problem, one con-
venient and relatively fast way to solve any particular assignment problem is to apply the
transportation simplex method described in Sec. 9.2. This approach requires converting
the cost table to a parameter table for the equivalent transportation problem, as shown in
Table 9.26a.

For example, Table 9.26b shows the parameter table for the Job Shop Co. problem
that is obtained from the cost table of Table 9.25. When the transportation simplex method
is applied to this transportation problem formulation, the resulting optimal solution has

c11 

c12 

c21 

c22 

c2n 

c n1
 

cnn

c n2  

c
1n 

A1 [1] [�1]

[1] [�1]

An [1] [�1]

T1 

A2 T2 

Tn 

■ FIGURE 9.5
Network representation of
the assignment problem.
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basic variables x13 � 0, x14 � 1, x23 � 1, x31 � 1, x41 � 0, x42 � 1, x43 � 0. (You are
asked to verify this solution in Prob. 9.3-6.) The degenerate basic variables (xij � 0) and
the assignment for the dummy machine (x42 � 1) do not mean anything for the origi-
nal problem, so the real assignments are machine 1 to location 4, machine 2 to location
3, and machine 3 to location 1.

It is no coincidence that this optimal solution provided by the transportation simplex
method has so many degenerate basic variables. For any assignment problem with n as-
signments to be made, the transportation problem formulation shown in Table 9.26a has
m � n, that is, both the number of sources (m) and the number of destinations (n) in this
formulation equal the number of assignments (n). Transportation problems in general have
m � n � 1 basic variables (allocations), so every BF solution for this particular kind of
transportation problem has 2n � 1 basic variables, but exactly n of these xij equal 1 (cor-
responding to the n assignments being made). Therefore, since all the variables are binary
variables, there always are n � 1 degenerate basic variables (xij � 0). As discussed at the
end of Sec. 9.2, degenerate basic variables do not cause any major complication in the
execution of the algorithm. However, they do frequently cause wasted iterations, where
nothing changes (same allocations) except for the labeling of which allocations of zero
correspond to degenerate basic variables rather than nonbasic variables. These wasted it-
erations are a major drawback to applying the transportation simplex method in this kind
of situation, where there always are so many degenerate basic variables.

Another drawback of the transportation simplex method here is that it is purely a
general-purpose algorithm for solving all transportation problems. Therefore, it does noth-
ing to exploit the additional special structure in this special type of transportation problem 
(m � n, every si � 1, and every dj � 1). Fortunately, specialized algorithms have been de-
veloped to fully streamline the procedure for solving just assignment problems. These algo-
rithms operate directly on the cost table and do not bother with degenerate basic variables.
When a computer code is available for one of these algorithms, it generally should be used
in preference to the transportation simplex method, especially for really big problems.11

Section 9.4 describes one of these specialized algorithms (called the Hungarian al-
gorithm) for solving only assignment problems very efficiently.

11For an article comparing various algorithms for the assignment problem, see J. L. Kennington and Z. Wang:“An
Empirical Analysis of the Dense Assignment Problem: Sequential and Parallel Implementations,” ORSA Journal
on Computing, 3: 299–306, 1991.

■ TABLE 9.26 Parameter table for the assignment problem formulated as a transportation problem, illustrated
by the Job Shop Co. example

(a) General Case

Cost per Unit
Distributed

Destination

1 2 … n Supply

1 c11 c12
… c1n 1

2 c21 c22
… c2n 1

Source
� … … … … �

m � n cn1 cn2
… cnn 1

Demand 1 1 … 1

(b) Job Shop Co. Example

Cost per Unit
Distributed

Destination (Location)

1 2 3 4 Supply

1 13 16 12 11 1
Source 2 15 M 13 20 1
(Machine) 3 5 7 10 6 1

4(D) 0 0 0 0 1

Demand 1 1 1 1
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Your IOR Tutorial includes both an interactive procedure and an automatic procedure
for applying this algorithm.

Example—Assigning Products to Plants

The BETTER PRODUCTS COMPANY has decided to initiate the production of four
new products, using three plants that currently have excess production capacity. The
products require a comparable production effort per unit, so the available production
capacity of the plants is measured by the number of units of any product that can be
produced per day, as given in the rightmost column of Table 9.27. The bottom row gives
the required production rate per day to meet projected sales. Each plant can produce
any of these products, except that Plant 2 cannot produce product 3. However, the vari-
able costs per unit of each product differ from plant to plant, as shown in the main body
of Table 9.27.

Management now needs to make a decision on how to split up the production of the
products among plants. Two kinds of options are available.

Option 1: Permit product splitting, where the same product is produced in more than one
plant.

Option 2: Prohibit product splitting.

This second option imposes a constraint that can only increase the cost of an optimal
solution based on Table 9.27. On the other hand, the key advantage of Option 2 is
that it eliminates some hidden costs associated with product splitting that are not re-
flected in Table 9.27, including extra setup, distribution, and administration costs.
Therefore, management wants both options analyzed before a final decision is made.
For Option 2, management further specifies that every plant should be assigned at
least one of the products.

We will formulate and solve the model for each option in turn, where Option 1 leads
to a transportation problem and Option 2 leads to an assignment problem.

Formulation of Option 1. With product splitting permitted, Table 9.27 can be con-
verted directly to a parameter table for a transportation problem. The plants become the
sources, and the products become the destinations (or vice versa), so the supplies are
the available production capacities and the demands are the required production rates.
Only two changes need to be made in Table 9.27. First, because Plant 2 cannot produce
product 3, such an allocation is prevented by assigning to it a huge unit cost of M. Sec-
ond, the total capacity (75 � 75 � 45 � 195) exceeds the total required production 
(20 � 30 � 30 � 40 � 120), so a dummy destination with a demand of 75 is needed to
balance these two quantities. The resulting parameter table is shown in Table 9.28.

The optimal solution for this transportation problem has basic variables (allocations)
x12 � 30, x13 � 30, x15 � 15, x24 � 15, x25 � 60, x31 � 20, and x34 � 25, so

■ TABLE 9.27 Data for the Better Products Co. problem

Unit Cost ($) for Product
Capacity

1 2 3 4 Available

1 41 27 28 24 75
Plant 2 40 29 — 23 75

3 37 30 27 21 45

Production rate 20 30 30 40
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Plant 1 produces all of products 2 and 3.
Plant 2 produces 37.5 percent of product 4.
Plant 3 produces 62.5 percent of product 4 and all of product 1.

The total cost is Z � $3,260 per day.

Formulation of Option 2. Without product splitting, each product must be assigned
to just one plant. Therefore, producing the products can be interpreted as the tasks for an
assignment problem, where the plants are the assignees.

Management has specified that every plant should be assigned at least one of the prod-
ucts. There are more products (four) than plants (three), so one of the plants will need to
be assigned two products. Plant 3 has only enough excess capacity to produce one prod-
uct (see Table 9.27), so either Plant 1 or Plant 2 will take the extra product.

To make this assignment of an extra product possible within an assignment problem
formulation, Plants 1 and 2 each are split into two assignees, as shown in Table 9.29.

The number of assignees (now five) must equal the number of tasks (now four), so
a dummy task (product) is introduced into Table 9.29 as 5(D). The role of this dummy
task is to provide the fictional second product to either Plant 1 or Plant 2, whichever one
receives only one real product. There is no cost for producing a fictional product so, as
usual, the cost entries for the dummy task are zero. The one exception is the entry of M
in the last row of Table 9.29. The reason for M here is that Plant 3 must be assigned a
real product (a choice of product 1, 2, 3, or 4), so the Big M method is needed to prevent
the assignment of the fictional product to Plant 3 instead. (As in Table 9.28, M also is
used to prevent the infeasible assignment of product 3 to Plant 2.)

The remaining cost entries in Table 9.29 are not the unit costs shown in Tables 9.27
or 9.28. Table 9.28 gives a transportation problem formulation (for Option 1), so unit costs

■ TABLE 9.28 Parameter table for the transportation problem formulation of 
Option 1 for the Better Products Co. problem

Cost per Unit Distributed

Destination (Product)

1 2 3 4 5(D) Supply

1 41 27 28 24 0 75
Source

2 40 29 M 23 0 75
(Plant)

3 37 30 27 21 0 45

Demand 20 30 30 40 75

■ TABLE 9.29 Cost table for the assignment problem formulation of Option 2 for
the Better Products Co. problem

Task (Product)

1 2 3 4 5(D)

1a 820 810 840 960 0
1b 820 810 840 960 0

Assignee
2a 800 870 M 920 0

(Plant)
2b 800 870 M 920 0
3 740 900 810 840 M
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are appropriate there, but now we are formulating an assignment problem (for Option 2).
For an assignment problem, the cost cij is the total cost associated with assignee i per-
forming task j. For Table 9.29, the total cost (per day) for Plant i to produce product j is
the unit cost of production times the number of units produced (per day), where these two
quantities for the multiplication are given separately in Table 9.27. For example, consider
the assignment of Plant 1 to product 1. By using the corresponding unit cost in Table 9.28
($41) and the corresponding demand (number of units produced per day) in Table 9.28
(20), we obtain

Cost of Plant 1 producing one unit of product 1 � $41

Required (daily) production of product 1 � 20 units

Total (daily) cost of assigning plant 1 to product 1 � 20 ($41)

� $820

so 820 is entered into Table 9.29 for the cost of either Assignee 1a or 1b performing Task 1.
The optimal solution for this assignment problem is as follows:

Plant 1 produces products 2 and 3.
Plant 2 produces product 1.
Plant 3 produces product 4.

Here the dummy assignment is given to Plant 2. The total cost is Z � $3,290 per day.
As usual, one way to obtain this optimal solution is to convert the cost table of 

Table 9.29 to a parameter table for the equivalent transportation problem (see Table 9.26)
and then apply the transportation simplex method. Because of the identical rows in 
Table 9.29, this approach can be streamlined by combining the five assignees into three
sources with supplies 2, 2, and 1, respectively. (See Prob. 9.3-5.) This streamlining also
decreases by two the number of degenerate basic variables in every BF solution. There-
fore, even though this streamlined formulation no longer fits the format presented in Table
9.26a for an assignment problem, it is a more efficient formulation for applying the trans-
portation simplex method.

Figure 9.6 shows how Excel and Solver can be used to obtain this optimal solution,
which is displayed in the changing cells Assignment (C19:F21) of the spreadsheet. Since
the general simplex method is being used, there is no need to fit this formulation into the
format for either the assignment problem or transportation problem model. Therefore, the
formulation does not bother to split Plants 1 and 2 into two assignees each, or to add a
dummy task. Instead, Plants 1 and 2 are given a supply of 2 each, and then � signs are
entered into cells H19 and H20 as well as into the corresponding constraints in the Solver
dialogue box. There also is no need to include the Big M method to prohibit assigning
product 3 to Plant 2 in cell E20, since this dialogue box includes the constraint that 
E20 � 0. The objective cell TotalCost (I24) shows the total cost of $3,290 per day.

Now look back and compare this solution to the one obtained for Option 1, which
included the splitting of product 4 between Plants 2 and 3. The allocations are somewhat
different for the two solutions, but the total daily costs are virtually the same ($3,260 for
Option 1 versus $3,290 for Option 2). However, there are hidden costs associated with
product splitting (including the cost of extra setup, distribution, and administration) that
are not included in the objective function for Option 1. As with any application of OR,
the mathematical model used can provide only an approximate representation of the total
problem, so management needs to consider factors that cannot be incorporated into the
model before it makes a final decision. In this case, after evaluating the disadvantages of
product splitting, management decided to adopt the Option 2 solution.
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In Sec. 9.3, we pointed out that the transportation simplex method can be used to solve
assignment problems but that a specialized algorithm designed for such problems should
be more efficient. We now will describe a classic algorithm of this type. It is called the
Hungarian algorithm (or Hungarian method) because it was developed by Hungarian
mathematicians. We will focus just on the key ideas without filling in all the details needed
for a complete computer implementation.

The Role of Equivalent Cost Tables

The algorithm operates directly on the cost table for the problem. More precisely, it converts
the original cost table into a series of equivalent cost tables until it reaches one where an op-
timal solution is obvious. This final equivalent cost table is one consisting of only positive or
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■ 9.4 A SPECIAL ALGORITHM FOR THE ASSIGNMENT PROBLEM

11
12
13
14

B C D E F
Cost ($/day) Product 1 Product 2 Product 3 Product 4

Plant 1 =C4*C$8 =D4*D$8 =E4*E$8 =F4*F$8
Plant 2 =C5*C$8 =D5*D$8 - =F5*F$8
Plant 3 =C6*C$8 =D6*D$8 =E6*E$8 =F6*F$8

17
18
19
20
21

G
Total

Assignments
=SUM(C19:F19)
=SUM(C20:F20)
=SUM(C21:F21)

Range Name Cells
Assignment C19:F21
Cost C12:F14
Demand C24:F24
RequiredProduction C8:F8
Supply I19:I21
TotalAssigned C22:F22
TotalAssignments G19:G21
TotalCost I24
UnitCost C4:F6

23
24

I
Total Cost

=SUMPRODUCT(Cost,Assignment)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

A B C D E F G H I
Better Products Co. Production Planning Problem (Option 2)

Unit Cost Product 1 Product 2 Product 3 Product 4
Plant 1 $41 $27 $28 $24
Plant 2 $40 $29 - $23
Plant 3 $37 $30 $27 $21

Required Production 20 30 30 40

Cost ($/day) Product 1 Product 2 Product 3 Product 4
Plant 1 $820 $810 $840 $960
Plant 2 $800 $870 - $920
Plant 3 $740 $900 $810 $840

Total
Assignment Product 1 Product 2 Product 3 Product 4 Assignments Supply

Plant 1 0 1 1 0 2 <= 2
Plant 2 1 0 0 0 1 <= 2
Plant 3 0 0 0 1 1 = 1

Total Assigned 1 1 1 1
= = = = Total Cost

Demand 1 1 1 1 $3,290

22
B C D E F

Total Assigned =SUM(C19:C21) =SUM(D19:D21) =SUM(E19:E21) =SUM(F19:F21)

To:Min
By Changing Variable Cells:

Assignment
Subject to the Constraints:

E20 = 0
G19:G20 <= I19:I20
G21 = I21
TotalAssigned = Supply

Solver Parameters
Set Objective Cell:Total Cost

Solver Options:
Make Variables Nonnegative
Solving Method: Simplex LP

■ FIGURE 9.6
A spreadsheet formulation of
Option 2 for the Better
Products Co. problem as a
variant of an assignment
problem. The objective cell is
TotalCost (I24) and the other
output cells are Cost
(C12:F14), TotalAssignments
(G19:G21), and
TotalAssigned (C22:F22),
where the equations entered
into these cells are shown
below the spreadsheet. The
values of 1 in the changing
cells Assignment (C19:F21)
display the optimal
production plan obtained by
Solver.
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1 2 3 4

1 2 5 1 0

2 15 M 13 20

3 5 7 10 6

4(D) 0 0 0 0

Since any feasible solution must have exactly one assignment in row 1, the total cost for
the new table must always be exactly 11 less than for the old table. Hence, the solution
which minimizes total cost for one table must also minimize total cost for the other.

Notice that, whereas the original cost table had only strictly positive elements in the
first three rows, the new table has a zero element in row 1. Since the objective is to 
obtain enough strategically located zero elements to yield a complete set of assignments,
this process should be continued on the other rows and columns. Negative elements are
to be avoided, so the constant to be subtracted should be the minimum element in the row
or column. Doing this for rows 2 and 3 yields the following equivalent cost table:

12The individual rows and columns actually can be reduced in any order, but starting with all the rows and then
doing all the columns provides one systematic way of executing the algorithm.

zero elements where all the assignments can be made to the zero element positions. Since
the total cost cannot be negative, this set of assignments with a zero total cost is clearly op-
timal. The question remaining is how to convert the original cost table into this form.

The key to this conversion is the fact that one can add or subtract any constant from every
element of a row or column of the cost table without really changing the problem. That is, an
optimal solution for the new cost table must also be optimal for the old one, and conversely.

Therefore, the algorithm begins by subtracting the smallest number in each row from
every number in the row. This row reduction process will create an equivalent cost table
that has a zero element in every row. If this cost table has any columns without a zero 
element, the next step is to perform a column reduction process by subtracting the small-
est number in each such column from every number in the column.12 The new equivalent
cost table will have a zero element in every row and every column. If these zero elements
provide a complete set of assignments, these assignments constitute an optimal solution
and the algorithm is finished.

To illustrate, consider the cost table for the Job Shop Co. problem given in Table 9.25.
To convert this cost table into an equivalent cost table, suppose that we begin the row re-
duction process by subtracting 11 from every element in row 1, which yields:

1 2 3 4

1 2 5 1 0

2 2 M 0 7

3 0 2 5 1

4(D) 0 0 0 0

This cost table has all the zero elements required for a complete set of assignments,
as shown by the four boxes, so these four assignments constitute an optimal solution (as
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1 2 3 4 5(D)

1a 80 0 30 120 0

1b 80 0 30 120 0

2a 60 60 M 80 0

2b 60 60 M 80 0

3 0 90 0 0 M

claimed in Sec. 9.3 for this problem). The total cost for this optimal solution is seen in
Table 9.25 to be Z � 29, which is just the sum of the numbers that have been subtracted
from rows 1, 2, and 3.

Unfortunately, an optimal solution is not always obtained quite so easily, as we now
illustrate with the assignment problem formulation of Option 2 for the Better Products
Co. problem shown in Table 9.29.

Because this problem’s cost table already has zero elements in every row but the last one,
suppose we begin the process of converting to equivalent cost tables by subtracting the mini-
mum element in each column from every entry in that column. The result is shown below.

1 2 3 4 5(D)

1a 80 0 30 120 0

1b 80 0 30 120 0

2a 60 60 M 80 0

2b 60 60 M 80 0

3 0 90 0 0 M

Now every row and column has at least one zero element, but a complete set of assign-
ments with zero elements is not possible this time. In fact, the maximum number of as-
signments that can be made in zero element positions in only 3. (Try it.) Therefore, one
more idea must be implemented to finish solving this problem that was not needed for
the first example.

The Creation of Additional Zero Elements

This idea involves a new way of creating additional positions with zero elements with-
out creating any negative elements. Rather than subtracting a constant from a single row
or column, we now add or subtract a constant from a combination of rows and columns.

This procedure begins by drawing a set of lines through some of the rows and columns
in such a way as to cover all the zeros. This is done with a minimum number of lines, as
shown in the next cost table.

Notice that the minimum element not crossed out is 30 in the two top positions in 
column 3. Therefore, subtracting 30 from every element in the entire table, i.e., from 
every row or from every column, will create a new zero element in these two positions.
Then, in order to restore the previous zero elements and eliminate negative elements, we
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add 30 to each row or column with a line covering it—row 3 and columns 2 and 5(D).
This yields the following equivalent cost table.

1 2 3 4 5(D)

1a 50 0 0 90 0

1b 50 0 0 90 0

2a 30 60 M 50 0

2b 30 60 M 50 0

3 0 120 0 0 M

1 2 3 4 5(D)

1a 50 0 0 90 0

1b 50 0 0 90 0

2a 30 60 M 50 0

2b 30 60 M 50 0

3 0 120 0 0 M

A shortcut for obtaining this cost table from the preceding one is to subtract 30 from
just the elements without a line through them and then add 30 to every element that lies
at the intersection of two lines.

Note that columns 1 and 4 in this new cost table have only a single zero element and
they both are in the same row (row 3). Consequently, it now is possible to make four as-
signments to zero element positions, but still not five. (Try it.) In general, the minimum num-
ber of lines needed to cover all zeros equals the maximum number of assignments that can
be made to zero element positions. Therefore, we repeat the above procedure, where four
lines (the same number as the maximum number of assignments) now are the minimum
needed to cover all zeros. One way of doing this is shown below.

The minimum element not covered by a line is again 30, where this number now appears
in the first position in both rows 2a and 2b. Therefore, we subtract 30 from every uncov-
ered element and add 30 to every doubly covered element (except for ignoring elements
of M), which gives the following equivalent cost table.

1 2 3 4 5(D)

1a 50 0 0 90 30

1b 50 0 0 90 30

2a 0 30 M 20 0

2b 0 30 M 20 0

3 0 120 0 0 M
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The linear programming model encompasses a wide variety of specific types of problems.
The general simplex method is a powerful algorithm that can solve surprisingly large ver-
sions of any of these problems. However, some of these problem types have such simple
formulations that they can be solved much more efficiently by streamlined algorithms that
exploit their special structure. These streamlined algorithms can cut down tremendously
on the computer time required for large problems, and they sometimes make it computa-
tionally feasible to solve huge problems. This is particularly true for the two types of lin-
ear programming problems studied in this chapter, namely, the transportation problem and
the assignment problem. Both types have a number of common applications, so it is im-
portant to recognize them when they arise and to use the best available algorithms. These
special-purpose algorithms are included in some linear programming software packages.

360 CHAPTER 9 THE TRANSPORTATION AND ASSIGNMENT PROBLEMS

■ 9.5 CONCLUSIONS

This table actually has several ways of making a complete set of assignments to zero
element positions (several optimal solutions), including the one shown by the five boxes.
The resulting total cost is seen in Table 9.29 to be

Z � 810 � 840 � 800 � 0 � 840 � 3,290.

We now have illustrated the entire algorithm, as summarized below.

Summary of the Hungarian Algorithm

1. Subtract the smallest number in each row from every number in the row. (This is called
row reduction.) Enter the results in a new table.

2. Subtract the smallest number in each column of the new table from every number in
the column. (This is called column reduction.) Enter the results in another table.

3. Test whether an optimal set of assignments can be made. You do this by determining
the minimum number of lines needed to cover (i.e., cross out) all zeros. Since this min-
imum number of lines equals the maximum number of assignments that can be made
to zero element positions, if the minimum number of lines equals the number of rows,
an optimal set of assignments is possible. (If you find that a complete set of assign-
ments to zero element positions is not possible, this means that you did not reduce the
number of lines covering all zeros down to the minimum number.) In that case, go to
step 6. Otherwise go on to step 4.

4. If the number of lines is less than the number of rows, modify the table in the fol-
lowing way:
a. Subtract the smallest uncovered number from every uncovered number in the table.
b. Add the smallest uncovered number to the numbers at intersections of covering lines.
c. Numbers crossed out but not at the intersections of cross-out lines carry over un-

changed to the next table.
5. Repeat steps 3 and 4 until an optimal set of assignments is possible.
6. Make the assignments one at a time in positions that have zero elements. Begin with

rows or columns that have only one zero. Since each row and each column needs to
receive exactly one assignment, cross out both the row and the column involved after
each assignment is made. Then move on to the rows and columns that are not yet
crossed out to select the next assignment, with preference again given to any such row
or column that has only one zero that is not crossed out. Continue until every row and
every column has exactly one assignment and so has been crossed out. The complete
set of assignments made in this way is an optimal solution for the problem.  

Your IOR Tutorial provides an interactive procedure for applying this algorithm ef-
ficiently. An automatic procedure in included as well.
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We shall reexamine the special structure of the transportation and assignment prob-
lems in Sec. 10.6. There we shall see that these problems are special cases of an impor-
tant class of linear programming problems known as the minimum cost flow problem. This
problem has the interpretation of minimizing the cost for the flow of goods through a net-
work. A streamlined version of the simplex method called the network simplex method
(described in Sec. 10.7) is widely used for solving this type of problem, including its var-
ious special cases.

A supplementary chapter (Chap. 23) on the book’s website describes various addi-
tional special types of linear programming problems. One of these, called the transship-
ment problem, is a generalization of the transportation problem which allows shipments
from any source to any destination to first go through intermediate transfer points. Since
the transshipment problem also is a special case of the minimum cost flow problem, we
will describe it further in Sec. 10.6.

Much research continues to be devoted to developing streamlined algorithms for spe-
cial types of linear programming problems, including some not discussed here. At the
same time, there is widespread interest in applying linear programming to optimize the
operation of complicated large-scale systems. The resulting formulations usually have spe-
cial structures that can be exploited. Being able to recognize and exploit special structures
is an important factor in the successful application of linear programming.

■ LEARNING AIDS FOR THIS CHAPTER ON OUR WEBSITE (www.mhhe.com/hillier)

Solved Examples:

Examples for Chapter 9

A Demonstration Example in OR Tutor:

The Transportation Problem

Interactive Procedures in IOR Tutorial:

Enter or Revise a Transportation Problem
Find Initial Basic Feasible Solution—for Interactive Method
Solve Interactively by the Transportation Simplex Method
Solve an Assignment Problem Interactively

Automatic Procedures in IOR Tutorial:

Solve Automatically by the Transportation Simplex Method
Solve an Assignment Problem Automatically
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Distance

Distribution Center

1 2 3 4

1 800 miles 1,300 miles 400 miles 700 miles
Plant 2 1,100 miles 1,400 miles 600 miles 1,000 miles

3 600 miles 1,200 miles 800 miles 900 miles

The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The demonstration example just listed may be helpful.
I: We suggest that you use the relevant interactive procedure

in IOR Tutorial (the printout records your work).
C: Use the computer with any of the software options avail-

able to you (or as instructed by your instructor) to solve
the problem.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

9.1-1. Read the referenced article that fully describes the OR study
summarized in the application vignette in Sec. 9.1. Briefly describe
how the model for the transportation problem was applied in this
study. Then list the various financial and nonfinancial benefits that
resulted from this study.

9.1-2. The Childfair Company has three plants producing child
push chairs that are to be shipped to four distribution centers. Plants
1, 2, and 3 produce 12, 17, and 11 shipments per month, respec-
tively. Each distribution center needs to receive 10 shipments per
month. The distance from each plant to the respective distributing
centers is given below:

The freight cost for each shipment is $100 plus 50 cents per mile.
How much should be shipped from each plant to each of the

distribution centers to minimize the total shipping cost?
(a) Formulate this problem as a transportation problem by con-

structing the appropriate parameter table.
(b) Draw the network representation of this problem.
C (c) Obtain an optimal solution.

9.1-3.* Tom would like 3 pints of home brew today and an addi-
tional 4 pints of home brew tomorrow. Dick is willing to sell a
maximum of 5 pints total at a price of $3.00 per pint today and
$2.70 per pint tomorrow. Harry is willing to sell a maximum of
4 pints total at a price of $2.90 per pint today and $2.80 per pint 
tomorrow.

Tom wishes to know what his purchases should be to mini-
mize his cost while satisfying his thirst requirements.
(a) Formulate a linear programming model for this problem, and

construct the initial simplex tableau (see Chaps. 3 and 4).
(b) Formulate this problem as a transportation problem by con-

structing the appropriate parameter table.
C (c) Obtain an optimal solution.

9.1-4. The Versatech Corporation has decided to produce three new
products. Five branch plants now have excess product capacity. The
unit manufacturing cost of the first product would be $31, $29,
$32, $28, and $29 in Plants 1, 2, 3, 4, and 5, respectively. The unit
manufacturing cost of the second product would be $45, $41, $46,
$42, and $43 in Plants 1, 2, 3, 4, and 5, respectively. The unit man-
ufacturing cost of the third product would be $38, $35, and $40 in
Plants 1, 2, and 3, respectively, whereas Plants 4 and 5 do not have
the capability for producing this product. Sales forecasts indicate
that 600, 1,000, and 800 units of products 1, 2, and 3, respec-
tively, should be produced per day. Plants 1, 2, 3, 4, and 5 have
the capacity to produce 400, 600, 400, 600, and 1,000 units daily,

■ PROBLEMS

An Excel Add-in:

Analytic Solver Platform for Education (ASPE)

“Ch. 9—Transp. & Assignment” Files for Solving the Examples:

Excel Files
LINGO/LINDO File
MPL/Solvers File

Glossary for Chapter 9

Supplement to this Chapter:

A Case Study with Many Transportation Problems

See Appendix 1 for documentation of the software.
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respectively, regardless of the product or combination of products
involved. Assume that any plant having the capability and capac-
ity to produce them can produce any combination of the products
in any quantity.

Management wishes to know how to allocate the new prod-
ucts to the plants to minimize total manufacturing cost.
(a) Formulate this problem as a transportation problem by con-

structing the appropriate parameter table.
C (b) Obtain an optimal solution.

C 9.1-5. Reconsider the P & T Co. problem presented in Sec. 9.1.
You now learn that one or more of the shipping costs per truck-
load given in Table 9.2 may change slightly before shipments
begin.

Use Solver to generate the Sensitivity Report for this prob-
lem. Use this report to determine the allowable range for each of
the unit costs. What do these allowable ranges tell P & T 
management?

9.1-6. The Onenote Co. produces a single product at three plants
for four customers. The three plants will produce 60, 80, and 40
units, respectively, during the next time period. The firm has made
a commitment to sell 40 units to customer 1, 60 units to customer
2, and at least 20 units to customer 3. Both customers 3 and 4 also
want to buy as many of the remaining units as possible. The net
profit associated with shipping a unit from plant i for sale to cus-
tomer j is given by the following table:

Management wishes to know how many units to sell to customers
3 and 4 and how many units to ship from each of the plants to each
of the customers to maximize profit.
(a) Formulate this problem as a transportation problem where

the objective function is to be maximized by constructing
the appropriate parameter table that gives unit profits.

(b) Now formulate this transportation problem with the usual
objective of minimizing total cost by converting the param-
eter table from part (a) into one that gives unit costs instead
of unit profits.

(c) Display the formulation in part (a) on an Excel spreadsheet.
C (d) Use this information and the Excel Solver to obtain an op-

timal solution.
C (e) Repeat parts (c) and (d ) for the formulation in part (b). Com-

pare the optimal solutions for the two formulations.

9.1-7. The Move-It Company has two plants producing forklift
trucks that then are shipped to three distribution centers. The

production costs are the same at the two plants, and the cost of
shipping for each truck is shown for each combination of plant
and distribution center:

A total of 60 forklift trucks are produced and shipped per week.
Each plant can produce and ship any amount up to a maximum of
50 trucks per week, so there is considerable flexibility on how to
divide the total production between the two plants so as to reduce
shipping costs. However, each distribution center must receive ex-
actly 20 trucks per week.

Management’s objective is to determine how many forklift
trucks should be produced at each plant, and then what the over-
all shipping pattern should be to minimize total shipping cost.
(a) Formulate this problem as a transportation problem by con-

structing the appropriate parameter table.
(b) Display the transportation problem on an Excel spreadsheet.
C (c) Use Solver to obtain an optimal solution.

9.1-8. Redo Prob. 9.1-7 when any distribution center may receive
any quantity between 10 and 30 forklift trucks per week in order
to further reduce total shipping cost, provided only that the total
shipped to all three distribution centers must still equal 60 trucks
per week.

9.1-9. The MJK Manufacturing Company must produce two
products in sufficient quantity to meet contracted sales in each
of the next three months. The two products share the same pro-
duction facilities, and each unit of both products requires the
same amount of production capacity. The available production
and storage facilities are changing month by month, so the pro-
duction capacities, unit production costs, and unit storage costs
vary by month. Therefore, it may be worthwhile to overproduce
one or both products in some months and store them until
needed.

For each of the three months, the second column of the fol-
lowing table gives the maximum number of units of the two prod-
ucts combined that can be produced on Regular Time (RT) and on
Overtime (O). For each of the two products, the subsequent
columns give (1) the number of units needed for the contracted
sales, (2) the cost (in thousands of dollars) per unit produced on
Regular Time, (3) the cost (in thousands of dollars) per unit pro-
duced on Overtime, and (4) the cost (in thousands of dollars) of
storing each extra unit that is held over into the next month. In
each case, the numbers for the two products are separated by a
slash /, with the number for Product 1 on the left and the number
for Product 2 on the right.

Customer

1 2 3 4

1 $800 $700 $500 $200
Plant 2 500 200 100 300

3 600 400 300 500

Distribution Center

1 2 3

A $800 $700 $400
Plant

B $600 $800 $500
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Destination

1 2 3 4 Supply

1 7 4 1 4 1
2 4 6 7 2 1

Source
3 8 5 4 6 1
4 6 7 6 3 1

Demand 1 1 1 1

The production manager wants a schedule developed for the
number of units of each of the two products to be produced on
Regular Time and (if Regular Time production capacity is used
up) on Overtime in each of the three months. The objective is to
minimize the total of the production and storage costs while meet-
ing the contracted sales for each month. There is no initial in-
ventory, and no final inventory is desired after the three months.
(a) Formulate this problem as a transportation problem by con-

structing the appropriate parameter table.
C (b) Obtain an optimal solution.

9.2-1. Consider the transportation problem having the following
parameter table:

(a) Use Vogel’s approximation method manually (don’t use the in-
teractive procedure in IOR Tutorial) to select the first basic
variable for an initial BF solution.

(b) Use Russell’s approximation method manually to select the
first basic variable for an initial BF solution.

(c) Use the northwest corner rule manually to construct a com-
plete initial BF solution.

D,I 9.2-2.* Consider the transportation problem having the fol-
lowing parameter table:

Use each of the following criteria to obtain an initial BF solution.
Compare the values of the objective function for these solutions.
(a) Northwest corner rule.
(b) Vogel’s approximation method.
(c) Russell’s approximation method.

D,I 9.2-3. Consider the transportation problem having the follow-
ing parameter table:

Use each of the following criteria to obtain an initial BF solution.
Compare the values of the objective function for these solutions.
(a) Northwest corner rule.
(b) Vogel’s approximation method.
(c) Russell’s approximation method.

9.2-4. Consider the transportation problem having the following
parameter table:

(a) Notice that this problem has three special characteristics:
(1) number of sources � number of destinations, (2) each
supply � 1, and (3) each demand � 1. Transportation prob-
lems with these characteristics are of a special type called the
assignment problem (as described in Sec. 9.3). Use the integer
solutions property to explain why this type of transportation
problem can be interpreted as assigning sources to destinations
on a one-to-one basis.

(b) How many basic variables are there in every BF solution? How
many of these are degenerate basic variables (� 0)?

D,I (c) Use the northwest corner rule to obtain an initial BF 
solution.

I (d) Construct an initial BF solution by applying the general
procedure for the initialization step of the transportation
simplex method. However, rather than using one of the three

Product 1/Product 2

Maximum Unit Cost
Combined of Production Unit Cost
Production ($1,000’s) of Storage

Month RT OT Sales RT OT ($1,000’s)

1 10 3 5/3 15/16 18/20 1/2
2 8 2 3/5 17/15 20/18 2/1
3 10 3 4/4 19/17 22/22

Destination

1 2 3 Supply

1 6 3 5 4
Source 2 4 M 7 3

3 3 4 3 2

Demand 4 2 3

Destination

1 2 3 4 5 Supply

1 2 4 6 5 7 4
2 7 6 3 M 4 6

Source
3 8 7 5 2 5 6
4 0 0 0 0 0 4

Demand 4 4 2 5 5

Destination

1 2 3 4 5 6 Supply

1 13 10 22 29 18 0 5
2 14 13 16 21 M 0 6

Source 3 3 0 M 11 6 0 7
4 18 9 19 23 11 0 4
5 30 24 34 36 28 0 3

Demand 3 5 4 5 6 2
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criteria for step 1 presented in Sec. 9.2, use the minimum cost
criterion given next for selecting the next basic variable. (With
the corresponding interactive routine in your OR Courseware,
choose the Northwest Corner Rule, since this choice actually
allows the use of any criterion.)

Minimum cost criterion: From among the rows
and columns still under consideration, select the
variable xij having the smallest unit cost cij to be the
next basic variable. (Ties may be broken arbitrarily.)

D,I (e) Starting with the initial BF solution from part (c), interac-
tively apply the transportation simplex method to obtain an
optimal solution.

9.2-5. Consider the prototype example for the transportation prob-
lem (the P & T Co. problem) presented at the beginning of Sec.
9.1. Verify that the solution given there actually is optimal by ap-
plying just the optimality test portion of the transportation simplex
method to this solution.

9.2-6. Consider the transportation problem having the following
parameter table:

After several iterations of the transportation simplex method, a BF
solution is obtained that has the following basic variables: x13 � 20,
x21 � 25, x24 � 5, x32 � 25, x34 � 5, x42 � 0, x43 � 0, x45 � 20.
Continue the transportation simplex method for two more iterations
by hand. After two iterations, state whether the solution is optimal
and, if so, why.

D,I 9.2-7.* Consider the transportation problem having the fol-
lowing parameter table:

Use each of the following criteria to obtain an initial BF solution.
In each case, interactively apply the transportation simplex method,
starting with this initial solution, to obtain an optimal solution.

Compare the resulting number of iterations for the transportation
simplex method.
(a) Northwest corner rule.
(b) Vogel’s approximation method.
(c) Russell’s approximation method.

D,I 9.2-8. The Cost-Less Corp. supplies its four retail outlets from
its four plants. The shipping cost per shipment from each plant to
each retail outlet is given below.

Plants 1, 2, 3, and 4 make 10, 20, 20, and 10 shipments per month,
respectively. Retail outlets 1, 2, 3, and 4 need to receive 20, 10, 10,
and 20 shipments per month, respectively.

The distribution manager, Randy Smith, now wants to deter-
mine the best plan for how many shipments to send from each plant
to the respective retail outlets each month. Randy’s objective is to
minimize the total shipping cost.
(a) Formulate this problem as a transportation problem by con-

structing the appropriate parameter table.
(b) Use the northwest corner rule to construct an initial BF

solution.
(c) Starting with the initial basic solution from part (b), interac-

tively apply the transportation simplex method to obtain an op-
timal solution.

9.2-9. The Energetic Company needs to make plans for the energy
systems for a new building.

The energy needs in the building fall into three categories:
(1) electricity, (2) heating water, and (3) heating space in the build-
ing. The daily requirements for these three categories (all measured
in the same units) are

Electricity 20 units
Water heating 10 units
Space heating 30 units

The three possible sources of energy to meet these needs are elec-
tricity, natural gas, and a solar heating unit that can be installed
on the roof. The size of the roof limits the largest possible solar
heater to 30 units, but there is no limit to the electricity and nat-
ural gas available. Electricity needs can be met only by purchas-
ing electricity (at a cost of $50 per unit). Both other energy needs
can be met by any source or combination of sources. The unit
costs are

Destination

1 2 3 4 5 Supply

1 8 6 3 7 5 20
2 5 M 8 4 7 30

Source
3 6 3 9 6 8 30
4(D) 0 0 0 0 0 20

Demand 25 25 20 10 20

PROBLEMS 365

Destination

1 2 3 4 Supply

1 3 7 6 4 5
Source 2 2 4 3 2 2

3 4 3 8 5 3

Demand 3 3 2 2

Unit Shipping Cost
Retail Outlet

1 2 3 4

1 $500 $600 $400 $200
2 $200 $900 $100 $300

Plant
3 $300 $400 $200 $100
4 $200 $100 $300 $200
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366 CHAPTER 9 THE TRANSPORTATION AND ASSIGNMENT PROBLEMS

The objective is to minimize the total cost of meeting the energy
needs.
(a) Formulate this problem as a transportation problem by con-

structing the appropriate parameter table.
D,I (b) Use the northwest corner rule to obtain an initial BF solu-

tion for this problem.
D,I (c) Starting with the initial BF solution from part (b), interac-

tively apply the transportation simplex method to obtain an
optimal solution.

D,I (d) Use Vogel’s approximation method to obtain an initial BF
solution for this problem.

D,I (e) Starting with the initial BF solution from part (d ), interac-
tively apply the transportation simplex method to obtain an
optimal solution.

I (f) Use Russell’s approximation method to obtain an initial BF
solution for this problem.

D,I (g) Starting with the initial BF solution obtained from part ( f ),
interactively apply the transportation simplex method to
obtain an optimal solution. Compare the number of itera-
tions required by the transportation simplex method here
and in parts (c) and (e).

D,I 9.2-10.* Interactively apply the transportation simplex method
to solve the Northern Airplane Co. production scheduling problem
as it is formulated in Table 9.9.

D,I 9.2-11.* Reconsider Prob. 9.1-2.
(a) Use the northwest corner rule to obtain an initial BF solution.
(b) Starting with the initial BF solution from part (a), interactively

apply the transportation simplex method to obtain an optimal
solution.

D,I 9.2-12. Reconsider Prob. 9.1-3b. Starting with the northwest
corner rule, interactively apply the transportation simplex method
to obtain an optimal solution for this problem.

D,I 9.2-13. Reconsider Prob. 9.1-4. Starting with the northwest
corner rule, interactively apply the transportation simplex method
to obtain an optimal solution for this problem.

D,I 9.2-14. Reconsider Prob. 9.1-6. Starting with Russell’s ap-
proximation method, interactively apply the transportation simplex
method to obtain an optimal solution for this problem.

9.2-15. Reconsider the transportation problem formulated in Prob.
9.1-7a.
D,I (a) Use each of the three criteria presented in Sec. 9.2 to ob-

tain an initial BF solution, and time how long you spend
for each one. Compare both these times and the values of
the objective function for these solutions.

C (b) Obtain an optimal solution for this problem. For each of
the three initial BF solutions obtained in part (a), calculate

the percentage by which its objective function value ex-
ceeds the optimal one.

D,I (c) For each of the three initial BF solutions obtained in part
(a), interactively apply the transportation simplex method
to obtain (and verify) an optimal solution. Time how long
you spend in each of the three cases. Compare both these
times and the number of iterations needed to reach an op-
timal solution.

9.2-16. Follow the instructions of Prob. 9.2-15 for the transporta-
tion problem formulated in Prob. 9.1-7a.

9.2-17. Consider the transportation problem having the following
parameter table:

(a) Using your choice of a criterion from Sec. 9.2 for obtaining
the initial BF solution, solve this problem manually by the
transportation simplex method. (Keep track of your time.)

(b) Reformulate this problem as a general linear programming
problem, and then solve it manually by the simplex method.
Keep track of how long this takes you, and contrast it with the
computation time for part (a).

9.2-18. Consider the Northern Airplane Co. production schedul-
ing problem presented in Sec. 9.1 (see Table 9.7). Formulate this
problem as a general linear programming problem by letting the
decision variables be xj � number of jet engines to be produced in
month j ( j � 1, 2, 3, 4). Construct the initial simplex tableau for
this formulation, and then contrast the size (number of rows and
columns) of this tableau and the corresponding tableaux used to
solve the transportation problem formulation of the problem (see
Table 9.9).

9.2-19. Consider the general linear programming formulation of
the transportation problem (see Table 9.6). Verify the claim in
Sec. 9.2 that the set of (m � n) functional constraint equations
(m supply constraints and n demand constraints) has one redun-
dant equation; i.e., any one equation can be reproduced from a
linear combination of the other (m � n � 1) equations.

9.2-20. When you deal with a transportation problem where the
supply and demand quantities have integer values, explain why the
steps of the transportation simplex method guarantee that all 
the basic variables (allocations) in the BF solutions obtained must
have integer values. Begin with why this occurs with the initial-
ization step when the general procedure for constructing an initial
BF solution is used (regardless of the criterion for selecting the
next basic variable). Then given a current BF solution that is inte-
ger, next explain why Step 3 of an iteration must obtain a new BF

Electricity Natural Gas Solar Heater

Water heating $90 $60 $30
Space heating 80 50 40

Destination

1 2 Supply

1 8 5 4
Source

2 6 4 2

Demand 3 3
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solution that also is integer. Finally, explain how the initialization
step can be used to construct any initial BF solution, so the trans-
portation simplex method actually gives a proof of the integer 
solutions property presented in Sec. 9.1.

9.2-21. A contractor, Susan Meyer, has to haul gravel to three
building sites. She can purchase as much as 18 tons at a gravel pit
in the north of the city and 14 tons at one in the south. She needs
10, 5, and 10 tons at sites 1, 2, and 3, respectively. The purchase
price per ton at each gravel pit and the hauling cost per ton are
given in the table below.

Susan wishes to determine how much to haul from each pit to
each site to minimize the total cost for purchasing and hauling
gravel.
(a) Formulate a linear programming model for this problem.

Using the Big M method, construct the initial simplex tableau
ready to apply the simplex method (but do not actually
solve).

(b) Now formulate this problem as a transportation problem by
constructing the appropriate parameter table. Compare the size
of this table (and the corresponding transportation simplex
tableau) used by the transportation simplex method with the
size of the simplex tableaux from part (a) that would be needed
by the simplex method.

D (c) Susan Meyer notices that she can supply sites 1 and 2 com-
pletely from the north pit and site 3 completely from the
south pit. Use the optimality test (but no iterations) of the
transportation simplex method to check whether the corre-
sponding BF solution is optimal.

D,I (d) Starting with the northwest corner rule, interactively apply
the transportation simplex method to solve the problem as
formulated in part (b).

(e) As usual, let cij denote the unit cost associated with source
i and destination j as given in the parameter table constructed
in part (b). For the optimal solution obtained in part (d ), sup-
pose that the value of cij for each basic variable xij is fixed
at the value given in the parameter table, but that the value
of cij for each nonbasic variable xij possibly can be altered
through bargaining because the site manager wants to pick
up the business. Use sensitivity analysis to determine the
allowable range for each of the latter cij, and explain how
this information is useful to the contractor.

C 9.2-22. Consider the transportation problem formulation and so-
lution of the Metro Water District problem presented in Secs. 9.1
and 9.2 (see Tables 9.12 and 9.23).

The numbers given in the parameter table are only estimates
that may be somewhat inaccurate, so management now wishes to
do some what-if analysis. Use Solver to generate the Sensitivity
Report. Then use this report to address the following questions. (In
each case, assume that the indicated change is the only change in
the model.)
(a) Would the optimal solution in Table 9.23 remain optimal if the

cost per acre foot of shipping Calorie River water to San Go
were actually $200 rather than $230?

(b) Would this solution remain optimal if the cost per acre foot of
shipping Sacron River water to Los Devils were actually $160
rather than $130?

(c) Must this solution remain optimal if the costs considered in
parts (a) and (b) were simultaneously changed from their orig-
inal values to $215 and $145, respectively?

(d) Suppose that the supply from the Sacron River and the demand
at Hollyglass are decreased simultaneously by the same
amount. Must the shadow prices for evaluating these changes
remain valid if the decrease were 0.5 million acre feet?

9.2-23. Without generating the Sensitivity Report, adapt the sensi-
tivity analysis procedure presented in Secs. 7.1 and 7.2 to conduct
the sensitivity analysis specified in the four parts of Prob. 9.2-22.

9.3-1. Consider the assignment problem having the following cost
table.

(a) Draw the network representation of this assignment problem.
(b) Formulate this problem as a transportation problem by con-

structing the appropriate parameter table.
(c) Display this formulation on an Excel spreadsheet.
C (d) Use Solver to obtain an optimal solution.

9.3-2. Four cargo ships will be used for shipping goods from one
port to four other ports (labeled 1, 2, 3, 4). Any ship can be used for
making any one of these four trips. However, because of differences
in the ships and cargoes, the total cost of loading, transporting, and
unloading the goods for the different ship-port combinations varies
considerably, as shown in the following table:

PROBLEMS 367

Hauling Cost per Ton at Site

Pit 1 2 3 Price per Ton

North $100 $190 $160 $300
South 180 110 140 420

Task

1 2 3 4

A 8 6 5 7
B 6 5 3 4

Assignee
C 7 8 4 6
D 6 7 5 6

Port

1 2 3 4

1 $500 $400 $600 $700
2 600 600 700 500

Ship
3 700 500 700 600
4 500 400 600 600
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368 CHAPTER 9 THE TRANSPORTATION AND ASSIGNMENT PROBLEMS

The objective is to assign the four ships to four different ports in
such a way as to minimize the total cost for all four shipments.
(a) Describe how this problem fits into the general format for the

assignment problem.
C (b) Obtain an optimal solution.
(c) Reformulate this problem as an equivalent transportation prob-

lem by constructing the appropriate parameter table.
D,I (d) Use the northwest corner rule to obtain an initial BF solu-

tion for the problem as formulated in part (c).
D,I (e) Starting with the initial BF solution from part (d ), in-

teractively apply the transportation simplex method to
obtain an optimal set of assignments for the original
problem.

D,I (f) Are there other optimal solutions in addition to the one ob-
tained in part (e)? If so, use the transportation simplex
method to identify them.

9.3-3. Reconsider Prob. 9.1-4. Suppose that the sales forecasts
have been revised downward to 240, 400, and 320 units per day of
products 1, 2, and 3, respectively, and that each plant now has the
capacity to produce all that is required of any one product. There-
fore, management has decided that each new product should be as-
signed to only one plant and that no plant should be assigned more
than one product (so that three plants are each to be assigned one
product, and two plants are to be assigned none). The objective is
to make these assignments so as to minimize the total cost of pro-
ducing these amounts of the three products.
(a) Formulate this problem as an assignment problem by con-

structing the appropriate cost table.
C (b) Obtain an optimal solution.
(c) Reformulate this assignment problem as an equivalent trans-

portation problem by constructing the appropriate parameter
table.

D,I (d) Starting with Vogel’s approximation method, interactively
apply the transportation simplex method to solve the prob-
lem as formulated in part (c).

9.3-4.* The coach of an age group swim team needs to assign
swimmers to a 200-yard medley relay team to send to the Junior
Olympics. Since most of his best swimmers are very fast in more
than one stroke, it is not clear which swimmer should be assigned
to each of the four strokes. The five fastest swimmers and the best
times (in seconds) they have achieved in each of the strokes (for
50 yards) are

(a) Formulate this problem as an assignment problem.
C (b) Obtain an optimal solution.

9.3-5. Consider the assignment problem formulation of Option 2
for the Better Products Co. problem presented in Table 9.29.
(a) Reformulate this problem as an equivalent transportation prob-

lem with three sources and five destinations by constructing
the appropriate parameter table.

(b) Convert the optimal solution given in Sec. 9.3 for this assign-
ment problem into a complete BF solution (including degen-
erate basic variables) for the transportation problem formulated
in part (a). Specifically, apply the “General Procedure for
Constructing an Initial BF Solution” given in Sec. 9.2. For
each iteration of the procedure, rather than using any of the
three alternative criteria presented for step 1, select the next
basic variable to correspond to the next assignment of a plant
to a product given in the optimal solution. When only one row
or only one column remains under consideration, use step 4
to select the remaining basic variables.

(c) Verify that the optimal solution given in Sec. 9.3 for this as-
signment problem actually is optimal by applying just the op-
timality test portion of the transportation simplex method to
the complete BF solution obtained in part (b).

(d) Now reformulate this assignment problem as an equivalent
transportation problem with five sources and five destina-
tions by constructing the appropriate parameter table. Com-
pare this transportation problem with the one formulated in
part (a).

(e) Repeat part (b) for the problem as formulated in part (d ). Com-
pare the BF solution obtained with the one from part (b).

D,I 9.3-6. Starting with Vogel’s approximation method, interac-
tively apply the transportation simplex method to solve the Job Shop
Co. assignment problem as formulated in Table 9.26b. (As stated
in Sec. 9.3, the resulting optimal solution has x14 � 1, x23 � 1,
x31 � 1, x42 � 1, and all other xij � 0.)

9.3-7. Reconsider Prob. 9.1-7. Now assume that distribution
centers 1, 2, and 3 must receive exactly 10, 20, and 30 units per
week, respectively. For administrative convenience, management
has decided that each distribution center will be supplied totally
by a single plant, so that one plant will supply one distribution cen-
ter and the other plant will supply the other two distribution cen-
ters. The choice of these assignments of plants to distribution
centers is to be made solely on the basis of minimizing total
shipping cost.
(a) Formulate this problem as an assignment problem by con-

structing the appropriate cost table, including identifying the
corresponding assignees and tasks.

C (b) Obtain an optimal solution.
(c) Reformulate this assignment problem as an equivalent trans-

portation problem (with four sources) by constructing the ap-
propriate parameter table.

C (d) Solve the problem as formulated in part (c).
(e) Repeat part (c) with just two sources.
C (f) Solve the problem as formulated in part (e).

The coach wishes to determine how to assign four swimmers to
the four different strokes to minimize the sum of the correspond-
ing best times.

Stroke Carl Chris David Tony Ken

Backstroke 37.7 32.9 33.8 37.0 35.4
Breaststroke 43.4 33.1 42.2 34.7 41.8
Butterfly 33.3 28.5 38.9 30.4 33.6
Freestyle 29.2 26.4 29.6 28.5 31.1
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Job

1 2 3

A 5 7 4
Person B 3 6 5

C 2 3 4

9.3-8. Consider the assignment problem having the following 
cost table.

The optimal solution is A-3, B-1, C-2, with Z � 10.
C (a) Use the computer to verify this optimal solution.
(b) Reformulate this problem as an equivalent transportation

problem by constructing the appropriate parameter table.
C (c) Obtain an optimal solution for the transportation problem

formulated in part (b).
(d) Why does the optimal BF solution obtained in part (c) include

some (degenerate) basic variables that are not part of the optimal
solution for the assignment problem?

(e) Now consider the nonbasic variables in the optimal BF solution
obtained in part (c). For each nonbasic variable xij and the
corresponding cost cij, adapt the sensitivity analysis procedure
for general linear programming (see Case 2a in Sec. 7.2) to
determine the allowable range for cij.

9.3-9. Consider the linear programming model for the general as-
signment problem given in Sec. 9.3. Construct the table of con-
straint coefficients for this model. Compare this table with the one
for the general transportation problem (Table 9.6). In what ways
does the general assignment problem have more special structure
than the general transportation problem?

I 9.4-1. Reconsider the assignment problem presented in 
Prob. 9.3-2. Manually apply the Hungarian algorithm to solve
this problem. (You may use the corresponding interactive pro-
cedure in your IOR Tutorial.)

I 9.4-2. Reconsider Prob. 9.3-4. See its formulation as an assignment
problem in the answers given in the back of the book. Manually
apply the Hungarian algorithm to solve this problem. (You may use
the corresponding interactive procedure in your IOR Tutorial.)

I 9.4-3. Reconsider the assignment problem formulation of Option
2 for the Better Products Co. problem presented in Table 9.29.
Suppose that the cost of having Plant 1 produce product 1 is 

reduced from 820 to 720. Solve this problem by manually ap-
plying the Hungarian algorithm. (You may use the correspond-
ing interactive procedure in your IOR Tutorial.)

I 9.4-4. Manually apply the Hungarian algorithm (perhaps us-
ing the corresponding interactive procedure in your IOR Tu-
torial) to solve the assignment problem having the following
cost table:

I 9.4-5. Manually apply the Hungarian algorithm (perhaps using
the corresponding interactive procedure in your IOR Tutorial) to
solve the assignment problem having the following cost table:

Job

1 2 3

1 M 8 7
Person 2 7 6 4

3(D) 0 0 0

Task

1 2 3 4

A 4 1 0 1

Assignee
B 1 3 4 0
C 3 2 1 3
D 2 2 3 0

I 9.4-6. Manually apply the Hungarian algorithm (perhaps using
the corresponding interactive procedure in your IOR Tutorial) to
solve the assignment problem having the following cost table:

Task

1 2 3 4

A 4 6 5 5

Assignee
B 7 4 5 6
C 4 7 6 4
D 5 3 4 7

hil23453_ch09_318-371.qxd  1/15/70  9:14 AM  Page 369 Final PDF to printer



370 CHAPTER 9 THE TRANSPORTATION AND ASSIGNMENT PROBLEMS

Unit Cost by Rail ($1,000’s) Unit Cost by Ship ($1,000’s)
Market Market

Source 1 2 3 4 5 1 2 3 4 5

1 61 72 45 55 66 31 38 24 — 35
2 69 78 60 49 56 36 43 28 24 31
3 59 66 63 61 47 — 33 36 32 26

Investment for Ships ($1,000’s)
Market

Source 1 2 3 4 5

1 275 303 238 — 285
2 293 318 270 250 265
3 — 283 275 268 240

Considering the expected useful life of the ships and the
time value of money, the equivalent uniform annual cost of
these investments is one-tenth the amount given in the table.
The objective is to determine the overall shipping plan that
minimizes the total equivalent uniform annual cost (includ-
ing shipping costs).

You are the head of the OR team that has been assigned
the task of determining this shipping plan for each of the
following three options.

Option 1: Continue shipping exclusively by rail.
Option 2: Switch to shipping exclusively by water (except where

only rail is feasible).

Option 3: Ship by either rail or water, depending on which is
less expensive for the particular route.

Present your results for each option. Compare.
Finally, consider the fact that these results are based on

current shipping and investment costs, so the decision on
the option to adopt now should take into account manage-
ment’s projection of how these costs are likely to change in
the future. For each option, describe a scenario of future cost
changes that would justify adopting that option now.

(Note: Data files for this case are provided on the book’s
website for your convenience.)

The capital investment (in thousands of dollars) in ships re-
quired for each million board feet to be transported annually
by ship along each route is given as follows:

■ CASES

CASE 9.1  Shipping Wood to Market
Alabama Atlantic is a lumber company that has three
sources of wood and five markets to be supplied. The an-
nual availability of wood at sources 1, 2, and 3 is 15, 20,
and 15 million board feet, respectively. The amount that can
be sold annually at markets 1, 2, 3, 4, and 5 is 11, 12, 9,
10, and 8 million board feet, respectively.

In the past the company has shipped the wood by train.
However, because shipping costs have been increasing, the al-
ternative of using ships to make some of the deliveries is be-
ing investigated. This alternative would require the company
to invest in some ships. Except for these investment costs, the
shipping costs in thousands of dollars per million board feet
by rail and by water (when feasible) would be the following
for each route:
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■ PREVIEWS OF ADDED CASES ON OUR WEBSITE (www.mhhe.com/hillier)

CASE 9.2  Continuation of the 
Texago Case Study
The supplement to this chapter on the book’s website pre-
sents a case study of how the Texago Corp. solved many
transportation problems to help make its decision regarding
where to locate its new oil refinery. Management now needs
to address the question of whether the capacity of the new
refinery should be made somewhat larger than originally
planned. This will require formulating and solving some ad-
ditional transportation problems. A key part of the analysis
then will involve combining two transportation problems into
a single linear programming model that simultaneously con-
siders the shipping of crude oil from the oil fields to the re-
fineries and the shipping of final product from the refineries

to the distribution centers. A memo to management sum-
marizing your results and recommendations also needs to be
written.

CASE 9.3  Project Pickings
This case focuses on a series of applications of the assign-
ment problem for a pharmaceutical manufacturing company.
The decision has been made to undertake five research and
development projects to attempt to develop new drugs that
will treat five specific types of medical ailments. Five senior
scientists are available to lead these projects as project di-
rectors. The problem now is to decide on how to assign these
scientists to the projects on a one-to-one basis. A variety of
likely scenarios need to be considered.
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10C H A P T E R

Network Optimization Models

Networks arise in numerous settings and in a variety of guises. Transportation, electrical,
and communication networks pervade our daily lives. Network representations also are

widely used for problems in such diverse areas as production, distribution, project planning,
facilities location, resource management, supply chain management and financial planning—
to name just a few examples. In fact, a network representation provides such a powerful vi-
sual and conceptual aid for portraying the relationships between the components of systems
that it is used in virtually every field of scientific, social, and economic endeavor.

One of the most exciting developments in operations research (OR) in recent decades,
has been the unusually rapid advance in both the methodology and application of network
optimization models. A number of algorithmic breakthroughs have had a major impact,
as have ideas from computer science concerning data structures and efficient data ma-
nipulation. Consequently, algorithms and software now are available and are being used
to solve huge problems on a routine basis that would have been completely intractable
three decades ago.

Many network optimization models actually are special types of linear programming
problems. For example, both the transportation problem and the assignment problem dis-
cussed in the preceding chapter fall into this category because of their network represen-
tations presented in Figs. 9.3 and 9.5.

One of the linear programming examples presented in Sec. 3.4 also is a network op-
timization problem. This is the Distribution Unlimited Co. problem of how to distribute
its goods through the distribution network shown in Fig. 3.13. This special type of linear
programming problem, called the minimum cost flow problem, is presented in Sec. 10.6.
We shall return to this specific example in that section and then solve it with network
methodology in the following section.

In this one chapter we only scratch the surface of the current state of the art of net-
work methodology. However, we shall introduce you to five important kinds of network
problems and some basic ideas of how to solve them (without delving into issues of data
structures that are so vital to successful large-scale implementations). Each of the first three
problem types—the shortest-path problem, the minimum spanning tree problem, and the
maximum flow problem—has a very specific structure that arises frequently in applications.

The fourth type—the minimum cost flow problem—provides a unified approach to
many other applications because of its far more general structure. In fact, this structure is
so general that it includes as special cases both the shortest-path problem and the maxi-
mum flow problem as well as the transportation problem and the assignment problem from
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10.1 PROTOTYPE EXAMPLE 373

Chap. 9. Because the minimum cost flow problem is a special type of linear programming
problem, it can be solved extremely efficiently by a streamlined version of the simplex method
called the network simplex method. (We shall not discuss even more general network prob-
lems that are more difficult to solve.)

The fifth kind of network problem considered here involves determining the most
economical way to conduct a project so that it can be completed by its deadline. A tech-
nique called the CPM method of time-cost trade-offs is used to formulate a network model
of the project and the time-cost trade-offs for its activities. Either marginal cost analysis
or linear programming then is used to solve for the optimal project plan.

The first section introduces a prototype example that will be used subsequently to il-
lustrate the approach to the first three of the problem types mentioned above. Section 10.2
presents some basic terminology for networks. The next four sections deal with the first
four problem types in turn, and Sec. 10.7 then is devoted to the network simplex method.
Section 10.8 presents the CPM method of time-cost trade-offs for project management.
(Chapter 22 on the website also uses network models to deal with a variety of project
management problems.)

■ 10.1 PROTOTYPE EXAMPLE

SEERVADA PARK has recently been set aside for a limited amount of sightseeing and
backpack hiking. Cars are not allowed into the park, but there is a narrow, winding road
system for trams and for jeeps driven by the park rangers. This road system is shown
(without the curves) in Fig. 10.1, where location O is the entrance into the park; other let-
ters designate the locations of ranger stations (and other limited facilities). The numbers
give the distances of these winding roads in miles.

The park contains a scenic wonder at station T. A small number of trams are used to
transport sightseers from the park entrance to station T and back.

The park management currently faces three problems. One is to determine which route
from the park entrance to station T has the smallest total distance for the operation of the
trams. (This is an example of the shortest-path problem to be discussed in Sec. 10.3.)

A second problem is that telephone lines must be installed under the roads to estab-
lish telephone communication among all the stations (including the park entrance). Be-
cause the installation is both expensive and disruptive to the natural environment, lines
will be installed under just enough roads to provide some connection between every pair
of stations. The question is where the lines should be laid to accomplish this with a min-
imum total number of miles of line installed. (This is an example of the minimum span-
ning tree problem to be discussed in Sec. 10.4.)
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■ FIGURE 10.1
The road system for Seervada
Park.
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The third problem is that more people want to take the tram ride from the park
entrance to station T than can be accommodated during the peak season. To avoid un-
duly disturbing the ecology and wildlife of the region, a strict ration has been placed
on the number of tram trips that can be made on each of the roads per day. (These lim-
its differ for the different roads, as we shall describe in detail in Sec. 10.5.) Therefore,
during the peak season, various routes might be followed regardless of distance to in-
crease the number of tram trips that can be made each day. The question pertains to
how to route the various trips to maximize the number of trips that can be made per
day without violating the limits on any individual road. (This is an example of the max-
imum flow problem to be discussed in Sec. 10.5.)

■ 10.2 THE TERMINOLOGY OF NETWORKS

A relatively extensive terminology has been developed to describe the various kinds of
networks and their components. Although we have avoided as much of this special vo-
cabulary as we could, we still need to introduce a considerable number of terms for use
throughout the chapter. We suggest that you read through this section once at the outset
to understand the definitions and then plan to return to refresh your memory as the terms
are used in subsequent sections. To assist you, each term is highlighted in boldface at the
point where it is defined.

A network consists of a set of points and a set of lines connecting certain pairs of the
points. The points are called nodes (or vertices); e.g., the network in Fig. 10.1 has seven
nodes designated by the seven circles. The lines are called arcs (or links or edges or
branches); e.g., the network in Fig. 10.1 has 12 arcs corresponding to the 12 roads in the
road system. Arcs are labeled by naming the nodes at either end; for example, AB is the
arc between nodes A and B in Fig. 10.1.

The arcs of a network may have a flow of some type through them, e.g., the flow of
trams on the roads of Seervada Park in Sec. 10.1. Table 10.1 gives several examples of
flow in typical networks. If flow through an arc is allowed in only one direction (e.g., a
one-way street), the arc is said to be a directed arc. The direction is indicated by adding
an arrowhead at the end of the line representing the arc. When a directed arc is labeled by
listing two nodes it connects, the from node always is given before the to node; e.g., an arc
that is directed from node A to node B must be labeled as AB rather than BA. Alternatively,
this arc may be labeled as A � B.

If flow through an arc is allowed in either direction (e.g., a pipeline that can be used
to pump fluid in either direction), the arc is said to be an undirected arc. To help you
distinguish between the two kinds of arcs, we shall frequently refer to undirected arcs by
the suggestive name of links.

Although the flow through an undirected arc is allowed to be in either direction, we
do assume that the flow will be one way in the direction of choice rather than having 

■ TABLE 10.1 Components of typical networks

Nodes Arcs Flow

Intersections Roads Vehicles
Airports Air lanes Aircraft
Switching points Wires, channels Messages
Pumping stations Pipes Fluids
Work centers Materials-handling routes Jobs
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simultaneous flows in opposite directions. (The latter case requires the use of a pair of
directed arcs in opposite directions.) However, in the process of making the decision on
the flow through an undirected arc, it is permissible to make a sequence of assignments
of flows in opposite directions, but with the understanding that the actual flow will be the
net flow (the difference of the assigned flows in the two directions). For example, if a flow
of 10 has been assigned in one direction and then a flow of 4 is assigned in the opposite di-
rection, the actual effect is to cancel 4 units of the original assignment by reducing the flow
in the original direction from 10 to 6. Even for a directed arc, the same technique some-
times is used as a convenient device to reduce a previously assigned flow. In particular, you
are allowed to make a fictional assignment of flow in the “wrong” direction through a di-
rected arc to record a reduction of that amount in the flow in the “right” direction.

A network that has only directed arcs is called a directed network. Similarly, if all
its arcs are undirected, the network is said to be an undirected network. A network with
a mixture of directed and undirected arcs (or even all undirected arcs) can be converted
to a directed network, if desired, by replacing each undirected arc by a pair of directed
arcs in opposite directions. (You then have the choice of interpreting the flows through
each pair of directed arcs as being simultaneous flows in opposite directions or providing
a net flow in one direction, depending on which fits your application.)

When two nodes are not connected by an arc, a natural question is whether they are
connected by a series of arcs. A path between two nodes is a sequence of distinct arcs con-
necting these nodes. For example, one of the paths connecting nodes O and T in Fig. 10.1
is the sequence of arcs OB–BD–DT (O � B � D � T), or vice versa. When some of or
all the arcs in the network are directed arcs, we then distinguish between directed paths
and undirected paths. A directed path from node i to node j is a sequence of connecting
arcs whose direction (if any) is toward node j, so that flow from node i to node j along this
path is feasible. An undirected path from node i to node j is a sequence of connecting
arcs whose direction (if any) can be either toward or away from node j. (Notice that a di-
rected path also satisfies the definition of an undirected path, but not vice versa.) Frequently,
an undirected path will have some arcs directed toward node j but others directed away
(i.e., toward node i). You will see in Secs. 10.5 and 10.7 that, perhaps surprisingly, undi-
rected paths play a major role in the analysis of directed networks.

To illustrate these definitions, Fig. 10.2 shows a typical directed network. (Its nodes and
arcs are the same as in Fig. 3.13, where nodes A and B represent two factories, nodes D and
E represent two warehouses, node C represents a distribution center, and the arcs represent
shipping lanes.) The sequence of arcs AB–BC–CE (A � B � C � E) is a directed path from
node A to E, since flow toward node E along this entire path is feasible. On the other hand,
BC–AC–AD (B � C � A � D) is not a directed path from node B to node D, because the
direction of arc AC is away from node D (on this path). However, B � C � A � D is an
undirected path from node B to node D, because the sequence of arcs BC–AC–AD does con-
nect these two nodes (even though the direction of arc AC prevents flow through this path).

As an example of the relevance of undirected paths, suppose that 2 units of flow from
node A to node C had previously been assigned to arc AC. Given this previous assign-
ment, it now is feasible to assign a smaller flow, say, 1 unit, to the entire undirected path
B � C � A � D, even though the direction of arc AC prevents positive flow through 
C � A. The reason is that this assignment of flow in the “wrong” direction for arc AC
actually just reduces the flow in the “right” direction by 1 unit. Sections 10.5 and 10.7
make heavy use of this technique of assigning a flow through an undirected path that in-
cludes arcs whose direction is opposite to this flow, where the real effect for these arcs is
to reduce previously assigned positive flows in the “right” direction.

A path that begins and ends at the same node is called a cycle. In a directed net-
work, a cycle is either a directed or an undirected cycle, depending on whether the
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path involved is a directed or an undirected path. (Since a directed path also is an undi-
rected path, a directed cycle is an undirected cycle, but not vice versa in general.) In
Fig. 10.2, for example, DE–ED is a directed cycle. By contrast, AB–BC–AC is not a
directed cycle, because the direction of arc AC opposes the direction of arcs AB and
BC. On the other hand, AB–BC–AC is an undirected cycle, because A � B � C � A
is an undirected path. In the undirected network shown in Fig. 10.1, there are many
cycles, for example, OA–AB–BC–CO. However, note that the definition of path (a 
sequence of distinct arcs) rules out retracing one’s steps in forming a cycle. For ex-
ample, OB–BO in Fig. 10.1 does not qualify as a cycle, because OB and BO are two
labels for the same arc (link). On the other hand, DE–ED is a (directed) cycle in Fig.
10.2, because DE and ED are distinct arcs.

Two nodes are said to be connected if the network contains at least one undirected
path between them. (Note that the path does not need to be directed even if the network
is directed.) A connected network is a network where every pair of nodes is connected.
Thus, the networks in Figs. 10.1 and 10.2 are both connected. However, the latter network
would not be connected if arcs AD and CE were removed.

Consider a connected network with n nodes (e.g., the n � 5 nodes in Fig. 10.2) where
all the arcs have been deleted. A “tree” can then be “grown” by adding one arc (or “branch”)
at a time from the original network in a certain way. The first arc can go anywhere to con-
nect some pair of nodes. Thereafter, each new arc should be between a node that already
is connected to other nodes and a new node not previously connected to any other nodes.
Adding an arc in this way avoids creating a cycle and ensures that the number of con-
nected nodes is 1 greater than the number of arcs. Each new arc creates a larger tree,
which is a connected network (for some subset of the n nodes) that contains no undirected
cycles. Once the (n � 1)st arc has been added, the process stops because the resulting tree
spans (connects) all n nodes. This tree is called a spanning tree, i.e., a connected net-
work for all n nodes that contains no undirected cycles. Every spanning tree has exactly
n � 1 arcs, since this is the minimum number of arcs needed to have a connected network
and the maximum number possible without having undirected cycles.

Figure 10.3 uses the five nodes and some of the arcs of Fig. 10.2 to illustrate this
process of growing a tree one arc (branch) at a time until a spanning tree has been ob-
tained. There are several alternative choices for the new arc at each stage of the process,
so Fig. 10.3 shows only one of many ways to construct a spanning tree in this case. Note,
however, how each new added arc satisfies the conditions specified in the preceding para-
graph. We shall discuss and illustrate spanning trees further in Sec. 10.4.
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■ FIGURE 10.2
The distribution network for
Distribution Unlimited Co.,
first shown in Fig. 3.13,
illustrates a directed network.
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Spanning trees play a key role in the analysis of many networks. For example, they
form the basis for the minimum spanning tree problem discussed in Sec. 10.4. Another
prime example is that (feasible) spanning trees correspond to the BF solutions for the net-
work simplex method discussed in Sec. 10.7.

Finally, we shall need a little additional terminology about flows in networks. The
maximum amount of flow (possibly infinity) that can be carried on a directed arc is re-
ferred to as the arc capacity. For nodes, a distinction is made among those that are net
generators of flow, net absorbers of flow, or neither. A supply node (or source node or
source) has the property that the flow out of the node exceeds the flow into the node. The
reverse case is a demand node (or sink node or sink), where the flow into the node ex-
ceeds the flow out of the node. A transshipment node (or intermediate node) satisfies
conservation of flow, so flow in equals flow out.

A

B

D

C

E

(a)

(b)

A

B

D

C

E

A D

A D

E

(e)(c )

A D

C

E

(d )

■ FIGURE 10.3
Example of growing a tree
one arc at a time for the
network of Fig. 10.2: (a) The
nodes without arcs; (b) a tree
with one arc; (c) a tree with
two arcs; (d) a tree with
three arcs; (e) a spanning
tree.

Although several other versions of the shortest-path problem (including some for directed
networks) are mentioned at the end of the section, we shall focus on the following sim-
ple version. Consider an undirected and connected network with two special nodes called
the origin and the destination. Associated with each of the links (undirected arcs) is a non-
negative distance. The objective is to find the shortest path (the path with the minimum
total distance) from the origin to the destination.

A relatively straightforward algorithm is available for this problem. The essence of
this procedure is that it fans out from the origin, successively identifying the shortest path
to each of the nodes of the network in the ascending order of their (shortest) distances
from the origin, thereby solving the problem when the destination node is reached. We
shall first outline the method and then illustrate it by solving the shortest-path problem
encountered by the Seervada Park management in Sec. 10.1.

■ 10.3 THE SHORTEST-PATH PROBLEM
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■ TABLE 10.2 Applying the shortest-path algorithm to the Seervada Park problem

Solved Nodes Closest Total nth
Directly Connected Connected Distance Nearest Minimum Last

n to Unsolved Nodes Unsolved Node Involved Node Distance Connection

1 O A 2 A 2 OA

O C 4 C 4 OC
2, 3

A B 2 � 2 � 4 B 4 AB

A D 2 � 7 � 9
4 B E 4 � 3 � 7 E 7 BE

C E 4 � 4 � 8

A D 2 � 7 � 9
5 B D 4 � 4 � 8 D 8 BD

E D 7 � 1 � 8 D 8 ED

D T 8 � 5 � 13 T 13 DT
6

E T 7 � 7 � 14

O B D

T

EC

A

2

7

2

5

4

4

1

4

1 7

5

3

Algorithm for the Shortest-Path Problem

Objective of nth iteration: Find the nth nearest node to the origin (to be repeated for 
n � 1, 2, . . . until the nth nearest node is the destination.

Input for nth iteration: n � 1 nearest nodes to the origin (solved for at the previous iter-
ations), including their shortest path and distance from the origin.
(These nodes, plus the origin, will be called solved nodes; the oth-
ers are unsolved nodes.)

Candidates for nth nearest node: Each solved node that is directly connected by a link to
one or more unsolved nodes provides one candidate—
the unsolved node with the shortest connecting link to
this solved node. (Ties provide additional candidates.)

Calculation of nth nearest node: For each such solved node and its candidate, add the
distance between them and the distance of the shortest
path from the origin to this solved node. The candidate
with the smallest such total distance is the nth nearest
node (ties provide additional solved nodes), and its
shortest path is the one generating this distance.

Applying This Algorithm to the Seervada Park 
Shortest-Path Problem

The Seervada Park management needs to find the shortest path from the park entrance
(node O) to the scenic wonder (node T ) through the road system shown in Fig. 10.1. Ap-
plying the above algorithm to this problem yields the results shown in Table 10.2 (where
the tie for the second nearest node allows skipping directly to seeking the fourth nearest
node next). The first column (n) indicates the iteration count. The second column simply
lists the solved nodes for beginning the current iteration after deleting the irrelevant ones
(those not connected directly to any unsolved node). The third column then gives the can-
didates for the nth nearest node (the unsolved nodes with the shortest connecting link to
a solved node). The fourth column calculates the distance of the shortest path from the
origin to each of these candidates (namely, the distance to the solved node plus the link
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distance to the candidate). The candidate with the smallest such distance is the nth near-
est node to the origin, as listed in the fifth column. The last two columns summarize the
information for this newest solved node that is needed to proceed to subsequent iterations
(namely, the distance of the shortest path from the origin to this node and the last link on
this shortest path).

Now let us relate these columns directly to the outline given for the algorithm. The
input for nth iteration is provided by the fifth and sixth columns for the preceding itera-
tions, where the solved nodes in the fifth column are then listed in the second column for
the current iteration after deleting those that are no longer directly connected to unsolved
nodes. The candidates for nth nearest node next are listed in the third column for the cur-
rent iteration. The calculation of nth nearest node is performed in the fourth column, and
the results are recorded in the last three columns for the current iteration.

For example, consider the n = 4 iteration in Table 10.2. The objective of this itera-
tion is to find the 4th nearest node to the origin. The input is that we already have found
the three nearest nodes to the origin (A, C, and B) and their minimum distances from the
origin (2, 4, and 4, respectively), as recorded in the fifth and sixth columns of the table.
The next step is to list these solved nodes in the second column of the table for this n �
4 iteration. Node A is directly connected to just one unsolved node (node D), so node D
automatically becomes a candidate to be the 4th nearest node to the origin. Its minimum 
distance from the origin is the minimum distance from the origin to node A (2, as recorded
in the sixth column) plus the distance between nodes A and D (7), for a total of 9. Node
B is directly connected to two unsolved nodes (D and E), but node E is chosen to be the
next candidate to be the 4th nearest node to the origin because it is closer to node B than
node D is. The sum of the minimum distance from the origin to node B and the distance
between node B and node E is 4 � 3 � 7, as recorded in the fourth column. Finally, node
C is directly connected to just one unsolved node (node E), so node E again becomes a
candidate to be the 4th nearest node to the origin, but via node C this time. The total dis-
tance involved in this case is 4 � 4 � 8. The smallest of the three total distances involved
just calculated is the middle case of 4 � 3 � 7, so the closest connected unsolved node
listed in this middle row of the iteration (node E) has been found to be the 4th nearest
node to the origin, via the BE connection. Recording these results in the fifth and seventh
columns of the table completes the iteration.

After the work shown in Table 10.2 is completed, the shortest path from the desti-
nation to the origin can be traced back through the last column of Table 10.2 as either
T � D � E � B � A � O or T � D � B � A � O. Therefore, the two alternates for
the shortest path from the origin to the destination have been identified as O � A � B �
E � D � T and O � A � B � D � T, with a total distance of 13 miles on either path.

Using Excel to Formulate and Solve Shortest-Path Problems

This algorithm provides a particularly efficient way of solving large shortest-path prob-
lems. However, some mathematical programming software packages do not include this
algorithm. If not, they often will include the network simplex method described in 
Sec. 10.7, which is another good option for these problems.

Since the shortest-path problem is a special type of linear programming problem, the
general simplex method also can be used when better options are not readily available.
Although not nearly as efficient as these specialized algorithms on large shortest-path
problems, it is quite adequate for problems of even very substantial size (much larger than
the Seervada Park problem). Excel, which relies on the general simplex method, provides
a convenient way of formulating and solving shortest-path problems with dozens of arcs
and nodes.
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Figure 10.4 shows an appropriate spreadsheet formulation for the Seervada Park 
shortest-path problem. Rather than using the kind of formulation presented in Sec. 3.5
that uses a separate row for each functional constraint of the linear programming model,
this formulation exploits the special structure by listing the nodes in column G and the
arcs in columns B and C, as well as the distance (in miles) along each arc in column E.
Since each link in the network is an undirected arc, whereas travel through the shortest
path is in one direction, each link can be replaced by a pair of directed arcs in opposite
directions. Thus, columns B and C together list both of the nearly vertical links in 
Fig. 10.1 (B–C and D–E) twice, once as a downward arc and once as an upward arc, since
either direction might be on the chosen path. However, the other links are only listed as
left-to-right arcs, since this is the only direction of interest for choosing a shortest path
from the origin to the destination.

A trip from the origin to the destination is interpreted to be a “flow” of 1 on the cho-
sen path through the network. The decisions to be made are which arcs should be included
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

A B C D E F G H I J

Seervada Park Shortest-Path Problem

From To On Route Distance Nodes Net Flow Supply/Demand
O A 1 2 O 1 = 1
O B 0 5 A 0 = 0
O C 0 4 B 0 = 0
A B 1 2 C 0 = 0
A D 0 7 D 0 = 0
B C 0 1 E 0 = 0
B D 0 4 T -1 = -1
B E 1 3
C B 0 1
C E 0 4
D E 0 1
D T 1 5
E D 1 1
E T 0 7

Total Distance 13

Range Name Cells
Distance E4:E17
From B4:B17
NetFlow H4:H10
Nodes G4:G10
OnRoute D4:D17
SupplyDemand J4:J10
To C4:C17
TotalDistance D19

3
4
5
6
7
8
9

10

H

Net Flow
=SUMIF(From,G4,OnRoute)-SUMIF(To,G4,OnRoute)
=SUMIF(From,G5,OnRoute)-SUMIF(To,G5,OnRoute)
=SUMIF(From,G6,OnRoute)-SUMIF(To,G6,OnRoute)
=SUMIF(From,G7,OnRoute)-SUMIF(To,G7,OnRoute)
=SUMIF(From,G8,OnRoute)-SUMIF(To,G8,OnRoute)
=SUMIF(From,G9,OnRoute)-SUMIF(To,G9,OnRoute)
=SUMIF(From,G10,OnRoute)-SUMIF(To,G10,OnRoute)

19
C D

Total Distance =SUMPRODUCT(D4:D17,E4:E17)

To:Min
By Changing Variable Cells:

OnRoute
Subject to the Constraints:

NetFlow = SupplyDemand

Set Objective Cell:TotalDistance

Solver Options:
Make Variables Nonnegative
Solving Method: Simplex LP

Solver Parameters

■ FIGURE 10.4
A spreadsheet formulation for the Seervada Park shortest-path problem, where the changing cells OnRoute (D4:D17)
show the optimal solution obtained by Solver and the objective cell TotalDistance (D19) gives the total distance (in
miles) of this shortest path. The network next to the spreadsheet shows the road system for Seervada Park that was
originally depicted in Fig. 10.1.
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Incorporated in 1881, Canadian Pacific Railway (CPR)
was Canada’s first transcontinental railway. CPR transports
rail freight over a 14,000-mile network extending across
Canada. It also serves a number of major cities in the
United States, including Minneapolis, Chicago, and New
York. Alliances with other carriers extend CPR’s market
reach into the major business centers of Mexico as well.

Every day CPR receives approximately 7,000 new
shipments from its customers going to destinations
across North America and for export. It must route and
move these shipments in railcars over the network of
track, where a railcar may be switched a number of times
from one locomotive engine to another before reaching
its destination. CPR must coordinate the shipments with
its operational plans for 1,600 locomotives, 65,000 rail-
cars, over 5,000 train crew members, and 250 train yards.

CPR management turned to an OR consulting firm,
MultiModal Applied Systems, to work with CPR employ-
ees in developing an operations research approach to this
problem. A variety of OR techniques were used to create a
new operating strategy. However, the foundation of the

approach was to represent the flow of blocks of railcars as
flow through a network where each node corresponds to
both a location and a point in time. This representation
then enabled the application of network optimization tech-
niques. For example, numerous shortest path problems are
solved each day as part of the overall approach.

This application of operations research is saving CPR
roughly US$100 million per year. Labor productivity, loco-
motive productivity, fuel consumption, and railcar velocity
have improved very substantially. In addition, CPR now
provides its customers with reliable delivery times and has
received many awards for its improvement in service. This
application of network optimization techniques also led to
CPR winning the prestigious First Prize in the 2003 interna-
tional competition for the Franz Edelman Award for Achieve-
ment in Operations Research and the Management Sciences.

Source: P. Ireland, R. Case, J. Fallis, C. Van Dyke, J. Kuehn,
and M. Meketon: “The Canadian Pacific Railway Transforms
Operations by Using Models to Develop Its Operating Plans,”
Interfaces, 34(1): 5–14, Jan.–Feb. 2004. (A link to this article is
provided on our website, www.mhhe.com/hillier.)

An Application Vignette

in the path to be traversed. A flow of 1 is assigned to an arc if it is included, whereas the
flow is 0 if it is not included. Thus, the decision variables are

xij � �
for each of the arcs under consideration. The values of these decision variables are entered
in the changing cells OnRoute (D4:D17).

Each node can be thought of as having a flow of 1 passing through it if it is on the se-
lected path, but no flow otherwise. The net flow generated at a node is the flow out minus
the flow in, so the net flow is 1 at the origin, �1 at the destination, and 0 at every other node.
These requirements for the net flows are specified in column J of Fig. 10.4. Using the equa-
tions at the bottom of the figure, each column H cell then calculates the actual net flow at
that node by adding the flow out and subtracting the flow in. The corresponding constraints,
NetFlow (H4:H10) � SupplyDemand (J4:J10), are specified in the Solver parameters box.

The objective cell TotalDistance (D19) gives the total distance in miles of the cho-
sen path by using the equation for this cell given at the bottom of Fig. 10.4. The goal of
minimizing this objective cell has been specified in Solver. The solution shown in column
D is an optimal solution obtained after running Solver. This solution is, of course, one of
the two shortest paths identified earlier by the algorithm for the shortest-path algorithm.

Other Applications

Not all applications of the shortest-path problem involve minimizing the distance traveled
from the origin to the destination. In fact, they might not even involve travel at all. The
links (or arcs) might instead represent activities of some other kind, so choosing a path
through the network corresponds to selecting the best sequence of activities. The numbers
giving the “lengths” of the links might then be, for example, the costs of the activities, in
which case the objective would be to determine which sequence of activities minimizes the
total cost. The Solved Examples section of the book’s website includes another example
of this type that illustrates its formulation as a shortest-path problem and then its solution
by using either the algorithm for such problems or Solver with a spreadsheet formulation.

if arc i � j is not included
if arc i � j is included

0
1
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■ 10.4 THE MINIMUM SPANNING TREE PROBLEM

Here are three categories of applications:

1. Minimize the total distance traveled, as in the Seervada Park example.
2. Minimize the total cost of a sequence of activities. (Problem 10.3-3 is of this type.)
3. Minimize the total time of a sequence of activities. (Problems 10.3-6 and 10.3-7 are

of this type.)

It is even possible for all three categories to arise in the same application. For example, sup-
pose you wish to find the best route for driving from one town to another through a num-
ber of intermediate towns. You then have the choice of defining the best route as being the
one that minimizes the total distance traveled or that minimizes the total cost incurred or
that minimizes the total time required. (Problem 10.3-2 illustrates such an application.)

Many applications require finding the shortest directed path from the origin to the
destination through a directed network. The algorithm already presented can be easily
modified to deal just with directed paths at each iteration. In particular, when candidates
for the nth nearest node are identified, only directed arcs from a solved node to an un-
solved node are considered.

Another version of the shortest-path problem is to find the shortest paths from the
origin to all the other nodes of the network. Notice that the algorithm already solves for
the shortest path to each node that is closer to the origin than the destination. Therefore,
when all nodes are potential destinations, the only modification needed in the algorithm
is that it does not stop until all nodes are solved nodes.

An even more general version of the shortest-path problem is to find the shortest paths
from every node to every other node. Another option is to drop the restriction that “distances”
(arc values) be nonnegative. Constraints also can be imposed on the paths that can be followed.
All these variations occasionally arise in applications and so have been studied by researchers.

The algorithms for a wide variety of combinatorial optimization problems, such as cer-
tain vehicle routing or network design problems, often call for the solution of a large number
of shortest-path problems as subroutines. Although we lack the space to pursue this topic fur-
ther, this use may now be the most important kind of application of the shortest-path problem.

The minimum spanning tree problem bears some similarities to the main version of the
shortest-path problem presented in the preceding section. In both cases, an undirected and
connected network is being considered, where the given information includes some mea-
sure of the positive length (distance, cost, time, etc.) associated with each link. Both prob-
lems also involve choosing a set of links that have the shortest total length among all sets
of links that satisfy a certain property. For the shortest-path problem, this property is that
the chosen links must provide a path between the origin and the destination. For the min-
imum spanning tree problem, the required property is that the chosen links must provide
a path between each pair of nodes.

The minimum spanning tree problem can be summarized as follows:

1. You are given the nodes of a network but not the links. Instead, you are given the po-
tential links and the positive length for each if it is inserted into the network. (Alter-
native measures for the length of a link include distance, cost, and time.)

2. You wish to design the network by inserting enough links to satisfy the requirement
that there be a path between every pair of nodes.

3. The objective is to satisfy this requirement in a way that minimizes the total length of
the links inserted into the network.

A network with n nodes requires only (n � 1) links to provide a path between each
pair of nodes. No extra links should be used, since this would needlessly increase the to-
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4■ FIGURE 10.5
Illustrations of the spanning
tree concept for the
Seervada Park problem: 
(a) Not a spanning tree; 
(b) not a spanning tree; 
(c) a spanning tree.

tal length of the chosen links. The (n � 1) links need to be chosen in such a way that the
resulting network (with just the chosen links) forms a spanning tree (as defined in Sec. 10.2).
Therefore, the problem is to find the spanning tree with a minimum total length of the links.

Figure 10.5 illustrates this concept of a spanning tree for the Seervada Park problem
(see Sec. 10.1). Thus, Fig. 10.5a is not a spanning tree because nodes O, A, B, and C are
not connected with nodes D, E, and T. It needs another link to make this connection. This
network actually consists of two trees, one for each of these two sets of nodes. The links
in Fig. 10.5b do span the network (i.e., the network is connected as defined in Sec. 10.2),
but it is not a tree because there are two cycles (O–A–B–C–O and D–T–E–D). It has too
many links. Because the Seervada Park problem has n � 7 nodes, Sec. 10.2 indicates that
the network must have exactly n � 1 � 6 links, with no cycles, to qualify as a spanning
tree. This condition is achieved in Fig. 10.5c, so this network is a feasible solution (with
a value of 24 miles for the total length of the links) for the minimum spanning tree prob-
lem. (You soon will see that this solution is not optimal because it is possible to construct
a spanning tree with only 14 miles of links.)

Some Applications

Here is a list of some key types of applications of the minimum spanning tree problem:

1. Design of telecommunication networks (fiber-optic networks, computer networks,
leased-line telephone networks, cable television networks, etc.)

2. Design of a lightly used transportation network to minimize the total cost of provid-
ing the links (rail lines, roads, etc.)

3. Design of a network of high-voltage electrical power transmission lines
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4. Design of a network of wiring on electrical equipment (e.g., a digital computer sys-
tem) to minimize the total length of the wire

5. Design of a network of pipelines to connect a number of locations

In this age of the information superhighway, applications of this first type have
become particularly important. In a telecommunication network, it is only necessary
to insert enough links to provide a path between every pair of nodes, so designing such
a network is a classic application of the minimum spanning tree problem. Because
some telecommunication networks now cost many millions of dollars, it is very important
to optimize their design by finding the minimum spanning tree for each one.

An Algorithm

The minimum spanning tree problem can be solved in a very straightforward way because it
happens to be one of the few OR problems where being greedy at each stage of the solution
procedure still leads to an overall optimal solution at the end! Thus, beginning with any node,
the first stage involves choosing the shortest possible link to another node, without worrying
about the effect of this choice on subsequent decisions. The second stage involves identify-
ing the unconnected node that is closest to either of these connected nodes and then adding
the corresponding link to the network. This process is repeated, per the following summary,
until all the nodes have been connected. (Note that this is the same process already illustrated
in Fig. 10.3 for constructing a spanning tree, but now with a specific rule for selecting each
new link.) The resulting network is guaranteed to be a minimum spanning tree.

Algorithm for the Minimum Spanning Tree Problem

1. Select any node arbitrarily, and then connect it (i.e., add a link) to the nearest distinct node.
2. Identify the unconnected node that is closest to a connected node, and then connect

these two nodes (i.e., add a link between them). Repeat this step until all nodes have
been connected.

3. Tie breaking: Ties for the nearest distinct node (step 1) or the closest unconnected node
(step 2) may be broken arbitrarily, and the algorithm must still yield an optimal solu-
tion. However, such ties are a signal that there may be (but need not be) multiple op-
timal solutions. All such optimal solutions can be identified by pursuing all ways of
breaking ties to their conclusion.

The fastest way of executing this algorithm manually is the graphical approach il-
lustrated next.

Applying This Algorithm to the Seervada Park 
Minimum Spanning Tree Problem

The Seervada Park management (see Sec. 10.1) needs to determine under which roads tele-
phone lines should be installed to connect all stations with a minimum total length of line.
Using the data given in Fig. 10.1, we outline the step-by-step solution of this problem.
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Nodes and distances for the problem are summarized below, where the thin lines now
represent potential links.
Arbitrarily select node O to start. The unconnected node closest to node O is node A.
Connect node A to node O.
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The unconnected node closest to either node O or node A is node B (closest to A). Con-
nect node B to node A.

The unconnected node closest to node O, A, or B is node C (closest to B). Connect node
C to node B.

The unconnected node closest to node O, A, B, or C is node E (closest to B). Connect
node E to node B.
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The unconnected node closest to node O, A, B, C, or E is node D (closest to E). Connect
node D to node E.

The only remaining unconnected node is node T. It is closest to node D. Connect node T
to node D.

All nodes are now connected, so this solution to the problem is the desired (optimal) one.
The total length of the links is 14 miles.

Although it may appear at first glance that the choice of the initial node will affect
the resulting final solution (and its total link length) with this procedure, it really does
not. We suggest you verify this fact for the example by reapplying the algorithm, starting
with nodes other than node O.

The minimum spanning tree problem is the one problem we consider in this chapter
that falls into the broad category of network design. In this category, the objective is to
design the most appropriate network for the given application (frequently involving
transportation systems) rather than analyzing an already designed network.
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■ 10.5 THE MAXIMUM FLOW PROBLEM
Now recall that the third problem facing the Seervada Park management (see Sec. 10.1)
during the peak season is to determine how to route the various tram trips from the park
entrance (station O in Fig. 10.1) to the scenic wonder (station T) to maximize the num-
ber of trips per day. (Each tram will return by the same route it took on the outgoing trip,
so the analysis focuses on outgoing trips only.) To avoid unduly disturbing the ecology
and wildlife of the region, strict upper limits have been imposed on the number of out-
going trips allowed per day in the outbound direction on each individual road. For each
road, the direction of travel for outgoing trips is indicated by an arrow in Fig. 10.6.
The number at the base of the arrow gives the upper limit on the number of outgoing
trips allowed per day. Given the limits, one feasible solution is to send 7 trams per day,
with 5 using the route O � B � E � T, 1 using O � B � C � E � T, and 1 using O
� B � C � E � D � T. However, because this solution blocks the use of any routes
starting with O � C (because the E � T and E � D capacities are fully used), it is easy
to find better feasible solutions. Many combinations of routes (and the number of trips to
assign to each one) need to be considered to find the one(s) maximizing the number of
trips made per day. This kind of problem is called a maximum flow problem.

In general terms, the maximum flow problem can be described as follows:

1. All flow through a directed and connected network originates at one node, called the
source, and terminates at one other node, called the sink. (The source and sink in
the Seervada Park problem are the park entrance at node O and the scenic wonder
at node T, respectively.)

2. All the remaining nodes are transshipment nodes. (These are nodes A, B, C, D, and E
in the Seervada Park problem.)

3. Flow through an arc is allowed only in the direction indicated by the arrowhead, where
the maximum amount of flow is given by the capacity of that arc. At the source, all
arcs point away from the node. At the sink, all arcs point into the node.

4. The objective is to maximize the total amount of flow from the source to the sink. This
amount is measured in either of two equivalent ways, namely, either the amount leav-
ing the source or the amount entering the sink.

Some Applications

Here are some typical kinds of applications of the maximum flow problem:

1. Maximize the flow through a company’s distribution network from its factories to its
customers.

2. Maximize the flow through a company’s supply network from its vendors to its factories.
3. Maximize the flow of oil through a system of pipelines.
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■ FIGURE 10.6
The Seervada Park maximum
flow problem.
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Hewlett-Packard (HP) offers many innovative products
to meet the diverse needs of more than one billion cus-
tomers. The breadth of its product offering has helped the
company achieve unparalleled market reach. However,
offering multiple similar products also can cause serious
problems—including confusing sales representatives and
customers—that can adversely affect the revenue and
costs for any particular product. Therefore, it is important
to find the right balance between too much and too little
product variety.

With this in mind, HP top management made man-
aging product variety a strategic business priority. HP has
been a leader in applying operations research to its
important business problems for decades, so it was only
natural that many of the company’s top OR analysts were
called on to address this problem as well.

The heart of the methodology that was developed to
address this problem involved formulating and applying a
network optimization model. After excluding proposed
products that do not have a sufficiently high return on

investment, the remaining proposed products can be
envisioned as flows through a network that can help fill
some of the projected orders on the right-hand side of the
network. The resulting model is a maximum flow prob-
lem. Following its implementation by the beginning of
2005, this application of a maximum flow problem had a
dramatic impact in enabling HP businesses to increase
operational focus on their most critical products. This
yielded company-wide profit improvements of over $500
million between 2005 and 2008, and then about $180
million annually thereafter. It also yielded a variety of
important qualitative benefits for HP.

These dramatic results led to HP winning the presti-
gious First Prize in the 2009 Franz Edelman Award for
Achievement in Operations Research and the Manage-
ment Sciences.

Source: J. Ward and 20 co-authors, “HP Transforms Product
Portfolio Management with Operations Research,” Interfaces
40(1): 17–32, Jan.–Feb. 2010. (A link to this article is provided
on our website, www.mhhe.com/hillier.)

An Application Vignette

4. Maximize the flow of water through a system of aqueducts.
5. Maximize the flow of vehicles through a transportation network.

For some of these applications, the flow through the network may originate at more
than one node and may also terminate at more than one node, even though a maximum flow
problem is allowed to have only a single source and a single sink. For example, a company’s
distribution network commonly has multiple factories and multiple customers. A clever
reformulation is used to make such a situation fit the maximum flow problem. This refor-
mulation involves expanding the original network to include a dummy source, a dummy sink,
and some new arcs. The dummy source is treated as the node that originates all the flow
that, in reality, originates from some of the other nodes. For each of these other nodes, a
new arc is inserted that leads from the dummy source to this node, where the capacity of
this arc equals the maximum flow that, in reality, can originate from this node. Similarly,
the dummy sink is treated as the node that absorbs all the flow that, in reality, terminates at
some of the other nodes. Therefore, a new arc is inserted from each of these other nodes to
the dummy sink, where the capacity of this arc equals the maximum flow that, in reality,
can terminate at this node. Because of all these changes, all the nodes in the original net-
work now are transshipment nodes, so the expanded network has the required single source
(the dummy source) and single sink (the dummy sink) to fit the maximum flow problem.

An Algorithm

Because the maximum flow problem can be formulated as a linear programming prob-
lem (see Prob. 10.5-2), it can be solved by the simplex method, so any of the linear pro-
gramming software packages introduced in Chaps. 3 and 4 can be used. However, an
even more efficient augmenting path algorithm is available for solving this problem. This
algorithm is based on two intuitive concepts, a residual network and an augmenting path.

After some flows have been assigned to the arcs, the residual network shows the re-
maining arc capacities (called residual capacities) for assigning additional flows. For ex-
ample, consider arc O � B in Fig. 10.6, which has an arc capacity of 7. Now suppose
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■ FIGURE 10.7
The initial residual network
for the Seervada Park
maximum flow problem.

that the assigned flows include a flow of 5 through this arc, which leaves a residual ca-
pacity of 7 � 5 � 2 for any additional flow assignment through O � B. This status is de-
picted as follows in the residual network.

The number on an arc next to a node gives the residual capacity for flow from that node
to the other node. Therefore, in addition to the residual capacity of 2 for flow from O to B,
the 5 on the right indicates a residual capacity of 5 for assigning some flow from B to O
(which actually is canceling some previously assigned flow from O to B).

Initially, before any flows have been assigned, the residual network for the Seervada
Park problem has the appearance shown in Fig. 10.7. Every arc in the original network
(Fig. 10.6) has been changed from a directed arc to an undirected arc. However, the arc
capacity in the original direction remains the same and the arc capacity in the opposite
direction is zero, so the constraints on flows are unchanged.

Subsequently, whenever some amount of flow is assigned to an arc, that amount is
subtracted from the residual capacity in the same direction and added to the residual ca-
pacity in the opposite direction.

An augmenting path is a directed path from the source to the sink in the residual
network such that every arc on this path has strictly positive residual capacity. The mini-
mum of these residual capacities is called the residual capacity of the augmenting path
because it represents the amount of flow that can feasibly be added to the entire path.
Therefore, each augmenting path provides an opportunity to further augment the flow
through the original network.

The augmenting path algorithm repeatedly selects some augmenting path and adds a
flow equal to its residual capacity to that path in the original network. This process con-
tinues until there are no more augmenting paths, so the flow from the source to the sink
cannot be increased further. The key to ensuring that the final solution necessarily is op-
timal is the fact that augmenting paths can cancel some previously assigned flows in the
original network, so an indiscriminate selection of paths for assigning flows cannot pre-
vent the use of a better combination of flow assignments.

To summarize, each iteration of the algorithm consists of the following three steps.

The Augmenting Path Algorithm for the Maximum Flow Problem1

1. Identify an augmenting path by finding some directed path from the source to the sink
in the residual network such that every arc on this path has strictly positive residual

1It is assumed that the arc capacities are either integers or rational numbers.

5
O B

2
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capacity. (If no augmenting path exists, the net flows already assigned constitute an
optimal flow pattern.)

2. Identify the residual capacity c* of this augmenting path by finding the minimum of
the residual capacities of the arcs on this path. Increase the flow in this path by c*.

3. Decrease by c* the residual capacity of each arc on this augmenting path. Increase by
c* the residual capacity of each arc in the opposite direction on this augmenting path.
Return to step 1.

When step 1 is carried out, there often will be a number of alternative augmenting
paths from which to choose. Although the algorithmic strategy for making this selection
is important for the efficiency of large-scale implementations, we shall not delve into this
relatively specialized topic. (Later in the section, we do describe a systematic procedure
for finding some augmenting path.) Therefore, for the following example (and the prob-
lems at the end of the chapter), the selection is just made arbitrarily.

Applying This Algorithm to the Seervada Park 
Maximum Flow Problem

Applying this algorithm to the Seervada Park problem (see Fig. 10.6 for the original net-
work) yields the results summarized next. (Also see the Solved Examples section of the
book’s website for another example of the application of this algorithm.) Starting with
the initial residual network given in Fig. 10.7, we give the new residual network after each
one or two iterations, where the total amount of flow from O to T achieved thus far is
shown in boldface (next to nodes O and T).

Iteration 1: In Fig. 10.7, one of several augmenting paths is O � B � E � T, which
has a residual capacity of min{7, 5, 6} � 5. By assigning a flow of 5 to this path, the re-
sulting residual network is
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Iteration 2: Assign a flow of 3 to the augmenting path O � A � D � T. The re-
sulting residual network is
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Iteration 3: Assign a flow of 1 to the augmenting path O � A � B � D � T.
Iteration 4: Assign a flow of 2 to the augmenting path O � B � D � T. The re-

sulting residual network is

6 

0

1

0

2

4
0

1

0 714

14

4

0

0

11

1

3

0

E
3

DB

1

C

4
3 1

8 T

A

O

6

0

1

1

2

5
0

2

0 713

13

4

0

0

11

2

2

0

E
2

DB
0

C

3
3 2

7 T

A

O

Iteration 5: Assign a flow of 1 to the augmenting path O � C � E � D � T.
Iteration 6: Assign a flow of 1 to the augmenting path O � C � E � T. The re-

sulting residual network is

Iteration 7: Assign a flow of 1 to the augmenting path O � C � E � B � D � T.
The resulting residual network is
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There are no more augmenting paths, so the current flow pattern is optimal.
The current flow pattern may be identified by either cumulating the flow assignments

or comparing the final residual capacities with the original arc capacities. If we use the lat-
ter method, there is flow along an arc if the final residual capacity is less than the original
capacity. The magnitude of this flow equals the difference in these capacities. Applying
this method by comparing the residual network obtained from the last iteration with either
Fig. 10.6 or 10.7 yields the optimal flow pattern shown in Fig. 10.8.

This example nicely illustrates the reason for replacing each directed arc i � j in the
original network by an undirected arc in the residual network and then increasing the resid-
ual capacity for j � i by c* when a flow of c* is assigned to i � j. Without this refine-
ment, the first six iterations would be unchanged. However, at that point it would appear
that no augmenting paths remain (because the real unused arc capacity for E � B is zero).
Therefore, the refinement permits us to add the flow assignment of 1 for O � C � E �
B � D � T in iteration 7. In effect, this additional flow assignment cancels 1 unit of
flow assigned at iteration 1 (O � B � E � T ) and replaces it by assignments of 1 unit
of flow to both O � B � D � T and O � C � E � T.

Finding an Augmenting Path

The most difficult part of this algorithm when large networks are involved is finding an aug-
menting path. This task may be simplified by the following systematic procedure. Begin
by determining all nodes that can be reached from the source along a single arc with strictly
positive residual capacity. Then, for each of these nodes that were reached, determine all new
nodes (those not yet reached) that can be reached from this node along an arc with strictly
positive residual capacity. Repeat this successively with the new nodes as they are reached.
The result will be the identification of a tree of all the nodes that can be reached from the
source along a path with strictly positive residual flow capacity. Hence, this fanning-out 
procedure will always identify an augmenting path if one exists. The procedure is illustrated
in Fig. 10.9 for the residual network that results from iteration 6 in the preceding example.

Although the procedure illustrated in Fig. 10.9 is a relatively straightforward one, it
would be helpful to be able to recognize when optimality has been reached without an ex-
haustive search for a nonexistent path. It is sometimes possible to recognize this event be-
cause of an important theorem of network theory known as the max-flow min-cut theorem.
A cut may be defined as any set of directed arcs containing at least one arc from every di-
rected path from the source to the sink. There normally are many ways to slice through a
network to form a cut to help analyze the network. For any particular cut, the cut value
is the sum of the arc capacities of the arcs (in the specified direction) of the cut. The
max-flow min-cut theorem states that, for any network with a single source and sink,
the maximum feasible flow from the source to the sink equals the minimum cut value over
all cuts of the network. Thus, if we let F denote the amount of flow from the source to the
sink for any feasible flow pattern, the value of any cut provides an upper bound to F, and
the smallest of the cut values is equal to the maximum value of F. Therefore, if a cut whose
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■ FIGURE 10.8
Optimal solution for the
Seervada Park maximum flow
problem.
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The network for transport of natural gas on the Norwe-
gian Continental Shelf, with approximately 5,000 miles
of subsea pipelines, is the world’s largest offshore
pipeline network. Gassco is a company entirely owned
by the Norwegian state that operates this network.
Another company that is largely state owned, StatoilHy-
dro, is the main Norwegian supplier of natural gas to
markets throughout Europe and elsewhere.

Gassco and StatoilHydro together use operations
research techniques to optimize both the configuration of
the network and the routing of the natural gas. The main
model used for this routing is a multicommodity 
network-flow model in which the different hydrocarbons
and contaminants in natural gas constitute the commodi-
ties. The objective function for the model is to maximize
the total flow of the natural gas from the supply points
(the offshore drilling platforms) to the demand points

(typically import terminals). However, in addition to the
usual supply and demand constraints, the model also
includes constraints involving pressure-flow relation-
ships, maximum delivery pressures, and technical pres-
sure bounds on pipelines. Therefore, this model is a
generalization of the model for the maximum flow prob-
lem described in this section.

This key application of operations research, along
with a few others, has had a dramatic impact on the effi-
ciency of the operation of this offshore pipeline network.
The resulting accumulated savings were estimated to be
approximately $2 billion in the period 1995–2008.

Source: F. Rømo, A. Tomasgard, L. Hellemo, M. Fodstad, B.H.
Eidesen, and B. Pedersen, “Optimizing the Norwegian Natural
Gas Production and Transport,” Interfaces 39(1): 46–56,
Jan.–Feb. 2009. (A link to this article is provided on our web-
site, www.mhhe.com/hillier.)

An Application Vignette
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■ FIGURE 10.9
Procedure for finding an
augmenting path for
iteration 7 of the Seervada
Park maximum flow
problem.
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■ FIGURE 10.10
A minimum cut for the
Seervada Park maximum flow
problem.

value equals the value of F currently attained by the solution procedure can be found in
the original network, the current flow pattern must be optimal. Equivalently, optimality has
been attained whenever there exists a cut in the residual network whose value is zero.

To illustrate, consider the network of Fig. 10.7. One interesting cut through this net-
work is shown in Fig. 10.10. Notice that the value of the cut is 3 � 4 � 1 � 6 � 14, which
was found to be the maximum value of F, so this cut is a minimum cut. Notice also that,
in the residual network resulting from iteration 7, where F � 14, the corresponding cut
has a value of zero. If this had been noticed, it would not have been necessary to search
for additional augmenting paths.
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Range Name Cells
Capacity F4:F15
Flow D4:D15
From B4:B15
MaxFlow D17
NetFlow I4:I10
Nodes H4:H10
SupplyDemand K5:K9
To C4:C15

17
C D

Maximum Flow =I4

3
4
5
6
7
8
9

10

I

Net Flow
=SUMIF(From,H4,Flow)-SUMIF(To,H4,Flow)
=SUMIF(From,H5,Flow)-SUMIF(To,H5,Flow)
=SUMIF(From,H6,Flow)-SUMIF(To,H6,Flow)
=SUMIF(From,H7,Flow)-SUMIF(To,H7,Flow)
=SUMIF(From,H8,Flow)-SUMIF(To,H8,Flow)
=SUMIF(From,H9,Flow)-SUMIF(To,H9,Flow)
=SUMIF(From,H10,Flow)-SUMIF(To,H10,Flow)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

A B C D E F G H I J K

Seervada Park Maximum Flow Problem

From To Flow Capacity Nodes Net Flow Supply/Demand
O A 4 <= 5 O 14
O B 7 <= 7 A 0 = 0
O C 3 <= 4 B 0 = 0
A B 1 <= 1 C 0 = 0
A D 3 <= 3 D 0 = 0
B C 0 <= 2 E 0 = 0
B D 4 <= 4 T -14
B E 4 <= 5
C E 3 <= 4
D T 8 <= 9
E D 1 <= 1
E T 6 <= 6

Max imum Flow 14

To:Max
By Changing Variable Cells:

Flow
Subject to the Constraints:

I5:I9 = Supply Demand
Flow <= Capacity

Solver Parameters
Set Objective Cell:Max Flow

Solver Options:
Make Variables Nonnegative
Solving Method: Simplex LP
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■ FIGURE 10.11
A spreadsheet formulation for
the Seervada Park maximum
flow problem, where the
changing cells Flow
(D4:D15) show the optimal
solution obtained by Solver
and the objective cell
MaxFlow (D17) gives the
resulting maximum flow
through the network. The
network next to the
spreadsheet shows the
Seervada Park maximum flow
problem as it was originally
depicted in Fig. 10.6.

Using Excel to Formulate and Solve Maximum Flow Problems

Most maximum flow problems that arise in practice are considerably larger, and occa-
sionally vastly larger, than the Seervada Park problem. Some problems have thousands of
nodes and arcs. The augmenting path algorithm just presented is far more efficient than
the general simplex method for solving such large problems. However, for problems of
modest size, a reasonable and convenient alternative is to use Excel and Solver based on
the general simplex method.

Figure 10.11 shows a spreadsheet formulation for the Seervada Park maximum flow
problem. The format is similar to that for the Seervada Park shortest-path problem displayed
in Fig. 10.4. The arcs are listed in columns B and C, and the corresponding arc capacities
are given in column F. Since the decision variables are the flows through the respective
arcs, these quantities are entered in the changing cells Flow (D4:D15). Employing the equa-
tions given in the bottom right-hand corner of the figure, these flows then are used to cal-
culate the net flow generated at each of the nodes (see columns H and I). These net flows
are required to be 0 for the transshipment nodes (A, B, C, D, and E), as indicated by the first
set of constraints (I5:I9 � SupplyDemand) in Solver. The second set of constraints (Flow
� Capacity) specifies the arc capacity constraints. The total amount of flow from the
source (node O) to the sink (node T ) equals the flow generated at the source (cell I4),
so the objective cell MaxFlow (D17) is set equal to I4. After specifying maximization
of the objective cell and then running Solver, the optimal solution shown in Flow
(D4:D15) is obtained.
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The minimum cost flow problem holds a central position among network optimization mod-
els, both because it encompasses such a broad class of applications and because it can be
solved extremely efficiently. Like the maximum flow problem, it considers flow through a
network with limited arc capacities. Like the shortest-path problem, it considers a cost (or
distance) for flow through an arc. Like the transportation problem or assignment problem of
Chap. 9, it can consider multiple sources (supply nodes) and multiple destinations (demand
nodes) for the flow, again with associated costs. In fact, all four of these previously studied
problems are special cases of the minimum cost flow problem, as we will demonstrate shortly.

The reason that the minimum cost flow problem can be solved so efficiently is that
it can be formulated as a linear programming problem so it can be solved by a stream-
lined version of the simplex method called the network simplex method. We describe this
algorithm in the next section.

The minimum cost flow problem is described below:

1. The network is a directed and connected network.
2. At least one of the nodes is a supply node.
3. At least one of the other nodes is a demand node.
4. All the remaining nodes are transshipment nodes.
5. Flow through an arc is allowed only in the direction indicated by the arrowhead, where

the maximum amount of flow is given by the capacity of that arc. (If flow can occur in
both directions, this would be represented by a pair of arcs pointing in opposite directions.)

6. The network has enough arcs with sufficient capacity to enable all the flow generated
at the supply nodes to reach all the demand nodes.

7. The cost of the flow through each arc is proportional to the amount of that flow, where
the cost per unit flow is known.

8. The objective is to minimize the total cost of sending the available supply through the
network to satisfy the given demand. (An alternative objective is to maximize the to-
tal profit from doing this.)

Some Applications

Probably the most important kind of application of minimum cost flow problems is to the
operation of a company’s distribution network. As summarized in the first row of Table 10.3,
this kind of application always involves determining a plan for shipping goods from its sources
(factories, etc.) to intermediate storage facilities (as needed) and then on to the customers.

For some applications of minimum cost flow problems, all the transshipment nodes
are processing facilities rather than intermediate storage facilities. This is the case for

■ TABLE 10.3 Typical kinds of applications of minimum cost flow problems

Kind of Application Supply Nodes Transshipment Nodes Demand Nodes

Operation of a Sources of goods Intermediate storage Customers
distribution network facilities

Solid waste Sources of solid Processing facilities Landfill locations
management waste

Operation of a supply Vendors Intermediate warehouses Processing
network facilities

Coordinating product Plants Production of a specific Market for a
mixes at plants product specific product

Cash flow Sources of cash at Short-term investment Needs for cash at
management a specific time options a specific time

■ 10.6 THE MINIMUM COST FLOW PROBLEM
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An especially challenging problem encountered daily by
any major airline company is how to compensate effec-
tively for disruptions in the airline's flight schedules. Bad
weather can disrupt flight arrivals and departures; so can
mechanical problems. Each delay or cancellation involv-
ing a particular airplane can then cause subsequent delays
or cancellations because that airplane is not available on
time for its next scheduled flights.

Such delays or cancellations may require both reas-
signing crews to flights and readjusting the plans for
which airplanes will be used to fly the respective flights.
The application vignette in Sec. 2.2 describes how Conti-
nental Airlines led the way in applying operations
research to the problem of quickly reassigning crews to
flights in the most cost-effective manner. However, a dif-
ferent approach is needed to address the problem of
quickly reassigning airplanes to flights.

An airline has two primary ways of reassigning air-
planes to flights to compensate for delays or cancella-
tions. One is to swap aircraft so that an airplane scheduled
for a later flight can take the place of the delayed or can-
celed airplane. The other is to use a spare airplane (often
after flying it in) to replace the delayed or canceled 

airplane. However, it is a real challenge to quickly make
good decisions of these types when a considerable num-
ber of delays or cancellations occur throughout the day.

United Airlines has led the way in applying opera-
tions research to this problem. This is done by formulat-
ing and solving the problem as a minimum-cost flow
problem where each node in the network represents an
airport and each arc represents the route of a flight. The
objective of the model then is to keep the airplanes flow-
ing through the network in a way that minimizes the cost
incurred by having delays or cancellations. When a status
monitor subsystem alerts an operations controller of
impending delays or cancellations, the controller pro-
vides the necessary input into the model and then solves
it in order to provide the updated operating plan in a mat-
ter of minutes. This application of the minimum-cost
flow problem has resulted in reducing passenger delays
by about 50 percent.

Source: A. Rakshit, N. Krishnamurthy, and G. Yu: “System
Operations Advisor: A Real-Time Decision Support System for
Managing Airline Operations at United Airlines,” Interfaces,
26(2): 50–58, Mar.–Apr. 1996. (A link to this article is provided
on our website, www.mhhe.com/hillier.)

An Application Vignette

solid waste management, as indicated in the second row of Table 10.3. Here, the flow of
materials through the network begins at the sources of the solid waste, then goes to the
facilities for processing these waste materials into a form suitable for landfill, and then
sends them on to the various landfill locations. However, the objective still is to deter-
mine the flow plan that minimizes the total cost, where the cost now is for both shipping
and processing.

In other applications, the demand nodes might be processing facilities. For example,
in the third row of Table 10.3, the objective is to find the minimum cost plan for obtain-
ing supplies from various possible vendors, storing these goods in warehouses (as needed),
and then shipping the supplies to the company’s processing facilities (factories, etc.). Since
the total amount that could be supplied by all the vendors is more than the company needs,
the network includes a dummy demand node that receives (at zero cost) all the unused
supply capacity at the vendors.

The next kind of application in Table 10.3 (coordinating product mixes at plants) il-
lustrates that arcs can represent something other than a shipping lane for a physical flow
of materials. This application involves a company with several plants (the supply nodes)
that can produce the same products but at different costs. Each arc from a supply node
represents the production of one of the possible products at that plant, where this arc
leads to the transshipment node that corresponds to this product. Thus, this transship-
ment node has an arc coming in from each plant capable of producing this product, and
then the arcs leading out of this node go to the respective customers (the demand nodes)
for this product. The objective is to determine how to divide each plant’s production ca-
pacity among the products so as to minimize the total cost of meeting the demand for
the various products.

hil23453_ch10_372-437.qxd  1/15/70  8:41 AM  Page 396 Final PDF to printer



10.6 THE MINIMUM COST FLOW PROBLEM 397

The last application in Table 10.3 (cash flow management) illustrates that different
nodes can represent some event that occurs at different times. In this case, each supply
node represents a specific time (or time period) when some cash will become available to
the company (through maturing accounts, notes receivable, sales of securities, borrowing,
etc.). The supply at each of these nodes is the amount of cash that will become available
then. Similarly, each demand node represents a specific time (or time period) when the
company will need to draw on its cash reserves. The demand at each such node is the amount
of cash that will be needed then. The objective is to maximize the company’s income from
investing the cash between each time it becomes available and when it will be used. There-
fore, each transshipment node represents the choice of a specific short-term investment op-
tion (e.g., purchasing a certificate of deposit from a bank) over a specific time interval. The
resulting network will have a succession of flows representing a schedule for cash becoming
available, being invested, and then being used after the maturing of the investment.

Formulation of the Model

Consider a directed and connected network where the n nodes include at least one sup-
ply node and at least one demand node. The decision variables are

xij � flow through arc i � j,

and the given information includes

cij � cost per unit flow through arc i � j,
uij � arc capacity for arc i � j,
bi � net flow generated at node i.

The value of bi depends on the nature of node i, where

bi � 0 if node i is a supply node,
bi � 0 if node i is a demand node,
bi � 0 if node i is a transshipment node.

The objective is to minimize the total cost of sending the available supply through the
network to satisfy the given demand.

By using the convention that summations are taken only over existing arcs, the lin-
ear programming formulation of this problem is

Minimize Z � �
n

i�1
�
n

j�1
cijxij,

subject to

�
n

j�1
xij � �

n

j�1
xji � bi, for each node i,

and

0 � xij � uij, for each arc i � j.

The first summation in the node constraints represents the total flow out of node i, whereas
the second summation represents the total flow into node i, so the difference is the net
flow generated at this node.

The pattern of the coefficients in these node constraints is a key characteristic of min-
imum cost flow problems. It is not always easy to recognize a minimum cost flow prob-
lem, but formulating (or reformulating) a problem so that its constraint coefficients have

hil23453_ch10_372-437.qxd  1/15/70  8:41 AM  Page 397 Final PDF to printer



this pattern is a good way of doing so. This then enables solving the problem extremely
efficiently by the network simplex method.

In some applications, it is necessary to have a lower bound Lij � 0 for the flow through
each arc i � j. When this occurs, use a translation of variables x�ij � xij � Lij, with x�ij � Lij

substituted for xij throughout the model, to convert the model back to the above format with
nonnegativity constraints.

It is not guaranteed that the problem actually will possess feasible solutions, depending
partially upon which arcs are present in the network and their arc capacities. However,
for a reasonably designed network, the main condition needed is the following:

Feasible solutions property: A necessary condition for a minimum cost flow
problem to have any feasible solutions is that

�
n

i�1
bi � 0.

That is, the total flow being generated at the supply nodes equals the total flow
being absorbed at the demand nodes.

If the values of bi provided for some application violate this condition, the usual inter-
pretation is that either the supplies or the demands (whichever are in excess) actually
represent upper bounds rather than exact amounts. When this situation arose for the trans-
portation problem in Sec. 9.1, either a dummy destination was added to receive the ex-
cess supply or a dummy source was added to send the excess demand. The analogous
step now is that either a dummy demand node should be added to absorb the excess sup-
ply (with cij � 0 arcs added from every supply node to this node) or a dummy supply
node should be added to generate the flow for the excess demand (with cij � 0 arcs added
from this node to every demand node).

For many applications, bi and uij will have integer values, and implementation will
require that the flow quantities xij also be integer. Fortunately, just as for the transporta-
tion problem, this outcome is guaranteed without explicitly imposing integer constraints
on the variables because of the following property.

Integer solutions property: For minimum cost flow problems where every bi

and uij have integer values, all the basic variables in every basic feasible (BF)
solution (including an optimal one) also have integer values.

An Example

Figure 10.12 shows an example of a minimum cost flow problem. This network actually
is the distribution network for the Distribution Unlimited Co. problem presented in Sec.
3.4 (see Fig. 3.13). The quantities given in Fig. 3.13 provide the values of the bi, cij, and
uij shown here. The bi values in Fig. 10.12 are shown in square brackets by the nodes, so
the supply nodes (bi � 0) are A and B (the company’s two factories), the demand nodes
(bi � 0) are D and E (two warehouses), and the one transshipment node (bi � 0) is C
(a distribution center). The cij values are shown next to the arcs. In this example, all but
two of the arcs have arc capacities exceeding the total flow generated (90), so uij � �
for all practical purposes. The two exceptions are arc A � B, where uAB � 10, and arc
C � E, which has uCE � 80.

The linear programming model for this example is

Minimize Z � 2xAB � 4xAC � 9xAD � 3xBC � xCE � 3xDE � 2xED,

398 CHAPTER 10 NETWORK OPTIMIZATION MODELS
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subject to

xAB � xAC � xAD � 50
�xAB � xBC � 40

� xAC � xBC � xCE � 0
� xAD � xDE � xED � �30

� xCE � xDE � xED � �60

and

xAB � 10, xCE � 80, all xij 	 0.

Now note the pattern of coefficients for each variable in the set of five node constraints
(the equality constraints). Each variable has exactly two nonzero coefficients, where one
is �1 and the other is �1. This pattern recurs in every minimum cost flow problem, and
it is this special structure that leads to the integer solutions property.

Another implication of this special structure is that (any) one of the node constraints is
redundant. The reason is that summing all these constraint equations yields nothing but ze-
ros on both sides (assuming feasible solutions exist, so the bi values sum to zero), so the
negative of any one of these equations equals the sum of the rest of the equations. With just
n � 1 nonredundant node constraints, these equations provide just n � 1 basic variables for
a BF solution. In the next section, you will see that the network simplex method treats the
xij � uij constraints as mirror images of the nonnegativity constraints, so the total number
of basic variables is n � 1. This leads to a direct correspondence between the n � 1 arcs of
a spanning tree and the n � 1 basic variables—but more about that story later.

Using Excel to Formulate and Solve Minimum Cost Flow Problems

Excel provides a convenient way of formulating and solving small minimum cost flow
problems like this one, as well as somewhat larger problems. Figure 10.13 shows how
this can be done. The format is almost the same as displayed in Fig. 10.11 for a max-
imum flow problem. One difference is that the unit costs (cij) now need to be included
(in column G). Because bi values are specified for every node, net flow constraints are
needed for all the nodes. However, only two of the arcs happen to need arc capacity

10.6 THE MINIMUM COST FLOW PROBLEM 399

(uAB � 10)

(uCE � 80)

bA � [50] [�30]

[40]

D

[�60]

[0]

A

3

E

2
4

cAD � 9

B

2

3
1

C

■ FIGURE 10.12
The Distribution Unlimited
Co. problem formulated as a
minimum cost flow problem.
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constraints. The objective cell TotalCost (D12) now gives the total cost of the flow (ship-
ments) through the network (see its equation at the bottom of the figure), so the goal
specified in Solver is to minimize this quantity. The changing cells Ship (D4:D10) in
this spreadsheet show the optimal solution obtained after running Solver.

For much larger minimum cost flow problems, the network simplex method described
in the next section provides a considerably more efficient solution procedure. It also is an
attractive option for solving various special cases of the minimum cost flow problem out-
lined below. This algorithm is commonly included in mathematical programming soft-
ware packages.

We shall soon solve this same example by the network simplex method. However, let
us first see how some special cases fit into the network format of the minimum cost flow
problem.

Special Cases

The Transportation Problem. To formulate the transportation problem presented in
Sec. 9.1 as a minimum cost flow problem, a supply node is provided for each source, as
well as a demand node for each destination, but no transshipment nodes are included in the
network. All the arcs are directed from a supply node to a demand node, where distributing
xij units from source i to destination j corresponds to a flow of xij through arc i � j. The
cost cij per unit distributed becomes the cost cij per unit of flow. Since the transportation
problem does not impose upper bound constraints on individual xij, all the uij � 
.

Using this formulation for the P & T Co. transportation problem presented in Table 9.2
yields the network shown in Fig. 9.2. The corresponding network for the general trans-
portation problem is shown in Fig. 9.3.

The Assignment Problem. Since the assignment problem discussed in Sec. 9.3 is a
special type of transportation problem, its formulation as a minimum cost flow problem
fits into the same format. The additional factors are that (1) the number of supply nodes
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1
2
3
4
5
6
7
8
9

10
11
12

A B C D E F G H I J K L

Distribution Unlimited Co. Minimum Cost Flow Problem

From To Ship Capacity Unit Cost Nodes Net Flow Supply/Demand
A B 0 <= 10 2 A 50 = 50
A C 40 4 B 40 = 40
A D 10 9 C 0 = 0
B C 40 3 D -30 = -30
C E 80 <= 80 1 E -60 = -60
D E 0 3
E D 20 2

Total Cost 490

Range Name Cells
Capacity F4:F10
From B4:B10
NetFlow J4:J8
Nodes I4:I8
Ship D4:D10
SupplyDemand L4:L8
To C4:C10
TotalCost D12
UnitCost G4:G10

3
4
5
6
7
8

J

Net Flow
=SUMIF(From,I4,Ship)-SUMIF(To,I4,Ship
=SUMIF(From,I5,Ship)-SUMIF(To,I5,Ship
=SUMIF(From,I6,Ship)-SUMIF(To,I6,Ship
=SUMIF(From,I7,Ship)-SUMIF(To,I7,Ship
=SUMIF(From,I8,Ship)-SUMIF(To,I8,Ship

12

C D

Total Cost =SUMPRODUCT(D4:D10,G4:G10)

To: Min
By Changing Variable Cells:

Ship
Subject to the Constraints:

D4 <= F4
D8 <= F8
NetFlow = SupplyDemand

Solver Parameters
Set Objective Cell: TotalCost

Solver Options:
Make Variables Nonnegative
Solving Method: Simplex LP

■ FIGURE 10.13
A spreadsheet formulation for
the Distribution Unlimited
Co. minimum cost flow
problem, where the
changing cells Ship (D4:D10)
show the optimal solution
obtained by Solver and the
objective cell TotalCost (D12)
gives the resulting total cost
of the flow of shipments
through the network.

hil23453_ch10_372-437.qxd  1/15/70  8:41 AM  Page 400 Final PDF to printer



equals the number of demand nodes, (2) bi � 1 for each supply node, and (3) bi � �1
for each demand node.

Figure 9.5 shows this formulation for the general assignment problem.

The Transshipment Problem. This special case actually includes all the general fea-
tures of the minimum cost flow problem except for not having (finite) arc capacities. Thus,
any minimum cost flow problem where each arc can carry any desired amount of flow is
also called a transshipment problem.

For example, the Distribution Unlimited Co. problem shown in Fig. 10.13 would be
a transshipment problem if the upper bounds on the flow through arcs A � B and C �
E were removed.

Transshipment problems frequently arise as generalizations of transportation prob-
lems where units being distributed from each source to each destination can first pass
through intermediate points. These intermediate points may include other sources and des-
tinations, as well as additional transfer points that would be represented by transshipment
nodes in the network representation of the problem. For example, the Distribution Un-
limited Co. problem can be viewed as a generalization of a transportation problem with
two sources (the two factories represented by nodes A and B in Fig. 10.13), two destina-
tions (the two warehouses represented by nodes D and E), and one additional intermedi-
ate transfer point (the distribution center represented by node C ).

(The first section in Chap. 23 on the book’s website includes a further discussion
of the transshipment problem.)

The Shortest-Path Problem. Now consider the main version of the shortest-path
problem presented in Sec. 10.3 (finding the shortest path from one origin to one destina-
tion through an undirected network). To formulate this problem as a minimum cost flow
problem, one supply node with a supply of 1 is provided for the origin, one demand node
with a demand of 1 is provided for the destination, and the rest of the nodes are trans-
shipment nodes. Because the network of our shortest-path problem is undirected, whereas
the minimum cost flow problem is assumed to have a directed network, we replace each
link with a pair of directed arcs in opposite directions (depicted by a single line with ar-
rowheads at both ends). The only exceptions are that there is no need to bother with arcs
into the supply node or out of the demand node. The distance between nodes i and j be-
comes the unit cost cij or cji for flow in either direction between these nodes. As with the
preceding special cases, no arc capacities are imposed, so all uij � �.

Figure 10.14 depicts this formulation for the Seervada Park shortest-path problem
shown in Fig. 10.1, where the numbers next to the lines now represent the unit cost of
flow in either direction.

The Maximum Flow Problem. The last special case we shall consider is the maxi-
mum flow problem described in Sec. 10.5. In this case a network already is provided with
one supply node (the source), one demand node (the sink), and various transshipment
nodes, as well as the various arcs and arc capacities. Only three adjustments are needed
to fit this problem into the format for the minimum cost flow problem. First, set cij � 0
for all existing arcs to reflect the absence of costs in the maximum flow problem. Sec-
ond, select a quantity F�, which is a safe upper bound on the maximum feasible flow
through the network, and then assign a supply and a demand of F� to the supply node and
the demand node, respectively. (Because all other nodes are transshipment nodes, they au-
tomatically have bi � 0.) Third, add an arc going directly from the supply node to the de-
mand node and assign it an arbitrarily large unit cost of cij � M as well as an unlimited
arc capacity (uij � �). Because of this positive unit cost for this arc and the zero unit cost
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■ FIGURE 10.15
Formulation of the Seervada
Park maximum flow problem
as a minimum cost flow
problem.
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All uij � 
.
cij values are given

next to the arcs.

cAD � 7 � cDA

C

■ FIGURE 10.14
Formulation of the Seervada
Park shortest-path problem
as a minimum cost flow
problem.

for all the other arcs, the minimum cost flow problem will send the maximum feasible
flow through the other arcs, which achieves the objective of the maximum flow problem.

Applying this formulation to the Seervada Park maximum flow problem shown in
Fig. 10.6 yields the network given in Fig. 10.15, where the numbers given next to the
original arcs are the arc capacities.

Final Comments. Except for the transshipment problem, each of these special cases
has been the focus of a previous section in either this chapter or Chap. 9. When each was
first presented, we talked about a special-purpose algorithm for solving it very efficiently.
Therefore, it certainly is not necessary to reformulate these special cases to fit the format
of the minimum cost flow problem in order to solve them. However, when a computer code
is not readily available for the special-purpose algorithm, it is very reasonable to use the
network simplex method instead. In fact, recent implementations of the network simplex
method have become so powerful that it now provides an excellent alternative to the
special-purpose algorithm.
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The fact that these problems are special cases of the minimum cost flow problem is
of interest for other reasons as well. One reason is that the underlying theory for the min-
imum cost flow problem and for the network simplex method provides a unifying theory
for all these special cases. Another reason is that some of the many applications of the
minimum cost flow problem include features of one or more of the special cases, so it is
important to know how to reformulate these features into the broader framework of the
general problem.
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■ 10.7 THE NETWORK SIMPLEX METHOD

The network simplex method is a highly streamlined version of the simplex method for
solving minimum cost flow problems. As such, it goes through the same basic steps at
each iteration—finding the entering basic variable, determining the leaving basic variable,
and solving for the new BF solution—in order to move from the current BF solution to a
better adjacent one. However, it executes these steps in ways that exploit the special net-
work structure of the problem without ever needing a simplex tableau.

You may note some similarities between the network simplex method and the trans-
portation simplex method presented in Sec. 9.2. In fact, both are streamlined versions of
the simplex method that provide alternative algorithms for solving transportation prob-
lems in similar ways. The network simplex method extends these ideas to solving other
types of minimum cost flow problems as well.

In this section, we provide a somewhat abbreviated description of the network sim-
plex method that focuses just on the main concepts. We omit certain details needed for a
full computer implementation, including how to construct an initial BF solution and how
to perform certain calculations (such as for finding the entering basic variable) in the most
efficient manner. These details are provided in various more specialized textbooks such
as Selected Reference 1.

Incorporating the Upper Bound Technique

The first concept is to incorporate the upper bound technique described in Sec. 8.3 to deal
efficiently with the arc capacity constraints xij � uij. Thus, rather than these constraints
being treated as functional constraints, they are handled just as nonnegativity constraints
are. Therefore, they are considered only when the leaving basic variable is determined. In
particular, as the entering basic variable is increased from zero, the leaving basic variable
is the first basic variable that reaches either its lower bound (0) or its upper bound (uij).
A nonbasic variable at its upper bound xij � uij is replaced with xij � uij � yij, so yij � 0
becomes the nonbasic variable. See Sec. 8.3 for further details.

In our current context, yij has an interesting network interpretation. Whenever yij be-
comes a basic variable with a strictly positive value (� uij), this value can be thought of
as flow from node j to node i (so in the “wrong” direction through arc i � j) that, in ac-
tuality, is canceling that amount of the previously assigned flow (xij � uij) from node i to
node j. Thus, when xij � uij is replaced with xij � uij � yij, we also replace the real arc 
i � j with the reverse arc j � i, where this new arc has arc capacity uij (the maximum
amount of the xij � uij flow that can be canceled) and unit cost � cij (since each unit
of flow canceled saves cij). To reflect the flow of xij � uij through the deleted arc, we
shift this amount of net flow generated from node i to node j by decreasing bi by uij

and increasing bj by uij. Later, if yij becomes the leaving basic variable by reaching
its upper bound, then yij � uij is replaced with yij � uij � xij with xij � 0 as the new
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nonbasic variable, so the above process would be reversed (replace arc j � i by arc i � j,
etc.) to the original configuration.

To illustrate this process, consider the minimum cost flow problem shown in Fig. 10.12.
While the network simplex method is generating a sequence of BF solutions, suppose
that xAB has become the leaving basic variable for some iteration by reaching its up-
per bound of 10. Consequently, xAB � 10 is replaced with xAB � 10 � yAB, so yAB � 0 
becomes the new nonbasic variable. At the same time, we replace arc A � B with arc 
B � A (with yAB as its flow quantity), and we assign this new arc a capacity of 10 and
a unit cost of �2. To take xAB � 10 into account, we also decrease bA from 50 to 40 and
increase bB from 40 to 50. The resulting adjusted network is shown in Fig. 10.16.

We shall soon illustrate the entire network simplex method with this same example, start-
ing with yAB � 0 (xAB � 10) as a nonbasic variable and so using Fig. 10.16. A later iteration
will show xCE reaching its upper bound of 80 and so being replaced with xCE � 80 � yCE,
and so on, and then the next iteration has yAB reaching its upper bound of 10. You will see
that all these operations are performed directly on the network, so we will not need to use
the xij or yij labels for arc flows or even to keep track of which arcs are real arcs and which
are reverse arcs (except when we record the final solution). Using the upper bound technique
leaves the node constraints (flow out minus flow in � bi) as the only functional constraints.
Minimum cost flow problems tend to have far more arcs than nodes, so the resulting num-
ber of functional constraints generally is only a small fraction of what it would have been if
the arc capacity constraints had been included. The computation time for the simplex
method goes up relatively rapidly with the number of functional constraints, but only slowly
with the number of variables (or the number of bounding constraints on these variables).
Therefore, incorporating the upper bound technique here tends to provide a tremendous
saving in computation time.

However, this technique is not needed for uncapacitated minimum cost flow prob-
lems (including all but the last special case considered in the preceding section), where
there are no arc capacity constraints.

Correspondence between BF Solutions and Feasible Spanning Trees

The most important concept underlying the network simplex method is its network rep-
resentation of BF solutions. Recall from Sec. 10.6 that with n nodes, every BF solution
has (n � 1) basic variables, where each basic variable xij represents the flow through
arc i � j. These (n � 1) arcs are referred to as basic arcs. (Similarly, the arcs corre-
sponding to the nonbasic variables xij � 0 or yij � 0 are called nonbasic arcs.)
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A key property of basic arcs is that they never form undirected cycles. (This property
prevents the resulting solution from being a weighted average of another pair of feasible
solutions, which would violate one of the general properties of BF solutions.) However,
any set of n � 1 arcs that contains no undirected cycles forms a spanning tree. Therefore,
any complete set of n � 1 basic arcs forms a spanning tree.

Thus, BF solutions can be obtained by “solving” spanning trees, as summarized below.

A spanning tree solution is obtained as follows:

1. For the arcs not in the spanning tree (the nonbasic arcs), set the corresponding vari-
ables (xij or yij) equal to zero.

2. For the arcs that are in the spanning tree (the basic arcs), solve for the corresponding
variables (xij or yij) in the system of linear equations provided by the node constraints.

(The network simplex method actually solves for the new BF solution from the current
one much more efficiently, without solving this system of equations from scratch.) Note
that this solution process does not consider either the nonnegativity constraints or the arc
capacity constraints for the basic variables, so the resulting spanning tree solution may or
may not be feasible with respect to these constraints—which leads to our next definition:

A feasible spanning tree is a spanning tree whose solution from the node con-
straints also satisfies all the other constraints (0 � xij � uij or 0 � yij � uij).

With these definitions, we now can summarize our key conclusion as follows:

The fundamental theorem for the network simplex method says that basic so-
lutions are spanning tree solutions (and conversely) and that BF solutions are solu-
tions for feasible spanning trees (and conversely).

To begin illustrating the application of this fundamental theorem, consider the
network shown in Fig. 10.16 that results from replacing xAB � 10 with xAB � 10 � yAB

for our example in Fig. 10.12. One spanning tree for this network is the one shown
in Fig. 10.3e, where the arcs are A � D, D � E, C � E, and B � C. With these as
the basic arcs, the process of finding the spanning tree solution is shown below. On
the left is the set of node constraints given in Sec. 10.6 after 10 � yAB is substituted
for xAB, where the basic variables are shown in boldface. On the right, starting at the
top and moving down, is the sequence of steps for setting or calculating the values of
the variables.

yAB � 0, xAC � 0, xED � 0

�yAB � xAC � xAD � xBC � xCE � xDE � xED � �40 xAD � 40.
�yAB � xAC � xAD � xBC � �50 xBC � 50.
�yAB � xAC �xAD � xBC � xCE � � 0 so xCE � 50.
�yAB � xAC� xAD � xBC � xCE � xDE � xED � �30 so xDE � 10.
�yAB � xAC � xAD � xBC � xCE � xDE � xED � �60 Redundant.

Since the values of all these basic variables satisfy the nonnegativity constraints and the
one relevant arc capacity constraint (xCE � 80), the spanning tree is a feasible spanning
tree, so we have a BF solution.

We shall use this solution as the initial BF solution for demonstrating the network
simplex method. Figure 10.17 shows its network representation, namely, the feasible span-
ning tree and its solution. Thus, the numbers given next to the arcs now represent flows
(values of xij) rather than the unit costs cij previously given. (To help you distinguish, we
shall always put parentheses around flows but not around costs.)
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Selecting the Entering Basic Variable

To begin an iteration of the network simplex method, recall that the standard simplex
method criterion for selecting the entering basic variable is to choose the nonbasic vari-
able which, when increased from zero, will improve Z at the fastest rate. Now let us see
how this is done without having a simplex tableau.

To illustrate, consider the nonbasic variable xAC in our initial BF solution, i.e., the
nonbasic arc A � C. Increasing xAC from zero to some value � means that the arc 
A � C with flow � must be added to the network shown in Fig. 10.17. Adding a nonba-
sic arc to a spanning tree always creates a unique undirected cycle, where the cycle in this
case is seen in Fig. 10.18 to be AC–CE–DE–AD. Figure 10.18 also shows the effect of
adding the flow � to arc A � C on the other flows in the network. Specifically, the flow
is thereby increased by � for other arcs that have the same direction as A � C in the cy-
cle (arc C � E), whereas the net flow is decreased by � for other arcs whose direction
is opposite to A � C in the cycle (arcs D � E and A � D). In the latter case, the new
flow is, in effect, canceling a flow of � in the opposite direction. Arcs not in the cycle
(arc B � C ) are unaffected by the new flow. (Check these conclusions by noting the ef-
fect of the change in xAC on the values of the other variables in the solution just derived
for the initial feasible spanning tree.)

Now what is the incremental effect on Z (total flow cost) from adding the flow � to
arc A � C? Figure 10.19 shows most of the answer by giving the unit cost times the
change in the flow for each arc of Fig. 10.18. Therefore, the overall increment in Z is

�Z � cAC� � cCE� � cDE(��) � cAD(��)
� 4� � � � 3� � 9�
� �7�.

Setting � � 1 then gives the rate of change of Z as xAC is increased, namely,

�Z � �7, when � � 1.

Because the objective is to minimize Z, this large rate of decrease in Z by increasing xAC

is very desirable, so xAC becomes a prime candidate to be the entering basic variable.
We now need to perform the same analysis for the other nonbasic variables before we

make the final selection of the entering basic variable. The only other nonbasic variables are
yAB and xED, corresponding to the two other nonbasic arcs B � A and E � D in Fig. 10.16.

Figure 10.20 shows the incremental effect on costs of adding arc B � A with flow �
to the initial feasible spanning tree given in Fig. 10.17. Adding this arc creates the undi-
rected cycle BA–AD–DE–CE–BC, so the flow increases by � for arcs A � D and D � E
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The incremental effect on
costs of adding arc B � A
with flow � to the initial
feasible spanning tree.

but decreases by � for the two arcs in the opposite direction on this cycle, C � E and
B � C. These flow increments, � and ��, are the multiplicands for the cij values in the
figure. Therefore,

�Z � �2� � 9� � 3� � 1(��) � 3(��) � 6�
� 6, when � � 1.

Since the objective is to minimize Z, the fact that Z increases rather than decreases when
yAB (flow through the reverse arc B � A) is increased from zero rules out this variable as
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The incremental effect on
costs of adding arc E � D
with flow � to the initial
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a candidate to be the entering basic variable. (Remember that increasing yAB from zero re-
ally means decreasing xAB, flow through the real arc A � B, from its upper bound of 10.)

A similar result is obtained for the last nonbasic arc E � D. Adding this arc with flow
� to the initial feasible spanning tree creates the undirected cycle ED–DE shown in Fig. 10.21,
so the flow also increases by � for arc D � E, but no other arcs are affected. Therefore,

�Z � 2� � 3� � 5�
� 5, when � � 1,

so xED is ruled out as a candidate to be the entering basic variable.
To summarize,

�7, if �xAC � 1
�Z � � 6, if �yAB � 1

�5, if �xED � 1

so the negative value for xAC implies that xAC becomes the entering basic variable for the
first iteration. If there had been more than one nonbasic variable with a negative value of
�Z, then the one having the largest absolute value would have been chosen. (If there had
been no nonbasic variables with a negative value of �Z, the current BF solution would
have been optimal.)

Rather than identifying undirected cycles, etc., the network simplex method actually ob-
tains these �Z values by an algebraic procedure that is considerably more efficient (especially
for large networks). The procedure is analogous to that used by the transportation simplex
method (see Sec. 9.2) to solve for ui and vj in order to obtain the value of cij � ui � vj for
each nonbasic variable xij. We shall not describe this procedure further, so you should just
use the undirected cycles method when you are doing problems at the end of the chapter.

Finding the Leaving Basic Variable and the Next BF Solution

After selection of the entering basic variable, only one more quick step is needed to si-
multaneously determine the leaving basic variable and solve for the next BF solution. For
the first iteration of the example, the key is Fig. 10.18. Since xAC is the entering basic
variable, the flow � through arc A � C is to be increased from zero as far as possible un-
til one of the basic variables reaches either its lower bound (0) or its upper bound (uij).
For those arcs whose flow increases with � in Fig. 10.18 (arcs A � C and C � E), only
the upper bounds (uAC � � and uCE � 80) need to be considered:

xAC � � � �.
xCE � 50 � � � 80, so � � 30.
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For those arcs whose flow decreases with � (arcs D � E and A � D), only the lower
bound of 0 needs to be considered:

xDE � 10 � � 	 0, so � � 10.
xAD � 40 � � 	 0, so � � 40.

Arcs whose flow is unchanged by � (i.e., those not part of the undirected cycle), which is
just arc B � C in Fig. 10.18, can be ignored since no bound will be reached as � is increased.

For the five arcs in Fig. 10.18, the conclusion is that xDE must be the leaving basic
variable because it reaches a bound for the smallest value of � (10). Setting � � 10 in this
figure thereby yields the flows through the basic arcs in the next BF solution:

xAC � � � 10,
xCE � 50 � � � 60,
xAD � 40 � � � 30,
xBC � 50.

The corresponding feasible spanning tree is shown in Fig. 10.22.
If the leaving basic variable had reached its upper bound, then the adjustments dis-

cussed for the upper bound technique would have been needed at this point (as you will
see illustrated during the next two iterations). However, because it was the lower bound
of 0 that was reached, nothing more needs to be done.

Completing the Example. For the two remaining iterations needed to reach the op-
timal solution, the primary focus will be on some features of the upper bound technique
they illustrate. The pattern for finding the entering basic variable, the leaving basic vari-
able, and the next BF solution will be very similar to that described for the first iteration,
so we only summarize these steps briefly.

Iteration 2: Starting with the feasible spanning tree shown in Fig. 10.22 and refer-
ring to Fig. 10.16 for the unit costs cij, we arrive at the calculations for selecting the
entering basic variable in Table 10.4. The second column identifies the unique undi-
rected cycle that is created by adding the nonbasic arc in the first column to this span-
ning tree, and the third column shows the incremental effect on costs because of the
changes in flows on this cycle caused by adding a flow of � � 1 to the nonbasic arc.
Arc E � D has the largest (in absolute terms) negative value of �Z, so xED is the en-
tering basic variable.

We now make the flow � through arc E � D as large as possible, while satisfying
the following flow bounds:
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■ TABLE 10.4 Calculations for selecting the entering basic variable for iteration 2

Nonbasic Arc Cycle Created �Z When � � 1

B � A BA–AC–BC 2 �2 � 4 � 3 � �1
D � E DE–CE–AC–AD 3 � 1 � 4 � 9 � �7
E � D ED–AD–AC–CE 2 � 9 � 4 � 1 � �2 � Minimum

xED � � � uED � �, so � � �.
xAD � 30 � � 	 0, so � � 30.
xAC � 10 � � � uAC � �, so � � �.
xCE � 60 � � � uCE � 80, so � � 20. � Minimum

Because xCE imposes the smallest upper bound (20) on �, xCE becomes the leaving basic vari-
able. Setting � � 20 in the above expressions for xED, xAD, and xAC then yields the flow through
the basic arcs for the next BF solution (with xBC � 50 unaffected by �), as shown in Fig. 10.23.

What is of special interest here is that the leaving basic variable xCE was obtained by the
variable reaching its upper bound (80). Therefore, by using the upper bound technique, xCE is
replaced with 80 � yCE, where yCE � 0 is the new nonbasic variable. At the same time, the
original arc C � E with cCE � 1 and uCE � 80 is replaced with the reverse arc 
E � C with cEC � �1 and uEC � 80. The values of bE and bC also are adjusted by adding 80
to bE and subtracting 80 from bC. The resulting adjusted network is shown in Fig. 10.24, where
the nonbasic arcs are shown as dashed lines and the numbers by all the arcs are unit costs.
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Iteration 3: If Figs. 10.23 and 10.24 are used to initiate the next iteration, Table 10.5
shows the calculations that lead to selecting yAB (reverse arc B � A) as the entering ba-
sic variable. We then add as much flow � through arc B � A as possible while satisfying
the flow bounds below:

yAB � � � uBA � 10, so � � 10. � Minimum
xAC � 30 � � � uAC � �, so � � �.
xBC � 50 � � 	 0, so � � 50.

The smallest upper bound (10) on � is imposed by yAB, so this variable becomes the leaving
basic variable. Setting � � 10 in these expressions for xAC and xBC (along with the unchanged
values of xAC � 10 and xED � 20) then yields the next BF solution, as shown in Fig. 10.25.

As with iteration 2, the leaving basic variable (yAB) was obtained here by the vari-
able reaching its upper bound. In addition, there are two other points of special interest
concerning this particular choice. One is that the entering basic variable yAB also became
the leaving basic variable on the same iteration! This event occurs occasionally with the
upper bound technique whenever increasing the entering basic variable from zero causes
its upper bound to be reached first before any of the other basic variables reach a bound.

The other interesting point is that the arc B � A that now needs to be replaced by a re-
verse arc A � B (because of the leaving basic variable reaching an upper bound) already is
a reverse arc! This is no problem, because the reverse arc for a reverse arc is simply the orig-
inal real arc. Therefore, the arc B � A (with cBA � �2 and uBA � 10) in Fig. 10.24 now is
replaced by arc A � B (with cAB � 2 and uAB � 10), which is the arc between nodes A and
B in the original network shown in Fig. 10.12, and a generated net flow of 10 is shifted from
node B (bB � 50 � 40) to node A (bA � 40 � 50). Simultaneously, the variable yAB � 10
is replaced by 10 � xAB, with xAB � 0 as the new nonbasic variable. The resulting adjusted
network is shown in Fig. 10.26.

Passing the Optimality Test: At this point, the algorithm would attempt to use
Figs. 10.25 and 10.26 to find the next entering basic variable with the usual calcula-
tions shown in Table 10.6. However, none of the nonbasic arcs gives a negative value
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■ TABLE 10.5 Calculations for selecting the entering basic variable for iteration 3

Nonbasic Arc Cycle Created �Z When � � 1

B � A BA–AC–BC �1 �2 � 4 � 3 � �1 � Minimum
D � E DE–ED �1 �2 � 3 � 2 � �5
E � C EC–AC–AD–ED �1 � 4 � 9 � 2 � �2
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The adjusted network with
unit costs at the completion
of iteration 3.

of �Z, so an improvement in Z cannot be achieved by introducing flow through any
of them. This means that the current BF solution shown in Fig. 10.25 has passed the
optimality test, so the algorithm stops.

To identify the flows through real arcs rather than reverse arcs for this optimal solu-
tion, the current adjusted network (Fig. 10.26) should be compared with the original net-
work (Fig. 10.12). Note that each of the arcs has the same direction in the two networks
with the one exception of the arc between nodes C and E. This means that the only reverse
arc in Fig. 10.26 is arc E � C, where its flow is given by the variable yCE. Therefore, calcu-
late xCE � uCE � yCE � 80 � yCE. Arc E � C happens to be a nonbasic arc, so yCE � 0 and
xCE � 80 is the flow through the real arc C � E. All the other flows through real arcs are the
flows given in Fig. 10.25. Therefore, the optimal solution is the one shown in Fig. 10.27.

Another complete example of applying the network simplex method is provided by
the demonstration in the Network Analysis Area of your OR Tutor. An additional example
is given in the Solved Examples section of the book’s website as well. Also included in
your IOR Tutorial is an interactive procedure for the network simplex method.

■ TABLE 10.6 Calculations for the optimality test at the end of iteration 3

Nonbasic Arc Cycle Created �Z When � � 1

A � B AB–BC–AC 2 � 3 � 4 � 1
D � E DE–ED 3 � 2 � 5
E � C EC–AC–AD–ED �1 � 4 � 9 � 2 � 2

■ FIGURE 10.27
The optimal flow pattern in
the original network for the
Distribution Unlimited Co.
example.
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■ 10.8 A NETWORK MODEL FOR OPTIMIZING A PROJECT’S 
TIME-COST TRADE-OFF

Networks provide a natural way of graphically displaying the flow of activities in a major
project, such as a construction project or a research-and-development project. Therefore,
one of the most important applications of network theory is in aiding the management of
such projects.

In the late 1950s, two network-based OR techniques—PERT (program evaluation
and review technique) and CPM (critical path method)—were developed independently
to assist project managers in carrying out their responsibilities. These techniques were de-
signed to help plan how to coordinate a project’s various activities, develop a realistic
schedule for the project, and then monitor the progress of the project after it is under way.
Over the years, the better features of these two techniques have tended to be merged into
what is now commonly referred to as the PERT/CPM technique. This network approach
to project management continues to be widely used today.

One of the supplementary chapters on the book’s website, Chap. 22 (Project Man-
agement with PERT/CPM), provides a complete description of the various features of
PERT/CPM. We now will highlight one of these features for two reasons. First, it is a
network optimization model and so fits into the theme of the current chapter. Second, it
illustrates the kind of important applications that such models can have.

The feature we will highlight is referred to as the CPM method of time-cost trade-
offs because it was a key part of the original CPM technique. It addresses the follow-
ing problem for a project that needs to be completed by a specific deadline. Suppose
that this deadline would not be met if all the activities are performed in the normal
manner, but that there are various ways of meeting the deadline by spending more
money to expedite some of the activities. What is the optimal plan for expediting
some activities so as to minimize the total cost of performing the project within the
deadline?

The general approach begins by using a network to display the various activities and
the order in which they need to be performed. An optimization model then is formulated
that can be solved by using either marginal analysis or linear programming. As with the
other network optimization models considered earlier in this chapter, the special structure
of the problem makes it relatively easy to solve efficiently.

This approach is illustrated below by using the same prototype example that is car-
ried through Chap. 22.

A Prototype Example—the Reliable Construction Co. Problem

The RELIABLE CONSTRUCTION COMPANY has just made the winning bid of $5.4 mil-
lion to construct a new plant for a major manufacturer. The manufacturer needs the plant to
go into operation within 40 weeks.

Reliable is assigning its best construction manager, David Perty, to this project to help
ensure that it stays on schedule. Mr. Perty will need to arrange for a number of crews to
perform the various construction activities at different times. Table 10.7 shows his list of
the various activities. The third column provides important additional information for co-
ordinating the scheduling of the crews.

For any given activity, its immediate predecessors (as given in the third col-
umn of Table 10.7) are those activities that must be completed by no later than
the starting time of the given activity. (Similarly, the given activity is called an
immediate successor of each of its immediate predecessors.)
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■ TABLE 10.7 Activity list for the Reliable Construction Co. project

Immediate Estimated
Activity Activity Description Predecessors Duration

A Excavate — 2 weeks
B Lay the foundation A 4 weeks
C Put up the rough wall B 10 weeks
D Put up the roof C 6 weeks
E Install the exterior plumbing C 4 weeks
F Install the interior plumbing E 5 weeks
G Put up the exterior siding D 7 weeks
H Do the exterior painting E, G 9 weeks
I Do the electrical work C 7 weeks
J Put up the wallboard F, I 8 weeks
K Install the flooring J 4 weeks
L Do the interior painting J 5 weeks
M Install the exterior fixtures H 2 weeks
N Install the interior fixtures K, L 6 weeks

For example, the top entries in this column indicate that

1. Excavation does not need to wait for any other activities.
2. Excavation must be completed before starting to lay the foundation.
3. The foundation must be completely laid before starting to put up the rough wall, and

so on.

When a given activity has more than one immediate predecessor, all must be finished be-
fore the activity can begin.

In order to schedule the activities, Mr. Perty consults with each of the crew supervi-
sors to develop an estimate of how long each activity should take when it is done in the
normal way. These estimates are given in the rightmost column of Table 10.7.

Adding up these times gives a grand total of 79 weeks, which is far beyond the dead-
line of 40 weeks for the project. Fortunately, some of the activities can be done in paral-
lel, which substantially reduces the project completion time. We will see next how the
project can be displayed graphically to better visualize the flow of the activities and to
determine the total time required to complete the project if no delays occur.

We have seen in this chapter how valuable networks can be to represent and help ana-
lyze many kinds of problems. In much the same way, networks play a key role in dealing
with projects. They enable showing the relationships between the activities and succinctly
displaying the overall plan for the project. They also are helpful for analyzing the project.

Project Networks

A network used to represent a project is called a project network. A project network
consists of a number of nodes (typically shown as small circles or rectangles) and a
number of arcs (shown as arrows) that connect two different nodes.

As Table 10.7 indicates, three types of information are needed to describe a project:

1. Activity information: Break down the project into its individual activities (at the de-
sired level of detail).

2. Precedence relationships: Identify the immediate predecessor(s) for each activity.
3. Time information: Estimate the duration of each activity.

The project network should convey all this information. Two alternative types of project
networks are available for doing this.

hil23453_ch10_372-437.qxd  1/15/70  8:41 AM  Page 414 Final PDF to printer



One type is the activity-on-arc (AOA) project network, where each activity is represented
by an arc. A node is used to separate an activity (an outgoing arc) from each of its immedi-
ate predecessors (an incoming arc). The sequencing of the arcs thereby shows the precedence
relationships between the activities.

The second type is the activity-on-node (AON) project network, where each activity
is represented by a node. Then the arcs are used just to show the precedence relationships
that exist between the activities. In particular, the node for each activity with immediate
predecessors has an arc coming in from each of these predecessors.

The original versions of PERT and CPM used AOA project networks, so this was the
conventional type for some years. However, AON project networks have some important
advantages over AOA project networks for conveying the same information:

1. AON project networks are considerably easier to construct than AOA project networks.
2. AON project networks are easier to understand than AOA project networks for inex-

perienced users, including many managers.
3. AON project networks are easier to revise than AOA project networks when there are

changes in the project.

For these reasons, AON project networks have become increasingly popular with practi-
tioners. It appears that they may become the standard format for project networks. There-
fore, we will focus solely on AON project networks, and will drop the adjective AON.

Figure 10.28 shows the project network for Reliable’s project.2 Referring also to the
third column of Table 10.7, note how there is an arc leading to each activity from each
of its immediate predecessors. Because activity A has no immediate predecessors, there
is an arc leading from the start node to this activity. Similarly, since activities M and N
have no immediate successors, arcs lead from these activities to the finish node. There-
fore, the project network nicely displays at a glance all the precedence relationships be-
tween all the activities (plus the start and finish of the project). Based on the rightmost
column of Table 10.7, the number next to the node for each activity then records the es-
timated duration (in weeks) of that activity.

The Critical Path

How long should the project take? We noted earlier that summing the durations of all the
activities gives a grand total of 79 weeks. However, this isn’t the answer to the question
because some of the activities can be performed (roughly) simultaneously.

What is relevant instead is the length of each path through the network:

A path through a project network is one of the routes following the arcs from
the START node to the FINISH node. The length of a path is the sum of the (es-
timated) durations of the activities on the path.

The six paths through the project network in Fig. 10.28 are given in Table 10.8, along
with the calculations of the lengths of these paths. The path lengths range from 31 weeks
up to 44 weeks for the longest path (the fourth one in the table).

So given these path lengths, what should be the (estimated) project duration (the to-
tal time required for the project)? Let us reason it out.

Since the activities on any given path must be done in sequence with no overlap, the
project duration cannot be shorter than the path length. However, the project duration can
be longer because some activity on the path with multiple immediate predecessors might

10.8 A NETWORK MODEL 415

2Although project networks often are drawn from left to right, we go from top to bottom to better fit on the
printed page.
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have to wait longer for an immediate predecessor not on the path to finish than for the
one on the path. For example, consider the second path in Table 10.8 and focus on activ-
ity H. This activity has two immediate predecessors, one (activity G) not on the path and
one (activity E) that is. After activity C finishes, only 4 more weeks are required for ac-
tivity E but 13 weeks will be needed for activity D and then activity G to finish. There-
fore, the project duration must be considerably longer than the length of the second path
in the table.

However, the project duration will not be longer than one particular path. This is
the longest path through the project network. The activities on this path can be per-
formed sequentially without interruption. (Otherwise, this would not be the longest path.)

416 CHAPTER 10 NETWORK OPTIMIZATION MODELS

■ TABLE 10.8 The paths and path lengths through Reliable’s project network

Path Length

START �A�B�C�D�G�H�M� FINISH 2 � 4 � 10 � 6 � 7 � 9 � 2 � 6 � 40 weeks
START �A�B�C�E�H�M� FINISH 2 � 4 � 10 � 4 � 9 � 2 � 2 � 6 � 31 weeks
START �A�B�C�E�F�J�K�N� FINISH 2 � 4 � 10 � 4 � 5 � 8 � 4 � 6 � 43 weeks
START �A�B�C�E�F�J�L�N� FINISH 2 � 4 � 10 � 4 � 5 � 8 � 5 � 6 � 44 weeks
START �A�B�C�I�J�K�N� FINISH 2 � 4 � 10 � 7 � 8 � 4 � 6 � 6 � 41 weeks
START �A�B�C�I�J�L�N� FINISH 2 � 4 � 10 � 7 � 8 � 5 � 6 � 6 � 42 weeks
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■ FIGURE 10.28
The project network for the
Reliable Construction Co.
project.

hil23453_ch10_372-437.qxd  1/15/70  8:41 AM  Page 416 Final PDF to printer



Therefore, the time required to reach the FINISH node equals the length of this path. Fur-
thermore, all the shorter paths will reach the FINISH node no later than this.

Here is the key conclusion:

The (estimated) project duration equals the length of the longest path through
the project network. This longest path is called the critical path.3 (If more than
one path tie for the longest, they all are critical paths.)

Thus, for the Reliable Construction Co. project, we have

Critical path: START �A�B�C�E�F�J�L�N� FINISH
(Estimated) project duration � 44 weeks.

Therefore, if no delays occur, the total time required to complete the project should be
about 44 weeks. Furthermore, the activities on this critical path are the critical bottleneck
activities where any delays in their completion must be avoided to prevent delaying proj-
ect completion. This is valuable information for Mr. Perty, since he now knows that he
should focus most of his attention on keeping these particular activities on schedule in
striving to keep the overall project on schedule. Furthermore, to reduce the duration of
the project (remember that the deadline for completion is 40 weeks), these are the main
activities where changes should be made to reduce their durations.

Mr. Perty now needs to determine specifically which activites should have their du-
rations reduced, and by how much, in order to meet the deadline of 40 weeks in the least
expensive way. He remembers that CPM provides an excellent procedure for investigat-
ing such time-cost trade-offs, so he will use this approach to address this question.

We begin with some background.

Time-Cost Trade-Offs for Individual Activities

The first key concept for this approach is that of crashing:

Crashing an activity refers to taking special costly measures to reduce the dura-
tion of an activity below its normal value. These special measures might include us-
ing overtime, hiring additional temporary help, using special time-saving materials,
obtaining special equipment, etc. Crashing the project refers to crashing a num-
ber of activities in order to reduce the duration of the project below its normal value.

The CPM method of time-cost trade-offs is concerned with determining how much
(if any) to crash each of the activities in order to reduce the anticipated duration of the
project to a desired value.

The data necessary for determining how much to crash a particular activity are given
by the time-cost graph for the activity. Figure 10.29 shows a typical time-cost graph. Note
the two key points on this graph labeled Normal and Crash:

The normal point on the time-cost graph for an activity shows the time (dura-
tion) and cost of the activity when it is performed in the normal way. The crash
point shows the time and cost when the activity is fully crashed, i.e., it is fully
expedited with no cost spared to reduce its duration as much as possible. As an
approximation, CPM assumes that these times and costs can be reliably predicted
without significant uncertainty.

For most applications, it is assumed that partially crashing the activity at any level will
give a combination of time and cost that will lie somewhere on the line segment between

10.8 A NETWORK MODEL 417

3Although Table 10.8 illustrates how the enumeration of paths and path lengths can be used to find the critical
path for small projects, Chap. 22 describes how PERT/CPM normally uses a considerably more efficient pro-
cedure to obtain a variety of useful information, including the critical path.
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these two points.4 (For example, this assumption says that half of a full crash will give a
point on this line segment that is midway between the normal and crash points.) This sim-
plifying approximation reduces the necessary data gathering to estimating the time and
cost for just two situations: normal conditions (to obtain the normal point) and a full crash
(to obtain the crash point).

Using this approach, Mr. Perty has his staff and crew supervisors working on de-
veloping these data for each of the activities of Reliable’s project. For example, the su-
pervisor of the crew responsible for putting up the wallboard indicates that adding two
temporary employees and using overtime would enable him to reduce the duration of this
activity from 8 weeks to 6 weeks, which is the minimum possible. Mr. Perty’s staff then
estimates the cost of fully crashing the activity in this way as compared to following the
normal 8-week schedule, as shown below.

Activity J (put up the wallboard):

Normal point: time � 8 weeks, cost � $430,000.
Crash point: time � 6 weeks, cost � $490,000.
Maximum reduction in time � 8 � 6 � 2 weeks.

Crash cost per week saved �

� $30,000.

After investigating the time-cost trade-off for each of the other activities in the same way,
Table 10.9 gives the data obtained for all the activities.

Which Activities Should Be Crashed?

Summing the normal cost and crash cost columns of Table 10.9 gives

Sum of normal costs � $4.55 million,
Sum of crash costs � $6.15 million.

$490,000 � $430,000


2
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Crash  

Normal

Crash cost

Normal cost

Activity
cost   

Crash time Normal time Activity duration

■ FIGURE 10.29
A typical time-cost graph for
an activity.

4This is a convenient assumption, but it often is only a rough approximation since the underlying assumptions
of proportionality and divisibility may not hold completely. If the true time-cost graph is convex, linear pro-
gramming can still be employed by using a piecewise linear approximation and then applying the separable
programming technique described in Sec. 13.8.
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Recall that the company will be paid $5.4 million for doing this project. This payment
needs to cover some overhead costs in addition to the costs of the activities listed in the
table, as well as provide a reasonable profit to the company. When developing the win-
ning bid of $5.4 million, Reliable’s management felt that this amount would provide a
reasonable profit as long as the total cost of the activities could be held fairly close to the
normal level of about $4.55 million. Mr. Perty understands very well that it is his re-
sponsibility to keep the project as close to both budget and schedule as possible.

As found previously in Table 10.8, if all the activities are performed in the normal way,
the anticipated duration of the project would be 44 weeks (if delays can be avoided). If all
the activities were to be fully crashed instead, then a similar calculation would find that this
duration would be reduced to only 28 weeks. But look at the prohibitive cost ($6.15 million)
of doing this! Fully crashing all activities clearly is not a viable option.

However, Mr. Perty still wants to investigate the possibility of partially or fully crash-
ing just a few activities to reduce the anticipated duration of the project to 40 weeks.

The problem: What is the least expensive way of crashing some activities to re-
duce the (estimated) project duration to the specified level (40 weeks)?

One way of solving this problem is marginal cost analysis, which uses the last column
of Table 10.9 (along with Table 10.8) to determine the least expensive way to reduce project
duration 1 week at a time. The easiest way to conduct this kind of analysis is to set up a table
like Table 10.10 that lists all the paths through the project network and the current length of
each of these paths. To get started, this information can be copied directly from Table 10.8.

Since the fourth path listed in Table 10.10 has the longest length (44 weeks), the
only way to reduce project duration by a week is to reduce the duration of the activities
on this particular path by a week. Comparing the crash cost per week saved given in the
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■ TABLE 10.9 Time-cost trade-off data for the activities of Reliable’s project

Time Cost Maximum Crash Cost
Reduction per Week

Activity Normal Crash Normal Crash in Time Saved

A 2 weeks 1 weeks $180,000 $1,280,000 1 weeks $100,000
B 4 weeks 2 weeks $320,000 $1,420,000 2 weeks $ 50,000
C 10 weeks 7 weeks $620,000 $1,860,000 3 weeks $ 80,000
D 6 weeks 4 weeks $260,000 $1,340,000 2 weeks $ 40,000
E 4 weeks 3 weeks $410,000 $1,570,000 1 weeks $160,000
F 5 weeks 3 weeks $180,000 $1,260,000 2 weeks $ 40,000
G 7 weeks 4 weeks $900,000 $1,020,000 3 weeks $ 40,000
H 9 weeks 6 weeks $200,000 $1,380,000 3 weeks $ 60,000
I 7 weeks 5 weeks $210,000 $1,270,000 2 weeks $ 30,000
J 8 weeks 6 weeks $430,000 $1,490,000 2 weeks $ 30,000
K 4 weeks 3 weeks $160,000 $1,200,000 1 weeks $ 40,000
L 5 weeks 3 weeks $250,000 $1,350,000 2 weeks $ 50,000
M 2 weeks 1 weeks $100,000 $1,200,000 1 weeks $100,000
N 6 weeks 3 weeks $330,000 $1,510,000 3 weeks $ 60,000

■ TABLE 10.10 The initial table for starting marginal cost analysis of Reliable’s
project

Length of Path
Activity to Crash

Crash Cost ABCDGHM ABCEHM ABCEFJKN ABCEFJLN ABCIJKN ABCIJLN

40 31 43 44 41 42
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■ TABLE 10.11 The final table for performing marginal cost analysis on 
Reliable’s project

Length of Path
Activity to Crash

Crash Cost ABCDGHM ABCEHM ABCEFJKN ABCEFJLN ABCIJKN ABCIJLN

40 31 43 44 41 42
J $30,000 40 31 42 43 40 41
J 30,000 40 31 41 42 39 40
F 40,000 40 31 40 41 39 40
F 40,000 40 31 39 40 39 40

last column of Table 10.9 for these activities, the smallest cost is $30,000 for activity J.
(Note that activity I with this same cost is not on this path.) Therefore, the first change
is to crash activity J enough to reduce its duration by a week.

This change results in reducing the length of each path that includes activity J (the
third, fourth, fifth, and sixth paths in Table 10.10) by a week, as shown in the second row
of Table 10.11. Because the fourth path still is the longest (43 weeks), the same process
is repeated to find the least expensive activity to shorten on this path. This again is ac-
tivity J, since the next-to-last column in Table 10.9 indicates that a maximum reduction
of 2 weeks is allowed for this activity. This second reduction of a week for activity J leads
to the third row of Table 10.11.

At this point, the fourth path still is the longest (42 weeks), but activity J cannot be
shortened any further. Among the other activities on this path, activity F now is the least
expensive to shorten ($40,000 per week) according to the last column of Table 10.9. There-
fore, this activity is shortened by a week to obtain the fourth row of Table 10.11, and then
(because a maximum reduction of 2 weeks is allowed) is shortened by another week to
obtain the last row of this table.

The longest path (a tie between the first, fourth, and sixth paths) now has the desired
length of 40 weeks, so we don’t need to do any more crashing. (If we did need to go fur-
ther, the next step would require looking at the activities on all three paths to find the least
expensive way of shortening all three paths by a week.) The total cost of crashing activ-
ities J and F to get down to this project duration of 40 weeks is calculated by adding the
costs in the second column of Table 10.11—a total of $140,000. Figure 10.30 shows the
resulting project network, where the darker arrows show the critical paths.

Figure 10.30 shows that reducing the durations of activities F and J to their crash
times has led to now having three critical paths through the network. The reason is that,
as we found earlier from the last row of Table 10.11, the three paths tie for being the
longest, each with a length of 40 weeks.

With larger networks, marginal cost analysis can become quite unwieldy. A more ef-
ficient procedure would be desirable for large projects. For this reason, the standard CPM
procedure is to apply linear programming instead (commonly with a customized software
package that exploits the special structure of this network optimization model).

Using Linear Programming to Make Crashing Decisions

The problem of finding the least expensive way of crashing activities can be rephrased in
a form more familiar to linear programming as follows:

Restatement of the problem: Let Z be the total cost of crashing activities. The
problem then is to minimize Z, subject to the constraint that project duration must
be less than or equal to the time desired by the project manager.
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The natural decision variables are

xj � reduction in the duration of activity j due to crashing this activity,
for j � A, B, . . . , N.

By using the last column of Table 10.9, the objective function to be minimized then is

Z � 100,000xA � 50,000xB � . . . � 60,000xN.

Each of the 14 decision variables on the right-hand side needs to be restricted to nonnega-
tive values that do not exceed the maximum given in the next-to-last column of Table 10.9.

To impose the constraint that project duration must be less than or equal to the desired
value (40 weeks), let

yFINISH � project duration, i.e., the time at which the FINISH node in the project
network is reached.

The constraint then is . . . 

yFINISH � 40.

To help the linear programming model assign the appropriate value to yFINISH, given
the values of xA, xB, . . . , xN, it is convenient to introduce into the model the following
additional variables.
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■ FIGURE 10.30
The project network if
activities J and F are fully
crashed (with all other
activities normal) for
Reliable’s project. The darker
arrows show the various
critical paths through the
project network.
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yj � start time of activity j (for j � B, C, . . . , N), given the values of xA, xB, . . . , xN.

(No such variable is needed for activity A, since an activity that begins the project is au-
tomatically assigned a value of 0.) By treating the FINISH node as another activity (al-
beit one with zero duration), as we now will do, this definition of yj for activity FINISH
also fits the definition of yFINISH given in the preceding paragraph.

The start time of each activity (including FINISH) is directly related to the start time
and duration of each of its immediate predecessors as summarized below.

For each activity (B, C, . . . , N, FINISH) and each of its immediate predecessors,
Start time of this activity 	 (start time � duration) for this immediate predecessor.

Furthermore, by using the normal times from Table 10.9, the duration of each activity is
given by the following formula:

Duration of activity j � its normal time � xj,

To illustrate these relationships, consider activity F in the project network (Fig. 10.28
or 10.30):

Immediate predecessor of activity F:
Activity E, which has duration � 4 � xE.

Relationship between these activities:

yF 	 yE � 4 � xE.

Thus, activity F cannot start until activity E starts and then completes its duration of 4 � xE.
Now consider activity J, which has two immediate predecessors:

Immediate predecessors of activity J:
Activity F, which has duration � 5 � xF.
Activity I, which has duration � 7 � xI.

Relationships between these activities:

yJ 	 yF � 5 � xF,
yJ 	 yI � 7 � xI.

These inequalities together say that activity j cannot start until both of its predecessors
finish.

By including these relationships for all the activities as constraints, we obtain the
complete linear programming model given below:

Minimize Z � 100,000xA � 50,000xB � . . . � 60,000xN,

subject to the following constraints:

1. Maximum reduction constraints:
Using the next-to-last column of Table 10.9,

xA � 1, xB � 2, . . . , xN � 3.

2. Nonnegativity constraints:

xA 	 0, xB 	 0, . . . , xN 	 0
yB 	 0, yC 	 0, . . . , yN 	 0, yFINISH 	 0.

3. Start-time constraints:
As described above the objective function, with the exception of activity A (which starts
the project), there is one start-time constraint for each activity with a single immediate
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predecessor (activities B, C, D, E, F, G, I, K, L, M) and two constraints for each activity
with two immediate predecessors (activities H, J, N, FINISH), as listed below.
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yB 	 0 � 2 � xA yH 	 yG � 7 � xG

yC 	 yB � 4 � xB yH 	 yE � 4 � xE

yD 	 yC � 10 � xC �

� yFINISH 	 yM � 2 � xM

yM 	 yH � 9 � xH yFINISH 	 yN � 6 � xN

(In general, the number of start-time constraints for an activity equals its number of
immediate predecessors since each immediate predecessor contributes one start-time
constraint.)

4. Project duration constraint:

yFINISH � 40.

Figure 10.31 shows how this problem can be formulated as a linear programming model
on a spreadsheet. The decisions to be made are shown in the changing cells, StartTime
(I6:I19), TimeReduction (J6:J19), and ProjectFinishTime (I22). Columns B to H correspond
to the columns in Table 10.9. As the equations in the bottom half of the figure indicate,
columns G and H are calculated in a straightforward way. The equations for column K
express the fact that the finish time for each activity is its start time plus its normal time mi-
nus its time reduction due to crashing. The equation entered into the objective cell TotalCost
(I24) adds all the normal costs plus the extra costs due to crashing to obtain the total cost.

The last set of constraints in Solver, TimeReduction (J6:J19) � MaxTimeReduction
(G6:G19), specifies that the time reduction for each activity cannot exceed its maximum
time reduction given in column G. The two preceding constraints, ProjectFinishTime
(I22) 	 MFinish (K18) and ProjectFinishTime (I22) 	 NFINISH (K19), indicate that the
project cannot finish until each of the two immediate predecessors (activities M and N )
finish. The constraint that ProjectFinishTime (I22) � MaxTime (K22) is a key one that
specifies that the project must finish within 40 weeks.

The constraints involving StartTime (I6:I19) all are start-time constraints that specify
that an activity cannot start until each of its immediate predecessors has finished. For exam-
ple, the first constraint shown, BStart (I7) 	 AFinish (K6), says that activity B cannot start
until activity A (its immediate predecessor) finishes. When an activity has more than one im-
mediate predecessor, there is one such constraint for each of them. To illustrate, activity H
has both activities E and G as immediate predecessors. Consequently, activity H has two start-
time constraints, HStart (I13) 	 EFinish (K10) and HStart (I13) 	 GFinish (K12).

You may have noticed that the 	 form of the start-time constraints allows a delay in
starting an activity after all its immediate predecessors have finished. Although such a de-
lay is feasible in the model, it cannot be optimal for any activity on a critical path, since
this needless delay would increase the total cost (by necessitating additional crashing to
meet the project duration constraint). Therefore, an optimal solution for the model will
not have any such delays, except possibly for activities not on a critical path.

Columns I and J in Fig. 10.31 show the optimal solution obtained after having clicked
on the Solve button. (Note that this solution involves one delay—activity K starts at 30
even though its only immediate predecessor, activity J, finishes at 29—but this doesn’t
matter since activity K is not on a critical path.) This solution corresponds to the one dis-
played in Fig. 10.30 that was obtained by marginal cost analysis.

If you would like to see another example that illustrates both the marginal cost analy-
sis approach and the linear programming approach to applying the CPM method of time-
cost trade-offs, the Solved Examples section of the book’s website provides one.
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=StartTime+NormalTime-TimeReduction
=StartTime+NormalTime-TimeReduction
=StartTime+NormalTime-TimeReduction

:
:

I
Total Cost =SUM(NormalCost)+SUMPRODUCT(CrashCostPerWeekSaved,T

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

A B C D E F G H I J K

Reliable Construction Co. Project Scheduling Problem with Time-Cost Trade-offs

Maximum Crash Cost
Time Cost Time per Week Start Time Finish

Activity Normal Crash Normal Crash Reduction saved Time Reduction Time
A 2 1 $180,000 $280,000 1 $100,000 0 0 2
B 4 2 $320,000 $420,000 2 $50,000 2 0 6
C 10 7 $620,000 $860,000 3 $80,000 6 0 16
D 6 4 $260,000 $340,000 2 $40,000 16 0 22
E 4 3 $410,000 $570,000 1 $160,000 16 0 20
F 5 3 $180,000 $260,000 2 $40,000 20 2 23
G 7 4 $900,000 $1,020,000 3 $40,000 22 0 29
H 9 6 $200,000 $380,000 3 $60,000 29 0 38
I 7 5 $210,000 $270,000 2 $30,000 16 0 23
J 8 6 $430,000 $490,000 2 $30,000 23 2 29
K 4 3 $160,000 $200,000 1 $40,000 30 0 34
L 5 3 $250,000 $350,000 2 $50,000 29 0 34
M 2 1 $100,000 $200,000 1 $100,000 38 0 40
N 6 3 $330,000 $510,000 3 $60,000 34 0 40

Max Time
Project Finish Time 40 <= 40

Total Cost $4,690,000

Range Name Cells
AFinish K6
AStart I6
BFinish K7
BStart I7
CFinish K8
CrashCost F6:F19
CrashCostPerWeekSaved H6:H19
CrashTime D6:D19
CStart I8
DFinish K9
DStart I9
EFinish K10
EStart I10
FFinish K11
FinishTime K6:K19
FStart I11
GFinish K12
GStart I12
HFinish K13
HStart I13
IFinish K14
IStart I14
JFinish K15
JStart I15
KFinish K16
KStart I16
LFinish K17
LStart I17
MaxTime K22
MaxTimeReduction G6:G19
MFinish K18
MStart I18
NFinish K19
NormalCost E6:E19
NormalTime C6:C19
NStart I19
ProjectFinishTime I22
StartTime I6:I19
TimeReduction J6:J19
TotalCost I24

To: Min
By Changing Variable Cells:

StartTime, TimeReduction,
ProjectFinishTime

Subject to the Constraints:
BStart >= AFinish
CStart >= BFinish
DStart >= CFinish
EStart >= CFinish
FStart >= EFinish
GStart >= DFinish
HStart >= EFinish
HStart >= GFinish
IStart >= CFinish
JStart >= FFinish
JStart >= IFinish
KStart >= JFinish
LStart >= JFinish
MStart >= HFinish
NStart >= KFinish
NStart >= LFinish
ProjectFinishTime <= MaxTime
ProjectFinishTime <= MFinish
ProjectFinishTime <= NFinish
TimeReduction <= MaxTimeReduction

Solver Parameters
Set Objective Cell: TotalCost

Solver Options:
Make Variables Nonnegative
Solving Method: Simplex LP

■ FIGURE 10.31
The spreadsheet displays the application of the CPM method of time-cost trade-offs to Reliable’s project, where columns I
and J show the optimal solution obtained by using Solver with the entries shown in the Solver parameters box.

■ 10.9 CONCLUSIONS
Networks of some type arise in a wide variety of contexts. Network representations are
very useful for portraying the relationships and connections between the components of
systems. Frequently, flow of some type must be sent through a network, so a decision needs
to be made about the best way to do this. The kinds of network optimization models and
algorithms introduced in this chapter provide a powerful tool for making such decisions.

The minimum cost flow problem plays a central role among these network optimization
models, both because it is so broadly applicable and because it can be solved extremely
efficiently by the network simplex method. Two of its special cases included in this chap-
ter, the shortest-path problem and the maximum flow problem, also are basic network op-
timization models, as are additional special cases discussed in Chap. 9 (the transportation
problem and the assignment problem).

Whereas all these models are concerned with optimizing the operation of an existing
network, the minimum spanning tree problem is a prominent example of a model for op-
timizing the design of a new network.

The CPM method of time-cost trade-offs provides a powerful way of using a network op-
timization model to design a project so that it can meet its deadline with a minimum total cost.

This chapter has only scratched the surface of the current state of the art of network
methodology. Because of their combinatorial nature, network problems often are extremely
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A

B

C

D

E

F

Miles between Adjacent Towns

Town A B C D E Destination

Origin 40 60 50 — — —
A 10 — 70 — —
B 20 55 40 —
C — 50 —
D 10 60
E 80

■ PROBLEMS

An Interactive Procedure in IOR Tutorial:

Network Simplex Method—Interactive

An Excel Add-in:

Analytic Solver Platform for Education (ASPE)

“Ch. 10—Network Opt Models” Files for Solving the Examples:

Excel Files
LINGO/LINDO File
MPL/Solvers File

Glossary for Chapter 10

See Appendix 1 for documentation of the software.

The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The demonstration example just listed in Learning Aids
may be helpful.

I: We suggest that you use the interactive procedure just
listed (the printout records your work).

C: Use the computer with any of the software options avail-
able to you (or as instructed by your instructor) to solve
the problem.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

10.2-1. Consider the following directed network.

10.3-2. You need to take a trip by car to another town that you
have never visited before. Therefore, you are studying a map to
determine the shortest route to your destination. Depending on
which route you choose, there are five other towns (call them A,
B, C, D, E) that you might pass through on the way. The map
shows the mileage along each road that directly connects two
towns without any intervening towns. These numbers are sum-
marized in the following table, where a dash indicates that there
is no road directly connecting these two towns without going
through any other towns.

(a) Find a directed path from node A to node F, and then identify
three other undirected paths from node A to node F.

(b) Find three directed cycles. Then identify an undirected cycle
that includes every node.

(c) Identify a set of arcs that forms a spanning tree.
(d) Use the process illustrated in Fig. 10.3 to grow a tree one arc

at a time until a spanning tree has been formed. Then repeat
this process to obtain another spanning tree. [Do not duplicate
the spanning tree identified in part (c).]

10.3-1. Read the referenced article that fully describes the OR
study summarized in the application vignette presented in 
Sec. 10.3. Briefly describe how network optimization models were
applied in this study. Then list the various financial and nonfinan-
cial benefits that resulted from this study.

(a) Formulate this problem as a shortest-path problem by drawing
a network where nodes represent towns, links represent roads,
and numbers indicate the length of each link in miles.

(b) Use the algorithm described in Sec. 10.3 to solve this shortest-
path problem.

C (c) Formulate and solve a spreadsheet model for this problem.
(d) If each number in the table represented your cost (in dollars)

for driving your car from one town to the next, would the an-
swer in part (b) or (c) now give your minimum cost route?

(e) If each number in the table represented your time (in minutes)
for driving your car from one town to the next, would the an-
swer in part (b) or (c) now give your minimum time route?

10.3-3. At a small but growing airport, the local airline company is
purchasing a new tractor for a tractor-trailer train to bring luggage
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(Origin) (Destination)T

E

D

O B

C

A

4

6

5
2

5

7

5

4

6

8

1

(a)

1

T(Origin) (Destination)O

B E I

A D G

HFC

4

3 4

2 225
6

3 4 5

2

1 2

5 8

43

72

6 5

(b)

j

1 2 3

0 $8,000 $18,000 $31,000
i 1 10,000 21,000

2 12,000

LNSE B E

C F

A D

4.2 3.8

4.7 3.6

4.6
3.5

3.4

3.6

3.3

3.5

3.2

3.4

3.4

to and from the airplanes. A new mechanized luggage system will
be installed in 3 years, so the tractor will not be needed after that.
However, because it will receive heavy use, so that the running and
maintenance costs will increase rapidly as the tractor ages, it may
still be more economical to replace the tractor after 1 or 2 years. The
following table gives the total net discounted cost associated with
purchasing a tractor (purchase price minus trade-in allowance, plus
running and maintenance costs) at the end of year i and trading it in
at the end of year j (where year 0 is now).

The problem is to determine at what times (if any) the tractor should
be replaced to minimize the total cost for the tractors over 3 years.
(a) Formulate this problem as a shortest-path problem.
(b) Use the algorithm described in Sec. 10.3 to solve this shortest-

path problem.
C (c) Formulate and solve a spreadsheet model for this problem.

10.3-4.* Use the algorithm described in Sec. 10.3 to find the short-
est path through each of the following networks, where the num-
bers represent actual distances between the corresponding nodes.

10.3-5. Formulate the shortest-path problem as a linear pro-
gramming problem.

10.3-6. One of Speedy Airlines’ flights is about to take off from
Seattle for a nonstop flight to London. There is some flexibility
in choosing the precise route to be taken, depending upon weather
conditions. The following network depicts the possible routes
under consideration, where SE and LN are Seattle and London,
respectively, and the other nodes represent various intermediate
locations.

The winds along each arc greatly affect the flying time (and so
the fuel consumption). Based on current meteorological reports,
the flying times (in hours) for this particular flight are shown next
to the arcs. Because the fuel consumed is so expensive, the man-
agement of Speedy Airlines has established a policy of choosing
the route that minimizes the total flight time.
(a) What plays the role of “distances” in interpreting this problem

to be a shortest-path problem?
(b) Use the algorithm described in Sec. 10.3 to solve this shortest-

path problem.
C (c) Formulate and solve a spreadsheet model for this problem.

10.3-7. The Quick Company has learned that a competitor is plan-
ning to come out with a new kind of product with a great sales
potential. Quick has been working on a similar product that had
been scheduled to come to market in 20 months. However, research
is nearly complete and Quick’s management now wishes to rush
the product out to meet the competition.

There are four nonoverlapping phases left to be accomplished,
including the remaining research that currently is being conducted
at a normal pace. However, each phase can instead be conducted at
a priority or crash level to expedite completion, and these are the
only levels that will be considered for the last three phases. The times
required at these levels are given in the following table. (The times
in parentheses at the normal level have been ruled out as too long.)

Time

Initiate
Design of Production 

Remaining Manufacturing and
Level Research Development System Distribution

Normal 5 months (4 months) (7 months) (4 months)
Priority 4 months 3 months 5 months 2 months
Crash 2 months 2 months 3 months 1 month
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Cost

Initiate
Design of Production 

Remaining Manufacturing and
Level Research Development System Distribution

Normal $3 million — — —
Priority 6 million $6 million $ 9 million $3 million
Crash 9 million 9 million 12 million 6 million

Distance between Pairs of Offices

Main B.1 B.2 B.3 B.4 B.5

Main office — 190 70 115 270 160
Branch 1 190 — 100 110 215 50
Branch 2 70 100 — 140 120 220
Branch 3 115 110 140 — 175 80
Branch 4 270 215 120 175 — 310
Branch 5 160 50 220 80 310 —

Source Sink
7

6

5

3

4

4

6

1 3

4

4

1
4

9
3

F F

2

1

Distance between Pairs of Groves

1 2 3 4 5 6 7 8

1 — 1.3 2.1 0.9 0.7 1.8 2.0 1.5
2 1.3 — 0.9 1.8 1.2 2.6 2.3 1.1
3 2.1 0.9 — 2.6 1.7 2.5 1.9 1.0

Grove 4 0.9 1.8 2.6 — 0.7 1.6 1.5 0.9
5 0.7 1.2 1.7 0.7 — 0.9 1.1 0.8
6 1.8 2.6 2.5 1.6 0.9 — 0.6 1.0
7 2.0 2.3 1.9 1.5 1.1 0.6 — 0.5
8 1.5 1.1 1.0 0.9 0.8 1.0 0.5 —

Management has allocated $30 million for these four phases.
The cost of each phase at the different levels under consideration
is as follows:

Management wishes to determine at which level to conduct each
of the four phases to minimize the total time until the product can
be marketed subject to the budget restriction of $50 million.
(a) Formulate this problem as a shortest-path problem.
(b) Use the algorithm described in Sec. 10.3 to solve this shortest-

path problem.

10.4-1.* Reconsider the networks shown in Prob. 10.3-4. Use the
algorithm described in Sec. 10.4 to find the minimum spanning tree
for each of these networks.
10.4-2. The Wirehouse Lumber Company will soon begin logging
eight groves of trees in the same general area. Therefore, it must
develop a system of dirt roads that makes each grove accessible
from every other grove. The distance (in miles) between every pair
of groves is as follows:

Management now wishes to determine between which pairs
of groves the roads should be constructed to connect all groves
with a minimum total length of road.
(a) Describe how this problem fits the network description of the

minimum spanning tree problem.
(b) Use the algorithm described in Sec. 10.4 to solve the problem.

10.4-3. The Premiere Bank soon will be hooking up computer ter-
minals at each of its branch offices to the computer at its main of-
fice using special phone lines with telecommunications devices.

The phone line from a branch office need not be connected directly
to the main office. It can be connected indirectly by being con-
nected to another branch office that is connected (directly or indi-
rectly) to the main office. The only requirement is that every branch
office be connected by some route to the main office.

The charge for the special phone lines is $100 times the num-
ber of miles involved, where the distance (in miles) between every
pair of offices is as follows:

Management wishes to determine which pairs of offices should be
directly connected by special phone lines in order to connect every
branch office (directly or indirectly) to the main office at a mini-
mum total cost.
(a) Describe how this problem fits the network description of the

minimum spanning tree problem.
(b) Use the algorithm described in Sec. 10.4 to solve the problem.

10.5-1.* For the network shown below, use the augmenting path
algorithm described in Sec. 10.5 to find the flow pattern giving the
maximum flow from the source to the sink, given that the arc ca-
pacity from node i to node j is the number nearest node i along the
arc between these nodes. Show your work.

10.5-2. Formulate the maximum flow problem as a linear pro-
gramming problem.

10.5-3. The next diagram depicts a system of aqueducts that 
originate at three rivers (nodes R1, R2, and R3) and terminate at
a major city (node T), where the other nodes are junction points
in the system.
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FromTo FromTo FromTo

From A B C From D E F From T

R1 75 65 — A 60 45 — D 120
R2 40 50 60 B 70 55 45 E 190
R3 — 80 70 C — 70 90 F 130

The city water manager wants to determine a flow plan that will
maximize the flow of water to the city.
(a) Formulate this problem as a maximum flow problem by iden-

tifying a source, a sink, and the transshipment nodes, and
then drawing the complete network that shows the capacity
of each arc.

(b) Use the augmenting path algorithm described in Sec. 10.5 to
solve this problem.

C (c) Formulate and solve a spreadsheet model for this problem.

10.5-4. The Texago Corporation has four oil fields, four refiner-
ies, and four distribution centers. A major strike involving the trans-
portation industries now has sharply curtailed Texago’s capacity to
ship oil from the oil fields to the refineries and to ship petroleum
products from the refineries to the distribution centers. Using units
of thousands of barrels of crude oil (and its equivalent in refined
products), the following tables show the maximum number of units
that can be shipped per day from each oil field to each refinery,
and from each refinery to each distribution center.

The Texago management now wants to determine a plan for
how many units to ship from each oil field to each refinery and

A

C
F

R3

R1 D

B
E

T

R2

from each refinery to each distribution center that will maximize
the total number of units reaching the distribution centers.
(a) Draw a rough map that shows the location of Texago’s oil

fields, refineries, and distribution centers. Add arrows to show
the flow of crude oil and then petroleum products through this
distribution network.

(b) Redraw this distribution network by lining up all the nodes
representing oil fields in one column, all the nodes represent-
ing refineries in a second column, and all the nodes repre-
senting distribution centers in a third column. Then add arcs
to show the possible flow.

(c) Modify the network in part (b) as needed to formulate this
problem as a maximum flow problem with a single source, a
single sink, and a capacity for each arc.

(d) Use the augmenting path algorithm described in Sec. 10.5 to
solve this maximum flow problem.

C (e) Formulate and solve a spreadsheet model for this problem.

10.5-5. One track of the Eura Railroad system runs from the ma-
jor industrial city of Faireparc to the major port city of Portstown.
This track is heavily used by both express passenger and freight
trains. The passenger trains are carefully scheduled and have pri-
ority over the slow freight trains (this is a European railroad), so
that the freight trains must pull over onto a siding whenever a pas-
senger train is scheduled to pass them soon. It is now necessary to
increase the freight service, so the problem is to schedule the freight
trains so as to maximize the number that can be sent each day with-
out interfering with the fixed schedule for passenger trains.

Consecutive freight trains must maintain a schedule differen-
tial of at least 0.1 hour, and this is the time unit used for schedul-
ing them (so that the daily schedule indicates the status of each
freight train at times 0.0, 0.1, 0.2, . . . , 23.9). There are S sidings
between Faireparc and Portstown, where siding i is long enough
to hold ni freight trains (i � 1, . . . , S ). It requires ti time units
(rounded up to an integer) for a freight train to travel from siding
i to siding i � 1 (where t0 is the time from the Faireparc station to
siding 1 and ts is the time from siding S to the Portstown station).
A freight train is allowed to pass or leave siding i (i � 0, 1, . . . ,
S ) at time j ( j � 0.0, 0.1, . . . , 23.9) only if it would not be over-
taken by a scheduled passenger train before reaching siding i � 1
(let �ij � 1 if it would not be overtaken, and let �ij � 0 if it would
be). A freight train also is required to stop at a siding if there will
not be room for it at all subsequent sidings that it would reach
before being overtaken by a passenger train.

Formulate this problem as a maximum flow problem by
identifying each node (including the supply node and the de-
mand node) as well as each arc and its arc capacity for the 

Refinery

Oil Field New Orleans Charleston Seattle St. Louis

Texas 11 7 2 8
California 5 4 8 7
Alaska 7 3 12 6
Middle East 8 9 4 15

Distribution Center

Refinery Pittsburgh Atlanta Kansas City San Francisco

New Orleans 5 9 6 4
Charleston 8 7 9 5
Seattle 4 6 7 8
St. Louis 12 11 9 7

Using units of thousands of acre feet, the tables below the
diagram show the maximum amount of water that can be pumped
through each aqueduct per day.
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To Unit Shipping Cost Shipping Capacity

From RO1 RO2 RO3 RO1 RO2 RO3

Warehouse 1 $470 $505 $490 100 150 100
Warehouse 2 390 410 440 125 150 75

Demand $150 $200 $150 150 200 150

network representation of the problem. (Hint: Use a different set
of nodes for each of the 240 times.)

10.5-6. Consider the maximum flow problem shown below, where
the source is node A, the sink is node F, and the arc capacities are
the numbers shown next to these directed arcs.

(a) Use the augmenting path algorithm described in Sec. 10.5 to
solve this problem.

C (b) Formulate and solve a spreadsheet model for this problem.

A

B

C

D

E

F

6

9

3
2

4

6

7

9

7

warehouse. The shipping cost per unit for each alternative is shown
in the following table, along with the amounts to be produced at
the factories and the amounts needed at the warehouses.
(a) Formulate the network representation of this problem as a

minimum cost flow problem.
(b) Formulate the linear programming model for this problem.

10.6-4. Reconsider Prob. 10.3-3. Now formulate this problem as
a minimum cost flow problem by showing the appropriate network
representation.

10.6-5. The Makonsel Company is a fully integrated company
that both produces goods and sells them at its retail outlets. 
After production, the goods are stored in the company’s two 
warehouses until needed by the retail outlets. Trucks are used to
transport the goods from the two plants to the warehouses, and
then from the warehouses to the three retail outlets.

Using units of full truckloads, the following table shows each
plant’s monthly output, its shipping cost per truckload sent to each
warehouse, and the maximum amount that it can ship per month
to each warehouse.

To Unit Shipping Cost Shipping Capacity Output

From Warehouse Warehouse Warehouse Warehouse  
1 2 1 2 

Plant 1 $425 $560 125 150 200
Plant 2 510 600 175 200 300

Unit Shipping Cost

To Warehouse
Distribution

From Center 1 2 Output

Factory 1 3 7 — 80
Factory 2 4 — 9 70

Distribution center 2 4

Allocation 60 90

10.5-7. Read the referenced article that fully describes the OR study
summarized in the first application vignette presented in Sec. 10.5.
Briefly describe how the model for the minimum cost flow prob-
lem was applied in this study. Then list the various financial and
nonfinancial benefits that resulted from this study.

10.5-8. Follow the instructions of Prob. 10.5-7 for the second ap-
plication vignette presented in Sec. 10.5.

10.6-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 10.6.
Briefly describe how the model for the minimum cost flow problem
was applied in this study. Then list the various financial and nonfi-
nancial benefits that resulted from this study.

10.6-2. Reconsider the maximum flow problem shown in Prob. 10.5-
6. Formulate this problem as a minimum cost flow problem, includ-
ing adding the arc A � F. Use F� � 20.

10.6-3. A company will be producing the same new product at
two different factories, and then the product must be shipped to
two warehouses. Factory 1 can send an unlimited amount by rail
to warehouse 1 only, whereas factory 2 can send an unlimited
amount by rail to warehouse 2 only. However, independent truck-
ers can be used to ship up to 50 units from each factory to a dis-
tribution center, from which up to 50 units can be shipped to each

For each retail outlet (RO), the next table shows its monthly
demand, its shipping cost per truckload from each warehouse, and
the maximum amount that can be shipped per month from each
warehouse.

Management now wants to determine a distribution plan (number
of truckloads shipped per month from each plant to each ware-
house and from each warehouse to each retail outlet) that will min-
imize the total shipping cost.
(a) Draw a network that depicts the company’s distribution net-

work. Identify the supply nodes, transshipment nodes, and de-
mand nodes in this network.

(b) Formulate this problem as a minimum cost flow problem by
inserting all the necessary data into this network.

C (c) Formulate and solve a spreadsheet model for this problem.
C (d) Use the computer to solve this problem without using Excel.
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Vendor Warehouse 1 Warehouse 2

1 1,600 miles 1,400 miles
2 1,500 miles 1,600 miles
3 2,000 miles 1,000 miles

Unit Shipping Cost

Factory 1 Factory 2

Warehouse 1 $200 $700
Warehouse 2 $400 $500

Monthly demand 10 6

Whenever one of the company’s two factories needs a ship-
ment of speakers to assemble into the boomboxes, the company
hires a trucker to bring the shipment in from one of the warehouses.
The cost per shipment is given next, along with the number of ship-
ments needed per month at each factory.

In addition, each vendor would charge a shipping cost. Each ship-
ment would go to one of the company’s two warehouses. Each ven-
dor has its own formula for calculating this shipping cost based on
the mileage to the warehouse. These formulas and the mileage data
are shown below.

Each vendor is able to supply as many as 10 shipments per
month. However, because of shipping limitations, each vendor is
able to send a maximum of only 6 shipments per month to each

Vendor Price

1 $22,500
2 22,700
3 22,300

10.6-6. The Audiofile Company produces boomboxes. However,
management has decided to subcontract out the production of the
speakers needed for the boomboxes. Three vendors are available
to supply the speakers. Their price for each shipment of 1,000
speakers is shown below.

Vendor Charge per Shipment

1 $300 � 40¢/mile
2 200 � 50¢/mile
3 500 � 20¢/mile

warehouse. Similarly, each warehouse is able to send a maximum
of only 6 shipments per month to each factory.

Management now wants to develop a plan for each month re-
garding how many shipments (if any) to order from each vendor,
how many of those shipments should go to each warehouse, and
then how many shipments each warehouse should send to each fac-
tory. The objective is to minimize the sum of the purchase costs
(including the shipping charge) and the shipping costs from the
warehouses to the factories.
(a) Draw a network that depicts the company’s supply network.

Identify the supply nodes, transshipment nodes, and demand
nodes in this network.

(b) Formulate this problem as a minimum cost flow problem by
inserting all the necessary data into this network. Also include
a dummy demand node that receives (at zero cost) all the un-
used supply capacity at the vendors.

C (c) Formulate and solve a spreadsheet model for this problem.
C (d) Use the computer to solve this problem without using -

Excel.

D 10.7-1. Consider the minimum cost flow problem shown below,
where the bi values (net flows generated) are given by the nodes,
the cij values (costs per unit flow) are given by the arcs, and the
uij values (arc capacities) are given between nodes C and D. Do
the following work manually.
(a) Obtain an initial BF solution by solving the feasible spanning

tree with basic arcs A � B, C � E, D � E, and C � A

E

A

B

C

D

3

4

[0]

[�30]

[10]

[20] [0]

6

2

5

3

5

Arc capacities:
A � C: 10
B � C: 25
Others: 


(a reverse arc), where one of the nonbasic arcs (C � B) also
is a reverse arc. Show the resulting network (including bi, cij,
and uij) in the same format as the above one (except use dashed
lines to draw the nonbasic arcs), and add the flows in paren-
theses next to the basic arcs.

(b) Use the optimality test to verify that this initial BF solution
is optimal and that there are multiple optimal solutions. 
Apply one iteration of the network simplex method to find
the other optimal BF solution, and then use these results 
to identify the other optimal solutions that are not BF 
solutions.

(c) Now consider the following BF solution.
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Basic Arc Flow Nonbasic Arc

A � D 20 A � B
B � C 10 A � C
C � E 10 B � D
D � E 20

3

5

[50]

[80]

A
6 (uAD � 40)

C

[�70]

[�60]

[0]

(uBE � 40)

4

2

5

D

B E

1

Normal Crash Normal Crash
Activity Time Time Cost Cost

A 8 months 5 months $25,000 $40,000
B 9 months 7 months 20,000 30,000
C 6 months 4 months 16,000 24,000
D 7 months 4 months 27,000 45,000

given by the arcs, and the finite uij values are given in parentheses
by the arcs. Obtain an initial BF solution by solving the feasible
spanning tree with basic arcs A � C, B � A, C � D, and C � E,
where one of the nonbasic arcs (D � A) is a reverse arc. Then use
the network simplex method yourself (you may use the interactive
procedure in your IOR Tutorial) to solve this problem.

10.8-1. The Tinker Construction Company is ready to begin a
project that must be completed in 12 months. This project has
four activities (A, B, C, D) with the project network shown next.

START FINISH

B D

A

C E

Use marginal cost analysis to solve the problem.

10.8-2. Reconsider the Tinker Construction Co. problem presented
in Prob. 10.8-1. While in college, Sean Murphy took an OR course
that devoted a month to linear programming, so Sean has decided
to use linear programming to analyze this problem.

Starting from this BF solution, apply one iteration of the network
simplex method. Identify the entering basic arc, the leaving basic
arc, and the next BF solution, but do not proceed further.

10.7-2. Reconsider the minimum cost flow problem formulated in
Prob. 10.6-2.
(a) Obtain an initial BF solution by solving the feasible spanning 

tree with basic arcs A � B, A � C, A � F, B � D, and 
E � F, where two of the nonbasic arcs (E � C and 
F � D) are reverse arcs.

D,I (b) Use the network simplex method yourself (you may use the
interactive procedure in your IOR Tutorial) to solve this
problem.

10.7-3. Reconsider the minimum cost flow problem formulated in
Prob. 10.6-3.
(a) Obtain an initial BF solution by solving the feasible spanning

tree that corresponds to using just the two rail lines plus factory
1 shipping to warehouse 2 via the distribution center.

D,I (b) Use the network simplex method yourself (you may use the
interactive procedure in your IOR Tutorial) to solve this
problem.

D,I 10.7-4. Reconsider the minimum cost flow problem formu-
lated in Prob. 10.6-4. Starting with the initial BF solution that cor-
responds to replacing the tractor every year, use the network sim-
plex method yourself (you may use the interactive procedure in
your IOR Tutorial) to solve this problem.

D,I 10.7-5. For the P & T Co. transportation problem given in
Table 9.2, consider its network representation as a minimum cost
flow problem presented in Fig. 9.2. Use the northwest corner rule
to obtain an initial BF solution from Table 9.2. Then use the net-
work simplex method yourself (you may use the interactive pro-
cedure in your IOR Tutorial) to solve this problem (and verify
the optimal solution given in Sec. 9.1).

10.7-6. Consider the Metro Water District transportation problem
presented in Table 9.12.
(a) Formulate the network representation of this problem as a min-

imum cost flow problem. (Hint: Arcs where flow is prohibited
should be deleted.)

D,I (b) Starting with the initial BF solution given in Table 9.19,
use the network simplex method yourself (you may use the
interactive procedure in your IOR Tutorial) to solve this
problem. Compare the sequence of BF solutions obtained
with the sequence obtained by the transportation simplex
method in Table 9.23.

D,I 10.7-7. Consider the minimum cost flow problem shown be-
low, where the bi values are given by the nodes, the cij values are

The project manager, Sean Murphy, has concluded that he can-
not meet the deadline by performing all these activities in the nor-
mal way. Therefore, Sean has decided to use the CPM method of
time-cost trade-offs to determine the most economical way of
crashing the project to meet the deadline. He has gathered the fol-
lowing data for the four activities.
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(a) Consider the upper path through the project network. Formu-
late a two-variable linear programming model for the problem
of how to minimize the cost of performing this sequence of
activities within 12 months. Use the graphical method to solve
this model.

(b) Repeat part (a) for the lower path through the project 
network.

(c) Combine the models in parts (a) and (b) into a single complete
linear programming model for the problem of how to mini-
mize the cost of completing the project within 12 months. What
must an optimal solution for this model be?

(d) Use the CPM linear programming formulation presented in
Sec. 10.8 to formulate a complete model for this problem. [This
model is a little larger than the one in part (c) because this
method of formulation is applicable to more complicated proj-
ect networks as well.]

C (e) Use Excel to solve this problem.
C (f) Use another software option to solve this problem.
C (g) Check the effect of changing the deadline by repeating part

(e) or ( f ) with the deadline of 11 months and then with a
deadline of 13 months.

10.8-3.* Good Homes Construction Company is about to begin the
construction of a large new home. The company’s president, Michael
Dean, is currently planning the schedule for this project. Michael
has identified the five major activities (labeled A, B, . . . , E) that
will need to be performed according to the project network shown
next, followed by a table giving the normal point and crash point
for each of these activities.

These costs reflect the company’s direct costs for the material, equip-
ment, and direct labor required to perform the activities. In addition,
the company incurs indirect project costs such as supervision and other
customary overhead costs, interest charges for capital tied up, and so
forth. Michael estimates that these indirect costs run $5,000 per week.
He wants to minimize the overall cost of the project. Therefore, to

START FINISH

A C

D

E

FB
H

G

Normal Crash Normal Crash
Activity Time Time Cost Cost

A 3 weeks 2 weeks $54,000 $60,000
B 4 weeks 3 weeks 62,000 65,000
C 5 weeks 2 weeks 66,000 70,000
D 3 weeks 1 weeks 40,000 43,000
E 4 weeks 2 weeks 75,000 80,000

save some of these indirect costs, Michael concludes that he should
shorten the project by doing some crashing to the extent that the
crashing cost for each additional week saved is less than $5,000.
(a) Use marginal cost analysis to determine which activities should

be crashed and by how much to minimize the overall cost
of the project. Under this plan, what is the duration and cost
of each activity? How much money is saved by doing this
crashing?

C (b) Now use the linear programming approach to do part (a) by
shortening the deadline 1 week at a time.

10.8-4. The 21st Century Studios is about to begin the production of
its most important (and most expensive) movie of the year. The movie’s
producer, Dusty Hoffmer, has decided to use PERT/CPM to help plan
and control this key project. He has identified the eight major activi-
ties (labeled A, B, . . . , H) required to produce the movie. Their prece-
dence relationships are shown in the project network below.

START FINISH

A C

B

D G

E

F
J

H
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Dusty now has learned that another studio also will be com-
ing out with a blockbuster movie during the middle of the upcom-
ing summer, just when his movie was to be released. This would
be very unfortunate timing. Therefore, he and the top management
of 21st Century Studios have concluded that they must accelerate
production of their movie and bring it out at the beginning of the
summer (15 weeks from now) to establish it as THE movie of the
year. Although this will require substantially increasing an already
huge budget, management feels that this will pay off in much larger
box office earnings both nationally and internationally.

Dusty now wants to determine the least costly way of meet-
ing the new deadline 15 weeks hence. Using the CPM method of
time-cost trade-offs, he has obtained the following data.

Normal Crash Normal Crash
Activity Time Time Cost Cost

A 5 weeks 3 weeks $20 million $30 million
B 3 weeks 2 weeks 10 million 20 million
C 4 weeks 2 weeks 16 million 24 million
D 6 weeks 3 weeks 25 million 43 million
E 5 weeks 4 weeks 22 million 30 million
F 7 weeks 4 weeks 30 million 48 million
G 9 weeks 5 weeks 25 million 45 million
H 8 weeks 6 weeks 30 million 44 million
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(a) Formulate a linear programming model for this problem.
C (b) Use Excel to solve the problem.
C (c) Use another software option to solve the problem.

10.9-1. From the bottom part of the selected references given at the
end of the chapter, select one of these award-winning ap-
plications of network optimization models. Read this article
and then write a two-page summary of the application and
the benefits (including nonfinancial benefits) it provided.

10.9-2. From the bottom part of the selected references given at the
end of the chapter, select three of these award-winning appli-
cations of network optimization models. For each one, read the
article and then write a one-page summary of the application
and the benefits (including nonfinancial benefits) it provided.

Normal Crash Normal Crash
Activity Time Time Cost Cost

A 32 weeks 28 weeks $160 million 180 million
B 28 weeks 25 weeks 125 million 146 million
C 36 weeks 31 weeks 170 million 210 million
D 16 weeks 13 weeks 60 million 72 million
E 32 weeks 27 weeks 135 million 160 million
F 54 weeks 47 weeks 215 million 257 million
G 17 weeks 15 weeks 90 million 96 million
H 20 weeks 17 weeks 120 million 132 million
I 34 weeks 30 weeks 190 million 226 million
J 18 weeks 16 weeks 80 million 84 million

(a) Formulate a linear programming model for this problem.
C (b) Use Excel to solve the problem.
C (c) Use another software option to solve the problem.

10.8-5. The Lockhead Aircraft Co. is ready to begin a project
to develop a new fighter airplane for the U.S. Air Force. The
company’s contract with the Department of Defense calls for
project completion within 92 weeks, with penalties imposed for
late delivery.

The project involves 10 activities (labeled A, B, . . . , J ),
where their precedence relationships are shown in the project net-
work below.

■ CASES

CASE 10.1 Money in Motion
Jake Nguyen runs a nervous hand through his once finely
combed hair. He loosens his once perfectly knotted silk tie.
And he rubs his sweaty hands across his once immaculately
pressed trousers.

Today has certainly not been a good day.
Over the past few months, Jake had heard whispers

circulating from Wall Street—whispers from the lips of
investment bankers and stockbrokers famous for their out-
spokenness. They had whispered about a coming Japanese
economic collapse—whispered because they had believed
that publicly vocalizing their fears would hasten the collapse.

And today, their very fears have come true. Jake and
his colleagues gather round a small television dedicated
exclusively to the Bloomberg channel. Jake stares in
disbelief as he listens to the horrors taking place in the
Japanese market. And the Japanese market is taking the fi-
nancial markets in all other East Asian countries with it on
its tailspin. He goes numb. As manager of Asian foreign

Management would like to avoid the hefty penalties for missing
the deadline in the current contract. Therefore, the decision has
been made to crash the project, using the CPM method of time-
cost trade-offs to determine how to do this in the most economi-
cal way. The data needed to apply this method are given next.

investment for Grant Hill Associates, a small West Coast
investment boutique specializing in currency trading, Jake
bears personal responsibility for any negative impacts of
the collapse.

And Grant Hill Associates will experience negative 
impacts.

Jake had not heeded the whispered warnings of a Japan-
ese collapse. Instead, he had greatly increased the stake
Grant Hill Associates held in the Japanese market. Because
the Japanese market had performed better than expected over
the past year, Jake had increased investments in Japan from
2.5 million to 15 million dollars only 1 month ago. At that
time, 1 dollar was worth 80 yen.

No longer. Jake realizes that today’s devaluation of the
yen means that 1 dollar is worth 125 yen. He will be able
to liquidate these investments without any loss in yen, but
now the dollar loss when converting back into U.S. currency
would be huge. He takes a deep breath, closes his eyes, and
mentally prepares himself for serious damage control.

START FINISH
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Jake’s meditation is interrupted by a booming voice call-
ing for him from a large corner office. Grant Hill, the president
of Grant Hill Associates, yells, “Nguyen, get the hell in here!”

Jake jumps and looks reluctantly toward the corner of-
fice hiding the furious Grant Hill. He smooths his hair, tight-
ens his tie, and walks briskly into the office.

Grant Hill meets Jake’s eyes upon his entrance and con-
tinues yelling, “I don’t want one word out of you, Nguyen! No
excuses; just fix this debacle! Get all of our money out of Japan!
My gut tells me this is only the beginning! Get the money into
safe U.S. bonds! NOW! And don’t forget to get our cash posi-
tions out of Indonesia and Malaysia ASAP with it!”

Jake has enough common sense to say nothing. He nods
his head, turns on his heel, and practically runs out of the
office.

Safely back at his desk, Jake begins formulating a plan
to move the investments out of Japan, Indonesia, and
Malaysia. His experiences investing in foreign markets have
taught him that when playing with millions of dollars, how
he gets money out of a foreign market is almost as impor-
tant as when he gets money out of the market. The banking
partners of Grant Hill Associates charge different transac-
tion fees for converting one currency into another one and
wiring large sums of money around the globe.

And now, to make matters worse, the governments in
East Asia have imposed very tight limits on the amount
of money an individual or a company can exchange from
the domestic currency into a particular foreign currency
and withdraw it from the country. The goal of this dramatic
measure is to reduce the outflow of foreign investments out
of those countries to prevent a complete collapse of the

economies in the region. Because of Grant Hill Associ-
ates’ cash holdings of 10.5 billion Indonesian rupiahs and
28 million Malaysian ringgits, along with the holdings in
yen, it is not clear how these holdings should be converted
back into dollars.

Jake wants to find the most cost-effective method to
convert these holdings into dollars. On his company’s web-
site he always can find on-the-minute exchange rates for
most currencies in the world (Table 1).

The table states that, for example, 1 Japanese yen
equals 0.008 U.S. dollars. By making a few phone calls he
discovers the transaction costs his company must pay for
large currency transactions during these critical times
(Table 2).

Jake notes that exchanging one currency for another one
results in the same transaction cost as a reverse conversion.
Finally, Jake finds out the maximum amounts of domestic
currencies his company is allowed to convert into other cur-
rencies in Japan, Indonesia, and Malaysia (Table 3).

(a) Formulate Jake’s problem as a minimum cost flow problem,
and draw the network for his problem. Identify the supply and
demand nodes for the network.

(b) Which currency transactions must Jake perform in order to con-
vert the investments from yen, rupiah, and ringgit into U.S. dol-
lars to ensure that Grant Hill Associates has the maximum dollar
amount after all transactions have occurred? How much money
does Jake have to invest in U.S. bonds?

(c) The World Trade Organization forbids transaction limits be-
cause they promote protectionism. If no transaction limits exist,
what method should Jake use to convert the Asian holdings from
the respective currencies into dollars?

TABLE 1 Currency exchange rates

To U.S. Canadian
From Yen Rupiah Ringgit Dollar Dollar Euro Pound Peso

Japanese yen 1 50 0.04 0.008 0.01 0.0064 0.0048 0.0768

Indonesian rupiah 1 0.0008 0.00016 0.0002 0.000128 0.000096 0.001536

Malaysian ringgit 1 0.2 0.25 0.16 0.12 1.92

U.S. dollar 1 1.25 0.8 0.6 9.6

Canadian dollar 1 0.64 0.48 7.68

European euro 1 0.75 12

English pound 1 16

Mexican peso 1
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TABLE 3 Transaction limits in equivalent of 1,000 dollars

To U.S. Canadian
From Yen Rupiah Ringgit Dollar Dollar Euro Pound Peso

Yen — 5,000 5,000 2,000 2,000 2,000 2,000 4,000

Rupiah 5,000 — 2,000 200 200 1,000 500 200

Ringgit 3,000 4,500 — 1,500 1,500 2,500 1,000 1,000

TABLE 2 Transaction cost, percent

To U.S. Canadian
From Yen Rupiah Ringgit Dollar Dollar Euro Pound Peso

Yen — 0.5 0.5 0.4 0.4 0.4 0.25 0.5

Rupiah — 0.7 0.5 0.3 0.3 0.75 0.75

Ringgit — 0.7 0.7 0.4 0.45 0.5

U.S. dollar — 0.05 0.1 0.1 0.1

Canadian dollar — 0.2 0.1 0.1

Euro — 0.05 0.5

Pound — 0.5

Peso —

(d) In response to the World Trade Organization’s mandate forbid-
ding transaction limits, the Indonesian government introduces
a new tax that leads to an increase of transaction costs for trans-
action of rupiah by 500 percent to protect their currency. Given
these new transaction costs but no transaction limits, what
currency transactions should Jake perform in order to convert
the Asian holdings from the respective currencies into dollars?

(e) Jake realizes that his analysis is incomplete because he has not
included all aspects that might influence his planned currency
exchanges. Describe other factors that Jake should examine be-
fore he makes his final decision.

(Note: A data file for this case is provided on the book’s
website for your convenience.)
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CASE 10.2 Aiding Allies 
A rebel army is attempting to overthrow the elected govern-
ment of the Russian Federation. The United States government
has decided to assist its ally by quickly sending troops and
supplies to the Federation. A plan now needs to be developed
for shipping the troops and supplies most effectively. De-
pending on the choice of the overall measure of performance,
the analysis requires formulating and solving a shortest-path
problem, a minimum cost flow problem, or a maximum flow
problem. Subsequent analysis requires formulating and solv-
ing a minimum spanning tree problem.

CASE 10.3 Steps to Success
The management of a privately held company has made the
decision to go public. Many interrelated steps need to be
completed in the process of making the initial public offer-
ing of stock in the company. Management wishes to accel-
erate this process. Therefore, after you construct a project
network to represent this process, apply the CPM method of
time-cost trade-offs.

■ PREVIEWS OF ADDED CASES ON OUR WEBSITE (www.mhhe.com/hillier)
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11C H A P T E R

Dynamic Programming

Dynamic programming is a useful mathematical technique for making a sequence of
interrelated decisions. It provides a systematic procedure for determining the opti-

mal combination of decisions.
In contrast to linear programming, there does not exist a standard mathematical 

formulation of “the” dynamic programming problem. Rather, dynamic programming is a
general type of approach to problem solving, and the particular equations used must be de-
veloped to fit each situation. Therefore, a certain degree of ingenuity and insight into the
general structure of dynamic programming problems is required to recognize when and how
a problem can be solved by dynamic programming procedures. These abilities can best be
developed by an exposure to a wide variety of dynamic programming applications and a
study of the characteristics that are common to all these situations. A large number of illus-
trative examples are presented for this purpose. (Some of these examples are small enough
that they also could be solved fairly quickly by exhaustive enumeration, but dynamic pro-
gramming provides a vastly more efficient way of solving larger versions of these examples.)

1This problem was developed by Professor Harvey M. Wagner while he was at Stanford University.

■ 11.1 A PROTOTYPE EXAMPLE FOR DYNAMIC PROGRAMMING

The STAGECOACH PROBLEM is a problem specially constructed1 to illustrate the fea-
tures and to introduce the terminology of dynamic programming. It concerns a mythical
fortune seeker in Missouri who decided to go west to join the gold rush in California dur-
ing the mid-19th century. The journey would require traveling by stagecoach through
unsettled country where there was serious danger of attack by marauders. Although his
starting point and destination were fixed, he had considerable choice as to which states
(or territories that subsequently became states) to travel through en route. The possible
routes are shown in Fig. 11.1, where each state is represented by a circled letter and the
direction of travel is always from left to right in the diagram. Thus, four stages (stage-
coach runs) were required to travel from his point of embarkation in state A (Missouri)
to his destination in state J (California).

This fortune seeker was a prudent man who was quite concerned about his safety. After
some thought, he came up with a rather clever way of determining the safest route. Life

EXAMPLE 1 The Stagecoach Problem
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insurance policies were offered to stagecoach passengers. Because the cost of the policy
for taking any given stagecoach run was based on a careful evaluation of the safety of that
run, the safest route should be the one with the cheapest total life insurance policy.

The cost for the standard policy on the stagecoach run from state i to state j, which
will be denoted by cij, is

3
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These costs are also shown in Fig. 11.1.
We shall now focus on the question of which route minimizes the total cost of the

policy.

Solving the Problem

First note that the shortsighted approach of selecting the cheapest run offered by each suc-
cessive stage need not yield an overall optimal decision. Following this strategy would
give the route A � B � F � I � J, at a total cost of 13. However, sacrificing a little on
one stage may permit greater savings thereafter. For example, A � D � F is cheaper
overall than A � B � F.

One possible approach to solving this problem is to use trial and error.2 However, the
number of possible routes is large (18), and having to calculate the total cost for each
route is not an appealing task.

Fortunately, dynamic programming provides a solution with much less effort than
exhaustive enumeration. (The computational savings are enormous for larger versions
of this problem.) Dynamic programming starts with a small portion of the original prob-
lem and finds the optimal solution for this smaller problem. It then gradually enlarges
the problem, finding the current optimal solution from the preceding one, until the orig-
inal problem is solved in its entirety.
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H
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■ FIGURE 11.1
The road system and costs
for the stagecoach problem.

2This problem also can be formulated as a shortest-path problem (see Sec. 10.3), where costs here play the role
of distances in the shortest-path problem. The algorithm presented in Sec. 10.3 actually uses the philosophy of
dynamic programming. However, because the present problem has a fixed number of stages, the dynamic pro-
gramming approach presented here is even better.
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For the stagecoach problem, we start with the smaller problem where the fortune
seeker has nearly completed his journey and has only one more stage (stagecoach run) to
go. The obvious optimal solution for this smaller problem is to go from his current state
(whatever it is) to his ultimate destination (state J). At each subsequent iteration, the prob-
lem is enlarged by increasing by 1 the number of stages left to go to complete the journey.
For this enlarged problem, the optimal solution for where to go next from each possible
state can be found relatively easily from the results obtained at the preceding iteration.
The details involved in implementing this approach follow.

Formulation. Let the decision variables xn (n � 1, 2, 3, 4) be the immediate destina-
tion on stage n (the nth stagecoach run to be taken). Thus, the route selected is A �
x1 � x2 � x3 � x4, where x4 � J.

Let fn(s, xn) be the total cost of the best overall policy for the remaining stages, given
that the fortune seeker is in state s, ready to start stage n, and selects xn as the immedi-
ate destination. Given s and n, let xn* denote any value of xn (not necessarily unique) that
minimizes fn(s, xn), and let f n* (s) be the corresponding minimum value of fn(s, xn). Thus,

f n*(s) � min fn(s, xn) � fn(s, xn*),
xn

where

fn(s, xn) � immediate cost (stage n) � minimum future cost (stages n � 1 onward)
� csxn

� f n*�1(xn).

The value of csxn
is given by the preceding tables for cij by setting i � s (the current state)

and j � xn (the immediate destination). Because the ultimate destination (state J) is reached
at the end of stage 4, f 5* ( J) � 0.

The objective is to find f 1* (A) and the corresponding route. Dynamic programming
finds it by successively finding f 4*(s), f 3*(s), f 2*(s), for each of the possible states s and
then using f 2*(s) to solve for f 1*(A).3

Solution Procedure. When the fortune seeker has only one more stage to go (n � 4),
his route thereafter is determined entirely by his current state s (either H or I) and his fi-
nal destination x4 � J, so the route for this final stagecoach run is s � J. Therefore, since
f 4*(s) � f4(s, J) � cs,J, the immediate solution to the n � 4 problem is

When the fortune seeker has two more stages to go (n � 3), the solution procedure
requires a few calculations. For example, suppose that the fortune seeker is in state F.
Then, as depicted below, he must next go to either state H or I at an immediate cost of
cF,H � 6 or cF,I � 3, respectively. If he chooses state H, the minimum additional cost af-
ter he reaches there is given in the preceding table as f 4*(H ) � 3, as shown above the H
node in the diagram. Therefore, the total cost for this decision is 6 � 3 � 9. If he chooses
state I instead, the total cost is 3 � 4 � 7, which is smaller. Therefore, the optimal choice
is this latter one, x3* � I, because it gives the minimum cost f 3*(F) � 7.

n � 4: s f 4*(s) x4*

H 3 J
I 4 J

3Because this procedure involves moving backward stage by stage, some writers also count n backward to denote
the number of remaining stages to the destination. We use the more natural forward counting for greater simplicity.
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11.1 A PROTOTYPE EXAMPLE FOR DYNAMIC PROGRAMMING 441

Similar calculations need to be made when you start from the other two possible states
s � E and s � G with two stages to go. Try it, proceeding both graphically (Fig. 11.1)
and algebraically [combining cij and f 4*(s) values], to verify the following complete re-
sults for the n � 3 problem.

The solution for the second-stage problem (n � 2), where there are three stages to
go, is obtained in a similar fashion. In this case, f2(s, x2) � csx2

� f 3*(x2). For example,
suppose that the fortune seeker is in state C, as depicted below:

He must next go to state E, F, or G at an immediate cost of cC,E � 3, cC,F � 2, or 
cC,G � 4, respectively. After getting there, the minimum additional cost for stage 3 to the
end is given by the n � 3 table as f 3*(E) � 4, f 3*(F) � 7, or f 3*(G) � 6, respectively, as
shown above the E and F nodes and below the G node in the preceding diagram. The re-
sulting calculations for the three alternatives are summarized below:

x2 � E: f2(C, E) � cC,E � f 3*(E) � 3 � 4 � 7.
x2 � F: f2(C, F) � cC,F � f 3*(F) � 2 � 7 � 9.
x2 � G: f2(C, G ) � cC,G � f 3*(G) � 4 � 6 � 10.

The minimum of these three numbers is 7, so the minimum total cost from state C to the
end is f 2*(C ) � 7, and the immediate destination should be x2* � E.

F

H

I

6

3

4

3

f3(s, x3) � csx3
� f 4*(x3)

x3

n � 3: s H I f 3*(s) x3*

E 4 8 4 H
F 9 7 7 I
G 6 7 6 H

C

E

G

3

2

4

F

7

6

4
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442 CHAPTER 11 DYNAMIC PROGRAMMING

Making similar calculations when you start from state B or D (try it) yields the fol-
lowing results for the n � 2 problem:

In the first and third rows of this table, note that E and F tie as the minimizing value of
x2, so the immediate destination from either state B or D should be x2* � E or F.

Moving to the first-stage problem (n � 1), with all four stages to go, we see that the
calculations are similar to those just shown for the second-stage problem (n � 2), except
now there is just one possible starting state s � A, as depicted below.

These calculations are summarized next for the three alternatives for the immediate 
destination:

x1 � B: f1(A, B) � cA,B � f 2*(B) � 2 � 11 � 13.
x1 � C: f1(A, C) � cA,C � f 2*(C ) � 4 � 7 � 11.
x1 � D: f1(A, D) � cA,D � f 2*(D) � 3 � 8 � 11.

Since 11 is the minimum, f 1*(A) � 11 and x1* � C or D, as shown in the following table:

An optimal solution for the entire problem can now be identified from the four ta-
bles. Results for the n � 1 problem indicate that the fortune seeker should go initially to
either state C or state D. Suppose that he chooses x1* � C. For n � 2, the result for s � C
is x2* � E. This result leads to the n � 3 problem, which gives x3* � H for s � E, and the
n � 4 problem yields x4* � J for s � H. Hence, one optimal route is A � C � E �
H � J. Choosing x1* � D leads to the other two optimal routes A � D � E � H � J
and A � D � F � I � J. They all yield a total cost of f 1*(A) � 11.

These results of the dynamic programming analysis also are summarized in Fig. 11.2.
Note how the two arrows for stage 1 come from the first and last columns of the 
n � 1 table and the resulting cost comes from the next-to-last column. Each of the other

f2(s, x2) � csx2
� f 3*(x2)

x2

n � 2: s E F G f 2*(s) x2*

B 11 11 12 11 E or F
C 7 9 10 7 E
D 8 8 11 8 E or F

A

B

D

2

4

11

C

7

8

3

f1(s, x1) � csx1
� f 2*(x1)

x1

n � 1: s B C D f 1*(s) x1*

A 13 11 11 11 C or D
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11.2 CHARACTERISTICS OF DYNAMIC PROGRAMMING PROBLEMS 443

arrows (and the resulting cost) comes from one row in one of the other tables in just
the same way.

You will see in the next section that the special terms describing the particular con-
text of this problem—stage, state, and policy—actually are part of the general terminol-
ogy of dynamic programming with an analogous interpretation in other contexts.

G

I

J
4

3

4

7
1

33

4

1 3

3
4

CA F

E

H

D

B

11

11 4

3

77

8 6

4

1 2 3 4Stage:

State:

■ FIGURE 11.2
Graphical display of the
dynamic programming
solution of the stagecoach
problem. Each arrow shows
an optimal policy decision
(the best immediate
destination) from that state,
where the number by the
state is the resulting cost
from there to the end.
Following the boldface
arrows from A to J gives the
three optimal solutions (the
three routes giving the
minimum total cost of 11).

■ 11.2 CHARACTERISTICS OF DYNAMIC PROGRAMMING PROBLEMS

The stagecoach problem is a literal prototype of dynamic programming problems. In fact,
this example was purposely designed to provide a literal physical interpretation of the
rather abstract structure of such problems. Therefore, one way to recognize a situation
that can be formulated as a dynamic programming problem is to notice that its basic struc-
ture is analogous to the stagecoach problem.

These basic features that characterize dynamic programming problems are presented
and discussed here.

1. The problem can be divided into stages, with a policy decision required at each stage.
The stagecoach problem was literally divided into its four stages (stagecoaches)

that correspond to the four legs of the journey. The policy decision at each stage was
which life insurance policy to choose (i.e., which destination to select for the next stage-
coach ride). Similarly, other dynamic programming problems require making a sequence
of interrelated decisions, where each decision corresponds to one stage of the problem.

2. Each stage has a number of states associated with the beginning of that stage.
The states associated with each stage in the stagecoach problem were the states 

(or territories) in which the fortune seeker could be located when embarking on that par-
ticular leg of the journey. In general, the states are the various possible conditions in
which the system might be at that stage of the problem. The number of states may be
either finite (as in the stagecoach problem) or infinite (as in some subsequent examples).

3. The effect of the policy decision at each stage is to transform the current state to a
state associated with the beginning of the next stage (possibly according to a proba-
bility distribution).

The fortune seeker’s decision as to his next destination led him from his current state
to the next state on his journey. This procedure suggests that dynamic programming
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problems can be interpreted in terms of the networks described in Chap. 10. Each node
would correspond to a state. The network would consist of columns of nodes, with
each column corresponding to a stage, so that the flow from a node can go only to a
node in the next column to the right. The links from a node to nodes in the next col-
umn correspond to the possible policy decisions on which state to go to next. The value
assigned to each link usually can be interpreted as the immediate contribution to the
objective function from making that policy decision. In most cases, the objective cor-
responds to finding either the shortest or the longest path through the network.

4. The solution procedure is designed to find an optimal policy for the overall problem, i.e.,
a prescription of the optimal policy decision at each stage for each of the possible states.

For the stagecoach problem, the solution procedure constructed a table for each
stage (n) that prescribed the optimal decision (xn*) for each possible state (s). Thus, in
addition to identifying three optimal solutions (optimal routes) for the overall problem,
the results show the fortune seeker how he should proceed if he gets detoured to a state
that is not on an optimal route. For any problem, dynamic programming provides this
kind of policy prescription of what to do under every possible circumstance (which is
why the actual decision made upon reaching a particular state at a given stage is re-
ferred to as a policy decision). Providing this additional information beyond simply
specifying an optimal solution (optimal sequence of decisions) can be helpful in a va-
riety of ways, including sensitivity analysis.

5. Given the current state, an optimal policy for the remaining stages is independent of
the policy decisions adopted in previous stages. Therefore, the optimal immediate de-
cision depends on only the current state and not on how you got there. This is the 
principle of optimality for dynamic programming.

Given the state in which the fortune seeker is currently located, the optimal life
insurance policy (and its associated route) from this point onward is independent of
how he got there. For dynamic programming problems in general, knowledge of the
current state of the system conveys all the information about its previous behavior nec-
essary for determining the optimal policy henceforth. (This property is the Markovian
property, discussed in Sec. 29.2.) Any problem lacking this property cannot be for-
mulated as a dynamic programming problem.

6. The solution procedure begins by finding the optimal policy for the last stage.
The optimal policy for the last stage prescribes the optimal policy decision for

each of the possible states at that stage. The solution of this one-stage problem is usu-
ally trivial, as it was for the stagecoach problem.

7. A recursive relationship that identifies the optimal policy for stage n, given the opti-
mal policy for stage n � 1, is available.

For the stagecoach problem, this recursive relationship was

f n*(s) � min
xn

{csxn
� f *n�1(xn)}.

Therefore, finding the optimal policy decision when you start in state s at stage n re-
quires finding the minimizing value of xn. For this particular problem, the corresponding
minimum cost is achieved by using this value of xn and then following the optimal pol-
icy when you start in state xn at stage n � 1.

The precise form of the recursive relationship differs somewhat among dynamic
programming problems. However, notation analogous to that introduced in the pre-
ceding section will continue to be used here, as summarized below:

N � number of stages.

n � label for current stage (n � 1, 2, . . . , N ).

sn � current state for stage n.
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xn � decision variable for stage n.

xn* � optimal value of xn (given sn).

fn(sn, xn) � contribution of stages n, n � 1, . . . , N to objective function if system
starts in state sn at stage n, immediate decision is xn, and optimal de-
cisions are made thereafter.

f n*(sn) � fn(sn, xn*).

The recursive relationship will always be of the form

f n*(sn) � max { fn(sn, xn)} or f n*(sn) � min {fn(sn, xn)},
xn xn

where fn(sn, xn) would be written in terms of sn, xn, f *n�1(sn�1), and probably some
measure of the immediate contribution of xn to the objective function. It is the inclu-
sion of f *n�1(sn�1) on the right-hand side, so that f *n (sn) is defined in terms of f *n�1(sn�1),
that makes the expression for f *n (sn) a recursive relationship.

The recursive relationship keeps recurring as we move backward stage by stage.
When the current stage number n is decreased by 1, the new fn*(sn) function is derived
by using the f *n�1(sn�1) function that was just derived during the preceding iteration,
and then this process keeps repeating. This property is emphasized in the next (and fi-
nal) characteristic of dynamic programming.

8. When we use this recursive relationship, the solution procedure starts at the end and
moves backward stage by stage—each time finding the optimal policy for that stage—
until it finds the optimal policy starting at the initial stage. This optimal policy immedi-
ately yields an optimal solution for the entire problem, namely, x1* for the initial state s1,
then x2* for the resulting state s2, then x3* for the resulting state s3, and so forth to x*N for
the resulting stage sN.

This backward movement was demonstrated by the stagecoach problem, where the
optimal policy was found successively beginning in each state at stages 4, 3, 2, and 1,
respectively.4 For all dynamic programming problems, a table such as the following
would be obtained for each stage (n � N, N � 1, . . . , 1).

When this table is finally obtained for the initial stage (n � 1), the problem of interest
is solved. Because the initial state is known, the initial decision is specified by x1* in this
table. The optimal value of the other decision variables is then specified by the other ta-
bles in turn according to the state of the system that results from the preceding decisions.

4Actually, for this problem the solution procedure can move either backward or forward. However, for many
problems (especially when the stages correspond to time periods), the solution procedure must move backward.

■ 11.3 DETERMINISTIC DYNAMIC PROGRAMMING

This section further elaborates upon the dynamic programming approach to deterministic
problems, where the state at the next stage is completely determined by the state and pol-
icy decision at the current stage. The probabilistic case, where there is a probability dis-
tribution for what the next state will be, is discussed in the next section.

fn(sn, xn)
xn

sn f n*(sn) xn*

hil23453_ch11_438-473.qxd  1/21/70  12:55 PM  Page 445 Final PDF to printer



446 CHAPTER 11 DYNAMIC PROGRAMMING

Deterministic dynamic programming can be described diagrammatically as shown in
Fig. 11.3. Thus, at stage n the process will be in some state sn. Making policy decision
xn then moves the process to some state sn�1 at stage n � 1. The contribution thereafter
to the objective function under an optimal policy has been previously calculated to be
f *n�1(sn�1). The policy decision xn also makes some contribution to the objective func-
tion. Combining these two quantities in an appropriate way provides fn(sn, xn), the con-
tribution of stages n onward to the objective function. Optimizing with respect to xn then
gives f n*(sn) � fn(sn, xn*). After xn* and f n*(sn) are found for each possible value of sn, the
solution procedure is ready to move back one stage.

One way of categorizing deterministic dynamic programming problems is by the
form of the objective function. For example, the objective might be to minimize the sum
of the contributions from the individual stages (as for the stagecoach problem), or to
maximize such a sum, or to minimize a product of such terms, and so on. Another cat-
egorization is in terms of the nature of the set of states for the respective stages. In par-
ticular, states sn might be representable by a discrete state variable (as for the stagecoach
problem) or by a continuous state variable, or perhaps a state vector (more than one vari-
able) is required. Similarly, the decision variables (x1, x2, . . . , xN) also can be either dis-
crete or continuous.

Several examples are presented to illustrate some of these possibilities. More impor-
tantly, they illustrate that these apparently major differences are actually quite inconsequential
(except in terms of computational difficulty) because the underlying basic structure shown
in Fig. 11.3 always remains the same.

The first new example arises in a much different context from the stagecoach prob-
lem, but it has the same mathematical formulation except that the objective is to maxi-
mize rather than minimize a sum.

State:

Stage
n

Stage
n � 1

sn sn � 1

Contribution of xnfn(sn, xn) f *
n � 1(sn � 1)

xn

Value:

■ FIGURE 11.3
The basic structure for
deterministic dynamic
programming.

EXAMPLE 2 Distributing Medical Teams to Countries

The WORLD HEALTH COUNCIL is devoted to improving health care in the underde-
veloped countries of the world. It now has five medical teams available to allocate among
three such countries to improve their medical care, health education, and training pro-
grams. Therefore, the council needs to determine how many teams (if any) to allocate to
each of these countries to maximize the total effectiveness of the five teams. The teams
must be kept intact, so the number allocated to each country must be an integer.

The measure of performance being used is additional person-years of life. (For a
particular country, this measure equals the increased life expectancy in years times the
country’s population.) Table 11.1 gives the estimated additional person-years of life (in
multiples of 1,000) for each country for each possible allocation of medical teams.

Which allocation maximizes the measure of performance?

Formulation. This problem requires making three interrelated decisions, namely, how
many medical teams to allocate to each of the three countries. Therefore, even though
there is no fixed sequence, these three countries can be considered as the three stages in
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Six days after Saddam Hussein ordered his Iraqi military
forces to invade Kuwait on August 2, 1990, the United
States began the long process of deploying many of its
own military units and cargo to the region. After develop-
ing a coalition force from 35 nations led by the United
States, the military operation called Operation Desert
Storm was launched on January 17, 1991, to expel the
Iraqi troops from Kuwait. This led to a decisive victory
for the coalition forces, which liberated Kuwait and pene-
trated Iraq.

The logistical challenge involved in quickly trans-
porting the needed troops and cargo to the war zone was a
daunting one. A typical airlift mission carrying troops and
cargo from the United States to the Persian Gulf required
a three-day round-trip, visited seven or more different air-
fields, burned almost one million pounds of fuel, and cost
$280,000. During Operation Desert Storm, the Military
Airlift Command (MAC) averaged more than 100 such
missions daily as it managed the largest airlift in history.

To meet this challenge, operations research was
applied to develop the decision support systems needed
to schedule and route each airlift mission. The OR tech-
nique used to drive this process was dynamic program-
ming. The stages in the dynamic programming formulation
correspond to the airfields in the network of flight legs

relevant to the mission. For a given airfield, the states are
characterized by the departure time from the airfield and
the remaining available duty for the current crew. The
objective function to be minimized is a weighted sum of
several measures of performance: the lateness of deliver-
ies, the flying time of the mission, the ground time, and
the number of crew changes. The constraints include a
lower bound on the load carried by the mission and upper
bounds on the availability of crew and ground-support
resources at airfields.

This application of dynamic programming had a
dramatic impact on the ability to deliver the necessary
cargo and personnel to the Persian gulf quickly to sup-
port Operation Desert Storm. For example, when
speaking to the developers of this approach, MAC’s
deputy chief of staff for operations and transportation is
quoted as saying, “I guarantee you that we could not
have done that (the deployment to the Persian Gulf)
without your help and the contributions you made to
(the decision support systems)—we absolutely could
not have done that.”

Source: M. C. Hilliard, R. S. Solanki, C. Liu, I. K. Busch,
G. Harrison, and R. D. Kraemer: “Scheduling the Operation Desert
Storm Airlift: An Advanced Automated Scheduling Support
System,” Interfaces, 22(1): 131–146, Jan.–Feb. 1992.

An Application Vignette

a dynamic programming formulation. The decision variables xn (n � 1, 2, 3) are the num-
ber of teams to allocate to stage (country) n.

The identification of the states may not be readily apparent. To determine the states,
we ask questions such as the following. What is it that changes from one stage to the next?
Given that the decisions have been made at the previous stages, how can the status of the
situation at the current stage be described? What information about the current state of
affairs is necessary to determine the optimal policy hereafter? On these bases, an appro-
priate choice for the “state of the system” is

■ TABLE 11.1 Data for the World Health Council problem

Thousands of Additional
Person-Years of Life

Country
Medical
Teams 1 2 3

0 0 0 0
1 45 20 50
2 70 45 70
3 90 75 80
4 105 110 100
5 120 150 130
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sn � number of medical teams still available for allocation to remaining countries
(n, . . . , 3).

Thus, at stage 1 (country 1), where all three countries remain under consideration for al-
locations, s1 � 5. However, at stage 2 or 3 (country 2 or 3), sn is just 5 minus the num-
ber of teams allocated at preceding stages, so that the sequence of states is

s1 � 5, s2 � 5 � x1, s3 � s2 � x2.

With the dynamic programming procedure of solving backward stage by stage, when we
are solving at stage 2 or 3, we shall not yet have solved for the allocations at the preceding
stages. Therefore, we shall consider every possible state we could be in at stage 2 or 3,
namely, sn � 0, 1, 2, 3, 4, or 5.

Figure 11.4 shows the states to be considered at each stage. The links (line segments)
show the possible transitions in states from one stage to the next from making a feasible
allocation of medical teams to the country involved. The numbers shown next to the links
are the corresponding contributions to the measure of performance, where these numbers

448 CHAPTER 11 DYNAMIC PROGRAMMING

Stage:

State:

1 2 3

0 0

120

20
150

50

70
0

105

45

20
110

80

100

130

0

75

45 20

45
75

90
0

110

75
20

70

0 0

20

0

45

45

0 0 0

1 1

2 2

33

44

555

■ FIGURE 11.4
Graphical display of the
World Health Council
problem, showing the
possible states at each stage,
the possible transitions in
states, and the corresponding
contributions to the measure
of performance.
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11.3 DETERMINISTIC DYNAMIC PROGRAMMING 449

come from Table 11.1. From the perspective of this figure, the overall problem is to find
the path from the initial state 5 (beginning stage 1) to the final state 0 (after stage 3) that
maximizes the sum of the numbers along the path.

To state the overall problem mathematically, let pi(xi) be the measure of performance
from allocating xi medical teams to country i, as given in Table 11.1. Thus, the objective
is to choose x1, x2, x3 so as to

Maximize �
3

i�1
pi(xi),

subject to

�
3

i�1
xi � 5,

and

xi are nonnegative integers.

Using the notation presented in Sec. 11.2, we see that fn(sn, xn) is

fn(sn, xn) � pn(xn) � max �
3

i�n�1
pi(xi),

where the maximum is taken over xn�1, . . . , x3 such that

�
3

i�n

xi � sn

and the xi are nonnegative integers, for n � 1, 2, 3. In addition,

f n*(sn) � max      fn(sn, xn)
xn�0,1, . . . , sn

Therefore,

fn(sn, xn) � pn(xn) � f *n�1(sn � xn)

(with f 4* defined to be zero). These basic relationships are summarized in Fig. 11.5.
Consequently, the recursive relationship relating functions f 1*, f 2*, and f 3* for this 

problem is

f n*(sn) � max {pn(xn) � f *n�1(sn � xn)}, for n � 1, 2.
xn�0,1, . . . , sn

For the last stage (n � 3),

f 3*(s3) � max p3(x3).
x3�0,1, . . . , s3

The resulting dynamic programming calculations are given next.

Solution Procedure. Beginning with the last stage (n � 3), we note that the values of
p3(x3) are given in the last column of Table 11.1 and these values keep increasing as we
move down the column. Therefore, with s3 medical teams still available for allocation to
country 3, the maximum of p3(x3) is automatically achieved by allocating all s3 teams;
so x3* � s3 and f 3*(s3) � p3(s3), as shown in the following table.
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We now move backward to start from the next-to-last stage (n � 2). Here, finding 
x2* requires calculating and comparing f2(s2, x2) for the alternative values of x2, namely,
x2 � 0, 1, . . . , s2. To illustrate, we depict this situation when s2 � 2 graphically:

This diagram corresponds to Fig. 11.5 except that all three possible states at stage 3 are
shown. Thus, if x2 � 0, the resulting state at stage 3 will be s2 � x2 � 2 � 0 � 2, whereas
x2 � 1 leads to state 1 and x2 � 2 leads to state 0. The corresponding values of p2(x2)
from the country 2 column of Table 11.1 are shown along the links, and the values of
f 3*(s2 � x2) from the n � 3 table are given next to the stage 3 nodes. The required calcu-
lations for this case of s2 � 2 are summarized below:

Formula: f2(2, x2) � p2(x2) � f 3*(2 � x2).
p2(x2) is given in the country 2 column of Table 11.1.
f 3*(2 � x2) is given in the n � 3 table above.

x2 � 0: f2(2, 0) � p2(0) � f 3*(2) � 0 � 70 � 70.
x2 � 1: f2(2, 1) � p2(1) � f 3*(1) � 20 � 50 � 70.
x2 � 2: f2(2, 2) � p2(2) � f 3*(0) � 45 � 0 � 45.

Because the objective is maximization, x2* � 0 or 1 with f 2*(2) � 70.

450 CHAPTER 11 DYNAMIC PROGRAMMING

sn sn � xn

Stage
n � 1

Stage
n

State:

Value: fn(sn, xn) pn(xn)
� pn(xn) � f*n�1(sn � xn)

f*n�1(sn � xn)

xn

■ FIGURE 11.5
The basic structure for the
World Health Council
problem.

2

0

2

45

20

0

1

50

70

0

State:

n � 3: s3 f 3*(s3) x3*

0 0 0
1 50 1
2 70 2
3 80 3
4 100 4
5 130 5
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f2(s2, x2) � p2(x2) � f 3*(s2 � x2)
x2

n � 2: s2 0 1 2 3 4 5 f 2*(s2) x2*

0 0 0 0 or 1
1 50 20 50 0 or 1
2 70 70 45 70 0 or 1
3 80 90 95 75 95 2 or 1
4 100 100 115 125 110 125 3 or 1
5 130 120 125 145 160 150 160 4 or 1

5

0

0

160

4

5

120
125

45

0

State:

f1(s1, x1) � p1(x1) � f 2*(s1 � x1)
x2

n � 1: s1 0 1 2 3 4 5 f 1*(s1) x1*

5 160 170 165 160 155 120 170 1

Proceeding in a similar way with the other possible values of s2 (try it) yields the fol-
lowing table:

We now are ready to move backward to solve the original problem where we are
starting from stage 1 (n � 1). In this case, the only state to be considered is the starting
state of s1 � 5, as depicted below:

Since allocating x1 medical teams to country 1 leads to a state of 5 � x1 at stage 2, a choice
of x1 � 0 leads to the bottom node on the right, x1 � 1 leads to the next node up, and so forth
up to the top node with x1 � 5. The corresponding p1(x1) values from Table 11.1 are shown
next to the links. The numbers next to the nodes are obtained from the f 2*(s2) column of the
n � 2 table. As with n � 2, the calculation needed for each alternative value of the decision
variable involves adding the corresponding link value and node value, as summarized below:

Formula: f1(5, x1) � p1(x1) � f 2*(5 � x1).
p1(x1) is given in the country 1 column of Table 11.1.
f 2*(5 � x1) is given in the n � 2 table.

x1 � 0: f1(5, 0) � p1(0) � f 2*(5) � 0 � 160 � 160.
x1 � 1: f1(5, 1) � p1(1) � f 2*(4) � 45 � 125 � 170.

�

x1 � 5: f1(5, 5) � p1(5) � f 2*(0) � 120 � 0 � 120.

The similar calculations for x1 � 2, 3, 4 (try it) verify that x1* � 1 with f 1*(5) � 170, as
shown in the following table:
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State:

2 3

0

1

0 0

0

50 50
0

0 0

20

70 70

95

80

0

(x
2  

�
 3

)
*

(x 1  �
 1)

*

(x 3  �
 1)

*
50

70

2

80

100

100

5

130

130

4

5

45

170 160

125

110

75

45

5

2

3 3

1

0

Stage: 1

4

■ FIGURE 11.6
Graphical display of the
dynamic programming
solution of the World Health
Council problem. An arrow
from state sn to state sn�1
indicates that an optimal
policy decision from state sn
is to allocate (sn � sn�1)
medical teams to country n.
Allocating the medical teams
in this way when following
the boldfaced arrows from
the initial state to the final
state gives the optimal
solution.

Thus, the optimal solution has x1* � 1, which makes s2 � 5 � 1 � 4, so x2* � 3, which
makes s3 � 4 � 3 � 1, so x3* � 1. Since f 1*(5) � 170, this (1, 3, 1) allocation of medical
teams to the three countries will yield an estimated total of 170,000 additional person-
years of life, which is at least 5,000 more than for any other allocation.

These results of the dynamic programming analysis also are summarized in Fig. 11.6.

A Prevalent Problem Type—The Distribution of Effort Problem

The preceding example illustrates a particularly common type of dynamic programming
problem called the distribution of effort problem. For this type of problem, there is just
one kind of resource that is to be allocated to a number of activities. The objective is to
determine how to distribute the effort (the resource) among the activities most effectively.
For the World Health Council example, the resource involved is the medical teams, and
the three activities are the health care work in the three countries.

Assumptions. This interpretation of allocating resources to activities should ring a bell
for you, because it is the typical interpretation for linear programming problems given at
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the beginning of Chap. 3. However, there also are some key differences between the distri-
bution of effort problem and linear programming that help illuminate the general distinctions
between dynamic programming and other areas of mathematical programming.

One key difference is that the distribution of effort problem involves only one re-
source (one functional constraint), whereas linear programming can deal with thousands
of resources. (In principle, dynamic programming can handle slightly more than one re-
source, but it quickly becomes very inefficient when the number of resources is increased
because a separate state variable is required for each of the resources. This is referred to
as the “curse of dimensionality.”)

On the other hand, the distribution of effort problem is far more general than linear
programming in other ways. Consider the four assumptions of linear programming pre-
sented in Sec. 3.3: proportionality, additivity, divisibility, and certainty. Proportionality is
routinely violated by nearly all dynamic programming problems, including distribution of
effort problems (e.g., Table 11.1 violates proportionality). Divisibility also is often vio-
lated, as in Example 2, where the decision variables must be integers. In fact, dynamic
programming calculations become more complex when divisibility does hold (as in 
Example 4). Although we shall consider the distribution of effort problem only under the
assumption of certainty, this is not necessary, and many other dynamic programming 
problems violate this assumption as well (as described in Sec. 11.4).

Of the four assumptions of linear programming, the only one needed by the distribution
of effort problem (or other dynamic programming problems) is additivity (or its analog for
functions involving a product of terms). This assumption is needed to satisfy the principle
of optimality for dynamic programming (characteristic 5 in Sec. 11.2).

Formulation. Because they always involve allocating one kind of resource to a num-
ber of activities, distribution of effort problems always have the following dynamic pro-
gramming formulation (where the ordering of the activities is arbitrary):

Stage n � activity n (n � 1, 2, . . . , N ).
xn � amount of resource allocated to activity n.

State sn � amount of resource still available for allocation to remaining activities
(n, . . . , N ).

The reason for defining state sn in this way is that the amount of the resource still avail-
able for allocation is precisely the information about the current state of affairs (entering
stage n) that is needed for making the allocation decisions for the remaining activities.

When the system starts at stage n in state sn, the choice of xn results in the next state
at stage n � 1 being sn�1 � sn � xn, as depicted below:5

Note how the structure of this diagram corresponds to the one shown in Fig. 11.5 for the
World Health Council example of a distribution of effort problem. What will differ from
one such example to the next is the rest of what is shown in Fig. 11.5, namely, the rela-
tionship between fn(sn, xn) and f *n�1(sn � xn), and then the resulting recursive relationship
between the f n* and f *n�1 functions. These relationships depend on the particular objective
function for the overall problem.

sn sn � xn
xn

n � 1n

State:

Stage:

5This statement assumes that xn and sn are expressed in the same units. If it is more convenient to define xn as
some other quantity such that the amount of the resource allocated to activity n is anxn, then sn�1 � sn � anxn.
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EXAMPLE 3 Distributing Scientists to Research Teams

A government space project is conducting research on a certain engineering problem that
must be solved before people can fly safely to Mars. Three research teams are currently
trying three different approaches for solving this problem. The estimate has been made
that, under present circumstances, the probability that the respective teams—call them
1, 2, and 3—will not succeed is 0.40, 0.60, and 0.80, respectively. Thus, the current prob-
ability that all three teams will fail is (0.40)(0.60)(0.80) � 0.192. Because the objective
is to minimize the probability of failure, two more top scientists have been assigned to
the project.

Table 11.2 gives the estimated probability that the respective teams will fail when 0, 1,
or 2 additional scientists are added to that team. Only integer numbers of scientists are
considered because each new scientist will need to devote full attention to one team. The
problem is to determine how to allocate the two additional scientists to minimize the prob-
ability that all three teams will fail.

Formulation. Because both Examples 2 and 3 are distribution of effort problems, their
underlying structure is actually very similar. In this case, scientists replace medical teams
as the kind of resource involved, and research teams replace countries as the activities.
Therefore, instead of medical teams being allocated to countries, scientists are being al-
located to research teams. The only basic difference between the two problems is in their
objective functions.

With so few scientists and teams involved, this problem could be solved very easily
by a process of exhaustive enumeration. However, the dynamic programming solution is
presented for illustrative purposes.

In this case, stage n (n � 1, 2, 3) corresponds to research team n, and the state sn is the
number of new scientists still available for allocation to the remaining teams. The decision
variables xn (n � 1, 2, 3) are the number of additional scientists allocated to team n.

Let pi(xi) denote the probability of failure for team i if it is assigned xi additional sci-
entists, as given by Table 11.2. If we let � denote multiplication, the government’s ob-
jective is to choose x1, x2, x3 so as to

Minimize �
3

i�1
pi(xi) � p1(x1)p2(x2)p3(x3),

■ TABLE 11.2 Data for the Government Space Project problem

Probability of Failure

Team
New

Scientists 1 2 3

0 0.40 0.60 0.80
1 0.20 0.40 0.50
2 0.15 0.20 0.30

The structure of the next example is similar to the one for the World Health Council
because it, too, is a distribution of effort problem. However, its recursive relationship dif-
fers in that its objective is to minimize a product of terms for the respective stages.

At first glance, this example may appear not to be a deterministic dynamic program-
ming problem because probabilities are involved. However, it does indeed fit our definition
because the state at the next stage is completely determined by the state and policy decision
at the current stage.
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subject to

�
3

i�1
xi � 2

and

xi are nonnegative integers.

Consequently, fn(sn, xn) for this problem is

fn(sn, xn) � pn(xn) � min �
3

i�n�1
pi(xi),

where the minimum is taken over xn�1, . . . , x3 such that

�
3

i�n

xi � sn

and

xi are nonnegative integers,

for n � 1, 2, 3. Thus,

f n*(sn) � min fn(sn, xn),
xn�0,1, . . . , sn

where

fn(sn, xn) � pn(xn) � f *n�1(sn � xn)

(with f 4* defined to be 1). Figure 11.7 summarizes these basic relationships.
Thus, the recursive relationship relating the f 1*, f 2*, and f 3* functions in this case is

f n*(sn) � min {pn(xn) � f *n�1(sn � xn)}, for n � 1, 2,
xn�0,1, . . . , sn

and, when n � 3,

f 3*(s3) � min p3(x3).
x3 � 0,1, . . . , s3

Solution Procedure. The resulting dynamic programming calculations are as follows:

n � 3: s3 f 3*(s3) x3*

0 0.80 0
1 0.50 1
2 0.30 2

sn sn � xn

Stage
n � 1

Stage
n

State:

Value: fn(sn, xn) pn(xn) f*n�1(sn � xn)

xn

� pn(xn) � f*n�1(sn � xn)

■ FIGURE 11.7
The basic structure for the
government space project
problem.
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f1(s1, x1) � p1(x1) � f 2*(s1 � x1)
x1

n � 1: s1 0 1 2 f 1*(s1) x1*

2 0.064 0.060 0.072 0.060 1

Therefore, the optimal solution must have x1* � 1, which makes s2 � 2 � 1 � 1, so that
x2* � 0, which makes s3 � 1 � 0 � 1, so that x3* � 1. Thus, teams 1 and 3 should each
receive one additional scientist. The new probability that all three teams will fail would
then be 0.060.

All the examples thus far have had a discrete state variable sn at each stage. Further-
more, they all have been reversible in the sense that the solution procedure actually could
have moved either backward or forward stage by stage. (The latter alternative amounts to
renumbering the stages in reverse order and then applying the procedure in the standard
way.) This reversibility is a general characteristic of distribution of effort problems such
as Examples 2 and 3, since the activities (stages) can be ordered in any desired manner.

The next example is different in both respects. Rather than being restricted to integer
values, its state variable sn at stage n is a continuous variable that can take on any value over
certain intervals. Since sn now has an infinite number of values, it is no longer possible to
consider each of its feasible values individually. Rather, the solution for f n*(sn) and xn* must
be expressed as functions of sn. Furthermore, this example is not reversible because its stages
correspond to time periods, so the solution procedure must proceed backward.

Before proceeding directly to the rather involved example presented next, you might
find it helpful at this point to look at the two additional examples of deterministic dynamic
programming presented in the Solved Examples section of the book’s website. The first one
involves production and inventory planning over a number of time periods. Like the exam-
ples thus far, both the state variable and the decision variable at each stage are discrete. How-
ever, this example is not reversible since the stages correspond to time periods. It also is not
a distribution of effort problem. The second example is a nonlinear programming problem
with two variables and a single constraint. Therefore, even though it is reversible, its state
and decision variables are continuous. However, in contrast to the following example (which
has four continuous variables and thus four stages), it has only two stages, so it can be solved
relatively quickly with dynamic programming and a bit of calculus.

f2(s2, x2) � p2(x2) � f 3*(s2 � x2)
x2

n � 2: s2 0 1 2 f 2*(s2) x2*

0 0.48 0.48 0
1 0.30 0.32 0.30 0
2 0.18 0.20 0.16 0.16 2

EXAMPLE 4 Scheduling Employment Levels

The workload for the LOCAL JOB SHOP is subject to considerable seasonal fluctuation.
However, machine operators are difficult to hire and costly to train, so the manager is re-
luctant to lay off workers during the slack seasons. He is likewise reluctant to maintain
his peak season payroll when it is not required. Furthermore, he is definitely opposed to
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overtime work on a regular basis. Since all work is done to custom orders, it is not pos-
sible to build up inventories during slack seasons. Therefore, the manager is in a dilemma
as to what his policy should be regarding employment levels.

The following estimates are given for the minimum employment requirements dur-
ing the four seasons of the year for the foreseeable future:

Employment will not be permitted to fall below these levels. Any employment above these
levels is wasted at an approximate cost of $2,000 per person per season. It is estimated
that the hiring and firing costs are such that the total cost of changing the level of em-
ployment from one season to the next is $200 times the square of the difference in em-
ployment levels. Fractional levels of employment are possible because of a few part-time
employees, and the cost data also apply on a fractional basis.

Formulation. On the basis of the data available, it is not worthwhile to have the em-
ployment level go above the peak season requirements of 255. Therefore, spring em-
ployment should be at 255, and the problem is reduced to finding the employment level
for the other three seasons.

For a dynamic programming formulation, the seasons should be the stages. There are
actually an indefinite number of stages because the problem extends into the indefinite
future. However, each year begins an identical cycle, and because spring employment is
known, it is possible to consider only one cycle of four seasons ending with the spring
season, as summarized below:

Stage 1 � summer,
Stage 2 � autumn,
Stage 3 � winter,
Stage 4 � spring.

xn � employment level for stage n (n � 1, 2, 3, 4).
(x4 � 255).

It is necessary that the spring season be the last stage because the optimal value of
the decision variable for each state at the last stage must be either known or obtainable
without considering other stages. For every other season, the solution for the optimal em-
ployment level must consider the effect on costs in the following season.

Let

rn � minimum employment requirement for stage n,

where these requirements were given earlier as r1 � 220, r2 � 240, r3 � 200, and 
r4 � 255. Thus, the only feasible values for xn are

rn � xn � 255.

Referring to the cost data given in the problem statement, we have

Cost for stage n � 200(xn � xn�1)2 � 2,000(xn � rn).

Note that the cost at the current stage depends upon only the current decision xn and
the employment in the preceding season xn�1. Thus, the preceding employment level is
all the information about the current state of affairs that we need to determine the opti-
mal policy henceforth. Therefore, the state sn for stage n is

State sn � xn�1.

Season Spring Summer Autumn Winter Spring

Requirements 255 220 240 200 255
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■ TABLE 11.3 Data for the Local Job Shop problem

n rn Feasible xn Possible sn � xn�1 Cost

1 220 220 � x1 � 255 s1 � 255 200(x1 � 255)2 � 2,000(x1 � 220)
2 240 240 � x2 � 255 220 � s2 � 255 200(x2 � x1)2 � 2,000(x2 � 240)
3 200 200 � x3 � 255 240 � s3 � 255 200(x3 � x2)2 � 2,000(x3 � 200)
4 255 x4 � 255 200 � s4 � 255 200(255 � x3)2

Stage
n

snState:

Stage
n � 1

Value: fn(sn, xn)
� sum

200(xn � sn)2 � 2,000(xn � rn) f*n�1(xn)

xn
xn

■ FIGURE 11.8
The basic structure for the
Local Job Shop problem.

When n � 1, s1 � x0 � x4 � 255.
For your ease of reference while working through the problem, a summary of the data

is given in Table 11.3 for each of the four stages.
The objective for the problem is to choose x1, x2, x3 (with x0 � x4 � 255) so as to

Minimize �
4

i�1
[200(xi � xi�1)2 � 2,000(xi � ri)],

subject to

ri � xi � 255, for i � 1, 2, 3, 4.

Thus, for stage n onward (n � 1, 2, 3, 4), since sn � xn�1

fn(sn, xn) � 200(xn � sn)2 � 2,000(xn � rn)

� min �
4

i�n�1
[200(xi � xi�1)2 � 2,000(xi � ri)],

ri�xi�255

where this summation equals zero when n � 4 (because it has no terms). Also,

f n*(sn) � min fn(sn, xn).
rn�xn�255

Hence,

fn(sn, xn) � 200(xn � sn)2 � 2,000(xn � rn) � f *n�1(xn)

(with f5* defined to be zero because costs after stage 4 are irrelevant to the analysis). A
summary of these basic relationships is given in Fig. 11.8.

Consequently, the recursive relationship relating the f n* functions is

f n*(sn) � min {200(xn � sn)2 � 2,000(xn � rn) � f *n�1(xn)}.
rn�xn�255

The dynamic programming approach uses this relationship to identify successively
these functions—f 4*(s4), f 3*(s3), f 2*(s2), f 1*(255)—and the corresponding minimizing xn.

hil23453_ch11_438-473.qxd  1/21/70  12:55 PM  Page 458 Final PDF to printer



11.3 DETERMINISTIC DYNAMIC PROGRAMMING 459

Solution Procedure. Stage 4: Beginning at the last stage (n � 4), we already know
that x4* � 255, so the necessary results are

Stage 3: For the problem consisting of just the last two stages (n � 3), the recursive
relationship reduces to

f 3*(s3) � min {200(x3 � s3)2 � 2,000(x3 � 200) � f 4*(x3)}
200�x3�255

� min {200(x3 � s3)2 � 2,000(x3 � 200) � 200(255 � x3)2},
200�x3�255

where the possible values of s3 are 240 � s3 � 255.
One way to solve for the value of x3 that minimizes f3(s3, x3) for any particular value

of s3 is the graphical approach illustrated in Fig. 11.9.
However, a faster way is to use calculus. We want to solve for the minimizing x3 in

terms of s3 by considering s3 to have some fixed (but unknown) value. Therefore, set the
first (partial) derivative of f3(s3, x3) with respect to x3 equal to zero:

�
	
	
x3
� f3(s3, x3) � 400(x3 � s3) � 2,000 � 400(255 � x3)

� 400(2x3 � s3 � 250)

� 0,

which yields

x3* � �
s3 �

2
250
�.

Because the second derivative is positive, and because this solution lies in the feasible in-
terval for x3 (200 � x3 � 255) for all possible s3 (240 � s3 � 255), it is indeed the de-
sired minimum.

n � 4: s4 f 4*(s4) x4*

200 � s4 � 255 200(255 � s4)2 255

200 s3 s3 � 250
2

255 x3

2,000(x3 � 200)

200(x3 � s3)2

200(255 � x3)2
Sum � f3(s3, x3)

f *
3(s3)

■ FIGURE 11.9
Graphical solution for f 3*(s3)
for the Local Job Shop
problem.
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n � 3: s3 f 3*(s3) x3*

240 � s3 � 255 50(250 � s3)2 � 50(260 � s3)2 � 1,000(s3 � 150)
s3 � 250
��

2

Note a key difference between the nature of this solution and those obtained for the
preceding examples where there were only a few possible states to consider. We now have
an infinite number of possible states (240 � s3 � 255), so it is no longer feasible to solve
separately for x3* for each possible value of s3. Therefore, we instead have solved for x3*
as a function of the unknown s3.

Using

f 3*(s3) � f3(s3, x3*) � 200��s3 �
2

250
� � s3�

2

� 200�255 � �
s3 �

2
250
��

2

� 2,000��s3 �
2

250
� � 200�

and reducing this expression algebraically complete the required results for the third-stage
problem, summarized as follows:

Stage 2: The second-stage (n � 2) and first-stage problems (n � 1) are solved in a
similar fashion. Thus, for n � 2,

f2(s2, x2) � 200(x2 � s2)2 � 2,000(x2 � r2) � f 3*(x2)
� 200(x2 � s2)2 � 2,000(x2 � 240)

� 50(250 � x2)2 � 50(260 � x2)2 � 1,000(x2 � 150).

The possible values of s2 are 220 � s2 � 255, and the feasible region for x2 is 240 �
x2 � 255. The problem is to find the minimizing value of x2 in this region, so that

f 2*(s2) � min f2(s2, x2).
240�x2�255

Setting to zero the partial derivative with respect to x2:

�
	
	
x2
� f2(s2, x2) � 400(x2 � s2) � 2,000 � 100(250 � x2) � 100(260 � x2) � 1,000

� 200(3x2 � 2s2 � 240)

� 0

yields

x2 � �
2s2 �

3
240

�.

Because

f2(s2, x2) � 600 
 0,

this value of x2 is the desired minimizing value if it is feasible (240 � x2 � 255). Over
the possible s2 values (220 � s2 � 255), this solution actually is feasible only if 240 �
s2 � 255.

Therefore, we still need to solve for the feasible value of x2 that minimizes f2(s2, x2)
when 220 � s2 � 240. The key to analyzing the behavior of f2(s2, x2) over the feasible
region for x2 again is the partial derivative of f2(s2, x2). When s2 � 240,

	2

�
	x2

2
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f2(s2, x2) 
 0, for 240 � x2 � 255,

so that x2 � 240 is the desired minimizing value.
The next step is to plug these values of x2 into f2(s2, x2) to obtain f 2*(s2) for s2 � 240

and s2 � 240. This yields

Stage 1: For the first-stage problem (n � 1),

f1(s1, x1) � 200(x1 � s1)2 � 2,000(x1 � r1) � f 2*(x1).

Because r1 � 220, the feasible region for x1 is 220 � x1 � 255. The expression for f 2*(x1)
will differ in the two portions 220 � x1 � 240 and 240 � x1 � 255 of this region. 
Therefore,

	
�
	x2

n � 2: s2 f 2*(s2) x2*

220 � s2 � 240 200(240 � s2)2 � 115,000 240

240 � s2 � 255 �
20

9
0

� [(240 � s2)2 � (255 � s2)2 �
2s2 �

3
240
�

� (270 � s2)2] � 2,000(s2 � 195) 

200(x1 � s1)2 � 2,000(x1 � 220) � 200(240 � x1)2 � 115,000,
if 220 � x1 � 240

f1(s1, x1) � �200(x1 � s1)2 � 2,000(x1 � 220) � [(240 � x1)2 � (255 � x1)2 � (270 � x1)2]

� 2,000(x1 � 195), if 240 � x1 � 255.

200
�

9

Considering first the case where 220 � x1 � 240, we have

�
	
	
x1
� f1(s1, x1) � 400(x1 � s1) � 2,000 � 400(240 � x1)

� 400(2x1 � s1 � 235).

It is known that s1 � 255 (spring employment), so that

�
	
	
x1
� f1(s1, x1) � 800(x1 � 245) � 0

for all x1 � 240. Therefore, x1 � 240 is the minimizing value of f1(s1, x1) over the region
220 � x1 � 240.

When 240 � x1 � 255,

�
	
	
x1
� f1(s1, x1) � 400(x1 � s1) � 2,000

� �
40
9
0

�[(240 � x1) � (255 � x1) � (270 � x1)] � 2,000

� �
40
3
0

� (4x1 � 3s1 � 225).

Because

�
	
	
x

2

1
2� f1(s1, x1) 
 0 for all x1,
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n � 1: s1 f 1*(s1) x1*

255 185,000 247.5  

set

�
	
	
x1
� f1(s1, x1) � 0,

which yields

x1 � �
3s1 �

4
225

�.

Because s1 � 255, it follows that x1 � 247.5 minimizes f1(s1, x1) over the region 
240 � x1 � 255.

Note that this region (240 � x1 � 255) includes x1 � 240, so that f1(s1, 240) 

f1(s1, 247.5). In the next-to-last paragraph, we found that x1 � 240 minimizes f1(s1, x1)
over the region 220 � x1 � 240. Consequently, we now can conclude that x1 � 247.5 also
minimizes f1(s1, x1) over the entire feasible region 220 � x1 � 255.

Our final calculation is to find f 1*(s1) for s1 � 255 by plugging x1 � 247.5 into the
expression for f1(255, x1) that holds for 240 � x1 � 255. Hence,

f 1*(255) � 200(247.5 � 255)2 � 2,000(247.5 � 220)

� �
20
9
0

� [2(250 � 247.5)2 � (265 � 247.5)2 � 30(742.5 � 575)]

� 185,000.

These results are summarized as follows:

Therefore, by tracing back through the tables for n � 2, n � 3, and n � 4, respec-
tively, and setting sn � x*n�1 each time, the resulting optimal solution is x1* � 247.5,
x2* � 245, x3* � 247.5, x4* � 255, with a total estimated cost per cycle of $185,000.

You now have seen a variety of applications of dynamic programming, with more to
come in the next section. However, these examples only scratch the surface. For exam-
ple, Chapter 2 of Selected Reference 2 describes 47 types of problems to which dynamic
programming can be applied. (This reference also presents a software tool that can be
used to solve all these problem types.) The one common theme that runs through all these
applications of dynamic programming is the need to make a series of interrelated deci-
sions and the efficient way dynamic programming provides for finding an optimal com-
bination of decisions.

Probabilistic dynamic programming differs from deterministic dynamic programming in
that the state at the next stage is not completely determined by the state and policy deci-
sion at the current stage. Rather, there is a probability distribution for what the next state
will be. However, this probability distribution still is completely determined by the state

■ 11.4 PROBABILISTIC DYNAMIC PROGRAMMING
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Stage n Stage n � 1

State:

Probability Contribution
from stage n

Decision 
xn

p1

p2

pS

C1

C2

CS

f*n�1(1)

f*n�1(2)

f*n�1(S)

1

2

�
�
�

�
�
�

S

sn

fn(sn, xn)

■ FIGURE 11.10
The basic structure for
probabilistic dynamic
programming.

and policy decision at the current stage. The resulting basic structure for probabilistic dy-
namic programming is described diagrammatically in Fig. 11.10.

For the purposes of this diagram, we let S denote the number of possible states at
stage n � 1 and label these states on the right side as 1, 2, . . . , S. The system goes to
state i with probability pi (i � 1, 2, . . . , S) given state sn and decision xn at stage n. If
the system goes to state i, Ci is the contribution of stage n to the objective function.

When Fig. 11.10 is expanded to include all the possible states and decisions at all the
stages, it is sometimes referred to as a decision tree. If the decision tree is not too large,
it provides a useful way of summarizing the various possibilities.

Because of the probabilistic structure, the relationship between fn(sn, xn) and
the f *n�1(sn�1) necessarily is somewhat more complicated than that for deterministic dy-
namic programming. The precise form of this relationship will depend upon the form of
the overall objective function.

To illustrate, suppose that the objective is to minimize the expected sum of the con-
tributions from the individual stages. In this case, fn(sn, xn) represents the minimum ex-
pected sum from stage n onward, given that the state and policy decision at stage n are
sn and xn, respectively. Consequently,

fn(sn, xn) � �
S

i�1
pi[Ci � f *n�1(i)],

with

f *n�1(i) � min fn�1(i, xn�1),
xn�1

where this minimization is taken over the feasible values of xn�1.
Example 5 has this same form. Example 6 will illustrate another form.

EXAMPLE 5 Determining Reject Allowances

The HIT-AND-MISS MANUFACTURING COMPANY has received an order to supply
one item of a particular type. However, the customer has specified such stringent quality
requirements that the manufacturer may have to produce more than one item to obtain an
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item that is acceptable. The number of extra items produced in a production run is called
the reject allowance. Including a reject allowance is common practice when producing
for a custom order, and it seems advisable in this case.

The manufacturer estimates that each item of this type that is produced will be ac-
ceptable with probability �

1
2

� and defective (without possibility for rework) with probability �
1
2

�.
Thus, the number of acceptable items produced in a lot of size L will have a binomial dis-
tribution; i.e., the probability of producing no acceptable items in such a lot is (�

1
2

�)L.
Marginal production costs for this product are estimated to be $100 per item (even if

defective), and excess items are worthless. In addition, a setup cost of $300 must be in-
curred whenever the production process is set up for this product, and a completely new
setup at this same cost is required for each subsequent production run if a lengthy in-
spection procedure reveals that a completed lot has not yielded an acceptable item. The
manufacturer has time to make no more than three production runs. If an acceptable item
has not been obtained by the end of the third production run, the cost to the manufacturer
in lost sales income and penalty costs will be $1,600.

The objective is to determine the policy regarding the lot size (1 � reject allowance)
for the required production run(s) that minimizes total expected cost for the manufacturer.

Formulation. A dynamic programming formulation for this problem is

Stage n � production run n (n � 1, 2, 3),
xn � lot size for stage n,

State sn � number of acceptable items still needed (1 or 0) at beginning of stage n.

Thus, at stage 1, state s1 � 1. If at least one acceptable item is obtained subsequently, the
state changes to sn � 0, after which no additional costs need to be incurred.

Because of the stated objective for the problem,

fn(sn, xn) � total expected cost for stages n, . . . , 3 if system starts in state sn at stage
n, immediate decision is xn, and optimal decisions are made thereafter,

f n*(sn) � min fn(sn, xn),
xn�0, 1, . . .

where f n*(0) � 0. Using $100 as the unit of money, the contribution to cost from stage n
is [K(xn) � xn] regardless of the next state, where K(xn) is a function of xn such that

K(xn) � �
Therefore, for sn � 1,

fn(1, xn) � K(xn) � xn � ��
1
2

��
xn

f *n�1(1) � �1 � ��
1
2

��
xn� f *n�1(0)

� K(xn) � xn � ��
1
2

��
xn

f *n�1(1)

[where f 4*(1) is defined to be 16, the terminal cost if no acceptable items have been ob-
tained]. A summary of these basic relationships is given in Fig. 11.11.

Consequently, the recursive relationship for the dynamic programming calculations is

f n*(1) � min �K(xn) � xn � ��
1
2

��
xn

f *n�1(1)�xn�0, 1, . . . 

for n � 1, 2, 3.

if xn � 0
if xn 
 0.

0,
3,
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Solution Procedure. The calculations using this recursive relationship are summa-
rized as follows:

f2(1, x2) � K(x2) � x2 � ��
1
2

��
x2

f 3*(1)

x2

n � 2: s2 0 1 2 3 4 f 2*(s2) x2*

0 0 0 0

1 8 8 7 7 7�
1
2

� 7 2 or 3

f3(1, x3) � K(x3) � x3 � 16��
1
2

��
x3

x3

n � 3: s3 0 1 2 3 4 5 f 3*(s3) x3*

0 0 0 0

1 16 12 9 8 8 8�
1
2

� 8 3 or 4

f1(1, x1) � K(x1) � x1 � ��
1
2

��
x

1
f 2*(1)

x1

n � 1: s1 0 1 2 3 4 f 1*(s1) x1*

1 7 7�
1
2

� 6�
3
4

� 6�
7
8

� 7�
1
7
6
� 6�

3
4

� 2

Thus, the optimal policy is to produce two items on the first production run; if none
is acceptable, then produce either two or three items on the second production run; if none
is acceptable, then produce either three or four items on the third production run. The to-
tal expected cost for this policy is $675.

State:

Probability Contribution
from stage n

Decision 
1 xn

f*n�1(0) � 0

f*n�1(1)

Value: fn(1, xn)
�  K(   )�xn�       f*n�1(1)

0

1

1 � (  )xn1
2

(  )1
2

xn

(  )1
2

xn

xn(  )  1
2

K(   )�xn xn

     

K(   )�xn  xn

     

 xn
■ FIGURE 11.11
The basic structure for the
Hit-and-Miss Manufacturing
Co. problem.
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EXAMPLE 6 Winning in Las Vegas

An enterprising young statistician believes that she has developed a system for winning
a popular Las Vegas game. Her colleagues do not believe that her system works, so they
have made a large bet with her that if she starts with three chips, she will not have at least
five chips after three plays of the game. Each play of the game involves betting any de-
sired number of available chips and then either winning or losing this number of chips.
The statistician believes that her system will give her a probability of �

2
3

� of winning a given
play of the game.

Assuming the statistician is correct, we now use dynamic programming to determine
her optimal policy regarding how many chips to bet (if any) at each of the three plays of
the game. The decision at each play should take into account the results of earlier plays.
The objective is to maximize the probability of winning her bet with her colleagues.

Formulation. The dynamic programming formulation for this problem is

Stage n � nth play of game (n � 1, 2, 3),
xn � number of chips to bet at stage n,

State sn � number of chips in hand to begin stage n.

This definition of the state is chosen because it provides the needed information about the
current situation for making an optimal decision on how many chips to bet next.

Because the objective is to maximize the probability that the statistician will win her
bet, the objective function to be maximized at each stage must be the probability of fin-
ishing the three plays with at least five chips. (Note that the value of ending with more
than five chips is just the same as ending with exactly five, since the bet is won either
way.) Therefore,

fn(sn, xn) � probability of finishing three plays with at least five chips, given that
the statistician starts stage n in state sn, makes immediate decision xn,
and makes optimal decisions thereafter,

f n*(sn) � max fn(sn, xn).
xn�0, 1, . . . , sn

The expression for fn(sn, xn) must reflect the fact that it may still be possible to ac-
cumulate five chips eventually even if the statistician should lose the next play. If she
loses, the state at the next stage will be sn � xn, and the probability of finishing with at
least five chips will then be f *n�1(sn � xn). If she wins the next play instead, the state will
become sn � xn, and the corresponding probability will be f *n�1(sn � xn). Because the as-
sumed probability of winning a given play is �

2
3

�, it now follows that

fn(sn, xn) � �
1
3

� f *n�1(sn � xn) � �
2
3

� f *n�1(sn � xn)

[where f 4*(s4) is defined to be 0 for s4 � 5 and 1 for s4 � 5]. Thus, there is no direct con-
tribution to the objective function from stage n other than the effect of then being in the
next state. These basic relationships are summarized in Fig. 11.12.

Therefore, the recursive relationship for this problem is

f n*(sn) � max ��
1
3

� f *n�1(sn � xn) � �
2
3

� f *n�1(sn � xn)�,
xn�0, 1, . . . , sn

for n � 1, 2, 3, with f 4*(s4) as just defined.
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n � 3: s3 f 3*(s3) x3*

�0 0 —
�1 0 —
�2 0 —

�3 �
2
3

� 2 (or more)

�4 �
2
3

� 1 (or more)

�5 1 0 (or � s3 � 5)

f2(s2, x2) � �
1
3

�f 3*(s2 � x2) � �
2
3

�f 3*(s2 � x2)

x2

n � 2: s2 0 1 2 3 4 f 2*(s2) x2*

�0 0 0 —
�1 0 0 0 —

�2 0 �
4
9

� �
4
9

� �
4
9

� 1 or 2

�3 �
2
3

� �
4
9

� �
2
3

� �
2
3

� �
2
3

� 0, 2, or 3

�4 �
2
3

� �
8
9

� �
2
3

� �
2
3

� �
2
3

� �
8
9

� 1

�5 1 1 0 (or � s2 � 5)

State:

Probability Contribution
from stage n

Decision 
sn xn

f*n�1(sn � xn)

f*n�1(sn � xn)

Value: fn(sn, xn)

�    f*n�1(sn � xn) � sn � xn

sn � xn

0

0
f*n�1(sn � xn)2

3
1
3

1
3

2
3

Stage n Stage n � 1

■ FIGURE 11.12
The basic structure for the
Las Vegas problem.

Solution Procedure. This recursive relationship leads to the following computational
results:

f1(s1, x1) � �
1
3

�f 2*(s1 � x1) � �
2
3

�f 2*(s1 � x1)

x1

n � 1: s1 0 1 2 3 f 1*(s1) x1*

3 �
2
3

� �
2
2
0
7
� �

2
3

� �
2
3

� �
2
2

0
7
� 1
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Therefore, the optimal policy is

if win, x2* � 1 �
x1* � 1

if lose, x2* � 1 or 2 �
This policy gives the statistician a probability of �

2
2
0
7
� of winning her bet with her colleagues.

if win,

if lose, bet is lost

x3* � 0
x3* � 2 or 3.

if win,
if lose,

x3* � ��
468 CHAPTER 11 DYNAMIC PROGRAMMING

Dynamic programming is a very useful technique for making a sequence of interrelated
decisions. It requires formulating an appropriate recursive relationship for each individ-
ual problem. However, it provides a great computational savings over using exhaustive
enumeration to find the best combination of decisions, especially for large problems. For
example, if a problem has 10 stages with 10 states and 10 possible decisions at each
stage, then exhaustive enumeration must consider up to 10 billion combinations, whereas
dynamic programming need make no more than a thousand calculations (10 for each
state at each stage).

This chapter has considered only dynamic programming with a finite number of stages.
Chapter 19 is devoted to a general kind of model for probabilistic dynamic programming
where the stages continue to recur indefinitely, namely, Markov decision processes.

■ 11.5 CONCLUSIONS
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1. Denardo, E. V.: Dynamic Programming: Models and Applications, Dover Publications, Mineola,
NY, 2003.

2. Lew, A., and H. Mauch: Dynamic Programming: A Computational Tool, Springer, New York, 2007.
3. Sniedovich, M.: Dynamic Programming: Foundations and Principles, Taylor & Francis, New
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Solved Examples:

Examples for Chapter 11

“Ch. 11—Dynamic Programming” LINGO File

Glossary for Chapter 11

See Appendix 1 for documentation of the software.

2 or 3 (for x2* � 1)
1, 2, 3, or 4 (for x2* � 2)
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(a) Use dynamic programming to solve this problem. Instead of
using the usual tables, show your work graphically by con-
structing and filling in a network such as the one shown for
Prob. 11.2-1. Proceed as in Prob. 11.2-1b by solving for
f n*(sn) for each node (except the terminal node) and writing
its value by the node. Draw an arrowhead to show the opti-
mal link (or links in case of a tie) to take out of each node.
Finally, identify the resulting optimal path (or paths)
through the network and the corresponding optimal solution
(or solutions).

(b) Use dynamic programming to solve this problem by con-
structing the usual tables for n � 3, n � 2, and n � 1.

11.2-3. Consider the following project network (as described in
Sec. 10.8), where the number over each node is the time required
for the corresponding activity. Consider the problem of finding the
longest path (the largest total time) through this network from start
to finish, since the longest path is the critical path.

Region

Salespersons 1 2 3

1 35 21 28
2 48 42 41
3 70 56 63
4 89 70 75

(a) What are the stages and states for the dynamic programming
formulation of this problem?

(b) Use dynamic programming to solve this problem. However,
instead of using the usual tables, show your work graphically
(similar to Fig. 11.2). In particular, start with the given net-
work, where the answers already are given for f n*(sn) for four
of the nodes; then solve for and fill in f 2*(B) and f 1*(O). Draw
an arrowhead that shows the optimal link to traverse out of
each of the latter two nodes. Finally, identify the optimal path
by following the arrows from node O onward to node T.

(c) Use dynamic programming to solve this problem by manually
constructing the usual tables for n � 3, n � 2, and n � 1.

(d) Use the shortest-path algorithm presented in Sec. 9.3 to solve
this problem. Compare and contrast this approach with the one
in parts (b) and (c).

11.2-2. The sales manager for a publisher of college textbooks has
six traveling salespeople to assign to three different regions of the
country. She has decided that each region should be assigned at
least one salesperson and that each individual salesperson should
be restricted to one of the regions, but now she wants to determine
how many salespeople should be assigned to the respective regions
in order to maximize sales.

The next table gives the estimated increase in sales (in ap-
propriate units) in each region if it were allocated various numbers
of salespeople:

■ PROBLEMS
An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

11.2-1. Consider the following network, where each number along
a link represents the actual distance between the pair of nodes con-
nected by that link. The objective is to find the shortest path from
the origin to the destination.

(origin) (destination)B

C

A

D

E

T

9

6O

7

5

7

8

6

6

7

f *
3(D) � 6

f *
3(E) � 7

f *
2(C) � 13

f *
2(A) � 11

B E

D

C
A

0

3

START
FINISH

3 2
7

4
6

0

4

1

4
5

2

5

I
L

K

J

H

G

F

(a) What are the stages and states for the dynamic programming
formulation of this problem?

(b) Use dynamic programming to solve this problem. However,
instead of using the usual tables, show your work graphically.
In particular, fill in the values of the various f n*(sn) under the
corresponding nodes, and show the resulting optimal arc to
traverse out of each node by drawing an arrowhead near the
beginning of the arc. Then identify the optimal path (the
longest path) by following these arrowheads from the Start
node to the Finish node. If there is more than one optimal
path, identify them all.

(c) Use dynamic programming to solve this problem by con-
structing the usual tables for n � 4, n � 3, n � 2, and 
n � 1.

11.2-4. Consider the following statements about solving dynamic
programming problems. Label each statement as true or false, and
then justify your answer by referring to specific statements in the
chapter.
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Store

Crates 1 2 3

0 0 0 0
1 5 6 4
2 9 11 9
3 14 15 13
4 17 19 18
5 21 22 20

(a) The solution procedure uses a recursive relationship that en-
ables solving for the optimal policy for stage (n � 1) given the
optimal policy for stage n.

(b) After completing the solution procedure, if a nonoptimal deci-
sion is made by mistake at some stage, the solution procedure
will need to be reapplied to determine the new optimal deci-
sions (given this nonoptimal decision) at the subsequent
stages.

(c) Once an optimal policy has been found for the overall prob-
lem, the information needed to specify the optimal decision at
a particular stage is the state at that stage and the decisions
made at preceding stages.

11.3-1. Read the referenced article that fully describes the OR
study summarized in the application vignette presented in Sec. 11.3.
Briefly describe how dynamic programming was applied in this
study. Then list the various financial and nonfinancial benefits that
resulted from this study.

11.3-2.* The owner of a chain of three grocery stores has pur-
chased five crates of fresh strawberries. The estimated probability
distribution of potential sales of the strawberries before spoilage
differs among the three stores. Therefore, the owner wants to know
how to allocate five crates to the three stores to maximize expected
profit.

For administrative reasons, the owner does not wish to split
crates between stores. However, he is willing to distribute no crates
to any of his stores.

The following table gives the estimated expected profit at each
store when it is allocated various numbers of crates:

that the alternative allocations for each course would yield the num-
ber of grade points shown in the following table:

Use dynamic programming to determine how many of the five
crates should be assigned to each of the three stores to maximize
the total expected profit.

11.3-3. A college student has 7 days remaining before final ex-
aminations begin in her four courses, and she wants to allocate this
study time as effectively as possible. She needs at least 
1 day on each course, and she likes to concentrate on just one
course each day, so she wants to allocate 1, 2, 3, or 4 days to each
course. Having recently taken an OR course, she decides to use dy-
namic programming to make these allocations to maximize the to-
tal grade points to be obtained from the four courses. She estimates

Estimated Grade Points

Course

Study Days 1 2 3 4

1 3 5 2 6
2 5 5 4 7
3 6 6 7 9
4 7 9 8 9

Area

Commercials 1 2 3 4

0 0 0 0 0
1 4 6 5 3
2 7 8 9 7
3 9 10 11 12
4 12 11 10 14
5 15 12 9 16

Solve this problem by dynamic programming.

11.3-4. A political campaign is entering its final stage, and polls
indicate a very close election. One of the candidates has enough
funds left to purchase TV time for a total of five prime-time
commercials on TV stations located in four different areas. Based
on polling information, an estimate has been made of the num-
ber of additional votes that can be won in the different broad-
casting areas depending upon the number of commercials run.
These estimates are given in the following table in thousands of
votes:

Use dynamic programming to determine how the five com-
mercials should be distributed among the four areas in order to
maximize the estimated number of votes won.

11.3-5. A county chairwoman of a certain political party is mak-
ing plans for an upcoming presidential election. She has received
the services of six volunteer workers for precinct work, and she
wants to assign them to four precincts in such a way as to maxi-
mize their effectiveness. She feels that it would be inefficient to
assign a worker to more than one precinct, but she is willing to as-
sign no workers to any one of the precincts if they can accomplish
more in other precincts.

hil23453_ch11_438-473.qxd  1/21/70  12:55 PM  Page 470 Final PDF to printer



PROBLEMS 471

Effect on
Market Share

Millions of
Dollars Expended m f2 f3

0 — 0.2 0.3
1 20 0.4 0.5
2 30 0.5 0.6
3 40 0.6 0.7
4 50 — —

Probability of Functioning

Parallel Units Comp. 1 Comp. 2 Comp. 3 Comp. 4

1 0.5 0.6 0.7 0.5
2 0.6 0.7 0.8 0.7
3 0.8 0.8 0.9 0.9

Cost

Parallel Units Comp. 1 Comp. 2 Comp. 3 Comp. 4

1 1 2 1 2
2 2 4 3 3
3 3 5 4 4

Precinct

Workers 1 2 3 4

0 0 0 0 0
1 4 7 5 6
2 9 11 10 11
3 15 16 15 14
4 18 18 18 16
5 22 20 21 17
6 24 21 22 18

The following table gives the estimated increase in the num-
ber of votes for the party’s candidate in each precinct if it were al-
located various numbers of workers:

(b) Now assume that any amount within the total budget can be
spent in each phase, where the estimated effect of spending
an amount xi (in units of millions of dollars) in phase i (i � 1,
2, 3) is

m � 10x1 � x2
1

f2 � 0.40 � 0.10x2

f3 � 0.60 � 0.07x3.

[Hint: After solving for the f 2*(s) and f 3*(s) functions analytically,
solve for x1* graphically.]

11.3-8. Consider an electronic system consisting of four components,
each of which must work for the system to function. The reliability of
the system can be improved by installing several parallel units in one
or more of the components. The following table gives the probability
that the respective components (labeled as Comp. 1, 2, 3, and 4) will
function if they consist of one, two, or three parallel units:

This problem has several optimal solutions for how many of the
six workers should be assigned to each of the four precincts to
maximize the total estimated increase in the plurality of the
party’s candidate. Use dynamic programming to find all of them
so the chairwoman can make the final selection based on other
factors.

11.3-6. Use dynamic programming to solve the Northern Airplane
Co. production scheduling problem presented in Sec. 9.1 (see
Table 9.7). Assume that production quantities must be integer
multiples of 5.

11.3-7.* A company will soon be introducing a new product into
a very competitive market and is currently planning its marketing
strategy. The decision has been made to introduce the product in
three phases. Phase 1 will feature making a special introductory of-
fer of the product to the public at a greatly reduced price to attract
first-time buyers. Phase 2 will involve an intensive advertising cam-
paign to persuade these first-time buyers to continue purchasing the
product at a regular price. It is known that another company will
be introducing a new competitive product at about the time that
phase 2 will end. Therefore, phase 3 will involve a follow-up ad-
vertising and promotion campaign to try to keep the regular pur-
chasers from switching to the competitive product.

A total of $4 million has been budgeted for this marketing
campaign. The problem now is to determine how to allocate this
money most effectively to the three phases. Let m denote the initial
share of the market (expressed as a percentage) attained in phase 1,
f2 the fraction of this market share that is retained in phase 2, and
f3 the fraction of the remaining market share that is retained in
phase 3. Use dynamic programming to determine how to allocate
the $4 million to maximize the final share of the market for the new
product, i.e., to maximize mf2 f3.
(a) Assume that the money must be spent in integer multiples of

$1 million in each phase, where the minimum permissible mul-
tiple is 1 for phase 1 and 0 for phases 2 and 3. The following
table gives the estimated effect of expenditures in each phase:

The probability that the system will function is the prod-
uct of the probabilities that the respective components will 
function.

The cost (in hundreds of dollars) of installing one, two, or three
parallel units in the respective components (labeled as Comp. 1, 2,
3, and 4) is given by the following table:
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Because of budget limitations, a maximum of $1,000 can be
expended.

Use dynamic programming to determine how many parallel
units should be installed in each of the four components to maxi-
mize the probability that the system will function.

11.3-9. Consider the following integer nonlinear programming
problem.

Maximize Z � 3x2
1 � x3

1 � 5x2
2 � x3

2,

subject to

x1 � 2x2 � 4

and

x1 � 0, x2 � 0
x1, x2 are integers.

Use dynamic programming to solve this problem.

11.3-10. Consider the following integer nonlinear programming
problem.

Maximize Z � 18x1 � x2
1 � 20x2 � 10x3,

subject to

2x1 � 4x2 � 3x3 � 11

and

x1, x2, x3 are nonnegative integers.

Use dynamic programming to solve this problem.

11.3-11.* Consider the following nonlinear programming problem.

Maximize Z � 36x1 � 9x2
1 � 6x3

1

� 36x2 � 3x3
2,

subject to

x1 � x2 � 3

and

x1 � 0, x2 � 0.

Use dynamic programming to solve this problem.

11.3-12. Re-solve the Local Job Shop employment scheduling
problem (Example 4) when the total cost of changing the level of
employment from one season to the next is changed to $100 times
the square of the difference in employment levels.

11.3-13. Consider the following nonlinear programming problem.

Maximize Z � 2x2
1 � 2x2 � 4x3 � x2

3

subject to

2x1 � x2 � x3 � 4

and

x1 � 0, x2 � 0, x3 � 0.

Use dynamic programming to solve this problem.

11.3-14. Consider the following nonlinear programming problem.

Minimize Z � x4
1 � 2x2

2

subject to

x2
1 � x2

2 � 2.

(There are no nonnegativity constraints.) Use dynamic program-
ming to solve this problem.

11.3-15. Consider the following nonlinear programming problem.

Maximize Z � x3
1 � 4x2

2 � 16x3,

subject to

x1x2x3 � 4

and

x1 � 1, x2 � 1, x3 � 1.

(a) Solve by dynamic programming when, in addition to the 
given constraints, all three variables also are required to be in-
teger.

(b) Use dynamic programming to solve the problem as given (con-
tinuous variables).

11.3-16. Consider the following nonlinear programming problem.

Maximize Z � x1(1 � x2)x3,

subject to

x1 � x2 � x3 � 1

and

x1 � 0, x2 � 0, x3 � 0.

Use dynamic programming to solve this problem.

11.4-1. A backgammon player will be playing three consecutive
matches with friends tonight. For each match, he will have the op-
portunity to place an even bet that he will win; the amount bet can
be any quantity of his choice between zero and the amount of
money he still has left after the bets on the preceding matches. For
each match, the probability is �

1
2

� that he will win the match and thus
win the amount bet, whereas the probability is �

1
2

� that he will lose
the match and thus lose the amount bet. He will begin with $75,
and his goal is to have $100 at the end. (Because these are friendly
matches, he does not want to end up with more than $100.) There-
fore, he wants to find the optimal betting policy (including all
ties) that maximizes the probability that he will have exactly $100
after the three matches.

Use dynamic programming to solve this problem.
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11.4-2. Imagine that you have $5,000 to invest and that you will
have an opportunity to invest that amount in either of two invest-
ments (A or B) at the beginning of each of the next 3 years. Both
investments have uncertain returns. For investment A you will ei-
ther lose your money entirely or (with higher probability) get back
$10,000 (a profit of $5,000) at the end of the year. For investment
B you will get back either just your $5,000 or (with low probabil-
ity) $10,000 at the end of the year. The probabilities for these events
are as follows:

You are allowed to make only (at most) one investment each year,
and you can invest only $5,000 each time. (Any additional money
accumulated is left idle.)
(a) Use dynamic programming to find the investment policy that

maximizes the expected amount of money you will have after
3 years.

(b) Use dynamic programming to find the investment policy that
maximizes the probability that you will have at least $10,000
after 3 years.

11.4-3.* Suppose that the situation for the Hit-and-Miss Manu-
facturing Co. problem (Example 5) has changed somewhat. After
a more careful analysis, you now estimate that each item produced
will be acceptable with probability �

2
3

�, rather than �
1
2

�, so that the prob-
ability of producing zero acceptable items in a lot of size L is (�

1
3

�)L.
Furthermore, there now is only enough time available to make two
production runs. Use dynamic programming to determine the new
optimal policy for this problem.

11.4-4. Reconsider Example 6. Suppose that the bet is changed
as follows: “Starting with two chips, she will not have at least five
chips after five plays of the game.” By referring to the previous
computational results, make additional calculations to determine
the new optimal policy for the enterprising young statistician.

11.4-5. The Profit & Gambit Co. has a major product that has
been losing money recently because of declining sales. In fact,
during the current quarter of the year, sales will be 4 million units
below the break-even point. Because the marginal revenue for
each unit sold exceeds the marginal cost by $5, this amounts to
a loss of $20 million for the quarter. Therefore, management must
take action quickly to rectify this situation. Two alternative
courses of action are being considered. One is to abandon the
product immediately, incurring a cost of $20 million for shutting
down. The other alternative is to undertake an intensive advertis-
ing campaign to increase sales and then abandon the product (at
the cost of $20 million) only if the campaign is not sufficiently
successful. Tentative plans for this advertising campaign have
been developed and analyzed. It would extend over the next three
quarters (subject to early cancellation), and the cost would be 
$30 million in each of the three quarters. It is estimated that the
increase in sales would be approximately 3 million units in the
first quarter, another 2 million units in the second quarter, and
another 1 million units in the third quarter. However, because of
a number of unpredictable market variables, there is considerable
uncertainty as to what impact the advertising actually would have;
and careful analysis indicates that the estimates for each quarter
could turn out to be off by as much as 2 million units in either
direction. (To quantify this uncertainty, assume that the additional
increases in sales in the three quarters are independent random
variables having a uniform distribution with a range from 1 to 5
million, from 0 to 4 million, and from �1 to 3 million, respec-
tively.) If the actual increases are too small, the advertising cam-
paign can be discontinued and the product abandoned at the end
of either of the next two quarters.

If the intensive advertising campaign were initiated and con-
tinued to its completion, it is estimated that the sales for some time
thereafter would continue to be at about the same level as in the
third (last) quarter of the campaign. Therefore, if the sales in that
quarter still were below the break-even point, the product would
be abandoned. Otherwise, it is estimated that the expected dis-
counted profit thereafter would be $40 for each unit sold over the
break-even point in the third quarter.

Use dynamic programming to determine the optimal policy
maximizing the expected profit.

Amount
Investment Returned ($) Probability

A 0 0.3
10,000 0.7

B 5,000 0.9
10,000 0.1
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Integer Programming

In Chap. 3 you saw several examples of the numerous and diverse applications of linear
programming. However, one key limitation that prevents many more applications is the

assumption of divisibility (see Sec. 3.3), which requires that noninteger values be permis-
sible for decision variables. In many practical problems, the decision variables actually
make sense only if they have integer values. For example, it is often necessary to assign
people, machines, and vehicles to activities in integer quantities. If requiring integer val-
ues is the only way in which a problem deviates from a linear programming formulation,
then it is an integer programming (IP) problem. (The more complete name is integer lin-
ear programming, but the adjective linear normally is dropped except when this problem
is contrasted with the more esoteric integer nonlinear programming problem, which is be-
yond the scope of this book.)

The mathematical model for integer programming is the linear programming model
(see Sec. 3.2) with the one additional restriction that the variables must have integer val-
ues. If only some of the variables are required to have integer values (so the divisibility
assumption holds for the rest), this model is referred to as mixed integer programming
(MIP). When distinguishing the all-integer problem from this mixed case, we call the for-
mer pure integer programming.

For example, the Wyndor Glass Co. problem presented in Sec. 3.1 actually would
have been an IP problem if the two decision variables x1 and x2 had represented the total
number of units to be produced of products 1 and 2, respectively, instead of the produc-
tion rates. Because both products (glass doors and wood-framed windows) necessarily
come in whole units, x1 and x2 would have to be restricted to integer values.

There have been numerous applications of integer programming that involve a direct ex-
tension of linear programming where the divisibility assumption must be dropped. However,
another area of application may be of even greater importance, namely, problems involving
a number of interrelated “yes-or-no decisions.” In such decisions, the only two possible choices
are yes and no. For example, should we undertake a particular fixed project? Should we make
a particular fixed investment? Should we locate a facility in a particular site?

With just two choices, we can represent such decisions by decision variables that are
restricted to just two values, say 0 and 1. Thus, the jth yes-or-no decision would be rep-
resented by, say, xj such that

xj � � if decision j is yes
if decision j is no.

1
0

474
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Such variables are called binary variables (or 0–1 variables). Consequently, IP problems
that contain only binary variables sometimes are called binary integer programming
(BIP) problems (or 0–1 integer programming problems).

Section 12.1 presents a miniature version of a typical BIP problem and Sec. 12.2 sur-
veys a variety of other BIP applications. Additional formulation possibilities with binary
variables are discussed in Sec. 12.3, and Sec. 12.4 presents a series of formulation ex-
amples. Sections 12.5–12.8 then deal with ways to solve IP problems, including both BIP
and MIP problems. The chapter concludes in Sec. 12.9 by introducing an exciting more
recent development (constraint programming) that promises to greatly expand our ability
to formulate and solve integer programming models.

■ TABLE 12.1 Data for the California Manufacturing Co. example

Decision Yes-or-No Decision Net Present Capital
Number Question Variable Value Required

1 Build factory in Los Angeles? x1 $9 million $6 million
2 Build factory in San Francisco? x2 $5 million $3 million
3 Build warehouse in Los Angeles? x3 $6 million $5 million
4 Build warehouse in San Francisco? x4 $4 million $2 million

Capital available: $10 million

■ 12.1 PROTOTYPE EXAMPLE

The CALIFORNIA MANUFACTURING COMPANY is considering expansion by build-
ing a new factory in either Los Angeles or San Francisco, or perhaps even in both cities.
It also is considering building at most one new warehouse, but the choice of location is
restricted to a city where a new factory is being built. The net present value (total prof-
itability considering the time value of money) of each of these alternatives is shown in
the fourth column of Table 12.1. The rightmost column gives the capital required (already
included in the net present value) for the respective investments, where the total capital
available is $10 million. The objective is to find the feasible combination of alternatives
that maximizes the total net present value.

The BIP Model

Although this problem is small enough that it can be solved very quickly by inspection
(build factories in both cities but no warehouse), let us formulate the IP model for illus-
trative purposes. All the decision variables have the binary form

xj � � ( j � 1, 2, 3, 4).

Let

Z � total net present value of these decisions.

If the investment is made to build a particular facility (so that the corresponding decision
variable has a value of 1), the estimated net present value from that investment is given
in the fourth column of Table 12.1. If the investment is not made (so the decision vari-
able equals 0), the net present value is 0. Therefore, using units of millions of dollars,

Z � 9x1 � 5x2 � 6x3 � 4x4.

if decision j is yes,
if decision j is no,

1
0
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The rightmost column of Table 12.1 indicates that the amount of capital expended on
the four facilities cannot exceed $10 million. Consequently, continuing to use units of mil-
lions of dollars, one constraint in the model is

6x1 � 3x2 � 5x3 � 2x4 � 10.

Because the last two decisions represent mutually exclusive alternatives (the company
wants at most one new warehouse), we also need the constraint

x3 � x4 � 1.

Furthermore, decisions 3 and 4 are contingent decisions, because they are contingent on de-
cisions 1 and 2, respectively (the company would consider building a warehouse in a city
only if a new factory also were going there). Thus, in the case of decision 3, we require that
x3 � 0 if x1 � 0. This restriction on x3 (when x1 � 0) is imposed by adding the constraint

x3 � x1.

Similarly, the requirement that x4 � 0 if x2 � 0 is imposed by adding the constraint

x4 � x2.

Therefore, after we rewrite these two constraints to bring all variables to the left-hand
side, the complete BIP model is

Maximize Z � 9x1 � 5x2 � 6x3 � 4x4,

subject to

6x1 � 3x2 � 5x3 � 2x4 � 10
x3 � x4 � 1

�x1 � x3 � 0
� x2 � x4 � 0

xj � 1
xj � 0

and

xj is integer, for j � 1, 2, 3, 4.

Equivalently, the last three lines of this model can be replaced by the single restriction

xj is binary, for j � 1, 2, 3, 4.

Except for its small size, this example is typical of many real applications of integer
programming where the basic decisions to be made are of the yes-or-no type. Like the
second pair of decisions for this example, groups of yes-or-no decisions often constitute
groups of mutually exclusive alternatives such that only one decision in the group can
be yes. Each group requires a constraint that the sum of the corresponding binary vari-
ables must be equal to 1 (if exactly one decision in the group must be yes) or less than
or equal to 1 (if at most one decision in the group can be yes). Occasionally, decisions of
the yes-or-no type are contingent decisions, i.e., decisions that depend upon previous de-
cisions. For example, one decision is said to be contingent on another decision if it is
allowed to be yes only if the other is yes. This situation occurs when the contingent de-
cision involves a follow-up action that would become irrelevant, or even impossible, if the
other decision were no. The form that the resulting constraint takes always is that illus-
trated by the third and fourth constraints in the example.
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Software Options for Solving Such Models

All the software packages featured in your OR Courseware (Excel, LINGO/LINDO, and
MPL/Solvers) include an algorithm for solving (pure or mixed) BIP models, as well as
an algorithm for solving general (pure or mixed) IP models where variables need to be
integer but not binary. However, since binary variables are considerably easier to deal with
than general integer variables, the former algorithm generally can solve substantially larger
problems than the latter algorithm.

When using Solver (or ASPE’s Solver), the procedure is basically the same as for
linear programming. The one difference arises when you click on the “Add” button on
the Solver dialog box to add the constraints. In addition to the constraints that fit linear
programming, you also need to add the integer constraints. In the case of integer vari-
ables that are not binary, this is accomplished in the Add Constraint dialog box by choos-
ing the range of integer-restricted variables on the left-hand side and then choosing “int”
from the pop-up menu. In the case of binary variables, choose “bin” from the pop-up
menu instead. 

One of the Excel files for this chapter shows the complete spreadsheet formulation
and solution for the California Manufacturing Co. example. The Solved Examples section
of the book’s website also includes a small minimization example with two integer-
restricted variables. This example illustrates the formulation of the IP model and its graph-
ical solution, along with a spreadsheet formulation and solution.

A LINGO model uses the function @BIN() to specify that the variable named inside
the parentheses is a binary variable. For a general integer variable (one restricted to inte-
ger values but not just binary values), the function @GIN() is used in the same way. In
either case, the function can be embedded inside an @FOR statement to impose this bi-
nary or integer constraint on an entire set of variables.

In a LINDO syntax model, the binary or integer constraints are inserted after the END
statement. A variable X is specified to be a general integer variable by entering GIN X.
Alternatively, for any positive integer value of n, the statement GIN n specifies that the
first n variables are general integer variables. Binary variables are handled in the same
way except for substituting the word INTEGER for GIN.

For an MPL model, the keyword INTEGER is used to designate general integer vari-
ables, whereas BINARY is used for binary variables. In the variables section of an MPL
model, all you need to do is add the appropriate adjective (INTEGER or BINARY) in front
of the label VARIABLES to specify that the set of variables listed below the label is of that
type. Alternatively, you can ignore this specification in the variables section and instead place
the integer or binary constraints in the model section anywhere after the other constraints.
In this case, the label over the set of variables becomes just INTEGER or BINARY.

The student version of MPL includes four elite solvers for linear programming —
CPLEX, GUROBI, CoinMP, and SULUM — and all four also include state-of-the-art 
algorithms for solving pure or mixed IP or BIP models. When using CPLEX, for example,
by selecting the MIP Strategy tab from the CPLEX Parameters dialog box in the Options
menu, an experienced practitioner can even choose from a wide variety of options for ex-
actly how to execute the algorithm to best fit the particular problem.

These instructions for how to use the various software packages become clearer when you
see them applied to examples. The Excel, LINGO/LINDO, and MPL/Solvers files for this
chapter in your OR Courseware show how each of these software options would be applied
to the prototype example introduced in this section, as well as to the subsequent IP examples.

The latter part of the chapter will focus on IP algorithms that are similar to those used
in these software packages. Section 12.6 will use the prototype example to illustrate the
application of the pure BIP algorithm presented there.

12.1 PROTOTYPE EXAMPLE 477
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■ 12.2 SOME BIP APPLICATIONS

Just as in the California Manufacturing Co. example, managers frequently must face yes-
or-no decisions. Therefore, binary integer programming (BIP) is widely used to aid in
these decisions.

We now will introduce various types of yes-or-no decisions. This section includes
two application vignettes to help illustrate two of these types. For the other types, we also
will mention some other examples of actual applications where BIP was used to address
these decisions. All of these examples are included in the selected references of award-
winning applications cited at the end of the chapter, so a link to these articles is provided
on the book’s website.

Investment Analysis

Linear programming sometimes is used to make capital budgeting decisions about how
much to invest in various projects. However, as the California Manufacturing Co. exam-
ple demonstrates, some capital budgeting decisions do not involve how much to invest,
but rather, whether to invest a fixed amount. Specifically, the four decisions in the exam-
ple were whether to invest the fixed amount of capital required to build a certain kind of
facility (factory or warehouse) in a certain location (Los Angeles or San Francisco).

Management often must face decisions about whether to make fixed investments
(those where the amount of capital required has been fixed in advance). Should we ac-
quire a certain subsidiary being spun off by another company? Should we purchase a cer-
tain source of raw materials? Should we add a new production line to produce a certain
input item ourselves rather than continuing to obtain it from a supplier?

In general, capital budgeting decisions about fixed investments are yes-or-no deci-
sions of the following type.

Each yes-or-no decision:
Should we make a certain fixed investment?

Its decision variable � �
An example that falls somewhat into this category is described in Selected Refer-

ence A6. A major OR study was conducted for the South African National Defense Force
to upgrade its capabilities with a smaller budget. The “investments” under consideration
in this case were acquisition costs and ongoing expenses that would be required to pro-
vide specific types of military capabilities. A mixed BIP model was formulated to choose
those specific capabilities that would maximize the overall effectiveness of the Defense
Force while satisfying a budget constraint. The model had over 16,000 variables (in-
cluding 256 binary variables) and over 5,000 functional constraints. The resulting opti-
mization of the size and shape of the defense force provided savings of over $1.1 billion
per year as well as vital nonmonetary benefits.

Selected Reference A2 presents another award-winning application of a mixed BIP
model to investment analysis. This particular model has been used by the investment firm
Grantham, Mayo, Van Otterloo and Company to construct many quantitatively managed
portfolios representing over $8 billion in assets. In each case, a portfolio has been con-
structed that is close (in terms of sector and security exposure) to a target portfolio but with
a far smaller and more manageable number of distinct stocks. A binary variable is used to
represent each yes-or-no decision as to whether a particular stock should be included in
the portfolio and then a separate continuous variable represents the amount of the stock to
include. Given a current portfolio that needs to be rebalanced, it is desirable to reduce trans-
action costs by minimizing the number of transactions needed to obtain the final portfolio,

if yes
if no.

1
0
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The Midwest Independent Transmission System Oper-
ator, Inc. (MISO) is a nonprofit organization formed in
1998 to administer the generation and transmission of
electricity throughout the midwestern United States. It
serves over 40 million customers (both individuals and
businesses) through its control of nearly 60,000 miles of
high-voltage transmission lines and more than 1,000
power plants capable of generating 146,000 megawatts of
electricity. This infrastructure spans 13 midwestern U.S.
states plus the Canadian province of Manitoba.

The key mission of any regional transmission orga-
nization is to reliably and efficiently provide the electric-
ity needed by its customers. MISO transformed the way
this was done by using mixed binary integer program-
ming to minimize the total cost of providing the needed
electricity. Each main binary variable in the model repre-
sents a yes-or-no decision about whether a particular
power plant should be on during a particular time period.
After solving this model, the results are then fed into a

linear programming model to set electricity output levels
and establish prices for electricity trades.

The mixed BIP model is a massive one with about
3,300,000 continuous variables, 450,000 binary variables,
and 3,900,000 functional constraints. A special technique
(Lagrangian relaxation) is used to solve such a huge model.

This innovative application of operations research
yielded savings of approximately $2.5 billion over the
four years from 2007 to 2010, with an additional savings
of about $7 billion expected through 2020. These dra-
matic results led to MISO winning the prestigious First
Prize in the 2011 international competition for the Franz
Edelman Award for Achievement in Operations Research
and the Management Sciences.

Source: B. Carlson and 12 co-authors, “MISO Unlocks Billions
in Savings Through the Application of Operations Research for
Energy and Ancillary Services Markets,” Interfaces, 42(1):
58–73, Jan.–Feb. 2012. (A link to this article is provided on our
website, www.mhhe.com/hillier.)

An Application Vignette

so binary variables also are included to represent the yes-or-no decisions as to whether to
make the transactions to change the amounts of individual stocks being held. The inclu-
sion of this consideration in the model has reduced the annual cost of trading the portfo-
lios being managed by at least $4 million.

Site Selection

In this global economy, many corporations are opening up new plants in various parts of
the world to take advantage of lower labor costs, etc. Before selecting a site for a new
plant, many potential sites may need to be analyzed and compared. (The California Manu-
facturing Co. example had just two potential sites for each of two kinds of facilities.) Each
of the potential sites involves a yes-or-no decision of the following type.

Each yes-or-no decision:
Should a certain site be selected for the location of a certain new facility?

Its decision variable � �
In many cases, the objective is to select the sites so as to minimize the total cost of the
new facilities that will provide the required output.

As described in Selected Reference A10, AT&T used a BIP model to help dozens of
their customers select the sites for their telemarketing centers. The model minimizes labor,
communications, and real estate costs while providing the desired level of coverage by the
centers. In one year alone, this approach enabled 46 AT&T customers to make their yes-
or-no decisions on site locations swiftly and confidently, while committing to $375 mil-
lion in annual network services and $31 million in equipment sales from AT&T.

Selected Reference A5 describes how global papermaker Norske Skog used a similar
model, but this time for selecting sites to close facilities rather than opening new ones.
The company had been experiencing declining demand for its products as electronic me-
dia replaced newsprint publications. Therefore, a large BIP model (312 binary variables,
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0
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47,000 continuous variables, and 2600 functional constraints) was used to select two 
paper mills and a paper machine to close, saving the company $100 million annually.

We next describe an important type of problem for many corporations where site se-
lection plays a key role.

Designing a Production and Distribution Network

Manufacturers today face great competitive pressure to get their products to market more
quickly as well as to reduce their production and distribution costs. Therefore, any cor-
poration that distributes its products over a wide geographical area (or even worldwide)
must pay continuing attention to the design of its production and distribution network.

This design involves addressing the following kinds of yes-or-no decisions:

Should a certain plant remain open?
Should a certain site be selected for a new plant?
Should a certain distribution center remain open?
Should a certain site be selected for a new distribution center?

If each market area is to be served by a single distribution center, then we also have an-
other kind of yes-or-no decision for each combination of a market area and a distribution
center.

Should a certain distribution center be assigned to serve a certain market area?

For each of the yes-or-no decisions of any of these kinds:

Its decision variable � �
The first application vignette in this section describes how the Midwest Independent

Transmission Operator used a huge BIP model of this type to save literally billions of 
dollars. The product being produced and distributed through a network in this case is 
electricity.

Dispatching Shipments

Once a production and distribution network has been designed and put into operation,
daily operating decisions need to be made about how to send the shipments. Some of these
decisions again are yes-or-no decisions.

For example, suppose that trucks are being used to transport the shipments and each
truck typically makes deliveries to several customers during each trip. It then becomes
necessary to select a route (sequence of customers) for each truck, so each candidate for
a route leads to the following yes-or-no decision:

Should a certain route be selected for one of the trucks?

Its decision variable � �
The objective would be to select the routes that would minimize the total cost of making
all the deliveries.

Various complications also can be considered. For example, if different truck sizes
are available, each candidate for selection would include both a certain route and a cer-
tain truck size. Similarly, if timing is an issue, a time period for the departure also can be
specified as part of the yes-or-no decision. With both factors, each yes-or-no decision
would have the form shown next.
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Should all the following be selected simultaneously for a delivery run:

1. A certain route,
2. A certain size of truck, and
3. A certain time period for the departure?

Its decision variable � �
For example, one BIP application of this type was developed by Petrobras, the largest

corporation in Brazil and one of the world’s oil giants. As described in Selected Refer-
ence A7, Petrobras transports approximately 1,900 employees daily between about 80 off-
shore oil platforms and four mainland bases, using more than 40 helicopters. A BIP model
requires less than an hour to generate optimized helicopter routes and schedules each day,
resulting in annual savings of more than $20 million. Thus, the “shipments” being dis-
patched in this case are groups of employees.

Scheduling Interrelated Activities

We all schedule interrelated activities in our everyday lives, even if it is just scheduling
when to begin our various homework assignments. So too, managers must schedule var-
ious kinds of interrelated activities. When should we begin production for various new or-
ders? When should we begin marketing various new products? When should we make
various capital investments to expand our production capacity?

For any such activity, the decision about when to begin can be expressed in terms of
a series of yes-or-no decisions, with one of these decisions for each of the possible time
periods in which to begin, as shown below.

Should a certain activity begin in a certain time period?

Its decision variable � �
Since a particular activity can begin in only one time period, the choice of the various
time periods provides a group of mutually exclusive alternatives, so the decision variable
for only one time period can have a value of 1.

Selected Reference A4 describes how Swedish municipalities use large BIP models of
this type to plan staff scheduling and routing of 4,000 home care workers to attend to the
needs of the elderly. Replacing manual planning by BIP has resulted in annual savings in
the range of $30 million to $45 million while also improving the quality of the home care.

Airline Applications

The airline industry is an especially heavy user of OR throughout its operations. Many
hundreds of OR professionals now work in this area. Major airline companies typically
have a large in-house department that works on OR applications. In addition, there are
some prominent consulting firms that focus solely on the problems of companies involved
with transportation, including especially airlines. We will mention here just two of the ap-
plications which specifically use BIP.

One is the fleet assignment problem. Given several different types of airplanes avail-
able, the problem is to assign a specific type to each flight leg in the schedule so as to
maximize the total profit from meeting the schedule. The basic trade-off is that if the air-
line uses an airplane that is too small on a particular flight leg, it will leave potential
customers behind, while if it uses an airplane that is too large, it will suffer the greater
expense of the larger airplane to fly empty seats.
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The new timetable was launched in December 2006,
along with a new system for scheduling the allocation of
rolling-stock units (various kinds of passenger cars and
other train units) to the trains meeting this timetable. A new
system also was implemented for scheduling the assign-
ment of crews (with a driver and a number of conductors in
each crew) to the trains. Binary integer programming and
related techniques were used to do all of this. For example,
the BIP model used for crew scheduling closely resembles
(except for its vastly larger size) the one shown in this sec-
tion for the Southwestern Airlines problem. 

This application of operations research immediately
resulted in an additional annual profit of approximately $60
million for the company and this additional profit is
expected to increase to $105 million annually in the coming
years. These dramatic results led to Netherlands Railways
winning the prestigious First Prize in the 2008 international
competition for the Franz Edelman Award for Achievement
in Operations Research and the Management Sciences.

Source: L. Kroon, D. Huisman, E. Abbink, P.-J. Fioole, M. 
Fischetti, G. Maróti, A. Schrijver, A. Steenbeck, and R. Ybema,
“The New Dutch Timetable: The OR Revolution,” Interfaces,
39(1): 6–17, Jan.–Feb. 2009. (A link to this article is provided
on our website, www.mhhe.com/hillier.)

Netherlands Railways (Nederlandse Spoorwegen
Reizigers) is the main Dutch railway operator of passen-
ger trains. In this densely populated country, about 5,500
passenger trains currently transport approximately 1.1
million passengers on an average workday. The com-
pany’s operating revenues are approximately 1.5 billion
Euros (approximately $2 billion) per year.

The amount of passenger transport on the Dutch rail-
way network has steadily increased over the years, so a
national study in 2002 concluded that three major infra-
structure extensions should be undertaken. As a result, a
new national timetable for the Dutch railway system,
specifying the planned departure and arrival times of
every train at every station, would need to be developed.
Therefore, the management of Netherlands Railways
directed that an extensive operations research study
should be conducted over the next few years to develop
an optimal overall plan for both the new timetable and the
usage of the available resources (rolling-stock units and
train crews) for meeting this timetable. A task force con-
sisting of several members of the company’s Department
of Logistics and several prominent OR scholars from
European universities or a software company was formed
to conduct this study.

An Application Vignette

For each combination of an airplane type and a flight leg, we have the following
yes-or-no decision.

Should a certain type of airplane be assigned to a certain flight leg?

Its decision variable � �
Prior to its merger with Northwest Airlines, completed in 2010, Delta Air Lines flew

over 2,500 domestic flight legs every day, using about 450 airplanes of 10 different types.
As described in Selected Reference A11, they have used a huge integer programming model
(about 40,000 functional constraints, 20,000 binary variables, and 40,000 general integer
variables) to solve their fleet assignment problem each time a change is needed. This ap-
plication has saved Delta approximately $100 million per year.

A fairly similar application is the crew scheduling problem. Here, rather than assigning
airplane types to flight legs, we are instead assigning sequences of flight legs to crews of
pilots and flight attendants. Thus, for each feasible sequence of flight legs that leaves from
a crew base and returns to the same base, the following yes-or-no decision must be made.

Should a certain sequence of flight legs be assigned to a crew?

Its decision variable � �
The objective is to minimize the total cost of providing crews that cover each flight leg
in the schedule.

A full-fledged formulation example of this type will be presented at the end of Sec. 12.4.
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A related problem for airline companies is that their crew schedules occasionally need
to be revised quickly when flight delays or cancellations occur because of inclement
weather, aircraft mechanical problems, or crew unavailability. As described in an 
application vignette in Sec. 2.2 (as well as in Selected Reference A12), Continental Air-
lines (now merged with United Airlines) achieved savings of $40 million in the first year
of using an elaborate decision support system based on BIP for optimizing the reassign-
ment of crews to flights when such emergencies occur.

Many of the problems that face airline companies also arise in other segments of the
transportation industry. Therefore, some of the airline applications of OR are being ex-
tended to these other segments, including extensive use now by the railroad industry. For
example, the second application vignette  in this section describes how Netherlands Rail-
ways won a prestigious award for its applications of operations research, including inte-
ger programming and constraint programming (the subject of Sec. 12.9), throughout its
operations. 

■ 12.3 INNOVATIVE USES OF BINARY VARIABLES 
IN MODEL FORMULATION

You have just seen a number of examples where the basic decisions of the problem are
of the yes-or-no type, so that binary variables are introduced to represent these decisions.
We now will look at some other ways in which binary variables can be very useful. In
particular, we will see that these variables sometimes enable us to take a problem whose
natural formulation is intractable and reformulate it as a pure or mixed IP problem.

This kind of situation arises when the original formulation of the problem fits either
an IP or a linear programming format except for minor disparities involving combinator-
ial relationships in the model. By expressing these combinatorial relationships in terms of
questions that must be answered yes or no, auxiliary binary variables can be introduced
to the model to represent these yes-or-no decisions. (Rather than being a decision vari-
able for the original problem under consideration, an auxiliary binary variable is a binary
variable that is introduced into the model of the problem simply to help formulate the
model as a pure or mixed BIP model.) Introducing these variables reduces the problem
to an MIP problem (or a pure IP problem if all the original variables also are required to
have integer values).

Some cases that can be handled by this approach are discussed next, where the xj de-
note the original variables of the problem (they may be either continuous or integer variables)
and the yi denote the auxiliary binary variables that are introduced for the reformulation.

Either-Or Constraints

Consider the important case where a choice can be made between two constraints, so
that only one (either one) must hold (whereas the other one can hold but is not required
to do so). For example, there may be a choice as to which of two resources to use for a
certain purpose, so that it is necessary for only one of the two resource availability con-
straints to hold mathematically. To illustrate the approach to such situations, suppose that
one of the requirements in the overall problem is that

Either 3x1 � 2x2 � 18
or x1 � 4x2 � 16,

i.e., at least one of these two inequalities must hold but not necessarily both. This re-
quirement must be reformulated to fit it into the linear programming format where all
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specified constraints must hold. Let M symbolize a very large positive number. Then this
requirement can be rewritten as

3x1 � 2x2 � 18
Either

x1 � 4x2 � 16 � M

3x1 � 2x2 � 18 � M
or

x1 � 4x2 � 16.

The key is that adding M to the right-hand side of such constraints has the effect of
eliminating them, because they would be satisfied automatically by any solutions that
satisfy the other constraints of the problem. (This formulation assumes that the set of
feasible solutions for the overall problem is a bounded set and that M is large enough
that it will not eliminate any feasible solutions.) This formulation is equivalent to the
set of constraints

3x1 � 2x2 � 18 � My
x1 � 4x2 � 16 � M(1 � y).

Because the auxiliary variable y must be either 0 or 1, this formulation guarantees that
one of the original constraints must hold while the other is, in effect, eliminated. This new
set of constraints would then be appended to the other constraints in the overall model to
give a pure or mixed IP problem (depending upon whether the xj are integer or continu-
ous variables).

This approach is related directly to our earlier discussion about expressing combina-
torial relationships in terms of questions that must be answered yes or no. The combina-
torial relationship involved concerns the combination of the other constraints of the model
with the first of the two alternative constraints and then with the second. Which of these
two combinations of constraints is better (in terms of the value of the objective function
that then can be achieved)? To rephrase this question in yes-or-no terms, we ask two com-
plementary questions:

1. Should x1 � 4x2 � 16 be selected as the constraint that must hold?
2. Should 3x1 � 2x2 � 18 be selected as the constraint that must hold?

Because exactly one of these questions is to be answered affirmatively, we let the binary
terms y and 1 � y, respectively, represent these yes-or-no decisions. Thus, y � 1 if the an-
swer is yes to the first question (and no to the second), whereas 1 � y � 1 (that is, y � 0)
if the answer is yes to the second question (and no to the first). Since y � 1 � y � 1 (one
yes) automatically, there is no need to add another constraint to force these two decisions
to be mutually exclusive. (If separate binary variables y1 and y2 had been used instead to
represent these yes-or-no decisions, then an additional constraint y1 � y2 � 1 would have
been needed to make them mutually exclusive.)

A formal presentation of this approach is given next for a more general case.

K out of N Constraints Must Hold

Consider the case where the overall model includes a set of N possible constraints such that
only some K of these constraints must hold. (Assume that K � N.) Part of the optimization
process is to choose the combination of K constraints that permits the objective function
to reach its best possible value. The N � K constraints not chosen are, in effect, elimi-
nated from the problem, although feasible solutions might coincidentally still satisfy some
of them.
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This case is a direct generalization of the preceding case, which had K � 1 and N � 2.
Denote the N possible constraints by

f1(x1, x2, . . . , xn) � d1

f2(x1, x2, . . . , xn) � d2

�

fN (x1, x2, . . . , xn) � dN.

Then, applying the same logic as for the preceding case, we find that an equivalent for-
mulation of the requirement that some K of these constraints must hold is

f1(x1, x2, . . . , xn) � d1 � My1

f2(x1, x2, . . . , xn) � d2 � My2

�

fN (x1, x2, . . . , xn) � dN � MyN

�
N

i�1
yi � N � K,

and

yi is binary, for i � 1, 2, . . . , N,

where M is an extremely large positive number. For each binary variable yi (i � 1, 2, . . . ,
N), note that yi � 0 makes Myi � 0, which reduces the new constraint i to the original con-
straint i. On the other hand, yi � 1 makes (di � Myi) so large that (again assuming a bounded
feasible region) the new constraint i is automatically satisfied by any solution that satisfies
the other new constraints, which has the effect of eliminating the original constraint i. There-
fore, because the constraints on the yi guarantee that K of these variables will equal 0 and
those remaining will equal 1, K of the original constraints will be unchanged and the other
(N � K) original constraints will, in effect, be eliminated. The choice of which K constraints
should be retained is made by applying the appropriate algorithm to the overall problem so
it finds an optimal solution for all the variables simultaneously.

Functions with N Possible Values

Consider the situation where a given function is required to take on any one of N given
values. Denote this requirement by

f(x1, x2, . . . , xn) � d1 or d2, . . . , or dN.

One special case is where this function is

f(x1, x2, . . . , xn) � �
n

j�1
ajxj,

as on the left-hand side of a linear programming constraint. Another special case is where
f(x1, x2, . . . , xn) � xj for a given value of j, so the requirement becomes that xj must take
on any one of N given values.

The equivalent IP formulation of this requirement is the following:

f(x1, x2, . . . , xn) � �
N

i�1
diyi

�
N

i�1
yi � 1

12.3 INNOVATIVE USES OF BINARY VARIABLES IN MODEL FORMULATION 485

hil23453_ch12_474-546.qxd  1/24/70  6:35 AM  Page 485 Final PDF to printer



486 CHAPTER 12 INTEGER PROGRAMMING

and

yi is binary, for i � 1, 2, . . . , N.

so this new set of constraints would replace this requirement in the statement of the over-
all problem. This set of constraints provides an equivalent formulation because exactly one
yi must equal 1 and the others must equal 0, so exactly one di is being chosen as the value
of the function. In this case, there are N yes-or-no questions being asked, namely, should
di be the value chosen (i � 1, 2, . . . , N)? Because the yi respectively represent these yes-
or-no decisions, the second constraint makes them mutually exclusive alternatives.

To illustrate how this case can arise, reconsider the Wyndor Glass Co. problem pre-
sented in Sec. 3.1. Eighteen hours of production time per week in Plant 3 currently is un-
used and available for the two new products or for certain future products that will be
ready for production soon. In order to leave any remaining capacity in usable blocks for
these future products, management now wants to impose the restriction that the produc-
tion time used by the two current new products be 6 or 12 or 18 hours per week. Thus,
the third constraint of the original model (3x1 � 2x2 � 18) now becomes

3x1 � 2x2 � 6 or 12 or 18.

In the preceding notation, N � 3 with d1 � 6, d2 � 12, and d3 � 18. Consequently, man-
agement’s new requirement should be formulated as follows:

3x1 � 2x2 � 6y1 � 12y2 � 18y3

y1 � y2 � y3 � 1

and

y1, y2, y3 are binary.

The overall model for this new version of the problem then consists of the original model
(see Sec. 3.1) plus this new set of constraints that replaces the original third constraint.
This replacement yields a very tractable MIP formulation.

The Fixed-Charge Problem

It is quite common to incur a fixed charge or setup cost when undertaking an activity.
For example, such a charge occurs when a production run to produce a batch of a par-
ticular product is undertaken and the required production facilities must be set up to
initiate the run. In such cases, the total cost of the activity is the sum of a variable cost
related to the level of the activity and the setup cost required to initiate the activity. Fre-
quently the variable cost will be at least roughly proportional to the level of the activity.
If this is the case, the total cost of the activity (say, activity j) can be represented by a
function of the form

fj(xj) � �
where xj denotes the level of activity j (xj � 0), kj denotes the setup cost, and cj denotes
the cost for each incremental unit. Were it not for the setup cost kj, this cost structure would
suggest the possibility of a linear programming formulation to determine the optimal lev-
els of the competing activities. Fortunately, even with the kj, MIP can still be used.

To formulate the overall model, suppose that there are n activities, each with the pre-
ceding cost structure (with kj � 0 in every case and kj � 0 for some j � 1, 2, . . . , n), and
that the problem is to

Minimize Z � f1(x1) � f2(x2) � . . . � fn(xn),

if xj � 0
if xj � 0,

kj � cjxj

0
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subject to

given linear programming constraints.

To convert this problem to an MIP format, we begin by posing n questions that must
be answered yes or no; namely, for each j � 1, 2, . . . , n, should activity j be undertaken
(xj � 0)? Each of these yes-or-no decisions is then represented by an auxiliary binary vari-
able yj, so that

Z � �
n

j�1
(cjxj � kjyj),

where

yj � �
Therefore, the yj can be viewed as contingent decisions similar to (but not identical to)
the type considered in Sec. 12.1. Let M be an extremely large positive number that ex-
ceeds the maximum feasible value of any xj ( j � 1, 2, . . . , n). Then the constraints

xj � Myj for j � 1, 2, . . . , n

will ensure that yj � 1 rather than 0 whenever xj � 0. The one difficulty remaining is that
these constraints leave yj free to be either 0 or 1 when xj � 0. Fortunately, this difficulty
is automatically resolved because of the nature of the objective function. The case where
kj � 0 can be ignored because yj can then be deleted from the formulation. So we con-
sider the only other case, namely, where kj � 0. When xj � 0, so that the constraints per-
mit a choice between yj � 0 and yj � 1, yj � 0 must yield a smaller value of Z than 
yj � 1. Therefore, because the objective is to minimize Z, an algorithm yielding an opti-
mal solution would always choose yj � 0 when xj � 0.

To summarize, the MIP formulation of the fixed-charge problem is

Minimize Z � �
n

j�1
(cjxj � kjyj),

subject to

the original constraints, plus
xj � Myj � 0

and

yj is binary, for j � 1, 2, . . . , n.

If the xj also had been restricted to be integer, then this would be a pure IP problem.
To illustrate this approach, look again at the Nori & Leets Co. air pollution problem

described in Sec. 3.4. The first of the abatement methods considered—increasing the height
of the smokestacks—actually would involve a substantial fixed charge to get ready for any
increase in addition to a variable cost that would be roughly proportional to the amount of
increase. After conversion to the equivalent annual costs used in the formulation, this fixed
charge would be $2 million each for the blast furnaces and the open-hearth furnaces, whereas
the variable costs are those identified in Table 3.14. Thus, in the preceding notation, k1 � 2,
k2 � 2, c1 � 8, and c2 � 10, where the objective function is expressed in units of millions
of dollars. Because the other abatement methods do not involve any fixed charges, kj � 0
for j � 3, 4, 5, 6. Consequently, the new MIP formulation of this problem is

Minimize Z � 8x1 � 10x2 � 7x3 � 6x4 � 11x5 � 9x6 � 2y1 � 2y2,

if xj � 0
if xj � 0.

1
0
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subject to

the constraints given in Sec. 3.4, plus
x1 � My1 � 0,
x2 � My2 � 0,

and

y1, y2 are binary.

Binary Representation of General Integer Variables

Suppose that you have a pure IP problem where most of the variables are binary vari-
ables, but the presence of a few general integer variables prevents you from solving the
problem by one of the very efficient BIP algorithms now available. A nice way to cir-
cumvent this difficulty is to use the binary representation for each of these general inte-
ger variables. Specifically, if the bounds on an integer variable x are

0 � x � u

and if N is defined as the integer such that

2N � u � 2N�1,

then the binary representation of x is

x � �
N

i�0
2iyi,

where the yi variables are (auxiliary) binary variables. Substituting this binary represen-
tation for each of the general integer variables (with a different set of auxiliary binary
variables for each) thereby reduces the entire problem to a BIP model.

For example, suppose that an IP problem has just two general integer variables x1 and
x2 along with many binary variables. Also suppose that the problem has nonnegativity
constraints for both x1 and x2 and that the functional constraints include

x1 � 5
2x1 � 3x2 � 30.

These constraints imply that u � 5 for x1 and u � 10 for x2, so the above definition of N
gives N � 2 for x1 (since 22 � 5 � 23) and N � 3 for x2 (since 23 � 10 � 24). Therefore,
the binary representations of these variables are

x1 � y0 � 2y1 � 4y2

x2 � y3 � 2y4 � 4y5 � 8y6.

After we substitute these expressions for the respective variables throughout all the func-
tional constraints and the objective function, the two functional constraints noted above
become

y0 � 2y1 � 4y2 � 5
2y0 � 4y1 � 8y2 � 3y3 � 6y4 � 12y5 � 24y6 � 30.

Observe that each feasible value of x1 corresponds to one of the feasible values of the
vector (y0, y1, y2), and similarly for x2 and (y3, y4, y5, y6). For example, x1 � 3 corre-
sponds to (y0, y1, y2) � (1, 1, 0), and x2 � 5 corresponds to (y3, y4, y5, y6) � (1, 0, 1, 0).

For an IP problem where all the variables are (bounded) general integer variables, it
is possible to use this same technique to reduce the problem to a BIP model. However,
this is not advisable for most cases because of the explosion in the number of variables
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involved. Applying a good IP algorithm to the original IP model generally should be more
efficient than applying a good BIP algorithm to the much larger BIP model.1

In general terms, for all the formulation possibilities with auxiliary binary variables
discussed in this section, we need to strike the same note of caution. This approach some-
times requires adding a relatively large number of such variables, which can make the
model computationally infeasible. (Section 12.5 will provide some perspective on the sizes
of IP problems that can be solved.)

12.4 SOME FORMULATION EXAMPLES 489

1For evidence supporting this conclusion, see J. H. Owen and S. Mehrotra, “On the Value of Binary Expansions
for General Mixed lnteger Linear Programs,” Operations Research, 50: 810–819, 2002.

■ 12.4 SOME FORMULATION EXAMPLES

We now present a series of examples that illustrate a variety of formulation techniques
with binary variables, including those discussed in the preceding sections. For the sake of
clarity, these examples have been kept very small. (A somewhat larger formulation
example, with dozens of binary variables and constraints, is included in the Solved 
Examples section of the book’s website.) In actual applications, these formulations typi-
cally would be just a small part of a vastly larger model.

EXAMPLE 1 Making Choices When the Decision Variables Are Continuous

The Research and Development Division of the GOOD PRODUCTS COMPANY has de-
veloped three possible new products. However, to avoid undue diversification of the com-
pany’s product line, management has imposed the following restriction:

Restriction 1: From the three possible new products, at most two should be
chosen to be produced.

Each of these products can be produced in either of two plants. For administrative reasons,
management has imposed a second restriction in this regard.

Restriction 2: Just one of the two plants should be chosen to be the sole producer
of the new products.

The production cost per unit of each product would be essentially the same in the two plants.
However, because of differences in their production facilities, the number of hours of pro-
duction time needed per unit of each product might differ between the two plants. These
data are given in Table 12.2, along with other relevant information, including marketing

■ TABLE 12.2 Data for Example 1 (the Good Products Co. problem)

Production Time Used
Production Timefor Each Unit Produced

Available
Product 1 Product 2 Product 3 per Week

Plant 1 3 hours 4 hours 2 hours 30 hours
Plant 2 4 hours 6 hours 2 hours 40 hours

Unit profit 5 7 3 (thousands of dollars)

Sales potential 7 5 9 (units per week)
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estimates of the number of units of each product that could be sold per week if it is pro-
duced. The objective is to choose the products, the plant, and the production rates of the
chosen products so as to maximize total profit.

In some ways, this problem resembles a standard product mix problem such as the
Wyndor Glass Co. example described in Sec. 3.1. In fact, if we changed the problem
by dropping the two restrictions and by requiring each unit of a product to use the
production hours given in Table 12.2 in both plants (so the two plants now perform dif-
ferent operations needed by the products), it would become just such a problem. In par-
ticular, if we let x1, x2, x3 be the production rates of the respective products, the model
then becomes

Maximize Z � 5x1 � 7x2 � 3x3,

subject to

3x1 � 4x2 � 2x3 � 30
4x1 � 6x2 � 2x3 � 40
x1 � 7

x2 � 5
x3 � 9

and

x1 � 0, x2 � 0, x3 � 0.

For the real problem, however, restriction 1 necessitates adding to the model the
constraint

The number of strictly positive decision variables (x1, x2, x3) must be � 2.

This constraint does not fit into a linear or an integer programming format, so the key
question is how to convert it to such a format so that a corresponding algorithm can be
used to solve the overall model. If the decision variables were binary variables, then the
constraint would be expressed in this format as x1 � x2 � x3 � 2. However, with con-
tinuous decision variables, a more complicated approach involving the introduction of aux-
iliary binary variables is needed.

Requirement 2 necessitates replacing the first two functional constraints (3x1 � 4x2

� 2x3 � 30 and 4x1 � 6x2 � 2x3 � 40) by the restriction

Either 3x1 � 4x2 � 2x3 � 30
or 4x1 � 6x2 � 2x3 � 40

must hold, where the choice of which constraint must hold corresponds to the choice of
which plant will be used to produce the new products. We discussed in the preceding sec-
tion how such an either-or constraint can be converted to a linear or an integer program-
ming format, again with the help of an auxiliary binary variable.

Formulation with Auxiliary Binary Variables. To deal with requirement 1, we intro-
duce three auxiliary binary variables (y1, y2, y3) with the interpretation

yj � � if xj � 0 can hold (can produce product j)
if xj � 0 must hold (cannot produce product j),

1
0
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for j � 1, 2, 3. To enforce this interpretation in the model with the help of M (an extremely
large positive number), we add the constraints

x1 � My1

x2 � My2

x3 � My3

y1 � y2 � y3 � 2
yj is binary, for j � 1, 2, 3.

The either-or constraint and nonnegativity constraints give a bounded feasible region 
for the decision variables (so each xj � M throughout this region). Therefore, in each 
xj � Myj constraint, yj � 1 allows any value of xj in the feasible region, whereas yj � 0
forces xj � 0. (Conversely, xj � 0 forces yj � 1, whereas xj � 0 allows either value of yj.)
Consequently, when the fourth constraint forces choosing at most two of the yj to equal 1,
this amounts to choosing at most two of the new products as the ones that can be produced.

To deal with requirement 2, we introduce another auxiliary binary variable y4 with
the interpretation

y4 � �
As discussed in Sec. 12.3, this interpretation is enforced by adding the constraints,

3x1 � 4x2 � 2x3 � 30 � My4

4x1 � 6x2 � 2x3 � 40 � M(1 � y4)
y4 is binary.

Consequently, after we move all variables to the left-hand side of the constraints, the
complete model is

Maximize Z � 5x1 � 7x2 � 3x3,

subject to

x1 � 7
x2 � 5
x3 � 9

x1 � My1 � 0
x2 � My2 � 0
x3 � My3 � 0

y1 � y2 � y3 � 2
3x1 � 4x2 � 2x3 � My4 � 30
4x1 � 6x2 � 2x3 � My4 � 40 � M

and

x1 � 0, x2 � 0, x3 � 0
yj is binary, for j � 1, 2, 3, 4.

This now is an MIP model, with three variables (the xj) not required to be integer and
four binary variables, so an MIP algorithm can be used to solve the model. When this is
done (after substituting a large numerical value for M),2 the optimal solution is y1 � 1,

if 4x1 � 6x2 � 2x3 � 40 must hold (choose Plant 2)
if 3x1 � 4x2 � 2x3 � 30 must hold (choose Plant 1).

1
0
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2In practice, some care is taken to choose a value for M that definitely is large enough to avoid eliminating any
feasible solutions, but as small as possible otherwise in order to avoid unduly enlarging the feasible region for
the LP relaxation (described in the next section) and to avoid numerical instability. For this example, a careful
examination of the constraints reveals that the minimum feasible value of M is M � 9.
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y2 � 0, y3 � 1, y4 � 1, x1 � 5	
1
2

	, x2 � 0, and x3 � 9; that is, choose products 1 and 3 to
produce, choose Plant 2 for the production, and choose the production rates of 5	

1
2

	 units
per week for product 1 and 9 units per week for product 3. The resulting total profit is
$54,500 per week.

EXAMPLE 2 Violating Proportionality

The SUPERSUDS CORPORATION is developing its marketing plans for next year’s new
products. For three of these products, the decision has been made to purchase a total of
five TV spots for commercials on national television networks. The problem we will fo-
cus on is how to allocate the five spots to these three products, with a maximum of three
spots (and a minimum of zero) for each product.

Table 12.3 shows the estimated impact of allocating zero, one, two, or three spots to
each product. This impact is measured in terms of the profit (in units of millions of dol-
lars) from the additional sales that would result from the spots, considering also the cost
of producing the commercial and purchasing the spots. The objective is to allocate five
spots to the products so as to maximize the total profit.

This small problem can be solved easily by dynamic programming (Chap. 11) or even
by inspection. (The optimal solution is to allocate two spots to product 1, no spots to
product 2, and three spots to product 3.) However, we will show two different BIP for-
mulations for illustrative purposes. Such a formulation would become necessary if this
small problem needed to be incorporated into a larger IP model involving the allocation
of resources to marketing activities for all the corporation’s new products.

One Formulation with Auxiliary Binary Variables. A natural formulation would
be to let x1, x2, x3 be the number of TV spots allocated to the respective products. The
contribution of each xj to the objective function then would be given by the correspond-
ing column in Table 12.3. However, each of these columns violates the assumption of pro-
portionality described in Sec. 3.3. Therefore, we cannot write a linear objective function
in terms of these integer decision variables.

Now see what happens when we introduce an auxiliary binary variable yij for each
positive integer value of xi � j ( j � 1, 2, 3), where yij has the interpretation

yij � �
(For example, y21 � 0, y22 � 0, and y23 � 1 mean that x2 � 3.) The resulting linear BIP
model is

Maximize Z � y11 � 3y12 � 3y13 � 2y22 � 3y23 � y31 � 2y32 � 4y33,

if xi � j
otherwise.

1
0

■ TABLE 12.3 Data for Example 2 (the 
Supersuds Corp. problem)

Profit

Product
Number of
TV Spots 1 2 3

0 0 0 �0
1 1 0 �1
2 3 2 �2
3 3 3 �4
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subject to

y11 � y12 � y13 � 1
y21 � y22 � y23 � 1
y31 � y32 � y33 � 1

y11 � 2y12 � 3y13 � y21 � 2y22 � 3y23 � y31 � 2y32 � 3y33 � 5

and

each yij is binary.

Note that the first three functional constraints ensure that each xi will be assigned just
one of its possible values. (Here yi1 � yi2 � yi3 � 0 corresponds to xi � 0, which con-
tributes nothing to the objective function.) The last functional constraint ensures that 
x1 � x2 � x3 � 5. The linear objective function then gives the total profit according to
Table 12.3.

Solving this BIP model gives an optimal solution of

y11 � 0, y12 � 1, y13 � 0, so x1 � 2
y21 � 0, y22 � 0, y23 � 0, so x2 � 0
y31 � 0, y32 � 0, y33 � 1, so x3 � 3.

Another Formulation with Auxiliary Binary Variables. We now redefine the above
auxiliary binary variables yij as follows:

yij � �
Thus, the difference is that yij � 1 now if xi � j instead of xi � j. Therefore,

xi � 0 ⇒ yi1 � 0, yi2 � 0, yi3 � 0,
xi � 1 ⇒ yi1 � 1, yi2 � 0, yi3 � 0,
xi � 2 ⇒ yi1 � 1, yi2 � 1, yi3 � 0,
xi � 3 ⇒ yi1 � 1, yi2 � 1, yi3 � 1,
so xi � yi1 � yi2 � yi3

for i � 1, 2, 3. Because allowing yi2 � 1 is contingent upon yi1 � 1 and allowing yi3 � 1
is contingent upon yi2 � 1, these definitions are enforced by adding the constraints

yi2 � yi1 and yi3 � yi2, for i � 1, 2, 3.

The new definition of the yij also changes the objective function, as illustrated in
Fig. 12.1 for the product 1 portion of the objective function. Since y11, y12, y13 provide
the successive increments (if any) in the value of x1 (starting from a value of 0), the co-
efficients of y11, y12, y13 are given by the respective increments in the product 1 column
of Table 12.3 (1 � 0 � 1, 3 � 1 � 2, 3 � 3 � 0). These increments are the slopes in
Fig. 12.1, yielding 1y11 � 2y12 � 0y13 for the product 1 portion of the objective func-
tion. Note that applying this approach to all three products still must lead to a linear ob-
jective function.

After we bring all variables to the left-hand side of the constraints, the resulting com-
plete BIP model is

Maximize Z � y11 � 2y12 � 2y22 � y23 � y31 � 3y32 � 2y33,

if xi � j
otherwise.

1
0
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Profit from product 1 � 1y11 � 2y12 � 0y13

1 2 3 x1

4

3

2

1

0

Slope � 1

Slope � 2

Slope � 0

y11 y12 y13

■ FIGURE 12.1
The profit from the
additional sales of product 1
that would result from x1
TV spots, where the slopes
give the corresponding
coefficients in the objective
function for the second BIP
formulation for Example 2
(the Supersuds Corp.
problem).

subject to

y12 � y11 � 0
y13 � y12 � 0
y22 � y21 � 0
y23 � y22 � 0
y32 � y31 � 0
y33 � y32 � 0
y11 � y12 � y13 � y21 � y22 � y23 � y31 � y32 � y33 � 5

and

each yij is binary.

Solving this BIP model gives an optimal solution of

y11 � 1, y12 � 1, y13 � 0, so x1 � 2
y21 � 0, y22 � 0, y23 � 0, so x2 � 0
y31 � 1, y32 � 1, y33 � 1, so x3 � 3.

There is little to choose between this BIP model and the preceding one other than
personal taste. They have the same number of binary variables (the prime consideration
in determining computational effort for BIP problems). They also both have some special
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SOUTHWESTERN AIRWAYS needs to assign its crews to cover all its upcoming flights.
We will focus on the problem of assigning three crews based in San Francisco to the flights
listed in the first column of Table 12.4. The other 12 columns show the 12 feasible sequences
of flights for a crew. (The numbers in each column indicate the order of the flights.) Exactly
three of the sequences need to be chosen (one per crew) in such a way that every flight is
covered. (It is permissible to have more than one crew on a flight, where the extra crews
would fly as passengers, but union contracts require that the extra crews would still need to
be paid for their time as if they were working.) The cost of assigning a crew to a particular
sequence of flights is given (in thousands of dollars) in the bottom row of the table. The ob-
jective is to minimize the total cost of the three crew assignments that cover all the flights.

Formulation with Binary Variables. With 12 feasible sequences of flights, we have
12 yes-or-no decisions:

Should sequence j be assigned to a crew? ( j � 1, 2, . . . , 12)

Therefore, we use 12 binary variables to represent these respective decisions:

xj � �
The most interesting part of this formulation is the nature of each constraint that

ensures that a corresponding flight is covered. For example, consider the last flight in
Table 12.4 [Seattle to Los Angeles (LA)]. Five sequences (namely, sequences 6, 9, 10,
11, and 12) include this flight. Therefore, at least one of these five sequences must be
chosen. The resulting constraint is

x6 � x9 � x10 � x11 � x12 � 1.

Using similar constraints for the other 10 flights, the complete BIP model is

Minimize Z � 2x1 � 3x2 � 4x3 � 6x4 � 7x5 � 5x6 � 7x7 � 8x8 � 9x9

� 9x10 � 8x11 � 9x12,

if sequence j is assigned to a crew
otherwise.

1
0
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EXAMPLE 3 Covering All Characteristics

■ TABLE 12.4 Data for Example 3 (the Southwestern Airways problem)

Feasible Sequence of Flights

Flight 1 2 3 4 5 6 7 8 9 10 11 12

1. San Francisco to Los Angeles 1 1 1 1
2. San Francisco to Denver 1 1 1 1
3. San Francisco to Seattle 1 1 1 1
4. Los Angeles to Chicago 2 2 3 2 3
5. Los Angeles to San Francisco 2 3 5 5
6. Chicago to Denver 3 3 4
7. Chicago to Seattle 3 3 3 3 4
8. Denver to San Francisco 2 4 4 5
9. Denver to Chicago 2 2 2

10. Seattle to San Francisco 2 4 4 5
11. Seattle to Los Angeles 2 2 4 4 2

Cost, $1,000’s 2 3 4 6 7 5 7 8 9 9 8 9

structure (constraints for mutually exclusive alternatives in the first model and constraints
for contingent decisions in the second) that can lead to speedup. The second model does
have more functional constraints than the first.
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subject to

x1 � x4 � x7 � x10 � 1 (SF to LA)
x2 � x5 � x8 � x11 � 1 (SF to Denver)
x3 � x6 � x9 � x12 � 1 (SF to Seattle)

x4 � x7 � x9 � x10 � x12 � 1 (LA to Chicago)
x1 � x6 � x10 � x11 � 1 (LA to SF)

x4 � x5 � x9 � 1 (Chicago to Denver)
x7 � x8 � x10 � x11 � x12 � 1 (Chicago to Seattle)

x2 � x4 � x5 � x9 � 1 (Denver to SF)
x5 � x8 � x11 � 1 (Denver to Chicago)

x3 � x7 � x8 � x12 � 1 (Seattle to SF)
x6 � x9 � x10 � x11 � x12 � 1 (Seattle to LA)

�
12

j�1
xj � 3 (assign three crews)

and

xj is binary, for j � 1, 2, . . . , 12.

One optimal solution for this BIP model is

x3 � 1 (assign sequence 3 to a crew)
x4 � 1 (assign sequence 4 to a crew)

x11 � 1 (assign sequence 11 to a crew)

and all other xj � 0, for a total cost of $18,000. (Another optimal solution is x1 � 1,
x5 � 1, x12 � 1, and all other xj � 0.)

This example illustrates a broader class of problems called set covering problems.3

Any set covering problem can be described in general terms as involving a number of po-
tential activities (such as flight sequences) and characteristics (such as flights). Each ac-
tivity possesses some but not all of the characteristics. The objective is to determine the
least costly combination of activities that collectively possess (cover) each characteristic
at least once. Thus, let Si be the set of all activities that possess characteristic i. At least
one member of the set Si must be included among the chosen activities, so a constraint,

�
j�Si

xj � 1,

is included for each characteristic i.
A related class of problems, called set partitioning problems, changes each such

constraint to

�
j�Si

xj � 1,

so now exactly one member of each set Si must be included among the chosen activities.
For the crew scheduling example, this means that each flight must be included exactly
once among the chosen flight sequences, which rules out having extra crews (as passen-
gers) on any flight.

3Strictly speaking, a set covering problem does not include any other functional constraints such as the last func-
tional constraint in the above crew scheduling example. It also is sometimes assumed that every coefficient in
the objective function being minimized equals one, and then the name weighted set covering problem is used
when this assumption does not hold.
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It may seem that IP problems should be relatively easy to solve. After all, linear pro-
gramming problems can be solved extremely efficiently, and the only difference is that
IP problems have far fewer solutions to be considered. In fact, pure IP problems with a
bounded feasible region are guaranteed to have just a finite number of feasible solutions.

Unfortunately, there are two fallacies in this line of reasoning. One is that having a fi-
nite number of feasible solutions ensures that the problem is readily solvable. Finite num-
bers can be astronomically large. For example, consider the simple case of BIP problems.
With n variables, there are 2n solutions to be considered (where some of these solutions can
subsequently be discarded because they violate the functional constraints). Thus, each time
n is increased by 1, the number of solutions is doubled. This pattern is referred to as the
exponential growth of the difficulty of the problem. With n � 10, there are more than
1,000 solutions (1,024); with n � 20, there are more than 1,000,000; with n � 30, there
are more than 1 billion; and so forth. Therefore, even the fastest computers are incapable
of performing exhaustive enumeration (checking each solution for feasibility and, if it is
feasible, calculating the value of the objective value) for BIP problems with more than a
few dozen variables, let alone for general IP problems with the same number of integer
variables. Fortunately, by starting with the ideas described in subsequent sections, today’s
best IP algorithms are vastly superior to exhaustive enumeration. The improvement over
just the past two or three decades has been dramatic. BIP problems that would have re-
quired years of computing time to solve 25 years ago now can be solved in seconds with
today’s best commercial software. This huge speedup is due to great progress in three 
areas—dramatic improvements in BIP algorithms (as well as other IP algorithms), striking
improvements in linear programming algorithms that are heavily used within the integer pro-
gramming algorithms, and the great speedup in computers (including desktop computers). As
a result, vastly larger BIP problems now are sometimes being solved than would have been
possible in past decades. The best algorithms today are capable of solving some pure BIP
problems with over a hundred thousand variables. Nevertheless, because of exponential
growth, even the best algorithms cannot be guaranteed to solve every relatively small prob-
lem (less than a few hundred binary variables). Depending on their characteristics, certain
relatively small problems can be much more difficult to solve than some much larger ones.4

When dealing with general integer variables instead of binary variables, the size of the
problems that can be solved tend to be substantially smaller. However, there are exceptions.

The second fallacy is that removing some feasible solutions (the noninteger ones)
from a linear programming problem will make it easier to solve. To the contrary, it is only
because all these feasible solutions are there that the guarantee usually can be given
(see Sec. 5.1) that there will be a corner-point feasible (CPF) solution [and so a cor-
responding basic feasible (BF) solution] that is optimal for the overall problem. This guar-
antee is the key to the remarkable efficiency of the simplex method. As a result, linear
programming problems generally are considerably easier to solve than IP problems.

Consequently, most successful algorithms for integer programming incorporate a lin-
ear programming algorithm, such as the simplex method (or dual simplex method), as
much as they can by relating portions of the IP problem under consideration to the cor-
responding linear programming problem (i.e., the same problem except that the integer
restriction is deleted). For any given IP problem, this corresponding linear programming

12.5 SOME PERSPECTIVES ON SOLVING INTEGER PROGRAMMING 497

■ 12.5 SOME PERSPECTIVES ON SOLVING INTEGER 
PROGRAMMING PROBLEMS

4For information about predicting the time required to solve a particular integer programming problem, see
Ozaltin, O. Y., B. Hunsaker, and A. J. Schaefer: “Predicting the Solution Time of Branch-and-Bound Algorithms
for Mixed-Integer Programs,” INFORMS Journal on Computing, 23(3): 392–403, Summer 2011.
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and maximum permissible shift lengths), but continuous
decision variables in this case, so the model is a mixed IP
model. The main constraints specify that the number of
employees working during each 15-minute time interval
must be greater than or equal to the minimum number
required during that interval (according to the forecasting
model).

This MIP model is similar to the linear program-
ming model for a personnel scheduling example that is
presented in Sec. 3.4. However, the key difference is that
the number of employees working shifts at Taco Bell
restaurants is much smaller than for this example in 
Sec. 3.4 that involves over 100 employees, so it is neces-
sary to restrict these decision variables to integer values
for the Taco Bell model (whereas noninteger values in a
solution for the example with over 100 employees can
readily be rounded to integer values with little loss of
accuracy).

The implementation of this MIP model along with
the other components of the labor-management system
has provided Taco Bell with documented savings of
$13 million per year in labor costs.

Source: J. Hueter and W. Swart: “An Integrated Labor-
Management System for Taco Bell,” Interfaces, 28(1): 75–91,
Jan.–Feb. 1998. (A link to this article is provided on our 
website, www.mhhe.com/hillier.)

As of 2013, Taco Bell Corporation has approximately
5,600 quick-service restaurants in the United States and
about 250 more in 20 other countries. It serves over 2 bil-
lion meals per year.

At each Taco Bell restaurant, the amount of business
is highly variable throughout the day (and from day to
day), with a heavy concentration during the normal meal
times. Therefore, determining how many employees
should be scheduled to perform what functions in the
restaurant at any given time is a complex and vexing
problem.

To attack this problem, Taco Bell management
instructed an OR team (including several consultants) to
develop a new labor-management system. The team con-
cluded that the system needed three major components:
(1) a forecasting model for predicting customer transac-
tions at any time, (2) a simulation model (such as those
described in Chap. 20) to translate customer transactions
to labor requirements, and (3) an integer programming
model to schedule employees to satisfy labor require-
ments and minimize payroll.

The integer decision variables for this integer pro-
gramming model for any restaurant are the number of
employees assigned to each of the shifts that begin at var-
ious specified times. The lengths of these shifts also are
decision variables (constrained to be between minimum

An Application Vignette

problem commonly is referred to as its LP relaxation. The algorithms presented in the
next two sections illustrate how a sequence of LP relaxations for portions of an IP prob-
lem can be used to solve the overall IP problem effectively.

There is one special situation where solving an IP problem is no more difficult than
solving its LP relaxation once by the simplex method, namely, when the optimal solution
to the latter problem turns out to satisfy the integer restriction of the IP problem. When
this situation occurs, this solution must be optimal for the IP problem as well, because it
is the best solution among all the feasible solutions for the LP relaxation, which includes
all the feasible solutions for the IP problem. Therefore, it is common for an IP algorithm
to begin by applying the simplex method to the LP relaxation to check whether this for-
tuitous outcome has occurred.

Although it generally is quite fortuitous indeed for the optimal solution to the LP re-
laxation to be integer as well, there actually exist several special types of IP problems for
which this outcome is guaranteed. You already have seen the most prominent of these
special types in Chaps. 9 and 10, namely, the minimum cost flow problem (with integer pa-
rameters) and its special cases (including the transportation problem, the assignment prob-
lem, the shortest-path problem, and the maximum flow problem). This guarantee can be
given for these types of problems because they possess a certain special structure (e.g., see
Table 9.6) that ensures that every BF solution is integer, as stated in the integer solutions
property given in Secs. 9.1 and 10.6. Consequently, these special types of IP problems can
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be treated as linear programming problems, because they can be solved completely by a
streamlined version of the simplex method.

Although this much simplification is somewhat unusual, in practice IP problems
frequently have some special structure that can be exploited to simplify the problem.
(Examples 2 and 3 in the preceding section fit into this category, because of their mu-
tually exclusive alternatives constraints or contingent decisions constraints or set-covering
constraints.) Sometimes, very large versions of these problems can be solved success-
fully. Special-purpose algorithms designed specifically to exploit certain kinds of spe-
cial structures can be very useful in integer programming.

Thus, the three primary determinants of computational difficulty for an IP problem
are (1) the number of integer variables, (2) whether these integer variables are binary vari-
ables or general integer variables, and (3) any special structure in the problem. This sit-
uation is in contrast to linear programming, where the number of (functional) constraints
is much more important than the number of variables. In integer programming, the num-
ber of constraints is of some importance (especially if LP relaxations are being solved),
but it is strictly secondary to the other three factors. In fact, there occasionally are cases
where increasing the number of constraints decreases the computation time because the
number of feasible solutions has been reduced. For MIP problems, it is the number of in-
teger variables rather than the total number of variables that is important, because the con-
tinuous variables have almost no effect on the computational effort.

Because IP problems are, in general, much more difficult to solve than linear pro-
gramming problems, sometimes it is tempting to use the approximate procedure of sim-
ply applying the simplex method to the LP relaxation and then rounding the noninteger
values to integers in the resulting solution. This approach may be adequate for some ap-
plications, especially if the values of the variables are quite large so that rounding creates
relatively little error. However, you should beware of two pitfalls involved in this approach.

One pitfall is that an optimal linear programming solution is not necessarily feasible
after it is rounded. Often it is difficult to see in which way the rounding should be done
to retain feasibility. It may even be necessary to change the value of some variables by
one or more units after rounding. To illustrate, consider the following problem:

Maximize Z � x2,

subject to

�x1 � x2 � 	
1
2

	

�x1 � x2 � 3	
1
2

	

and

x1 � 0, x2 � 0
x1, x2 are integers.

As Fig. 12.2 shows, the optimal solution for the LP relaxation is x1 � 1	
1
2

	, x2 � 2, but it is
impossible to round the noninteger variable x1 to 1 or 2 (or any other integer) and retain
feasibility. Feasibility can be retained only by also changing the integer value of x2. It is
easy to imagine how such difficulties can be compounded when there are hundreds or
thousands of constraints and variables.

Even if an optimal solution for the LP relaxation is rounded successfully, there re-
mains another pitfall. There is no guarantee that this rounded solution will be the optimal
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integer solution. In fact, it may even be far from optimal in terms of the value of the ob-
jective function. This fact is illustrated by the following problem:

Maximize Z � x1 � 5x2,

subject to

x1 � 10x2 � 20
x1 � 2

and

x1 � 0, x2 � 0
x1, x2 are integers.

Because there are only two decision variables, this problem can be depicted graphically
as shown in Fig. 12.3. Either the graph or the simplex method may be used to find that
the optimal solution for the LP relaxation is x1 � 2, x2 � 	

9
5

	, with Z � 11. If a graphical
solution were not available (which would be the case with more decision variables), then
the variable with the noninteger value x2 � 	

9
5

	 would normally be rounded in the feasible
direction to x2 � 1. The resulting integer solution is x1 � 2, x2 � 1, which yields Z � 7.
Notice that this solution is far from the optimal solution (x1, x2) � (0, 2), where Z � 10.

Because of these two pitfalls, a better approach for dealing with IP problems that are
too large to be solved exactly is to use one of the available heuristic algorithms. These
algorithms are extremely efficient for large problems, but they are not guaranteed to find
an optimal solution. However, they do tend to be considerably more effective than the
rounding approach just discussed in finding very good feasible solutions.5

1 2 3 4 x1

3

2

1

0

The rounded solutions
are not feasible

3
2

( , 2)

Optimal solution for
the LP relaxation

Feasible region for
the LP relaxation

x2

■ FIGURE 12.2
An example of an IP problem
where the optimal solution
for the LP relaxation cannot
be rounded in any way that
retains feasibility.

5For recent research on heuristic algorithms, see Bertsimas, D., D. A. Iancu, and D. Katz: “A New Local Search
Algorithm for Binary Optimization,” INFORMS Journal on Computing, 25(2): 208–221, Spring 2013.
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■ 12.6 THE BRANCH-AND-BOUND TECHNIQUE AND ITS APPLICATION 
TO BINARY INTEGER PROGRAMMING

Because any bounded pure IP problem has only a finite number of feasible solutions, it
is natural to consider using some kind of enumeration procedure for finding an optimal
solution. Unfortunately, as we discussed in the preceding section, this finite number can 
be, and usually is, very large. Therefore, it is imperative that any enumeration procedure be
cleverly structured so that only a tiny fraction of the feasible solutions actually need be
examined. For example, dynamic programming (see Chap. 11) provides one such kind of
procedure for many problems having a finite number of feasible solutions (although it is
not particularly efficient for most IP problems). Another such approach is provided by the
branch-and-bound technique. This technique and variations of it have been applied with

1 2 3 x1

x2

3

2

1

0

Z* � 10 � x1 � 5x2

Rounded solution

Optimal IP solution

Optimal solution for
the LP relaxation

■ FIGURE 12.3
An example where rounding
the optimal solution for the
LP relaxation is far from
optimal for the IP problem.

One of the particularly exciting developments in OR in recent years has been the rapid
progress in developing very effective heuristic algorithms (commonly called metaheuristics)
for various combinatorial problems such as IP problems. Three prominent types of meta-
heuristics (tabu search, simulated annealing, and genetic algorithms) will be described in
Chap. 14. These sophisticated metaheuristics can even be applied to integer nonlinear pro-
gramming problems that have locally optimal solutions that may be far removed from a
globally optimal solution. They also can be applied to various combinatorial optimization
problems, which frequently can be represented in a model that has integer variables but also
has some constraints that are more complicated than for an IP model. (We’ll discuss such
applications further in Chap. 14.)

Returning to integer linear programming, for IP problems that are small enough to
be solved to optimality, a considerable number of algorithms now are available. However,
no IP algorithm possesses computational efficiency that is nearly comparable to the sim-
plex method (except on special types of problems). Therefore, developing IP algorithms
has continued to be an active area of research. Fortunately, some exciting algorithmic
advances have been made and additional progress can be anticipated during the coming
years. These advances are discussed further in Secs. 12.8 and 12.9.

The most popular traditional mode for IP algorithms is to use the branch-and-bound
technique and related ideas to implicitly enumerate the feasible integer solutions, and we
shall focus on this approach. The next section presents the branch-and-bound technique in
a general context, and illustrates it with a basic branch-and-bound algorithm for BIP prob-
lems. Section 12.7 presents another algorithm of the same type for general MIP problems.
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some success to a variety of OR problems, but it is especially well known for its appli-
cation to IP problems.

The basic concept underlying the branch-and-bound technique is to divide and con-
quer. Since the original “large” problem is too difficult to be solved directly, it is divided
into smaller and smaller subproblems until these subproblems can be conquered. The di-
viding (branching) is done by partitioning the entire set of feasible solutions into smaller
and smaller subsets. The conquering ( fathoming) is done partially by bounding how good
the best solution in the subset can be and then discarding the subset if its bound indicates
that it cannot possibly contain an optimal solution for the original problem.

We shall now describe in turn these three basic steps—branching, bounding, and
fathoming—and illustrate them by applying a branch-and-bound algorithm to the proto-
type example (the California Manufacturing Co. problem) presented in Sec. 12.1 and re-
peated here (with the constraints numbered for later reference).

Maximize Z � 9x1 � 5x2 � 6x3 � 4x4,

subject to

(1) 6x1 � 3x2 � 5x3 � 2x4 � 10
(2) 3 � 3x2 � 5x3 � 2x4 � 1
(3) �x1 � 3x3 � 0
(4) x1 ��x2 � 5x3 � x4 � 0

and

(5) xj is binary, for j � 1, 2, 3, 4.

Branching

When you are dealing with binary variables, the most straightforward way to partition the
set of feasible solutions into subsets is to fix the value of one of the variables (say, x1) at
x1 � 0 for one subset and at x1 � 1 for the other subset. Doing this for the prototype ex-
ample divides the whole problem into the two smaller subproblems shown next.

Subproblem 1:
Fix x1 � 0 so the resulting subproblem reduces to

Maximize Z � 5x2 � 6x3 � 4x4,

subject to

(1) 3x2 � 5x3 � 2x4 � 10
(2) x3 � x4 � 1
(3) x3 � 0
(4) �x2 5x3 � x4 � 0
(5) xj is binary, for j � 2, 3, 4.

Subproblem 2:
Fix x1 � 1 so the resulting subproblem reduces to

Maximize Z � 9 � 5x2 � 6x3 � 4x4,

subject to

(1) 3x2 � 5x3 � 2x4 � 4
(2) x3 � x4 � 1
(3) x3 � 1
(4) �x2 5x3 � x4 � 0
(5) xj is binary, for j � 2, 3, 4.
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Figure 12.4 portrays this dividing (branching) into subproblems by a tree (defined in
Sec. 10.2) with branches (arcs) from the All node (corresponding to the whole problem
having all feasible solutions) to the two nodes corresponding to the two subproblems.
This tree, which will continue “growing branches” iteration by iteration, is referred to as
the branching tree (or solution tree or enumeration tree) for the algorithm. The variable
used to do this branching at any iteration by assigning values to the variable (as with x1

above) is called the branching variable. (Sophisticated methods for selecting branching
variables are an important part of most branch-and-bound algorithms but, for simplicity,
we always select them in their natural order—x1, x2, . . . , xn—throughout this section.)

Later in the section you will see that one of these subproblems can be conquered
(fathomed) immediately, whereas the other subproblem will need to be divided further
into smaller subproblems by setting x2 � 0 or x2 � 1.

For other IP problems where the integer variables have more than two possible
values, the branching can still be done by setting the branching variable at its respective in-
dividual values, thereby creating more than two new subproblems. However, a good al-
ternate approach is to specify a range of values (for example, xj � 2 or xj � 3) for the
branching variable for each new subproblem. This is the approach used for the algorithm
presented in Sec. 12.7.

Bounding

For each of these subproblems, we now need to obtain a bound on how good its best fea-
sible solution can be. The standard way of doing this is to quickly solve a simpler relax-
ation of the subproblem. In most cases, a relaxation of a problem is obtained simply by
deleting (“relaxing”) one set of constraints that had made the problem difficult to solve.
For IP problems, the most troublesome constraints are those requiring the respective vari-
ables to be integer. Therefore, the most widely used relaxation is the LP relaxation that
deletes this set of constraints.

To illustrate for the example, consider first the whole problem given in Sec. 12.1 (and
repeated at the beginning of this section). Its LP relaxation is obtained by replacing the last
line of the model (xj is binary, for j � 1, 2, 3, 4) by the following new (relaxed) version of
this constraint (5).

(5) 0 � xj � 1, for j � 1, 2, 3, 4.

Using the simplex method to quickly solve this LP relaxation yields its optimal solution

(x1, x2, x3, x4) � �	
5
6

	, 1, 0, 1�, with Z � 16	
1
2

	.

Therefore, Z � 16	
1
2

	 for all feasible solutions for the original BIP problem (since these so-
lutions are a subset of the feasible solutions for the LP relaxation). In fact, as indicated
later in the summary of the algorithm, this bound of 16	

1
2

	 can be rounded down to 16, be-
cause all coefficients in the objective function are integer, so all integer solutions must
have an integer value for Z.

Bound for whole problem: Z � 16.

Now let us obtain the bounds for the two subproblems (shown in the preceding sub-
section) in the same way. In both cases, the LP relaxation is obtained by replacing the last
constraint (xj is binary for j = 2, 3, 4) by

(5) 0 � xj � 1, for j = 2, 3, 4.

Applying the simplex method then yields the optimal solutions shown next for these
LP relaxations.
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All

x1 = 1

x1Variable:

x1 = 0

■ FIGURE 12.4
The branching tree created
by the branching for the first
iteration of the BIP branch-
and-bound algorithm for the
example in Sec. 12.1.
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LP relaxation of subproblem 1: x1 � 0  and (5)   0 � xj � 1 for j � 2, 3, 4.

Optimal solution: (x1, x2, x3, x4) � (0, 1, 0, 1) with Z � 9.

LP relaxation of subproblem 2: x1 � 1  and (5)   0 � xj � 1 for j � 2, 3, 4.

Optimal solution: (x1, x2, x3, x4) � �1, 	
4
5

	, 0, 	
4
5

	� with Z � 16	
1
5

	.

The resulting bounds for the subproblems then are

Bound for subproblem 1: Z � 9,
Bound for subproblem 2: Z � 16.

Figure 12.5 summarizes these results, where the numbers given just below the nodes
are the bounds and below each bound is the optimal solution obtained for the LP relaxation.

Fathoming

A subproblem can be conquered (fathomed), and thereby dismissed from further consid-
eration, in the three ways described below.

One way is illustrated by the results for subproblem 1 given by the x1 � 0 node in
Fig. 12.5. Note that the (unique) optimal solution for its LP relaxation, (x1, x2, x3, x4) � (0, 1,
0, 1), is an integer solution. Therefore, this solution must also be the optimal solution for sub-
problem 1 itself. This solution should be stored as the first incumbent (the best feasible so-
lution found so far) for the whole problem, along with its value of Z. This value is denoted by

Z* � value of Z for current incumbent,

so Z* � 9 at this point. Since this solution has been stored, there is no reason to consider
subproblem 1 any further by branching from the x1 � 0 node, etc. Doing so could only
lead to other feasible solutions that are inferior to the incumbent, and we have no inter-
est in such solutions. Because it has been solved, we fathom (dismiss) subproblem 1 now.

The above results suggest a second key fathoming test. Since Z* � 9, there is no rea-
son to consider further any subproblem whose bound (after rounding down) � 9, since
such a subproblem cannot have a feasible solution better than the incumbent. Stated more
generally, a subproblem is fathomed whenever its

Bound � Z*.

This outcome does not occur in the current iteration of the example because subproblem 2
has a bound of 16 that is larger than 9. However, it might occur later for descendants of
this subproblem (new smaller subproblems created by branching on this subproblem, and
then perhaps branching further through subsequent “generations”). Furthermore, as new in-
cumbents with larger values of Z* are found, it will become easier to fathom in this way.

The third way of fathoming is quite straightforward. If the simplex method finds that
a subproblem’s LP relaxation has no feasible solutions, then the subproblem itself must
have no feasible solutions, so it can be dismissed (fathomed).

In all three cases, we are conducting our search for an optimal solution by retaining
for further investigation only those subproblems that could possibly have a feasible solu-
tion better than the current incumbent.

Summary of Fathoming Tests. A subproblem is fathomed (dismissed from further
consideration) if

Test 1: Its bound � Z*,
or
Test 2: Its LP relaxation has no feasible solutions,

All

x1Variable:

9
(0, 1, 0, 1)

5
6(   , 1, 0, 1               )

16

4
5

4
5(                )

16

1, , 0,

x1 = 0

x1 = 1

■ FIGURE 12.5
The results of bounding for
the first iteration of the BIP
branch-and-bound algorithm
for the example in Sec. 12.1.
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or
Test 3: The optimal solution for its LP relaxation is integer. (If this solution is better

than the incumbent, it becomes the new incumbent, and test 1 is reapplied to all unfathomed
subproblems with the new larger Z*.)

Figure 12.6 summarizes the results of applying these three tests to subproblems 1 and
2 by showing the current branching tree. Only subproblem 1 has been fathomed, by test 3,
as indicated by F(3) next to the x1 � 0 node. The resulting incumbent also is identified be-
low this node.

The subsequent iterations will illustrate successful applications of all three tests. How-
ever, before continuing the example, we summarize the algorithm being applied to this
BIP problem. (This algorithm assumes that the objective function is to be maximized, that
all coefficients in the objective function are integer and, for simplicity, that the ordering
of the variables for branching is x1, x2, . . . , xn. As noted previously, most branch-and-bound
algorithms use sophisticated methods for selecting branching variables instead.)

Summary of the BIP Branch-and-Bound Algorithm

Initialization: Set Z* � �
. Apply the bounding step, fathoming step, and opti-
mality test described below to the whole problem. If not fathomed, classify this prob-
lem as the one remaining “subproblem” for performing the first full iteration below.

Steps for each iteration:

1. Branching: Among the remaining (unfathomed) subproblems, select the one that was
created most recently. (Break ties according to which has the larger bound.) Branch
from the node for this subproblem to create two new subproblems by fixing the next
variable (the branching variable) at either 0 or 1.

2. Bounding: For each new subproblem, solve its LP relaxation to obtain an optimal 
solution, including the value of Z, for this LP relaxation. If this value of Z is not an in-
teger, round it down to an integer. (If it was already an integer, no change is needed.)
This integer value of Z is the bound for the subproblem.

3. Fathoming: For each new subproblem, apply the three fathoming tests summarized
above, and discard those subproblems that are fathomed by any of the tests.

Optimality test: Stop when there are no remaining subproblems that have not
been fathomed; the current incumbent is optimal.6 Otherwise, return to perform
another iteration.
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6If there is no incumbent, the conclusion is that the problem has no feasible solutions.

All

x1Variable:

     9 � Z*
(0, 1, 0, 1) � incumbent

16

16

F(3)

x1 = 1

x1 = 0

■ FIGURE 12.6
The branching tree after the
first iteration of the BIP
branch-and-bound algorithm
for the example in Sec. 12.1.
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The branching step for this algorithm warrants a comment as to why the subproblem
to branch from is selected in this way. One option not used here (but sometimes adopted in
other branch-and-bound algorithms) would have been always to select the remaining sub-
problem with the best bound, because this subproblem would be the most promising one to
contain an optimal solution for the whole problem. The reason for instead selecting the most
recently created subproblem is that LP relaxations are being solved in the bounding step.
Rather than start the simplex method from scratch each time, each LP relaxation generally
is solved by reoptimization in large-scale implementations of this algorithm.7 This reopti-
mization involves revising the final simplex tableau from the preceding LP relaxation as
needed because of the few differences in the model ( just as for sensitivity analysis) and then
applying a few iterations of the appropriate algorithm (perhaps the dual simplex method).
When dealing with very large problems, this reoptimization tends to be much faster than
starting from scratch, provided the preceding and current models are closely related. The
models will tend to be closely related under the branching rule used, but not when you are
skipping around in the branching tree by selecting the subproblem with the best bound.

Completing the Example

The pattern for the remaining iterations will be quite similar to that for the first iteration 
described above except for the ways in which fathoming occurs. Therefore, we shall sum-
marize the branching and bounding steps fairly briefly and then focus on the fathoming step.

Iteration 2. The only remaining subproblem corresponds to the x1 � 1 node in Fig. 12.6,
so we shall branch from this node to create the two new subproblems given below.

Subproblem 3:
Fix x1 � 1, x2 � 0 so the resulting subproblem reduces to

Maximize Z � 9 � 6x3 � 4x4,

subject to

(1) 5x3 � 2x4 � 4
(2) x3 � x4 � 1
(3) x3 � 1
(4) x4 � 0
(5) xj is binary, for j � 3, 4.

Subproblem 4:
Fix x1 � 1, x2 � 1 so the resulting subproblem reduces to

Maximize Z � 14 � 6x3 � 4x4,

subject to

(1) 5x3 � 2x4 � 1
(2) x3 � x4 � 1
(3) x3 � 1
(4) x4 � 1
(5) xj is binary, for j � 3, 4.

The LP relaxations of these subproblems are obtained by using the relaxed version
of constraint (5). Their optimal solutions also are shown on the next page.

7The reoptimization technique was first introduced in Sec. 4.7 and then applied to sensitivity analysis in Sec.7.2.
To apply it here, all of the original variables would be retained in each LP relaxation and then the constraint 
xj � 0 would be added to fix xj � 0 and the constraint xj � 1 would be added to fix xj � 1. These constraints
indeed have the effect of fixing the variables in this way because the LP relaxation also includes the constraints
that 0 � xj � 1.
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LP relaxation of subproblem 3: x1 � 1, x2 � 0, and (5)   0 � xj � 1

for j � 3, 4.

Optimal solution: (x1, x2, x3, x4) � �1, 0, 	
4
5

	, 0� with Z � 13	
4
5

	,

LP relaxation of subproblem 4: x1 � 1, x2 � 1, and (5)   0 � xj � 1

for j � 3, 4.

Optimal solution: (x1, x2, x3, x4) � �1, 1, 0, 	
1
2

	� with Z � 16.

The resulting bounds for the subproblems are

Bound for subproblem 3: Z � 13,
Bound for subproblem 4: Z � 16.

Note that both of these bounds are larger than Z* � 9, so fathoming test 1 fails in
both cases. Test 2 also fails, since both LP relaxations have feasible solutions (as indi-
cated by the existence of an optimal solution). Alas, test 3 fails as well, because both op-
timal solutions include variables with noninteger values.

Figure 12.7 shows the resulting branching tree at this point. The lack of an F to the
right of either new node indicates that both remain unfathomed.

Iteration 3. So far, the algorithm has created four subproblems. Subproblem 1 has been
fathomed, and subproblem 2 has been replaced by (separated into) subproblems 3 and 4,
but these last two remain under consideration. Because they were created simultaneously,
but subproblem 4 (x1 � 1, x2 � 1) has the larger bound (16 � 13), the next branching is
done from the (x1, x2) � (1, 1) node in the branching tree, which creates the following
new subproblems (where constraint 3 disappears because it does not contain x4).

Subproblem 5:
Fix x1 � 1, x2 � 1, x3 � 0 so the resulting subproblem reduces to

Maximize Z � 14 � 4x4,

subject to

(1) 2x4 � 1

All

x1 x2Variable:

     9 � Z*
(0, 1, 0, 1) � incumbent

16

16

F(3)

4
5(                  )  1, 0,

13

, 0

16
1
2(           )1, 1, 0,

x1 = 1

x1 = 0

x2 = 1

x2 = 0

■ FIGURE 12.7
The branching tree after
iteration 2 of the BIP branch-
and-bound algorithm for the
example in Sec. 12.1.
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(2), (4) x4 � 1 (twice)
(5) x4 is binary.

Subproblem 6:
Fix x1 � 1, x2 � 1, x3 � 1 so the resulting subproblem reduces to

Maximize Z � 20 � 4x4,

subject to

(1) 2x4 � �4
(2) x4 � �0
(4) x4 � �1
(5) x4 is binary.

The corresponding LP relaxations have the relaxed version of constraint (5), the op-
timal solution, and the bound (when it exists) shown below.

LP relaxation of subproblem 5:

x1 � 1, x2 � 1, x3 � 0, and (5)   0 � xj � 1
for j � 4.

Optimal solution: (x1, x2, x3, x4) � �1, 1, 0, 	
1
2

	�, with Z � 16.

Bound: Z � 16.

LP relaxation of subproblem 6:
x1 � 1, x2 � 1, x3 � 1, and (5)   0 � xj � 1
for j � 4.

Optimal solution: None since there are no feasible solutions.

Bound: None

For both of these subproblems, reducing these LP relaxations to one-variable problems
(plus the fixed values of x1, x2, and x3) make it easy to see that the optimal solution for
the LP relaxation of subproblem 5 is indeed the one given above. Similarly, note how the
combination of constraint 1 and 0 � x4 � 1 in the LP relaxation of subproblem 6 prevents
any feasible solutions. Therefore, this subproblem is fathomed by test 2. However,
subproblem 5 fails this test, as well as test 1 (16 � 9) and test 3 (x4 � 	

1
2

	 is not integer),
so it remains under consideration.

We now have the branching tree shown in Fig. 12.8.

Iteration 4. The subproblems corresponding to nodes (1, 0) and (1, 1, 0) in Fig. 12.8
remain under consideration, but the latter node was created more recently, so it is selected
for branching from next. Since the resulting branching variable x4 is the last variable, fix-
ing its value at either 0 or 1 actually creates a single solution rather than subproblems re-
quiring fuller investigation. These single solutions are

x4 � 0: (x1, x2, x3, x4) � (1, 1, 0, 0) is feasible, with Z � 14,
x4 � 1: (x1, x2, x3, x4) � (1, 1, 0, 1) is infeasible.

Formally applying the fathoming tests, we see that the first solution passes test 3 and the
second passes test 2. Furthermore, this feasible first solution is better than the incumbent
(14 � 9), so it becomes the new incumbent, with Z* � 14.

Because a new incumbent has been found, we now reapply fathoming test 1 with the
new larger value of Z* to the only remaining subproblem, the one at node (1, 0).
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Subproblem 3:

Bound � 13 � Z* � 14.

Therefore, this subproblem now is fathomed.
We now have the branching tree shown in Fig. 12.9. Note that there are no remain-

ing (unfathomed) subproblems. Consequently, the optimality test indicates that the cur-
rent incumbent

(x1, x2, x3, x4) � (1, 1, 0, 0)

is optimal, so we are done.
Your OR Tutor includes another example of applying this algorithm. Also in-

cluded in the IOR Tutorial is an interactive procedure for executing this algorithm. As
usual, the Excel, LINGO/LINDO, and MPL/Solvers files for this chapter in your OR
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All

x1 x2 x3 x4Variable:

9

16
F(3)F(1)

16

F(2)

14 � Z*
(1, 1, 0, 0) � incumbent

� optimal solution

F(3)x1 = 0

16

x1 = 1
13

x2 = 0

x3 = 1

x3 = 0

F(2)x4 = 1

x4 = 0

16

x2 = 1

■ FIGURE 12.9
The branching tree after the
final (fourth) iteration of the
BIP branch-and-bound
algorithm for the example in
Sec. 12.1.

All

x1 x2 x3Variable:

     9 � Z*
(0, 1, 0, 1) � incumbent

16

16

 

F(3)

13

16

16
1
2(           )1, 1, 0,

F(2)

x1 = 0

x1 = 1

x2 = 0

x3 = 0

x3 = 1

x2 = 1■ FIGURE 12.8
The branching tree after
iteration 3 of the BIP branch-
and-bound algorithm for the
example in Sec. 12.1.
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Courseware show how the student versions of these software packages are applied to
the various examples in the chapter. The algorithms they use for BIP problems all are
similar to the one described above.8

Other Options with the Branch-and-Bound Technique

This section has illustrated the branch-and-bound technique by describing a basic branch-
and-bound algorithm for solving BIP problems. However, the general framework of the
branch-and-bound technique provides a great deal of flexibility in how to design a spe-
cific algorithm for any given type of problem such as BIP. There are many options avail-
able, and constructing an efficient algorithm requires tailoring the specific design to fit
the specific structure of the problem type.

Every branch-and-bound algorithm has the same three basic steps of branching,
bounding, and fathoming. The flexibility lies in how these steps are performed.

Branching always involves selecting one remaining subproblem and dividing it into
smaller subproblems. The flexibility here is found in the rules for selecting and dividing.
Our BIP algorithm selected the most recently created subproblem, because this is very ef-
ficient for reoptimizing each LP relaxation from the preceding one. Selecting the subprob-
lem with the best bound is the other most popular rule, because it tends to lead more quickly
to better incumbents and so more fathoming. Combinations of the two rules also can be
used. The dividing typically (but not always) is done by choosing a branching variable and
assigning it either individual values (e.g., our BIP algorithm) or ranges of values (e.g., the
algorithm in the next section). More sophisticated algorithms generally use a rule for
strategically choosing a branching variable that should tend to lead to early fathoming. This
usually is considerably more efficient than the rule used by our BIP algorithm of simply
selecting the branching variables in their natural order—x1, x2, . . . , xn. For example, a
major drawback of this simple rule for selecting the branching variable is that if this vari-
able has an integer value in the optimal solution for the LP relaxation of the subproblem
being branched on, the next subproblem that fixes this variable at this same integer value
also will have the same optimal solution for its LP relaxation, so no progress will have
been made toward fathoming. Therefore, more strategic options for selecting the branch-
ing variable might do something like selecting the variable whose value in the optimal so-
lution for the LP relaxation of the current subproblem is furthest from being an integer.

Bounding usually is done by solving a relaxation. However, there are a variety of
ways to form relaxations. For example, consider the Lagrangian relaxation, where the
entire set of functional constraints Ax � b (in matrix notation) is deleted (except possi-
bly for any “convenient” constraints) and then the objective function

Maximize Z � cx,

is replaced by

Maximize ZR � cx � �(Ax � b),

where the fixed vector � � 0. If x* is an optimal solution for the original problem, its 
Z � ZR, so solving the Lagrangian relaxation for the optimal value of ZR provides a valid
bound. If � is chosen well, this bound tends to be a reasonably tight one (at least com-
parable to the bound from the LP relaxation). Without any functional constraints, this
relaxation also can be solved extremely quickly. The drawbacks are that fathoming tests
2 and 3 (revised) are not as powerful as for the LP relaxation.

8In the professional version of LINGO, LINDO, and various MPL solvers, the BIP algorithm also uses a vari-
ety of sophisticated techniques along the lines described in Sec. 12.8.
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In general terms, two features are sought in choosing a relaxation: it can be solved rel-
atively quickly, and it provides a relatively tight bound. Neither alone is adequate. The LP
relaxation is popular because it provides an excellent trade-off between these two factors.

One option occasionally employed is to use a quickly solved relaxation and then, if
fathoming is not achieved, to tighten the relaxation in some way to obtain a somewhat
tighter bound.

Fathoming generally is done pretty much as described for the BIP algorithm. The
three fathoming criteria can be stated in more general terms as follows.

Summary of Fathoming Criteria. A subproblem is fathomed if an analysis of its
relaxation reveals that

Criterion 1: Feasible solutions of the subproblem must have Z � Z*, or
Criterion 2: The subproblem has no feasible solutions, or
Criterion 3: An optimal solution of the subproblem has been found.

Just as for the BIP algorithm, the first two criteria usually are applied by solving the
relaxation to obtain a bound for the subproblem and then checking whether this bound
is � Z* (test 1) or whether the relaxation has no feasible solutions (test 2). If the re-
laxation differs from the subproblem only by the deletion (or loosening) of some con-
straints, then the third criterion usually is applied by checking whether the optimal
solution for the relaxation is feasible for the subproblem, in which case it must be optimal
for the subproblem. For other relaxations (such as the Lagrangian relaxation), additional
analysis is required to determine whether the optimal solution for the relaxation is also
optimal for the subproblem.

If the original problem involves minimization rather than maximization, two options
are available. One is to convert to maximization in the usual way (see Sec. 4.6). The other
is to convert the branch-and-bound algorithm directly to minimization form, which re-
quires changing the direction of the inequality for fathoming test 1 from

Is the subproblem’s bound � Z*?

to

Is the subproblem’s bound � Z*?

When using this latter inequality, if the value of Z for the optimal solution for the LP
relaxation of the subproblem is not an integer, it now would be rounded up to an integer
to obtain the subproblem’s bound.

So far, we have described how to use the branch-and-bound technique to find only
one optimal solution. However, in the case of ties for the optimal solution, it is sometimes
desirable to identify all these optimal solutions so that the final choice among them can
be made on the basis of intangible factors not incorporated into the mathematical model.
To find them all, you need to make only a few slight alterations in the procedure. First,
change the weak inequality for fathoming test 1 (Is the subproblem’s bound � Z*?) to a
strict inequality (Is the subproblem’s bound � Z*?), so that fathoming will not occur if
the subproblem can have a feasible solution equal to the incumbent. Second, if fathom-
ing test 3 passes and the optimal solution for the subproblem has Z � Z*, then store this
solution as another (tied) incumbent. Third, if test 3 provides a new incumbent (tied or
otherwise), then check whether the optimal solution obtained for the relaxation is unique.
If it is not, then identify the other optimal solutions for the relaxation and check whether
they are optimal for the subproblem as well, in which case they also become incumbents.
Finally, when the optimality test finds that there are no remaining (unfathomed) subsets,
all the current incumbents will be the optimal solutions.

12.6 THE BRANCH-AND-BOUND TECHNIQUE AND ITS APPLICATION 511

hil23453_ch12_474-546.qxd  1/24/70  6:35 AM  Page 511 Final PDF to printer



512 CHAPTER 12 INTEGER PROGRAMMING

Finally, note that rather than find an optimal solution, the branch-and-bound tech-
nique can be used to find a nearly optimal solution, generally with much less computa-
tional effort. For some applications, a solution is “good enough” if its Z is “close enough”
to the value of Z for an optimal solution (call it Z**). Close enough can be defined in
either of two ways as either

Z** � K � Z or (1 � �)Z** � Z

for a specified (positive) constant K or �. For example, if the second definition is chosen
and � � 0.05, then the solution is required to be within 5 percent of optimal. Consequently,
if it were known that the value of Z for the current incumbent (Z*) satisfies either

Z** � K � Z* or (1 � �)Z** � Z*

then the procedure could be terminated immediately by choosing the incumbent as the
desired nearly optimal solution. Although the procedure does not actually identify an op-
timal solution and the corresponding Z**, if this (unknown) solution is feasible (and so
optimal) for the subproblem currently under investigation, then fathoming test 1 finds an
upper bound such that

Z** � bound

so that either

Bound � K � Z* or (1 � �)bound � Z*

would imply that the corresponding inequality in the preceding sentence is satisfied. Even
if this solution is not feasible for the current subproblem, a valid upper bound is still ob-
tained for the value of Z for the subproblem’s optimal solution. Thus, satisfying either of
these last two inequalities is sufficient to fathom this subproblem because the incumbent
must be “close enough” to the subproblem’s optimal solution.

Therefore, to find a solution that is close enough to being optimal, only one change
is needed in the usual branch-and-bound procedure. This change is to replace the usual
fathoming test 1 for a subproblem

Bound � Z*?

by either

Bound � K � Z*?

or

(1 � �)(bound) � Z*?

and then perform this test after test 3 (so that a feasible solution found with Z � Z* is still
kept as the new incumbent). The reason this weaker test 1 suffices is that regardless of how
close Z for the subproblem’s (unknown) optimal solution is to the subproblem’s bound, the
incumbent is still close enough to this solution (if the new inequality holds) that the sub-
problem does not need to be considered further. When there are no remaining subprob-
lems, the current incumbent will be the desired nearly optimal solution. However, it is much
easier to fathom with this new fathoming test (in either form), so the algorithm should run
much faster. For an extremely large problem, this acceleration may make the difference be-
tween finishing with a solution guaranteed to be close to optimal and never terminating.
For many extremely large problems arising in practice, since the model provides only an
idealized representation of the real problem anyway, finding a nearly optimal solution for
the model in this way may be sufficient for all practical purposes. Therefore, this shortcut
is used fairly frequently in practice.
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We shall now consider the general MIP problem, where some of the variables (say, I of
them) are restricted to integer values (but not necessarily just 0 and 1) but the rest are or-
dinary continuous variables. For notational convenience, we shall order the variables so
that the first I variables are the integer-restricted variables. Therefore, the general form of
the problem being considered is

Maximize Z � �
n

j�1
cjxj,

subject to

�
n

j�1
aijxj � bi, for i � 1, 2, . . . , m,

and

xj � 0, for j � 1, 2, . . . , n,
xj is integer, for j � 1, 2, . . . , I; I � n.

(When I � n, this problem becomes the pure IP problem.)
We shall describe a basic branch-and-bound algorithm for solving this problem that,

with a variety of refinements, has provided a standard approach to MIP. The structure of
this algorithm was first developed by R. J. Dakin,9 based on a pioneering branch-and-bound
algorithm by A. H. Land and A. G. Doig.10

This algorithm is quite similar in structure to the BIP algorithm presented in the pre-
ceding section. Solving LP relaxations again provides the basis for both the bounding and
fathoming steps. In fact, only four changes are needed in the BIP algorithm to deal with
the generalizations from binary to general integer variables and from pure IP to mixed IP.

One change involves the choice of the branching variable. Before, the next variable
in the natural ordering—x1, x2, . . . , xn—was chosen automatically. Now, the only vari-
ables considered are the integer-restricted variables that have a noninteger value in the
optimal solution for the LP relaxation of the current subproblem. Our rule for choosing
among these variables is to select the first one in the natural ordering. (Production codes
generally use a more sophisticated rule.)

The second change involves the values assigned to the branching variable for creat-
ing the new smaller subproblems. Before, the binary variable was fixed at 0 and 1, re-
spectively, for the two new subproblems. Now, the general integer-restricted variable could
have a very large number of possible integer values, and it would be inefficient to create
and analyze many subproblems by fixing the variable at its individual integer values.
Therefore, what is done instead is to create just two new subproblems (as before) by spec-
ifying two ranges of values for the variable.

To spell out how this is done, let xj be the current branching variable, and let xj* be
its (noninteger) value in the optimal solution for the LP relaxation of the current sub-
problem. Using square brackets to denote

[xj*] � greatest integer � xj*,

■ 12.7 A BRANCH-AND-BOUND ALGORITHM FOR MIXED 
INTEGER PROGRAMMING

9R. J. Dakin, “A Tree Search Algorithm for Mixed Integer Programming Problems,” Computer Journal, 8(3):
250–255, 1965.
10A. H. Land and A. G. Doig, “An Automatic Method of Solving Discrete Programming Problems,” Econo-
metrica, 28: 497–520, 1960.
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we have for the range of values for the two new subproblems

xj � [xj*] and xj � [xj*] � 1,

respectively. Each inequality becomes an additional constraint for that new subproblem.
For example, if xj* � 3	

1
2

	, then

xj � 3 and xj � 4

are the respective additional constraints for the new subproblem.
When the two changes to the BIP algorithm described above are combined, an inter-

esting phenomenon of a recurring branching variable can occur. To illustrate, as shown in
Fig. 12.10, let j � 1 in the above example where xj* � 3	

1
2

	, and consider the new subprob-
lem where x1 � 3. When the LP relaxation of a descendant of this subproblem is solved,
suppose that x1* � 1	

1
4

	. Then x1 recurs as the branching variable, and the two new subprob-
lems created have the additional constraint x1 � 1 and x1 � 2, respectively (as well as the
previous additional constraint x1 � 3). Later, when the LP relaxation for a descendant of,
say, the x1 � 1 subproblem is solved, suppose that x1* � 	

3
4

	. Then x1 recurs again as the
branching variable, and the two new subproblems created have x1 � 0 (because of the new
x1 � 0 constraint and the nonnegativity constraint on x1) and x1 � 1 (because of the new
x1 � 1 constraint and the previous x1 � 1 constraint).

The third change involves the bounding step. Before, with a pure IP problem and in-
teger coefficients in the objective function, the value of Z for the optimal solution for the
subproblem’s LP relaxation was rounded down to obtain the bound, because any feasible
solution for the subproblem must have an integer Z. Now, with some of the variables not
integer-restricted, the bound is the value of Z without rounding down.

The fourth (and final) change to the BIP algorithm to obtain our MIP algorithm in-
volves fathoming test 3. Before, with a pure IP problem, the test was that the optimal so-
lution for the subproblem’s LP relaxation is integer, since this ensures that the solution is
feasible, and therefore optimal, for the subproblem. Now, with a mixed IP problem, the
test requires only that the integer-restricted variables be integer in the optimal solution
for the subproblem’s LP relaxation, because this suffices to ensure that the solution is fea-
sible, and therefore optimal, for the subproblem.

Incorporating these four changes into the summary presented in the preceding sec-
tion for the BIP algorithm yields the following summary for the new algorithm for MIP.

514 CHAPTER 12 INTEGER PROGRAMMING

All

x1 � 3

x1 � 4

x1 � 1

x1 � 2

��� 

x1 � 0

x1 � 1

��� 

��� 

��� 

1
2

3( , ...)

1
4

1( , ...)

3
4

( , ...)■ FIGURE 12.10
Illustration of the phenomenon
of a recurring branching
variable, where here x1
becomes a branching
variable three times because
it has a noninteger value in
the optimal solution for the
LP relaxation at three nodes.
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With headquarters in Houston, Texas, Waste Manage-
ment, Inc. (a Fortune 100 company) is the leading
provider of comprehensive waste-management services
and integrated environmental solutions in North America.
With 21,000 collection and transfer vehicles, its 45,000
employees provide services to over 20 million customers
throughout the United States and Canada.

The company’s collection-and-transfer vehicles need
to follow nearly 20,000 daily routes. With an annual
operating cost of nearly $120,000 per vehicle, manage-
ment wanted to have a comprehensive route-management
system that would make every route as profitable 
and efficient as possible. Therefore, an OR team that
included a number of consultants was formed to attack
this problem.

The heart of the route-management system devel-
oped by this team is a huge mixed BIP model that 
optimizes the routes assigned to the respective collection-
and-transfer vehicles. Although the objective function

takes several factors into account, the primary goal is the
minimization of total travel time. The main decision vari-
ables are binary variables that equal 1 if the route
assigned to a particular vehicle includes a particular pos-
sible leg and equal 0 otherwise. A geographical informa-
tion system (GIS) provides the data about the distance
and time required to go between any two points. All of
this is imbedded within a Web-based Java application
that is integrated with the company’s other systems.

Soon after the implementation of this comprehensive
route-management system, it was estimated that the 
system will increase the company’s cash flow by
$648 million over a 5-year period, largely because of
savings of $498 million in operational expenses over this
same period. It also is providing better customer service.

Source: S. Sahoo, S. Kim, B.-I. Kim, B. Krass, and A. Popov, Jr.:
“Routing Optimization for Waste Management,” Interfaces,
35(1): 24–36, Jan.–Feb. 2005. (A link to this article is provided
on our website, www.mhhe.com/hillier.)

An Application Vignette

(As before, this summary assumes that the objective function is to be maximized, but the
only change needed for minimization is to change the direction of the inequality for
fathoming test 1.)

Summary of the MIP Branch-and-Bound Algorithm

Initialization: Set Z* � ��. Apply the bounding step, fathoming step, and optimality
test described below to the whole problem. If not fathomed, classify this
problem as the one remaining subproblem for performing the first full
iteration below.

Steps for each iteration:

1. Branching: Among the remaining (unfathomed) subproblems, select the one that was
created most recently. (Break ties according to which has the larger bound.) Among
the integer-restricted variables that have a noninteger value in the optimal solution for
the LP relaxation of the subproblem, choose the first one in the natural ordering of the
variables to be the branching variable. Let xj be this variable and xj* its value in this
solution. Branch from the node for the subproblem to create two new subproblems by
adding the respective constraints xj � [xj*] and xj � [xj*] � 1.

2. Bounding: For each new subproblem, obtain its bound by applying the simplex method
(or the dual simplex method when reoptimizing) to its LP relaxation and using the
value of Z for the resulting optimal solution.

3. Fathoming: For each new subproblem, apply the three fathoming tests given below,
and discard those subproblems that are fathomed by any of the tests.
Test 1: Its bound � Z*, where Z* is the value of Z for the current incumbent.
Test 2: Its LP relaxation has no feasible solutions.
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Test 3: The optimal solution for its LP relaxation has integer values for the integer-
restricted variables. (If this solution is better than the incumbent, it becomes
the new incumbent and test 1 is reapplied to all unfathomed subproblems with
the new larger Z*.)

Optimality test: Stop when there are no remaining subproblems that are not fathomed;
the current incumbent is optimal.11 Otherwise, perform another iteration.

An MIP Example. We will now illustrate this algorithm by applying it to the follow-
ing MIP problem:

Maximize Z � 4x1 � 2x2 � 7x3 � x4,

subject to

x1 � 5x3 � 10
x1 � x2 � x3 � 1

6x1 � 5x2 � 2x4 � 0
�x1 5x2 � 2x3 � 2x4 � 3

and

xj � 0, for j � 1, 2, 3, 4
xj is an integer, for j � 1, 2, 3.

Note that the number of integer-restricted variables is I � 3, so x4 is the only continuous
variable.

Initialization. After setting Z* � �
, we form the LP relaxation of this problem by
deleting the set of constraints that xj is an integer for j � 1, 2, 3. Applying the simplex
method to this LP relaxation yields its optimal solution below.

LP relaxation of whole problem: (x1, x2, x3, x4) � �	
5
4

	, 	
3
2

	, 	
7
4

	, 0�, with Z � 14	
1
4

	.

Because it has feasible solutions and this optimal solution has noninteger values for its
integer-restricted variables, the whole problem is not fathomed, so the algorithm contin-
ues with the first full iteration below.

Iteration 1. In this optimal solution for the LP relaxation, the first integer-restricted
variable that has a noninteger value is x1 � 	

5
4

	, so x1 becomes the branching variable. Branch-
ing from the All node (all feasible solutions) with this branching variable then creates the
following two subproblems:

Subproblem 1:
Original problem plus additional constraint

x1 � 1.

Subproblem 2:
Original problem plus additional constraint

x1 � 2.

Deleting the set of integer constraints again and solving the resulting LP relaxations of
these two subproblems yield the following results.

11If there is no incumbent, the conclusion is that the problem has no feasible solutions.
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Subproblem 1:
Optimal solution for LP relaxation: (x1, x2, x3, x4) � �1, 	

6
5

	, 	
9
5

	, 0�, with Z � 14	
1
5

	.

Bound: Z � 14	
1
5

	.

Subproblem 2:
LP relaxation: No feasible solutions.

This outcome for subproblem 2 means that it is fathomed by test 2. However, just as
for the whole problem, subproblem 1 fails all fathoming tests.

These results are summarized in the branching tree shown in Fig. 12.11.

Iteration 2. With only one remaining subproblem, corresponding to the x1 � 1 node
in Fig. 12.11, the next branching is from this node. Examining its LP relaxation’s opti-
mal solution given above, we see that this node reveals that the branching variable is x2,
because x2 � 	

6
5

	 is the first integer-restricted variable that has a noninteger value. Adding
one of the constraints x2 � 1 or x2 � 2 then creates the following two new subproblems.

Subproblem 3:
Original problem plus additional constraints

x1 � 1, x2 � 1.

Subproblem 4:
Original problem plus additional constraints

x1 � 1, x2 � 2.

Solving their LP relaxations gives the following results.

Subproblem 3:
Optimal solution for LP relaxation: (x1, x2, x3, x4) � �	

5
6

	, 1, 	
1
6
1
	, 0�, with Z � 14	

1
6

	.

Bound: Z � 14	
1
6

	.

Subproblem 4:
Optimal solution for LP relaxation: (x1, x2, x3, x4) � �	

5
6

	, 2, 	
1
6
1
	, 0�, with Z � 12	

1
6

	.

Bound: Z � 12	
1
6

	.

Because both solutions exist (feasible solutions) and have noninteger values for integer-
restricted variables, neither subproblem is fathomed. (Test 1 still is not operational, since
Z* � �
 until the first incumbent is found.)

The branching tree at this point is given in Fig. 12.12.

7
4

3
2

, 0

All

x1 � 1

x1 � 2
,5

4
,

9
5

6
5(                 , 01 ),  ,  

1
414

1
514

F(2)
)(

■ FIGURES 12.11
The branching tree after the
first iteration of the MIP
branch-and-bound algorithm
for the MIP example.
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11
6

25
6(                 , 0   )

All

x1 � 1

x1 � 2
,,

11
6

15
6(                 , 0   ) , ,

1
414

1
514

1
612

F(2)

x2 � 1

x2 � 2

1
614

■ FIGURE 12.12
The branching tree after the
second iteration of the MIP
branch-and-bound algorithm
for the MIP example.

Iteration 3. With two remaining subproblems (3 and 4) that were created simultane-
ously, the one with the larger bound (subproblem 3, with 14	

1
6

	 � 12	
1
6

	) is selected for the
next branching. Because x1 � 	

5
6

	 has a noninteger value in the optimal solution for this sub-
problem’s LP relaxation, x1 becomes the branching variable. (Note that x1 now is a
recurring branching variable, since it also was chosen at iteration 1.) This leads to the fol-
lowing new subproblems.

Subproblem 5:
Original problem plus additional constraints

x1 � 1
x2 � 1
x1 � 0 (so x1 � 0).

Subproblem 6:
Original problem plus additional constraints

x1 � 1
x2 � 1
x1 � 1 (so x1 � 1).

The results from solving their LP relaxations are given below.

Subproblem 5:
Optimal solution for LP relaxation: (x1, x2, x3, x4) � �0, 0, 2, 	

1
2

	�, with Z � 13	
1
2

	.

Bound: Z � 13	
1
2

	.

Subproblem 6:
LP relaxation: No feasible solutions.

Subproblem 6 is immediately fathomed by test 2. However, note that subproblem 5
also can be fathomed. Test 3 passes because the optimal solution for its LP relaxation has
integer values (x1 � 0, x2 � 0, x3 � 2) for all three integer-restricted variables. (It does
not matter that x4 � 	

1
2

	, since x4 is not integer-restricted.) This feasible solution for the
original problem becomes our first incumbent:

Incumbent � �0, 0, 2, 	
1
2

	� with Z* � 13	
1
2

	.
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Integer programming has been an especially exciting area of OR since the mid-1980s be-
cause of the dramatic progress being made in its solution methodology.

Background

To place this progress into perspective, consider the historical background. One big break-
through had come in the 1960s and early 1970s with the development and refinement of
the branch-and-bound approach. But then the state of the art seemed to hit a plateau. Rel-
atively small problems (well under 100 variables) could be solved very efficiently, but
even a modest increase in problem size might cause an explosion in computation time be-
yond feasible limits. Little progress was being made in overcoming this exponential growth
in computation time as the problem size was increased. Many important problems arising
in practice could not be solved.

Then came the next breakthrough in the mid-1980s, with the introduction of the branch-
and-cut approach to solving BIP problems. There were early reports of very large prob-
lems with as many as a couple thousand variables being solved using this approach. This

■ 12.8 THE BRANCH-AND-CUT APPROACH TO SOLVING BIP PROBLEMS

Using this Z* to reapply fathoming test 1 to the only other subproblem (subproblem 4) is
successful, because its bound 12	

1
6

	 � Z*.
This iteration has succeeded in fathoming subproblems in all three possible ways. Fur-

thermore, there now are no remaining subproblems, so the current incumbent is optimal.

Optimal solution � �0, 0, 2, 	
1
2

	� with Z � 13	
1
2

	.

These results are summarized by the final branching tree given in Fig. 12.13.

Another example of applying the MIP algorithm is presented in your OR Tutor. In
addition, a small example (only two variables, both integer-restricted) that includes graph-
ical displays is provided in the Solved Examples section of the book’s website. The IOR
Tutorial also includes an interactive procedure for executing the MIP algorithm.

All

x1 � 1

x1 � 2

1
414

1
514

1
612

F(2)

F(1)

F(2)

F(3)

x2 � 1

x2 � 2

1
614

(                  )

x1 � 0

x1 � 1

1
213

1
2 0, 0, 2, � incumbent

� optimal
    solution

■ FIGURE 12.13
The branching tree after the
final (third) iteration of the
MIP branch-and-bound
algorithm for the MIP
example.
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created great excitement and led to intensive research and development activities to refine
the approach that have continued ever since. At first, the approach was limited to pure BIP,
but soon was extended to mixed BIP, and then to MIP problems with some general integer
variables as well. We will limit our description of the approach to the pure BIP case.

It is fairly common now for the branch-and-cut approach to solve some problems with
many thousand variables, and occasionally even hundreds of thousands of variables. As men-
tioned in Sec. 12.4, this tremendous speedup is due to huge progress in three areas—dramatic
improvements in BIP algorithms by incorporating and further developing the branch-and-cut
approach, striking improvements in linear programming algorithms that are heavily used
within the BIP algorithms, and the great speedup in computers (including desktop computers).

We do need to add one note of caution. This algorithmic approach cannot consistently
solve all pure BIP problems with a few thousand variables, or even a few hundred vari-
ables. The very large pure BIP problems solved have sparse A matrices; i.e., the percent-
age of coefficients in the functional constraints that are nonzeros is quite small (perhaps
less than 5 percent, or even less than 1 percent). In fact, the approach depends heavily
upon this sparsity. (Fortunately, this kind of sparsity is typical in large practical problems.)
Furthermore, there are other important factors besides sparsity and size that affect just
how difficult a given IP problem will be to solve. IP formulations of fairly substantial size
should still be approached with considerable caution.

Although it would be beyond the scope and level of this book to fully describe the al-
gorithmic approach discussed above, we will now give a brief overview. Since this overview
is limited to pure BIP, all variables introduced later in this section are binary variables.

The approach mainly uses a combination of three kinds12 of techniques: automatic
problem preprocessing, the generation of cutting planes, and clever branch-and-bound
techniques. You already are familiar with branch-and-bound techniques, and we will not
elaborate further on the more advanced versions incorporated here. An introduction to the
other two kinds of techniques is given below.

Automatic Problem Preprocessing for Pure BIP

Automatic problem preprocessing involves a “computer inspection” of the user-supplied
formulation of the IP problem in order to spot reformulations that make the problem
quicker to solve without eliminating any feasible solutions. These reformulations fall into
three categories:

1. Fixing variables: Identify variables that can be fixed at one of their possible values
(either 0 or 1) because the other value cannot possibly be part of a solution that is both
feasible and optimal.

2. Eliminating redundant constraints: Identify and eliminate redundant constraints (con-
straints that automatically are satisfied by solutions that satisfy all the other constraints).

3. Tightening constraints: Tighten some constraints in a way that reduces the feasible region
for the LP relaxation without eliminating any feasible solutions for the BIP problem.

These categories are described in turn.

Fixing Variables. One general principle for fixing variables is the following.

If one value of a variable cannot satisfy a certain constraint, even when the other vari-
ables equal their best values for trying to satisfy the constraint, then that variable should
be fixed at its other value.

12As discussed briefly in Sec. 12.4, still another technique that has played a significant role in the recent progress
has been the use of heuristics for quickly finding good feasible solutions.
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For example, each of the following � constraints would enable us to fix x1 at x1 � 0,
since x1 � 1 with the best values of the other variables (0 with a nonnegative coefficient
and 1 with a negative coefficient) would violate the constraint.

3x1 � 2 ⇒ x1 � 0, since 3(1) � 2.
3x1 � x2 � 2 ⇒ x1 � 0, since 3(1) � 1(0) � 2.

5x1 � x2 � 2x3 � 2 ⇒ x1 � 0, since 5(1) � 1(0) � 2(1) � 2.

The general procedure for checking any � constraint is to identify the variable with
the largest positive coefficient, and if the sum of that coefficient and any negative coeffi-
cients exceeds the right-hand side, then that variable should be fixed at 0. (Once the vari-
able has been fixed, the procedure can be repeated for the variable with the next largest
positive coefficient, etc.)

An analogous procedure with � constraints can enable us to fix a variable at 1 instead,
as illustrated below three times:

3x1 � 2 ⇒ x1 � 1, since 3(0) � 2.
3x1 � x2 � 2 ⇒ x1 � 1, since 3(0) � 1(1) � 2.

3x1 � x2 � 2x3 � 2 ⇒ x1 � 1, since 3(0) � 1(1) � 2(0) � 2.

A � constraint also can enable us to fix a variable at 0, as illustrated next:

x1 � x2 � 2x3 � 1 ⇒ x3 � 0, since 1(1) � 1(1) � 2(1) � 1.

The next example shows a � constraint fixing one variable at 1 and another at 0.

3x1 � x2 � 3x3 � 2 ⇒ x1 � 1, since 3(0) � 1(1) � 3(0) � 2
and ⇒ x3 � 0, since 3(1) � 1(1) � 3(1) � 2.

Similarly, a � constraint with a negative right-hand side can result in either 0 or 1
becoming the fixed value of a variable. For example, both happen with the following
constraint:

3x1 � 2x2 � �1 ⇒ x1 � 0, since 3(1) � 2(1) � �1
and ⇒ x2 � 1, since 3(0) � 2(0) � �1.

Fixing a variable from one constraint can sometimes generate a chain reaction of then
being able to fix other variables from other constraints. For example, look at what hap-
pens with the following three constraints:

3x1 � x2 � 2x3 � 2 ⇒ x1 � 1 (as above).

Then

x1 � x4 � x5 � 1 ⇒ x4 � 0, x5 � 0.

Then

�x5 � x6 � 0 ⇒ x6 � 0.

In some cases, it is possible to combine one or more mutually exclusive alternatives
constraints with another constraint to fix a variable, as illustrated below:

8x1 � 4x2 � 5x3 � 3x4 � 2� ⇒ x1 � 0,
8x1 � 4x2 � x3 � 3x4 � 1

since 8(1) � max{4, 5}(1) � 3(0) � 2.

There are additional techniques for fixing variables, including some involving opti-
mality considerations, but we will not delve further into this topic.

hil23453_ch12_474-546.qxd  1/24/70  6:35 AM  Page 521 Final PDF to printer



522 CHAPTER 12 INTEGER PROGRAMMING

Fixing variables can have a dramatic impact on reducing the size of a problem. It is
not unusual to eliminate over half of the problem’s variables from further consideration.

Eliminating Redundant Constraints. Here is one easy way to detect a redundant
constraint:

If a functional constraint satisfies even the most challenging binary solution, then it has
been made redundant by the binary constraints and can be eliminated from further con-
sideration. For a � constraint, the most challenging binary solution has variables equal to
1 when they have nonnegative coefficients and other variables equal to 0. (Reverse these
values for a � constraint.)

Some examples are given below:

3x1 � 2x2 � �6 is redundant, since 3(1) � 2(1) � 6.
3x1 � 2x2 � �3 is redundant, since 3(1) � 2(0) � 3.
3x1 � 2x2 � �3 is redundant, since 3(0) � 2(1) � �3.

In most cases where a constraint has been identified as redundant, it was not redundant
in the original model but became so after fixing some variables. Of the 11 examples of fix-
ing variables given above, all but the last one left a constraint that then was redundant.

Tightening Constraints.13 Consider the following problem.

Maximize Z � 3x1 � 2x2,

subject to

2x1 � 3x2 � 4

and

x1, x2 binary.

This BIP problem has just three feasible solutions—(0, 0), (1, 0), and (0, 1)—where
the optimal solution is (1, 0) with Z � 3. The feasible region for the LP relaxation of
this problem is shown in Fig. 12.14. The optimal solution for this LP relaxation is (1, 	

2
3

	)

13Also commonly called coefficient reduction.

0 1 x1

1

x2

Optimal solution

Optimal solution
for BIP problem

LP relaxation

Maximize
subject to
and

Feasible
region

Z � 3x1 � 2x2,
2x1 � 3x2 � 4

0 � x1 � 1, 0 � x2 � 1

■ FIGURE 12.14
The LP relaxation (including
its feasible region and
optimal solution) for the BIP
example used to illustrate
tightening a constraint.

hil23453_ch12_474-546.qxd  1/24/70  6:35 AM  Page 522 Final PDF to printer



with Z � 4	
1
3

	, which is not very close to the optimal solution for the BIP problem. A
branch-and-bound algorithm would have some work to do to identify the optimal BIP
solution.

Now look what happens when the functional constraint 2x1 � 3x2 � 4 is replaced by

x1 � x2 � 1.

The feasible solutions for the BIP problem remain exactly the same—(0, 0), (1, 0), and
(0, 1)—so the optimal solution still is (1, 0). However, the feasible region for the LP re-
laxation has been greatly reduced, as shown in Fig. 12.15. In fact, this feasible region
has been reduced so much that the optimal solution for the LP relaxation now is (1, 0),
so the optimal solution for the BIP problem has been found without needing any addi-
tional work.

This is an example of tightening a constraint in a way that reduces the feasible region
for the LP relaxation without eliminating any feasible solutions for the BIP problem. It
was easy to do for this tiny two-variable problem that could be displayed graphically.
However, with application of the same principles for tightening a constraint without 
eliminating any feasible BIP solutions, the following algebraic procedure can be used to
do this for any � constraint with any number of variables.

Procedure for Tightening a � Constraint
Denote the constraint by a1x1 � a2x2 � . . . � anxn � b.

1. Calculate S � sum of the positive aj.
2. Identify any aj � 0 such that S � b � ⏐aj⏐.

(a) If none, stop; the constraint cannot be tightened further.
(b) If aj � 0, go to step 3.
(c) If aj � 0, go to step 4.

3. (aj � 0) Calculate a�j � S � b and b� � S � aj. Reset aj � a�j and b � b�. Return to
step 1.

4. (aj � 0) Increase aj to aj � b � S. Return to step 1.

Applying this procedure to the functional constraint in the above example flows as
follows:

The constraint is 2x1 � 3x2 � 4 (a1 � 2, a2 � 3, b � 4).
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0 1 x1

1

x2

Optimal solution for both
the LP relaxation and
the BIP problem

LP relaxation

Feasible
region

Maximize
subject to
and

Z � 3x1 � 2x2,
x1 � x2 � 1

0 � x1 � 1, 0 � x2 � 1

■ FIGURE 12.15
The LP relaxation after
tightening the constraint, 
2x1 � 3x2 � 4, to x1 �
x2 � 1 for the example of
Fig. 12.14.
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1. S � 2 � 3 � 5.
2. a1 satisfies S � b � ⏐a1⏐, since 5 � 4 � 2. Also a2 satisfies S � b � ⏐a2⏐, since 

5 � 4 � 3. Choose a1 arbitrarily.
3. a�1 � 5 � 4 � 1 and b� � 5 � 2 � 3, so reset a1 � 1 and b � 3. The new tighter con-

straint is

x1 � 3x2 � 3 (a1 � 1, a2 � 3, b � 3).

1. S � 1 � 3 � 4.
2. a2 satisfies S � b � ⏐a2⏐, since 4 � 3 � 3.
3. a�2 � 4 � 3 � 1 and b� � 4 � 3 � 1, so reset a2 � 1 and b � 1. The new tighter con-

straint is

x1 � x2 � 1 (a1 � 1, a2 � 1, b � 1).

1. S � 1 � 1 � 2.
2. No aj � 0 satisfies S � b � ⏐aj⏐, so stop; x1 � x2 � 1 is the desired tightened constraint.

If the first execution of step 2 in the above example had chosen a2 instead, then the
first tighter constraint would have been 2x1 � x2 � 2. The next series of steps again would
have led to x1 � x2 � 1.

In the next example, the procedure tightens the constraint on the left to become the
one on its right and then tightens further to become the second one on the right.

4x1 � 3x2 � x3 � 2x4 � 5 ⇒ 2x1 � 3x2 � x3 � 2x4 � 3
⇒ 2x1 � 2x2 � x3 � 2x4 � 3.

(Problem 12.8-5 asks you to apply the procedure to confirm these results.)
A constraint in � form can be converted to � form (by multiplying through both

sides by �1) to apply this procedure directly.

Generating Cutting Planes for Pure BIP

A cutting plane (or cut) for any IP problem is a new functional constraint that reduces the
feasible region for the LP relaxation without eliminating any feasible solutions for the IP
problem. In fact, you have just seen one way of generating cutting planes for pure BIP prob-
lems, namely, apply the above procedure for tightening constraints. Thus, x1 � x2 � 1 is a
cutting plane for the BIP problem considered in Fig. 12.14, which leads to the reduced fea-
sible region for the LP relaxation shown in Fig. 12.15.

In addition to this procedure, a number of other techniques have been developed for
generating cutting planes that will tend to accelerate how quickly a branch-and-bound al-
gorithm can find an optimal solution for a pure BIP problem. We will focus on just one
of these techniques.

To illustrate this technique, consider the California Manufacturing Co. pure BIP prob-
lem presented in Sec. 12.1 and used to illustrate the BIP branch-and-bound algorithm in
Sec. 12.6. The optimal solution for its LP relaxation is given in Fig. 12.5 as (x1, x2, x3,
x4) � (	

5
6

	, 1, 0, 1). One of the functional constraints is

6x1 � 3x2 � 5x3 � 2x4 � 10.

Now note that the binary constraints and this constraint together imply that

x1 � x2 � x4 � 2.

This new constraint is a cutting plane. It eliminates part of the feasible region for the LP
relaxation, including what had been the optimal solution, (	

5
6

	, 1, 0, 1), but it does not elim-
inate any feasible integer solutions. Adding just this one cutting plane to the original model
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■ 12.9 THE INCORPORATION OF CONSTRAINT PROGRAMMING

No presentation of the basic ideas of integer programming is complete these days without
introducing an exciting relatively recent development––the incorporation of the techniques
of constraint programming––that is promising to greatly expand our ability to formulate

would improve the performance of the BIP branch-and-bound algorithm in Sec. 12.6 (see
Fig. 12.9) in two ways. First, the optimal solution for the new (tighter) LP relaxation
would be (1, 1, 	

1
5

	, 0), with Z � 15	
1
5

	, so the bounds for the All node, x1 � 1 node, and
(x1, x2) � (1, 1) node now would be 15 instead of 16. Second, one less iteration would
be needed because the optimal solution for the LP relaxation at the (x1, x2, x3) � (1, 1, 0)
node now would be (1, 1, 0, 0), which provides a new incumbent with Z* � 14. There-
fore, on the third iteration (see Fig. 12.8), this node would be fathomed by test 3, and the
(x1, x2) � (1, 0) node would be fathomed by test 1, thereby revealing that this incumbent
is the optimal solution for the original BIP problem.

Here is the general procedure used to generate this cutting plane.

A Procedure for Generating Cutting Planes

1. Consider any functional constraint in � form with only nonnegative coefficients.
2. Find a group of variables (called a minimum cover of the constraint) such that

(a) The constraint is violated if every variable in the group equals 1 and all other vari-
ables equal 0.

(b) But the constraint becomes satisfied if the value of any one of these variables is
changed from 1 to 0.

3. By letting N denote the number of variables in the group, the resulting cutting plane
has the form

Sum of variables in group � N � 1.

Applying this procedure to the constraint 6x1 � 3x2 � 5x3 � 2x4 � 10, we see that
the group of variables {x1, x2, x4} is a minimal cover because

(a) (1, 1, 0, 1) violates the constraint.
(b) But the constraint becomes satisfied if the value of any one of these three vari-

ables is changed from 1 to 0.

Since N � 3 in this case, the resulting cutting plane is x1 � x2 � x4 � 2.
This same constraint also has a second minimal cover {x1, x3}, since (1, 0, 1, 0)

violates the constraint but both (0, 0, 1, 0) and (1, 0, 0, 0) satisfy the constraint. There-
fore, x1 � x3 � 1 is another valid cutting plane.

The branch-and-cut approach involves generating many cutting planes in a similar
manner before then applying clever branch-and-bound techniques. The results of in-
cluding the cutting planes can be quite dramatic in tightening the LP relaxations. In some
cases, the gap between Z for the optimal solution for the LP relaxation of the whole BIP
problem and Z for this problem’s optimal solution is reduced by as much as 98 percent.

Ironically, the very first algorithms developed for integer programming, including
Ralph Gomory’s celebrated algorithm announced in 1958, were based on cutting planes
(generated in a different way), but this approach proved to be unsatisfactory in practice
(except for special classes of problems). However, these algorithms relied solely on cut-
ting planes. We now know that judiciously combining cutting planes and branch-and-bound
techniques (along with automatic problem preprocessing) provides a powerful algorithmic
approach for solving large-scale BIP problems. This is one reason that the name branch-
and-cut algorithm has been given to this approach.
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and solve integer programming models. (These same techniques also are beginning to be
used in related areas of mathematical programming, especially combinatorial optimiza-
tion, but we will limit our discussion to their central use in integer programming.)

The Nature of Constraint Programming

In the mid-1980s, researchers in the computer science community began to develop con-
straint programming by combining ideas in artificial intelligence with the development of
computer programming languages. The goal was to have a flexible computer program-
ming system that would include both variables and constraints on their values, while also
allowing the description of search procedures that would generate feasible values of the
variables. Each variable has a domain of possible values, e.g., {2, 4, 6, 8, 10}. Rather than
being limited to the types of mathematical constraints used in mathematical programming,
there is great flexibility in how to state the constraints. In particular, the constraints can
be any of the following types:

1. Mathematical constraints, e.g., x � y � z.
2. Disjunctive constraints, e.g., the times of certain tasks in the problem being modeled

cannot overlap.
3. Relational constraints, e.g., at least three tasks should be assigned to a certain machine.
4. Explicit constraints, e.g., although both x and y have domains {1, 2, 3, 4, 5}, (x, y)

must be (1, 1), (2, 3), or (4, 5).
5. Unary constraints, e.g., z is an integer between 5 and 10.
6. Logical constraints, e.g., if x is 5, then y is between 6 and 8.

When expressing these kinds of constraints, constraint programming allows the use
of various standard logic functions, such as IF, AND, OR, NOT, and so on. Excel includes
many of the same logic functions. LINGO now supports all the standard logic functions
and can use its global optimizer to find a globally optimal solution.

To illustrate the algorithms that constraint programming uses to generate feasible so-
lutions, suppose that a problem has four variables––x1, x2, x3, x4––and their domains are

x1 ∈ {1, 2}, x2 ∈ {1, 2}, x3 ∈ {1, 2, 3), x4 ∈ {1, 2, 3, 4, 5},

where the symbol ∈ signifies that the variable on the left belongs to the set on the right.
Suppose also that the constraints are

(1) All these variables must have different values,
(2) x1 � x3 � 4.

By straightforward logic, since the values of 1 and 2 must be reserved for x1 and x2, the
first constraint immediately implies that x3 ∈ {3}, which then implies that x4 ∈ {4, 5}.
(This process of eliminating possible values for variables is referred to as domain 
reduction.) Next, since the domain of x3 has been changed, the process of constraint 
propagation applies the second constraint to imply that x1 ∈ {1}. This again triggers the
first constraint, so that

x1 ∈ {1}, x2 ∈ {2}, x3 ∈ {3}, x4 ∈ {4, 5}

lists the only feasible solutions for the problem. This kind of feasibility reasoning based
on alternating between the application of domain reduction and constraint propagation
algorithms is a key part of constraint programming.

After the application of the constraint propagation and domain reduction algo-
rithms to a problem, a search procedure is used to find complete feasible solutions. In
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the example above, since the domains of all the variables have been reduced to a sin-
gle value except for x4, the search procedure would simply try the values x4 � 4 and
x4 � 5 to determine the complete feasible solutions for that problem. However, for a
problem with many constraints and variables, the constraint propagation and domain
reduction algorithms typically do not reduce the domain of each variable to a single
value. It is therefore necessary to write a search procedure that will try different as-
signments of values to the variables. As these assignments are tried, the constraint prop-
agation algorithm is triggered and further domain reduction occurs. The process creates
a search tree, which is similar to the branching tree when applying the branch-and-bound
technique to integer programming.

The overall process of applying constraint programming to complicated IP problems
(or related problems) involves the following three steps:

1. Formulate a compact model for the problem by using a variety of constraint types (most
of which do not fit the format of integer programming).

2. Efficiently find feasible solutions that satisfy all these constraints.
3. Search among these feasible solutions for an optimal solution.

The power of constraint programming lies in its great ability to perform the first two
steps rather than the third, whereas the main strength of integer programming and its
algorithms lie in performing the third step. Thus, constraint programming is ideally suited
for a highly constrained problem that has no objective function, so the only goal is to
find a feasible solution. However, it also can be extended to the third step. One method
of doing so is to enumerate the feasible solutions and calculate the value of the objec-
tive function for each one. However, this would be extremely inefficient for problems
where there are numerous feasible solutions. To circumvent this drawback, the common
approach is to add a constraint that tightly bounds the objective function to values that
are very near to what is anticipated for an optimal solution. For example, if the objec-
tive is to maximize the objective function and its value Z is anticipated to be approxi-
mately Z � 10 for an optimal solution, one might add the constraint that Z � 9 so that
the only remaining feasible solutions to be enumerated are those that are very close to
being optimal. Each time that a new best solution then is found during the search, the
bound on Z can be further tightened to consider only feasible solutions that are at least
as good as the current best solution.

Although this is a reasonable approach to the third step, a more attractive approach
would be to integrate constraint programming and integer programming so that each is
mainly used where it is strongest—steps 1 and 2 with constraint programming and step 3
with integer programming. This is part of the potential of constraint programming de-
scribed next.

The Potential of Constraint Programming

In the 1990s, constraint programming features, including powerful constraint-solving al-
gorithms, were successfully incorporated into a number of general-purpose programming
languages, as well as several special-purpose programming languages. This brought com-
puter science closer and closer to the Holy Grail of computer programming, namely,
allowing the user to simply state the problem and then the computer will solve it.

As word of this exciting development began to spread beyond the computer science
community, researchers in operations research began to realize the great potential of in-
tegrating constraint programming with the traditional techniques of integer programming
(and other areas of mathematical programming as well). The much greater flexibility in
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expressing the constraints of the problem should greatly increase the ability to formulate
valid models for complex problems. It also should lead to much more compact and straight-
forward formulations. In addition, by reducing the size of the feasible region that needs to
be considered while efficiently finding solutions within this region, the constraint-solving
algorithms of constraint programming might help accelerate the progress of integer pro-
gramming algorithms in finding an optimal solution.

Because of their substantial differences, integrating constraint programming with in-
teger programming is a very difficult task. Since integer programming does not recognize
most of the constraints of constraint programming, this requires developing computer-
implemented procedures for translating from the language of constraint programming to
the language of integer programming and vice versa. Good progress is being made, but
this undoubtedly will continue to be one of the most active areas of OR research for some
years to come.

To illustrate the way in which constraint programming can greatly simplify the for-
mulation of integer programming models, we now will introduce two of the most impor-
tant “global constraints” of constraint programming. A global constraint is a constraint
that succinctly expresses a global pattern in the allowable relationship between multiple
variables. Therefore, a single global constraint often can replace what used to require a
large number of traditional integer programming constraints while also making the model
considerably more readable. To clarify the presentation, we will use very simple exam-
ples that don’t require the use of constraint programming to illustrate global constraints,
but these same types of constraints also can readily be used for some much more com-
plicated problems.

The All-Different Constraint

The all-different global constraint simply specifies that all the variables in a given set must
have different values. If x1, x2, . . . , xn are the variables involved, the constraint can be
written succinctly as

all-different (x1, x2, . . . , xn)

while also specifying the domains of the individual variables in the model. (These domains
collectively need to include at least n different values in order to enforce the all-different
constraint.)

To illustrate this constraint, consider the classical assignment problem presented
in Sec. 9.3. Recall that this problem involves assigning n assignees to n tasks on a one-
to-one basis so as to minimize the total cost of these assignments. Although the as-
signment problem is a particularly easy one to solve (as described in Sec. 9.4), it nicely
illustrates how the all-different constraint can greatly simplify the formulation of the
model.

With the traditional formulation presented in Sec. 9.3, the decision variables are the
binary variables,

xij � �
for i, j � 1, 2, . . . , n. Ignoring the objective function for now, the functional constraints
are the following.

Each assignee i is to be assigned to exactly one task:

�
n

j�1
xij � 1 for i � 1, 2, . . . , n.

if assignee i performs task j
if not

1,
0,
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Each task j is to be performed by exactly one assignee:

�
n

i�1
xij � 1 for j � 1, 2, . . . , n.

Thus, there are n2 variables and 2n functional constraints.
Now let us look at the much smaller model that constraint programming can provide.

In this case, the variables are

yi � task to which assignee i is assigned

for i � 1, 2, . . . , n. There are n tasks and they are numbered 1, 2, . . . , n, so each of
the yi variables has the domain {1, 2, . . . , n}. Since all the assignees must be assigned
different tasks, this restriction on the variables is precisely described by the single global
constraint,

all-different (y1, y2, . . . , yn).

Therefore, rather than n2 variables and 2n functional constraints, this complete constraint
programming model (excluding the objective function) has only n variables and a single
constraint (plus one domain for all the variables).

Now let us see how the next global constraint enables incorporating the objective
function into this tiny model as well.

The Element Constraint

The element global constraint is most commonly used to look up a cost or profit associated
with an integer variable. In particular, suppose that a variable y has domain {1, 2, . . . , n}
and that the cost associated with each of these values is c1, c2, . . . , cn, respectively. Then
the constraint

element (y, [c1, c2, . . . , cn], z)

constrains the variable z to equal the yth constant in the list [c1, c2, . . . , cn]. In other
words, z � cy. This variable z can now be included in the objective function to provide
the cost associated with y.

To illustrate the use of the element constraint, consider the assignment problem again
and let

cij � cost of assigning assignee i to task j

for i, j, � 1, 2, . . . , n. The complete constraint programming model (including the ob-
jective function for this problem is

Minimize Z � �
n

i�1
zi,

subject to

element (yi, [ci1, ci2, . . . , cin], zi) for i � 1, 2, . . . , n,
all-different (y1, y2, . . . , yn),
yi ∈ {1, 2, . . . , n} for i � 1, 2, . . . , n.

This complete model now has 2n variables and (n � 1) constraints (plus the one domain
for all the variables), which still is far smaller than the traditional integer programming for-
mulation presented in Sec. 9.3. For example, when n � 100, this model has 200 variables
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and 101 constraints whereas the traditional integer programming model has 10,000 vari-
ables and 200 functional constraints.

As an additional example, reconsider Example 2 (Violating Proportionality) presented
in Sec. 12.4. In this case, the original decision variables are

xj � number of TV spots allocated to product j

for j � 1, 2, 3, where a total of five TV spots are to be allocated to the three products.
However, because the profits given in Table 12.3 for different values of each xj are not
proportional to xj, Sec. 12.4 formulates two alternative integer programming models with
auxiliary binary variables for this problem. Both models are fairly complicated.

A constraint programming model that uses the element constraint is much more
straightforward. For example, the profit for Product 1 given in Table 12.3 is 0, 1, 3, and 3
for x1 � 0, 1, 2, and 3, respectively. Therefore, this profit is simply z1 when the value of
z1 is given by the constraint

element (x1 � 1, [0, 1, 3, 3], z1).

(The first component is x1 � 1 instead of x1 because x1 � 1 � 1, 2, 3, or 4, and it is the value
of this component that indicates the choice of position 1, 2, 3, or 4 in the list [0, 1, 3, 3].)
Proceeding in the same way for the other two products, the complete model is

Maximize Z � z1 � z2 � z3,

subject to

element (x1 � 1, [0, 1, 3, 3], z1),
element (x2 � 1, [0, 0, 2, 3], z2),
element (x3 � 1, [0, �1, 2, 4], z3),
x1 � x2 � x3 � 5,
xj ∈ {0, 1, 2, 3} for j � 1, 2, 3.

Now compare this model to the two integer programming models for the same prob-
lem in Sec. 12.4. Note how the use of element constraints provides a considerably more
compact and transparent model.

The all-different and element constraints are but two of the various available global con-
straints (Selected Reference 5 describes nearly 40), but they nicely illustrate the power of
constraint programming to provide a compact and readable model of a complex problem.

Current Research

Current research in integrating constraint programming and integer programming is mov-
ing along several parallel paths. For example, the most straightforward approach is to
simultaneously use both a constraint programming model and an integer programming
model to represent complementary parts of a problem. Thus, each relevant constraint is
included in whichever model it fits or, when feasible, in both models. As a constraint pro-
gramming algorithm and an integer programming algorithm are applied to the respective
models, information is passed back and forth to focus the search on the feasible solutions
(those that satisfy the constraints of both models).

This kind of double modeling scheme can be implemented with the Optimization Pro-
gramming Language (OPL) that is incorporated into the OPL-CPLEX Development 
System. After employing the OPL modeling language, the OPL-CPLEX Development
System can invoke both a constraint programming algorithm (CP Optimizer) and a 
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IP problems arise frequently because some or all of the decision variables must be re-
stricted to integer values. There also are many applications involving yes-or-no decisions
(including combinatorial relationships expressible in terms of such decisions) that can be
represented by binary (0–1) variables. These factors have made integer programming one
of the most widely used OR techniques.

IP problems are more difficult than they would be without the integer restriction, so
the algorithms available for integer programming are generally considerably less efficient
than the simplex method. However, there has been tremendous progress over the past two
or three decades in the ability to solve some (but not all) huge IP problems with tens or
even hundreds of thousands of integer variables. This progress is due to a combination of
three factors—dramatic improvements in IP algorithms, striking improvement in the
linear programming algorithms used within IP algorithms, and the great speedup in com-
puters. However, IP algorithms also will occasionally still fail to solve rather small prob-
lems (even as few as a hundred integer variables). Various characteristics of an IP problem
in addition to its size, have a great influence on how readily it can be solved.

Nevertheless, size is one key factor in determining the time required to solve an IP
problem, if it can be solved at all. The most important determinants of computation time
for an IP algorithm are the number of integer variables and whether the problem has some
special structure that can be exploited. For a fixed number of integer variables, BIP prob-
lems generally are much easier to solve than problems with general integer variables, but
adding continuous variables (MIP) may not increase computation time substantially. For
special types of BIP problems containing a special structure that can be exploited by a
special-purpose algorithm, it may be possible to solve very large problems (thousands of
binary variables) routinely.

Computer codes for IP algorithms now are commonly available in mathematical pro-
gramming software packages. Traditionally, these algorithms usually have been based on
the branch-and-bound technique and variations thereof.

■ 12.10 CONCLUSIONS

mathematical programming solver (CPLEX) and then pass some information from one to
the other.

Although double modeling is a good first step, the goal is to fully integrate constraint
programming and integer programming so that a single hybrid model and a single algo-
rithm can be used. It is this kind of seamless integration that will be able to fully provide
the complementary strengths of both techniques. Although fully achieving this goal remains
a formidable research challenge, good progress continues to be made in this direction. Se-
lected Reference 5 describes the current state of the art in this area.

Even at this early stage, there already have been numerous successful applications of the
merger of mathematical programming and constraint programming. The areas of application
include network design, vehicle routing, crew rostering, the classical transportation problem
with piecewise linear costs, inventory management, computer graphics, software engineer-
ing, databases, finance, engineering, and combinatorial optimization, among others. In addi-
tion, Selected Reference 3 describes how scheduling is proving to be a particularly fruitful
area for the application of constraint programming. For example, because of the many com-
plicated scheduling constraints involved, constraint programming has been used to determine
the regular-season schedule for the National Football League in the United States.

These applications only begin to tap the potential of integrating constraint program-
ming and integer programming. Further progress in completing this integration promises
to open up many exciting new opportunities for important applications.
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More modern IP algorithms now use the branch-and-cut approach. This algorithmic
approach involves combining automatic problem preprocessing, the generation of cut-
ting planes, and clever branch-and-bound techniques. Research in this area is continu-
ing, along with the development of sophisticated new software packages that incorporate
these techniques.

The latest development in IP methodology is to begin incorporating constraint pro-
gramming. It appears that this approach will greatly expand our ability to formulate and
solve IP models.

In recent years, there has been considerable investigation into the development of al-
gorithms (including heuristic algorithms) for integer nonlinear programming, and this area
continues to be an active area of research. (Selected Reference 7 describes some of the
progress in this area.)
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Solved Examples:

Examples for Chapter 12

Demonstration Examples in OR Tutor:

Binary Integer Programming Branch-and-Bound Algorithm
Mixed Integer Programming Branch-and-Bound Algorithm

Interactive Procedures in IOR Tutorial:

Enter or Revise an Integer Programming Model
Solve Binary Integer Program Interactively
Solve Mixed Integer Program Interactively

An Excel Add-in:

Analytic Solver Platform for Education (ASPE)

“Ch. 12—Integer Programming” Files for Solving the Examples:

Excel Files
LINGO/LINDO File
MPL/Solvers File

Glossary for Chapter 12

See Appendix 1 for documentation of the software.
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The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The corresponding demonstration example just listed in
Learning Aids may be helpful.

I: We suggest that you use the corresponding interactive pro-
cedure just listed (the printout records your work).

C: Use the computer with any of the software options avail-
able to you (or as instructed by your instructor) to solve
the problem.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

12.1-1. Reconsider the California Manufacturing Co. example pre-
sented in Sec. 12.1. The mayor of San Diego now has contacted the
company’s president to try to persuade him to build a factory and
perhaps a warehouse in that city. With the tax incentives being of-
fered the company, the president’s staff estimates that the net pre-
sent value of building a factory in San Diego would be $7 million
and the amount of capital required to do this would be $4 million.
The net present value of building a warehouse there would be $5
million and the capital required would be $3 million. (This option
would be considered only if a factory also is being built there.)

The company president now wants the previous OR study
revised to incorporate these new alternatives into the overall prob-
lem. The objective still is to find the feasible combination of in-
vestments that maximizes the total net present value, given that the
amount of capital available for these investments is $10 million.
(a) Formulate a BIP model for this problem.
(b) Display this model on an Excel spreadsheet.
C (c) Use the computer to solve this model.

12.1-2* A young couple, Eve and Steven, want to divide their main
household chores (marketing, cooking, dishwashing, and launder-
ing) between them so that each has two tasks but the total time
they spend on household duties is kept to a minimum. Their effi-
ciencies on these tasks differ, where the time each would need to
perform the task is given by the following table:

(a) Formulate a BIP model for this problem.
(b) Display this model on an Excel spreadsheet.
C (c) Use the computer to solve this model.

12.1-3. A real estate development firm, Peterson and Johnson, is
considering five possible development projects. The following table
shows the estimated long-run profit (net present value) that each
project would generate, as well as the amount of investment required
to undertake the project, in units of millions of dollars.

The owners of the firm, Dave Peterson and Ron Johnson, have
raised $20 million of investment capital for these projects. Dave
and Ron now want to select the combination of projects that will
maximize their total estimated long-run profit (net present value)
without investing more that $20 million.
(a) Formulate a BIP model for this problem.
(b) Display this model on an Excel spreadsheet.
C (c) Use the computer to solve this model.

12.1-4. The board of directors of General Wheels Co. is consid-
ering six large capital investments. Each investment can be made
only once. These investments differ in the estimated long-run profit
(net present value) that they will generate as well as in the amount
of capital required, as shown by the following table (in units of
millions of dollars):

The total amount of capital available for these investments is $100
million. Investment opportunities 1 and 2 are mutually exclusive,
and so are 3 and 4. Furthermore, neither 3 nor 4 can be undertaken
unless one of the first two opportunities is undertaken. There are
no such restrictions on investment opportunities 5 and 6. The ob-
jective is to select the combination of capital investments that will
maximize the total estimated long-run profit (net present value).
(a) Formulate a BIP model for this problem.
C (b) Use the computer to solve this model.

12.1-5. Reconsider Prob. 9.3-4, where a swim team coach needs
to assign swimmers to the different legs of a 200-yard medley re-
lay team. Formulate a BIP model for this problem. Identify the
groups of mutually exclusive alternatives in this formulation.

12.1-6. Vincent Cardoza is the owner and manager of a machine
shop that does custom order work. This Wednesday afternoon, he
has received calls from two customers who would like to place rush
orders. One is a trailer hitch company which would like some
custom-made heavy-duty tow bars. The other is a mini-car-carrier
company which needs some customized stabilizer bars. Both cus-
tomers would like as many as possible by the end of the week
(two working days). Since both products would require the use
of the same two machines, Vincent needs to decide and inform

Time Needed per Week

Marketing Cooking Dishwashing Laundry

Eve 4.5 hours 7.8 hours 3.6 hours 2.9 hours
Steven 4.9 hours 7.2 hours 4.3 hours 3.1 hours

Development Project

1 2 3 4 5

Estimated profit 1 1.8 1.6 0.8 1.4
Capital required 6 12 10 4 8

Investment Opportunity

1 2 3 4 5 6

Estimated profit 15 12 16 18 9 11
Capital required 38 33 39 45 23 27

■ PROBLEMS
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the customers this afternoon about how many of each product he
will agree to make over the next two days.

Each tow bar requires 3.2 hours on machine 1 and 2 hours on
machine 2. Each stabilizer bar requires 2.4 hours on machine 1 and
3 hours on machine 2. Machine 1 will be available for 16 hours
over the next two days and machine 2 will be available for 15 hours.
The profit for each tow bar produced would be $130 and the profit
for each stabilizer bar produced would be $150.

Vincent now wants to determine the mix of these production
quantities that will maximize the total profit.
(a) Formulate an IP model for this problem.
(b) Use a graphical approach to solve this model.
C (c) Use the computer to solve the model.

12.1-7. Reconsider Prob. 9.2-21 involving a contractor (Susan
Meyer) who needs to arrange for hauling gravel from two pits to
three building sites.

Susan now needs to hire the trucks (and their drivers) to do
the hauling. Each truck can only be used to haul gravel from a sin-
gle pit to a single site. In addition to the hauling and gravel costs
specified in Prob. 9.2-21, there now is a fixed cost of $50 associ-
ated with hiring each truck. A truck can haul 5 tons, but it is not
required to go full. For each combination of pit and site, there are
now two decisions to be made: the number of trucks to be used
and the amount of gravel to be hauled.
(a) Formulate an MIP model for this problem.
C (b) Use the computer to solve this model.

12.2-1. Read the referenced article that fully describes the OR study
summarized in the first application vignette presented in Sec. 12.2.
Briefly describe how integer programming was applied in this study.
Then list the various financial and nonfinancial benefits that resulted
from this study.

12.2-2. Select one of the actual applications of BIP by a company
or governmental agency mentioned in Sec. 12.2. Read the article
describing the application in the referenced issue of Interfaces.
Write a two-page summary of the application and its benefits.

12.2-3. Select three of the actual applications of BIP by a com-
pany or governmental agency mentioned in Sec. 12.2. Read the
articles describing the applications in the referenced issues of
Interfaces. For each one, write a one-page summary of the appli-
cation and its benefits.

12.2-4. Follow the instructions of Prob. 12.2-1 for the second ap-
plication vignette presented in Sec. 12.2.

12.3-1.* The Research and Development Division of the Progres-
sive Company has been developing four possible new product lines.
Management must now make a decision as to which of these four
products actually will be produced and at what levels. Therefore,
an operations research study has been requested to find the most
profitable product mix.

A substantial cost is associated with beginning the produc-
tion of any product, as given in the first row of the following
table. Management’s objective is to find the product mix that max-
imizes the total profit (total net revenue minus start-up costs).

Let the continuous decision variables x1, x2, x3, and x4 be the
production levels of products 1, 2, 3, and 4, respectively. Manage-
ment has imposed the following policy constraints on these variables:

1. No more than two of the products can be produced.
2. Either product 3 or 4 can be produced only if either product 1

or 2 is produced.
3. Either 5x1 � 3x2 � 6x3 � 4x4 � 6,000

or 4x1 � 6x2 � 3x3 � 5x4 � 6,000.

(a) Introduce auxiliary binary variables to formulate a mixed BIP
model for this problem.

C (b) Use the computer to solve this model.

12.3-2. Suppose that a mathematical model fits linear program-
ming except for the restriction that ⏐x1 � x2⏐ � 0, or 3, or 6. Show
how to reformulate this restriction to fit an MIP model.

12.3-3. Suppose that a mathematical model fits linear program-
ming except for the restrictions that

1. At least one of the following two inequalities holds:

3x1 � x2 � x3 � x4 � 12
x1 � x2 � x3 � x4 � 15.

2. At least two of the following three inequalities holds:

2x1 � 5x2 � x3 � x4 � 30
�x1� 3x2 � 5x3 � x4 � 40
3x1 � x2 � 3x3 � x4 � 60.

Show how to reformulate these restrictions to fit an MIP model.

12.3-4. The Toys-R-4-U Company has developed two new toys for
possible inclusion in its product line for the upcoming Christmas
season. Setting up the production facilities to begin production
would cost $50,000 for toy 1 and $80,000 for toy 2. Once these
costs are covered, the toys would generate a unit profit of $10 for
toy 1 and $15 for toy 2.

The company has two factories that are capable of producing
these toys. However, to avoid doubling the start-up costs, just one
factory would be used, where the choice would be based on max-
imizing profit. For administrative reasons, the same factory would
be used for both new toys if both are produced.

Toy 1 can be produced at the rate of 50 per hour in factory 1
and 40 per hour in factory 2. Toy 2 can be produced at the rate of
40 per hour in factory 1 and 25 per hour in factory 2. Factories 
1 and 2, respectively, have 500 hours and 700 hours of production
time available before Christmas that could be used to produce 
these toys.

It is not known whether these two toys would be continued
after Christmas. Therefore, the problem is to determine how many

Product

1 2 3 4

Start-up cost $50,000 $40,000 $70,000 $60,000
Marginal revenue $70 $60 $90 $80
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units (if any) of each new toy should be produced before Christ-
mas to maximize the total profit.
(a) Formulate an MIP model for this problem.
C (b) Use the computer to solve this model.

12.3-5.* Northeastern Airlines is considering the purchase of
new long-, medium-, and short-range jet passenger airplanes. The
purchase price would be $67 million for each long-range plane,
$50 million for each medium-range plane, and $35 million for each
short-range plane. The board of directors has authorized a maxi-
mum commitment of $1.5 billion for these purchases. Regardless
of which airplanes are purchased, air travel of all distances is ex-
pected to be sufficiently large that these planes would be utilized
at essentially maximum capacity. It is estimated that the net an-
nual profit (after capital recovery costs are subtracted) would be
$4.2 million per long-range plane, $3 million per medium-range
plane, and $2.3 million per short-range plane.

It is predicted that enough trained pilots will be available to
the company to crew 30 new airplanes. If only short-range planes
were purchased, the maintenance facilities would be able to handle
40 new planes. However, each medium-range plane is equivalent to
1	

1
3

	 short-range planes, and each long-range plane is equivalent to 1	
2
3

	

short-range planes in terms of their use of the maintenance facilities.
The information given here was obtained by a preliminary

analysis of the problem. A more detailed analysis will be conducted
subsequently. However, using the preceding data as a first ap-
proximation, management wishes to know how many planes of
each type should be purchased to maximize profit.
(a) Formulate an IP model for this problem.
C (b) Use the computer to solve this problem.
(c) Use a binary representation of the variables to reformulate the

IP model in part (a) as a BIP problem.
C (d) Use the computer to solve the BIP model formulated in part

(c). Then use this optimal solution to identify an optimal so-
lution for the IP model formulated in part (a).

12.3-6. Consider the two-variable IP example discussed in Sec. 12.5
and illustrated in Fig. 12.3.
(a) Use a binary representation of the variables to reformulate this

model as a BIP problem.
C (b) Use the computer to solve this BIP problem. Then use this

optimal solution to identify an optimal solution for the orig-
inal IP model.

12.3-7. The Fly-Right Airplane Company builds small jet airplanes
to sell to corporations for the use of their executives. To meet the
needs of these executives, the company’s customers sometimes or-
der a custom design of the airplanes being purchased. When this
occurs, a substantial start-up cost is incurred to initiate the pro-
duction of these airplanes.

Fly-Right has recently received purchase requests from three
customers with short deadlines. However, because the company’s
production facilities already are almost completely tied up filling
previous orders, it will not be able to accept all three orders. There-
fore, a decision now needs to be made on the number of airplanes

the company will agree to produce (if any) for each of the three
customers.

The relevant data are given in the next table. The first row
gives the start-up cost required to initiate the production of the air-
planes for each customer. Once production is under way, the mar-
ginal net revenue (which is the purchase price minus the marginal
production cost) from each airplane produced is shown in the sec-
ond row. The third row gives the percentage of the available pro-
duction capacity that would be used for each airplane produced.
The last row indicates the maximum number of airplanes requested
by each customer (but less will be accepted).

Customer

1 2 3

Start-up cost $3 million $2 million 0
Marginal net revenue $2 million $3 million $0.8 million
Capacity used per plane 20% 40% 20%
Maximum order 3 planes 2 planes 5 planes

Fly-Right now wants to determine how many airplanes to pro-
duce for each customer (if any) to maximize the company’s total
profit (total net revenue minus start-up costs).
(a) Formulate a model with both integer variables and binary vari-

ables for this problem.
C (b) Use the computer to solve this model.

12.4-1. Reconsider the Fly-Right Airplane Co. problem introduced
in Prob. 12.3-7. A more detailed analysis of the various cost and
revenue factors now has revealed that the potential profit from pro-
ducing airplanes for each customer cannot be expressed simply in
terms of a start-up cost and a fixed marginal net revenue per air-
plane produced. Instead, the profits are given by the following table.

Profit from

Airplanes
Customer

Produced 1 2 3

0 0 0 0
1 �$1 million $1 million $1 million
2 �$2 million $5 million $3 million
3 �$4 million $5 million
4 $6 million
5 $7 million

(a) Formulate a BIP model for this problem that includes con-
straints for mutually exclusive alternatives.

C (b) Use the computer to solve the model formulated in part (a).
Then use this optimal solution to identify the optimal num-
ber of airplanes to produce for each customer.
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Attractive Possible Route

Delivery Location 1 2 3 4 5 6 7 8 9 10

A 1 1 1
B 2 1 2 2 2
C 3 3 3 3
D 2 1 1
E 2 2 3
F 1 2
G 3 1 2 3
H 1 3 1
I 3 4 2

Time (in hours) 6 4 7 5 4 6 5 3 7 6

(Origin) (Destination)O

A

B

C

D

T

6

3

4

3

6

5 3

2

(c) Formulate another BIP model for this model that includes con-
straints for contingent decisions.

C (d) Repeat part (b) for the model formulated in part (c).

12.4-2. Reconsider the Wyndor Glass Co. problem presented in
Sec. 3.1. Management now has decided that only one of the two
new products should be produced, and the choice is to be made on
the basis of maximizing profit. Introduce auxiliary binary variables
to formulate an MIP model for this new version of the problem.

12.4-3.* Reconsider Prob. 3.1-11, where the management of the
Omega Manufacturing Company is considering devoting excess
production capacity to one or more of three products. (See the Par-
tial Answers to Selected Problems in the back of the book for
additional information about this problem.) Management now has
decided to add the restriction that no more than two of the three
prospective products should be produced.
(a) Introduce auxiliary binary variables to formulate an MIP

model for this new version of the problem.
C (b) Use the computer to solve this model.

12.4-4. Consider the following integer nonlinear programming
problem:

Maximize Z � 4x2
1 � x3

1 � 10x2
2 � x4

2,

subject to

x1 � x2 � 3

and

x1 � 0, x2 � 0
x1 and x2 are integers.

This problem can be reformulated in two different ways as an
equivalent pure BIP problem (with a linear objective function) with
six binary variables (y1 j and y2 j for j � 1, 2, 3), depending on the
interpretation given the binary variables.
(a) Formulate a BIP model for this problem where the binary vari-

ables have the interpretation,

yij � �
C (b) Use the computer to solve the model formulated in part (a),

and thereby identify an optimal solution for (x1, x2) for the
original problem.

(c) Formulate a BIP model for this problem where the binary vari-
ables have the interpretation,

yij � �
C (d) Use the computer to solve the model formulated in part (c),

and thereby identify an optimal solution for (x1, x2) for the
original problem.

12.4-5.* Consider the following special type of shortest-path
problem (see Sec. 10.3) where the nodes are in columns and the
only paths considered always move forward one column at a time.

if xi � j
otherwise.

1
0

if xi � j
otherwise.

1
0

The numbers along the links represent distances, and the objective
is to find the shortest path from the origin to the destination.

This problem also can be formulated as a BIP model involv-
ing both mutually exclusive alternatives and contingent decisions.
(a) Formulate this model. Identify the constraints that are for

mutually exclusive alternatives and that are for contingent
decisions.

C (b) Use the computer to solve this problem.

12.4-6. Speedy Delivery provides two-day delivery service of
large parcels across the United States. Each morning at each col-
lection center, the parcels that have arrived overnight are loaded
onto several trucks for delivery throughout the area. Since the
competitive battlefield in this business is speed of delivery, the
parcels are divided among the trucks according to their geo-
graphical destinations to minimize the average time needed to
make the deliveries.

On this particular morning, the dispatcher for the Blue River
Valley Collection Center, Sharon Lofton, is hard at work. Her three
drivers will be arriving in less than an hour to make the day’s de-
liveries. There are nine parcels to be delivered, all at locations many
miles apart. As usual, Sharon has loaded these locations into her
computer. She is using her company’s special software package, a
decision support system called Dispatcher. The first thing Dis-
patcher does is use these locations to generate a considerable num-
ber of attractive possible routes for the individual delivery trucks.
These routes are shown in the following table (where the numbers
in each column indicate the order of the deliveries), along with the
estimated time required to traverse the route.
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Dispatcher is an interactive system that shows these routes to
Sharon for her approval or modification. (For example, the com-
puter may not know that flooding has made a particular route
infeasible.) After Sharon approves these routes as attractive possi-
bilities with reasonable time estimates, Dispatcher next formulates
and solves a BIP model for selecting three routes that minimize
their total time while including each delivery location on exactly
one route. This morning, Sharon does approve all the routes.
(a) Formulate this BIP model.
C (b) Use the computer to solve this model.

12.4-7. An increasing number of Americans are moving to a
warmer climate when they retire. To take advantage of this trend,
Sunny Skies Unlimited is undertaking a major real estate devel-
opment project. The project is to develop a completely new re-
tirement community (to be called Pilgrim Haven) that will cover
several square miles. One of the decisions to be made is where to
locate the two fire stations that have been allocated to the com-
munity. For planning purposes, Pilgrim Haven has been divided
into five tracts, with no more than one fire station to be located
in any given tract. Each station is to respond to all the fires that
occur in the tract in which it is located as well as in the other
tracts that are assigned to this station. Thus, the decisions to be
made consist of (1) the tracts to receive a fire station and (2) the
assignment of each of the other tracts to one of the fire stations.
The objective is to minimize the overall average of the response
times to fires.

The following table gives the average response time to a fire
in each tract (the columns) if that tract is served by a station in a
given tract (the rows). The bottom row gives the forecasted aver-
age number of fires that will occur in each of the tracts per day.

Formulate a BIP model for this problem. Identify any con-
straints that correspond to mutually exclusive alternatives or con-
tingent decisions.

12.4-8. Reconsider Prob. 12.4-7. The management of Sunny Skies
Unlimited now has decided that the decision on the locations of
the fire stations should be based mainly on costs.

The cost of locating a fire station in a tract is $200,000 for
tract 1, $250,000 for tract 2, $400,000 for tract 3, $300,000 for

tract 4, and $500,000 for tract 5. Management’s objective now is
the following:

Determine which tracts should receive a station to min-
imize the total cost of stations while ensuring that each
tract has at least one station close enough to respond to
a fire in no more than 15 minutes (on the average).

In contrast to the original problem, note that the total number of
fire stations is no longer fixed. Furthermore, if a tract without a
station has more than one station within 15 minutes, it is no longer
necessary to assign this tract to just one of these stations.
(a) Formulate a complete pure BIP model with 5 binary variables

for this problem.
(b) Is this a set covering problem? Explain, and identify the rele-

vant sets.
C (c) Use the computer to solve the model formulated in part (a).

12.4-9. Suppose that a state sends R persons to the U.S. House of
Representatives. There are D counties in the state (D � R), and the
state legislature wants to group these counties into R distinct elec-
toral districts, each of which sends a delegate to Congress. The to-
tal population of the state is P, and the legislature wants to form
districts whose population approximates p � P/R. Suppose that the
appropriate legislative committee studying the electoral districting
problem generates a long list of N candidates to be districts 
(N � R). Each of these candidates contains contiguous counties
and a total population pj ( j � 1, 2, . . . , N ) that is acceptably close
to p. Define cj � ⏐pj � p⏐. Each county i (i � 1, 2, . . . , D) is in-
cluded in at least one candidate and typically will be included in
a considerable number of candidates (in order to provide many fea-
sible ways of selecting a set of R candidates that includes each
county exactly once). Define

aij � �
Given the values of the cj and the aij, the objective is to se-

lect R of these N possible districts such that each county is contained
in a single district and such that the largest of the associated cj is
as small as possible.

Formulate a BIP model for this problem.

12.5-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 12.5.
Briefly describe how integer programming was applied in this
study. Then list the various financial and nonfinancial benefits that
resulted from this study.

12.5-2.* Consider the following IP problem:

Maximize Z � 5x1 � x2,

subject to

�x1 � 2x2 � 4
x1 � x2 � 1

4x1 � x2 � 12

if county i is included in candidate j
if not.

1
0

Response Times (in minutes)

Assigned Station
Fire in Tract

Located in Tract 1 2 3 4 5

1 5 12 30 20 15
2 20 4 15 10 25
3 15 20 6 15 12
4 25 15 25 4 10
5 10 25 15 12 5

Average frequency 2 per 1 per 3 per 1 per 3 per 
of fires day day day day day
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and

x1 � 0, x2 � 0
x1, x2 are integers.

(a) Solve this problem graphically.
(b) Solve the LP relaxation graphically. Round this solution to

the nearest integer solution and check whether it is feasible.
Then enumerate all the rounded solutions by rounding this
solution for the LP relaxation in all possible ways (i.e., by
rounding each noninteger value both up and down). For each
rounded solution, check for feasibility and, if feasible, cal-
culate Z. Are any of these feasible rounded solutions optimal
for the IP problem?

12.5-3. Follow the instructions of Prob. 12.5-2 for the following
IP problem:

Maximize Z � 220x1 � 80x2,

subject to

5x1 � 2x2 � 16
2x1 � x2 � 4

�x1 � 2x2 � 4

and

x1 � 0, x2 � 0
x1, x2 are integers.

12.5-4. Follow the instructions of Prob. 12.5-2 for the following
BIP problem:

Maximize Z � 2x1 � 5x2,

subject to

10x1 � 30x2 � 30
95x1 � 30x2 � 75

and

x1, x2 are binary.

12.5-5. Follow the instructions of Prob. 12.5-2 for the following
BIP problem:

Maximize Z � �5x1 � 25x2,

subject to

�3x1 � 30x2 � 27
3x1 � x2 � 4

and

x1, x2 are binary.

12.5-6. Label each of the following statements as True or False,
and then justify your answer by referring to specific statements in
the chapter:
(a) Linear programming problems are generally considerably eas-

ier to solve than IP problems.

(b) For IP problems, the number of integer variables is generally
more important in determining the computational difficulty
than is the number of functional constraints.

(c) To solve an IP problem with an approximate procedure, one
may apply the simplex method to the LP relaxation problem
and then round each noninteger value to the nearest integer.
The result will be a feasible but not necessarily optimal solu-
tion for the IP problem.

D,I 12.6-1.* Use the BIP branch-and-bound algorithm presented
in Sec. 12.6 to solve the following problem interactively:

Maximize Z � 2x1 � x2 � 5x3 � 3x4 � 4x5,

subject to

3x1 � 2x2 � 7x3 � 5x4 � 4x5 � 6
x1 � x2 � 2x3 � 4x4 � 2x5 � 0

and

xj is binary, for j � 1, 2, . . . , 5.

D,I 12.6-2. Use the BIP branch-and-bound algorithm presented in
Sec. 12.6 to solve the following problem interactively:

Minimize Z � 5x1 � 6x2 � 7x3 � 8x4 � 9x5,

subject to

3x1 � x2 � x3 � x4 � 2x5 � 2
x1 � 3x2 � x3 � 2x4 � x5 � 0

�x1 � x2 � 3x3 � x4 � x5 � 1

and

xj is binary, for j � 1, 2, . . . , 5.

D,I 12.6-3. Use the BIP branch-and-bound algorithm presented in
Sec. 12.6 to solve the following problem interactively:

Maximize Z � 5x1 � 5x2 � 8x3 � 2x4 � 4x5,

subject to

�3x1 � 6x2 � 7x3 � 9x4 � 9x5 � 10
x1 � 2x27x � x4 � 3x5 � 0

and

xj is binary, for j � 1, 2, . . . , 5.

D,I 12.6-4. Reconsider Prob. 12.3-6(a). Use the BIP branch-and-
bound algorithm presented in Sec. 12.6 to solve this BIP model
interactively.

D,I 12.6-5. Reconsider Prob. 12.4-8(a). Use the BIP algorithm pre-
sented in Sec. 12.6 to solve this problem interactively.

12.6-6. Consider the following statements about any pure IP prob-
lem (in maximization form) and its LP relaxation. Label each of
the statements as True or False, and then justify your answer:
(a) The feasible region for the LP relaxation is a subset of the fea-

sible region for the IP problem.
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(b) If an optimal solution for the LP relaxation is an integer solu-
tion, then the optimal value of the objective function is the
same for both problems.

(c) If a noninteger solution is feasible for the LP relaxation, then
the nearest integer solution (rounding each variable to the near-
est integer) is a feasible solution for the IP problem.

12.6-7.* Consider the assignment problem with the following
cost table:

(a) Design a branch-and-bound algorithm for solving such as-
signment problems by specifying how the branching, bound-
ing, and fathoming steps would be performed. (Hint: For the
assignees not yet assigned for the current subproblem, form
the relaxation by deleting the constraints that each of these as-
signees must perform exactly one task.)

(b) Use this algorithm to solve this problem.

12.6-8. Five jobs need to be done on a certain machine. However,
the setup time for each job depends upon which job immediately
preceded it, as shown by the following table:

The objective is to schedule the sequence of jobs that minimizes
the sum of the resulting setup times.
(a) Design a branch-and-bound algorithm for sequencing prob-

lems of this type by specifying how the branch, bound, and
fathoming steps would be performed.

(b) Use this algorithm to solve this problem.

12.6-9.* Consider the following nonlinear BIP problem:

Maximize Z � 80x1 � 60x2 � 40x3 � 20x4

� (7x1 � 5x2 � 3x3 � 2x4)2,

subject to

xj is binary, for j � 1, 2, 3, 4.

Given the value of the first k variables x1, . . . , xk, where k � 0,
1, 2, or 3, an upper bound on the value of Z that can be achieved
by the corresponding feasible solutions is

�
k

j�1
cjxj � ��

k

j�1
djxj�

2

� �
4

j�k�1
max�0, cj � ���

k

i�1
dixi � dj�

2

� ��
k

i�1
dixi�

2

	�,

where c1 � 80, c2 � 60, c3 � 40, c4 � 20, d1 � 7, d2 � 5, d3 � 3,
d4 � 2. Use this bound to solve the problem by the branch-and-
bound technique.

12.6-10. Consider the Lagrangian relaxation described near the
end of Sec. 12.6.
(a) If x is a feasible solution for an MIP problem, show that x also

must be a feasible solution for the corresponding Lagrangian
relaxation.

(b) If x* is an optimal solution for an MIP problem, with an ob-
jective function value of Z, show that Z � Z*R, where Z*R is the
optimal objective function value for the corresponding La-
grangian relaxation.

12.7-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 12.7.
Briefly describe how integer programming was applied in this study.
Then list the various financial and nonfinancial benefits that resulted
from this study.

12.7-2.* Consider the following IP problem:

Maximize Z � �3x1 � 5x2,

subject to

5x1 � 7x2 � 3

and

xj � 3
xj � 0
xj is integer, for j � 1, 2.

(a) Solve this problem graphically.
(b) Use the MIP branch-and-bound algorithm presented in Sec. 12.7

to solve this problem by hand. For each subproblem, solve its
LP relaxation graphically.

(c) Use the binary representation for integer variables to refor-
mulate this problem as a BIP problem.

D,I (d) Use the BIP branch-and-bound algorithm presented in
Sec. 12.6 to solve the problem as formulated in part (c)
interactively.

Task

1 2 3 4 5

1 39 65 69 66 57
2 64 84 24 92 22

Assignee 3 49 50 61 31 45
4 48 45 55 23 50
5 59 34 30 34 18

Setup Time

Job

1 2 3 4 5

None 4 5 8 9 4
1 — 7 12 10 9

Immediately 2 6 — 10 14 11
Preceding Job 3 10 11 — 12 10

4 7 8 15 — 7
5 12 9 8 16 —
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12.7-3. Follow the instructions of Prob. 12.7-2 for the following
IP model:

Minimize Z � 2x1 � 3x2,

subject to

x1 � x2 � 3
x1 � 3x2 � 6

and

x1 � 0, x2 � 0
x1, x2 are integers.

12.7-4. Reconsider the IP model of Prob. 12.5-2.
(a) Use the MIP branch-and-bound algorithm presented in Sec. 12.7

to solve this problem by hand. For each subproblem, solve its
LP relaxation graphically.

D,I (b) Now use the interactive procedure for this algorithm in
your IOR Tutorial to solve this problem.

C (c) Check your answer by using an automatic procedure to
solve the problem.

D,I 12.7-5. Consider the IP example discussed in Sec. 12.5 and il-
lustrated in Fig. 12.3. Use the MIP branch-and-bound algorithm
presented in Sec. 12.7 to solve this problem interactively.

D,I 12.7-6. Reconsider Prob. 12.3-5a. Use the MIP branch-and-
bound algorithm presented in Sec. 12.7 to solve this IP problem
interactively.

12.7-7. A machine shop makes two products. Each unit of the first
product requires 3 hours on machine 1 and 2 hours on machine 2.
Each unit of the second product requires 2 hours on machine 1 and
3 hours on machine 2. Machine 1 is available only 8 hours per day
and machine 2 only 7 hours per day. The profit per unit sold is 16
for the first product and 10 for the second. The amount of each
product produced per day must be an integral multiple of 0.25. The
objective is to determine the mix of production quantities that will
maximize profit.
(a) Formulate an IP model for this problem.
(b) Solve this model graphically.
(c) Use graphical analysis to apply the MIP branch-and-bound

algorithm presented in Sec. 12.7 to solve this model.
D,I (d) Now use the interactive procedure for this algorithm in

your IOR Tutorial to solve this model.
C (e) Check your answers in parts (b), (c), and (d ) by using an

automatic procedure to solve the model.

D,I 12.7-8. Use the MIP branch-and-bound algorithm presented in
Sec. 12.7 to solve the following MIP problem interactively:

Maximize Z � 5x1 � 4x2 � 4x3 � 2x4,

subject to

x1 � 3x2 � 2x3 � x4 � 10
5x1 � x2 � 3x3 � 2x4 � 15
x1 � x2 � x3 � x4 � 6

and

xj � 0, for j � 1, 2, 3, 4
xj is integer, for j � 1, 2, 3.

D,I 12.7-9. Use the MIP branch-and-bound algorithm presented in
Sec. 12.7 to solve the following MIP problem interactively:

Maximize Z � 3x1 � 4x2 � 2x3 � x4 � 2x5,

subject to

2x1 � x2 � x3 � x4 � x5 � 3
�x1 � 3x2 � x3 � x4 � 2x5 � 2
2x1 � x2 � x3 � x4 � 3x5 � 1

and

xj � 0, for j � 1, 2, 3, 4, 5
xj is binary, for j � 1, 2, 3.

D,I 12.7-10. Use the MIP branch-and-bound algorithm presented
in Sec. 12.7 to solve the following MIP problem interactively:

Minimize Z � 5x1 � x2 � x3 � 2x4 � 3x5,

subject to

x2 � 5x3 � x4 � 2x5 � �2
5x1 � x2 � x4 � x5 � �7

x1 � x2 � 6x3 � x4 � �4

and

xj � 0, for j � 1, 2, 3, 4, 5
xj is integer, for j � 1, 2, 3.

12.8-1.* For each of the following constraints of pure BIP prob-
lems, use the constraint to fix as many variables as possible:
(a) 4x1 � x2 � 3x3 � 2x4 � 2
(b) 4x1 � x2 � 3x3 � 2x4 � 2
(c) 4x1 � x2 � 3x3 � 2x4 � 7

12.8-2. For each of the following constraints of pure BIP problems,
use the constraint to fix as many variables as possible:
(a) 20x1 � 7x2 � 5x3 � 10
(b) 10x1 � 7x2 � 5x3 � 10
(c) 10x1 � 7x2 � 5x3 � �1

12.8-3. Use the following set of constraints for the same pure
BIP problem to fix as many variables as possible. Also identify
the constraints which become redundant because of the fixed
variables.

3x3 � x5 � x7 � 1
x2 � x4 � x6 � 1
x1 � 2x5 � 2x6 � 2
x1 � x2 � x4 � 0
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12.8-4. For each of the following constraints of pure BIP problems,
identify which ones are made redundant by the binary constraints.
Explain why each one is, or is not, redundant.
(a) 2x1 � x2 � 2x3 � 5
(b) 3x1 � 4x2 � 5x3 � 5
(c) x1 � x2 � x3 � 2
(d) 3x1 � x2 � 2x3 � �4

12.8-5. In Sec. 12.8, at the end of the subsection on tightening
constraints, we indicated that the constraint 4x1 � 3x2 � x3 �
2x4 � 5 can be tightened to 2x1 � 3x2 � x3 � 2x4 � 3 and then
to 2x1 � 2x2 � x3 � 2x4 � 3. Apply the procedure for tightening
constraints to confirm these results.

12.8-6. Apply the procedure for tightening constraints to the fol-
lowing constraint for a pure BIP problem:

3x1 � 2x2 � x3 � 3.

12.8-7. Apply the procedure for tightening constraints to the fol-
lowing constraint for a pure BIP problem:

x1 � x2 � 3x3 � 4x4 � 1.

12.8-8. Apply the procedure for tightening constraints to each of
the following constraints for a pure BIP problem:
(a) x1 � 3x2 � 4x3 � 2.
(b) 3x1 � x2 � 4x3 � 1.

12.8-9. In Sec. 12.8, a pure BIP example with the constraint,
2x1 � 3x2 � 4, was used to illustrate the procedure for tightening
constraints. Show that applying the procedure for generating cutting
planes to this constraint yields the same new constraint, x1 � x2 � 1.

12.8-10. One of the constraints of a certain pure BIP problem is

x1 � 3x2 � 2x3 � 4x4 � 5.

Identify all the minimal covers for this constraint, and then give
the corresponding cutting planes.

12.8-11. One of the constraints of a certain pure BIP problem is

3x1 � 4x2 � 2x3 � 5x4 � 7.

Identify all the minimal covers for this constraint, and then give
the corresponding cutting planes.

12.8-12. Generate as many cutting planes as possible from the
following constraint for a pure BIP problem:

3x1 � 5x2 � 4x3 � 8x4 � 10.

12.8-13. Generate as many cutting planes as possible from the
following constraint for a pure BIP problem.

5x1 � 3x2 � 7x3 � 4x4 � 6x5 � 9.

12.8-14. Consider the following BIP problem:

Maximize Z � 2x1 � 3x2 � x3 � 4x4 � 3x5

� 2x6 � 2x7 � x8 � 3x9,

subject to

3x2 � x4 � x5 � 3
x1 � x2 � 1

x2 � x4 � x5 � x6 � �1
x2 � 2x6 � 3x7 � x8 � 2x9 � 4

�x3 � 2x5 � x6 � 2x7 � 2x8 � x9 � 5

and

all xj binary.

Develop the tightest possible formulation of this problem by using
the techniques of automatic problem reprocessing (fixing variables,
deleting redundant constraints, and tightening constraints). Then
use this tightened formulation to determine an optimal solution by
inspection.

12.9-1. Consider the following problem:

Maximize Z � 3x1 � 2x2 � 4x3 � x4,

subject to

x1 ∈ {1, 3}, x2 ∈ {1, 2}, x3 ∈ {2, 3}, x4 ∈ {1, 2, 3, 4},
all these variables must have different values,
x1 � x2 � x3 � x4 � 10.

Use the techniques of constraint programming (domain reduction,
constraint propagation, a search procedure, and enumeration) to
identify all the feasible solutions and then to find an optimal so-
lution. Show your work.

12.9-2. Consider the following problem:

Maximize Z � 5x1 � x2
1 � 8x2 �x2

2 � 10x3 � x2
3 � 15x4

� x2
4 � 20x5 � x2

5,

subject to

x1 ∈ {3, 6, 12}, x2 ∈ {3, 6}, x3 ∈ {3, 6, 9, 12},
x4 ∈ {6, 12}, x5 ∈ {9, 12, 15, 18},

all these variables must have different values,
x1 � x3 � x4 � 25.

Use the techniques of constraint programming (domain reduction,
constraint propagation, a search procedure, and enumeration) to
identify all the feasible solutions and then to find an optimal solu-
tion. Show your work.

12.9-3. Consider the following problem:

Maximize Z � 100x1 � 3x2
1� 400x2 �5x2

2 � 200x3

� 4x2
3 � 100x4 � 2x4

4,

subject to

x1 ∈ {25, 30}, x2 ∈ {20, 25, 30, 35, 40, 50},
x3 ∈ {20, 25, 30}, x4 ∈ {20, 25},

all these variables must have different values,
x2 � x3 � 60,
x1 � x3 � 50.
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CASE 12.1 Capacity Concerns
Bentley Hamilton throws the business section of The New
York Times onto the conference room table and watches as
his associates jolt upright in their overstuffed chairs.

Mr. Hamilton wants to make a point.
He throws the front page of The Wall Street Journal on

top of The New York Times and watches as his associates
widen their eyes once heavy with boredom.

Mr. Hamilton wants to make a big point.
He then throws the front page of The Financial Times

on top of the newspaper pile and watches as his associates
dab the fine beads of sweat off their brows.

Mr. Hamilton wants his point indelibly etched into his
associates’ minds.

“I have just presented you with three leading financial
newspapers carrying today’s top business story,” Mr. Hamilton
declares in a tight, angry voice. “My dear associates, our com-
pany is going to hell in a hand basket! Shall I read you the
headlines? From The New York Times, ‘CommuniCorp stock 

■ CASES

Use the techniques of constraint programming (domain reduction,
constraint propagation, a search procedure, and enumeration) to
identify all the feasible solutions and then to find an optimal solu-
tion. Show your work.

12.9-4. Consider the Job Shop Co. example introduced in Sec. 9.3.
Table 9.25 shows its formulation as an assignment problem. Use
global constraints to formulate a compact constraint programming
model for this assignment problem.

12.9-5. Consider the problem of assigning swimmers to the dif-
ferent legs of a medley relay team that is presented in Prob. 9.3-4.
The answer in the back of the book shows the formulation of this
problem as an assignment problem. Use global constraints to for-
mulate a compact constraint programming model for this assign-
ment problem.

12.9-6. Consider the problem of determining the best plan for how
many days to study for each of four final examinations that is pre-
sented in Prob. 11.3-3. Formulate a compact constraint program-
ming model for this problem.

12.9-7. Problem 11.3-2 describes how the owner of a chain of three
grocery stores needs to determine how many crates of fresh straw-
berries should be allocated to each of the stores. Formulate a com-
pact constraint programming model for this problem.

12.9-8. One powerful feature of constraint programming is that
variables can be used as subscripts for the terms in the objective
function. For example, consider the following traveling salesman

problem. The salesman needs to visit each of n cities (city 1,
2, . . . , n) exactly once, starting in city 1 (his home city) and re-
turning to city 1 after completing the tour. Let cij be the distance
from city i to city j for i, j � 1, 2, . . . , n (i ≠ j). The objective is
to determine which route to follow so as to minimize the total dis-
tance of the tour. (As discussed further in Chap. 14, this traveling
salesman problem is a famous classic OR problem with many ap-
plications that have nothing to do with salesmen.)

Letting the decision variable xj (j � 1, 2, . . . , n, n � 1) denote
the jth city visited by the salesman, where x1 � 1 and xn�1 � 1,
constraint programming allows writing the objective as

Minimize Z � �
n

j�1
cxj xj�1

.

Using this objective function, formulate a complete constraint pro-
gramming model for this problem.

12.10-1. From the bottom part of the selected references given at
the end of the chapter, select one of these award-winning applica-
tions of integer programming. Read this article and then write a
two-page summary of the application and the benefits (including
nonfinancial benefits) it provided.

12.10-2. From the bottom part of the selected references given at
the end of the chapter, select three of these award-winning appli-
cations of integer programming. For each one, read the article and
then write a one-page summary of the application and the benefits
(including nonfinancial benefits) it provided.

drops to lowest in 52 weeks.’ From The Wall Street Journal,
‘CommuniCorp loses 25 percent of the pager market in only
one year.’ Oh and my favorite, from The Financial Times,
‘CommuniCorp cannot CommuniCate: CommuniCorp stock
drops because of internal communications disarray.’ How did
our company fall into such dire straits?”

Mr. Hamilton throws a transparency showing a line slop-
ing slightly upward onto the overhead projector. “This is a
graph of our productivity over the last 12 months. As you
can see from the graph, productivity in our pager production
facility has increased steadily over the last year. Clearly, pro-
ductivity is not the cause of our problem.”

Mr. Hamilton throws a second transparency showing a
line sloping steeply upward onto the overhead projector.
“This is a graph of our missed or late orders over the last
12 months.” Mr. Hamilton hears an audible gasp from his
associates. “As you can see from the graph, our missed or
late orders have increased steadily and significantly over the
past 12 months. I think this trend explains why we have been
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losing market share, causing our stock to drop to its lowest
level in 52 weeks. We have angered and lost the business of
retailers, our customers who depend upon on-time deliveries
to meet the demand of consumers.”

“Why have we missed our delivery dates when our pro-
ductivity level should have allowed us to fill all orders?”
Mr. Hamilton asks. “I called several departments to ask this
question.”

“It turns out that we have been producing pagers for the
hell of it!” Mr. Hamilton says in disbelief. “The marketing
and sales departments do not communicate with the manu-
facturing department, so manufacturing executives do not
know what pagers to produce to fill orders. The manufac-
turing executives want to keep the plant running, so they
produce pagers regardless of whether the pagers have been
ordered. Finished pagers are sent to the warehouse, but mar-
keting and sales executives do not know the number and
styles of pagers in the warehouse. They try to communicate

with warehouse executives to determine if the pagers in in-
ventory can fill the orders, but they rarely receive answers
to their questions.”

Mr. Hamilton pauses and looks directly at his associ-
ates. “Ladies and gentlemen, it seems to me that we have
a serious internal communications problem. I intend to
correct this problem immediately. I want to begin by in-
stalling a companywide computer network to ensure that
all departments have access to critical documents and are
able to easily communicate with each other through 
e-mail. Because this intranet will represent a large change
from the current communications infrastructure, I expect
some bugs in the system and some resistance from em-
ployees. I therefore want to phase in the installation of the
intranet.”

Mr. Hamilton passes the following timeline and re-
quirements chart to his associates (IN � Intranet).

Mr. Hamilton proceeds to explain the timeline and re-
quirements chart. “In the first month, I do not want to bring
any department onto the intranet; I simply want to
disseminate information about it and get buy-in from em-
ployees. In the second month, I want to bring the sales de-
partment onto the intranet since the sales department

receives all critical information from customers. In the third
month, I want to bring the manufacturing department onto
the intranet. In the fourth month, I want to install the in-
tranet at the warehouse, and in the fifth and final month, I
want to bring the marketing department onto the intranet.
The requirements chart under the timeline lists the number
of employees requiring access to the intranet in each de-
partment.”

Mr. Hamilton turns to Emily Jones, the head of Corpo-
rate Information Management. “I need your help in plan-
ning for the installation of the intranet. Specifically, the
company needs to purchase servers for the internal network.
Employees will connect to company servers and download
information to their own desktop computers.”

Department Number of Employees

Sales 60
Manufacturing 200
Warehouse 30
Marketing 75

Month 1 Month 2 Month 3 Month 4 Month 5

IN Education
Install IN in
Sales

Install IN in
Manufacturing

Install IN in
Warehouse

Install IN in
Marketing
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■ PREVIEWS OF ADDED CASES ON OUR WEBSITE (www.mhhe.com/hillier)

CASE 12.2 Assigning Art
Plans are being made for an exhibit of up-and-coming mod-
ern artists at the San Francisco Museum of Modern Art. A
long list of possible artists, their available pieces, and the dis-
play prices for these pieces has been compiled. There also are
various constraints regarding the mix of pieces that can be
chosen. BIP now needs to be applied to make the selection
of the pieces for the exhibit under three different scenarios.

CASE 12.3 Stocking Sets
Poor inventory management at the local warehouse for
Furniture City has led to overstocking of many items and
frequent shortages of some others. To begin to rectify this
situation, the 20 most popular kitchen sets in Furniture
City’s kitchen department have just been identified. These
kitchen sets are composed of up to eight features in a vari-
ety of styles, so each of these styles should be well stocked

Mr. Hamilton passes Emily the above chart detailing the
types of servers available, the number of employees each
server supports, and the cost of each server.

“Emily, I need you to decide what servers to purchase
and when to purchase them to minimize cost and to ensure
that the company possesses enough server capacity to fol-
low the intranet implementation timeline,” Mr. Hamilton
says. “For example, you may decide to buy one large server
during the first month to support all employees, or buy
several small servers during the first month to support all
employees, or buy one small server each month to support
each new group of employees gaining access to the
intranet.”

“There are several factors that complicate your deci-
sion,” Mr. Hamilton continues. “Two server manufactur-
ers are willing to offer discounts to CommuniCorp. SGI
is willing to give you a discount of 10 percent off each
server purchased, but only if you purchase servers in the
first or second month. Sun is willing to give you a 25 percent
discount off all servers purchased in the first two months.
You are also limited in the amount of money you can
spend during the first month. CommuniCorp has already
allocated much of the budget for the next two months, so
you only have a total of $9,500 available to purchase

servers in months 1 and 2. Finally, the Manufacturing De-
partment requires at least one of the three more powerful
servers. Have your decision on my desk at the end of the
week.”

(a) Emily first decides to evaluate the number and type of servers to
purchase on a month-to-month basis. For each month, formulate
an IP model to determine which servers Emily should purchase
in that month to minimize costs in that month and support the
new users. How many and which types of servers should she pur-
chase in each month? How much is the total cost of the plan?

(b) Emily realizes that she could perhaps achieve savings if she
bought a larger server in the initial months to support users in
the final months. She therefore decides to evaluate the num-
ber and type of servers to purchase over the entire planning
period. Formulate an IP model to determine which servers
Emily should purchase in which months to minimize total cost
and support all new users. How many and which types of
servers should she purchase in each month? How much is the
total cost of the plan?

(c) Why is the answer using the first method different from that us-
ing the second method?

(d) Are there other costs that Emily is not accounting for in her
problem formulation? If so, what are they?

(e) What further concerns might the various departments of Com-
muniCorp have regarding the intranet?

Number of Employees
Type of Server Server Supports Cost of Server

Standard Intel Pentium PC Up to 30 employees $ 2,500
Enhanced Intel Pentium PC Up to 80 employees $ 5,000
SGI Workstation Up to 200 employees $10,000
Sun Workstation Up to 2,000 employees $25,000
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in the warehouse. However, the limited amount of warehouse
space allocated to the kitchen department means that some
difficult stocking decisions need to be made. After gather-
ing the relevant data for the 20 kitchen sets, BIP now needs
to be applied to determine how many of each feature and
style Furniture City should stock in the local warehouse un-
der three different scenarios.

CASE 12.4 Assigning Students 
to Schools, Revisited Again
As introduced in Case 4.3 and revisited in Case 7.3, the
Springfield School Board needs to assign the middle school

students in the city’s six residential areas to the three re-
maining middle schools. The new complication in that the
school board has just made the decision to prohibit the split-
ting of residential areas among multiple schools. Therefore,
since each of the six areas must be assigned to a single
school, BIP now must be applied to make these assignments
under the various scenarios considered in Case 4.3.
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13C H A P T E R

Nonlinear Programming

The fundamental role of linear programming in OR is accurately reflected by the fact
that it is the focus of a third of this book. A key assumption of linear programming

is that all its functions (objective function and constraint functions) are linear. Although
this assumption essentially holds for many practical problems, it frequently does not hold.
Therefore, it often is necessary to deal directly with nonlinear programming problems, so
we turn our attention to this important area.

In one general form,1 the nonlinear programming problem is to find x � (x1, x2, . . . , xn)
so as to

Maximize f(x),

subject to

gi(x) � bi, for i � 1, 2, . . . , m,

and

x � 0,

where f(x) and the gi(x) are given functions of the n decision variables.2

There are many different types of nonlinear programming problems, depending on
the characteristics of the f(x) and gi(x) functions. Different algorithms are used for the dif-
ferent types. For certain types where the functions have simple forms, problems can be
solved relatively efficiently. For some other types, solving even small problems is a real
challenge.

Because of the many types and the many algorithms, nonlinear programming is a par-
ticularly large subject. We do not have the space to survey it completely. However, we do
present a few sample applications and then introduce some of the basic ideas for solving
certain important types of nonlinear programming problems.

Both Appendixes 2 and 3 provide useful background for this chapter, and we rec-
ommend that you review these appendixes as you study the next few sections.

1The other legitimate forms correspond to those for linear programming listed in Sec. 3.2. Section 4.6 describes
how to convert these other forms to the form given here.
2For simplicity, we assume throughout the chapter that all these functions either are differentiable everywhere
or are piecewise linear functions (discussed in Secs. 13.1 and 13.8).
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Demand x

p(x)

Pr
ic

e

c
Unit cost

■ FIGURE 13.1
Price-demand curve.

■ 13.1 SAMPLE APPLICATIONS

The following examples illustrate a few of the many important types of problems to which
nonlinear programming has been applied.

The Product-Mix Problem with Price Elasticity

In product-mix problems, such as the Wyndor Glass Co. problem introduced in Sec. 3.1,
the goal is to determine the optimal mix of production levels for a firm’s products, given
limitations on the resources needed to produce those products, in order to maximize the
firm’s total profit. In some cases, there is a fixed unit profit associated with each product,
so the resulting objective function will be linear. However, in many product-mix prob-
lems, certain factors introduce nonlinearities into the objective function.

For example, a large manufacturer may encounter price elasticity, whereby the amount
of a product that can be sold has an inverse relationship to the price charged. Thus, the
price-demand curve for a typical product might look like the one shown in Fig. 13.1, where
p(x) is the price required in order to be able to sell x units. The firm’s profit from produc-
ing and selling x units of the product then would be the sales revenue, xp(x), minus the
production and distribution costs. Therefore, if the unit cost for producing and distribut-
ing the product is fixed at c (see the dashed line in Fig. 13.1), the firm’s profit from pro-
ducing and selling x units is given by the nonlinear function

P(x) � xp(x) � cx,

as plotted in Fig. 13.2. If each of the firm’s n products has a similar profit function, say,
Pj(xj) for producing and selling xj units of product j ( j � 1, 2, . . . , n), then the overall
objective function is

f(x) � �
n

j�1
Pj(xj),

a sum of nonlinear functions.
Another reason that nonlinearities can arise in the objective function is the fact that

the marginal cost of producing another unit of a given product varies with the production
level. For example, the marginal cost may decrease when the production level is increased
because of a learning-curve effect (more efficient production with more experience). On
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the other hand, it may increase instead, because special measures such as overtime or more
expensive production facilities may be needed to increase production further.

Nonlinearities also may arise in the gi(x) constraint functions in a similar fashion.
For example, if there is a budget constraint on total production cost, the cost function
will be nonlinear if the marginal cost of production varies as just described. For con-
straints on the other kinds of resources, gi(x) will be nonlinear whenever the use of the
corresponding resource is not strictly proportional to the production levels of the re-
spective products.

The Transportation Problem with Volume Discounts 
on Shipping Costs

As illustrated by the P & T Company example in Sec. 9.1, a typical application of the
transportation problem is to determine an optimal plan for shipping goods from various
sources to various destinations, given supply and demand constraints, in order to mini-
mize total shipping cost. It was assumed in Chap. 9 that the cost per unit shipped from
a given source to a given destination is fixed, regardless of the amount shipped. In actu-
ality, this cost may not be fixed. Volume discounts sometimes are available for large ship-
ments, so that the marginal cost of shipping one more unit might follow a pattern like
the one shown in Fig. 13.3. The resulting cost of shipping x units then is given by a non-
linear function C(x), which is a piecewise linear function with slope equal to the mar-
ginal cost, like the one shown in Fig. 13.4. [The function in Fig. 13.4 consists of a line
segment with slope 6.5 from (0, 0) to (0.6, 3.9), a second line segment with slope 5 from
(0.6, 3.9) to (1.5, 8.4), a third line segment with slope 4 from (1.5, 8.4) to (2.7, 13.2),
and a fourth line segment with slope 3 from (2.7, 13.2) to (4.5, 18.6).] Consequently, if each
combination of source and destination has a similar shipping cost function, so that the cost
of shipping xij units from source i (i � 1, 2, . . . , m) to destination j ( j � 1, 2, . . . , n) is
given by a nonlinear function Cij(xij), then the overall objective function to be minimized is

f(x) � �
m

i�1
�
n

j�1
Cij(xij).

Even with this nonlinear objective function, the constraints normally are still the special
linear constraints that fit the transportation problem model in Sec. 9.1.

13.1 SAMPLE APPLICATIONS 549

Amount x

P(x)
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P(x) � x [p(x) � c]

■ FIGURE 13.2
Profit function.

hil23453_ch13_547-616.qxd  1/22/70  7:23 AM  Page 549 Final PDF to printer



550 CHAPTER 13 NONLINEAR PROGRAMMING

Amount shipped

M
ar

gi
na

l c
os

t

0.6 1.5 2.7 4.5

6.5

5

4

3

Amount shipped

T
ot

al
 c

os
t

0.6 1.5 2.7 4.5

3.9

8.4

13.2

18.6

■ FIGURE 13.4
Shipping cost function.

■ FIGURE 13.3
Marginal shipping cost.

Portfolio Selection with Risky Securities

It now is common practice for professional managers of large stock portfolios to use com-
puter models based partially on nonlinear programming to guide them. Because investors
are concerned about both the expected return (gain) and the risk associated with their in-
vestments, nonlinear programming is used to determine a portfolio that, under certain 
assumptions, provides an optimal trade-off between these two factors. This approach is
based largely on path-breaking research done by Harry Markowitz and William Sharpe
that helped them win the 1990 Nobel Prize in Economics.

A nonlinear programming model can be formulated for this problem as follows. Sup-
pose that n stocks (securities) are being considered for inclusion in the portfolio, and let the
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decision variables xj ( j � 1, 2, . . . , n) be the number of shares of stock j to be included.
Let �j and �jj be the (estimated) mean and variance, respectively, of the return on each share
of stock j, where �jj measures the risk of this stock. For i � 1, 2, . . . , n (i � j), let �ij be
the covariance of the return on one share each of stock i and stock j. (Because it would be
difficult to estimate all the �ij values, the usual approach is to make certain assumptions
about market behavior that enable us to calculate �ij directly from �ii and �jj .) Then the ex-
pected value R(x) and the variance V(x) of the total return from the entire portfolio are

R(x) � �
n

j�1
�jxj

and

V(x) � �
n

i�1
�
n

j�1
�ij xixj,

where V(x) measures the risk associated with the portfolio. One way to consider the trade-
off between these two factors is to use V(x) as the objective function to be minimized and
then impose the constraint that R(x) must be no smaller than the minimum acceptable ex-
pected return. The complete nonlinear programming model then would be

Minimize V(x) � �
n

i�1
�
n

j�1
�ij xixj,

subject to

�
n

j�1
�j xj � L

�
n

j�1
Pjxj � B

The Bank Hapoalim Group is Israel’s largest banking
group, providing services throughout the country. As of
the beginning of 2012, it had approximately 300 branches
and eight regional business centers in Isreal. It also oper-
ates worldwide through many branches, offices, and sub-
sidiaries in major financial centers in North and South
America and Europe.

A major part of Bank Hapoalim’s business involves
providing investment advisors for its customers. To stay
ahead of its competitors, management embarked on a
restructuring program to provide these investment advi-
sors with state-of-the-art methodology and technology.
An OR team was formed to do this.

The team concluded that it needed to develop a flexi-
ble decision-support system for the investment advisors
that could be tailored to meet the diverse needs of every
customer. Each customer would be asked to provide exten-
sive information about his or her needs, including choosing
among various alternatives regarding his or her investment
objectives, investment horizon, choice of an index to strive
to exceed, preference with regard to liquidity and currency,
etc. A series of questions also would be asked to ascertain
the customer's risk-taking classification.

The natural choice of the model to drive the resulting
decision-support system (called the Opti-Money System)
was the classical nonlinear programming model for port-
folio selection described in this section of the book, with
modifications to incorporate all the information about the
needs of the individual customer. This model generates
an optimal weighting of 60 possible asset classes of equi-
ties and bonds in the portfolio, and the investment advi-
sor then works with the customer to choose the specific
equities and bonds within these classes.

During the first year of full implementation, the
bank’s investment advisors held some 133,000 consulta-
tion sessions with 63,000 customers while using this
decision-support system. The annual earnings over
benchmarks to customers who follow the investment
advice provided by the system total approximately
US$244 million, while adding more than US$31 million
to the bank’s annual income.

Source: M. Avriel, H. Pri-Zan, R. Meiri, and A. Peretz: “Opti-
Money at Bank Hapoalim: A Model-Based Investment Decision-
Support System for Individual Customers,” Interfaces, 34(1):
39–50, Jan.–Feb. 2004. (A link to this article is provided on our
website, www.mhhe.com/hillier.)

An Application Vignette
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and

xj � 0, for j � 1, 2, . . . , n,

where L is the minimum acceptable expected return, Pj is the price for each share of stock j,
and B is the amount of money budgeted for the portfolio.

One drawback of this formulation is that it is relatively difficult to choose an appro-
priate value for L for obtaining the best trade-off between R(x) and V(x). Therefore, rather
than stopping with one choice of L, it is common to use a parametric (nonlinear) pro-
gramming approach to generate the optimal solution as a function of L over a wide range
of values of L. The next step is to examine the values of R(x) and V(x) for these solutions
that are optimal for some value of L and then to choose the solution that seems to give
the best trade-off between these two quantities. This procedure often is referred to as gen-
erating the solutions on the efficient frontier of the two-dimensional graph of (R(x), V(x))
points for feasible x. The reason is that the (R(x), V(x)) point for an optimal x (for some L)
lies on the frontier (boundary) of the feasible points. Furthermore, each optimal x is effi-
cient in the sense that no other feasible solution is at least equally good with one mea-
sure (R or V) and strictly better with the other measure (smaller V or larger R).

This application of nonlinear programming is a particularly important one. The use
of nonlinear programming for portfolio optimization now lies at the center of modern fi-
nancial analysis. (More broadly, the relatively new field of financial engineering has arisen
to focus on the application of OR techniques such as nonlinear programming to various
finance problems, including portfolio optimization.) As illustrated by the application vi-
gnette in this section, this kind of application of nonlinear programming is having a tremen-
dous impact in practice. Much research also continues to be done on the properties and
application of both the above model and related nonlinear programming models to so-
phisticated kinds of portfolio analysis.3

552 CHAPTER 13 NONLINEAR PROGRAMMING

3Important research includes the following papers. B. I. Jacobs, K. N. Levy, and H. M. Markowitz: “Portfolio
Optimization with Factors, Scenarios, and Realistic Short Positions,” Operations Research, 53(4): 586–599,
July–Aug. 2005; A. F. Siegel and A. Woodgate: “Performance of Portfolios Optimized with Estimation Error,”
Management Science, 53(6): 1005–1015, June 2007; H. Konno and T. Koshizuka: “Mean-Absolute Deviation
Model,” IIE Transactions, 37(10): 893–900, Oct. 2005; T. P. Filomena and M. A. Lejeune: “Stochastic Portfo-
lio Optimization with Proportional Transaction Costs: Convex Reformulations and Computational Experiments,”
Operations Research Letters, 40(3): 212–217, May 2012.

■ 13.2 GRAPHICAL ILLUSTRATION OF NONLINEAR 
PROGRAMMING PROBLEMS

When a nonlinear programming problem has just one or two variables, it can be repre-
sented graphically much like the Wyndor Glass Co. example for linear programming in
Sec. 3.1. Because such a graphical representation gives considerable insight into the prop-
erties of optimal solutions for linear and nonlinear programming, let us look at a few ex-
amples. To highlight the difference between linear and nonlinear programming, we shall
use some nonlinear variations of the Wyndor Glass Co. problem.

Figure 13.5 shows what happens to this problem if the only changes in the model
shown in Sec. 3.1 are that both the second and the third functional constraints are replaced
by the single nonlinear constraint 9x2

1 � 5x2
2 � 216. Compare Fig. 13.5 with Fig. 3.3. The

optimal solution still happens to be (x1, x2) � (2, 6). Furthermore, it still lies on the bound-
ary of the feasible region. However, it is not a corner-point feasible (CPF) solution. The
optimal solution could have been a CPF solution with a different objective function (check
Z � 3x1 � x2), but the fact that it need not be one means that we no longer have the
tremendous simplification used in linear programming of limiting the search for an opti-
mal solution to just the CPF solutions.
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2 4 x1

2

4

6

x2

Feasible
region

(2, 6) � optimal solution

Z � 36 � 3x1 � 5x2

0

Maximize  
subject to

and

Z � 3x1 � 5x2,
x1              �     4

9x1 � 5x2 � 216
x1 � 0, x2 � 0

22

■ FIGURE 13.5
The Wyndor Glass Co.
example with the nonlinear
constraint 9x2

1 � 5x2
2 � 216

replacing the original second
and third functional
constraints.

Now suppose that the linear constraints of Sec. 3.1 are kept unchanged, but the ob-
jective function is made nonlinear. For example, if

Z � 126x1 � 9x2
1 � 182x2 � 13x2

2,

then the graphical representation in Fig. 13.6 indicates that the optimal solution is x1 � �
8
3

�,
x2 � 5, which again lies on the boundary of the feasible region. (The value of Z for this
optimal solution is Z � 857, so Fig. 13.6 depicts the fact that the locus of all points with
Z � 857 intersects the feasible region at just this one point, whereas the locus of points
with any larger Z does not intersect the feasible region at all.) On the other hand, if

Z � 54x1 � 9x2
1 � 78x2 � 13x2

2,

then Fig. 13.7 illustrates that the optimal solution turns out to be (x1, x2) � (3, 3), which
lies inside the boundary of the feasible region. (You can check that this solution is opti-
mal by using calculus to derive it as the unconstrained global maximum; because it also
satisfies the constraints, it must be optimal for the constrained problem.) Therefore, a gen-
eral algorithm for solving similar problems needs to consider all solutions in the feasible
region, not just those on the boundary.

Another complication that arises in nonlinear programming is that a local maximum
need not be a global maximum (the overall optimal solution). For example, consider the
function of a single variable plotted in Fig. 13.8. Over the interval 0 � x � 5, this func-
tion has three local maxima—x � 0, x � 2, and x � 4—but only one of these—x � 4—
is a global maximum. (Similarly, there are local minima at x � 1, 3, and 5, but only x � 5
is a global minimum.)

Nonlinear programming algorithms generally are unable to distinguish between a local
maximum and a global maximum (except by finding another better local maximum). There-
fore, it becomes crucial to know the conditions under which any local maximum is guar-
anteed to be a global maximum over the feasible region. You may recall from calculus that
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x1

(3, 3)

Z � 198

Z � 189

Z � 162

Z � 117

0

Maximize Z � 54x1 � 9x1  � 78x2 � 13x2,  
subject to

and

  4
12
18

 �

 �

 �

x1

2x2

3x1 � 2x2

x1 � 0,      x2 � 0

2 2

■ FIGURE 13.7
The Wyndor Glass Co.
example with the original
feasible region but with
another nonlinear objective
function, Z � 54x1 � 9x2

1 �
78x2 � 13x2

2, replacing the
original objective function.

2 4 x1

3

5

6

x2

Feasible
region

0

Z � 907

Z � 857

Z � 807

Maximize Z � 126x1 � 9x1 � 182x2 � 13x2,  
subject to

and

  4
12
18

�

�

�

x1

2x2

3x1 � 2x2

x1 � 0, x2 � 0

2 2

■ FIGURE 13.6
The Wyndor Glass Co.
example with the original
feasible region but with the
nonlinear objective function
Z � 126x1 � 9x2

1 � 182x2 �
13x2

2 replacing the original
objective function.
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when we maximize an ordinary (doubly differentiable) function of a single variable f(x)
without any constraints, this guarantee can be given when

� 0 for all x.

Such a function that is always “curving downward” (or not curving at all) is called a 
concave function.4 Similarly, if � is replaced by �, so that the function is always “curv-
ing upward” (or not curving at all), it is called a convex function.5 (Thus, a linear
function is both concave and convex.) See Fig. 13.9 for examples. Then note that Fig. 13.8
illustrates a function that is neither concave nor convex because it alternates between curv-
ing upward and curving downward.

Functions of multiple variables also can be characterized as concave or convex if they
always curve downward or curve upward. These intuitive definitions are restated in pre-
cise terms, along with further elaboration on these concepts, in Appendix 2. (Concave and
convex functions play a fundamental role in nonlinear programming, so if you are not
very familiar with such functions, we suggest that you read further in Appendix 2.) 
Appendix 2 also provides a convenient test for checking whether a function of two vari-
ables is concave, convex, or neither.

Here is a convenient way of checking this for a function of more than two variables
when the function consists of a sum of smaller functions of just one or two variables each.

	2f
�
	x2
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f (x)

0 1 2 3 4 5 x

■ FIGURE 13.8
A function with several local
maxima (x � 0, 2, 4), but
only x � 4 is a global
maximum.

4Concave functions sometimes are referred to as concave downward.
5Convex functions sometimes are referred to as concave upward.

f (x)

x

Concave function

(a)

f (x)

x

Convex function

(b)

■ FIGURE 13.9
Examples of (a) a concave
function and (b) a convex
function.
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If each smaller function is concave, then the overall function is concave. Similarly, the
overall function is convex if each smaller function is convex.

To illustrate, consider the function

f(x1, x2, x3) � 4x1 � x2
1 � (x2 � x3)2

� [4x1 � x2
1] � [�(x2 � x3)2],

which is the sum of the two smaller functions given in square brackets. The first smaller
function 4x1 � x2

1 is a function of the single variable x1, so it can be found to be concave
by noting that its second derivative is negative. The second smaller function �(x2 � x3)2 is
a function of just x2 and x3, so the test for functions of two variables given in Appendix 2
is applicable. In fact, Appendix 2 uses this particular function to illustrate the test and
finds that the function is concave. Because both smaller functions are concave, the over-
all function f(x1, x2, x3) must be concave.

If a nonlinear programming problem has no constraints, the objective function being con-
cave guarantees that a local maximum is a global maximum. (Similarly, the objective function
being convex ensures that a local minimum is a global minimum.) If there are constraints, then
one more condition will provide this guarantee, namely, that the feasible region is a convex
set. For this reason, convex sets play a key role in nonlinear programming.

As discussed in Appendix 2, a convex set is simply a set of points such that, for each
pair of points in the collection, the entire line segment joining these two points is also in
the collection. Thus, the feasible region for the original Wyndor Glass Co. problem (see
Fig. 13.6 or 13.7) is a convex set. In fact, the feasible region for any linear programming
problem is a convex set. Similarly, the feasible region in Fig. 13.5 is a convex set.

In general, the feasible region for a nonlinear programming problem is a convex set
whenever all the gi(x) [for the constraints gi(x) � bi] are convex functions. For the 
example of Fig. 13.5, both of its gi(x) are convex functions, since g1(x) � x1 (a linear
function is automatically both concave and convex) and g2(x) � 9x1

2 � 5x2
2 (both 9x1

2 and
5x2

2 are convex functions so their sum is a convex function). These two convex gi(x) lead
to the feasible region of Fig. 13.5 being a convex set.

Now let’s see what happens when just one of these gi(x) is a concave function in-
stead. In particular, suppose that the only changes in the original Wyndor Glass Co.
example are that the second and third functional constraints are replaced by 2x2 � 14 and
8x1 � x2

1 � 14x2 � x2
2 � 49. Therefore, the new g3(x) � 8x1 � x2

1 � 14x2 � x2
2 is a con-

cave function since both 8x1 � x2
1 and 14x2 � x2

2 are concave functions. The new feasible
region shown in Fig. 13.10 is not a convex set. Why? Because this feasible region con-
tains pairs of points, for example, (0, 7) and (4, 3), such that part of the line segment join-
ing these two points is not in the feasible region. Consequently, we cannot guarantee that
a local maximum is a global maximum. In fact, this example has two local maxima, (0,
7) and (4, 3), but only (0, 7) is a global maximum.

Therefore, to guarantee that a local maximum is a global maximum for a nonlinear
programming problem with constraints gi(x) � bi (i � 1, 2, . . . , m) and x � 0, the ob-
jective function f(x) must be a concave function and each gi(x) must be a convex func-
tion. Such a problem is called a convex programming problem, which is one of the key
types of nonlinear programming problems discussed in Sec. 13.3.

556 CHAPTER 13 NONLINEAR PROGRAMMING

■ 13.3 TYPES OF NONLINEAR PROGRAMMING PROBLEMS

Nonlinear programming problems come in many different shapes and forms. Unlike the
simplex method for linear programming, no single algorithm can solve all these different
types of problems. Instead, algorithms have been developed for various individual

hil23453_ch13_547-616.qxd  1/22/70  7:23 AM  Page 556 Final PDF to printer



classes (special types) of nonlinear programming problems. The most important classes
are introduced briefly in this section. The subsequent sections then describe how some
problems of these types can be solved. To simplify the discussion, we will assume through-
out that the problems have been formulated (or reformulated) in the general form pre-
sented at the beginning of the chapter.

Unconstrained Optimization

Unconstrained optimization problems have no constraints, so the objective is simply to

Maximize f(x)

over all values of x � (x1, x2, . . . , xn). As reviewed in Appendix 3, the necessary condi-
tion that a particular solution x � x* be optimal when f(x) is a differentiable function is

� 0 at x � x*, for j � 1, 2, . . . , n.

When f(x) is a concave function, this condition also is sufficient, so then solving for x*
reduces to solving the system of n equations obtained by setting the n partial derivatives
equal to zero. Unfortunately, for nonlinear functions f(x), these equations often are going
to be nonlinear as well, in which case you are unlikely to be able to solve analytically for
their simultaneous solution. What then? Sections 13.4 and 13.5 describe algorithmic search
procedures for finding x*, first for n � 1 and then for n 
 1. These procedures also play an
important role in solving many of the problem types described next, where there are con-
straints. The reason is that many algorithms for constrained problems are designed so that they
can focus on an unconstrained version of the problem during a portion of each iteration.

	f
�
	xj
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2 4 6 x1

2

4

6

8

x2

0

(4, 3) � local maximum

Z � 35 � 3x1 � 5x2

Z � 27 � 3x1 � 5x2

(0, 7) � optimal solution

Feasible region (not a convex set)

Maximize Z � 3x1 � 5x2,  
subject to x1 �   4

8x1 � x1 � 14x2 � x2 � 49

x1 � 0, x2 � 0

22
2x2            � 14

and

■ FIGURE 13.10
The Wyndor Glass Co.
example with 2x2 � 14 and a
nonlinear constraint, 
8x1 � x2

1 � 14x2 � x2
2 � 49,

replacing the original second
and third functional
constraints.
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When a variable xj does have a nonnegativity constraint xj � 0, the preceding neces-
sary and (perhaps) sufficient condition changes slightly to

�
for each such j. This condition is illustrated in Fig. 13.11, where the optimal solution for
a problem with a single variable is at x � 0 even though the derivative there is negative
rather than zero. Because this example has a concave function to be maximized subject
to a nonnegativity constraint, having the derivative less than or equal to 0 at x � 0 is both
a necessary and sufficient condition for x � 0 to be optimal.

A problem that has some nonnegativity constraints but no functional constraints is
one special case (m � 0) of the next class of problems.

Linearly Constrained Optimization

Linearly constrained optimization problems are characterized by constraints that com-
pletely fit linear programming, so that all the gi(x) constraint functions are linear, but the
objective function f(x) is nonlinear. The problem is considerably simplified by having just
one nonlinear function to take into account, along with a linear programming feasible re-
gion. A number of special algorithms based upon extending the simplex method to con-
sider the nonlinear objective function have been developed.

One important special case, which we consider next, is quadratic programming.

Quadratic Programming 

Quadratic programming problems again have linear constraints, but now the objective
function f(x) being maximised must be both quadratic and concave. Thus in addition to
the concave assumption, the only difference between such a problem and a linear pro-
gramming problem is that some of the terms in the objective function involve the square
of a variable or the product of two variables.

if xj* � 0
if xj* 
 0

at x � x*,
at x � x*,

� 0
� 0

	f
�
	xj
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24

28

f (x)

1 2 3 4 5

Global maximum because f (x) is concave and

 � �2 � 0 at x � 0. So x � 0 is optimal.
df
dx

x

Maximize f (x) � 24 � 2x � x2,  
subject to x � 0.

■ FIGURE 13.11
An example that illustrates
how an optimal solution can
lie at a point where a
derivative is negative instead
of zero, because that point
lies at the boundary of a
nonnegativity constraint.
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Several algorithms have been developed specifically to solve quadratic programming
problems very efficiently. Section 13.7 presents one such algorithm that involves a direct
extension of the simplex method.

Quadratic programming is very important, partially because such formulations arise
naturally in many applications. For example, the problem of portfolio selection with risky
securities described in Sec. 13.1 fits into this format. However, another major reason for
its importance is that a common approach to solving general linearly constrained opti-
mization problems is to solve a sequence of quadratic programming approximations.

Convex Programming

Convex programming covers a broad class of problems that actually encompasses as
special cases all the preceding types when f (x) is a concave function to be maximized.
Continuing to assume the general problem form (including maximization) presented at
the beginning of the chapter, the assumptions are that

1. f(x) is a concave function.
2. Each gi(x) is a convex function.

As discussed at the end of Sec. 13.2, these assumptions are enough to ensure that a local max-
imum is a global maximum. (If the objective were to minimize f(x) instead, subject to either
gi(x) � bi or �gi(x) � bi for i � 1, 2, . . . , m, the first assumption would change to requiring
that f(x) must be a convex function, since this is what is needed to ensure that a local mini-
mum is a global minimum.) You will see in Sec. 13.6 that the necessary and sufficient condi-
tions for such an optimal solution are a natural generalization of the conditions just given for
unconstrained optimization and its extension to include nonnegativity constraints. Section 13.9
then describes algorithmic approaches to solving convex programming problems.

Separable Programming

Separable programming is a special case of convex programming, where the one addi-
tional assumption is that

3. All the f(x) and gi(x) functions are separable functions.

A separable function is a function where each term involves just a single variable, so
that the function is separable into a sum of functions of individual variables. For exam-
ple, if f(x) is a separable function, it can be expressed as

f(x) � �
n

j�1
fj(xj),

where each fj(xj) function includes only the terms involving just xj. In the terminology of
linear programming (see Sec. 3.3), separable programming problems satisfy the assump-
tion of additivity but violate the assumption of proportionality when any of the fj(xj) func-
tions are nonlinear functions.

To illustrate, the objective function considered in Fig. 13.6,

f(x1, x2) � 126x1 � 9x1
2 � 182x2 � 13x2

2

is a separable function because it can be expressed as

f(x1, x2) � f1(x1) � f2(x2)

where f1(x1) � 126x1 � 9x1
2 and f2(x2) � 182x2 � 13x2

2 are each a function of a single 
variable—x1 and x2, respectively. By the same reasoning, you can verify that the objective
function considered in Fig. 13.7 also is a separable function.
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It is important to distinguish separable programming problems from other convex pro-
gramming problems, because any such problem can be closely approximated by a linear
programming problem so that the extremely efficient simplex method can be used. This
approach is described in Sec. 13.8. (For simplicity, we focus there on the linearly con-
strained case where the special approach is needed only on the objective function.)

Nonconvex Programming

Nonconvex programming encompasses all nonlinear programming problems that do not
satisfy the assumptions of convex programming. Now, even if you are successful in
finding a local maximum, there is no assurance that it also will be a global maximum.
Therefore, there is no algorithm that will find an optimal solution for all such prob-
lems. However, there do exist some algorithms that are relatively well suited for ex-
ploring various parts of the feasible region and perhaps finding a global maximum in
the process. We describe this approach in Sec. 13.10. Section 13.10 also will introduce
two global optimizers (available with LINGO and MPL) for finding an optimal solu-
tion for nonconvex programming problems of moderate size, as well as a search pro-
cedure (available with both the standard Excel Solver and the ASPE Solver) that gen-
erally will find a near-optimal solution for rather large problems.

Certain specific types of nonconvex programming problems can be solved without
great difficulty by special methods. Two especially important such types are discussed
briefly next.

Geometric Programming

When we apply nonlinear programming to engineering design problems, as well as cer-
tain economics and statistics problems, the objective function and the constraint functions
frequently take the form

g(x) � �
N

i�1
ciPi(x),

where

Pi(x) � x1
ai1x2

ai2 ��� xn
ain, for i � 1, 2, . . . , N.

In such cases, the ci and aij typically represent physical constants, and the xj are design vari-
ables. These functions generally are neither convex nor concave, so the techniques of convex
programming cannot be applied directly to these geometric programming problems. How-
ever, there is one important case where the problem can be transformed to an equivalent con-
vex programming problem. This case is where all the ci coefficients in each function are
strictly positive, so that the functions are generalized positive polynomials now called
posynomials and the objective function is to be minimized. The equivalent convex pro-
gramming problem with decision variables y1, y2, . . . , yn is then obtained by setting

xj � eyj, for j � 1, 2, . . . , n

throughout the original model, so now a convex programming algorithm can be applied.
Alternative solution procedures also have been developed for solving these posynomial
programming problems, as well as for geometric programming problems of other types.

Fractional Programming

Suppose that the objective function is in the form of a fraction, i.e., the ratio of two functions,

Maximize f(x) � .
f1(x)
�
f2(x)

560 CHAPTER 13 NONLINEAR PROGRAMMING
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Such fractional programming problems arise, e.g., when one is maximizing the ratio of
output to person-hours expended (productivity), or profit to capital expended (rate of re-
turn), or expected value to standard deviation of some measure of performance for an in-
vestment portfolio (return/risk). Some special solution procedures have been developed
for certain forms of f1(x) and f2(x).

When it can be done, the most straightforward approach to solving a fractional pro-
gramming problem is to transform it to an equivalent problem of a standard type for which
effective solution procedures already are available. To illustrate, suppose that f(x) is of
the linear fractional programming form

f(x) � ,

where c and d are row vectors, x is a column vector, and c0 and d0 are scalars. Also as-
sume that the constraint functions gi(x) are linear, so that the constraints in matrix form
are Ax � b and x � 0.

Under mild additional assumptions, we can transform the problem to an equivalent
linear programming problem by letting

y � and t � ,

so that x � y/t. This result yields

Maximize Z � cy � c0t,

subject to

Ay � bt � 0,
dy � d0t � 1,

and

y � 0, t � 0,

which can be solved by the simplex method. More generally, the same kind of trans-
formation can be used to convert a fractional programming problem with concave f1(x),
convex f2(x), and convex gi(x) to an equivalent convex programming problem.

The Complementarity Problem

When we deal with quadratic programming in Sec. 13.7, you will see one example of how
solving certain nonlinear programming problems can be reduced to solving the comple-
mentarity problem. Given variables w1, w2, . . . , wp and z1, z2, . . . , zp, the complemen-
tarity problem is to find a feasible solution for the set of constraints

w � F(z), w � 0, z � 0

that also satisfies the complementarity contraint

wTz � 0.

Here, w and z are column vectors, F is a given vector-valued function, and the superscript T
denotes the transpose (see Appendix 4). The problem has no objective function, so tech-
nically it is not a full-fledged nonlinear programming problem. It is called the comple-
mentarity problem because of the complementary relationships that either

wi � 0 or zi � 0 (or both) for each i � 1, 2, . . . , p.

1
�
dx � d0

x
�
dx � d0

cx � c0
�
dx � d0
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An important special case is the linear complementarity problem, where

F(z) � q � Mz,

where q is a given column vector and M is a given p � p matrix. Efficient algorithms
have been developed for solving this problem under suitable assumptions6 about the prop-
erties of the matrix M. One type involves pivoting from one basic feasible (BF) solution
to the next, much like the simplex method for linear programming.

In addition to having applications in nonlinear programming, complementarity prob-
lems have applications in game theory, economic equilibrium problems, and engineering
equilibrium problems.
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x
x*

f (x)

df (x)
dx � 0

■ FIGURE 13.12
The one-variable unconstrained 
optimization problem when
the function is concave.

6See R. W. Cottle, J.-S. Pang, and R. E. Stone, The Linear Complementarity Problem, Academic Press, Boston, 1992,
and republished by SIAM Bookmart, Philadelphia, PA, 2009.
7See the beginning of Appendix 3 for a review of the corresponding case when f(x) is not concave.

■ 13.4 ONE-VARIABLE UNCONSTRAINED OPTIMIZATION
We now begin discussing how to solve some of the types of problems just described
by considering the simplest case—unconstrained optimization with just a single vari-
able x (n � 1), where the differentiable function f (x) to be maximized is concave.7

Thus, the necessary and sufficient condition for a particular solution x � x* to be op-
timal (a global maximum) is

� 0 at x � x*,

as depicted in Fig. 13.12. If this equation can be solved directly for x*, you are done.
However, if f(x) is not a particularly simple function, so the derivative is not just a linear
or quadratic function, you may not be able to solve the equation analytically. If not, a
number of search procedures are available for solving the problem numerically.

The approach with any of these search procedures is to find a sequence of trial so-
lutions that leads toward an optimal solution. At each iteration, you begin at the current
trial solution to conduct a systematic search that culminates by identifying a new improved

df
�dx
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trial solution. The procedure is continued until the trial solutions have converged to an
optimal solution, assuming that one exists.

We now will describe two common search procedures. The first one (the bisection
method) was chosen because it is such an intuitive and straightforward procedure. The
second one (Newton’s method) is included because it plays a fundamental role in nonlin-
ear programming in general.

The Bisection Method

This search procedure always can be applied when f(x) is concave (so that the second 
derivative is negative or zero for all x) as depicted in Fig. 13.12. It also can be used for
certain other functions as well. In particular, if x* denotes the optimal solution, all that is
needed8 is that


 0 if x  x*,

� 0 if x � x*,

 0 if x 
 x*.

These conditions automatically hold when f(x) is concave, but they also can hold when
the second derivative is positive for some (but not all) values of x.

The idea behind the bisection method is a very intuitive one, namely, that whether
the slope (derivative) is positive or negative at a trial solution definitely indicates whether
improvement lies immediately to the right or left, respectively. Thus, if the derivative eval-
uated at a particular value of x is positive, then x* must be larger than this x (see Fig. 13.12),
so this x becomes a lower bound on the trial solutions that need to be considered there-
after. Conversely, if the derivative is negative, then x* must be smaller than this x, so x
would become an upper bound. Therefore, after both types of bounds have been identi-
fied, each new trial solution selected between the current bounds provides a new tighter
bound of one type, thereby narrowing the search further. As long as a reasonable rule is
used to select each trial solution in this way, the resulting sequence of trial solutions must
converge to x*. In practice, this means continuing the sequence until the distance between
the bounds is sufficiently small that the next trial solution must be within a prespecified
error tolerance of x*.

This entire process is summarized next, given the notation

x� � current trial solution,

x
�

� current lower bound on x*,

x� � current upper bound on x*,

� � error tolerance for x*.

Although there are several reasonable rules for selecting each new trial solution, the one
used in the bisection method is the midpoint rule (traditionally called the Bolzano search
plan), which says simply to select the midpoint between the two current bounds.

df(x)
�

dx

df(x)
�

dx

df(x)
�

dx
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8Another possibility is that the graph of f(x) is flat at the top so that x is optimal over some interval [a, b]. In
this case, the procedure still will converge to one of these optimal solutions as long as the derivative is positive
for x  a and negative for x 
 b.
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Summary of the Bisection Method

Initialization: Select �. Find an initial x
�

and x� by inspection (or by respectively finding
any value of x at which the derivative is positive and then negative). Select
an initial trial solution

x� � �
x
�

�
2

x��.

Iteration:

1. Evaluate �
df

d

(

x

x)
� at x � x�.

2. If �
df

d

(

x

x)
� � 0, reset x

�
� x�.

3. If �
df

d

(

x

x)
� � 0, reset x� � x�.

4. Select a new x� � �
x
�

�
2

x��.

Stopping rule: If x� � x
�

� 2�, so that the new x� must be within � of x*, stop. Otherwise,
perform another iteration.

We shall now illustrate the bisection method by applying it to the following example.

Example. Suppose that the function to be maximized is

f(x) � 12x � 3x4 � 2x6,

as plotted in Fig. 13.13. Its first two derivatives are

�
df

d
(
x
x)
� � 12(1 � x3 � x5),

�
d

d

2f
x
(
2
x)

� � �12(3x2 � 5x4).
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■ FIGURE 13.13
Example for the bisection
method.
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Because the second derivative is nonpositive everywhere, f(x) is a concave function, so
the bisection method can be safely applied to find its global maximum (assuming a global
maximum exists).

A quick inspection of this function (without even constructing its graph as shown in
Fig. 13.13) indicates that f(x) is positive for small positive values of x, but it is negative
for x  0 or x 
 2. Therefore, x

�
� 0 and x� � 2 can be used as the initial bounds, with

their midpoint, x� � 1, as the initial trial solution. Let � � 0.01 be the error tolerance for
x* in the stopping rule, so the final (x� � x

�
) � 0.02 with the final x� at the midpoint.

Applying the bisection method then yields the sequence of results shown in Table 13.1.
[This table includes both the function and derivative values for your information, where
the derivative is evaluated at the trial solution generated at the preceding iteration. How-
ever, note that the algorithm actually doesn’t need to calculate f (x�) at all and that it only
needs to calculate the derivative far enough to determine its sign.] The conclusion is that

x* � 0.836,
0.828125  x*  0.84375.

Your IOR Tutorial includes an interactive procedure for executing the bisection
method.

Newton’s Method

Although the bisection method is an intuitive and straightforward procedure, it has the
disadvantage of converging relatively slowly toward an optimal solution. Each iteration
only decreases the difference between the bounds by one-half. Therefore, even with the
fairly simple function being considered in Table 13.1, seven iterations were required to
reduce the error tolerance for x* to less than 0.01. Another seven iterations would be
needed to reduce this error tolerance to less than 0.0001.

The basic reason for this slow convergence is that the only information about f(x) be-
ing used is the value of the first derivative f�(x) at the respective trial values of x. Addi-
tional helpful information can be obtained by considering the second derivative f �(x) as
well. This is what Newton’s method 9 does.

13.4 ONE-VARIABLE UNCONSTRAINED OPTIMIZATION 565

■ TABLE 13.1 Application of the bisection method to the example

Iteration �
df
d
(
x
x)
� x x New x� f(x�)

0 0. 2. 1. 7.0000
1 �12. 0. 1. 0.5 5.7812
2 �10.12 0.5 1. 0.75 7.6948
3 �4.09 0.75 1. 0.875 7.8439
4 �2.19 0.75 0.875 0.8125 7.8672
5 �1.31 0.8125 0.875 0.84375 7.8829
6 �0.34 0.8125 0.84375 0.828125 7.8815
7 �0.51 0.828125 0.84375 0.8359375 7.8839

Stop

9This method is due to the great 17th-century mathematician and physicist, Sir Isaac Newton. While a young
student at the University of Cambridge (England), Newton took advantage of the university being closed for two
years (due to the bubonic plague that devastated Europe in 1664–65) to discover the law of universal gravita-
tion and invent calculus (among other achievements). His development of calculus led to this method.
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The basic idea behind Newton’s method is to approximate f(x) within the neighbor-
hood of the current trial solution by a quadratic function and then to maximize (or min-
imize) the approximate function exactly to obtain the new trial solution to start the next
iteration. (This idea of working with a quadratic approximation of the objective func-
tion has since been made a key feature of many algorithms for more general kinds of
nonlinear programming problems.) This approximating quadratic function is obtained by
truncating the Taylor series after the second derivative term. In particular, by letting xi+1

be the trial solution generated at iteration i to start iteration i � 1 (so x1 is the initial trial
solution provided by the user to begin iteration 1), the truncated Taylor series for xi+1 is

f(xi�1) � f(xi) � f�(xi)(xi�1 � xi) � (xi�1 � xi)
2.

Having fixed xi at the beginning of iteration i, note that f(xi), f�(xi), and f �(xi) also are fixed
constants in this approximating function on the right. Thus, this approximating function
is just a quadratic function of xi�1. Furthermore, this quadratic function is such a good
approximation of f(xi�1) in the neighborhood of xi that their values and their first and sec-
ond derivatives are exactly the same when xi�1 � xi.

This quadratic function now can be maximized in the usual way by setting its first
derivative to zero and solving for xi�1. (Remember that we are assuming that f(x) is con-
cave, which implies that this quadratic function is concave, so the solution when setting
the first derivative to zero will be a global maximum.) This first derivative is

f�(xi�1) � f�(xi) � f �(xi)(xi�1�xi)

since xi , f(xi), f�(xi), and f �(xi) are constants. Setting the first derivative on the right to
zero yields

f�(xi�1) � f �(xi)(xi�1�xi) � 0,

which directly leads algebraically to the solution,

xi�1 � xi � .

This is the key formula that is used at each iteration i to calculate the next trial solution xi�1

after obtaining the trial solution xi to begin iteration i and then calculating the first and sec-
ond derivatives at xi. (The same formula is used when minimizing a convex function.)

Iterations generating new trial solutions in this way would continue until these solu-
tions have essentially converged. One criterion for convergence is that ⏐xi�1 � xi⏐ has be-
come sufficiently small. Another is that f�(x) is sufficiently close to zero. Still another is
that ⏐f(xi�1) � f(xi)⏐ is sufficiently small. Choosing the first criterion, define � as the value
such that the algorithm is stopped when ⏐xi�1 � xi⏐ � �.

Here is a complete description of the algorithm.

Summary of Newton’s Method

Initialization: Select �. Find an initial trial solution xi by inspection. Set i � 1.

Iteration i:

1. Calculate f �(xi) and f �(xi). [Calculating f(xi) is optional.]

2. Set xi�1 � xi � .

Stopping Rule: If ⏐xi�1 � xi⏐� �, stop; xi�1 is essentially the optimal solution. Otherwise,
reset i � i �1 and perform another iteration.

f�(xi)�
f �(xi)

f�(xi)�
f �(xi)

f �(xi)�
2
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Example. We now will apply Newton’s method to the same example used for the bisection
method. As depicted in Fig. 13.13, the function to be maximized is

f(x) � 12x � 3x4 � 2x6.

Thus, the formula for calculating the new trial solution (xi�1) from the current one (xi) is

xi�1 � xi � � xi � � xi � .

After selecting � � 0.00001 and choosing x1 � 1 as the initial trial solution, Table 13.2
shows the results from applying Newton’s method to this example. After just four itera-
tions, this method has converged to x � 0.83762 as the optimal solution with a very high
degree of precision.

A comparison of this table with Table 13.1 illustrates how much more rapidly Newton’s
method converges than the bisection method. Nearly 20 iterations would be required for
the bisection method to converge with the same degree of precision that Newton’s method
achieved after only four iterations.

Although this rapid convergence is fairly typical of Newton’s method, its performance
does vary from problem to problem. Since the method is based on using a quadratic 
approximation of f(x), its performance is affected by the degree of accuracy of the 
approximation.

1 � x3 � x5

��
3x2 � 5x4

12(1 � x3 � x5)
��
�12(3x2 � 5x4)

f�(xi)�
f �(xi)
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■ 13.5 MULTIVARIABLE UNCONSTRAINED OPTIMIZATION

Now consider the problem of maximizing a concave function f (x) of multiple variables
x � (x1, x2, . . . , xn ) when there are no constraints on the feasible values. Suppose again
that the necessary and sufficient condition for optimality, given by the system of equa-
tions obtained by setting the respective partial derivatives equal to zero (see Sec. 13.3),
cannot be solved analytically, so that a numerical search procedure must be used.

As for the one-variable case, a number of search procedures are available for solving
such a problem numerically. One of these (the gradient search procedure) is an especially
important one because it identifies and uses the direction of movement from the current
trial solution that maximizes the rate at which f(x) is increased. This is one of the key
ideas of nonlinear programming. Adaptations of this same idea to take constraints into ac-
count are a central feature of many algorithms for constrained optimization as well.

After discussing this procedure in some detail, we will briefly describe how Newton’s
method is extended to the multivariable case.

The Gradient Search Procedure

In Sec. 13.4, the value of the ordinary derivative was used by the bisection method to se-
lect one of just two possible directions (increase x or decrease x) in which to move from

■ TABLE 13.2 Application of Newton’s method to the example

Iteration i xi f(xi) f�(xi) f �(xi) xi+1

1 1 7 �12 �96 0.875

2 0.875 7.8439 �2.1940 �62.733 0.84003

3 0.84003 7.8838 �0.1325 �55.279 0.83763

4 0.83763 7.8839 �0.0006 �54.790 0.83762
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the current trial solution to the next one. The goal was to reach a point eventually where
this derivative is (essentially) 0. Now, there are innumerable possible directions in which
to move; they correspond to the possible proportional rates at which the respective vari-
ables can be changed. The goal is to reach a point eventually where all the partial deriv-
atives are (essentially) 0. Therefore, a natural approach is to use the values of the partial
derivatives to select the specific direction in which to move. This selection involves us-
ing the gradient of the objective function, as described next.

Because the objective function f(x) is assumed to be differentiable, it possesses a gra-
dient, denoted by �f(x), at each point x. In particular, the gradient at a specific point 
x � x� is the vector whose elements are the respective partial derivatives evaluated at 
x � x�, so that

�f(x�) � ��
	

	

x
f

1
�, �

	

	

x
f

2
�, . . . , �

	

	

x
f

n
�� at x � x�.

The significance of the gradient is that the (infinitesimal) change in x that maximizes the
rate at which f(x) increases is the change that is proportional to �f(x). To express this idea
geometrically, the “direction” of the gradient �f(x�) is interpreted as the direction of the di-
rected line segment (arrow) from the origin (0, 0, . . . , 0) to the point (	f/	x1, 	f/	x2, . . . ,
	f/	xn), where 	f/	xj is evaluated at xj � x�j. Therefore, it may be said that the rate at which
f(x) increases is maximized if (infinitesimal) changes in x are in the direction of the gradi-
ent �f(x). Because the objective is to find the feasible solution maximizing f(x), it would
seem expedient to attempt to move in the direction of the gradient as much as possible.

Because the current problem has no constraints, this interpretation of the gradient
suggests that an efficient search procedure should keep moving in the direction of the gra-
dient until it (essentially) reaches an optimal solution x*, where �f(x*) � 0. However,
normally it would not be practical to change x continuously in the direction of �f(x),
because this series of changes would require continuously reevaluating the 	f/	xj and
changing the direction of the path. Therefore, a better approach is to keep moving in a
fixed direction from the current trial solution, not stopping until f(x) stops increasing. This
stopping point would be the next trial solution, so the gradient then would be recalculated
to determine the new direction in which to move. With this approach, each iteration in-
volves changing the current trial solution x� as follows:

Reset x� � x� � t* �f(x�),

where t* is the positive value of t that maximizes f(x� � t �f(x�)); that is,

f(x� � t* �f(x�)) � max f(x� � t �f(x�)).
t�0

[Note that f(x� � t �f(x�)) is simply f(x) where

xj � x�j � t ��
	

	

x
f

j
��x�x�

, for j � 1, 2, . . . , n,

and that these expressions for the xj involve only constants and t, so f(x) becomes a func-
tion of just the single variable t.] The iterations of this gradient search procedure continue
until �f(x) � 0 within a small tolerance �, that is, until

��	
	

x

f

j

�� � � for j � 1, 2, . . . , n.10
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10This stopping rule generally will provide a solution x that is close to an optimal solution x*, with a value of
f(x) that is very close to f(x*). However, this cannot be guaranteed, since it is possible that the function main-
tains a very small positive slope (� �) over a great distance from x to x*.
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An analogy may help to clarify this procedure. Suppose that you need to climb to the
top of a hill. You are nearsighted, so you cannot see the top of the hill in order to walk
directly in that direction. However, when you stand still, you can see the ground around
your feet well enough to determine the direction in which the hill is sloping upward most
sharply. You are able to walk in a straight line. While walking, you also are able to tell
when you stop climbing (zero slope in your direction). Assuming that the hill is concave,
you now can use the gradient search procedure for climbing to the top efficiently. This
problem is a two-variable problem, where (x1, x2) represents the coordinates (ignoring
height) of your current location. The function f(x1, x2) gives the height of the hill at 
(x1, x2). You start each iteration at your current location (current trial solution) by deter-
mining the direction [in the (x1, x2) coordinate system] in which the hill is sloping up-
ward most sharply (the direction of the gradient) at this point. You then begin walking in
this fixed direction and continue as long as you still are climbing. You eventually stop at
a new trial location (solution) when the hill becomes level in your direction, at which
point you prepare to do another iteration in another direction. You continue these itera-
tions, following a zigzag path up the hill, until you reach a trial location where the slope
is essentially zero in all directions. Under the assumption that the hill [ f(x1, x2)] is con-
cave, you must then be essentially at the top of the hill.

The most difficult part of the gradient search procedure usually is to find t*, the
value of t that maximizes f in the direction of the gradient, at each iteration. Because x
and �f (x) have fixed values for the maximization, and because f (x) is concave, this prob-
lem should be viewed as maximizing a concave function of a single variable t. There-
fore, it can be solved by the kind of search procedures for one-variable unconstrained
optimization that are described in Sec. 13.4 (while considering only nonnegative values
of t because of the t � 0 constraint). Alternatively, if f is a simple function, it may be
possible to obtain an analytical solution by setting the derivative with respect to t equal
to zero and solving.

Summary of the Gradient Search Procedure
Initialization: Select � and any initial trial solution x�. Go first to the stopping rule.
Iteration:

1. Express f(x� � t �f(x�)) as a function of t by setting

xj � x�j � t ��
	

	

x
f

j
��x�x�

, for j � 1, 2, . . . , n,

and then substituting these expressions into f(x).
2. Use a search procedure for one-variable unconstrained optimization (or calculus) to

find t � t* that maximizes f(x� � t �f(x�)) over t � 0.
3. Reset x� � x� � t* �f(x�). Then go to the stopping rule.

Stopping rule: Evaluate �f(x�) at x � x�. Check if

��	
	

x
f

j
�� � � for all j � 1, 2, . . . , n.

If so, stop with the current x� as the desired approximation of an optimal
solution x*. Otherwise, perform another iteration.

Now let us illustrate this procedure.

Example. Consider the following two-variable problem:

Maximize f(x) � 2x1x2 � 2x2 � x2
1 � 2x2

2.
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Thus,

�
	

	

x
f

1
� � 2x2 � 2x1,

�
	

	

x
f

2
� � 2x1 � 2 � 4x2.

We also can verify (see Appendix 2) that f(x) is concave.
To begin the gradient search procedure, after choosing a suitably small value of �

(normally well under 0.1) suppose that x � (0, 0) is selected as the initial trial solution.
Because the respective partial derivatives are 0 and 2 at this point, the gradient is

�f(0, 0) � (0, 2).

With �  2, the stopping rule then says to perform an iteration.

Iteration 1: With values of 0 and 2 for the respective partial derivatives, the first iteration
begins by setting

x1 � 0 � t(0) � 0,
x2 � 0 � t(2) � 2t,

and then substituting these expressions into f(x) to obtain

f(x� � t �f(x�)) � f(0, 2t)
� 2(0)(2t) � 2(2t) � 02 � 2(2t)2

� 4t � 8t2.

Because

f(0, 2t*) � max f(0, 2t) � max {4t � 8t2}
t�0 t�0

and

�
d
d
t
� (4t � 8t2) � 4 � 16t � 0,

it follows that

t* � �
1
4

�,

so

Reset x� � (0, 0) � �
1
4

�(0, 2) � �0, �
1
2

��.

This completes the first iteration. For this new trial solution, the gradient is

�f �0, �
1
2

�� � (1, 0).

With �  1, the stopping rule now says to perform another iteration.

Iteration 2: To begin the second iteration, use the values of 1 and 0 for the respective par-
tial derivatives to set

x � �0, �
1
2

�� � t(1, 0) � �t, �
1
2

��,
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so

f(x� � t �f(x�)) � f �0 � t, �
1
2

� � 0t� � f�t, �
1
2

��
� (2t)��

1
2

�� � 2��
1
2

�� � t2 � 2��
1
2

��
2

� t � t2 � �
1
2

�.

Because

f �t*, �
1
2

�� � max f �t, �
1
2

�� � max �t � t2 � �
1
2

�	t�0 t�0

and

�
d
d
t
� �t � t2 � �

1
2

�� � 1 � 2t � 0,

then

t* � �
1
2

�,

so

Reset x� � �0, �
1
2

�� � �
1
2

�(1, 0) � ��
1
2

�, �
1
2

��.

This completes the second iteration. With a typically small value of �, the procedure
now would continue on to several more iterations in a similar fashion. (We will forgo the
details.)

A nice way of organizing this work is to write out a table such as Table 13.3 which sum-
marizes the preceding two iterations. At each iteration, the second column shows the current
trial solution, and the rightmost column shows the eventual new trial solution, which then is
carried down into the second column for the next iteration. The fourth column gives the ex-
pressions for the xj in terms of t that need to be substituted into f(x) to give the fifth column.

By continuing in this fashion, the subsequent trial solutions would be (�
1
2

�, �
3
4

�), (�
3
4

�, �
3
4

�),
(�

3
4

�, �
7
8

�), (�
7
8

�, �
7
8

�), . . . , as shown in Fig. 13.14. Because these points are converging to x* � (1, 1),
this solution is the optimal solution, as verified by the fact that

�f(1, 1) � (0, 0).

However, because this converging sequence of trial solutions never reaches its limit, the
procedure actually will stop somewhere (depending on �) slightly below (1, 1) as its fi-
nal approximation of x*.

As Fig. 13.14 suggests, the gradient search procedure zigzags to the optimal solu-
tion rather than moving in a straight line. Some modifications of the procedure have been
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■ TABLE 13.3 Application of the gradient search procedure to the example

Iteration x� �f(x�) x� � t �f(x�) f(x� � t �f(x�)) t* x� � t* �f(x�)

1 (0, 0) (0, 2) (0, 2t) 4t � 8t2 �
1
4

� �0, �
1
2

��
2 �0, �

1
2

�� (1, 0) �t, �
1
2

�� t � t2 � �
1
2

� �
1
2

� ��
1
2

�, �
1
2

��
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developed that accelerate movement toward the optimal solution by taking this zigzag
behavior into account.

If f(x) were not a concave function, the gradient search procedure still would con-
verge to a local maximum. The only change in the description of the procedure for this
case is that t* now would correspond to the first local maximum of f(x� � t �f(x�)) as t
is increased from 0.

If the objective were to minimize f (x) instead, one change in the procedure would be
to move in the opposite direction of the gradient at each iteration. In other words, the rule
for obtaining the next point would be

Reset x� � x� � t* �f(x�).

The only other change is that t* now would be the nonnegative value of t that minimizes
f(x� � t �f(x�)); that is,

f(x� � t* �f(x�)) � min f(x� � t �f(x�)).
t�0

Additional examples of the application of the gradient search procedure are included
in both the Solved Examples section of the book’s website and your OR Tutor. The IOR 
Tutorial includes both an interactive procedure and an automatic procedure for applying
this algorithm.

Newton’s Method

Section 13.4 describes how Newton’s method would be used to solve one-variable
unconstrained optimization problems. The general version of Newton’s method actu-
ally is designed to solve multivariable unconstrained optimization problems. The basic
idea is the same as described in Sec. 13.4, namely, work with a quadratic approxi-
mation of the objective function f(x) being maximized, where x � (x1, x2, . . . , xn) in
this case. This approximating quadratic function is obtained by truncating the Taylor
series around the current trial solution after the second derivative term. This approx-
imate function then is maximized exactly to obtain the new trial solution to start the
next iteration.
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x* � (1, 1)..

■ FIGURE 13.14
Illustration of the gradient
search procedure when 
f(x1, x2) � 2x1x2 � 2x2 �
x1

2 � 2x2
2.
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13.6 THE KARUSH-KUHN-TUCKER (KKT) CONDITIONS 573

We now focus on the question of how to recognize an optimal solution for a nonlinear
programming problem (with differentiable functions) when the problem is in the form
shown at the beginning of the chapter. What are the necessary and (perhaps) sufficient
conditions that such a solution must satisfy?

In the preceding sections we already noted these conditions for unconstrained opti-
mization, as summarized in the first two rows of Table 13.4. Early in Sec. 13.3 we also
gave these conditions for the slight extension of unconstrained optimization where the
only constraints are nonnegativity constraints. These conditions are shown in the third row
of Table 13.4. As indicated in the last row of the table, the conditions for the general case
are called the Karush-Kuhn-Tucker conditions (or KKT conditions), because they were
derived independently by Karush11 and by Kuhn and Tucker.12 Their basic result is em-
bodied in the following theorem.

■ 13.6 THE KARUSH-KUHN-TUCKER (KKT) CONDITIONS 
FOR CONSTRAINED OPTIMIZATION

■ TABLE 13.4 Necessary and sufficient conditions for optimality

Problem Necessary Conditions for Optimality Also Sufficient If:

One-variable unconstrained �
d
d
x
f
� � 0 f(x) concave

Multivariable unconstrained �
�
�
x
f
j

� � 0 ( j � 1, 2, . . . , n) f(x) concave

Constrained, nonnegativity �
�
�
x
f
j

� � 0 ( j � 1, 2, . . . , n) f(x) concave
constraints only

(or � 0 if xj � 0)

General constrained problem Karush-Kuhn-Tucker conditions f(x) concave and gi (x) convex
(i � 1, 2, . . . , m)

11W. Karush, “Minima of Functions of Several Variables with Inequalities as Side Conditions,” M.S. thesis,
Department of Mathematics, University of Chicago, 1939.
12H. W. Kuhn and A. W. Tucker, “Nonlinear Programming,” in Jerzy Neyman (ed.), Proceedings of the Second
Berkeley Symposium, University of California Press, Berkeley, 1951, pp. 481–492.

When the objective function is concave and both the current trial solution x and its
gradient �f(x) are written as column vectors, the solution x� that maximizes the approxi-
mating quadratic function has the form,

x� � x � [�2f(x)]�1
�f(x),

where �2f(x) is the n � n matrix (called the Hessian matrix) of the second partial deriva-
tives of f(x) evaluated at the current trial solution x and [�2f(x)]�1

is the inverse of this
Hessian matrix.

Nonlinear programming algorithms that employ Newton’s method (including those that
adapt it to help deal with constrained optimization problems) commonly approximate the
inverse of the Hessian matrix in various ways. These approximations of Newton’s method
are referred to as quasi-Newton methods (or variable metric methods). We will comment
further on the important role of these methods in nonlinear programming in Sec. 13.9.

Further description of these methods is beyond the scope of this book, but further de-
tails can be found in books devoted to nonlinear programming.
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Theorem. Assume that f(x), g1(x), g2(x), . . . , gm(x) are differentiable functions satis-
fying certain regularity conditions.13 Then

x* � (x1*, x2*, . . . , x*n)

can be an optimal solution for the nonlinear programming problem only if there exist
m numbers u1, u2, . . . , um such that all the following KKT conditions are satisfied:

1. �
	

	

x
f

j
� � �

m

i�1
ui �

	

	

g
xj

i
� � 0

at x � x*, for j � 1, 2, . . . , n.

2. xj* ��
	

	

x
f

j
� � �

m

i�1
ui �

	

	

g
xj

i
�� � 0

3. gi(x*) � bi � 0
for i � 1, 2, . . . , m.

4. ui[gi(x*) � bi] � 0	
5. xj* � 0, for j � 1, 2, . . . , n.
6. ui � 0, for i � 1, 2, . . . , m.

Note that both conditions 2 and 4 require that the product of two quantities be zero.
Therefore, each of these conditions really is saying that at least one of the two quantities
must be zero. Consequently, condition 4 can be combined with condition 3 to express
them in another equivalent form as

(3, 4) gi(x*) � bi � 0
(or � 0 if ui � 0), for i � 1, 2, . . . , m.

Similarly, condition 2 can be combined with condition 1 as

(1, 2) �
	

	

x
f

j
� � �

m

i�1
ui �

	

	

g
xj

i
� � 0

(or � 0 if xj* � 0), for j � 1, 2, . . . , n.

When m � 0 (no functional constraints), this summation drops out and the combined con-
dition (1, 2) reduces to the condition given in the third row of Table 13.4. Thus, for 
m 
 0, each term in the summation modifies the m � 0 condition to incorporate the ef-
fect of the corresponding functional constraint.

In conditions 1, 2, 4, and 6, the ui correspond to the dual variables of linear pro-
gramming (we expand on this correspondence at the end of the section), and they have a
comparable economic interpretation. However, the ui actually arose in the mathematical
derivation as Lagrange multipliers (discussed in Appendix 3). Conditions 3 and 5 do noth-
ing more than ensure the feasibility of the solution. The other conditions eliminate most
of the feasible solutions as possible candidates for an optimal solution.

However, note that satisfying these conditions does not guarantee that the solution is
optimal. As summarized in the rightmost column of Table 13.4, certain additional con-
vexity assumptions are needed to obtain this guarantee. These assumptions are spelled out
in the following extension of the theorem.

Corollary. Assume that f(x) is a concave function and that g1(x), g2(x), . . . , gm(x) are
convex functions (i.e., this problem is a convex programming problem), where all these func-
tions satisfy the regularity conditions. Then x* � (x1*, x2*, . . . , xn*) is an optimal solution if
and only if all the conditions of the theorem are satisfied.

⎧⎪
⎪
⎨
⎪⎪
⎩
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13Ibid., p. 483.
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Example. To illustrate the formulation and application of the KKT conditions, we con-
sider the following two-variable nonlinear programming problem:

Maximize f(x) � ln(x1 � 1) � x2,

subject to

2x1 � x2 � 3

and

x1 � 0, x2 � 0,

where ln denotes the natural logarithm. Thus, m � 1 (one functional constraint) and 
g1(x) � 2x1 � x2, so g1(x) is convex. Furthermore, it can be easily verified (see Appendix 2)
that f(x) is concave. Hence, the corollary applies, so any solution that satisfies the KKT
conditions will definitely be an optimal solution. Applying the formulas given in the the-
orem yields the following KKT conditions for this example:

1( j � 1). �
x1 �

1
1

� � 2u1 � 0.

2( j � 1). x1��x1

1
� 1
� � 2u1� � 0.

1( j � 2). 1 � u1 � 0.
2( j � 2). x2(1 � u1) � 0.
3. 2x1 � x2 � 3 � 0.
4. u1(2x1 � x2 � 3) � 0.
5. x1 � 0, x2 � 0.
6. u1 � 0.

The steps in solving the KKT conditions for this particular example are outlined below:

1. u1 � 1, from condition 1( j � 2).
x1 � 0, from condition 5.

2. Therefore, �
x1 �

1
1

� � 2u1  0.

3. Therefore, x1 � 0, from condition 2( j � 1).
4. u1 � 0 implies that 2x1 � x2 � 3 � 0, from condition 4.
5. Steps 3 and 4 imply that x2 � 3.
6. x2 � 0 implies that u1 � 1, from condition 2( j � 2).
7. No conditions are violated by x1 � 0, x2 � 3, u1 � 1.

Therefore, there exists a number u1 � 1 such that x1 � 0, x2 � 3, and u1 � 1 satisfy all
the conditions. Consequently, x* � (0, 3) is an optimal solution for this problem.

This particular problem was relatively easy to solve because the first two steps above
quickly led to the remaining conclusions. It often is more difficult to see how to get started.
The particular progression of steps needed to solve the KKT conditions will differ from
one problem to the next. When the logic is not apparent, it is sometimes helpful to con-
sider separately the different cases where each xj and ui are specified to be either equal
to or greater than 0 and then trying each case until one leads to a solution. 

To illustrate, suppose this approach of considering the different cases separately had
been applied to the above example instead of using the logic involved in the above seven
steps. For this example, eight cases need to be considered. These cases correspond to the
eight combinations of x1 � 0 versus x1 
 0, x2 � 0 versus x2 
 0, and u1 � 0 versus u1 
 0.
Each case leads to a simpler statement and analysis of the conditions. To illustrate, con-
sider first the case shown next, where x1 � 0, x2 � 0, and u1 � 0.

13.6 THE KARUSH-KUHN-TUCKER (KKT) CONDITIONS 575
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KKT Conditions for the Case x1 � 0, x2 � 0, u1 � 0

1( j � 1). �
0 �

1
1

� � 0. Contradiction.

1( j � 2). 1 � 0 � 0. Contradiction.
3. 0 � 0 � 3.
(All the other conditions are redundant.)

As listed below, the other three cases where u1 � 0 also give immediate contradic-
tions in a similar way, so no solution is available.

Case x1 � 0, x2 
 0, u1 � 0 contradicts conditions 1( j � 1), 1( j � 2), and 2( j � 2).
Case x1 
 0, x2 � 0, u1 � 0 contradicts conditions 1( j � 1), 2( j � 1), and 1( j � 2).
Case x1 
 0, x2 
 0, u1 � 0 contradicts conditions 1( j � 1), 2( j � 1), 1( j � 2), and 2( j � 2).

The case x1 
 0, x2 
 0, u1 
 0 enables one to delete these nonzero multipliers from con-
ditions 2( j � 1), 2( j � 2), and 4, which then enables deletion of conditions 1( j � 1),
1( j � 2), and 3 as redundant, as summarized next.

KKT Conditions for the Case x1 
 0, x2 
 0, u1 
 0

1( j � 1). �
x1 �

1
1

� � 2u1 � 0.

2( j � 2). 1 � u1 � 0.
4. 2x1 � x2 � 3 � 0.
(All the other conditions are redundant.)

Therefore, u1 � 1, so x1 � ��
1
2

�, which contradicts x1 
 0.
Now suppose that the case x1 � 0, x2 
 0, u1 
 0 is tried next.

KKT Conditions for the Case x1 � 0, x2 
 0, u1 
 0

1( j � 1). �
0 �

1
1

� � 2u1 � 0.

2( j � 2). 1 � u1 � 0.
4. 0 � x2 � 3 � 0.
(All the other conditions are redundant.)

Therefore, x1 � 0, x2 � 3, u1 � 1. Having found a solution, we know that no additional
cases need be considered.

If you would like to see another example of using the KKT conditions to solve for an
optimal solution, one is provided in the Solved Examples section of the book’s website.

For problems more complicated than the above example, it may be difficult, if not
essentially impossible, to derive an optimal solution directly from the KKT conditions.
Nevertheless, these conditions still provide valuable clues as to the identity of an optimal
solution, and they also permit us to check whether a proposed solution may be optimal.

There also are many valuable indirect applications of the KKT conditions. One of
these applications arises in the duality theory that has been developed for nonlinear pro-
gramming to parallel the duality theory for linear programming presented in Chap. 6. In
particular, for any given constrained maximization problem (call it the primal problem),
the KKT conditions can be used to define a closely associated dual problem that is a
constrained minimization problem. The variables in the dual problem consist of both the
Lagrange multipliers ui (i � 1, 2, . . . , m) and the primal variables xj ( j � 1, 2, . . . , n).

576 CHAPTER 13 NONLINEAR PROGRAMMING
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14For a unified survey of various approaches to duality in nonlinear programming, see A. M. Geoffrion, “Dual-
ity in Nonlinear Programming: A Simplified Applications-Oriented Development,” SIAM Review, 13: 1–37, 1971.

■ 13.7 QUADRATIC PROGRAMMING

As indicated in Sec. 13.3, the quadratic programming problem differs from the linear pro-
gramming problem only in that the objective function also includes xj

2 and xixj (i � j)
terms. Thus, if we use matrix notation like that introduced at the beginning of Sec. 5.2,
the problem is to find x so as to

Maximize f(x) � cx � �
1
2

�xTQx,

subject to

Ax � b and x � 0,
where the objective function is concave, c is a row vector, x and b are column vectors,
Q and A are matrices, and the superscript T denotes the transpose (see Appendix 4).
The qij (elements of Q) are given constants such that qij � qji (which is the reason for
the factor of �

1
2

� in the objective function). By performing the indicated vector and ma-
trix multiplications, the objective function then is expressed in terms of these qij, the
cj (elements of c), and the variables as follows:

f(x) � cx � �
1
2

�xTQx � �
n

j�1
cjxj � �

1
2

� �
n

i�1
�
n

j�1
qijxixj.

For each term where i � j in this double summation, xixj � xj
2, so ��

1
2

�qjj is the coefficient
of xj

2. When i � j, then ��
1
2

�(qijxixj � qjixjxi) � �qijxixj, so �qij is the total coefficient for
the product of xi and xj.

To illustrate, consider the following example:

Maximize f(x1, x2) � 15x1 � 30x2 � 4x1x2 � 2x1
2 � 4x2

2,

subject to

x1 � 2x2 � 30

and

x1 � 0, x2 � 0.

In the special case where the primal problem is a linear programming problem, the xj vari-
ables drop out of the dual problem and it becomes the familiar dual problem of linear pro-
gramming (where the ui variables here correspond to the yi variables in Chap. 6). When
the primal problem is a convex programming problem, it is possible to establish rela-
tionships between the primal problem and the dual problem that are similar to those for
linear programming. For example, the strong duality property of Sec. 6.1, which states
that the optimal objective function values of the two problems are equal, also holds here.
Furthermore, the values of the ui variables in an optimal solution for the dual problem can
again be interpreted as shadow prices (see Secs. 4.7 and 6.2); i.e., they give the rate at
which the optimal objective function value for the primal problem could be increased by
(slightly) increasing the right-hand side of the corresponding constraint. Because duality
theory for nonlinear programming is a relatively advanced topic, the interested reader is
referred elsewhere for further information.14

You will see another indirect application of the KKT conditions in the next section.
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As can be verified from the results in Appendix 2 (see Prob. 13.7-1a), the objective func-
tion is strictly concave, so this is indeed a quadratic programming problem. In this case,

c � [15 30], x � 
 �, Q � 
 �,

A � [1 2], b � [30].

Note that

xTQx � [x1 x2] 
 �
 �
� [(4x1 � 4x2) (�4x1 � 8x2)]
 �
� 4x1

2 � 4x2x1 � 4x1x2 � 8x2
2

� q11x1
2 � q21x2x1 � q12x1x2 � q22x2

2.

Multiplying through by ��
1
2

� gives

��
1
2

�xTQx � �2x1
2 � 4x1x2 � 4x2

2,

which is the nonlinear portion of the objective function for this example. Since q11 � 4
and q22 � 8, the example illustrates that ��

1
2

�qjj is the coefficient of xj
2 in the objective func-

tion. The fact that q12 � q21 � �4 illustrates that both �qij and �qji give the total coef-
ficient of the product of xi and xj.

Several algorithms have been developed for quadratic programming problem while
using its assumption that the objective function is a concave function. (The results in Ap-
pendix 2 make it easy to check whether this assumption holds when the objective func-
tion has only two variables. With more than two variables, another  way to verify that the
objective function is concave is to verify the equivalent condition that

xTQx � 0

for all x, that is, Q is a positive semidefinite matrix.) We shall describe one15 of these al-
gorithms, the modified simplex method, that has been quite popular because it requires 
using only the simplex method with a slight modification. The key to this approach is to
construct the KKT conditions from the preceding section and then to reexpress these con-
ditions in a convenient form that closely resembles linear programming. Therefore, be-
fore describing the algorithm, we shall develop this convenient form.

The KKT Conditions for Quadratic Programming

For concreteness, let us first consider the above example. Starting with the form given in
the preceding section, its KKT conditions are the following:

1( j � 1). 15 � 4x2 � 4x1 � u1 � 0.
2( j � 1). x1(15 � 4x2 � 4x1 � u1) � 0.
1( j � 2). 30 � 4x1 � 8x2 � 2u1 � 0.
2( j � 2). x2(30 � 4x1 � 8x2 � 2u1) � 0.
3. x1 � 2x2 � 30 � 0.
4. u1(x1 � 2x2 � 30) � 0.
5. x1 � 0, x2 � 0.
6. u1 � 0.

x1

x2

x1

x2

�4

8

4

�4

�4

8

4

�4
x1

x2
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15P. Wolfe, “The Simplex Method for Quadratic Programming,” Econometrics, 27: 382–398, 1959. This paper
develops both a short form and a long form of the algorithm. We present a version of the short form, which as-
sumes further that either c � 0 or the objective function is strictly concave.
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To begin reexpressing these conditions in a more convenient form, we move the con-
stants in conditions 1( j � 1), 1( j � 2), and 3 to the right-hand side and then introduce
nonnegative slack variables (denoted by y1, y2, and v1, respectively) to convert these in-
equalities to equations.

1( j � 1). �4x1 � 4x2 � u1 � y1 � �15
1( j � 2). 4x1 � 8x2 � 2u1 � y2 � �30
3. x1 � 2x2 � v1 � �30

Note that condition 2( j � 1) can now be reexpressed as simply requiring that either 
x1 � 0 or y1 � 0; that is,

2( j � 1). x1y1 � 0.

In just the same way, conditions 2( j � 2) and 4 can be replaced by

2( j � 2). x2y2 � 0,
4. u1v1 � 0.

For each of these three pairs—(x1, y1), (x2, y2), (u1, v1)—the two variables are called 
complementary variables, because only one of the two variables can be nonzero. These
new forms of conditions 2( j � 1), 2( j � 2), and 4 can be combined into one constraint,

x1y1 � x2y2 � u1v1 � 0,

called the complementarity constraint.
After multiplying through the equations for conditions 1( j � 1) and 1( j � 2) by �1

to obtain nonnegative right-hand sides, we now have the desired convenient form for the
entire set of conditions shown here:

�4x1 � 4x2 � u1 � y1 � 15
�4x1 � 8x2 � 2u1 � y2 � 30
�4x1 � 2x2 � v1 � 30
x1 � 0, x2 � 0, u1 � 0, y1 � 0, y2 � 0, v1 � 0
x1y1 � x2y2 � u1v1 � 0

This form is particularly convenient because, except for the complementarity constraint,
these conditions are linear programming constraints.

For any quadratic programming problem, its KKT conditions can be reduced to this
same convenient form containing just linear programming constraints plus one comple-
mentarity constraint. In matrix notation again, this general form is

Qx � ATu � y � cT,
Ax � v � b,

x � 0, u � 0, y � 0, v � 0,
xTy � uTv � 0,

where the elements of the column vector u are the ui of the preceding section and the el-
ements of the column vectors y and v are slack variables.

Because the objective function of the original problem is assumed to be concave and
because the constraint functions are linear and therefore convex, the corollary to the theo-
rem of Sec. 13.6 applies. Thus, x is optimal if and only if there exist values of y, u, and v
such that all four vectors together satisfy all these conditions. The original problem is
thereby reduced to the equivalent problem of finding a feasible solution to these constraints.

It is of interest to note that this equivalent problem is one example of the linear com-
plementarity problem introduced in Sec. 13.3 (see Prob. 13.3-6), and that a key constraint
for the linear complementarity problem is its complementarity constraint.

13.7 QUADRATIC PROGRAMMING 579
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The Modified Simplex Method

The modified simplex method exploits the key fact that, with the exception of the com-
plementarity constraint, the KKT conditions in the convenient form obtained above are
nothing more than linear programming constraints. Furthermore, the complementarity con-
straint simply implies that it is not permissible for both complementary variables of any
pair to be (nondegenerate) basic variables (the only variables 
 0) when (nondegenerate)
BF solutions are considered. Therefore, the problem reduces to finding an initial BF so-
lution to any linear programming problem that has these constraints, subject to this addi-
tional restriction on the identity of the basic variables. (This initial BF solution may be
the only feasible solution in this case.)

As we discussed in Sec. 4.6, finding such an initial BF solution is relatively straight-
forward. In the simple case where cT � 0 (unlikely) and b � 0, the initial basic variables
are the elements of y and v (multiply through the first set of equations by �1), so that
the desired solution is x � 0, u � 0, y � �cT, v � b. Otherwise, you need to revise the
problem by introducing an artificial variable into each of the equations where cj 
 0 (add
the variable on the left) or bi  0 (subtract the variable on the left and then multiply
through by �1) in order to use these artificial variables (call them z1, z2, and so on) as
initial basic variables for the revised problem. (Note that this choice of initial basic vari-
ables satisfies the complementarity constraint, because as nonbasic variables x � 0 and 
u � 0 automatically.)

Next, use phase 1 of the two-phase method (see Sec. 4.6) to find a BF solution for
the real problem; i.e., apply the simplex method (with one modification) to the following
linear programming problem

Minimize Z � �
j

zj,

subject to the linear programming constraints obtained from the KKT conditions, but with
these artificial variables included.

The one modification in the simplex method is the following change in the procedure
for selecting an entering basic variable.

Restricted-Entry Rule: When you are choosing an entering basic variable, ex-
clude from consideration any nonbasic variable whose complementary variable
already is a basic variable; the choice should be made from the other nonbasic
variables according to the usual criterion for the simplex method.

This rule keeps the complementarity constraint satisfied throughout the course of the
algorithm. When an optimal solution

x*, u*, y*, v*, z1 � 0, . . . , zn � 0

is obtained for the phase 1 problem, x* is the desired optimal solution for the original
quadratic programming problem. Phase 2 of the two-phase method is not needed.

Example. We shall now illustrate this approach on the example given at the beginning of
the section. As can be verified from the results in Appendix 2 (see Prob. 13.7-1a), f(x1, x2)
is strictly concave; i.e.,

Q � 
 �
is positive definite, so the algorithm can be applied.

�4

8

4

�4
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The starting point for solving this example is its KKT conditions in the convenient
form obtained earlier in the section. After the needed artificial variables are introduced,
the linear programming problem to be addressed explicitly by the modified simplex method
then is

Minimize Z � z1 � z2,

subject to

4x1 � 4x2 � u1 � y1 � z1 � 15
�4x1 � 8x2 � 2u1 � y2 � z2 � 30

x1 � 2x2 � v1 � 30

and

x1 � 0, x2 � 0, u1 � 0, y1 � 0, y2 � 0, v1 � 0,
z1 � 0, z2 � 0.

The additional complementarity constraint

x1y1 � x2y2 � u1v1 � 0,

is not included explicitly, because the algorithm automatically enforces this constraint be-
cause of the restricted-entry rule. In particular, for each of the three pairs of complementary
variables—(x1, y1), (x2, y2), (u1,v1)—whenever one of the two variables already is a basic
variable, the other variable is excluded as a candidate for the entering basic variable. Re-
member that the only nonzero variables are basic variables. Because the initial set of ba-
sic variables for the linear programming problem—z1, z2, v1—gives an initial BF solution
that satisfies the complementarity constraint, there is no way that this constraint can be
violated by any subsequent BF solution.

Table 13.5 shows the results of applying the modified simplex method to this prob-
lem. The first simplex tableau exhibits the initial system of equations after converting
from minimizing Z to maximizing �Z and algebraically eliminating the initial basic vari-
ables from Eq. (0), just as was done for the radiation therapy example in Sec. 4.6. The
three iterations proceed just as for the regular simplex method, except for eliminating cer-
tain candidates for the entering basic variable because of the restricted-entry rule. In the
first tableau, u1 is eliminated as a candidate because its complementary variable (v1) al-
ready is a basic variable (but x2 would have been chosen anyway because �4  �3). In
the second tableau, both u1 and y2 are eliminated as candidates (because v1 and x2 are 
basic variables), so x1 automatically is chosen as the only candidate with a negative co-
efficient in row 0 (whereas the regular simplex method would have permitted choosing
either x1 or u1 because they are tied for having the largest negative coefficient). In the
third tableau, both y1 and y2 are eliminated (because x1 and x2 are basic variables). How-
ever, u1 is not eliminated because �v1 no longer is a basic variable, so u1 is chosen as the
entering basic variable in the usual way.

The resulting optimal solution for this phase 1 problem is x1 � 12, x2 � 9, u1 � 3,
with the rest of the variables zero. (Problem 13.7-1c asks you to verify that this solution
is optimal by showing that x1 � 12, x2 � 9, u1 � 3 satisfy the KKT conditions for the
original problem when they are written in the form given in Sec. 13.6.) Therefore, the op-
timal solution for the quadratic programming problem (which includes only the x1 and x2

variables) is (x1, x2) � (12, 9).
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The Solved Examples section of the book’s website include another example that
illustrates the application of the modified simplex method to a quadratic programming
problem. The KKT conditions also are applied to this example.

Some Software Options

Your IOR Tutorial includes an interactive procedure for the modified simplex method to help
you learn this algorithm efficiently. In addition, Excel, MPL/Solvers, LINGO, and LINDO
all can solve quadratic programming problems.

The procedure for using Excel is almost the same as with linear programming. The
one crucial difference is that the equation entered for the cell that contains the value of
the objective function now needs to be a quadratic equation. To illustrate, consider again
the example introduced at the beginning of the section, which has the objective function

f(x1, x2) � 15x1 � 30x2 � 4x1x2 � 2x1
2 � 4x2

2.

Suppose that the values of x1 and x2 are in cells B4 and C4 of the Excel spreadsheet,
and that the value of the objective function is in cell F4. Then the equation for cell F4
needs to be

F4 � 15*B4 � 30*C4 � 4*B4*C4 � 2*(B4^2) � 4*(C4^2),

where the symbol ^2 indicates an exponent of 2. 

582 CHAPTER 13 NONLINEAR PROGRAMMING

■ TABLE 13.5 Application of the modified simplex method to the quadratic
programming example

Basic Right
Iteration Variable Eq. Z x1 x2 u1 y1 y2 v1 z1 z2 Side

Z (0) �1 0 �4 �3 1 1 0 0 0 �45�
1
4

�

z1 (1) 0 4 �4 1 �1 0 0 1 0 15�
1
4

�
0

z2 (2) 0 �4 8 2 0 �1 0 0 1 30�
1
4

�

v1 (3) 0 1 2 0 0 0 1 0 0 30�
1
4

�

Z (0) �1 �2 0 �2 1 �
1
2

� 0 0 �
1
2

� �30�
1
4

�

z1 (1) 0 2 0 2 �1 ��
1
2

� 0 1 �
1
2

� 30�
1
4

�

1
x2 (2) 0 ��

1
2

� 1 �
1
4

� 0 ��
1
8

� 0 0 �
1
8

� 3�
3
4

�

v1 (3) 0 2 0 ��
1
2

� 0 �
1
4

� 1 0 ��
1
4

� 22�
1
2

�

Z (0) �1 0 0 ��
5
2

� 1 �
3
4

� 1 0 �
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The standard Excel Solver does not have a solving method that is specifically for qua-
dratic programming. However, it does include a solving method called GRG Nonlinear
for solving convex programming problems. As pointed out in Sec. 13.3, quadratic pro-
gramming is a special case of convex programming. Therefore, GRG Nonlinear should
be chosen as the solving method in the Solver Parameters dialog box (along with the op-
tion of Make Variables Nonnegative) instead of the LP Simplex solving method that al-
ways was chosen for solving linear programming problems. The ASPE Solver includes
this same solving method, but it also has another one called Quadratic that should be cho-
sen instead because it has been designed specifically to solve quadratic programming prob-
lems very efficiently.

When using MPL/Solvers, you should set the model type to Quadratic by adding the fol-
lowing statement at the beginning of the model file.

OPTIONS

ModelType � Quadratic

(Alternatively, you can select the Quadratic Models option from the MPL Language op-
tion dialog box, but then you will need to remember to change the setting when deal-
ing with linear programming problems again.) Otherwise, the procedure is the same as
with linear programming except that the expression for the objective function now is a
quadratic function. Thus, for the example, the objective function would be expressed as

15x1 � 30x2 � 4x1*x2 � 2(x1^2) � 4(x2^2).

Two of the elite solvers included in the student version of MPL—CPLEX and GUROBI—
include a special algorithm for solving quadratic programming problems.

This objective function would be expressed in this same way for a LINGO model.
LINGO/LINDO then will automatically call its nonlinear solver to solve the model.

In fact, the Excel, MPL/Solvers, and LINGO/LINDO files for this chapter in your
OR Courseware all demonstrate their procedures by showing the details for how these
software packages set up and solve this example.
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■ 13.8 SEPARABLE PROGRAMMING

The preceding section showed how one class of nonlinear programming problems can be
solved by an extension of the simplex method. We now consider another class, called sep-
arable programming, that actually can be solved by the simplex method itself, because
any such problem can be approximated as closely as desired by a linear programming
problem with a larger number of variables.

As indicated in Sec. 13.3, in separable programming it is assumed that the objective func-
tion f(x) is concave, that each of the constraint functions gi(x) is convex, and that all these
functions are separable functions (functions where each term involves just a single variable).
However, to simplify the discussion, we focus here on the special case where the convex and
separable gi(x) are, in fact, linear functions, just as for linear programming. (We will turn to
the general case briefly at the end of this section.) Thus, only the objective function requires
special treatment for this special case.

Under the preceding assumptions, the objective function can be expressed as a sum
of concave functions of individual variables

f(x) � �
n

j�1
fj(xj),
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so that each fj(xj) has a shape16 such as the one shown in Fig. 13.15 (either case) over the
feasible range of values of xj. Because f(x) represents the measure of performance (say,
profit) for all the activities together, fj(xj) represents the contribution to profit from activ-
ity j when it is conducted at level xj. The condition of f(x) being separable simply implies
additivity (see Sec. 3.3); i.e., there are no interactions between the activities (no cross-
product terms) that affect total profit beyond their independent contributions. The as-
sumption that each fj(xj) is concave says that the marginal profitability (slope of the profit
curve) either stays the same or decreases (never increases) as xj is increased.

Concave profit curves occur quite frequently. For example, it may be possible to sell a
limited amount of some product at a certain price, then a further amount at a lower price,
and perhaps finally a further amount at a still lower price. Similarly, it may be necessary to
purchase raw materials from increasingly expensive sources. In another common situation,
a more expensive production process must be used (e.g., overtime rather than regular-time
work) to increase the production rate beyond a certain point.

These kinds of situations can lead to either type of profit curve shown in Fig. 13.15.
In case 1, the slope decreases only at certain breakpoints, so that fj(xj) is a piecewise lin-
ear function (a sequence of connected line segments). For case 2, the slope may decrease
continuously as xj increases, so that fj(xj) is a general concave function. Any such function
can be approximated as closely as desired by a piecewise linear function, and this kind of
approximation is used as needed for separable programming problems. (Figure 13.15 shows
an approximating function that consists of just three line segments, but the approximation
can be made even better just by introducing additional breakpoints.) This approximation is
very convenient because a piecewise linear function of a single variable can be rewritten
as a linear function of several variables, with one special restriction on the values of these
variables, as described next.

Reformulation as a Linear Programming Problem

The key to rewriting a piecewise linear function as a linear function is to use a separate
variable for each line segment. To illustrate, consider the piecewise linear function fj(xj)
shown in Fig. 13.15, case 1 (or the approximating piecewise linear function for case 2),
which has three line segments over the feasible range of values of xj. Introduce the three
new variables xj1, xj2, and xj3 and set

xj � xj1 � xj2 � xj3,

where

0 � xj1 � uj1, 0 � xj2 � uj2, 0 � xj3 � uj3.

Then use the slopes sj1, sj2, and sj3 to rewrite fj(xj) as

fj(xj) � sj1xj1 � sj2xj2 � sj3xj3,

with the special restriction that

xj2 � 0 whenever xj1  uj1,
xj3 � 0 whenever xj2  uj2.

584 CHAPTER 13 NONLINEAR PROGRAMMING

16f(x) is concave if and only if every fj(xj) is concave.
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Case 1
fj(xj) is concave and piecewise linear

pj1

pj2

pj3

xj

uj1 uj1 � uj2

xj2 xj3xj1

sj1 (slope)

sj3

sj2

sj2

fj(xj)

Case 2
fj(xj) is just concave

pj1

pj2

pj3

xj

uj1 uj1 � uj2

xj2 xj3xj1

sj1 (slope)

sj3

fj(xj)

fj(xj)

Approximation of fj(xj)

� ujk 

3

k � 1

� ujk 

3

k � 1

Level of activity j

Level of activity j

Pr
of

it 
fr

om
 a

ct
iv

ity
 j

Pr
of

it 
fr

om
 a

ct
iv

ity
 j

0

0

■ FIGURE 13.15
Shape of profit curves for
separable programming.
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To see why this special restriction is required, suppose that xj � 1, where ujk 
 1 
(k � 1, 2, 3), so that fj(1) � sj1. Note that

xj1 � xj2 � xj3 � 1

permits

xj1 � 1, xj2 � 0, xj3 � 0 ⇒ fj(1) � sj1,
xj1 � 0, xj2 � 1, xj3 � 0 ⇒ fj(1) � sj2,
xj1 � 0, xj2 � 0, xj3 � 1 ⇒ fj(1) � sj3,

and so on, where

sj1 
 sj2 
 sj3.

However, the special restriction permits only the first possibility, which is the only one
giving the correct value for fj(1).

Unfortunately, the special restriction does not fit into the required format for linear
programming constraints, so some piecewise linear functions cannot be rewritten in a lin-
ear programming format. However, our fj(xj) are assumed to be concave, so sj1 
 sj2 
 ���,
so that an algorithm for maximizing f(x) automatically gives the highest priority to using
xj1 when (in effect) increasing xj from zero, the next highest priority to using xj2, and so
on, without even including the special restriction explicitly in the model. This observa-
tion leads to the following key property.

Key Property of Separable Programming. When f(x) and the gi(x) satisfy the as-
sumptions of separable programming, and when the resulting piecewise linear functions
are rewritten as linear functions, deleting the special restriction gives a linear program-
ming model whose optimal solution automatically satisfies the special restriction.

We shall elaborate further on the logic behind this key property later in this section
in the context of a specific example. (Also see Prob. 13.8-6a.)

To write down the complete linear programming model in the above notation, let nj

be the number of line segments in fj(xj) (or the piecewise linear function approximating it),
so that

xj � �
nj

k�1
xjk

would be substituted throughout the original model and

fj(xj) � �
nj

k�1
sjkxjk

would be substituted17 into the objective function for j � 1, 2, . . . , n. The resulting model is

Maximize Z � �
n

j�1
��

nj

k�1
sjkxjk�,

subject to

�
n

j�1
aij��

nj

k�1
xjk� � bi , for i � 1, 2, . . . , m

xjk � ujk, for k � 1, 2, . . . , nj; j � 1, 2, . . . , n

586 CHAPTER 13 NONLINEAR PROGRAMMING

17If one or more of the fj(xj) already are linear functions fj(xj) � cjxj, then nj � 1 so neither of these substitu-
tions will be made for j.
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and

xjk � 0, for k � 1, 2, . . . , nj; j � 1, 2, . . . , n.

(The �nj
k�1 xjk � 0 constraints are deleted because they are ensured by the xjk � 0 con-

straints.) If some original variable xj has no upper bound, then ujnj
� �, so the constraint

involving this quantity will be deleted.
An efficient way of solving this model18 is to use the streamlined version of the sim-

plex method for dealing with upper bound constraints (described in Sec. 8.3). After ob-
taining an optimal solution for this model, you then would calculate

xj � �
nj

k�1
xjk,

for j � 1, 2, . . . , n in order to identify an optimal solution for the original separable pro-
gramming problem (or its piecewise linear approximation).

Example. The Wyndor Glass Co. (see Sec. 3.1) has received a special order for hand-
crafted goods to be made in Plants 1 and 2 throughout the next four months. Filling this or-
der will require borrowing certain employees from the work crews for the regular products,
so the remaining workers will need to work overtime to utilize the full production capacity
of the plant’s machinery and equipment for these regular products. In particular, for the two
new regular products discussed in Sec. 3.1, overtime will be required to utilize the last 
25 percent of the production capacity available in Plant 1 for product 1 and for the last
50 percent of the capacity available in Plant 2 for product 2. The additional cost of using
overtime work will reduce the profit for each unit involved from $3 to $2 for product 1
and from $5 to $1 for product 2, giving the profit curves of Fig. 13.16, both of which fit
the form for case 1 of Fig. 13.15.

Management has decided to go ahead and use overtime work rather than hire addi-
tional workers during this temporary situation. However, it does insist that the work crew
for each product be fully utilized on regular time before any overtime is used. Furthermore,
it feels that the current production rates (x1 � 2 for product 1 and x2 � 6 for product 2)
should be changed temporarily if this would improve overall profitability. Therefore, it has
instructed the OR team to review products 1 and 2 again to determine the most profitable
product mix during the next four months.

Formulation. To refresh your memory, the linear programming model for the original
Wyndor Glass Co. problem in Sec. 3.1 is

Maximize Z � 3x1 � 5x2,

subject to

x1 � 4
2x2 � 12

3x1 � 2x2 � 18

and

x1 � 0, x2 � 0.
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18For a specialized algorithm for solving this model very efficiently, see R. Fourer, “A Specialized Algorithm
for Piecewise-Linear Programming III: Computational Analysis and Applications,” Mathematical Programming,
53: 213–235, 1992. Also see A. M. Geoffrion, “Objective Function Approximations in Mathematical Program-
ming,” Mathematical Programming, 13: 23–37, 1977, as well as Selected Reference 8.
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We now need to modify this model to fit the new situation described above. For this pur-
pose, let the production rate for product 1 be x1 � x1R � x1O, where x1R is the production
rate achieved on regular time and x1O is the incremental production rate from using over-
time. Define x2 � x2R � x2O in the same way for product 2. Thus, in the notation of the
general linear programming model for separable programming given just before this ex-
ample, n � 2, n1 � 2, and n2 � 2. Plugging the data given in Fig. 13.16 (including max-
imum rates of production on regular time and on overtime) into this general model gives
the specific model for this application. In particular, the new linear programming prob-
lem is to determine the values of x1R, x1O, x2R, and x2O so as to

Maximize Z � 3x1R � 2x1O � 5x2R � x2O,

subject to

x1R � x1O � 4
2(x2R � x2O) � 12

3(x1R � x1O) � 2(x2R � x2O) � 18
x1R � 3, x1O � 1, x2R � 3, x2O � 3

and

x1R � 0, x1O � 0, x2R � 0, x2O � 0.

(Note that the upper bound constraints in the next-to-last row of the model make the
first two functional constraints redundant, so these two functional constraints can be
deleted.)

However, there is one important factor that is not taken into account explicitly in this
formulation. Specifically, there is nothing in the model that requires all available regular
time for a product to be fully utilized before any overtime is used for that product. In
other words, it may be feasible to have x1O 
 0 even when x1R  3 and to have x2O 
 0
even when x2R  3. Such solutions would not, however, be acceptable to management.
(Prohibiting such solutions is the special restriction discussed earlier in this section.)

Now we come to the key property of separable programming. Even though the 
model does not take this factor into account explicitly, the model does take it into account
implicitly! Despite the model’s having excess “feasible” solutions that actually are 
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unacceptable, any optimal solution for the model is guaranteed to be a legitimate one that
does not replace any available regular-time work with overtime work. (The reasoning here
is analogous to that for the Big M method discussed in Sec. 4.6, where excess feasible but
nonoptimal solutions also were allowed in the model as a matter of convenience.) There-
fore, the simplex method can be safely applied to this model to find the most profitable ac-
ceptable product mix. The reasons are twofold. First, the two decision variables for each
product always appear together as a sum, x1R � x1O or x2R � x2O, in each functional con-
straint other than the upper bound constraints on individual variables. Therefore, it always
is possible to convert an unacceptable feasible solution to an acceptable one having the same
total production rates, x1 � x1R � x1O and x2 � x2R � x2O, merely by replacing overtime
production by regular-time production as much as possible. Second, overtime production is
less profitable than regular-time production (i.e., the slope of each profit curve in Fig. 13.16
is a monotonic decreasing function of the rate of production), so converting an unaccept-
able feasible solution to an acceptable one in this way must increase the total rate of profit
Z. Consequently, any feasible solution that uses overtime production for a product when reg-
ular-time production is still available cannot be optimal with respect to the model.

For example, consider the unacceptable feasible solution x1R � 1, x1O � 1, x2R � 1,
x2O � 3, which yields a total rate of profit Z � 13. The acceptable way of achieving the
same total production rates x1 � 2 and x2 � 4 is x1R � 2, x1O � 0, x2R � 3, x2O � 1. This
latter solution is still feasible, but it also increases Z by (3 � 2)(1) � (5 � 1)(2) � 9 to a
total rate of profit Z � 22.

Similarly, the optimal solution for this model turns out to be x1R � 3, x1O � 1,
x2R � 3, x2O � 0, which is an acceptable feasible solution.

Another example that illustrates the application of separable programming is in-
cluded in the Solved Examples section of the book’s website.

Extensions

Thus far we have focused on the special case of separable programming where the only
nonlinear function is the objective function f(x). Now consider briefly the general case
where the constraint functions gi(x) need not be linear but are convex and separable, so
that each gi(x) can be expressed as a sum of functions of individual variables

gi(x) � �
n

j�1
gij(xj),

where each gij(xj) is a convex function. Once again, each of these new functions may be
approximated as closely as desired by a piecewise linear function (if it is not already in
that form). The one new restriction is that for each variable xj ( j � 1, 2, . . . , n), all the
piecewise linear approximations of the functions of this variable [ fj(xj), g1j(xj), . . . , gmj(xj)]
must have the same breakpoints so that the same new variables (xj1, xj2, . . . , xjnj

) can be
used for all these piecewise linear functions. This formulation leads to a linear program-
ming model just like the one given for the special case except that for each i and j, the
xjk variables now have different coefficients in constraint i [where these coefficients are
the corresponding slopes of the piecewise linear function approximating gij(xj)]. Because the
gij(xj) are required to be convex, essentially the same logic as before implies that the key
property of separable programming still must hold. (See Prob. 13.8-6b.)

One drawback of approximating functions by piecewise linear functions as described in
this section is that achieving a close approximation requires a large number of line segments
(variables), whereas such a fine grid for the breakpoints is needed only in the immediate
neighborhood of an optimal solution. Therefore, more sophisticated approaches that use a

13.8 SEPARABLE PROGRAMMING 589

hil23453_ch13_547-616.qxd  1/22/70  7:23 AM  Page 589 Final PDF to printer



590 CHAPTER 13 NONLINEAR PROGRAMMING

■ 13.9 CONVEX PROGRAMMING

We already have discussed some special cases of convex programming in Secs. 13.4 and 13.5
(unconstrained problems), 13.7 (quadratic objective function with linear constraints), and 13.8
(separable functions). You also have seen some theory for the general case (necessary and
sufficient conditions for optimality) in Sec. 13.6. In this section, we briefly discuss some types
of approaches used to solve the general convex programming problem [where the objective
function f(x) to be maximized is concave and the gi(x) constraint functions are convex], and
then we present one example of an algorithm for convex programming.

There is no single standard algorithm that always is used to solve convex program-
ming problems. Many different algorithms have been developed, each with its own ad-
vantages and disadvantages, and research continues to be active in this area. Roughly
speaking, most of these algorithms fall into one of the following three categories.

The first category is gradient algorithms, where the gradient search procedure of
Sec. 13.5 is modified in some way to keep the search path from penetrating any constraint
boundary. For example, one popular gradient method is the generalized reduced gradient
(GRG) method. Solver uses the GRG method for solving convex programming problems.
(As discussed in the next section, both Solver and ASPE now include an Evolutionary
Solver option that is well suited for dealing with nonconvex programming problems.)

The second category—sequential unconstrained algorithms—includes penalty
function and barrier function methods. These algorithms convert the original constrained
optimization problem to a sequence of unconstrained optimization problems whose opti-
mal solutions converge to the optimal solution for the original problem. Each of these un-
constrained optimization problems can be solved by the kinds of procedures described in
Sec. 13.5. This conversion is accomplished by incorporating the constraints into a penalty
function (or barrier function) that is subtracted from the objective function in order to im-
pose large penalties for violating constraints (or even being near constraint boundaries).
In the latter part of this section, we will describe an algorithm from the 1960s, called the
sequential unconstrained minimization technique (or SUMT for short), that pioneered
this category of algorithms. (SUMT also helped to motivate some of the interior-point
methods for linear programming.)

The third category—sequential-approximation algorithms—includes linear approx-
imation and quadratic approximation methods. These algorithms replace the nonlinear ob-
jective function by a succession of linear or quadratic approximations. For linearly constrained
optimization problems, these approximations allow repeated application of linear or quadratic
programming algorithms. This work is accompanied by other analysis that yields a se-
quence of solutions that converges to an optimal solution for the original problem. Although

19R. R. Meyer, “Two-Segment Separable Programming,” Management Science, 25: 385–395, 1979.
20For example, see J. P. Vielma, S. Ahmed, and G. Nemhauser: “Mixed-Integer Models for Nonseparable Piecewise-
Linear Optimization: Unifying Framework and Extensions, Operations Research, 58(2): 303–315, March–April 2010.

succession of two-segment piecewise linear functions have been developed19 to obtain suc-
cessively closer approximations within this immediate neighborhood. This kind of approach
tends to be both faster and more accurate in closely approximating an optimal solution.

The key property of separable programming depends critically on the assumptions that
the objective function f(x) is concave and the constraint functions gi(x) are convex. However,
even when either or both of these assumptions are violated, methods have been developed
for still doing piecewise-linear optimization by introducing auxiliary binary variables into the
model.20 This requires considerably more computational effort, but it provides a reasonable
option for attempting to solve the problem.
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these algorithms are particularly suitable for linearly constrained optimization problems,
some also can be extended to problems with nonlinear constraint functions by the use of
appropriate linear approximations.

As one example of a sequential-approximation algorithm, we present here the
Frank-Wolfe algorithm21 for the case of linearly constrained convex programming (so
the constraints are Ax � b and x � 0 in matrix form). This procedure is particularly
straightforward; it combines linear approximations of the objective function (enabling
us to use the simplex method) with a procedure for one-variable unconstrained opti-
mization (such as described in Sec. 13.4).

A Sequential Linear Approximation Algorithm (Frank-Wolfe)

Given a feasible trial solution x�, the linear approximation used for the objective function
f(x) is the first-order Taylor series expansion of f(x) around x � x�, namely,

f(x�) � f(x�) � �
n

j�1
(xj � x�j) � f(x�) � �f(x�)(x � x�),

where these partial derivatives are evaluated at x � x�. Because f(x�) and �f(x�)x� have
fixed values, they can be dropped to give an equivalent linear objective function

g(x) � �f(x�)x � �
n

j�1
cjxj, where cj � at x � x�.

The simplex method (or the graphical procedure if n � 2) then is applied to the resulting
linear programming problem [maximize g(x) subject to the original constraints, Ax � b
and x � 0] to find its optimal solution xLP. Note that the linear objective function neces-
sarily increases steadily as one moves along the line segment from x� to xLP (which is on
the boundary of the feasible region). However, the linear approximation may not be a par-
ticularly close one for x far from x�, so the nonlinear objective function may not continue
to increase all the way from x� to xLP. Therefore, rather than just accepting xLP as the next
trial solution, we choose the point that maximizes the nonlinear objective function along
this line segment. This point may be found by conducting a procedure for one-variable un-
constrained optimization of the kind presented in Sec. 13.4, where the one variable for pur-
poses of this search is the fraction t of the total distance from x� to xLP. This point then
becomes the new trial solution for initiating the next iteration of the algorithm, as just de-
scribed. The sequence of trial solutions generated by repeated iterations converges to an
optimal solution for the original problem, so the algorithm stops as soon as the successive
trial solutions are close enough together to have essentially reached this optimal solution.

Summary of the Frank-Wolfe Algorithm

Initialization: Find a feasible initial trial solution x(0), for example, by applying linear
programming procedures to find an initial BF solution. Set k � 1.

Iteration k:

1. For j � 1, 2, . . . , n, evaluate

at x � x(k�1)

and set cj equal to this value.

	f(x)
�

	xj

�f(x)
�

�xj

	f(x�)
�

	xj
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21M. Frank and P. Wolfe, “An Algorithm for Quadratic Programming,” Naval Research Logistics Quarterly,
3: 95–110, 1956. Although originally designed for quadratic programming, this algorithm is easily adapted to
the case of a general concave objective function considered here.
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2. Find an optimal solution x(k)
LP for the following linear programming problem.

Maximize g(x) � �
n

j�1
cjxj,

subject to

Ax � b and x � 0.

3. For the variable t (0 � t � 1), set

h(t) � f(x) for x � x(k�1) � t(x
LP

(k) � x(k�1)),

so that h(t) gives the value of f(x) on the line segment between x(k�1) (where t � 0)
and x(k)

LP (where t � 1). Use some procedure for one-variable unconstrained optimiza-
tion (see Sec. 13.4) to maximize h(t) over 0 � t � 1, and set x(k) equal to the corre-
sponding x. Go to the stopping rule:

Stopping rule: If x(k�1) and x(k) are sufficiently close, stop and use x(k) (or some extrap-
olation of x(0), x(1), . . . , x(k�1), x(k)) as your estimate of an optimal solu-
tion. Otherwise, reset k � k � 1 and perform another iteration.

Now let us illustrate this procedure.

Example. Consider the following quadratic programming problem (a special type of
linearly constrained convex programming problem):

Maximize f(x) � 5x1 � x2
1 � 8x2 � 2x2

2,

subject to

3x1 � 2x2 � 6

and

x1 � 0, x2 � 0.

Note that

� 5 � 2x1, � 8 � 4x2,

so that the unconstrained maximum x � (�
5
2

�, 2) violates the functional constraint. Thus,
more work is needed to find the constrained maximum.

Iteration 1: Because x � (0, 0) is clearly feasible (and corresponds to the initial BF
solution for the linear programming constraints), let us choose it as the initial trial solu-
tion x(0) for the Frank-Wolfe algorithm. Plugging x1 � 0 and x2 � 0 into the expressions for
the partial derivatives gives c1 � 5 and c2 � 8, so that g(x) � 5x1 � 8x2 is the initial linear
approximation of the objective function. Graphically, solving this linear programming prob-
lem (see Fig. 13.17a) yields x(1)

LP � (0, 3). For step 3 of the first iteration, the points on
the line segment between (0, 0) and (0, 3) shown in Fig. 13.17a are expressed by

(x1, x2) � (0, 0) � t[(0, 3) � (0, 0)] for 0 � t � 1
� (0, 3t)

as shown in the sixth column of Table 13.6. This expression then gives

h(t) � f(0, 3t) � 8(3t) � 2(3t)2

� 24t � 18t2,

�f
�
�x2

�f
�
�x1
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so that the value t � t* that maximizes h(t) over 0 � t � 1 may be obtained in this case
by setting

� 24 � 36t � 0,

so that t* � �
2
3

�. This result yields the next trial solution

x(1) � (0, 0) � �
2
3

�[(0, 3) � (0, 0)]

� (0, 2),

which completes the first iteration.

Iteration 2: To sketch the calculations that lead to the results in the second row of
Table 12.6, note that x(1) � (0, 2) gives

c1 � 5 � 2(0) � 5,
c2 � 8 � 4(2) � 0.

For the objective function g(x) � 5x1, graphically solving the problem over the feasible
region in Fig. 13.17a gives x(2)

LP � (2, 0). Therefore, the expression for the line segment
between x(1) and x(2)

LP (see Fig. 13.17a) is

x � (0, 2) � t[(2, 0) � (0, 2)]
� (2t, 2 � 2t),

dh(t)
�

dt
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■ TABLE 13.6 Application of the Frank-Wolfe algorithm to the example

k x(k�1) c1 c2 xLP
(k) x for h(t) h(t) t* x(k)

1 (0, 0) 5 8 (0, 3) (0, 3t) 24t � 18t2 �
2
3

� (0, 2)

2 (0, 2) 5 0 (2, 0) (2t, 2 � 2t) 8 � 10t � 12t2 �
1
5
2
� ��

5
6

�, �
7
6

��

x2

1 2 x1

1

2

3

0

x(0)

x(1)

x(2)

x(2)
LP

x(1)
LP

24 � 5x1 � 8x2

(a)

x2

1 2 x1

1

2

3

0

x(0)

x(1)

x(2)

x(3)

x(5)

x(4)

(b)

Optimal solution

■ FIGURE 13.17
Illustration of the Frank-Wolfe
algorithm.
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so that

h(t) � f(2t, 2 � 2t)
� 5(2t) � (2t)2 � 8(2 � 2t) � 2(2 � 2t)2

� 8 � 10t � 12t2.

Setting

� 10 � 24t � 0

yields t* � �
1
5
2
�. Hence,

x(2) � (0, 2) � �
1
5
2
�[(2, 0) � (0, 2)]

� ��
5
6

�, �
7
6

��,

which completes the second iteration.
Figure 13.17b shows the trial solutions that are obtained from iterations 3, 4, and 5 as

well. You can see how these trial solutions keep alternating between two trajectories that
appear to intersect at approximately the point x � (1, �

3
2

�). This point is, in fact, the optimal
solution, as can be verified by applying the KKT conditions from Sec. 13.6.

This example illustrates a common feature of the Frank-Wolfe algorithm, namely, that
the trial solutions alternate between two (or more) trajectories. When they alternate in this
way, we can extrapolate the trajectories to their approximate point of intersection to esti-
mate an optimal solution. This estimate tends to be better than using the last trial solu-
tion generated. The reason is that the trial solutions tend to converge rather slowly toward
an optimal solution, so the last trial solution may still be quite far from optimal.

If you would like to see another example of the application of the Frank-Wolfe
algorithm, one is included in the Solved Examples section of the book’s website. Your
OR Tutor provides an additional example as well. IOR Tutorial also includes an interactive
procedure for this algorithm.

Some Other Algorithms

We should emphasize that the Frank-Wolfe algorithm is just one example of sequential-
approximation algorithms. Many of these algorithms use quadratic instead of linear ap-
proximations at each iteration because quadratic approximations provide a considerably
closer fit to the original problem and thus enable the sequence of solutions to converge con-
siderably more rapidly toward an optimal solution than was the case in Fig. 13.17b. For this
reason, even though sequential linear approximation methods such as the Frank-Wolfe al-
gorithm are relatively straightforward to use, sequential quadratic approximation methods
now are generally preferred in actual applications. Popular among these are the quasi-
Newton (or variable metric) methods. As already mentioned in Sec. 13.5, these methods use
a fast approximation of Newton’s method and then further adapt this method to take the con-
straints of the problem into account. To speed up the algorithm, quasi-Newton methods com-
pute a quadratic approximation to the curvature of a nonlinear function without explicitly
calculating second (partial) derivatives. (For linearly constrained optimization problems, this
nonlinear function is just the objective function; whereas with nonlinear constraints, it is
the Lagrangian function described in Appendix 3.) Some quasi-Newton algorithms do not
even explicitly form and solve an approximating quadratic programming problem at each
iteration, but instead incorporate some of the basic ingredients of gradient algorithms. (See
Selected Reference 5 for further details about sequential-approximation algorithms.)

dh(t)
�

dt
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We turn now from sequential-approximation algorithms to sequential unconstrained
algorithms. As mentioned at the beginning of the section, algorithms of the latter type
solve the original constrained optimization problem by instead solving a sequence of un-
constrained optimization problems.

A particularly prominent sequential unconstrained algorithm that has been widely used
since its development in the 1960s is the sequential unconstrained minimization technique
(or SUMT for short).22 There actually are two main versions of SUMT, one of which is an
exterior-point algorithm that deals with infeasible solutions while using a penalty function to
force convergence to the feasible region. We shall describe the other version, which is an
interior-point algorithm that deals directly with feasible solutions while using a barrier func-
tion to force staying inside the feasible region. Although SUMT was originally presented as
a minimization technique, we shall convert it to a maximization technique in order to be con-
sistent with the rest of the chapter. Therefore, we continue to assume that the problem is in
the form given at the beginning of the chapter and that all the functions are differentiable.

Sequential Unconstrained Minimization Technique (SUMT)

As the name implies, SUMT replaces the original problem by a sequence of unconstrained
optimization problems whose solutions converge to a solution (local maximum) of the
original problem. This approach is very attractive because unconstrained optimization
problems are much easier to solve (see Sec. 13.5) than those with constraints. Each of the
unconstrained problems in this sequence involves choosing a (successively smaller) strictly
positive value of a scalar r and then solving for x so as to

Maximize P(x; r) � f(x) � rB(x).

Here B(x) is a barrier function that has the following properties (for x that are feasible
for the original problem):

1. B(x) is small when x is far from the boundary of the feasible region.
2. B(x) is large when x is close to the boundary of the feasible region.
3. B(x) � � as the distance from the (nearest) boundary of the feasible region � 0.

Thus, by starting the search procedure with a feasible initial trial solution and then at-
tempting to increase P(x; r), B(x) provides a barrier that prevents the search from ever
crossing (or even reaching) the boundary of the feasible region for the original problem.

The most common choice of B(x) is

B(x) � �
m

i�1
� �

n

j�1
.

For feasible values of x, note that the denominator of each term is proportional to the dis-
tance of x from the constraint boundary for the corresponding functional or nonnegativity
constraint. Consequently, each term is a boundary repulsion term that has all the preced-
ing three properties with respect to this particular constraint boundary. Another attractive
feature of this B(x) is that when all the assumptions of convex programming are satisfied,
P(x; r) is a concave function.

Because B(x) keeps the search away from the boundary of the feasible region, you
probably are asking the very legitimate question: What happens if the desired solution lies
there? This concern is the reason that SUMT involves solving a sequence of these un-
constrained optimization problems for successively smaller values of r approaching zero
(where the final trial solution from each one becomes the initial trial solution for the next).
For example, each new r might be obtained from the preceding one by multiplying by a

1
�
xj

1
��
bi � gi(x)
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22See Selected Reference 4.

hil23453_ch13_547-616.qxd  1/22/70  7:24 AM  Page 595 Final PDF to printer



596 CHAPTER 13 NONLINEAR PROGRAMMING

constant � (0  �  1), where a typical value is � � 0.01. As r approaches 0, P(x; r) 
approaches f(x), so the corresponding local maximum of P(x; r) converges to a local max-
imum of the original problem. Therefore, it is necessary to solve only enough unconstrained
optimization problems to permit extrapolating their solutions to this limiting solution.

How many are enough to permit this extrapolation? When the original problem sat-
isfies the assumptions of convex programming, useful information is available to guide
us in this decision. In particular, if x� is a global maximizer of P(x; r), then

f(x�) � f(x*) � f(x�) � rB(x�),

where x* is the (unknown) optimal solution for the original problem. Thus, rB(x�) is the max-
imum error (in the value of the objective function) that can result by using x� to approximate
x*, and extrapolating beyond x� to increase f(x) further decreases this error. If an error toler-
ance is established in advance, then you can stop as soon as rB(x�) is less than this quantity.

Summary of SUMT

Initialization: Identify a feasible initial trial solution x(0) that is not on the boundary of
the feasible region. Set k � 1 and choose appropriate strictly positive val-
ues for the initial r and for �  1 (say, r � 1 and � � 0.01).23

Iteration k: Starting from x(k�1), apply a multivariable unconstrained optimization pro-
cedure (e.g., the gradient search procedure) such as described in Sec. 13.5 to
find a local maximum x(k) of

P(x; r) � f(x) � r 
�
m

i�1
� �

n

j�1
�.

Stopping rule: If the change from x(k�1) to x(k) is negligible, stop and use x(k) (or an ex-
trapolation of x(0), x(1), . . . , x(k�1), x(k)) as your estimate of a local max-
imum of the original problem. Otherwise, reset k � k � 1 and r � �r and
perform another iteration.

Finally, we should note that SUMT also can be extended to accommodate equality
constraints gi(x) � bi. One standard way is as follows. For each equality constraint,

replaces

in the expression for P(x; r) given under “Summary of SUMT,” and then the same pro-
cedure is used. The numerator �[bi � gi(x)]2 imposes a large penalty for deviating sub-
stantially from satisfying the equality constraint, and then the denominator tremendously
increases this penalty as r is decreased to a tiny amount, thereby forcing the sequence of
trial solutions to converge toward a point that satisfies the constraint.

SUMT has been widely used because of its simplicity and versatility. However, numer-
ical analysts have found that it is relatively prone to numerical instability, so considerable
caution is advised. For further information on this issue as well as similar analyses for alter-
native algorithms, see Selected Reference 6.

Example. To illustrate SUMT, consider the following two-variable problem:

Maximize f(x) � x1x2,

subject to

x2
1 � x2 � 3

�r
��
bi � gi(x)

�[bi � gi(x)]2

��
�r�

1
�
xj

1
��
bi � gi(x)

23A reasonable criterion for choosing the initial r is one that makes rB(x) about the same order of magnitude
as f(x) for feasible solutions x that are not particularly close to the boundary.
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and

x1 � 0, x2 � 0.

Even though g1(x) � x2
1 � x2 is convex (because each term is convex), this problem is a

nonconvex programming problem because f(x) � x1x2 is not concave (see Appendix 2).
However, the problem is close enough to being a convex programming problem that SUMT
necessarily will still converge to an optimal solution in this case. (We will discuss non-
convex programming further, including the role of SUMT in dealing with such problems,
in the next section.)

For the initialization, (x1, x2) � (1, 1) is one obvious feasible solution that is not on
the boundary of the feasible region, so we can set x(0) � (1, 1). Reasonable choices for r
and � are r � 1 and � � 0.01.

For each iteration,

P(x; r) � x1x2 � r � � � �.

With r � 1, applying the gradient search procedure starting from (1, 1) to maximize this
expression eventually leads to x(1) � (0.90, 1.36). Resetting r � 0.01 and restarting the
gradient search procedure from (0.90, 1.36) then lead to x(2) � (0.983, 1.933). One more
iteration with r � 0.01(0.01) � 0.0001 leads from x(2) to x(3) � (0.998, 1.994). This sequence
of points, summarized in Table 13.7, quite clearly is converging to (1, 2). Applying the
KKT conditions to this solution verifies that it does indeed satisfy the necessary condi-
tion for optimality. Graphical analysis demonstrates that (x1, x2) � (1, 2) is, in fact, a
global maximum (see Prob. 13.9-13b).

For this problem, there are no local maxima other than (x1, x2) � (1, 2), so reapply-
ing SUMT from various feasible initial trial solutions always leads to this same solution.24

The Solved Examples section of the book’s website provides another example that
illustrates the application of SUMT to a convex programming problem in minimization
form. You also can go to your OR Tutor to see an additional example. An automatic pro-
cedure for executing SUMT is included in IOR Tutorial.

Some Software Options for Convex Programming

As mentioned in Sec. 13.7, the standard Excel Solver includes a solving method called
GRG Nonlinear for solving convex programming problems. The ASPE Solver also in-
cludes this solving method. The Excel file for this chapter shows the application of this

1
�
x2

1
�
x1

1
��
3 � x2

1 � x2
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24The technical reason is that f(x) is a (strictly) quasiconcave function that shares the property of concave func-
tions that a local maximum always is a global maximum. For further information, see M. Avriel, W. E. Diewert,
S. Schaible, and I. Zang, Generalized Concavity, Plenum, New York, 1985, and republished by SIAM Book-
mart,Philadelphia, PA, 2010.

■ TABLE 13.7 Illustration of SUMT

k r x1
(k) x2

(k)

0 1 1
1 1 0.90 1.36
2 10�2 0.987 1.925
3 10�4 0.998 1.993

⏐ ⏐
↓ ↓
1. 2
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■ 13.10 NONCONVEX PROGRAMMING (WITH SPREADSHEETS)
The assumptions of convex programming (the function f(x) to be maximized is concave
and all the gi(x) constraint functions are convex) are very convenient ones, because they
ensure that any local maximum also is a global maximum. (If the objective is to minimize
f(x) instead, then convex programming assumes that f(x) is convex, and so on, which en-
sures that a local minimum also is a global minimum.) Unfortunately, the nonlinear pro-
gramming problems that arise in practice frequently fail to satisfy these assumptions. What
kind of approach can be used to deal with such nonconvex programming problems?

The Challenge of Solving Nonconvex Programming Problems

There is no single answer to the above question because there are so many different types
of nonconvex programming problems. Some are much more difficult to solve than others.
For example, a maximization problem where the objective function is nearly convex gener-
ally is much more difficult than one where the objective function is nearly concave. (The
SUMT example in Sec. 13.9 illustrated a case where the objective function was so close to
being concave that the problem could be treated as if it were a convex programming prob-
lem.) Similarly, having a feasible region that is not a convex set (because some of the gi(x)
functions are not convex) generally is a major complication. Dealing with functions that are
not differentiable, or perhaps not even continuous, also tends to be a major complication.

The goal of much ongoing research is to develop efficient global optimization pro-
cedures for finding a globally optimal solution for various types of nonconvex program-
ming problems, and some progress has been made. As one example, LINDO Systems
(which produces LINDO, LINGO, and What’sBest!) has incorporated a global optimizer
into its advanced solver that is shared by some of its software products. In particular, LINGO
and What’sBest! have a multistart option to automatically generate a number of starting
points for their nonlinear programming solver in order to quickly find a good solution. If
the global option is checked, they next employ the global optimizer. The global optimizer
converts a nonconvex programming problem (including even those whose formulation in-
cludes logic functions such as IF, AND, OR, and NOT) into several subproblems that are
convex programming relaxations of portions of the original problem. The branch-and-bound
technique then is used to exhaustively search over the subproblems. Once the procedure
runs to completion, the solution found is guaranteed to be a globally optimal solution. (The
other possible conclusion is that the problem has no feasible solutions.) The student ver-
sion of this global optimizer is included in the version of LINGO that is provided on the
book’s website. However, it is limited to relatively small problems (a maximum of five

solving method to the first example in this section. 
LINGO can solve convex programming problems, but the student version of LINDO

cannot except for the special case of quadratic programming (which includes the first ex-
ample in this section). Details for this example are given in the LINGO/LINDO file for this
chapter in your OR Courseware.

The professional version of MPL supports a large number of solvers, including some
that can handle convex programming. One of these, called CONOPT, is included with the
student version of MPL that is on the book’s website. CONOPT (a product of AKRI Con-
sulting) is designed specifically to solve convex programming problems very efficiently. It
can be used by adding the following statement at the beginning of the MPL model file.

OPTIONS

ModelType � Nonlinear

The convex programming examples that are formulated in this chapter’s MPL/Solvers file
have been solved with this solver.
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nonlinear variables out of 500 variables total). The professional version of the global op-
timizer has successfully solved some much larger problems.

Similarly, MPL now supports a global optimizer called LGO. The student version of
LGO is available to you as one of the MPL solvers provided on the book’s website. LGO
also can be used to solve convex programming problems.

A variety of approaches to global optimization (such as the one incorporated into
LINGO described above) are being tried. We will not attempt to survey this advanced
topic in any depth. We instead will begin with a simple case and then introduce a more
general approach at the end of the section. We will illustrate our methodology with spread-
sheets and Excel software, but other software packages also can be used.

Using Solver to Find Local Optima

We now will focus on straightforward approaches to relatively simple types of non-
convex programming problems. In particular, we will consider (maximization) problems
where the objective function is nearly concave either over the entire feasible region or
within major portions of the feasible region. We also will ignore the added complexity
of having nonconvex constraint functions gi(x) by simply using linear constraints. We
will begin by illustrating what can be accomplished by simply applying some algorithm
for convex programming to such problems. Although any such algorithm (such as those
described in Sec. 13.9) could be selected, we will use the convex programming algo-
rithm that is employed by Solver for nonlinear programming problems.

For example, consider the following one-variable nonconvex programming problem:

Maximize Z � 0.5x5 � 6x4 � 24.5x3 � 39x2 � 20x,

subject to

x � 5
x � 0,

Deutsche Post DHL is the largest logistics service
provider worldwide. It employs over half a million peo-
ple in more than 220 countries while delivering three mil-
lion items and over 70 million letters each day with over
150,000 vehicles. The dramatic story of how DHL
quickly achieved this lofty status is one that combines
enlightened managerial leadership, an innovative 
marketing campaign, and the application of nonlinear
programming to optimize the use of marketing resources.

Starting as just a German postal service, the com-
pany’s senior management developed a visionary plan to
begin the 21st century by transforming the company into
a truly global logistics business. The first step was to
acquire and integrate a number of similar companies that
already had a strong presence in various other parts of the
world. Because customers who operate on a global scale
expect to deal with just one provider, the next step was to
develop an aggressive marketing program based on
extensive marketing research to rebrand DHL as a supe-
rior truly global company that could fully meet the needs
of these customers. These marketing activities were 

pursued vigorously in more than 20 of the largest coun-
tries on four continents.

This kind of marketing program is very expensive,
so it is important to use the limited marketing resources
as effectively as possible. Therefore, OR analysts devel-
oped a brand choice model with an objective function
that measures this effectiveness. Nonconvex program-
ming then was implemented in a spreadsheet environ-
ment to maximize this objective function without
exceeding the total marketing budget.

This innovative use of marketing theory and nonlin-
ear programming led to a substantial increase in the
global brand value of DHL that enabled it to catapult into
a market-leading position. This increase from 2003 to
2008 was estimated to be $1.32 billion (a 32 percent
increase). The corresponding return on investment was
38 percent.

Source: M. Fischer, W. Giehl, and T. Freundt, “Managing
Global Brand Investments at DHL,” Interfaces, 41(1): 35–50,
Jan.–Feb. 2011. (A link to this article is provided on our web-
site, www.mhhe.com/hillier.)

An Application Vignette
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where Z represents the profit in dollars. Figure 13.18 shows a plot of the profit over the fea-
sible region that demonstrates how highly nonconvex this function is. However, if this graph
were not available, it might not be immediately clear that this is not a convex program-
ming problem since a little analysis is required to verify that the objective function is not
concave over the feasible region. Therefore, suppose that Solver’s GRG Nonlinear solving
method, which is designed for solving convex programming problems, is applied to this
example. (ASPE also has this same solving method and so would be applied in the same
way.) Figure 13.19 demonstrates what a difficult time Solver has in attempting to cope
with this problem. The model is straightforward to formulate in a spreadsheet, with x (C5)
as the changing cell and Profit (C8) as the objective cell. (Note that GRG Nonlinear is
chosen as the solving method.) When x � 0 is entered as the initial value in the chang-
ing cell, the left spreadsheet in Fig. 13.19 shows that Solver then indicates that x � 0.371
is the optimal solution with Profit � $3.19. However, if x � 3 is entered as the initial value
instead, as in the middle spreadsheet in Fig. 13.19, Solver obtains x � 3.126 as the optimal
solution with Profit � $6.13. Trying still another initial value of x � 4.7 in the right spread-
sheet, Solver now indicates an optimal solution of x � 5 with Profit � $0. What is going 
on here?

Figure 13.18 helps to explain Solver’s difficulties with this problem. Starting at x � 0,
the profit graph does indeed climb to a peak at x � 0.371, as reported in the left spreadsheet
of Fig. 13.19. Starting at x � 3 instead, the graph climbs to a peak at x � 3.126, which is the
solution found in the middle spreadsheet. Using the right spreadsheet’s starting solution of
x � 4.7, the graph climbs until it reaches the boundary imposed by the x � 5 constraint, so
x � 5 is the peak in that direction. These three peaks are the local maxima (or local optima)
because each one is a maximum of the graph within a local neighborhood of that point. How-
ever, only the largest of these local maxima is the global maximum, that is, the highest point
on the entire graph. Thus, the middle spreadsheet in Fig. 13.19 did succeed in finding the
globally optimal solution at x � 3.126 with Profit � $6.13.

Solver uses the generalized reduced gradient method, which adapts the gradient search
method described in Sec. 13.5 to solve convex programming problems. Therefore, this algo-
rithm can be thought of as a hill-climbing procedure. It starts at the initial solution entered into
the changing cells and then begins climbing that hill until it reaches the peak (or is blocked

■ FIGURE 13.19
An example of a nonconvex programming problem (depicted in Fig. 13.18) where Solver obtains three different
solutions when it starts with three different initial solutions.

Solver Parameters
Set Objective Cell: Profit
To: Max
By Changing Variable Cells:
 x
Subject to the Constraints:
 x <= Maximum
Solver Options:
 Make Variables Nonnegative
 Solving Method: GRG Nonlinear

2 4

Profit ($)
6

4

2

−2

−4

−6

x

■ FIGURE 13.18
The profit graph for a
nonconvex programming
example.
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from climbing further by reaching the boundary imposed by the constraints). The procedure
terminates when it reaches this peak (or boundary) and reports this solution. It has no way of
detecting whether there is a taller hill somewhere else on the profit graph.

The same thing would happen with any other hill-climbing procedure, such as SUMT
(described in Sec. 13.9), that stops when it finds a local maximum. Thus, if SUMT were
to be applied to this example with each of the three initial trial solutions used in Fig. 13.19,
it would find the same three local maxima found by Solver.

A More Systematic Approach to Finding Local Optima

A common approach to “easy” nonconvex programming problems is to apply some algorith-
mic hill-climbing procedure that will stop when it finds a local maximum and then to restart
it a number of times from a variety of initial trial solutions (either chosen randomly or as a
systematic cross-section) in order to find as many distinct local maxima as possible. The best
of these local maxima is then chosen for implementation. Normally, the hill-climbing proce-
dure is one that has been designed to find a global maximum when all the assumptions of con-
vex programming hold, but it also can operate to find a local maximum when they do not.

Solver includes an automated way of trying multiple starting points. In Excel’s Solver,
clicking on the Options button in Solver and then choosing the GRG Nonlinear tab brings
up the Options dialog box shown in Fig. 13.20. Selecting the Use Multistart option causes
Solver to randomly select 100 different starting points. (The number of starting points can
be varied by changing the Population Size option.) In ASPE’s Solver, these options are
available on the Engine tab in the Model pane. When Multistart is enabled, Solver then
provides the best solution found after solving with each of the different starting points.
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■ FIGURE 13.20
The GRG Nonlinear Options dialog box provides several parameters for solving nonlinear
models. The Multistart option causes Solver to try many random starting points. (The
number of starting points can be adjusted by changing the Population Size.)
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Unfortunately, there generally is no guarantee of finding a globally optimal solution, no
matter how many different starting points are tried. Also, if the profit graphs are not smooth
(e.g., if they have discontinuities or kinks), then Solver may not even be able to find local
optima when using GRG Nonlinear as the solving method. Fortunately, both ASPE and re-
cent versions of Excel's Solver provide another search procedure, called Evolutionary Solver,
to attempt to solve these somewhat more difficult nonconvex programming problems.

Evolutionary Solver

Both ASPE’s Solver and the standard Excel Solver (for Excel 2010 and newer) include a
search procedure called Evolutionary Solver in the set of tools available to search for an 
optimal solution for a model. The philosophy of Evolutionary Solver is based on genetics,
evolution, and the survival of the fittest. Hence, this type of algorithm is sometimes called a
genetic algorithm. We will devote Sec. 14.4 to describing how genetic algorithms operate.

Evolutionary Solver has three crucial advantages over the standard Solver (or any other
convex programming algorithm) for solving nonconvex programming problems. First, the
complexity of the objective function does not impact Evolutionary Solver. As long as the
function can be evaluated for a given trial solution, it does not matter if the function has
kinks or discontinuities or many local optima. Second, the complexity of the given con-
straints (including even nonconvex constraints) also doesn’t substantially impact Evolu-
tionary Solver (although the number of constraints does). Third, because it evaluates whole
populations of trial solutions that aren’t necessarily in the same neighborhood as the cur-
rent best trial solution, Evolutionary Solver keeps from getting trapped at a local optimum.
In fact, Evolutionary Solver is guaranteed to eventually find a globally optimal solution for
any nonlinear programming problem (including nonconvex programming problems), if it
is run forever (which is impractical of course). Therefore, Evolutionary Solver is well suited
for dealing with many relatively small nonconvex programming problems.

On the other hand, it must be pointed out that Evolutionary Solver is not a panacea.
First, it can take much longer than the standard Solver to find a final solution. Second,
Evolutionary Solver does not perform well on models that have many constraints. Third,
Evolutionary Solver is a random process, so running it again on the same model usually
will yield a different final solution. Finally, the best solution found typically is not quite
optimal (although it may be very close). Evolutionary Solver does not continuously move
toward better solutions. Rather it is more like an intelligent search engine, trying out dif-
ferent random solutions. Thus, while it is quite likely to end up with a solution that is
very close to optimal, it almost never returns the exact globally optimal solution on most
types of nonlinear programming problems. Consequently, if often can be beneficial to run
Solver with the GRG Nonlinear option after the Evolutionary Solver, starting with the fi-
nal solution obtained by the Evolutionary Solver, to see if this solution can be improved
by searching around its neighborhood.
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■ 13.11 CONCLUSIONS

Practical optimization problems frequently involve nonlinear behavior that must be taken
into account. It is sometimes possible to reformulate these nonlinearities to fit into a lin-
ear programming format, as can be done for separable programming problems. However,
it is frequently necessary to use a nonlinear programming formulation.

In contrast to the case of the simplex method for linear programming, there is no ef-
ficient all-purpose algorithm that can be used to solve all nonlinear programming prob-
lems. In fact, some of these problems cannot be solved in a very satisfactory manner by
any method. However, considerable progress has been made for some important classes
of problems, including quadratic programming, convex programming, and certain special
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types of nonconvex programming. A variety of algorithms that frequently perform well
are available for these cases. Some of these algorithms incorporate highly efficient pro-
cedures for unconstrained optimization for a portion of each iteration, and some use a
succession of linear or quadratic approximations to the original problem.

There has been a strong emphasis in recent years on developing high-quality, re-
liable software packages for general use in applying the best of these algorithms. For
example, several powerful software packages have been developed in the Systems Op-
timization Laboratory at Stanford University This chapter also has pointed out the im-
pressive capabilities of Solver, ASPE, MPL/Solvers, and LINGO/LINDO. These pack-
ages are widely used for solving many of the types of problems discussed in this chapter
(as well as linear and integer programming problems). The steady improvements be-
ing made in both algorithmic techniques and software now are bringing some rather
large problems into the range of computational feasibility.

Research in nonlinear programming remains very active.
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■ PROBLEMS
The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The corresponding demonstration example just listed in
Learning Aids may be helpful.

I: We suggest that you use the corresponding interactive rou-
tine just listed (the printout records your work).

C: Use the computer with any of the software options avail-
able to you (or as instructed by your instructor) to solve
the problem.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

13.1-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 13.1.
Briefly describe how nonlinear programming was applied in this
study. Then list the various financial and nonfinancial benefits that
resulted from this study.

13.1-2. Consider the product mix problem described in Prob. 3.1-11.
Suppose that this manufacturing firm actually encounters price elas-
ticity in selling the three products, so that the profits would be dif-
ferent from those stated in Chap. 3. In particular, suppose that
the unit costs for producing products 1, 2, and 3 are $25, $10,
and $15, respectively, and that the prices required (in dollars) in
order to be able to sell x1, x2, and x3 units are (35 � 100x1

��
1
3

�

),
(15 � 40x2

��
1
4

�

), and (20 � 50x3
��

1
2

�

), respectively.
Formulate a nonlinear programming model for the problem

of determining how many units of each product the firm should
produce to maximize profit.

13.1-3. For the P & T Co. problem described in Sec. 9.1, suppose
that there is a 10 percent discount in the shipping cost for all 
truckloads beyond the first 40 for each combination of cannery and
warehouse. Draw figures like Figs. 13.3 and 13.4, showing the mar-
ginal cost and total cost for shipments of truckloads of peas from
cannery 1 to warehouse 1. Then describe the overall nonlinear pro-
gramming model for this problem.

13.1-4. A stockbroker, Richard Smith, has just received a call
from his most important client, Ann Hardy. Ann has $50,000 to
invest and wants to use it to purchase two stocks. Stock 1 is a
solid blue-chip security with a respectable growth potential and
little risk involved. Stock 2 is much more speculative. It is being
touted in two investment newsletters as having outstanding
growth potential but also is considered very risky. Ann would 
like a large return on her investment but also has considerable
aversion to risk. Therefore, she has instructed Richard to analyze
what mix of investments in the two stocks would be appropriate
for her.

Ann is used to talking in units of thousands of dollars and
1,000-share blocks of stocks. Using these units, the price per
block is 20 for stock 1 and 30 for stock 2. After doing some re-
search, Richard has made the following estimates. The expected
return per block is 5 for stock 1 and 10 for stock 2. The vari-
ance of the return on each block is 4 for stock 1 and 100 for
stock 2. The covariance of the return on one block each of the
two stocks is 5.

Without yet assigning a specific numerical value to the min-
imum acceptable expected return, formulate a nonlinear program-
ming model for this problem. (To be continued in Prob. 13.7-6.)

13.2-1. Reconsider Prob. 13.1-2. Verify that this problem is a con-
vex programming problem.

13.2-2. Reconsider Prob. 13.1-4. Show that the model formulated
is a convex programming problem by using the test in Appendix 2
to show that the objective function being minimized is convex.

13.2-3. Consider the variation of the Wyndor Glass Co. example rep-
resented in Fig. 13.5, where the second and third functional con-
straints of the original problem (see Sec. 3.1) have been replaced 
by 9x1

2 � 5x2
2 � 216. Demonstrate that (x1, x2) � (2, 6) with 

Z � 36 is indeed optimal by showing that the objective function line
36 � 3x1 � 5x2 is tangent to this constraint boundary at (2, 6). (Hint:
Express x2 in terms of x1 on this boundary, and then differentiate this
expression with respect to x1 to find the slope of the boundary.)
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13.2-4. Consider the variation of the Wyndor Glass Co. problem
represented in Fig. 13.6, where the original objective function (see
Sec. 3.1) has been replaced by Z � 126x1 � 9x1

2 � 182x2 � 13x2
2.

Demonstrate that (x1, x2) � (�
8
3

�, 5) with Z � 857 is indeed optimal
by showing that the ellipse 857 � 126x1 � 9x1

2 � 182x2 � 13x2
2 is

tangent to the constraint boundary 3x1 � 2x2 � 18 at (�
8
3

�, 5). 
(Hint: Solve for x2 in terms of x1 for the ellipse, and then differ-
entiate this expression with respect to x1 to find the slope of the
ellipse.)

13.2-5. Consider the following function:

f(x) � 48x � 60x2 � x3.

(a) Use the first and second derivatives to find the local maxima
and local minima of f(x).

(b) Use the first and second derivatives to show that f(x) has nei-
ther a global maximum nor a global minimum because it is
unbounded in both directions.

13.2-6. For each of the following functions, show whether it is
convex, concave, or neither.
(a) f(x) � 10x � x2

(b) f(x) � x4 � 6x2 � 12x
(c) f(x) � 2x3 � 3x2

(d) f(x) � x4 � x2

(e) f(x) � x3 � x4

13.2-7.* For each of the following functions, use the test given in
Appendix 2 to determine whether it is convex, concave, or neither.
(a) f(x) � x1x2 � x2

1 � x2
2

(b) f(x) � 3x1 � 2x2
1 � 4x2 � x2

2 � 2x1x2

(c) f(x) � x2
1 � 3x1x2 � 2x2

2

(d) f(x) � 20x1 � 10x2

(e) f(x) � x1x2

13.2-8. Consider the following function:

f(x) � 5x1 � 2x2
2 � x2

3 � 3x3x4 � 4x2
4 � 2x4

5 � x2
5

� 3x5x6 � 6x2
6 � 3x6x7 � x2

7.

Show that f(x) is convex by expressing it as a sum of functions of
one or two variables and then showing (see Appendix 2) that all
these functions are convex.

13.2-9. Consider the following nonlinear programming problem:

Maximize f(x) � x1 � x2,

subject to

x2
1 � x2

2 � 1

and

x1 � 0, x2 � 0.

(a) Verify that this is a convex programming problem.
(b) Solve this problem graphically.

13.2-10. Consider the following nonlinear programming problem:

Minimize Z � x4
1 � 2x2

2,

subject to

x2
1 � x2

2 � 2.
(No nonnegativity constraints.)

(a) Use geometric analysis to determine whether the feasible re-
gion is a convex set.

(b) Now use algebra and calculus to determine whether the feasi-
ble region is a convex set.

13.3-1. Reconsider Prob. 13.1-3. Show that this problem is a non-
convex programming problem.

13.3-2. Consider the following constrained optimization problem:

Maximize f(x) � �6x � 3x2 � 2x3,

subject to

x � 0.

Use just the first and second derivatives of f(x) to derive an opti-
mal solution.

13.3-3. Consider the following nonlinear programming problem:

Minimize Z � x1
4 � 2x1

2 � 2x1x2 � 4x2
2,

subject to

2x1 � x2 � 10
x1 � 2x2 � 10

and

x1 � 0, x2 � 0.

(a) Of the special types of nonlinear programming problems de-
scribed in Sec. 13.3, to which type or types can this particular
problem be fitted? Justify your answer.

(b) Now suppose that the problem is changed slightly by replacing
the nonnegativity constraints by x1 � 1 and x2 � 1. Convert this
new problem to an equivalent problem that has just two functional
constraints, two variables, and two nonnegativity constraints.

13.3-4. Consider the following geometric programming problem:

Minimize f(x) � 2x1
�2x2

�1 � x2
�2,

subject to

4x1x2 � x1
2x2

2 � 12

and

x1 � 0, x2 � 0.

(a) Transform this problem to an equivalent convex programming
problem.

(b) Use the test given in Appendix 2 to verify that the model for-
mulated in part (a) is indeed a convex programming problem.

13.3-5. Consider the following linear fractional programming
problem:

Maximize f(x) � ,
10x1 � 20x2 � 10
��
3x1 � 4x2 � 20
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subject to

x1 � 3x2 � 50
3x1 � 2x2 � 80

and

x1 � 0, x2 � 0.

(a) Transform this problem to an equivalent linear programming
problem.

C (b) Use the computer to solve the model formulated in part (a).
What is the resulting optimal solution for the original
problem?

13.3-6. Consider the expressions in matrix notation given in Sec.
13.7 for the general form of the KKT conditions for the quadratic
programming problem. Show that the problem of finding a feasi-
ble solution for these conditions is a linear complementarity prob-
lem, as introduced in Sec. 13.3, by identifying w, z, q, and M in
terms of the vectors and matrices in Sec. 13.7.

13.4-1.* Consider the following problem:

Maximize f(x) � x3 � 2x � 2x2 � 0.25x4.

I (a) Apply the bisection method to (approximately) solve this
problem. Use an error tolerance � � 0.04 and initial bounds
x
�

� 0, x� � 2.4.
(b) Apply Newton’s method, with � � 0.001 and x1 � 1.2, to this

problem.

I 13.4-2. Use the bisection method with an error tolerance � � 0.04
and with the following initial bounds to interactively solve (ap-
proximately) each of the following problems.
(a) Maximize f(x) � 6x � x2, with x

�
� 0, x� � 4.8.

(b) Minimize f(x) � 6x � 7x2 � 4x3 � x4, with x
�

� �4,
x� � 1.

13.4-3. Consider the following problem:

Maximize f(x) � 48x5 � 42x3 � 3.5x � 16x6

� 61x4 � 16.5x2.

I (a) Apply the bisection method to (approximately) solve this
problem. Use an error tolerance � � 0.08 and initial bounds
x
�

� �1, x� � 4.
(b) Apply Newton’s method, with � � 0.001 and x1 � 1, to this

problem.

13.4-4. Consider the following problem:

Maximize f(x) � x3 � 30x � x6 � 2x4 � 3x2.

I (a) Apply the bisection method to (approximately) solve this
problem. Use an error tolerance � � 0.07 and find appropri-
ate initial bounds by inspection.

(b) Apply Newton’s method, with � � 0.001 and x1 � 1, to this
problem.

13.4-5. Consider the following convex programming problem:

Minimize Z � x4 � x2 � 4x,

subject to

x � 2 and x � 0.

(a) Use one simple calculation just to check whether the opti-
mal solution lies in the interval 0 � x � 1 or the interval 
1 � x � 2. (Do not actually solve for the optimal solution
in order to determine in which interval it must lie.) Explain
your logic.

I (b) Use the bisection method with initial bounds x
�

� 0, x� � 2
and with an error tolerance � � 0.02 to interactively solve
(approximately) this problem.

(c) Apply Newton’s method, with � � 0.0001 and x1 � 1, to this
problem.

13.4-6. Consider the problem of maximizing a differentiable func-
tion f(x) of a single unconstrained variable x. Let x

�0 and x�0, respec-
tively, be a valid lower bound and upper bound on the same global
maximum (if one exists). Prove the following general properties of
the bisection method (as presented in Sec. 13.4) for attempting to
solve such a problem.
(a) Given x

�0, x�0, and � � 0, the sequence of trial solutions selected
by the midpoint rule must converge to a limiting solution.
[Hint: First show that limn��(x�n � x

�n) � 0, where x�n and x
�n

are the upper and lower bounds identified at iteration n.]
(b) If f(x) is concave [so that df(x)/dx is a monotone decreasing

function of x], then the limiting solution in part (a) must be a
global maximum.

(c) If f (x) is not concave everywhere, but would be concave if its
domain were restricted to the interval between x

�0 and x�0, then
the limiting solution in part (a) must be a global maximum.

(d) If f(x) is not concave even over the interval between x
�0 and x�0,

then the limiting solution in part (a) need not be a global maxi-
mum. (Prove this by graphically constructing a counterexample.)

(e) If df(x)/dx  0 for all x, then no x
�0 exists. If df(x)/dx 
 0 for

all x, then no x�0 exists. In either case, f(x) does not possess a
global maximum.

(f) If f(x) is concave and lim
x���

df(x)/dx  0, then no x
�0 exists. If f(x)

is concave and lim
x��

df(x)/dx 
 0, then no x�0 exists. In either case,
f(x) does not possess a global maximum.

I 13.4-7. Consider the following linearly constrained convex pro-
gramming problem:

Maximize f(x) � 32x1 � 50x2 � 10x2
2 � x2

3 � x1
4 � x2

4,

subject to

3x1 � x2 � 11
2x1 � 5x2 � 16

and

x1 � 0, x2 � 0.

Ignore the constraints and solve the resulting two one-variable un-
constrained optimization problems. Use calculus to solve the prob-
lem involving x1 and use the bisection method with � � 0.001 and
initial bounds 0 and 4 to solve the problem involving x2. Show that
the resulting solution for (x1, x2) satisfies all of the constraints, so
it is actually optimal for the original problem.

606 CHAPTER 13 NONLINEAR PROGRAMMING
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13.5-1. Consider the following unconstrained optimization problem:

Maximize f(x) � 2x1x2 � x2 � x1
2 � 2x2

2.

D,I (a) Starting from the initial trial solution (x1, x2) � (1, 1), in-
teractively apply the gradient search procedure with � � 0.25
to obtain an approximate solution.

(b) Solve the system of linear equations obtained by setting 
�f(x) � 0 to obtain the exact solution.

(c) Referring to Fig. 13.14 as a sample for a similar problem,
draw the path of trial solutions you obtained in part (a). Then
show the apparent continuation of this path with your best
guess for the next three trial solutions [based on the pattern
in part (a) and in Fig. 13.14]. Also show the exact solution
from part (b) toward which this sequence of trial solutions is
converging.

C (d) Apply the automatic routine for the gradient search proce-
dure (with � � 0.01) in your IOR Tutorial to this problem.

D,I,C 13.5-2. Starting from the initial trial solution (x1, x2) � (1, 1),
interactively apply two iterations of the gradient search procedure
to begin solving the following problem, and then apply the auto-
matic routine for this procedure (with � � 0.01).

Maximize f(x) � 4x1x2 � 2x1
2 � 3x2

2.

Then solve �f(x) � 0 directly to obtain the exact solution.

D,I,C 13.5-3.* Starting from the initial trial solution (x1, x2) � (0, 0),
interactively apply the gradient search procedure with � � 0.3 to
obtain an approximate solution for the following problem, and then
apply the automatic routine for this procedure (with � � 0.01).

Maximize f(x) � 8x1 � x1
2 � 12x2 � 2x2

2 � 2x1x2.

Then solve �f(x) � 0 directly to obtain the exact solution.

D,I,C 13.5-4. Starting from the initial trial solution (x1, x2) � (0, 0),
interactively apply two iterations of the gradient search procedure
to begin solving the following problem, and then apply the auto-
matic routine for this procedure (with � � 0.01).

Maximize f(x) � 6x1 � 2x1x2 � 2x2 � 2x1
2 � x2

2.

Then solve �f(x) � 0 directly to obtain the exact solution.

13.5-5. Starting from the initial trial solution (x1, x2) � (0, 0), ap-
ply one iteration of the gradient search procedure to the following
problem by hand:

Maximize f(x) � 4x1 � 2x2 � x1
2 � x1

4 � 2x1x2 � x2
2.

To complete this iteration, approximately solve for t* by manu-
ally applying two iterations of the bisection method with initial
bounds t

�
� 0, t� � 1.

13.5-6. Consider the following unconstrained optimization problem:

Maximize f(x) � 3x1x2 � 3x2x3 � x1
2 � 6x2

2 � x3
2.

(a) Describe how solving this problem can be reduced to solving
a two-variable unconstrained optimization problem.

D,I (b) Starting from the initial trial solution (x1, x2, x3) � (1, 1, 1),
interactively apply the gradient search procedure with 

� � 0.05 to solve (approximately) the two-variable problem
identified in part (a).

C (c) Repeat part (b) with the automatic routine for this procedure
(with � � 0.005).

D,I,C 13.5-7.* Starting from the initial trial solution (x1, x2) � (0, 0),
interactively apply the gradient search procedure with � � 1 to
solve (approximately) the following problem, and then apply the
automatic routine for this procedure (with � � 0.01).

Maximize f(x) � x1x2 � 3x2 � x1
2 � x2

2.

13.6-1. Reconsider the one-variable convex programming model
given in Prob. 13.4-5. Use the KKT conditions to derive an opti-
mal solution for this model.

13.6-2. Reconsider Prob. 13.2-9. Use the KKT conditions to check
whether (x1, x2) � (1/�2�, 1/�2�) is optimal.

13.6-3.* Reconsider the model given in Prob. 13.3-3. What are the
KKT conditions for this model? Use these conditions to determine
whether (x1, x2) � (0, 10) can be optimal.

13.6-4. Consider the following convex programming problem:

Maximize f(x) � 24x1 � x1
2 � 10x2 � x2

2,

subject to

x1 � 10,
x2 � 15,

and

x1 � 0, x2 � 0.

(a) Use the KKT conditions for this problem to derive an optimal
solution.

(b) Decompose this problem into two separate constrained opti-
mization problems involving just x1 and just x2, respectively. For
each of these two problems, plot the objective function over the
feasible region in order to demonstrate that the value of x1 or x2

derived in part (a) is indeed optimal. Then prove that this value
is optimal by using just the first and second derivatives of the ob-
jective function and the constraints for the respective problems.

13.6-5. Consider the following linearly constrained optimization
problem:

Maximize f(x) � ln(x1 � 1) � x2
2,

subject to

x1 � 2x2 � 3

and

x1 � 0, x2 � 0,

where ln denotes the natural logarithm,
(a) Verify that this problem is a convex programming problem.
(b) Use the KKT conditions to derive an optimal solution.
(c) Use intuitive reasoning to demonstrate that the solution ob-

tained in part (b) is indeed optimal.
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13.6-6.* Consider the nonlinear programming problem given in
Prob. 11.3-11. Determine whether (x1, x2) � (1, 2) can be optimal
by applying the KKT conditions.

13.6-7. Consider the following nonlinear programming problem:

Maximize f(x) � �
x2

x
�
1

1
�,

subject to

x1 � x2 � 2

and

x1 � 0, x2 � 0.

(a) Use the KKT conditions to demonstrate that (x1, x2) � (4, 2)
is not optimal.

(b) Derive a solution that does satisfy the KKT conditions.
(c) Show that this problem is not a convex programming problem.
(d) Despite the conclusion in part (c), use intuitive reasoning to

show that the solution obtained in part (b) is, in fact, optimal.
[The theoretical reason is that f(x) is pseudo-concave.]

(e) Use the fact that this problem is a linear fractional program-
ming problem to transform it into an equivalent linear pro-
gramming problem. Solve the latter problem and thereby
identify the optimal solution for the original problem. (Hint:
Use the equality constraint in the linear programming prob-
lem to substitute one of the variables out of the model, and
then solve the model graphically.)

13.6-8.* Use the KKT conditions to derive an optimal solution for
each of the following problems.

(a) Maximize f(x) � x1 � 2x2 � x2
3,

subject to

x1 � x2 � 1

and

x1 � 0, x2 � 0.

(b) Maximize f(x) � 20x1 � 10x2,

subject to

x1
2 � x2

2 � 1
x1 � 2x2 � 2

and

x1 � 0, x2 � 0.

13.6-9. What are the KKT conditions for nonlinear programming
problems of the following form?

Minimize f(x),

subject to

gi(x) � bi, for i � 1, 2, . . . , m

and

x � 0.

(Hint: Convert this form to our standard form assumed in this chap-
ter by using the techniques presented in Sec. 4.6 and then apply-
ing the KKT conditions as given in Sec. 13.6.)

13.6-10. Consider the following nonlinear programming problem:

Minimize Z � 2x1
2 � x2

2,

subject to

x1 � x2 � 10

and

x1 � 0, x2 � 0.

(a) Of the special types of nonlinear programming problems de-
scribed in Sec. 13.3, to which type or types can this particular
problem be fitted? Justify your answer. (Hint: First convert this
problem to an equivalent nonlinear programming problem that
fits the form given in the second paragraph of the chapter, with
m � 2 and n � 2.)

(b) Obtain the KKT conditions for this problem.
(c) Use the KKT conditions to derive an optimal solution.

13.6-11. Consider the following linearly constrained programming
problem:

Minimize f(x) � x1
3 � 4x2

2 � 16x3,

subject to

x1 � x2 � x3 � 5

and

x1 � 1, x2 � 1, x3 � 1.

(a) Convert this problem to an equivalent nonlinear programming
problem that fits the form given at the beginning of the chap-
ter (second paragraph), with m � 2 and n � 3.

(b) Use the form obtained in part (a) to construct the KKT con-
ditions for this problem.

(c) Use the KKT conditions to check whether (x1, x2, x3) � (2, 1, 2)
is optimal.

13.6-12. Consider the following linearly constrained convex pro-
gramming problem:

Minimize Z � x1
2 � 6x1 � x2

3 � 3x2,

subject to

x1 � x2 � 1

and

x1 � 0, x2 � 0.

(a) Obtain the KKT conditions for this problem.
(b) Use the KKT conditions to check whether (x1, x2) � (�

1
2

�, �
1
2

�) is
an optimal solution.

(c) Use the KKT conditions to derive an optimal solution.

13.6-13. Consider the following linearly constrained convex pro-
gramming problem:

Maximize f(x) � 8x1 � x1
2 � 2x2 � x3,
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subject to

x1 � 3x2 � 2x3 � 12

and

x1 � 0, x2 � 0, x3 � 0.

(a) Use the KKT conditions to demonstrate that (x1, x2, x3) �
(2, 2, 2) is not an optimal solution.

(b) Use the KKT conditions to derive an optimal solution. (Hint:
Do some preliminary intuitive analysis to determine the most
promising case regarding which variables are nonzero and
which are zero.)

13.6-14. Use the KKT conditions to determine whether (x1, x2,
x3) � (1, 1, 1) can be optimal for the following problem:

Minimize Z � 2x1 � x2
3 � x3

2,

subject to

x1
2 � 2x2

2 � x3
2 � 4

and

x1 � 0, x2 � 0, x3 � 0.

13.6-15. Reconsider the model given in Prob. 13.2-10. What are
the KKT conditions for this problem? Use these conditions to de-
termine whether (x1, x2) � (1, 1) can be optimal.

13.6-16. Reconsider the linearly constrained convex programming
model given in Prob. 13.4-7. Use the KKT conditions to determine
whether (x1, x2) � (2, 2) can be optimal.

13.7-1. Consider the quadratic programming example presented in
Sec. 13.7.
(a) Use the test given in Appendix 2 to show that the objective

function is strictly concave.
(b) Verify that the objective function is strictly concave by demon-

strating that Q is a positive definite matrix; that is, xTQx 
 0
for all x � 0. (Hint: Reduce xTQx to a sum of squares.)

(c) Show that x1 � 12, x2 � 9, and u1 � 3 satisfy the KKT con-
ditions when they are written in the form given in Sec. 13.6.

13.7-2.* Consider the following quadratic programming problem:

Maximize f(x) � 8x1 � x1
2 � 4x2 � x2

2,

subject to

x1 � x2 � 2

and

x1 � 0, x2 � 0.

(a) Use the KKT conditions to derive an optimal solution.
(b) Now suppose that this problem is to be solved by the modified

simplex method. Formulate the linear programming problem
that is to be addressed explicitly, and then identify the addi-
tional complementarity constraint that is enforced automatically
by the algorithm.

I (c) Apply the modified simplex method to the problem as for-
mulated in part (b).

C (d) Use the computer to solve the quadratic programming prob-
lem directly.

13.7-3. Consider the following quadratic programming problem:

Maximize f(x) � 20x1 � 20x1
2 � 50x2 � 50x2

2 � 18x1x2,

subject to

x1 � x2 � 6
x1 � 4x2 � 18

and

x1 � 0, x2 � 0.

Suppose that this problem is to be solved by the modified simplex
method.
(a) Formulate the linear programming problem that is to be 

addressed explicitly, and then identify the additional com-
plementarity constraint that is enforced automatically by the
algorithm.

I (b) Apply the modified simplex method to the problem as for-
mulated in part (a).

13.7-4. Consider the following quadratic programming problem:

Maximize f(x) � 2x1 � 3x2 � x1
2 � x2

2,

subject to

x1 � x2 � 2

and

x1 � 0, x2 � 0.

(a) Use the KKT conditions to derive an optimal solution directly.
(b) Now suppose that this problem is to be solved by the 

modified simplex method. Formulate the linear programming
problem that is to be addressed explicitly, and then identify the
additional complementarity constraint that is enforced auto-
matically by the algorithm.

(c) Without applying the modified simplex method, show that the
solution derived in part (a) is indeed optimal (Z � 0) for the
equivalent problem formulated in part (b).

I (d) Apply the modified simplex method to the problem as for-
mulated in part (b).

C (e) Use the computer to solve the quadratic programming problem
directly.

13.7-5. Reconsider the first quadratic programming variation of
the Wyndor Glass Co. problem presented in Sec. 13.2 (see 
Fig. 13.6). Analyze this problem by following the instructions of
parts (a), (b), and (c) of Prob. 13.7-4.

13.7-6. Reconsider Prob. 13.1-4 and its quadratic programming
model.
(a) Display this model [including the values of R(x) and V(x)] on

an Excel spreadsheet.
(b) Use Solver (or ASPE) and its GRG Nonlinear solving method

to solve this model for four cases: minimum acceptable ex-
pected return � 13, 14, 15, 16.

(c) Repeat part b while using ASPE and its Quadratic solving method.
(d) For typical probability distributions (with mean � and variance

�2) of the total return from the entire portfolio, the probability
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is fairly high (about 0.8 or 0.9) that the return will exceed � �
�, and the probability is extremely high (often close to 0.999)
that the return will exceed � � 3�. Calculate � � � and � �
3� for the four portfolios obtained in part (b). Which portfolio
will give the highest � among those that also give � � � � 0?

13.7-7. The management of the Albert Hanson Company is trying
to determine the best product mix for two new products. Because
these products would share the same production facilities, the to-
tal number of units produced of the two products combined can-
not exceed two per hour. Because of uncertainty about how well
these products will sell, the profit from producing each product
provides decreasing marginal returns as the production rate is in-
creased. In particular, with a production rate of R1 units per hour,
it is estimated that Product 1 would provide a profit per hour of
$200R1 � $100 R2

1. If the production rate of product 2 is R2 units
per hour, its estimated profit per hour would be $300R2 � $100R2

2.
(a) Formulate a quadratic programming model in algebraic form

for determining the product mix that maximizes the total profit
per hour.

(b) Formulate this model on a spreadsheet.
(c) Use Solver (or ASPE) and its GRG Nonlinear solving method

to solve this model.
(d) Use ASPE and its Quadratic solving method to solve this model.

13.8-1. The MFG Corporation is planning to produce and market
three different products. Let x1, x2, and x3 denote the number of
units of the three respective products to be produced. The prelim-
inary estimates of their potential profitability are as follows.

For the first 15 units produced of Product 1, the unit profit
would be approximately $360. The unit profit would be only $30
for any additional units of Product 1. For the first 20 units pro-
duced of Product 2, the unit profit is estimated at $240. The unit
profit would be $120 for each of the next 20 units and $90 for any
additional units. For the first 20 units of Product 3, the unit profit
would be $450. The unit profit would be $300 for each of the next
10 units and $180 for any additional units.

Certain limitations on the use of needed resources impose the
following constraints on the production of the three products:

x1 � x2 � x3 � 60
3x1 � 2x2 � 200
x1 � 2 � 2x3 � 70.

Management wants to know what values of x1, x2 and x3 should
be chosen to maximize the total profit.
(a) Plot the profit graph for each of the three products.
(b) Use separable programming to formulate a linear programming

model for this problem.
C (c) Solve the model. What is the resulting recommendation to

management about the values of x1, x2, and x3 to use?
(d) Now suppose that there is an additional constraint that the profit

from products 1 and 2 must total at least $12,000. Use the tech-
nique presented in the “Extensions” subsection of Sec. 13.8 to
add this constraint to the model formulated in part (b).

C (e) Repeat part (c) for the model formulated in part (d ).

12.8-2.* The Dorwyn Company has two new products that will
compete with the two new products for the Wyndor Glass Co.
(described in Sec. 3.1). Using units of hundreds of dollars for the
objective function, the linear programming model shown below
has been formulated to determine the most profitable product mix.

Maximize Z � 4x1 � 6x2,

subject to

x1 � 3x2 � 8
5x1 � 2x2 � 14

and

x1 � 0, x2 � 0.

However, because of the strong competition from Wyndor, Dorwyn
management now realizes that the company will need to make a strong
marketing effort to generate substantial sales of these products. In
particular, it is estimated that achieving a production and sales rate
of x1 units of Product 1 per week will require weekly marketing costs
of x1

3 hundred dollars. The corresponding marketing costs for Prod-
uct 2 are estimated to be 2x2

2 hundred dollars. Thus, the objective
function in the model should be Z � 4x1 � 6x2 � x1

3 � 2x2
2.

Dorwyn management now would like to use the revised model
to determine the most profitable product mix.
(a) Verify that (x1, x2) � (2/�3�, �

3
2

�) is an optimal solution by ap-
plying the KKT conditions.

(b) Construct tables to show the profit data for each product when
the production rate is 0, 1, 2, 3.

(c) Draw a figure like Fig. 13.15b that plots the weekly profit points
for each product when the production rate is 0, 1, 2, 3. Connect
the pairs of consecutive points with (dashed) line segments.

(d) Use separable programming based on this figure to formulate
an approximate linear programming model for this problem.

C (e) Solve the model. What does this say to Dorwyn manage-
ment about which product mix to use?

13.8-3. The B. J. Jensen Company specializes in the production of
power saws and power drills for home use. Sales are relatively stable
throughout the year except for a jump upward during the Christmas
season. Since the production work requires considerable work and ex-
perience, the company maintains a stable employment level and then
uses overtime to increase production in November. The workers also
welcome this opportunity to earn extra money for the holidays.

B. J. Jensen, Jr., the current president of the company, is
overseeing the production plans being made for the upcoming
November. He has obtained the following data:
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Maximum Monthly Profit per 
Production* Unit Produced

Regular Regular
Time Overtime Time Overtime

Power saws 3,000 2,000 $150 $50
Power drills 5,000 3,000 $100 $75

*Assuming adequate supplies of materials from the company’s
vendors.
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However, Mr. Jensen now has learned that, in addition to the
limited number of labor hours available, two other factors will limit
the production levels that can be achieved this November. One is
that the company’s vendor for power supply units will only be able
to provide 10,000 of these units for November (2,000 more than
his usual monthly shipment). Each power saw and each power drill
requires one of these units. Second, the vendor who supplies a key
part for the gear assemblies will only be able to provide 15,000 for
November (4,000 more than for other months). Each power saw
requires two of these parts and each power drill requires one.

Mr. Jensen now wants to determine how many power saws
and how many power drills to produce in November to maximize
the company’s total profit.
(a) Draw the profit graph for each of these two products.
(b) Use separable programming to formulate a linear programming

model for this problem.
C (c) Solve the model. What does this say about how many power

saws and how many power drills to produce in November?

13.8-4. Reconsider the linearly constrained convex programming
model given in Prob. 13.4-7.
(a) Use the separable programming technique presented in Sec. 13.8

to formulate an approximate linear programming model for this
problem. Use x1 � 0, 1, 2, 3 and x2 � 0, 1, 2, 3 as the break-
points of the piecewise linear functions.

C (b) Use the simplex method to solve the model formulated in
part (a). Then reexpress this solution in terms of the origi-
nal variables of the problem.

13.8-5. Suppose that the separable programming technique has
been applied to a certain problem (the “original problem”) to con-
vert it to the following equivalent linear programming problem:

Maximize Z � 5x11 � 4x12 � 2x13 � 4x21 � x22,

subject to

3x11 � 3x12 � 3x13 � 2x21 � 2x22 � 25
2x11 � 2x12 � 2x13 � x21 � x22 � 10

and

0 � x11 � 2 0 � x21 � 3
0 � x12 � 3 0 � x22 � 1.
0 � x13

What was the mathematical model for the original problem?
(You may define the objective function either algebraically or
graphically, but express the constraints algebraically.)

13.8-6. For each of the following cases, prove that the key prop-
erty of separable programming given in Sec. 13.8 must hold. (Hint:
Assume that there exists an optimal solution that violates this prop-
erty, and then contradict this assumption by showing that there ex-
ists a better feasible solution.)
(a) The special case of separable programming where all the gi(x)

are linear functions.
(b) The general case of separable programming where all the func-

tions are nonlinear functions of the designated form. [Hint:
Think of the functional constraints as constraints on resources,
where gij(xj) represents the amount of resource i used by 

running activity j at level xj, and then use what the convexity
assumption implies about the slopes of the approximating
piece-wise linear function.]

13.8-7. The MFG Company produces a certain subassembly in
each of two separate plants. These subassemblies are then brought
to a third nearby plant where they are used in the production of a
certain product. The peak season of demand for this product is ap-
proaching, so to maintain the production rate within a desired
range, it is necessary to use temporarily some overtime in making
the subassemblies. The cost per subassembly on regular time (RT)
and on overtime (OT) is shown in the following table for both
plants, along with the maximum number of subassemblies that can
be produced on RT and on OT each day.

Let x1 and x2 denote the total number of subassemblies pro-
duced per day at plants 1 and 2, respectively. The objective is to
maximize Z � x1 � x2, subject to the constraint that the total daily
cost not exceed $60,000. Note that the mathematical programming
formulation of this problem (with x1 and x2 as decision variables)
has the same form as the main case of the separable programming
model described in Sec. 13.8, except that the separable functions
appear in a constraint function rather than the objective function.
However, the same approach can be used to reformulate the prob-
lem as a linear programming model where it is feasible to use OT
even when the RT capacity at that plant is not fully used.
(a) Formulate this linear programming model.
(b) Explain why the logic of separable programming also applies

here to guarantee that an optimal solution for the model for-
mulated in part (a) never uses OT unless the RT capacity at
that plant has been fully used.

13.8-8. Consider the following nonlinear programming problem:

Maximize Z � 5x1 � x2,

subject to

2x1
2 � x2 � 13

x1
2 � x2 � 9

and

x1 � 0, x2 � 0.

(a) Show that this problem is a convex programming problem.
(b) Use the separable programming technique discussed at the end

of Sec. 13.8 to formulate an approximate linear programming
model for this problem. Use the integers as the breakpoints of
the piecewise linear function.

C (c) Use the computer to solve the model formulated in part (b).
Then reexpress this solution in terms of the original vari-
ables of the problem.
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Unit Cost Capacity

RT OT RT OT

Plant 1 $15 $25 2,000 1,000
Plant 2 $16 $24 1,000 500
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13.8-9. Consider the following convex programming problem:

Maximize Z � 32x1 � x1
4 � 4x2 � x2

2,

subject to

x1
2 � x2

2 � 9

and

x1 � 0, x2 � 0.

(a) Apply the separable programming technique discussed at the
end of Sec. 13.8, with x1 � 0, 1, 2, 3 and x2 � 0, 1, 2, 3 
as the breakpoint of the piecewise linear functions, to formulate
an approximate linear programming model for this problem.

C (b) Use the computer to solve the model formulated in part (a).
Then reexpress this solution in terms of the original vari-
ables of the problem.

(c) Use the KKT conditions to determine whether the solution for
the original variables obtained in part (b) actually is optimal
for the original problem (not the approximate model).

13.8-10. Reconsider the integer nonlinear programming model
given in Prob. 11.3-9.
(a) Show that the objective function is not concave.
(b) Formulate an equivalent pure binary integer linear programming

model for this problem as follows. Apply the separable pro-
gramming technique with the feasible integers as the breakpoints
of the piecewise linear functions, so that the auxiliary variables
are binary variables. Then add some linear programming con-
straints on these binary variables to enforce the special restric-
tion of separable programming. (Note that the key property of
separable programming does not hold for this problem because
the objective function is not concave.)

C (c) Use the computer to solve this problem as formulated in part
(b). Then reexpress this solution in terms of the original vari-
ables of the problem.

c (d) Use the computer with the software option of your choice to
solve this problem.

D,I 13.9-1. Reconsider the linearly constrained convex program-
ming model given in Prob. 13.6-5. Starting from the initial trial
solution (x1, x2) � (0, 0), use one iteration of the Frank-Wolfe al-
gorithm to obtain exactly the same solution you found in part (b)
of Prob. 13.6-5, and then use a second iteration to verify that it is
an optimal solution (because it is replicated exactly).

D,I 13.9-2. Reconsider the linearly constrained convex program-
ming model given in Prob. 13.6-12. Starting from the initial trial
solution (x1, x2) � (0, 0), use one iteration of the Frank-Wolfe al-
gorithm to obtain exactly the same solution you found in part (c)
of Prob. 13.6-12, and then use a second iteration to verify that it
is an optimal solution (because it is replicated exactly). Explain
why exactly the same results would be obtained on these two it-
erations with any other trial solution.

D,I 13.9-3. Reconsider the linearly constrained convex program-
ming model given in Prob. 13.6-13. Starting from the initial trial
solution (x1, x2, x3) � (0, 0, 0), apply two iterations of the Frank-
Wolfe algorithm.

D,I 13.9-4. Consider the quadratic programming example presented
in Sec. 13.7. Starting from the initial trial solution (x1, x2) � (5, 5),
apply eight iterations of the Frank-Wolfe algorithm.

13.9-5. Reconsider the quadratic programming model given in
Prob. 13.7-4.
D,I (a) Starting from the initial trial solution (x1, x2) � (0, 0), use

the Frank-Wolfe algorithm (six iterations) to solve the
problem (approximately).

(b) Show graphically how the sequence of trial solutions obtained
in part (a) can be extrapolated to obtain a closer approxima-
tion of an optimal solution. What is your resulting estimate of
this solution?

D,I 13.9-6. Reconsider the linearly constrained convex pro-
gramming model given in Prob. 13.4-7. Starting from the initial
trial solution (x1, x2) � (0, 0), use the Frank-Wolfe algorithm
(four iterations) to solve this model (approximately).

D,I 13.9-7. Consider the following linearly constrained convex
programming problem:

Maximize f(x) � 3x1x2 � 40x1 � 30x2 � 4x1
2 � x1

4

� 3x2
2 � x2

4,

subject to

4x1 � 3x2 � 12
x1 � 2x2 � 4

and

x1 � 0, x2 � 0.

Starting from the initial trial solution (x1, x2) � (0, 0), apply two
iterations of the Frank-Wolfe algorithm.

D,I 13.9-8.* Consider the following linearly constrained convex
programming problem:

Maximize f(x) � 3x1 � 4x2 � x1
3 � x2

2,

subject to

x1 � x2 � 1

and

x1 � 0, x2 � 0.

(a) Starting from the initial trial solution (x1, x2) � (�
1
4

�, �
1
4

�), apply
three iterations of the Frank-Wolfe algorithm.

(b) Use the KKT conditions to check whether the solution obtained
in part (a) is, in fact, optimal.

C (c) Use the computer with the software option of your choice to
solve this problem.

13.9-9. Consider the following linearly constrained convex pro-
gramming problem:

Maximize f(x) � 4x1 � x1
4 � 2x2 � x2

2,

subject to

4x1 � 2x2 � 5

and

x1 � 0, x2 � 0.

612 CHAPTER 13 NONLINEAR PROGRAMMING
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(a) Starting from the initial trial solution (x1, x2) � (�
1
2

�, �
1
2

�), apply
four iterations of the Frank-Wolfe algorithm.

(b) Show graphically how the sequence of trial solutions obtained
in part (a) can be extrapolated to obtain a closer approxima-
tion of an optimal solution. What is your resulting estimate of
this solution?

(c) Use the KKT conditions to check whether the solution you ob-
tained in part (b) is, in fact, optimal. If not, use these condi-
tions to derive the exact optimal solution. 

C (d) Use the computer with the software option of your choice
to solve this problem.

13.9-10. Reconsider the linearly constrained convex programming
model given in Prob. 13.9-8.
(a) If SUMT were to be applied to this problem, what would be

the unconstrained function P(x; r) to be maximized at each
iteration?

(b) Setting r � 1 and using (�
1
4

�, �
1
4

�) as the initial trial solution, manually
apply one iteration of the gradient search procedure (except stop
before solving for t*) to begin maximizing the function P(x; r)
you obtained in part (a).

D,C (c) Beginning with the same initial trial solution as in part (b),
use the automatic procedure in your IOR Tutorial to ap-
ply SUMT to this problem with r � 1, 10�2, 10�4.

(d) Compare the final solution obtained in part (c) to the true op-
timal solution for Prob. 13.9-8 given in the back of the book.
What is the percentage error in x1, in x2, and in f(x)?

13.9-11. Reconsider the linearly constrained convex programming
model given in Prob. 13.9-9. Follow the instructions of parts (a), (b),
and (c) of Prob. 13.9-10 for this model, except use (x1, x2) � (�

1
2

�, �
1
2

�)
as the initial trial solution and use r � 1, 10�2, 10�4, 10�6.

13.9-12. Reconsider the model given in Prob. 13.3-3.
(a) If SUMT were to be applied directly to this problem, what

would be the unconstrained function P(x; r) to be minimized
at each iteration?

(b) Setting r � 100 and using (x1, x2) � (5, 5) as the initial trial
solution, manually apply one iteration of the gradient search
procedure (except stop before solving for t*) to begin mini-
mizing the function P(x; r) you obtained in part (a).

D,C (c) Beginning with the same initial trial solution as in part (b),
use the automatic procedure in your IOR Tutorial to ap-
ply SUMT to this problem with r � 100, 1, 10�2, 10�4.
(Hint: The computer routine assumes that the problem has
been converted to maximization form with the functional
constraints in � form.)

13.9-13. Consider the example for applying SUMT given in Sec. 13.9.
(a) Show that (x1, x2) � (1, 2) satisfies the KKT conditions.
(b) Display the feasible region graphically, and then plot the lo-

cus of points x1x2 � 2 to demonstrate that (x1, x2) � (1, 2) with
f(1, 2) � 2 is, in fact, a global maximum.

13.9-14.* Consider the following convex programming problem:

Maximize f(x) � �2x1 � (x2 � 3)2,

subject to

x1 � 3 and x2 � 3.

(a) If SUMT were applied to this problem, what would be 
the unconstrained function P(x; r) to be maximized at each
iteration?

(b) Derive the maximizing solution of P(x; r) analytically, and then
give this solution for r � 1, 10�2, 10�4, 10�6.

D,C (c) Beginning with the initial trial solution (x1, x2) � (4, 4),
use the automatic procedure in your IOR Tutorial to ap-
ply SUMT to this problem with r � 1, 10�2, 10�4, 10�6.

D,C 13.9-15. Consider the following convex programming problem:

Maximize f(x) � x1x2 � x1 � x1
2 � x2 � x2

2,

subject to

x2 � 0.

Beginning with the initial trial solution (x1, x2) � (1, 1), use the
automatic procedure in your IOR Tutorial to apply SUMT to this
problem with r � 1, 10�2, 10�4.

D,C 13.9-16. Reconsider the quadratic programming model given
in Prob. 13.7-4. Beginning with the initial trial solution (x1, x2) �
(�

1
2

�, �
1
2

�), use the automatic procedure in your IOR Tutorial to apply
SUMT to this model with r � 1, 10�2, 10�4, 10�6.

D,C 13.9-17. Reconsider the first quadratic programming variation
of the Wyndor Glass Co. problem presented in Sec. 13.2 (see 
Fig. 13.6). Beginning with the initial trial solution (x1, x2) � (2, 3),
use the automatic procedure in your IOR Tutorial to apply SUMT
to this problem with r � 102, 1, 10�2, 10�4.

13.9-18. Reconsider the convex programming model with an
equality constraint given in Prob. 13.6-11.
(a) If SUMT were to be applied to this model, what would be 

the unconstrained function P(x; r) to be minimized at each
iteration?

D,C (b) Starting from the initial trial solution (x1, x2, x3) � (�
3
2

�, �
3
2

�, 2),
use the automatic procedure in your IOR Tutorial to apply
SUMT to this model with r � 10�2, 10�4, 10�6, 10�8.

C (c) Use Solver to solve this problem.
C (d) Use Evolutionary Solver to solve this problem.
C (e) Use LINGO to solve this problem.

13.10-1. Consider the following nonconvex programming problem:

Maximize f(x) � 1,000x � 400x2 � 40x3 � x4,

subject to

x2 � x � 500

and

x � 0.

(a) Identify the feasible values for x. Obtain general expressions for
the first three derivatives of f(x). Use this information to help you
draw a rough sketch of f(x) over the feasible region for x. With-
out calculating their values, mark the points on your graph that
correspond to local maxima and minima.

I (b) Use the bisection method with � � 0.05 to find each of the
local maxima. Use your sketch from part (a) to identify ap-
propriate initial bounds for each of these searches. Which of
the local maxima is a global maximum?

PROBLEMS 613
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614 CHAPTER 13 NONLINEAR PROGRAMMING

(c) Starting with x � 3 and x � 15 as the initial trial solutions,
use Newton’s method with � � 0.001 to find each of the lo-
cal maxima.

D,C (d) Use the automatic procedure in your IOR Tutorial to ap-
ply SUMT to this problem with r � 103, 102, 10, 1 to find
each of the local maxima. Use x � 3 and x � 15 as the ini-
tial trial solutions for these searches. Which of the local
maxima is a global maximum?

C (e) Formulate this problem in a spreadsheet and then use the
GRG Nonlinear solving method with the Multistart option
to solve this problem.

C (f) Use Evolutionary Solver to solve this problem.
C (g) Use the global optimizer feature of LINGO to solve this

problem.
C (h) Use MPL and its global optimizer LGO to solve this problem.

13.10-2. Consider the following nonconvex programming problem:

Maximize f(x) � 3x1x2 � 2x1
2 � x2

2,

subject to

x1
2 � 2x2

2 � 4
2x1 � x2 � 3

x1x2
2 � x1

2x2 � 2

and

x1 � 0, x2 � 0.

(a) If SUMT were to be applied to this problem, what would 
be the unconstrained function P(x; r) to be maximized at each
iteration?

D,C (b) Starting from the initial trial solution (x1, x2) � (1, 1), use
the automatic procedure in your IOR Tutorial to apply
SUMT to this problem with r � 1, 10�2, 10�4.

C (c) Use Evolutionary Solver to solve this problem.
C (d) Use the global optimizer feature of LINGO to solve this

problem.
C (e) Use MPL and its global optimizer LGO to solve this problem.

13.10-3. Consider the following nonconvex programming problem:

Minimize f(x) � sin 3x1 � cos 3x2 � sin(x1 � x2),

subject to

x1
2 � 10x2 � �1

10x1 � x2
2 � 100

and

x1 � 0, x2 � 0.

(a) If SUMT were applied to this problem, what would be the un-
constrained function P(x; r) to be minimized at each iteration?

(b) Describe how SUMT should be applied to attempt to obtain a
global minimum. (Do not actually solve.)

C (c) Use the global optimizer feature of LINGO to solve this
problem.

C (d) Use MPL and its global optimizer LGO to solve this problem.

C 13.10-4. Consider the following nonconvex programming problem:

Maximize Profit � x5 � 13x4 � 59x3 � 107x2 � 61x,

subject to

0 � x � 5.

(a) Formulate this problem in a spreadsheet, and then use the GRG
Nonlinear solving method with the Multistart option to solve
this problem.

(b) Use Evolutionary Solver to solve this problem.

C 13.10-5. Consider the following nonconvex programming
problem:

Maximize Profit � 100x6 � 1,359x5 � 6,836x4

� 15,670x3 � 15,870x2 � 5,095x,

subject to

0 � x � 5.

(a) Formulate this problem in a spreadsheet, and then use the GRG
Nonlinear solving method with the Multistart option to solve
this problem. 

(b) Use Evolutionary Solver to solve this problem.

C 13.10-6. Because of population growth, the state of Washington
has been given an additional seat in the House of Representatives,
making a total of 10. The state legislature, which is currently con-
trolled by the Republicans, needs to develop a plan for redistricting
the state. There are 18 major cities in the state of Washington that
need to be assigned to one of the 10 congressional districts. The table
below gives the numbers of registered Democrats and registered Re-
publicans in each city. Each district must contain between 150,000
and 350,000 of these registered voters. Use Evolutionary Solver to
assign each city to one of the 10 congressional districts in order to
maximize the number of districts that have more registered Repub-
licans than registered Democrats. (Hint: Use the SUMIF function.)

13.10-7. Reconsider the Wyndor Glass Co. problem introduced in
Sec. 3.1.
C (a) Solve this problem using Solver.
C (b) Starting with an initial solution of producing 0 batches of

doors and 0 batches of windows, solve this problem using
Evolutionary Solver.

(c) Comment on the performance of the two approaches.

Democrats Republicans
City (Thousands) (Thousands)

1 152 62
2 81 59
3 75 83
4 34 52
5 62 87
6 38 87
7 48 69
8 74 49
9 98 62

10 66 72
11 83 75
12 86 82
13 72 83
14 28 53
15 112 98
16 45 82
17 93 68
18 72 98
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13.10-8. Read the referenced article that fully describes the OR
study summarized in the application vignette presented in Sec.
13.10. Briefly describe how nonlinear programming was applied
in this study. Then list the various financial and nonfinancial ben-
efits that resulted from this study.

13.11-1. Consider the following problem:

Maximize Z � 4x1 � x1
2 � 10x2 � x2

2,

subject to

x1
2 � 4x2

2 � 16

and

x1 � 0, x2 � 0.

(a) Is this a convex programming problem? Answer yes or no, and
then justify your answer.

(b) Can the modified simplex method be used to solve this prob-
lem? Answer yes or no, and then justify your answer (but do
not actually solve).

(c) Can the Frank-Wolfe algorithm be used to solve this problem?

Answer yes or no, and then justify your answer (but do not ac-
tually solve).

(d) What are the KKT conditions for this problem? Use these con-
ditions to determine whether (x1, x2) � (1, 1) can be optimal.

(e) Use the separable programming technique to formulate an
approximate linear programming model for this problem. Use
the feasible integers as the breakpoints for each piecewise
linear function.

C (f) Use the simplex method to solve the problem as formulated
in part (e).

(g) Give the function P(x; r) to be maximized at each iteration when
applying SUMT to this problem. (Do not actually solve.)

D,C (h) Use SUMT (the automatic procedure in your IOR Tutor-
ial) to solve the problem as formulated in part (g). Begin
with the initial trial solution (x1, x2) � (2, 1) and use r � 1,
10�2, 10�4, 10�6.

C (i) Formulate this problem in a spreadsheet, and then use. Solver
to solve this problem.

C (j) Use Evolutionary Solver to solve this problem.
C (k) Use LINGO to solve this problem.

CASES 615

■ CASES

Case 13.1 Savvy Stock Selection
Ever since the day she took her first economics class in high
school, Lydia wondered about the financial practices of her
parents. They worked very hard to earn enough money to
live a comfortable middle-class life, but they never made
their money work for them. They simply deposited their
hard-earned paychecks in savings accounts earning a nom-
inal amount of interest. (Fortunately, there always was
enough money when it came time to pay her college bills.)
She promised herself that when she became an adult, she
would not follow the same financially conservative practices
as her parents.

And Lydia kept this promise. Every morning while get-
ting ready for work, she watches the CNN financial reports.
She plays investment games on the World Wide Web, find-
ing portfolios that maximize her return while minimizing
her risk. She reads The Wall Street Journal and Financial
Times with a thirst she cannot quench.

Lydia also reads the investment advice columns of the
financial magazines, and she has noticed that on average,
the advice of the investment advisers turns out to be very
good. Therefore, she decides to follow the advice given in
the latest issue of one of the magazines. In his monthly col-
umn the editor Jonathan Taylor recommends three stocks that
he believes will rise far above market average. In addition,
the well-known mutual fund guru Donna Carter advocates
the purchase of three more stocks that she thinks will out-
perform the market over the next year.

BIGBELL (ticker symbol on the stock exchange: BB), one
of the nation’s largest telecommunications companies, trades at

a price-earnings ratio well below market average. Huge in-
vestments over the last eight months have depressed earnings
considerably. However, with their new cutting-edge technology,
the company is expected to significantly raise their profit mar-
gins. Taylor predicts that the stock will rise from its current
price of $60 per share to $72 per share within the next year.

LOTSOFPLACE (LOP) is one of the leading hard drive
manufacturers in the world. The industry recently underwent
major consolidation, as fierce price wars over the last few
years were followed by many competitors going bankrupt or
being bought by LOTSOFPLACE and its competitors. Due
to reduced competition in the hard drive market, revenues and
earnings are expected to rise considerably over the next year.
Taylor predicts a one-year increase of 42 percent in the stock
of LOTSOFPLACE from the current price of $127 per share.

INTERNETLIFE (ILI) has survived the many ups and
downs of Internet companies. With the next Internet frenzy
just around the corner, Taylor expects a doubling of this com-
pany’s stock price from $4 to $8 within a year.

HEALTHTOMORROW (HEAL) is a leading biotech-
nology company that is about to get approval for several new
drugs from the Food and Drug Administration, which will
help earnings to grow 20 percent over the next few years. In
particular a new drug to significantly reduce the risk of heart
attacks is supposed to reap huge profits. Also, due to several
new great-tasting medications for children, the company has
been able to build an excellent image in the media. This pub-
lic relations coup will surely have positive effects for the sale
of its over-the-counter medications. Carter is convinced that
the stock will rise from $50 to $75 per share within a year.
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QUICKY (QUI) is a fast-food chain which has been
vastly expanding its network of restaurants all over the United
States. Carter has followed this company closely since it went
public some 15 years ago when it had only a few dozen restau-
rants on the west coast of the United States. Since then the com-
pany has expanded, and it now has restaurants in every state.
Due to its emphasis on healthy foods, it is capturing a grow-
ing market share. Carter believes that the stock will continue
to perform well above market average for an increase of 
46 percent in one year from its current stock price of $150.

AUTOMOBILE ALLIANCE (AUA) is a leading car man-
ufacturer from the Detroit area that just recently introduced
two new models. These models show very strong initial sales,
and therefore the company’s stock is predicted to rise from
$20 to $26 over the next year.

On the World Wide Web Lydia found data about the risk
involved in the stocks of these companies. The historical
variances of return of the six stocks and their covariances
are shown below:

616 CHAPTER 13 NONLINEAR PROGRAMMING

CASE 13.2 International Investments
A financial analyst is holding some German bonds that of-
fer increasing interest rates if they are kept until their full
maturity in three more years. They also can be redeemed
at any time to obtain the original principal plus the ac-
crued interest. The German federal government has just
introduced a capital gains tax on interest income above a
certain level, so holding the bonds to maturity now is less
attractive. Therefore, the analyst needs to determine his
optimal investment strategy regarding how many bonds to
sell during each of the next three years under a few dif-
ferent scenarios.

Covariances LOP ILI HEAL QUI AUA

BB 0.005 0.03 �0.031 �0.027 0.01

LOP 0.085 �0.07 �0.05 0.02

ILI �0.11 �0.02 0.042

HEAL 0.05 �0.06

QUI �0.02

Company BB LOP ILI HEAL QUI AUA

Variance 0.032 0.1 0.333 0.125 0.065 0.08 

(a) At first, Lydia wants to ignore the risk of all the investments.
Given this strategy, what is her optimal investment portfolio;
that is, what fraction of her money should she invest in each of
the six different stocks? What is the total risk of her portfolio?

(b) Lydia decides that she doesn’t want to invest more than 40 per-
cent in any individual stock. While still ignoring risk, what is
her new optimal investment portfolio? What is the total risk of
her new portfolio?

(c) Now Lydia wants to take into account the risk of her investment
opportunities. For use in the following parts, formulate a quadratic
programming model that will minimize her risk (measured by the
variance of the return from her portfolio), while ensuring that

her expected return is at least as large as her choice of a mini-
mum acceptable value.

(d) Lydia wants to ensure that she receives an expected return of
at least 35 percent. She wants to reach this goal at minimum
risk. What investment portfolio allows her to do that?

(e) What is the minimum risk Lydia can achieve if she wants an
expected return of at least 25 percent? Of at least 40 percent?

(f) Do you see any problems or disadvantages with Lydia’s ap-
proach to her investment strategy?

(Note: A data file for this case is provided on the book’s website
for your convenience.)

CASE 13.3 Promoting a Breakfast
Cereal, Revisited
This case continues Case 3.4 involving an advertising cam-
paign for Super Grain Corporation’s new breakfast cereal. The
analysis requested for Case 3.4 leads to the application of lin-
ear programming. However, certain assumptions of linear pro-
gramming are quite questionable in this situation. In particular,
the assumption that the total profit from the introduction of
the breakfast cereal is proportional to the total number of ex-
posures from the advertising campaign clearly is only a rough
approximation. To refine the analysis, both a general nonlin-
ear programming model and a separable programming model
need to be formulated, applied, and compared.
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14C H A P T E R

Metaheuristics

Several of the preceding chapters have described algorithms that can be used to obtain
an optimal solution for various kinds of OR models, including certain types of linear

programming, integer programming, and nonlinear programming models. These algo-
rithms have proven to be invaluable for addressing a wide variety of practical problems.
However, this approach doesn’t always work. Some problems (and the corresponding OR
models) are so complicated that it may not be possible to solve for an optimal solution.
In such situations, it still is important to find a good feasible solution that is at least rea-
sonably close to being optimal. Heuristic methods commonly are used to search for such
a solution.

A heuristic method is a procedure that is likely to discover a very good feasible so-
lution, but not necessarily an optimal solution, for the specific problem being considered.
No guarantee can be given about the quality of the solution obtained, but a well-designed
heuristic method usually can provide a solution that is at least nearly optimal (or conclude
that no such solutions exist). The procedure also should be sufficiently efficient to deal
with very large problems. The procedure often is a full-fledged iterative algorithm, where
each iteration involves conducting a search for a new solution that might be better than
the best solution found previously. When the algorithm is terminated after a reasonable
time, the solution it provides is the best one that was found during any iteration.

Heuristic methods often are based on relatively simple common-sense ideas for how
to search for a good solution. These ideas need to be carefully tailored to fit the spe-
cific problem of interest. Thus, heuristic methods tend to be ad hoc in nature. That is,
each method usually is designed to fit a specific problem type rather than a variety of
applications.

For many years, this meant that an OR team would need to start from scratch to de-
velop a heuristic method to fit the problem at hand, whenever an algorithm for finding an
optimal solution was not available. This all has changed in relatively recent years with the
development of powerful metaheuristics. A metaheuristic is a general solution method
that provides both a general structure and strategy guidelines for developing a specific
heuristic method to fit a particular kind of problem. Metaheuristics have become one of
the most important techniques in the toolkit of OR practitioners.

This chapter provides an elementary introduction to metaheuristics. After describing
the general nature of metaheuristics in the first section, the following three sections will
introduce and illustrate three commonly used metaheuristics.
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To illustrate the nature of metaheuristics, let us begin with an example of a small but mod-
estly difficult nonlinear programming problem:

An Example: A Nonlinear Programming Problem 
with Multiple Local Optima

Consider the following problem:

Maximize f(x) � 12x5 � 975x4 � 28,000x3 � 345,000x2 � 1,800,000x,

subject to

0 � x � 31.

Figure 14.1 graphs the objective function f(x) over the feasible values of the single vari-
able x. This plot reveals that the problem has three local optima, one at x � 5, another at
x � 20, and the third at x � 31, where the global optimum is at x � 20.

The objective function f(x) is sufficiently complicated that it would be difficult to de-
termine where the global optimum lies without the benefit of viewing the plot in Fig. 14.1.
Calculus could be used, but this would require solving a polynomial equation of the fourth
degree (after setting the first derivative equal to zero) to determine where the critical points
lie. It would even be difficult to ascertain that f(x) has multiple local optima rather than
just a global optimum.

This problem is an example of a nonconvex programming problem, a special type of
nonlinear programming problem that typically has multiple local optima. Section 13.10

618 CHAPTER 14 METAHEURISTICS
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■ FIGURE 14.1
A plot of the value of the
objective function over the
feasible range, 0 � x � 31,
for the nonlinear
programming example. The
local optima are at x � 5,
x � 20, and x � 31, but only
x � 20 is a global optimum.
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14.1 THE NATURE OF METAHEURISTICS 619

discusses nonconvex programming and even introduces a software package (Evolutionary
Solver) that uses the kind of metaheuristic described in Sec. 14.4.

For nonlinear programming problems that appear to be somewhat difficult, like this
one, a simple heuristic method is to conduct a local improvement procedure. Such a
procedure starts with an initial trial solution and then, at each iteration, searches in the
neighborhood of the current trial solution to find a better trial solution. This process con-
tinues until no improved solution can be found in the neighborhood of the current trial
solution. Thus, this kind of procedure can be viewed as a hill-climbing procedure that
keeps climbing higher on the plot of the objective function (assuming the objective is max-
imization) until it essentially reaches the top of the hill. A well-designed local improve-
ment procedure usually will be successful in converging to a local optimum (the top of a
hill), but it then will stop even if this local optimum is not a global optimum (the top of
the tallest hill).

For example, the gradient search procedure described in Sec. 13.5 is a local im-
provement procedure. If it were to start with, say, x � 0 as the initial trial solution in
Fig. 14.1, it would climb up the hill by trying successively larger values of x until it es-
sentially reaches the top of the hill at x � 5, at which point it would stop. Figure 14.2
shows a typical sequence of values of f(x) that would be obtained by such a local im-
provement procedure when starting from far down the hill.

Since the nonlinear programming example depicted in Fig. 14.1 involves only a sin-
gle variable, the bisection method described in Sec. 13.4 also could be applied to this par-
ticular problem. This procedure is another example of a local improvement procedure,
since each iteration starts from the current trial solution to search in its neighborhood
(defined by a current lower bound and upper bound on the value of the variable) for a
better solution. For example, if the search were to begin with a lower bound of x � 0 and
an upper bound of x � 6 in Fig. 14.1, the sequence of trial solutions obtained by the bi-
section method would be x � 3, x � 4.5, x � 5.25, x � 4.875, and so forth as it converges
to x � 5. The corresponding values of the objective function for these four trial solutions
are 2.975 million, 3.286 million, 3.300 million, and 3.302 million, respectively. Thus, the
second iteration provides a relatively large improvement over the first one (311,000), the
third iteration gives a considerably smaller improvement (14,000), and the fourth itera-
tion yields only a very small improvement (2000). As depicted in Fig. 14.2, this pattern
is rather typical of local improvement procedures (although with some variation in the
rate of convergence to the local maximum).

Iteration

f (x)

1 2 3 4

A large
improvement

A smaller
improvement A very small

improvement

■ FIGURE 14.2
A typical sequence of
objective function values for
the solutions obtained by a
local improvement procedure
as it converges to a local
optimum when it is applied
to a maximization problem.
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Just as with the gradient search procedure, this search with the bisection method
would get trapped at the local optimum at x � 5, so it never would find the global
optimum at x � 20. Like other local improvement procedures, both the gradient search
procedure and the bisection method are designed only to keep improving on the cur-
rent trial solutions within the local neighborhood of those solutions. Once they climb
to the top of a hill, they must stop because they cannot climb any higher within the
local neighborhood of the trial solution at the top of the hill. This illustrates the draw-
back of any local improvement procedure.

The drawback of a local improvement procedure: When a well-designed local
improvement procedure is applied to an optimization problem with multiple local
optima, the procedure will converge to one local optimum and then stop. Which
local optimum it finds depends on where the procedure begins the search. Thus,
the procedure will find the global optimum only if it happens to begin the search
in the neighborhood of this global optimum.

To try to overcome this drawback, one can restart the local improvement procedure a
number of times from randomly selected initial trial solutions. Restarting from a new part
of the feasible region often will lead to a new local optimum. Repeating this a number of
times increases the chance that the best of the local optima obtained actually will be the
global optimum. (As described in Sec. 13.10, this is what is done with either Solver 
or ASPE when using the GRG Nonlinear solving method and then selecting the Use 
Multistart option.) This approach works well on small problems, like the one-variable non-
linear programming example depicted in Fig. 14.1. However, it is much less successful on
large problems with many variables and a complicated feasible region. When the feasible
region has numerous “nooks and crannies” and restarting a local improvement procedure
from only one of them will lead to the global optimum, restarting from randomly selected
initial trial solutions becomes a haphazard way to reach the global optimum.

What is needed instead is a more structured approach that uses the information be-
ing gathered to guide the search toward the global optimum. This is the role that a meta-
heuristic plays.

The nature of metaheuristics: A metaheuristic is a general kind of solution
method that orchestrates the interaction between local improvement procedures
and higher level strategies to create a process that is capable of escaping from
local optima and performing a robust search of a feasible region.

Thus, one key feature of a metaheuristic is its ability to escape from a local optimum.
After reaching (or nearly reaching) a local optimum, different metaheuristics execute this
escape in different ways. However, a common characteristic is that the trial solutions that
immediately follow a local optimum are allowed to be inferior to this local optimum.
Consequently, when a metaheuristic is applied to a maximization problem (such as the
example depicted in Fig. 14.1), the objective function values for the sequence of trial so-
lutions obtained typically would follow a pattern similar to that shown in Fig. 14.3. As
with Fig. 14.2, the process begins by using a local improvement procedure to climb to the
top of the current hill (iteration 4). However, rather than stopping there, the metaheuris-
tic might guide the search a little way down the other side of this hill until it can start
climbing to the top of the tallest hill (iteration 8). To verify that this appears to be the
global optimum, a metaheuristic continues exploring further before stopping (iteration 12).

Figure 14.3 illustrates both an advantage and a disadvantage of a well-designed meta-
heuristic. The advantage is that it tends to move relatively quickly toward very good solu-
tions, so it provides a very efficient way of dealing with large complicated problems. The
disadvantage is that there is no guarantee that the best solution found will be an optimal
solution or even a nearly optimal solution. Therefore, whenever a problem can be solved
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14.1 THE NATURE OF METAHEURISTICS 621

by an algorithm that can guarantee optimality, that should be done instead. The role of
metaheuristics is to deal with problems that are too large and complicated to be solved by
exact algorithms. All the examples in this chapter are too small to require the use of
metaheuristics, since they are intended only to illustrate in a straightforward way how
metaheuristics can approach far more complicated problems.

Section 14.3 will illustrate the application of a particular metaheuristic to the non-
linear programming example depicted in Fig. 14.1. Section 14.4 then will apply another
metaheuristic to the integer programming version of this same example.

Although metaheuristics sometimes are applied to difficult nonlinear programming
and integer programming problems, a more common area of application is to combinato-
rial optimization problems. Our next example is of this type.

An Example: A Traveling Salesman Problem

Perhaps the most famous classic combinatorial optimization problem is called the travel-
ing salesman problem. It has been given this picturesque name because it can be described
in terms of a salesman (or saleswoman) who must travel to a number of cities during one
tour. Starting from his (or her) home city, the salesman wishes to determine which route
to follow to visit each city exactly once before returning to his home city so as to mini-
mize the total length of the tour.

Figure 14.4 shows an example of a small traveling salesman problem with seven cities.
City 1 is the salesman’s home city. Therefore, starting from this city, the salesman must
choose a route to visit each of the other cities exactly once before returning to city 1. The
number next to each link between each pair of cities represents the distance (or cost or
time) between these cities. We assume that the distance is the same in either direction.
(This is referred to as a symmetric traveling salesman problem.) Although there commonly
is a direct link between every pair of cities, we are simplifying this example by assum-
ing that the only direct links are those shown in the figure. The objective is to determine
which route will minimize the total distance that the salesman must travel.

There have been a number of applications of traveling salesman problems that have
nothing to do with salesmen. For example, when a truck leaves a distribution center to

2 4 6 8 10 12 Iteration

■ FIGURE 14.3
A typical sequence of
objective function values for
the solutions obtained by a
metaheuristic as it first
converges to a local
optimum (iteration 4) and
then escapes to converge to
(hopefully) the global
optimum (iteration 8) of a
maximization problem before
concluding its search
(iteration 12).
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622 CHAPTER 14 METAHEURISTICS

deliver goods to a number of locations, the problem of determining the shortest route for
doing this is a traveling salesman problem. Another example involves the manufacture of
printed circuit boards for wiring chips and other components. When many holes need to
be drilled into a printed circuit board, the problem of finding the most efficient drilling
sequence is a traveling salesman problem.

The difficulty of traveling salesman problems increases rapidly as the number of cities
increases. For a problem with n cities and a link between every pair of cities, the number
of feasible routes to be considered is (n � 1)!/2 since there are (n � 1) possibilities for
the first city after the home city, (n � 2) possibilities for the next city, and so forth. The
denominator of 2 arises because every route has an equivalent reverse route with exactly
the same distance. Thus, while a 10-city traveling salesman problem has less than 200,000
feasible solutions to be considered, a 20-city problem has roughly 1016 feasible solutions,
while a 50-city problem has about 1062.

Surprisingly, powerful algorithms based on the branch-and-cut approach introduced
in Sec. 12.8 have succeeded in solving to optimality certain huge traveling salesman prob-
lems with many hundreds (or even thousands) of cities. However, because of the enor-
mous difficulty of solving large traveling salesman problems, heuristic methods guided
by metaheuristics continue to be a popular way of addressing such problems.

These heuristic methods commonly involve generating a sequence of feasible trial so-
lutions, where each new trial solution is obtained by making a certain type of small adjust-
ment in the current trial solution. Several methods have been suggested for how to adjust
the current trial solution. Because of its ease of implementation, one popular method uses
the following type of adjustment.

A sub-tour reversal adjusts the sequence of cities visited in the current trial so-
lution by selecting a subsequence of the cities and simply reversing the order in
which that subsequence of cities is visited. (The subsequence being reversed can
consist of as few as two cities, but also can have more.)
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■ FIGURE 14.4
The example of a traveling
salesman problem that will
be used for illustrative
purposes throughout this
chapter.
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14.1 THE NATURE OF METAHEURISTICS 623

To illustrate a sub-tour reversal, suppose that the initial trial solution for our example
in Fig. 14.4  is to visit the cities in numerical order:

1-2-3-4-5-6-7-1 Distance � 69

If we select, say, the subsequence 3-4 and reverse it, we obtain the following new trial
solution:

1-2-4-3-5-6-7-1 Distance � 65

Thus, this particular sub-tour reversal has succeeded in reducing the distance for the com-
plete tour from 69 to 65.

Figure 14.5 depicts this sub-tour reversal, which leads from the initial trial solution on
the left to the new trial solution on the right. The dashed lines indicate the links that are
deleted from the tour (on the left) or added to the tour (on the right) by sub-tour reversal.
Note that the new trial solution deletes exactly two links from the previous tour and re-
places them by exactly two new links to form the new tour. This is a characteristic of any
sub-tour reversal (including those where the subsequence of cities being reversed consists
of more than two cities). Thus, a particular sub-tour reversal is possible only if the cor-
responding two new links actually exist.

This success in obtaining an improved tour by simply performing a sub-tour reversal
suggests the following heuristic method for seeking a good feasible solution for any trav-
eling salesman problem.

The Sub-Tour Reversal Algorithm

Initialization. Start with any feasible tour as the initial trial solution.

Iteration. For the current trial solution, consider all possible ways of performing a sub-
tour reversal (except exclude the reversal of the entire tour) that would provide an im-
proved solution. Select the one that provides the largest decrease in the distance traveled
to be the new trial solution. (Ties may be broken arbitrarily.)
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■ FIGURE 14.5
A sub-tour reversal that replaces the tour on the left (the initial trial solution) by the tour on the right (the new trial
solution) by reversing the order in which cities 3 and 4 are visited. This sub-tour reversal results in replacing the dashed
lines on the left by the dashed lines on the right as the links that are traversed in the new tour.
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624 CHAPTER 14 METAHEURISTICS

Stopping rule. Stop when no sub-tour reversal will improve the current trial solution.
Accept this solution as the final solution.

Now let us apply this algorithm to the example, starting with 1-2-3-4-5-6-7-1 as the
initial trial solution. There are four possible sub-tour reversals that would improve upon
this solution, as listed in the second, third, fourth, and fifth rows below:

1-2-3-4-5-6-7-1 Distance � 69
Reverse 2-3: 1-3-2-4-5-6-7-1 Distance � 68
Reverse 3-4: 1-2-4-3-5-6-7-1 Distance � 65
Reverse 4-5: 1-2-3-5-4-6-7-1 Distance � 65
Reverse 5-6: 1-2-3-4-6-5-7-1 Distance � 66

The two solutions with Distance � 65 tie for providing the largest decrease in the
distance traveled, so suppose that the first of these, 1-2-4-3-5-6-7-1 (as shown on the right
side of Fig. 14.5), is chosen arbitrarily to be the next trial solution. This completes the
first iteration.

The second iteration begins with the tour on the right side of Fig. 14.5 as the current
trial solution. For this solution, there is only one sub-tour reversal that will provide an im-
provement, as listed in the second row below:

1-2-4-3-5-6-7-1 Distance � 65
Reverse 3-5-6: 1-2-4-6-5-3-7-1 Distance � 64

Figure 14.6 shows this sub-tour reversal, where the entire subsequence of cities 3-5-6 on
the left now is visited in reverse order (6-5-3) on the right. Thus, the tour on the right now
traverses the link 4-6 instead of 4-3, as well as the link 3-7 instead of 6-7, in order to use
the reverse order 6-5-3 between cities 4 and 7. This completes the second iteration.

We next try to find a sub-tour reversal that will improve upon this new trial solution.
However, there is none, so the sub-tour reversal algorithm stops with this trial solution as
the final solution.

Is 1-2-4-6-5-3-7-1 the optimal solution? Unfortunately, no. The optimal solution turns
out to be

1-2-4-6-7-5-3-1 Distance � 63
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■ FIGURE 14.6
The sub-tour reversal of 3-5-6 that leads from the trial solution on the left to an improved trial solution on the right.
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Tabu search is a widely used metaheuristic that uses some common-sense ideas to enable
the search process to escape from a local optimum. After introducing its basic concepts,
we will go through a simple example and then return to the traveling salesman example.

Basic Concepts

Any application of tabu search includes as a subroutine a local search procedure that
seems appropriate for the problem being addressed. (A local search procedure operates
just like a local improvement procedure except that it may not require that each new trial
solution must be better than the preceding trial solution.) The process begins by using this
procedure as a local improvement procedure in the usual way (i.e., only accepting an im-
proved solution at each iteration) to find a local optimum. A key strategy of tabu search
is that it then continues the search by allowing non-improving moves to the best solutions
in the neighborhood of the local optimum. Once a point is reached where better solutions
can be found in the neighborhood of the current trial solution, the local improvement pro-
cedure is reapplied to find a new local optimum.

Using the analogy of hill climbing, this process is sometimes referred to as the steepest
ascent/mildest descent approach because each iteration selects the available move that
goes furthest up the hill, or, when an upward move is not available, selects a move that
drops least down the hill. If all goes well, the process will follow a pattern like that shown
in Fig. 14.3, where a local optimum is left behind in order to climb to the global optimum.

The danger with this approach is that after moving away from a local optimum, the
process will cycle right back to the same local optimum. To avoid this, a tabu search tem-
porarily forbids moves that would return to (or perhaps toward) a solution recently visited.
A tabu list records these forbidden moves, which are referred to as tabu moves. (The only
exception to forbidding such a move is if it is found that a tabu move actually is better
than the best feasible solution found so far.)

This use of memory to guide the search by using tabu lists to record some of the re-
cent history of the search is a distinctive feature of tabu search. This feature has roots in
the field of artificial intelligence.

Tabu search also can incorporate some more advanced concepts. One is intensifi-
cation, which involves exploring a portion of the feasible region more thoroughly than
usual after it has been identified as a particularly promising portion for containing very
good solutions. Another concept is diversification, which involves forcing the search
into previously unexplored areas of the feasible region. (Long-term memory is used to
help implement both concepts.) However, we will focus on the basic form of tabu search
summarized next without delving into these additional concepts.

■ 14.2 TABU SEARCH

(or 1-3-5-7-6-4-2-1 by reversing the direction of this entire tour)

However, this solution cannot be reached by performing a sub-tour reversal that improves
1-2-4-6-5-3-7-1.

The sub-tour reversal algorithm is another example of a local improvement procedure.
It improves upon the current trial solution at each iteration. When it can no longer find a
better solution, it stops because the current trial solution is a local optimum. In this case,
1-2-4-6-5-3-7-1 is indeed a local optimum because there is no better solution within its
local neighborhood that can be reached by performing a sub-tour reversal.

What is needed to provide a better chance of reaching a global optimum is to use a
metaheuristic that will enable the process to escape from a local optimum. You will see how
three different metaheuristics do this with this same example in the next three sections.
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Founded in 1886, Sears, Roebuck and Company (now
commonly referred to as just Sears) grew to become 
the largest multiline retailer in the United States by the
mid-20th century. It continues today to rank among the
largest retailers in the world selling merchandise and
services. By 2013, it had more than 2,500 full-line and
specialty retail stores in the United States and Canada.
It also provides the largest home-delivery service of fur-
niture and appliances in these countries with approxi-
mately 4 million deliveries a year. Sears manages a fleet
of over 1,000 delivery vehicles that includes contract
carriers and Sears-owned vehicles. It also operates a
U.S. fleet of about 12,500 service vehicles and the asso-
ciated technicians, who make approximately 14 million
on-site service calls annually to repair and install appli-
ances and provide home improvement.

The cost of operating this huge home-delivery and
home-service business runs in the billions of dollars per
year. With many thousands of vehicles being used to
make many tens of thousands of calls on customers daily,
the efficiency of this operation has a major impact on the
company’s profitability.

With so many calls on customers to be made with so
many vehicles, a huge number of decisions must be made
each day. Which stops should be assigned to each vehi-
cle’s route? What should the order of the stops be (which
considerably impacts the total distance and time for the

route) for each vehicle? How can all these decisions be
made so as to minimize total operational costs while pro-
viding satisfactory service to the customers?

It became clear that operations research was needed
to address this problem. The natural formulation is as a
vehicle-routing problem with time windows (VRPTW),
for which both exact and heuristic algorithms have been
developed. Unfortunately, the Sears problem is so huge
that it is a very difficult combinatorial optimization prob-
lem that is beyond the reach of standard algorithms for
VRPTW. Therefore, a new algorithm was developed that
was based on using tabu search for making both the deci-
sions on which vehicle’s route serves which stops and
what the sequence is of stops within a route.

The resulting new vehicle-routing-and-scheduling
system, based largely on tabu search, led to over $9 mil-
lion in one-time savings and over $42 million in annual
savings for Sears. It also provided a number of intangible
benefits, including (most importantly) improved service
to customers.

Source: D. Weigel, and B. Cao: “Applying GIS and OR Tech-
niques to Solve Sears Technician-Dispatching and Home-
Delivery Problems,” Interfaces, 29(1): 112–130, Jan.–Feb.
1999. (A link to this article is provided on our website,
www.mhhe.com/hillier.)

An Application Vignette

Outline of a Basic Tabu Search Algorithm

Initialization. Start with a feasible initial trial solution.

Iteration. Use an appropriate local search procedure to define the feasible moves into
the local neighborhood of the current trial solution. Eliminate from consideration any move
on the current tabu list unless that move would result in a better solution than the best trial
solution found so far. Determine which of the remaining moves provides the best solution.
Adopt this solution as the next trial solution, regardless of whether it is better or worse
than the current trial solution. Update the tabu list to forbid cycling back to what had been
the current trial solution. If the tabu list already had been full, delete the oldest member
of the tabu list to provide more flexibility for future moves.

Stopping rule. Use some stopping criterion, such as a fixed number of iterations, a
fixed amount of CPU time, or a fixed number of consecutive iterations without an im-
provement in the best objective function value. (The latter criterion is a particularly pop-
ular one.) Also stop at any iteration where there are no feasible moves into the local
neighborhood of the current trial solution. Accept the best trial solution found on any
iteration as the final solution.
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14.2 TABU SEARCH 627

This outline leaves a number of questions unanswered:

1. Which local search procedure should be used?
2. How should that procedure define the neighborhood structure that specifies which solutions

are immediate neighbors (reachable in a single iteration) of any current trial solution?
3. What is the form in which tabu moves should be represented on the tabu list?
4. Which tabu move should be added to the tabu list in each iteration?
5. How long should a tabu move be retained on the tabu list?
6. Which stopping rule should be used?

These all are important details that need to be worked out to fit the specific type of prob-
lem being addressed, as illustrated by the following examples. Tabu search only provides
a general structure and strategy guidelines for developing a specific heuristic method to
fit a specific situation. The selection of its parameters is a key part of developing a suc-
cessful heuristic method.

The following examples illustrate the use of tabu search.

A Minimum Spanning Tree Problem with Constraints

Section 10.4 describes the minimum spanning tree problem. In brief, starting with a net-
work that has its nodes but no links between the nodes yet, the problem is to determine
which links should be inserted into the network. The objective is to minimize the total
cost (or length) of the inserted links that will provide a path between every pair of nodes.
For a network with n nodes, (n � 1) links (with no cycles) are needed to provide a path
between every pair of nodes. Such a network is referred to as a spanning tree.

The left-hand side of Fig. 14.7 shows a network with five nodes, where the dashed
lines represent the potential links that could be inserted into the network and the number
next to each dashed line represents the cost associated with inserting that particular link.
Thus, the problem is to determine which four of these links (with no cycles) should be in-
serted into the network to minimize the total cost of these links. The right-hand side of the
figure shows the desired minimum spanning tree, where the dark lines represent the links
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■ FIGURE 14.7
(a) The data for a minimum spanning tree problem before choosing the links to be included in the network and (b) the
optimal solution for this problem where the dark lines represent the chosen links.
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628 CHAPTER 14 METAHEURISTICS

that have been inserted into the network with a total cost of 50. This optimal solution is
obtained easily by applying the “greedy” algorithm presented in Sec. 10.4.

To illustrate the use of tabu search, let us now add a couple complications to this
example by supposing that the following constraints also must be observed when choos-
ing the links to include in the network.

Constraint 1: Link AD can be included only if link DE also is included.
Constraint 2: At most one of the three links—AD, CD, and AB—can be included.

Note that the previously optimal solution on the right-hand side of Fig. 14.7 violates both
of these constraints because (1) link AD is included even though DE is not and (2) both
AD and AB are included.

By imposing such constraints, the greedy algorithm presented in Sec. 10.4 can no
longer be used to find the new optimal solution. For such a small problem, this solution
probably could be found rather quickly by inspection. However, let us see how tabu search
could be used on either this problem or much larger problems to search for an optimal
solution.

The easiest way to take the constraints into account is to charge a huge penalty, such
as the following, for violating them:

1. Charge a penalty of 100 if constraint 1 is violated.
2. Charge a penalty of 100 if two of the three links specified in constraint 2 are included.

Increase this penalty to 200 if all three of the links are included.

A penalty of 100 is large enough to ensure that the constraints will not be violated for a
spanning tree that minimizes the total cost, including the penalty, provided only that there
exist some feasible solutions. Doubling this penalty if constraint 2 is badly violated pro-
vides an incentive for at least reducing how many of the three links are included during
an iteration of the tabu search.

There are a variety of ways to answer the six questions that are needed to specify
how the tabu search will be conducted. (See the list of questions that follows the out-
line of a basic tabu search algorithm.) Here is one straightforward way of answering
the questions.

1. Local search procedure: At each iteration, choose the best immediate neighbor of the
current trial solution that is not ruled out by its tabu status.

2. Neighborhood structure: An  immediate neighbor of the current trial solution is one
that is reached by adding a single link and then deleting one of the other links in the
cycle that is formed by the addition of this link. (The deleted link must come from this
cycle in order to still have a spanning tree.)

3. Form of tabu moves: List the links that should not be deleted.
4. Addition of a tabu move: At each iteration, after choosing the link to be added to the

network, also add this link to the tabu list.
5. Maximum size of tabu list: Two. Whenever a tabu move is added to a full list, delete

the older of the two tabu moves that already were on the list. (Since a spanning tree for
the problem being considered only includes four links, the tabu list must be kept very
small to provide some flexibility in choosing the link to be deleted at each iteration.)

6. Stopping rule: Stop after three consecutive iterations without an  improvement in the
best objective function value. (Also stop at any iteration where the current trial solu-
tion has no immediate neighbors that are not ruled out by their tabu status.)

Having specified these details, we now can proceed to apply the tabu search algo-
rithm to the example. To get started, a reasonable choice for the initial trial solution is the
optimal solution for the unconstrained version of the problem that is shown in Fig. 14.7(b).
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■ TABLE 14.1 The options for adding a link and 
deleting another link in iteration 1

Add Delete Cost

BE CE 75 � 200 � 275
BE AC 70 � 200 � 270
BE AB 60 � 100 � 160

CD AD 60 � 100 � 160
CD AC 65 � 300 � 365

DE CE 85 � 100 � 185
DE AC 80 � 100 � 180
DE AD 75 � 0   � 75 ← Minimum

14.2 TABU SEARCH 629

Because this solution violates both of the constraints (but with the inclusion of only two
of the three links specified in constraint 2), penalties of 100 need to be imposed twice.
Therefore, the total cost of this solution is

Cost � 20 � 10 � 5 � 15 � 200 (constraint penalties)
� 250.

Iteration 1. The three options for adding a link to the network in Fig. 14.7(b) are BE,
CD, and DE. If BE were to be chosen, the cycle formed would be BE-CE-AC-AB, so the
three options for deleting a link would be CE, AC, and AB. (At this point, no links have
yet been added to the tabu list.) If CE were to be deleted, the change in the cost would
be 30 � 5 � 25 with no change in the constraint penalties, so the total cost would in-
crease from 250 to 275. Similarly, if AC were to be deleted instead, the total cost would
increase from 250 to 250 � (30 � 10) � 270. However, if link AB were to be the one
deleted, the link costs would change by 30 � 20 � 10 and the constraint penalties would
decrease from 200 to 100 because constraint 2 would no longer be violated, so the total
cost would become 50 � 10 � 100 � 160. These results are summarized in the first three
rows of Table 14.1.

The next two rows summarize the calculations if CD were to be the link that is
added to the network. In this case, the cycle created is CD-AD-AC, so AD and AC are
the only options for deleting a link. AC would be a particularly bad choice because
constraint 1 would still be violated (a penalty of 100), and a penalty of 200 now would
need to be charged for violating constraint 2 since all three of the links specified in
the constraint would be included in the network. Deleting AD instead would have the
virtue of satisfying constraint 1 and not increasing the extent to which constraint 2 is
violated.

The last three rows of the table show the options if DE were the added link. The cy-
cle created by adding this link would be DE-CE-AC-AD, so CE, AC, and AD would be
the options for deletion. All three would satisfy constraint 1, but deleting AD would satisfy
constraint 2 as well. By completely eliminating constraint penalties, the total cost for this
option would become only 50 � (40 � 15) � 75. Since this is the smallest cost for all
eight available options for moving to an immediate neighbor of the current trial solution,
we choose this particular move by adding DE and deleting AD. This choice is indicated
in the iteration 1 portion of Fig. 14.8 and the resulting spanning tree for beginning itera-
tion 2 is shown to the right.

To complete the iteration, since DE was added to the network, it becomes the first
link placed on the tabu list. This will prevent deleting DE next and cycling back to the
trial solution that began this iteration.
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Iteration 1 Iteration 2

Iteration 3 Optimal Solution

Cost = 50 + 200 (constraint penalties) Cost = 75

Delete Add

Delete
Add

Tabu

New cost = 75
(Local optimum)

New cost = 85
(Escape local optimum)

Cost = 85

Tabu

Tabu
Delete

Cost = 70

New cost = 70
(Override tabu status)

Additional iterations only
find inferior solutions.

Add

■ FIGURE 14.8
Application of a tabu search algorithm to the minimum spanning tree problem shown in Fig. 14.7
after also adding two constraints.

To summarize, the following decisions have been made during this first iteration:

Add link DE to the network.
Delete link AD from the network.
Add link DE to the tabu list.
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■ TABLE 14.2 The options for adding a link and 
deleting another link in iteration 2

Add Delete Cost

AD DE* (Tabu move)
AD CE 85 � 100 � 185
AD AC 80 � 100 � 180

BE CE 100 � 0    � 100
BE AC 95 � 0    � 95
BE AB 85 � 0    � 85 ← Minimum

CD DE* 60 � 100 � 160
CD CE 95 � 100 � 195

*A tabu move. Will be considered only if it would result in a 
better solution than the best trial solution found previously.

14.2 TABU SEARCH 631

Iteration 2. The upper right-hand portion of Fig. 14.8 indicates that the corresponding
decisions made during iteration 2 are the following:

Add link BE to the network.
Automatically place this added link on the tabu list.
Delete link AB from the network.

Table 14.2 summarizes the calculations that led to these decisions by finding that the move
in the sixth row provides the smallest cost.

The moves listed in the first and seventh rows of the table involve deleting DE, which
is on the tabu list. Therefore, these moves would have been considered only if they would
result in a better solution than the best trial solution found so far, which has a cost of 75.
The calculation in the seventh row shows that this move would not provide a better solu-
tion. A calculation is not even needed for the first row because this move would cycle
back to the preceding trial solution.

Note that the move in the sixth row is made even though it results in a new trial so-
lution that has a larger cost (85) than for the preceding trial solution (75) that initiated
iteration 2. What this means is that the preceding trial solution was a local optimum because
all of its immediate neighbors (those that can be reached by making one of the moves listed
in Table 14.2) have a larger cost. However, moving to the best of the immediate neighbors
allows us to escape the local optimum and continue the search for the global optimum.

Before moving to iteration 3, we should interject an observation about what more ad-
vanced forms of tabu search might do here when selecting the best immediate neighbor.
More general tabu search methods can change the meaning of a “best neighbor,” depending
on history, by using additional forms of memory to support intensification and diversifi-
cation processes. As mentioned earlier, intensification focuses the search in a particularly
promising region of solutions identified previously and diversification drives the search
into promising new regions.

Iteration 3. The lower left-hand portion of Fig. 14.8 summarizes the decisions made
during iteration 3.

Add link CD to the network.
Automatically place this added link on the tabu list.
Delete link DE from the network.

Table 14.3 shows that this move leads to the best immediate neighbor of the trial solution
that initiated this iteration.
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An interesting feature of this move is that it is made even though it is a tabu move.
The reason it is made is that, in addition to being the best immediate neighbor, it also re-
sults in a solution that is better (a cost of 70) than the best trial solution found previously
(a cost of 75). This enables the tabu status of the move to be overridden. (Tabu search
also can incorporate a variety of more advanced criteria for overriding tabu status.)

One more adjustment needs to be made in the tabu list before beginning the next
iteration:

Delete link DE from the tabu list.

This is done for two reasons. First, the tabu list consists of links that normally should not
be deleted from the network during the current iteration (with the exception noted above),
but DE is no longer in the network. Second, since the size of the tabu list has been set at
two and two other links (BE and CD) have been added to the list more recently, DE au-
tomatically would have been deleted from the list at this point anyway.

Continuation. The current trial solution shown in the lower right-hand portion of
Fig. 14.8 is, in fact, the optimal solution (the global optimum) for the problem. However,
the tabu search algorithm has no way of knowing this, so it would continue on for a
while. Iteration 4 would begin with this trial solution and with links BE and CD on the
tabu list. After completing this iteration and two more, the algorithm would terminate
because three consecutive iterations did not improve on the best previous objective func-
tion value (a cost of 70).

With a well-designed tabu search algorithm, the best trial solution found after the
algorithm has run a modest number of iterations is likely to be a good feasible solution.
It might even be an optimal solution, but no such guarantee can be given. Selecting a
stopping rule that provides a relatively long run of the algorithm increases the chance of
reaching the global optimum.

Having gotten our feet wet by designing and applying a tabu search algorithm to this
small example, let us now apply a similar tabu search algorithm to the example of a trav-
eling salesman problem presented in Sec. 14.1.

The Traveling Salesman Problem Example

There are some close parallels between a minimum spanning tree problem and a travel-
ing salesman problem. In both cases, the problem is to choose which links to include in
the solution. (Recall that a solution for a traveling salesman problem can be described

■ TABLE 14.3 The options for adding a link and
deleting another link in iteration 3

Add Delete Cost

AB BE* (Tabu move)
AB CE 100 � 0 � 100
AB AC 95 � 0 � 95

AD DE* 60 � 100 � 160
AD CE 95 � 0 � 95
AD AC 90 � 0 � 90

CD DE* 70 � 0 �   70 ← Minimum
CD CE 105 � 0 � 105

*A tabu move. Will be considered only if it would result in a
better solution than the best trial solution found previously.

hil23453_ch14_617-660.qxd  1/22/70  7:22 AM  Page 632 Final PDF to printer



14.2 TABU SEARCH 633

as the sequence of links that the salesman traverses in the tour of the cities.) In both
cases, the objective is to minimize the total cost or distance associated with the fixed
number of links that are included in the solution. And in both cases, there is an intuitive
local search procedure available that involves adding and deleting links in the current
trial solution to obtain the new trial solution.

For minimum spanning tree problems, the local search procedure described in the
preceding subsection involves adding and deleting only a single link at each iteration. The
corresponding procedure described in Sec. 14.1 for traveling salesman problems involves
using sub-tour reversals to add and delete a pair of links at each iteration.

Because of the close parallels between these two types of problems, the design of a
tabu search algorithm for traveling salesman problems can be quite similar to the one just
described for the minimum spanning problem example. In particular, using the outline of
a basic tabu search algorithm presented earlier, the six questions following the outline can
be answered in a similar way below.

1. Local search algorithm: At each iteration, choose the best immediate neighbor of the
current trial solution that is not ruled out by its tabu status.

2. Neighborhood structure: An immediate neighbor of the current trial solution is one
that is reached by making a sub-tour reversal, as described in Sec. 14.1 and illustrated
in Fig. 14.5. Such a reversal requires adding two links and deleting two other links
from the current trial solution. (We rule out a sub-tour reversal that simply reverses the
direction of the tour provided by the current trial solution.)

3. Form of tabu moves: List the links such that a particular sub-tour reversal would be
tabu if both links to be deleted in this reversal are on the list. (This will prevent quickly
cycling back to a previous trial solution.)

4. Addition of a tabu move: At each iteration, after choosing the two links to be added
to the current trial solution, also add these two links to the tabu list.

5. Maximum size of tabu list: Four (two from each of the two most recent iterations).
Whenever a pair of links is added to a full list, delete the two links that already have
been on the list the longest.

6. Stopping rule: Stop after three consecutive iterations without an improvement in the
best objective function value. (Also stop at any iteration where the current trial solution
has no immediate neighbors that are not ruled out by their tabu status.)

To apply this tabu search algorithm to our example (see Fig. 14.4), let us begin with
the same initial trial solution, 1-2-3-4-5-6-7-1, as in Sec. 14.1. Recall how starting the
sub-tour reversal algorithm (a local improvement algorithm) with this initial trial solution
led in two iterations (see Figs. 14.5 and 14.6) to a local optimum at 1-2-4-6-5-3-7-1, at
which point that algorithm stopped. Except for adding a tabu list, the tabu search algo-
rithm starts off in exactly the same way, as summarized below:

Initial trial solution: 1-2-3-4-5-6-7-1 Distance � 69
Tabu list: Blank at this point.

Iteration 1: Choose to reverse 3-4 (see Fig. 14.5).
Deleted links: 2-3 and 4-5
Added links: 2-4 and 3-5
Tabu list: Links 2-4 and 3-5
New trial solution: 1-2-4-3-5-6-7-1 Distance � 65

Iteration 2: Choose to reverse 3-5-6 (see Fig. 14.6).
Deleted links: 4-3 and 6-7 (OK since not on tabu list)
Added links: 4-6 and 3-7
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Tabu list: Links 2-4, 3-5, 4-6, and 3-7
New trial solution: 1-2-4-6-5-3-7-1 Distance � 64

However, rather than terminating, the tabu search algorithm now escapes from this local
optimum (shown on the right side of Fig. 14.6 and the left side of Fig. 14.9) by moving
next to the best immediate neighbor of the current trial solution even though its distance
is longer. Considering the limited availability of links between pairs of nodes (cities) in
Fig. 14.4, the current trial solution has only the two immediate neighbors listed below:

Reverse 6-5-3: 1-2-4-3-5-6-7-1 Distance � 65
Reverse 3-7: 1-2-4-6-5-7-3-1 Distance � 66

(We are ruling out reversing 2-4-6-5-3-7 to obtain 1-7-3-5-6-4-2-1 because this is simply
the same tour in the opposite direction.) However, we must rule out the first of these im-
mediate neighbors because it would require deleting links 4-6 and 3-7, which is tabu since
both of these links are on the tabu list. (This move could still be allowed if it would im-
prove upon the best trial solution found so far, but it does not.) Ruling out this immediate
neighbor prevents us from simply cycling back to the preceding trial solution. Therefore,
by default, the second of these immediate neighbors is chosen to be the next trial solution,
as summarized below:

Iteration 3: Choose to reverse 3-7 (see Fig. 14.9).
Deleted links: 5-3 and 7-1
Added links: 5-7 and 3-1
Tabu list: 4-6, 3-7, 5-7, and 3-1

(2-4 and 3-5 are now deleted from the list.)
New trial solution: 1-2-4-6-5-7-3-1 Distance � 66

The sub-tour reversal for this iteration can be seen in Fig. 14.9, where the dashed lines
show the links being deleted (on the left) and added (on the right) to obtain the new trial
solution. Note that one of the deleted links is 5-3 even though it was on the tabu list at
the end of iteration 2. This is OK since a sub-tour reversal is tabu only if both of the deleted
links are on the tabu list. Also note that the updated tabu list at the end of iteration 3 has
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■ FIGURE 14.9
The sub-tour reversal of 3-7 in iteration 3 that leads from the trial solution on the left to the new trial solution on the right.
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deleted the two links that had been on the list the longest (the ones added during iteration 1)
since the maximum size of the tabu list has been set at four.

The new trial solution has the four immediate neighbors listed below:

Reverse 2-4-6-5-7: 1-7-5-6-4-2-3-1 Distance � 65
Reverse 6-5: 1-2-4-5-6-7-3-1 Distance � 69
Reverse 5-7: 1-2-4-6-5-7-3-1 Distance � 63
Reverse 7-3: 1-2-4-6-5-3-7-1 Distance � 64

However, the second of these immediate neighbors is tabu because both of the deleted
links (4-6 and 5-7) are on the tabu list. The fourth immediate neighbor (which is the pre-
ceding trial solution) also is tabu for the same reason. Thus, the only viable options are
the first and third immediate neighbors. Since the latter neighbor has the shorter distance,
it becomes the next trial solution, as summarized below:

Iteration 4: Choose to reverse 5-7 (see Fig. 14.10).
Deleted links: 6-5 and 7-3
Added links: 6-7 and 5-3
Tabu list: 5-7, 3-1, 6-7, and 5-3

(4-6 and 3-7 are now deleted from the list.)
New trial solution: 1-2-4-6-7-5-3-1 Distance � 63

Figure 14.10 shows this sub-tour reversal. The tour for the new trial solution on the right
has a distance of only 63, which is less than for any of the preceding trial solutions. In
fact, this new solution happens to be the optimal solution.

Not knowing this, the tabu search algorithm would attempt to execute more itera-
tions. However, the only immediate neighbor of the current trial solution is the trial
solution that was obtained at the preceding iteration. This would require deleting links
6-7 and 5-3, both of which are on the tabu list, so we are prevented from cycling back
to the preceding trial solution. Since no other immediate neighbors are available, the
stopping rule terminates the algorithm at this point with 1-2-4-6-7-5-3-1 (the best of
the trial solutions) as the final solution. Although there is no guarantee that the algo-
rithm’s final solution is an optimal solution, we are fortunate that it turned out to be
optimal in this case.

The metaheuristics area in your IOR Tutorial includes a procedure for applying this
particular tabu search algorithm to other small traveling salesman problems.

This particular algorithm is just one example of a possible tabu search algorithm for
traveling salesman problems. Various details of the algorithm could be modified in a num-
ber of reasonable ways. For example, the method typically doesn’t stop when all avail-
able moves are forbidden by their tabu status, but instead just selects a “least tabu” move.
Also, an important feature of general tabu search methods includes the use of multiple
neighborhoods, relying on basic neighborhoods as long as they bring progress, and then
including more advanced neighborhoods when the rate of finding improved solutions di-
minishes. The most significant additional element of tabu search is its use of intensifica-
tion and diversification strategies, as mentioned earlier. But the general outline of a basic
“short-term memory” tabu search approach would remain roughly the same as we have
illustrated.

Both examples considered in this section fall into the category of combinatorial op-
timization problems involving networks. This is a particularly common area of applica-
tion for tabu search algorithms. The general outline of these algorithms incorporates the
principles presented in this section, but the details are worked out to fit the structure of
the specific problems being considered.
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■ FIGURE 14.10
The sub-tour reversal of 5-7 in iteration 4 that leads from the trial solution on the left to the new trial solution on the
right (which happens to be the optimal solution).

■ 14.3 SIMULATED ANNEALING

Simulated annealing is another widely used metaheuristic that enables the search process
to escape from a local optimum. To better compare and contrast it with tabu search, we
will apply it to the same traveling salesman problem example before returning to the non-
linear programming example introduced in Sec. 14.1. But first, let us examine the basic
concepts of simulated annealing.

Basic Concepts

Figure 14.1 in Sec. 14.1 introduced the concept that finding the global optimum of a com-
plicated maximization problem is analogous to determining which of a number of hills is the
tallest hill and then climbing to the top of that particular hill. Unfortunately, a mathematical
search process does not have the benefit of keen eyesight that would enable spotting a tall
hill in the distance. Instead, it is like hiking in a dense fog where the only clue for the di-
rection to take next is how much the next step in any direction would take you up or down.

One approach, adopted into tabu search, is to climb the current hill in the steepest di-
rection until reaching its top and then start climbing slowly downward while searching
for another hill to climb. The drawback is that a lot of time (iterations) is spent climbing
each hill encountered rather than searching for the tallest hill.

Instead, the approach used in simulated annealing is to focus mainly on searching for
the tallest hill. Since the tallest hill can be anywhere in the feasible region, the early em-
phasis is on taking steps in random directions (except for rejecting some, but not all, steps
that would go downward rather than upward) in order to explore as much of the feasible
region as possible. Because most of the accepted steps are upward, the search will gradually
gravitate toward those parts of the feasible region containing the tallest hills. Therefore,
the search process gradually increases the emphasis on climbing upward by rejecting an
increasing proportion of steps that go downward. Given enough time, the process often
will reach and climb to the top of the tallest hill.

To be more specific, each iteration of the simulated annealing search process moves
from the current trial solution to an immediate neighbor in the local neighborhood of this
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■ TABLE 14.4 Some sample probabilities that the move
selection rule will accept a downward
step when the objective is maximization

x � �
Zn �

T
Zc� Prob{acceptance} � ex

�0.01 0.990
�0.1 0.905
�0.25 0.779
�0.5 0.607
�1 0.368
�2 0.135
�3 0.050
�4 0.018
�5 0.007
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solution, just as for tabu search. However, the difference from tabu search lies in how an
immediate neighbor is selected to be the next trial solution. Let

Zc � objective function value for the current trial solution,
Zn � objective function value for the current candidate to be the next trial solution,
T � a parameter that measures the tendency to accept the current candidate to be

the next trial solution if this candidate is not an improvement on the current
trial solution.

The rule for selecting which immediate neighbor will be the next trial solution follows:

Move selection rule: Among all the immediate neighbors of the current trial so-
lution, select one randomly to become the current candidate to be the next trial
solution. Assuming the objective is maximization of the objective function, ac-
cept or reject this candidate to be the next trial solution as follows:

If Zn � Zc, always accept this candidate.
If Zn � Zc, accept the candidate with the following probability:

Prob{acceptance} � ex where x � �
Zn �

T
Zc�

(If the objective is minimization instead, reverse Zn and Zc in the above formulas.) If
this candidate is rejected, repeat this process with a new randomly selected immedi-
ate neighbor of the current trial solution. (If no immediate neighbors remain, termi-
nate the algorithm.)

Thus, if the current candidate under consideration is better than the current trial solution,
it always is accepted to be the next trial solution. If it is worse, the probability of accep-
tance depends on how much worse it is (and on the size of T). Table 14.4 shows a sam-
pling of these probability values, ranging from a very high probability when the current
candidate is only slightly worse (relative to T) than the current trial solution to an ex-
tremely small probability when it is much worse. In other words, the move selection rule
usually will accept a step that is only slightly downhill, but seldom will accept a steep
downward step. Starting with a relatively large value of T (as simulated annealing does)
makes the probability of acceptance relatively large, which enables the search to proceed
in almost random directions. Gradually decreasing the value of T as the search continues
(as simulated annealing does) gradually decreases the probability of acceptance, which
increases the emphasis on mostly climbing upward. Thus, the choice of the values of T
over time controls the degree of randomness in the process for allowing downward steps.
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This random component, not present in basic tabu search, provides more flexibility for
moving toward another part of the feasible region in the hope of finding a taller hill.

The usual method of implementing the move selection rule to determine whether a par-
ticular downward step will be accepted is to compare a random number between 0 and 1 to
the probability of acceptance. Such a random number can be thought of as a random obser-
vation from a uniform distribution between 0 and 1. (All references to random numbers
throughout the chapter will be to such random numbers.) There are a number of methods of
generating these random numbers (as will be described in Sec. 20.3). For example, the Excel
function RAND() generates such random numbers upon request. (The beginning of the Prob-
lems section also describes how you can use the random digits given in Table 20.3 to obtain
the random numbers you will need for some of your homework problems.) After generating
a random number, it is used as follows to determine whether to accept a downward step:

If random number � Prob{acceptance}, accept a downward step.
Otherwise, reject the step.

Why does simulated annealing use the particular formula for Prob{acceptance} spec-
ified by the move selection rule? The reason is that simulated annealing is based on the
analogy to a physical annealing process. This process initially involves melting a metal
or glass at a high temperature and then slowly cooling the substance until it reaches a
low-energy stable state with desirable physical properties. At any given temperature T dur-
ing this process, the energy level of the atoms in the substance is fluctuating but tending
to decrease. A mathematical model of how the energy level fluctuates assumes that changes
occur randomly except that only some of the increases are accepted. In particular, the
probability of accepting an increase when the temperature is T has the same form as for
Prob{acceptance} in the move selection rule for simulated annealing.

The analogy for an optimization problem in minimization form is that the energy level
of the substance at the current state of the system corresponds to the objective function value
at the current feasible solution of the problem. The objective of having the substance reach
a stable state with an energy level that is as small as possible corresponds to having the prob-
lem reach a feasible solution with an objective function value that is as small as possible.

Just as for a physical annealing process, a key question when designing a simulated
annealing algorithm for an optimization problem is to select an appropriate temperature
schedule to use. (Because of the analogy to physical annealing, we now are referring to
T in a simulated annealing algorithm as the temperature.) This schedule needs to specify
the initial, relatively large value of T, as well as the subsequent progressively smaller val-
ues. It also needs to specify how many moves (iterations) should be made at each value
of T. The selection of these parameters to fit the problem under consideration is a key fac-
tor in the effectiveness of the algorithm. Some preliminary experimentation can be used
to guide this selection of the parameters of the algorithm. We later will specify one spe-
cific temperature schedule that seems reasonable for the two examples considered in this
section, but many others could be considered as well.

With this background, we now can provide an outline of a basic simulated annealing
algorithm.

Outline of a Basic Simulated Annealing Algorithm

Initialization. Start with a feasible initial trial solution.

Iteration. Use the move selection rule to select the next trial solution. (If none of the
immediate neighbors of the current trial solution are accepted, the algorithm is terminated.)

Check the temperature schedule. When the desired number of iterations have been
performed at the current value of T, decrease T to the next value in the temperature sched-
ule and resume performing iterations at this next value.
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Stopping rule. When the desired number of iterations have been performed at the
smallest value of T in the temperature schedule (or when none of the immediate neigh-
bors of the current trial solution are accepted), stop. Accept the best trial solution found
at any iteration (including for larger values of T) as the final solution.

Before applying this algorithm to any particular problem, a number of details need
to be worked out to fit the structure of the problem.

1. How should the initial trial solution be selected?
2. What is the neighborhood structure that specifies which solutions are immediate neigh-

bors (reachable in a single iteration) of any current trial solution?
3. What device should be used in the move selection rule to randomly select one of the

immediate neighbors of the current trial solution to become the current candidate to
be the next trial solution?

4. What is an appropriate temperature schedule?

We will illustrate some reasonable ways of addressing these questions in the context
of applying the simulated annealing algorithm to the following two examples.

The Traveling Salesman Problem Example

We now return to the particular traveling salesman problem that was introduced in Sec. 14.1
and displayed in Fig. 14.4.

The metaheuristics area in your IOR Tutorial includes a procedure for applying the
basic simulated annealing algorithm to small traveling salesman problems like this ex-
ample. This procedure answers the four questions in the following way:

1. Initial trial solution: You may enter any feasible solution (sequence of cities on the
tour), perhaps by randomly generating the sequence, but it is helpful to enter one that
appears to be a good feasible solution. For the example, the feasible solution 1-2-3-4-
5-6-7-1 is a reasonable choice.

2. Neighborhood structure: An immediate neighbor of the current trial solution is one
that is reached by making a sub-tour reversal, as described in Sec. 14.1 and illustrated
in Fig. 14.5. (However, the sub-tour reversal that simply reverses the direction of the
tour provided by the current trial solution is ruled out.)

3. Random selection of an immediate neighbor: Selecting a sub-tour to be reversed re-
quires selecting the slot in the current sequence of cities where the sub-tour currently
begins and then the slot where the sub-tour currently ends. The beginning slot can be
anywhere except the first and last slots (reserved for the home city) and the next-to-last
slot. The ending slot must be somewhere after the beginning slot, excluding the last slot.
(Both beginning in the second slot and ending in the next-to-last slot also is ruled out
since this would simply reverse the direction of the tour.) As will be illustrated shortly,
random numbers are used to give equal probabilities to selecting any of the eligible be-
ginning slots and then any of the eligible ending slots. If this selection of the beginning
and ending slots turns out to be infeasible (because the links needed to complete the sub-
tour reversal are not available), this process is repeated until a feasible selection is made.

4. Temperature schedule: Five iterations are performed at each of five values of T (T1, T2,
T3, T4, T5) in turn, where

T1 � 0.2Zc when Zc is the objective function value for the initial trial solution,
T2 � 0.5T1,
T3 � 0.5T2,
T4 � 0.5T3,
T5 � 0.5T4.
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This particular temperature schedule is only illustrative of what could be used. T1 �
0.2Zc is a reasonable choice because T1 should tend to be fairly large compared to typical
values of ⏐Zn � Zc⏐, which will encourage an almost random search through the feasible
region to find where the search should be focused. However, by the time the value of T
is reduced to T5, almost no nonimproving moves will be accepted, so the emphasis will
be on improving the value of the objective function.

When dealing with larger problems, more than five iterations probably would be per-
formed at each value of T. Furthermore, the values of T would probably be reduced more
slowly than with the temperature schedule prescribed above.

Now let us elaborate on how the random selection of an immediate neighbor is made.
Suppose we are dealing with the initial trial solution of 1-2-3-4-5-6-7-1 in our example.

Initial trial solution: 1-2-3-4-5-6-7-1 Zc � 69 T1 � 0.2Zc � 13.8

The sub-tour that will be reversed  can begin anywhere between the second slot (currently
designating city 2) and the sixth slot (currently designating city 6). These five slots can
be given equal probabilities by having the following values of a random number between
0 and 1 correspond to choosing the slot indicated below.

0.0000–0.1999: Sub-tour begins in slot 2.
0.2000–0.3999: Sub-tour begins in slot 3.
0.4000–0.5999: Sub-tour begins in slot 4.
0.6000–0.7999: Sub-tour begins in slot 5.
0.8000–0.9999: Sub-tour begins in slot 6.

Suppose that the random number generated happens to be 0.2779.

0.2779: Choose a sub-tour that begins in slot 3.

By beginning in slot 3, the sub-tour that will be reversed needs to end somewhere be-
tween slots 4 and 7. These four slots are given equal probabilities by using the following
correspondence with a random number.

0.0000–0.2499: Sub-tour ends in slot 4.
0.2500–0.4999: Sub-tour ends in slot 5.
0.5000–0.7499: Sub-tour ends in slot 6.
0.7500–0.9999: Sub-tour ends in slot 7.

Suppose that the random number generated for this purpose happens to be 0.0461.

0.0461: Choose to end the sub-tour in slot 4.

Since slots 3 and 4 currently designate that cities 3 and 4 are the third and fourth cities
visited in the tour, the sub-tour of cities 3-4 will be reversed.

Reverse 3-4 (see Fig. 14.5): 1-2-4-3-5-6-7-1 Zn � 65

This immediate neighbor of the current (initial) trial solution becomes the current candi-
date to be the next trial solution. Since

Zn � 65 � Zc � 69,

this candidate is better than the current trial solution (remember that the objective here is
to minimize the total distance of the tour), so this candidate is automatically accepted to
be next trial solution.

This choice of a sub-tour reversal was a fortunate one because it led to a feasible so-
lution. This does not always happen in traveling salesman problems like our example
where certain pairs of cities are not directly connected by a link. For example, if the ran-
dom numbers had called for reversing 2-3-4-5 to obtain the tour 1-5-4-3-2-6-7-1, Fig. 14.4
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shows that this is an infeasible solution because there is no link between cities 1 and 5 as
well as no link between cities 2 and 6. When this happens, new pairs of random numbers
would need to be generated until a feasible solution is obtained. (A more sophisticated
procedure also can be constructed to generate random numbers only for relevant links.)

To illustrate a case where the current candidate to be the next trial solution is worse
than the current trial solution, suppose that the second iteration results in reversing 3-5-6
(as in Fig. 14.6) to obtain 1-2-4-6-5-3-7-1, which has a total distance of 64. Then suppose
that the third iteration begins by reversing 3-7 (as in Fig. 14.9) to obtain 1-2-4-6-5-7-3-1
(which has a total distance of 66) as the current candidate to be the next trial solution.
Since 1-2-4-6-5-3-7-1 (with a total distance of 64) is the current trial solution for itera-
tion 3, we now have

Zc � 64, Zn � 66, T1 � 13.8.

Therefore, since the objective here is minimization, the probability of accepting 1-2-4-6-
5-7-3-1 as the next trial solution is

Prob{acceptance} � e(Zc�Zn)/T1

� e�2/13.8

� 0.865.

If the next random number generated is less than 0.865, this candidate solution will be
accepted as the next trial solution. Otherwise, it will be rejected.

Table 14.5 shows the results of using IOR Tutorial to apply the complete simulated
annealing algorithm to this problem. Note that iterations 14 and 16 tie for finding the best

■ TABLE 14.5 One application of the simulated annealing algorithm in 
IOR Tutorial to the traveling salesman problem example

Iteration T Trial Solution Obtained Distance

0 1-2-3-4-5-6-7-1 69
1 13.8 1-3-2-4-5-6-7-1 68
2 13.8 1-2-3-4-5-6-7-1 69
3 13.8 1-3-2-4-5-6-7-1 68
4 13.8 1-3-2-4-6-5-7-1 65
5 13.8 1-2-3-4-6-5-7-1 66
6 6.9 1-2-3-4-5-6-7-1 69
7 6.9 1-3-2-4-5-6-7-1 68
8 6.9 1-2-3-4-5-6-7-1 69
9 6.9 1-2-3-5-4-6-7-1 65

10 6.9 1-2-3-4-5-6-7-1 69
11 3.45 1-2-3-4-6-5-7-1 66
12 3.45 1-3-2-4-6-5-7-1 65
13 3.45 1-3-7-5-6-4-2-1 66
14 3.45 1-3-5-7-6-4-2-1 63 ← Minimum
15 3.45 1-3-7-5-6-4-2-1 66
16 1.725 1-3-5-7-6-4-2-1 63 ← Minimum
17 1.725 1-3-7-5-6-4-2-1 66
18 1.725 1-3-2-4-6-5-7-1 65
19 1.725 1-2-3-4-6-5-7-1 66
20 1.725 1-3-2-4-6-5-7-1 65
21 0.8625 1-3-7-5-6-4-2-1 66
22 0.8625 1-3-2-4-6-5-7-1 65
23 0.8625 1-2-3-4-6-5-7-1 66
24 0.8625 1-3-2-4-6-5-7-1 65
25 0.8625 1-3-7-5-6-4-2-1 66
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trial solution, 1-3-5-7-6-4-2-1 (which happens to be the optimal solution along with the
equivalent tour in the reverse direction, 1-2-4-6-7-5-3-1), so this solution is accepted as
the final solution. You might find it interesting to apply this software to the same problem
yourself. Due to the randomness built into the algorithm, the sequence of trial solutions
obtained will be different each time. Because of this feature, practitioners sometimes will
reapply a simulated annealing algorithm to the same problem several times to increase the
chance of finding an optimal solution. (Problem 14.3-2 asks you to do this for this same
example.) The initial trial solution also may be changed each time to help facilitate a more
thorough exploration of the entire feasible region.

If you would like to see another example of how random numbers are used to per-
form an iteration of the basic simulated annealing algorithm for a traveling salesman prob-
lem, one is provided in the Solved Examples section of the book’s website.

Before going on to the next example, we should pause at this point to mention a cou-
ple of ways in which advanced features of tabu search can be combined fruitfully with
simulated annealing. One way is by applying the strategic oscillation feature of tabu search
to the temperature schedule of simulated annealing. Strategic oscillation adjusts the tem-
perature schedule by decreasing the temperatures more rapidly than usual but then strate-
gically moving the temperatures back and forth across levels where the best solutions were
found. Another way involves applying the candidate-list strategies of tabu search to the
move selection rule of simulated annealing. The idea here is to scan multiple neighbors
to see if an improving move is found before applying the randomized rule for accepting
or rejecting the current candidate to be the next trial solution. These changes have some-
times produced significant improvements.

As these ideas for applying features of tabu search to simulated annealing suggest, a
hybrid algorithm that combines the ideas of different metaheuristics can sometimes per-
form better than an algorithm that is based solely on a single metaheuristic. Although we
are presenting three commonly used metaheuristics separately in this chapter, experienced
practitioners occasionally will pick and choose among the ideas of these and other meta-
heuristics in designing their heuristic methods.

The Nonlinear Programming Example

Now reconsider the example of a small nonlinear programming problem (only a single
variable) that was introduced in Sec. 14.1. The problem is to

Maximize f(x) � 12x5 � 975x4 � 28,000x3 � 345,000x2 � 1,800,000x,

subject to

0 � x � 31.

The graph of f(x) in Fig. 14.1 reveals that there are local optima at x � 5, x � 20, and
x � 31, but only x � 20 is a global optimum.

The metaheuristics area in IOR Tutorial includes a procedure for applying the simu-
lated annealing algorithm to small nonlinear programming problems of the form,

Maximize f(x1, . . . , xn)

subject to

Lj � xj � Uj, for j � 1, . . . , n,

642 CHAPTER 14 METAHEURISTICS
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14.3 SIMULATED ANNEALING 643

where n � 1 or 2, and where Lj and Uj are constants (0 � Lj � Uj � 63) represent-
ing the bounds on xj. (Having relatively tight bounds on the individual variables is
highly desirable for the efficiency of a simulated annealing algorithm, as well as for
genetic algorithms discussed in the next section.) One or two linear functional con-
straints on the variables x � (x1, . . . , xn) also can be included when n � 2. For the
example, we have

n � 1, L1 � 0, U1 � 31,

with no linear functional constraints.
This procedure in IOR Tutorial designs the details of the simulated annealing algo-

rithm for such nonlinear programming problems as follows.

1. Initial trial solution: You may enter any feasible solution, but it is helpful to enter one
that appears to be a good feasible solution. In the absence of any clues about where
the good feasible solutions might lie, it is reasonable to set each variable xj midway
between its lower bound Lj and upper bound Uj in order to start the search in the middle
of the feasible region. (For this reason, x � 15.5 is a reasonable choice for the initial trial
solution for the example.)

2. Neighborhood structure: Any feasible solution is considered to be an immediate
neighbor of the current trial solution. However, the method described below for se-
lecting an immediate neighbor to become the current candidate to be the next trial so-
lution gives a preference to feasible solutions that are relatively close to the current
trial solution, while still allowing for the possibility of moving to a different part of
the feasible region to continue the search.

3. Random selection of an immediate neighbor: Set

�j � �
Uj �

6

Lj
�, for j � 1, . . . , n.

Then, given the current trial solution (x1, . . . , xn),

reset xj � xj � N(0, �j), for j = 1, . . . , n,

where N(0, �j) is a random observation from a normal distribution with mean zero and
standard deviation �j. If this does not result in a feasible solution, then repeat this
process (starting again from the current trial solution) as many times as needed to ob-
tain a feasible solution.

4. Temperature schedule: As for traveling salesman problems, five iterations are per-
formed at each of five values of T (T1, T2, T3, T4, T5) in turn, where

T1 � 0.2Zc when Zc is the objective function value for the initial trial solution,
T2 � 0.5T1,
T3 � 0.5T2,
T4 � 0.5T3,
T5 � 0.5T4.

The reason for setting �j � (Uj � Lj)/6 when selecting an immediate neighbor is that
when the variable xj is midway between Lj and Uj, any new feasible value of the variable
is within three standard deviations of the current value. This gives a significant probabil-
ity that the new value will move most of the way to one of its bounds even though there
is a much higher probability that the new value will be relatively close to the current value.
There are a number of methods for generating a random observation N(0, �j) from a normal
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distribution (as will be discussed briefly in Sec. 20.4). For example, the Excel function,
NORMINV(RAND(),0,�j), generates such a random observation. For your homework, here
is a straightforward way of generating the random observations you need. Obtain a ran-
dom number r and then use the normal table in Appendix 5 to find the value of N(0, �j)
such that P{X � N(0, �j)} � r when X is a normal random variable with mean 0 and stan-
dard deviation �j.

To illustrate how the algorithm designed in this way would be applied to the example,
let us start with x � 15.5 as the initial trial solution. Thus,

Zc � f(15.5) � 3,741,121 and T1 � 0.2Zc � 748,224.

Since

� � �
U �

6
L

� � �
31

6
� 0
� � 5.167,

the next step is to generate a random observation N(0, 5.167) from a normal distribution
with mean zero and this standard deviation. To do this, we first obtain a random number,
which happens to be 0.0735. Going to the normal table in Appendix 5, P{standard nor-
mal � �1.45} � 0.0735, so N(0, 5.167) � �1.45(5.167) � �7.5. The current candidate
to be the next trial solution then is obtained by resetting x as

x � 15.5 � N(0, 5.167) � 15.5 � 7.5
� 8,

so that

Zn � f(x) � 3,055,616.

Because

�
Zn �

T
Zc� � � �0.916

the probability of accepting x � 8 as the next trial solution is

Prob{acceptance} � e�0.916 � 0.400.

Therefore, x � 8 will be accepted only if the corresponding random number between
0 and 1 happens to be less than 0.400. Thus, x � 8 is fairly likely to be rejected. (In
somewhat later iterations when T is much smaller, x � 8 would almost certainly be re-
jected.) This is fortunate since Fig. 14.1 reveals that the search should focus on the
portion of the feasible region between x � 10 and x � 30 in order to start climbing the
tallest hill.

Table 14.6 provides the results that were obtained by using IOR Tutorial to apply the
complete simulated annealing algorithm to this nonlinear programming problem. Note
how the trial solutions obtained vary fairly widely over the feasible region during the early
iterations, but then start approaching the top of the tallest hill more consistently during
the later iterations when T has been reduced to much smaller values. Therefore, of the 25
iterations, the best trial solution of x � 20.031 (as compared to the optimal solution of
x � 20) was not obtained until iteration 21.

Once again, you might find it interesting to apply this software to the same prob-
lem yourself to see what is yielded by new sequences of random numbers and random
observations from normal distributions. (Problem 14.3-6 asks you to do this several
times.)

3,055,616 � 3,741,121
���

748,224
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Genetic algorithms provide a third type of metaheuristic that is quite different from the
first two. This type tends to be particularly effective at exploring various parts of the fea-
sible region and gradually evolving toward the best feasible solutions.

After introducing the basic concepts for this type of metaheuristic, we will apply a
basic genetic algorithm to the same nonlinear programming example just considered above
with the additional constraint that the variable is restricted to integer values. We then will
apply this approach to the same traveling salesman problem example considered in each
of the preceding sections. 

Basic Concepts

Just as simulated annealing is based on an analogy to a natural phenomenon (the physical
annealing process), genetic algorithms are greatly influenced by another form of a natural
phenomenon. In this case, the analogy is to the biological theory of evolution formulated by
Charles Darwin in the mid-19th century. Each species of plants and animals has great indi-
vidual variation. Darwin observed that those individuals with variations that impart a sur-
vival advantage through improved adaptation to the environment are most likely to survive
to the next generation. This phenomenon has since been referred to as survival of the fittest.

The modern field of genetics provides a further explanation of this process of evo-
lution and the natural selection involved in the survival of the fittest. In any species that

■ 14.4 GENETIC ALGORITHMS

■ TABLE 14.6 One application of the simulated annealing algorithm in IOR Tutorial
to the nonlinear programming example

Iteration T Trial Solution Obtained f(x)

0 x � 15.5 3,741,121.0
1 748,224 x � 17.557 4,167,533.956
2 748,224 x � 14.832 3,590,466.203
3 748,224 x � 17.681 4,188,641.364
4 748,224 x � 16.662 3,995,966.078
5 748,224 x � 18.444 4,299,788.258
6 374,112 x � 19.445 4,386,985.033
7 374,112 x � 21.437 4,302,136.329
8 374,112 x � 18.642 4,322,687.873
9 374,112 x � 22.432 4,113,901.493

10 374,112 x � 21.081 4,345,233.403
11 187,056 x � 20.383 4,393,306.255
12 187,056 x � 21.216 4,330,358.125
13 187,056 x � 21.354 4,313,392.276
14 187,056 x � 20.795 4,370,624.01
15 187,056 x � 18.895 4,348,060.727
16 93,528 x � 21.714 4,259,787.734
17 93,528 x � 19.463 4,387,360.1
18 93,528 x � 20.389 4,393,076.988
19 93,528 x � 19.83 4,398,710.575
20 93,528 x � 20.68 4,378,591.085
21 46,764 x � 20.031 4,399,955.913 ← Maximum
22 46,764 x � 20.184 4,398,462.299
23 46,764 x � 19.9 4,399,551.462
24 46,764 x � 19.677 4,395,385.618
25 46,764 x � 19.377 4,383,048.039

hil23453_ch14_617-660.qxd  1/22/70  7:22 AM  Page 645 Final PDF to printer



Intel Corporation is the world’s largest semiconductor
chip maker. With well over 80,000 employees and
annual revenues over $53 billion, it has over 5000 prod-
ucts serving a wide variety of markets.

With so many products, one key to the continuing
success of the company is an effective system for con-
tinually updating the design and scheduling of its prod-
uct line. It can maximize its revenues only by
introducing products into markets with the right fea-
tures, at the right price, and at the right time. Therefore,
a major operations research study was undertaken to
optimize how this is done. The resulting model incorpo-
rated market requirements and financials, design-
engineering capabilities, manufacturing costs, and mul-
tiple-time dynamics. This model then was embedded in
a decision support system that soon was used by hun-
dreds of Intel employees representing most major Intel
groups and many distinct job functions.

The algorithmic heart of this decision support 
system is a genetic algorithm that handles resource 

constraints, scheduling, and financial optimization. This
algorithm uses a fitness function to evaluate candidate
solutions and then performs the usual genetic operators
of mutation and crossover. It also calls on a combination
of heuristic methods and mathematical optimization
techniques to optimize product composition. This algo-
rithm and its associated database enabled a new busi-
ness process that is shifting Intel divisions to a unified
focus on global profit maximization.

This dramatic application of operations research
revolving around a genetic algorithm led to OR profes-
sionals from Intel winning the prestigious 2011 Daniel H.
Wagner Prize for Excellence in Operations Research
Practice.

Source: Rash, E., and K. Kempf, “Product Line Design and
Scheduling at Intel,” Interfaces, 42(5): 425–436, September–
October 2012. (A link to this article is provided on our website,
www.mhhe.com/hillier.)

An Application Vignette

reproduces by sexual reproduction, each offspring inherits some of the chromosomes from
each of the two parents, where the genes within the chromosomes determine the indi-
vidual features of the child. A child who happens to inherit the better features of the par-
ents is slightly more likely to survive into adulthood and then become a parent who passes
on some of these features to the next generation. The population tends to improve slowly
over time by this process. A second factor that contributes to this process is a random,
low-level mutation rate in the DNA of the chromosomes. Thus, a mutation occasionally
occurs that changes the features of a chromosome that a child inherits from a parent.
Although most mutations have no effect or are disadvantageous, some mutations provide
desirable improvements. Children with desirable mutations are slightly more likely to
survive and contribute to the future gene pool of the species.

These ideas transfer over to dealing with optimization problems in a rather natural way.
Feasible solutions for a particular problem correspond to members of a particular species,
where the fitness of each member now is measured by the value of the objective function.
Rather than processing a single trial solution at a time (as with basic forms of tabu search
and simulated annealing), we now work with an entire population of trial solutions.1 For
each iteration (generation) of a genetic algorithm, the current population consists of the set
of trial solutions currently under consideration. These trial solutions are thought of as the
currently living members of the species. Some of the youngest members of the population
(including especially the fittest members) survive into adulthood and become parents (paired
at random) who then have children (new trial solutions) who share some of the features
(genes) of both parents. Since the fittest members of the population are more likely to be-
come parents than others, a genetic algorithm tends to generate improving populations of
trial solutions as it proceeds. Mutations occasionally occur so that certain children also can
acquire features (sometimes desirable features) that are not possessed by either parent. This
helps a genetic algorithm to explore a new, perhaps better part of the feasible region than
previously considered. Eventually, survival of the fittest should tend to lead a genetic algo-
rithm to a trial solution (the best of any considered) that is at least nearly optimal.

1One of the intensification strategies of tabu search also maintains a population of best solutions. The popula-
tion is used to create linking paths between its members and to relaunch the search along these paths.
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Although the analogy of the process of biological evolution defines the core of any
genetic algorithm, it is not necessary to adhere rigidly to this analogy in every detail. For
example, some genetic algorithms (including the one outlined below) allow the same trial
solution to be a parent repeatedly over multiple generations (iterations). Thus, the anal-
ogy needs to be only a starting point for defining the details of the algorithm to best fit
the problem under consideration.

Here is a rather typical outline of a genetic algorithm that we will employ for the two
examples.

Outline of a Basic Genetic Algorithm

Initialization. Start with an initial population of feasible trial solutions, perhaps by
generating them randomly. Evaluate the fitness (the value of the objective function) for
each member of this current population.

Iteration. Use a random process that is biased toward the more fit members of the cur-
rent population to select some of the members (an even number) to become parents. Pair up
the parents randomly and then have each pair of parents give birth to two children (new fea-
sible trial solutions) whose features (genes) are a random mixture of the features of the par-
ents, except for occasional mutations. (Whenever the random mixture of features and any
mutations result in an infeasible solution, this is a miscarriage, so the process of attempting
to give birth then is repeated until a child is born that corresponds to a feasible solution.)
Retain the children and enough of the best members of the current population to form the new
population of the same size for the next iteration. (Discard the other members of the current
population.) Evaluate the fitness for each new member (the children) in the new population.

Stopping rule. Use some stopping rule, such as a fixed number of iterations, a fixed
amount of CPU time, or a fixed number of consecutive iterations without any improvement
in the best trial solution found so far. Use the best trial solution found on any iteration as
the final solution.

Before this algorithm can be implemented the following questions need to be answered:

1. What should the population size be?
2. How should the members of the current population be selected to become parents?
3. How should the features of the children be derived from the features of the parents?
4. How should mutations be injected into the features of the children?
5. Which stopping rule should be used?

The answers to these questions depend greatly on the structure of the specific prob-
lem being addressed. The metaheuristics area in the IOR Tutorial does include two ver-
sions of the algorithm. One is for very small integer nonlinear programming problems like
the example considered next. The other is for small traveling salesman problems. Both
versions answer some of the questions in the same way, as described below:

1. Population size: Ten. (This size is reasonable for the small problems for which this soft-
ware is designed, but much larger populations commonly are used for large problems.)

2. Selection of parents: From among the five most fit members of the population (ac-
cording to the value of the objective function), select four randomly to become par-
ents. From among the five least fit members, select two randomly to become parents.
Pair up the six parents randomly to form three couples.

3. Passage of features (genes) from parents to children: This process is highly prob-
lem dependent and so differs for the two versions of the algorithm in the software, as
described later for the two examples.
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4. Mutation rate: The probability that an inherited feature of a child mutates into an op-
posite feature is set at 0.1 in the software. (Much smaller mutation rates commonly are
used for large problems.)

5. Stopping rule: Stop after five consecutive iterations without any improvement in the
best trial solution found so far.

Now we are ready to apply the algorithm to the two examples.

The Integer Version of the Nonlinear Programming Example

We return again to the small nonlinear programming problem that was introduced in Sec. 14.1
(see Fig. 14.1) and then addressed using a simulated annealing algorithm at the end of the pre-
ceding section. However, we now add the additional constraint that the problem’s single vari-
able x must have an integer value. Because the problem already has the constraint that 0 � x
� 31, this means that the problem has 32 feasible solutions, x � 0, 1, 2, . . . , 31. (Having
such bounds is very important for a genetic algorithm, since it reduces the search space to the
relevant region.) Thus, we now are dealing with an integer nonlinear programming problem.

When applying a genetic algorithm, strings of binary digits often are used to repre-
sent the solutions of the problem. Such an encoding of the solutions is a particularly
convenient one for the various steps of a genetic algorithm, including the process of parents
giving birth to children. This encoding is easy to do for our particular problem because we
simply can write each value of x in base 2. Since 31 is the maximum feasible value of x,
only five binary digits are required to write any feasible value. We always will include all
five binary digits even when the leading digit or digits are zeroes. Thus, for example,

x � 3    is    00011 in base 2,
x � 10    is    01010 in base 2,
x � 25    is    11001 in base 2.

Each of the five binary digits is referred to as one of the genes of the solution, where the
two possible values of the binary digit describe which of two possible features is being
carried in that gene to help form the overall genetic makeup. When both parents have the
same feature, it will be passed down to each child (except when a mutation occurs). How-
ever, when the two parents carry opposite features on the same gene, which feature a child
will inherit becomes random.

For example, suppose that the two parents are

P1: 00011 and
P2: 01010.

Since the first, third, and fourth digits agree, the children then automatically become
(barring mutations)

C1: 0x01x and
C2: 0x01x,

where x indicates that this particular digit is not known yet. Random numbers are used to
identify these unknown digits, where a natural correspondence is

0.0000–0.4999 corresponds to the digit being 0,
0.5000–0.9999 corresponds to the digit being 1.

For example, suppose that the next four random numbers generated are 0.7265, 0.5190, 0.0402,
and 0.3639 so that the two unknown digits for the first child are both 1s and the two un-
known digits for the second child are both 0s. The children then become (barring mutations)

C1: 01011 and
C2: 00010.
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This particular method of generating the children from the parents is known as uni-
form crossover. It is perhaps the most intuitive of the various alternative methods that have
been proposed.

We now need to consider the possibility of mutations that would affect the genetic
makeup of the children.

Since the probability of a mutation in any gene (flipping the binary digit to the op-
posite value) has been set at 0.1 for our algorithm, we can let the random numbers

0.0000–0.0999 correspond to a mutation,
0.1000–0.9999 correspond to no mutation.

For example, suppose that in the next 10 random numbers generated, only the eighth one
is less than 0.1000. This indicates that no mutation occurs in the first child, but the third
gene (digit) in the second child flips its value. Therefore, the final conclusion is that the
two children are

C1: 01011 and
C2: 00110.

Returning to base 10, the two parents correspond to the solutions, x � 3 and x � 10,
whereas their children would have been (barring mutations) x � 11 and x � 2. However,
because of the mutation, the children become x � 11 and x � 6.

For this particular example, any integer value of x such that 0 � x �31 (in base 10) is
a feasible solution, so every 5-digit number in base 2 also is a feasible solution. Therefore,
the above process of creating children never results in a miscarriage (an infeasible solution).
However, if the upper bound on x were, say, x � 25 instead, then miscarriages would oc-
cur occasionally. Whenever a miscarriage occurs, the solution is discarded and the entire
process of creating a child is repeated until a feasible solution is obtained.

This example includes only a single variable. For a nonlinear programming problem
with multiple variables, each member of the population again would use base 2 to show
the value of each variable. The above process of generating children from parents then
would be done in the same way one variable at a time.

Table 14.7 shows the application of the complete algorithm to this example through
both the initialization step (part a of the table) and iteration 1 (part b of the table). In the
initialization step, each of the members of the initial population were generated by gen-
erating five random numbers and using the correspondence between a random number
and a binary digit given earlier to obtain the five binary digits in turn. The corresponding
value of x in base 10 then is plugged into the objective function given at the beginning of
Sec. 14.1 to evaluate the fitness of that member of the population.

The five members of the initial population that have the highest degree of fitness (in
order) are members 10, 8, 4, 1, and 7. To randomly select four of these members to become
parents, a random number is used to select one member to be rejected, where 0.0000– 0.1999
corresponds to ejecting the first member listed (member 10), 0.2000–0.3999 corresponds to
rejecting the second member, and so forth. In this case, the random number was 0.9665, so
the fifth member listed (member 7) does not become a parent.

From among the five less fit members of the initial population (members 2, 1, 6, 5,
and 9), random numbers now are used to select which two of these members will become
parents. In this case, the random numbers were 0.5634 and 0.1270. For the first random
number, 0.0000–0.1999 corresponds to selecting the first member listed (member 2),
0.2000–0.3999 corresponds to selecting the second member, and so forth, so the third
member listed (member 6) is the one selected in this case. Since only four members
(2, 1, 5, and 9) now remain for selecting the last parent, the corresponding intervals
for the second random number are 0.0000–0.2499, 0.2500–0.4999, 0.5000–0.7499, and
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0.7500–0.9999. Because 0.1270 falls in the first of these intervals, the first remaining
member listed (member 2) is selected to be a parent.

The next step is to pair up the six parents—members 10, 8, 4, 1, 6, and 2. Let us begin
by using a random number to determine the mate of the first member listed (member 10).
The random number 0.8204 indicated that it should be paired up with the fifth of the other
five parents listed (member 2). To pair up the next member listed (member 8), the next ran-
dom number was 0.0198, which is in the interval 0.0000–0.3333, so the first of the three re-
maining parents listed (member 4) is chosen to be the mate of member 8. This then leaves
the two remaining parents (members 1 and 6) to become the last couple.

Part (b) of Table 14.7 shows the children that were reproduced by these parents by us-
ing the process illustrated earlier in this subsection. Note that mutations occurred in the third
gene of the second child and the fourth gene of the fourth child. By and large, the six children
have a relatively high degree of fitness. In fact, for each pair of parents, both of the children
turned out to be more fit than one of the parents. This does not always occur but is fairly
common. In the case of the second pair of parents, both of the children happen to be more
fit than both parents. Fortuitously, both of these children (x � 19 and x � 20) actually are su-
perior to any of the members of the preceding population given in part (a) of the table. To
form the new population for the next iteration, all six children are retained along with the
four most fit members of the preceding population (members 10, 8, 4, and 1).

Subsequent iterations would proceed in a similar fashion. Since we know from the
discussion in Sec. 14.1 (see Fig. 14.1) that x � 20 (the best trial solution generated in it-
eration 1) actually is the optimal solution for this example, subsequent iterations would
not provide any further improvement. Therefore, the stopping rule would terminate the al-
gorithm after five more iterations and provide x = 20 as the final solution.

Your IOR Tutorial includes a procedure for applying this same genetic algorithm to
other very small integer nonlinear programming problems. (The form and size restrictions
are the same as specified in Sec. 14.3 for nonlinear programming problems.)

■ TABLE 14.7 Application of the genetic algorithm to the integer nonlinear
programming example through (a) the initialization step 
and (b) iteration 1

Member Initial Population Value of x Fitness

1 0 1 1 1 1 15 3,628,125
2 0 0 1 0 0 4 3,234,688
3 0 1 0 0 0 8 3,055,616
4 1 0 1 1 1 23 3,962,091

(a) 5 0 1 0 1 0 10 2,950,000
6 0 1 0 0 1 9 2,978,613
7 0 0 1 0 1 5 3,303,125
8 1 0 0 1 0 18 4,239,216
9 1 1 1 1 0 30 1,350,000

10 1 0 1 0 1 21 4,353,187

Member Parents Children Value of x Fitness

10 1 0 1 0 1 0 0 1 0 1 5 3,303,125
2 0 0 1 0 0 1 0 0 0 1 17 4,064,259

(b) 8 1 0 0 1 0 1 0 0 1 1 19 4,357,164
4 1 0 1 1 1 1 0 1 0 0 20 4,400,000

1 0 1 1 1 1 0 1 0 1 1 11 2,980,637
6 0 1 0 0 1 0 1 1 1 1 15 3,628,125
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You might find it interesting to apply this procedure in IOR Tutorial to this same ex-
ample. Because of the randomness inherent in the algorithm, different intermediate results
are obtained each time that it is applied. (Problem 14.4-3 asks you to apply the algorithm
to this example several times.)

Although this was a discrete example, genetic algorithms can also be applied to continu-
ous problems such as a nonlinear programming problem without an integer constraint. In this
case, the value of a continuous variable would be represented (or closely approximated) by a
decimal number in base 2. For example, x � 23�

5
8

� is 10111.10100 in base 2, and x � 23.66 is
closely approximated by 10111.10101 in base 2. All the binary digits on both sides of the dec-
imal point can be treated just as before to have parents reproduce children, and so forth.

The Traveling Salesman Problem Example

Sections 14.2 and 14.3 illustrated how a tabu search algorithm and a simulated annealing
algorithm would be applied to the particular traveling salesman problem introduced in
Sec. 14.1 (see Fig. 14.4). Now let us see how our genetic algorithm can be applied using
this same example.

Rather than using binary digits in this case, we will continue to represent each so-
lution (tour) in the natural way as a sequence of cities visited. For example, the first
solution considered in Sec. 14.1 is the tour of the cities in the following order: 1-2-3-4-5-6-
7-1, where city 1 is the home base where the tour must begin and end. We should point out,
however, that genetic algorithms for traveling salesman problems frequently use other meth-
ods for encoding solutions. In general, clever methods of representing solutions (often by
using strings of binary digits) can make it easier to generate children, create mutations, main-
tain feasibility, and so forth, in a natural way. The development of an appropriate encoding
scheme is a key part of developing an effective genetic algorithm for any application.

A complication with this particular example is that, in a sense, it is too easy. Because
of the rather limited number of links between pairs of cities in Fig. 14.4, this problem barely
has 10 distinct feasible solutions if we rule out a tour that is simply a previously considered
tour in the reverse direction. Therefore, it is not possible to have an initial population with
10 distinct trial solutions such that the resulting six parents then reproduce distinct children
that also are distinct from the members of the initial population (including the parents).

Fortunately, a genetic algorithm can still operate reasonably well when there is a
modest amount of duplication in the trial solutions in a population or in two consecutive
populations. For example, even when both parents in a couple are identical, it still is pos-
sible for their children to differ from the parents because of mutations.

The genetic algorithm for traveling salesman problems in your IOR Tutorial does not do
anything to avoid duplication in the trial solutions considered. Each of the 10 trial solutions
in the initial population is generated in turn as follows. Starting from the home base city, ran-
dom numbers are used to select the next city from among those that have a link to the home
base city (cities 2, 3, and 7 in Fig. 14.4). Random numbers then are used to select the third
city from among the remaining cities that have a link to the second city. This process is con-
tinued until either every city is included once in the tour (plus a return to the home base city
from the last city) or a dead end is reached because there is no link from the current city to
any of the remaining cities that still need to be visited. In the latter case, the entire process
for generating a trial solution is restarted from the beginning with new random numbers.

Random numbers are also used to reproduce children from a pair of parents. To il-
lustrate this process, consider the following pair of parents:

P1: 1-2-3-4-5-6-7-1
P2: 1-2-4-6-5-7-3-1

As we describe the process of generating a child from these parents, we also summarize
the results in Table 14.8 to help you follow the progression.
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Ignoring the possibility of mutations for the time being, here is the main idea for how
to generate a child. 

Inheriting Links: Genes correspond to the links in a tour. Therefore, each of the
links (genes) inherited by a child should come from one parent or the other (or
both). (One other possibility described later is that a parent also can pass down a
sub-tour reversal.) These links being inherited are randomly selected one at a time
until a complete tour (the child) has been generated.

To start this process with the above parents, since a tour must begin in city 1, a child’s
initial link must come from one of the parent’s links that connect city 1 to another city.
For parent P1, these are links 1-2 and 1-7. (Link 1-7 qualifies since it is equivalent to take
the tour in either direction.) For parent P2, the corresponding links are 1-2 (again) and 1-3.
The fact that both parents have link 1-2 doubles the probability that it will be inherited by
a child. Therefore, when using a random number to determine which link the child will
inherit, the interval 0.0000–0.4999 (or any interval of this size) corresponds to inheriting
link 1-2 whereas the intervals 0.50000–0.7499 and 0.7500–0.9999 then would correspond
to the choice of link 1-7 and link 1-3, respectively. Suppose 1-2 is selected, as shown in
the first row of Table 14.8. After 1-2, one parent next uses link 2-3 whereas the other uses
2-4. Therefore, in generating the child, a random choice should be made between these
two options. Suppose 2-4 is selected. (See the second row of Table 14.8.) There now are
three options for the link to follow 1-2-4 because the first parent uses two links (4-3 and
4-5) to connect city 4 in its tour and the second parent uses link 4-6 (link 4-2 is ignored
because city 2 already is in the child’s tour). When randomly selecting one of these op-
tions, suppose 4-3 is chosen to form 1-2-4-3 as the beginning of the child’s tour thus far,
as shown in the third row of Table 14.8.

We now come to an additional feature of this process for generating a child’s tour,
namely, using a sub-tour reversal from a parent. 

Inheriting a Sub-Tour Reversal: One other possibility for a link inherited by
a child is a link that is needed to complete a sub-tour reversal that the child’s
tour is making in a portion of a parent’s tour.

To illustrate how this possibility can arise, note that the next city beyond 1-2-4-3 needs
to be one of the cities not yet visited (city 5, 6, or 7), but the first parent does not have a
link from city 3 to any of these other cities. The reason is that the child is using a sub-
tour reversal (reversing 3-4) of this parent’s tour, 1-2-3-4-5-6-7-1. Completing this sub-
tour reversal requires adding the link 3-5, so this becomes one of the options for the next

■ TABLE 14.8 Illustration of the process of generating a child for the traveling
salesman problem example

Parent P1: 1-2-3-4-5-6-7-1
Parent P2: 1-2-4-6-5-7-3-1

Link Options Random Selection Tour

1 1-2, 1-7, 1-2, 1-3 1-2 1-2
2 2-3, 2-4 2-4 1-2-4
3 4-3, 4-5, 4-6 4-3 1-2-4-3
4 3-5*, 3-7 3-5* 1-2-4-3-5
5 5-6, 5-6, 5-7 5-6 1-2-4-3-5-6
6 6-7 6-7 1-2-4-3-5-6-7
7 7-1 7-1 1-2-4-3-5-6-7-1

*A link that completes a sub-tour reversal
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link in the child’s tour. The other option is link 3-7 provided by the second parent (link 3-1
is not an option because city 1 must come at the very end of the tour). One of these two op-
tions is selected randomly. Suppose the choice is link 3-5, which provides 1-2-4-3-5 as the
child’s tour thus far, as shown in the fourth row of Table 14.8.

To continue this tour, the options for the next link are 5-6 (provided by both parents)
and 5-7 (provided by the second parent). Suppose that the random choice among 5-6, 5-6,
and 5-7 is 5-6, so that the tour thus far is 1-2-4-3-5-6. (See the fifth row of Table 14.8.)
Since the only city not yet visited is city 7, link 6-7 is automatically added next, followed
by link 7-1 to return to home base. Thus, as shown in the last row of Table 14.8, the com-
plete tour for the child is

C1: 1-2-4-3-5-6-7-1

Figure 14.5 in Sec. 14.1 displays how closely this child resembles the first parent, since
the only difference is the sub-tour reversal obtained by reversing 3-4 in the parent.

If link 5-7 had been chosen instead to follow 1-2-4-3-5, the tour would have been com-
pleted automatically as 1-2-4-3-5-7-6-1. However, there is no link 6-1 (see Fig. 14.4), so
a dead end is reached at city 6. When this happens, a miscarriage occurs and the entire
process needs to be restarted from the beginning with new random numbers until a child
with a complete tour is obtained. Then this process is repeated to obtain the second child.

We now need to add one more feature—the possibility of mutations—to complete the
description of the process of generating children. 

Mutations of Inherited Links: Whenever a particular link normally would be
inherited from a parent of a child, there is a small possibility that a mutation will
occur that will reject that link and instead randomly select one of the other links
from the current city to another city not already on the tour, regardless of whether
that link is used by either parent.

Our genetic algorithm for traveling salesman problems implemented in your IOR Tutor-
ial uses a probability of 0.1 that a mutation will occur each time the next link in the child’s
tour needs to be selected. Thus, whenever the corresponding random number is less than
0.1000, the choice of the link made in the normal manner described above is rejected (if
any other possible choice exists). Instead, all the other links from the current city to a city
not already in the tour (including links not provided by either parent) are identified, and
one of these links is randomly selected to be the next link in the tour. For example, sup-
pose that a mutation occurs when generating the very first link for the child. Even though
1-2 had been the random choice as the first link, this link now would be rejected because
of the mutation. Since city 1 also has links to cities 3 and 7 (see Fig. 14.4), either link 
1-3 or link 1-7 would be randomly selected to be the first tour. (Since the parents end
their tours by using one or the other of these links, this can be viewed in this case as start-
ing the child’s tour by reversing the direction of one of the parents’ tours.)

We now can outline the general procedure for generating a child from a pair of parents.

Procedure for Generating a Child

1. Initialization: To start, designate the home base city as the current city.
2. Options for the next link: Identify all the links from the current city to another city

not already in the child’s tour that are used by either parent in either direction. Also,
add any link that is needed to complete a sub-tour reversal that the child’s tour is mak-
ing in a portion of a parent’s tour.

3. Selection of the next link: Use a random number to randomly select one of the op-
tions identified in step 2.

4. Check for a mutation: If the next random number is less than 0.1000, a mutation occurs
and the link selected in step 3 is rejected (unless there is no other link from the current
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city to another city not already in the tour). If the link is rejected, identify all the other
links from the current city to another city not already in the tour (including links not used
by either parent). Use a random number to randomly select one of these other links.

5. Continuation: Add the link selected in step 3 (if no mutation occurs) or in step 4 (if
a mutation occurs) to the end of the child’s current incomplete tour and redesignate
the city at the end of this link as the current city. If there still remains more than one
city not included on the tour (plus the return to the home base city), return to steps
2–4 to select the next link. Otherwise, go to step 6.

6. Completion: With only one city remaining that has not yet been added to the child’s tour,
add the link from the current city to this remaining city. Then add the link from this last
city back to the home base city to complete the tour for the child. However, if the needed
link does not exist, a miscarriage occurs and the procedure must restart again from step 1.

This procedure is applied for each pair of parents to obtain each of their two children.
The genetic algorithm for traveling salesman problems in your IOR Tutorial incorpo-

rates this procedure for generating children as part of the overall algorithm outlined near the
beginning of this section. Table 14.9 shows the results from applying this algorithm to the
example through the initialization step and the first iteration of the overall algorithm. Be-
cause of the randomness built into the algorithm, its intermediate results (and perhaps the
final best solution as well) will vary each time the algorithm is run to its completion. (To
explore this further, Prob. 14.4-7 asks you to use your IOR Tutorial to apply the complete
algorithm to this example several times.) 

The fact that the example has only a relatively small number of distinct feasible so-
lutions is reflected in the results shown in Table 14.9. Members 1, 4, 6, and 10 are iden-
tical, as are members 2, 7, and 9 (except that member 2 takes its tour in the reverse
direction). Therefore, the random generation of the 10 members of the initial population
resulted in only five distinct feasible solutions. Similarly, four of the six children gener-
ated (members 12, 14, 15, and 16) are identical to one of its parents (except that member
14 takes its tour in the opposite direction of its first parent). Two of the children (members

■ TABLE 14.9 One application of the genetic algorithm in IOR Tutorial to the
traveling salesman problem example through (a) the initialization
step and (b) iteration 1

Member Initial Population Distance

1 1-2-4-6-5-3-7-1 64
2 1-2-3-5-4-6-7-1 65
3 1-7-5-6-4-2-3-1 65
4 1-2-4-6-5-3-7-1 64

(a) 5 1-3-7-5-6-4-2-1 66
6 1-2-4-6-5-3-7-1 64
7 1-7-6-4-5-3-2-1 65
8 1-3-7-6-5-4-2-1 69
9 1-7-6-4-5-3-2-1 65

10 1-2-4-6-5-3-7-1 64

Member Parents Children Member Distance

1 1-2-4-6-5-3-7-1 1-2-4-5-6-7-3-1 11 69
7 1-7-6-4-5-3-2-1 1-2-4-6-5-3-7-1 12 64

(b) 2 1-2-3-5-4-6-7-1 1-2-4-5-6-7-3-1 13 69
6 1-2-4-6-5-3-7-1 1-7-6-4-5-3-2-1 14 65

4 1-2-4-6-5-3-7-1 1-2-4-6-5-3-7-1 15 64
5 1-3-7-5-6-4-2-1 1-3-7-5-6-4-2-1 16 66
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12 and 15) have a better fitness (shorter distance) than one of its parents, but neither im-
proved upon both of its parents. None of these children provide an optimal solution (which
has a distance of 63). This illustrates the fact that a genetic algorithm may require many
generations (iterations) on some problems before the survival-of-the-fittest phenomenon re-
sults in clearly superior populations.

The Solved Examples section of the book’s website provides another example of
applying this genetic algorithm to a traveling salesman problem. This problem has a
somewhat larger number of distinct feasible solutions than the above example, so there
is a greater diversity in its initial population, the resulting parents, and their children.

Genetic algorithms are well suited for dealing with the traveling salesman problem
and good progress has been made on developing considerably more sophisticated ver-
sions than the one described above. In fact, at the time of this writing, a particularly pow-
erful version that has successfully obtained high-quality solutions for problems with up
to 200,000 cities (!) has just been announced.2

■ 14.5 CONCLUSIONS
Some optimization problems (including various combinatorial optimization problems) are
sufficiently complex that it may not be possible to solve for an optimal solution with the
kinds of exact algorithms presented in previous chapters. In such cases, heuristic methods
are commonly used to search for a good (but not necessarily optimal) feasible solution.
Several metaheuristics are available that provide a general structure and strategy guidelines
for designing a specific heuristic method to fit a particular problem. A key feature of these
metaheuristic procedures is their ability to escape from local optima and perform a robust
search of a feasible region.

This chapter has introduced three prominent types of metaheuristics. Tabu search
moves from the current trial solution to the best neighboring trial solution at each itera-
tion, much like a local improvement procedure, except that it allows a nonimproving 
move when an improving move is not available. It then incorporates short-term memory
of the past search to encourage moving toward new parts of the feasible region rather than
cycling back to previously considered solutions. In addition, it may employ intensifica-
tion and diversification strategies based on long-term memory to focus the search on
promising continuations. Simulated annealing also moves from the current trial solution
to a neighboring trial solution at each iteration while occasionally allowing nonimprov-
ing moves. However, it selects the neighboring trial solution randomly and then uses the
analogy to a physical annealing process to determine if this neighbor should be rejected
as the next trial solution if it is not as good as the current trial solution. The third type of
metaheuristic, genetic algorithms, works with an entire population of trial solutions at
each iteration. It then uses the analogy to the biological theory of evolution, including the
concept of survival of the fittest, to discard some of the trial solutions (especially the
poorer ones) and replace them by some new ones. This replacement process has pairs of
surviving members of the population pass on some of their features to pairs of new mem-
bers just as if they were parents reproducing children.

For the sake of concreteness, we have described one basic algorithm for each meta-
heuristic and then adapted this algorithm to two specific types of problems (including the
traveling salesman problem), using simple examples. However, many variations of each
algorithm also have been developed by researchers and used by practitioners to better fit
the characteristics of the complex problems being addressed. For example, literally dozens

2Nagata, Y., and S. Kobayashi: “A Powerful Genetic Algorithm Using Edge Assembly Crossover for the 
Traveling Salesman Problem,” INFORMS Journal on Computing, 25(2): 346–369, Spring 2013.
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of variations of the basic genetic algorithm for traveling salesman problems presented in
Sec. 14.4 (including different procedures for generating children) have been proposed, and
research is continuing to determine what is most effective. (Some of the best methods for
traveling salesman problems use special “k-opt” and “ejection chain” strategies that are
carefully tailored to take advantage of the problem structure.) Therefore, the important
lessons from this chapter are the basic concepts and intuition incorporated into each meta-
heuristic rather than the details of the particular algorithms presented here.

There are several other important types of metaheuristics in addition to the three that
are featured in this chapter. These include, for example, ant colony optimization, scatter
search, and artificial neural networks. (These suggestive names give a hint of the key idea
that drives each of these metaheuristics.) Selected Reference 3 provides a thorough cov-
erage of both these other metaheuristics and the three presented here.

Some heuristic algorithms actually are a hybrid of different types of metaheuristics
in order to combine their better features. For example, short-term tabu search (without a
diversification component) is very good at finding local optima but not as good at thor-
oughly exploring the various parts of a feasible region to find the part containing the global
optimum, whereas a genetic algorithm has the opposite characteristics. Therefore, an im-
proved algorithm sometimes can be obtained by beginning with a genetic algorithm to try
to find the tallest hills (when the objective is maximization) and then switch to a basic
tabu search at the very end to climb quickly to the top of these hills. The key for design-
ing an effective heuristic algorithm is to incorporate whatever ideas work best for the prob-
lem at hand rather than adhering rigidly to the philosophy of a particular metaheuristic.
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■ LEARNING AIDS FOR THIS CHAPTER ON OUR WEBSITE (www.mhhe.com/hillier)
Solved Examples:

Examples for Chapter 14

Automatic Procedures in IOR Tutorial:

Tabu Search Algorithm for Traveling Salesman Problems
Simulated Annealing Algorithm for Traveling Salesman Problems
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Simulated Annealing Algorithm for Nonlinear Programming Problems
Genetic Algorithm for Integer Nonlinear Programming Problems
Genetic Algorithm for Traveling Salesman Problems

Glossary for Chapter 14

See Appendix 1 for documentation of the software.

■ PROBLEMS
The symbol A to the left of some of the problems (or their parts)
has the following meaning:

A: You should use the corresponding automatic procedure in
IOR Tutorial. The printout will record the results obtained
at each iteration.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

Instructions for Obtaining Random Numbers
For each problem or its part where random numbers are needed,
obtain them from the consecutive random digits in Table 20.3 in
Sec. 20.3 as follows. Start from the front of the top row of the table
and form five-digit random numbers by placing a decimal point in
front of each group of five random digits (0.09656, 0.96657, etc.)
in the order that you need random numbers. Always restart from
the front of the top row for each new problem or its part.

14.1-1. Consider the traveling salesman problem shown below,
where city 1 is the home city.

(d) Apply the sub-tour reversal algorithm to this problem when
starting with 1-4-2-3-5-1 as the initial trial solution.

14.1-2. Reconsider the example of a traveling salesman problem
shown in Fig. 14.4.
(a) When the sub-tour reversal algorithm was applied to this prob-

lem in Sec. 14.1, the first iteration resulted in a tie for which
of two sub-tour reversals (reversing 3-4 or 4-5) provided the
largest decrease in the distance of the tour, so the tie was bro-
ken arbitrarily in favor of the first reversal. Determine what
would have happened if the second of these reversals (revers-
ing 4-5) had been chosen instead.

(b) Apply the sub-tour reversal algorithm to this problem when
starting with 1-2-4-5-6-7-3-1 as the initial trial solution.

14.1-3. Consider the traveling salesman problem shown below,
where city 1 is the home city.

2

5

3

4

1

8

11

4

8

5

7

4 6

3

6

(a) List all the possible tours, except exclude those that are sim-
ply the reverse of previously listed tours. Calculate the distance
of each of these tours and thereby identify the optimal tour.

(b) Starting with 1-2-3-4-5-1 as the initial trial solution, apply the
sub-tour reversal algorithm to this problem.

(c) Apply the sub-tour reversal algorithm to this problem when
starting with 1-2-4-3-5-1 as the initial trial solution.

2

5

3

4
1 8

15

12

8

7 7

13

16

13

9

6

7 9

(a) List all the possible tours, except exclude those that are sim-
ply the reverse of previously listed tours. Calculate the dis-
tance of each of these tours and thereby identify the optimal
solution.

(b) Starting with 1-2-3-4-5-6-1 as the initial trial solution, apply
the sub-tour reversal algorithm to this problem.

(c) Apply the sub-tour reversal algorithm to this problem when
starting with 1-2-5-4-3-6-1 as the initial trial solution.

14.2-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 14.2.
Briefly describe how tabu search was applied in this study. Then
list the various financial and nonfinancial benefits that resulted
from this study.
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City 2 3 4 5 6 7 8

1 14 15 — — — — 17
2 13 14 20 — — 21
3 11 21 17 9 9
4 11 10 8 20
5 15 18 —
6 9 —
7 13

14.2-2.* Consider the minimum spanning tree problem depicted
below, where the dashed lines represent the potential links that
could be inserted into the network and the number next to each
dashed line represents the cost associated with inserting that
particular link.

City 1 is the home city. Starting with each of the initial trial solu-
tions listed below, apply the basic tabu search algorithm in your
IOR Tutorial to this problem. In each case, count the number of
times that the algorithm makes a nonimproving move. Also point
out any tabu moves that are made anyway because they result in
the best trial solution found so far. 
(a) Use 1-2-3-4-5-6-7-8-1 as the initial trial solution.
(b) Use 1-2-5-6-7-4-8-3-1 as the initial trial solution.
(c) Use 1-3-2-5-6-4-7-8-1 as the initial trial solution.

A 14.2-7. Consider the 10-city traveling salesman problem
whose links have the associated distances shown in the follow-
ing table.

A

B

C D

E

12

4

16 24

0

36
18

This problem also has the following two constraints:

Constraint 1: No more than one of the three links—AB, BC,
and AE—can be included.

Constraint 2: Link AB can be included only if link BD also
is included.

Starting with the initial trial solution where the inserted links are
AB, AC, AE, and CD, apply the basic tabu search algorithm pre-
sented in Sec. 14.2 to this problem.

14.2-3. Reconsider the example of a constrained minimum span-
ning tree problem presented in Sec. 14.2 (see Fig. 14.7(a) for the
data before introducing the constraints). Starting with a different
initial trial solution, namely, the one with links AB, AD, BE, and
CD, apply the basic tabu search algorithm again to this problem.

14.2-4. Reconsider the example of an unconstrained minimum
spanning tree problem given in Sec. 10.4. Suppose that the fol-
lowing constraints are added to the problem:

Constraint 1: Either link AD or link ET must be included.

Constraint 2: At most one of the three links—AO, BC, and
DE—can be included.

Starting with the optimal solution for the unconstrained problem
given at the end of Sec. 10.4 as the initial trial solution, apply the
basic tabu search algorithm to this problem.

14.2-5. Reconsider the traveling salesman problem shown in Prob.
14.1-1. Starting with 1-2-4-3-5-1 as the initial trial solution, apply
the basic tabu search algorithm by hand to this problem.

A 14.2-6. Consider the 8-city traveling salesman problem whose
links have the associated distances shown in the following table
(where a dash indicates the absence of a link).

City 2 3 4 5 6 7 8 9 10

1 13 25 15 21 9 19 18 8 15
2 26 21 29 21 31 23 16 10
3 11 18 23 28 44 34 35
4 10 13 19 34 24 29
5 12 11 37 27 36
6 10 25 14 25
7 32 23 35
8 10 16
9 14

City 1 is the home city. Starting with each of the initial trial solu-
tions listed below, apply the basic tabu search algorithm in your
IOR Tutorial to this problem. In each case, count the number of
times that the algorithm makes a nonimproving move. Also point
out any tabu moves that are made anyway because they result in
the best trial solution found so far.
(a) Use 1-2-3-4-5-6-7-8-9-10-1 as the initial trial solution.
(b) Use 1-3-4-5-7-6-9-8-10-2-1 as the initial trial solution.
(c) Use 1-9-8-10-2-4-3-6-7-5-1 as the initial trial solution.

14.3-1. While applying a simulated annealing algorithm to a cer-
tain problem, you have come to an iteration where the current value
of T is T � 2 and the value of the objective function for the current
trial solution is 30. This trial solution has four immediate neighbors
and their objective function values are 29, 34, 31, and 24. For each
of these four immediate neighbors in turn, you wish to determine the
probability that the move selection rule would accept this immediate
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neighbor if it is randomly selected to become the current candidate
to be the next trial solution.
(a) Determine this probability for each of the immediate neigh-

bors when the objective is maximization of the objective
function.

(b) Determine this probability for each of the immediate neighbors
when the objective is minimization of the objective function.

A 14.3-2. Because of its use of random numbers, a simulated an-
nealing algorithm will provide slightly different results each time
it is run. Table 14.5 shows one application of the basic simulated
annealing algorithm in IOR Tutorial to the example of a traveling
salesman problem depicted in Fig. 14.4. Starting with the same ini-
tial trial solution (1-2-3-4-5-6-7-1), use your IOR Tutorial to apply
this same algorithm to this same example five more times. How many
times does it again find the optimal solution (1-3-5-7-6-4-2-1 or,
equivalently, 1-2-4-6-7-5-3-1)?

14.3-3. Reconsider the traveling salesman problem shown in
Prob. 14.1-1. Using 1-2-3-4-5-1 as the initial trial solution, you
are to follow the instructions below for applying the basic sim-
ulated annealing algorithm presented in Sec. 14.3 to this 
problem.
(a) Perform the first iteration by hand. Follow the instructions

given at the beginning of the Problems section to obtain the
needed random numbers. Show your work, including the use
of the random numbers.

A (b) Use your IOR Tutorial to apply this algorithm. Observe the
progress of the algorithm and record for each iteration how
many (if any) candidates to be the next trial solution are re-
jected before one is accepted. Also count the number of it-
erations where a nonimproving move is accepted.

A 14.3-4. Follow the instructions of Prob. 14.3-3 for the traveling
salesman problem described in Prob. 14.2-6, using 1-2-3-4-5-6-7-8-1
as the initial trial solution.

A 14.3-5. Follow the instructions of Prob. 14.3-3 for the traveling
salesman problem described in Prob. 14.2-7, using 1-9-8-10-2-4-
3-6-7-5-1 as the initial trial solution.

A 14.3-6. Because of its use of random numbers, a simulated an-
nealing algorithm will provide slightly different results each time
it is run. Table 14.6 shows one application of the basic simulated
annealing algorithm in IOR Tutorial to the nonlinear programming
example introduced in Sec. 14.1. Starting with the same initial trial
solution (x � 15.5), use your IOR Tutorial to apply this same al-
gorithm to this same example five more times. What is the best so-
lution found in these five applications? Is it closer to the optimal
solution (x � 20 with f(x) � 4,400,000) than the best solution
shown in Table 14.6?

14.3-7. Consider the following nonconvex programming problem.

Maximize f(x) � x3 � 60x2 � 900x � 100,

subject to

0 � x � 31.

(a) Use the first and second derivatives of f(x) to determine the
critical points (along with the end points of the feasible region)
where x is either a local maximum or a local minimum.

(b) Roughly plot the graph of f(x) by hand over the feasible region.
(c) Using x � 15.5 as the initial trial solution, perform the first

iteration of the basic simulated annealing algorithm pre-
sented in Sec. 14.3 by hand. Follow the instructions given
at the beginning of the Problems section to obtain the needed
random numbers. Show your work, including the use of the
random numbers.

A (d) Use your IOR Tutorial to apply this algorithm, starting with
x � 15.5 as the initial trial solution. Observe the progress of
the algorithm and record for each iteration how many (if any)
candidates to be the next trial solution are rejected before
one is accepted. Also count the number of iterations where
a nonimproving move is accepted.

14.3-8. Consider the example of a nonconvex programming prob-
lem presented in Sec. 13.10 and depicted in Fig. 13.18.
(a) Using x � 2.5 as the initial trial solution, perform the first it-

eration of the basic simulated annealing algorithm presented in
Sec. 14.3 by hand. Follow the instructions given at the beginning
of the Problems section to obtain the random numbers. Show
your work, including the use of the random numbers.

A (b) Use your IOR Tutorial to apply this algorithm, starting with
x � 2.5 as the initial trial solution. Observe the progress of
the algorithm and record for each iteration how many (if
any) candidates to be the next trial solution are rejected be-
fore one is accepted. Also count the number of iterations
where a nonimproving move is accepted.

A 14.3-9. Follow the instructions of Prob. 14.3-8 for the follow-
ing nonconvex programming problem when starting with x � 25
as the initial trial solution.

Maximize f(x) � x6 � 136x5 � 6800x4 � 155,000x3

� 1,570,000x2 � 5,000,000x,

subject to

0 � x � 50.

A 14.3-10. Follow the instructions of Prob. 14.3-8 for the follow-
ing nonconvex programming problem when starting with (x1, x2) �
(18, 25) as the initial trial solution.

Maximize f(x1, x2) � x5
1 � 81x4

1 � 2330x3
1 � 28,750x2

1

� 150,000x1 � 0.5x5
2 � 65x4

2

� 2950x3
2 � 53,500x2

2 � 305,000x2,

subject to

x1 � 2x2 � 110
3x1 � x2 � 120

and

0 � x1 � 36, 0 � x2 � 50.

14.4-1. For each of the following pairs of parents, generate their
two children when applying the basic genetic algorithm presented
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in Sec. 14.4 to an integer nonlinear programming problem involv-
ing only a single variable x, which is restricted to integer values
over the interval 0 � x � 63. (Follow the instructions given at the
beginning of the Problems section to obtain the needed random
numbers, and then show your use of these random numbers.)
(a) The parents are 010011 and 100101.
(b) The parents are 000010 and 001101.
(c) The parents are 100000 and 101000.

14.4-2.* Consider an 8-city traveling salesman problem (cities 1,
2, . . . , 8) where city 1 is the home city and links exist between
all pairs of cities. For each of the following pairs of parents, gen-
erate their two children when applying the basic genetic algorithm
presented in Sec. 14.4. (Follow the instructions given at the be-
ginning of the Problems section to obtain the needed random num-
bers, and then show your use of these random numbers.)
(a) The parents are 1-2-3-4-7-6-5-8-1 and 1-5-3-6-7-8-2-4-1.
(b) The parents are 1-6-4-7-3-8-2-5-1 and 1-2-5-3-6-8-4-7-1.
(c) The parents are 1-5-7-4-6-2-3-8-1 and 1-3-7-2-5-6-8-4-1.

A 14.4-3. Table 14.7 shows the application of the basic genetic al-
gorithm described in Sec. 14.4 to an integer nonlinear program-
ming example through the initialization step and the first iteration.
(a) Use your IOR Tutorial to apply this same algorithm to this

same example, starting from another randomly selected initial
population and proceeding to the end of the algorithm. Does
this application again obtain the optimal solution (x � 20), just
as was found during the first iteration in Table 14.7?

(b) Because of its use of random numbers, a genetic algorithm will
provide slightly different results each time it is run. Use your
IOR Tutorial to apply the basic genetic algorithm described in
Sec. 14.4 to this same example five more times. How many
times does it again find the optimal solution (x � 20)?

14.4-4. Reconsider the nonconvex programming problem shown in
Prob. 14.3-7. Suppose now that the variable x is restricted to be an
integer.
(a) Perform the initialization step and the first iteration of the

basic genetic algorithm presented in Sec. 14.4 by hand. Fol-
low the instructions given at the beginning of the Problems
section to obtain the needed random numbers. Show your
work, including the use of the random numbers.

A (b) Use your IOR Tutorial to apply this algorithm. Observe the
progress of the algorithm and record the number of times that
a pair of parents give birth to a child whose fitness is better
than for both parents. Also count the number of iterations where
the best solution found is better than any previously found.

A 14.4-5. Follow the instructions of Prob. 14.4-4 for the noncon-
vex programming problem shown in Prob. 14.3-9 when the vari-
able x is restricted to be an integer.

A 14.4-6. Follow the instructions of Prob. 14.4-4 for the noncon-
vex programming problem shown in Prob. 14.3-10 when both of
the variables x1 and x2 are restricted to be integer.

A 14.4-7. Table 14.9 shows the application of the basic genetic al-
gorithm described in Sec. 14.4 to the example of a traveling sales-
man problem depicted in Fig. 14.4 through the initialization step
and first iteration of the algorithm.
(a) Use your IOR Tutorial to apply this same algorithm to this

same example, starting from another randomly selected initial
population and proceeding to the end of the algorithm. Does
this application find the optimal solution (1-3-5-7-6-4-2-1 or,
equivalently, 1-2-4-6-7-5-3-1)?

(b) Because of its use of random numbers, a genetic algorithm will
provide slightly different results each time it is run. Use your
IOR Tutorial to apply the basic genetic algorithm described in
Sec. 14.4 to this same example five more times. How many
times does it find the optimal solution?

14.4-8. Reconsider the traveling salesman problem shown in
Prob. 14.1-1.
(a) Perform the initialization step and the first iteration of the

basic genetic algorithm presented in Sec. 14.4 by hand. Fol-
low the instructions given at the beginning of the Problems
section to obtain the needed random numbers. Show your
work, including the use of the random numbers.

A (b) Use your IOR Tutorial to apply this algorithm. Observe the
progress of the algorithm and record the number of times
that a pair of parents gives birth to a child whose tour has
a shorter distance than for both parents. Also count the num-
ber of iterations where the best solution found has a shorter
distance than any previously found.

A 14.4-9. Follow the instructions of Prob. 14.4-8 for the traveling
salesman problem described in Prob. 14.2-6.

A 14.4-10. Follow the instructions of Prob. 14.4-8 for the travel-
ing salesman problem described in Prob. 14.2-7.

14.4-11. Read the referenced article that fully describes the OR
study summarized in the application vignette presented in Sec.
14.4. Briefly describe how a genetic algorithm was applied in this
study. Then list the various financial and nonfinancial benefits that
resulted from this study.

A 14.5-1. Use your IOR Tutorial to apply the basic algorithm for
all three metaheuristics presented in this chapter to the traveling
salesman problem described in Prob. 14.2-6. (Use 1-2-3-4-5-6-7-
8-1 as the initial trial solution for the tabu search and simulated
annealing algorithms.) Which metaheuristic happened to provide
the best solution on this particular problem?

A 14.5-2. Use your IOR Tutorial to apply the basic algorithm for
all three metaheuristics presented in this chapter to the traveling
salesman problem described in Prob. 14.2-7. (Use 1-2-3-4-5-6-7-8-
9-10-1 as the initial trial solution for the tabu search and simulated
annealing algorithms.) Which metaheuristic happened to provide
the best solution on this particular problem?
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15C H A P T E R

Game Theory

L ife is full of conflict and competition. Numerous examples involving adversaries in
conflict include parlor games, military battles, political campaigns, advertising and

marketing campaigns by competing business firms, and so forth. A basic feature in many
of these situations is that the final outcome depends primarily upon the combination of
strategies selected by the adversaries. Game theory is a mathematical theory that deals
with the general features of competitive situations like these in a formal, abstract way. It
places particular emphasis on the decision-making processes of the adversaries.

Because competitive situations are so ubiquitous, game theory has applications in a
variety of areas, including in business and economics. For example, Selected Reference 2
presents various business applications of game theory. The 1994 Nobel Prize for Economic
Sciences was won by John F. Nash, Jr. (whose story is told in the movie A Beautiful Mind ),
John C. Harsanyi, and Reinhard Selton for their analysis of equilibria in the theory of 
noncooperative games. Then Robert J. Aumann and Thomas C. Schelling won the 2005
Nobel Prize for Economic Sciences for enhancing our understanding of conflict and co-
operation through game-theory analysis.

As briefly surveyed in Sec. 15.6, research on game theory continues to delve into
rather complicated types of competitive situations. However, the focus in this chapter is
on the simplest case, called two-person, zero-sum games. As the name implies, these
games involve only two adversaries or players (who may be armies, teams, firms, and so
on). They are called zero-sum games because one player wins whatever the other one
loses, so that the sum of their net winnings is zero.

Section 15.1 introduces the basic model for two-person, zero-sum games, and the next
four sections describe and illustrate different approaches to solving such games. The chap-
ter concludes by mentioning some other kinds of competitive situations that are dealt with
by other branches of game theory.

■ 15.1 THE FORMULATION OF TWO-PERSON, ZERO-SUM GAMES

To illustrate the basic characteristics of two-person, zero-sum games, consider the game
called odds and evens. This game consists simply of each player simultaneously showing
either one finger or two fingers. If the number of fingers matches, so that the total number
for both players is even, then the player taking evens (say, player 1) wins the bet (say, $1)

661
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from the player taking odds (player 2). If the number does not match, player 1 pays $1 to
player 2. Thus, each player has two strategies: to show either one finger or two fingers.
The resulting payoff to player 1 in dollars is shown in the payoff table given in Table 15.1.

In general, a two-person game is characterized by

1. The strategies of player 1.
2. The strategies of player 2.
3. The payoff table.

Before the game begins, each player knows the strategies she or he has available, the ones
the opponent has available, and the payoff table. The actual play of the game consists of
each player simultaneously choosing a strategy without knowing the opponent’s choice.

A strategy may involve only a simple action, such as showing a certain number of
fingers in the odds and evens game. On the other hand, in more complicated games in-
volving a series of moves, a strategy is a predetermined rule that specifies completely
how one intends to respond to each possible circumstance at each stage of the game. For
example, a strategy for one side in chess would indicate how to make the next move for
every possible position on the board, so the total number of possible strategies would be
astronomical. Applications of game theory normally involve far less complicated com-
petitive situations than chess does, but the strategies involved can be fairly complex.

The payoff table shows the gain (positive or negative) for player 1 that would result
from each combination of strategies for the two players. It is given only for player 1 because
the table for player 2 is just the negative of this one, due to the zero-sum nature of the game.

The entries in the payoff table may be in any units desired, such as dollars, provided
that they accurately represent the utility to player 1 of the corresponding outcome. How-
ever, utility is not necessarily proportional to the amount of money (or any other commod-
ity) when large quantities are involved. For example, $2 million (after taxes) is probably
worth much less than twice as much as $1 million to a poor person. In other words, given
the choice between (1) a 50 percent chance of receiving $2 million rather than nothing
and (2) being sure of getting $1 million, a poor person probably would much prefer the
latter. On the other hand, the outcome corresponding to an entry of 2 in a payoff table
should be “worth twice as much” to player 1 as the outcome corresponding to an entry
of 1. Thus, given the choice, he or she should be indifferent between a 50 percent chance
of receiving the former outcome (rather than nothing) and definitely receiving the latter
outcome instead.1

A primary objective of game theory is the development of rational criteria for se-
lecting a strategy. Two key assumptions are made:

1. Both players are rational.
2. Both players choose their strategies solely to promote their own welfare (no compas-

sion for the opponent).

■ TABLE 15.1 Payoff table for 
the odds and 
evens game

Player 2

Strategy 1 2

Player 1
1 1 �1
2 �1 1

1See Sec. 16.6 for a further discussion of the concept of utility.
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Game theory contrasts with decision analysis (see Chap. 16), where the assumption
is that the decision maker is playing a game with a passive opponent—nature—which
chooses its strategies in some random fashion.

We shall develop the standard game theory criteria for choosing strategies by means
of illustrative examples. In particular, the end of the next section describes how game the-
ory says the odds and evens game should be played. (Problems 15.3-1, 15.4-1, and 15.5-1
also invite you to apply the techniques developed in this chapter to solve for the optimal
way to play this game.) In addition, the next section presents a prototype example that il-
lustrates the formulation of a two-person, zero-sum game and its solution in some simple
situations. A more complicated variation of this game is then carried into Sec. 15.3 to de-
velop a more general criterion. Sections 15.4 and 15.5 describe a graphical procedure and
a linear programming formulation for solving such games.

15.2 SOLVING SIMPLE GAMES—A PROTOTYPE EXAMPLE 663

2We use only his or only her in some examples and problems for ease of reading: we do not mean to imply that
only men or only women are engaged in the various activities.

■ 15.2 SOLVING SIMPLE GAMES—A PROTOTYPE EXAMPLE

Two politicians are running against each other for the U.S. Senate. Campaign plans must
now be made for the final two days, which are expected to be crucial because of the close-
ness of the race. Therefore, both politicians want to spend these days campaigning in two
key cities, Bigtown and Megalopolis. To avoid wasting campaign time, they plan to travel
at night and spend either one full day in each city or two full days in just one of the cities.
However, since the necessary arrangements must be made in advance, neither politician
will learn his (or her)2 opponent’s campaign schedule until after he has finalized his own.
Therefore, each politician has asked his campaign manager in each of these cities to as-
sess what the impact would be (in terms of votes won or lost) from the various possible
combinations of days spent there by himself and by his opponent. He then wishes to use
this information to choose his best strategy on how to use these two days.

Formulation as a Two-Person, Zero-Sum Game

To formulate this problem as a two-person, zero-sum game, we must identify the two
players (obviously the two politicians), the strategies for each player, and the payoff table.

As the problem has been stated, each player has the following three strategies:

Strategy 1 � spend one day in each city.
Strategy 2 � spend both days in Bigtown.
Strategy 3 � spend both days in Megalopolis.

By contrast, the strategies would be more complicated in a different situation where each
politician learns where his opponent will spend the first day before he finalizes his own plans
for his second day. In that case, a typical strategy would be: Spend the first day in Bigtown;
if the opponent also spends the first day in Bigtown, then spend the second day in Bigtown;
however, if the opponent spends the first day in Megalopolis, then spend the second day in
Megalopolis. There would be eight such strategies, one for each combination of the two first-
day choices, the opponent’s two first-day choices, and the two second-day choices.

Each entry in the payoff table for player 1 represents the utility to player 1 (or the
negative utility to player 2) of the outcome resulting from the corresponding strategies
used by the two players. From the politician’s viewpoint, the objective is to win votes,
and each additional vote (before he learns the outcome of the election) is of equal value
to him. Therefore, the appropriate entries for the payoff table for politician 1 are the
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total net votes won from the opponent (i.e., the sum of the net vote changes in the two
cities) resulting from these two days of campaigning. Using units of 1,000 votes, this
formulation is summarized in Table 15.2. Game theory assumes that both players are
using the same formulation (including the same payoffs for player 1) for choosing their
strategies.

However, we should also point out that this payoff table would not be appropriate if
additional information were available to the politicians. In particular, assume that they
know exactly how the populace is planning to vote two days before the election, so that
each politician knows exactly how many net votes (positive or negative) he needs to switch
in his favor during the last two days of campaigning to win the election. Consequently,
the only significance of the data prescribed by Table 15.2 would be to indicate which
politician would win the election with each combination of strategies. Because the ulti-
mate goal is to win the election and because the size of the plurality is relatively incon-
sequential, the utility entries in the table then should be some positive constant (say, �1)
when politician 1 wins and �1 when he loses. Even if only a probability of winning can
be determined for each combination of strategies, appropriate entries would be the prob-
ability of winning minus the probability of losing because they then would represent ex-
pected utilities. However, sufficiently accurate data to make such determinations usually
are not available, so this example uses the thousands of total net votes won by politician
1 as the entries in the payoff table.

Using the form given in Table 15.2, we give three alternative sets of data for the payoff
table to illustrate how to solve three different kinds of games.

Variation 1 of the Example

Given that Table 15.3 is the payoff table for player 1 (politician 1), which strategy should
each player select?

664 CHAPTER 15 GAME THEORY

■ TABLE 15.2 Form of the payoff table for 
politician 1 for the political 
campaign problem

Total Net Votes Won
by Politician 1

(in Units of 1,000 Votes)

Politician 2

Strategy 1 2 3

1
Politician 1 2

3

■ TABLE 15.3 Payoff table for player 1 for
variation 1 of the political
campaign problem

Player 2

Strategy 1 2 3

1 1 2 4
Player 1 2 1 0 5

3 0 1 �1
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This situation is a rather special one, where the answer can be obtained just by
applying the concept of dominated strategies to rule out a succession of inferior strate-
gies until only one choice remains.

A strategy is dominated by a second strategy if the second strategy is always at
least as good (and sometimes better) regardless of what the opponent does. A
dominated strategy can be eliminated immediately from further consideration.

At the outset, Table 15.3 includes no dominated strategies for player 2. However, for
player 1, strategy 3 is dominated by strategy 1 because the latter has larger payoffs 
(1 � 0, 2 � 1, 4 � �1) regardless of what player 2 does. Eliminating strategy 3 from fur-
ther consideration yields the following reduced payoff table:

Because both players are assumed to be rational, player 2 also can deduce that player 1
has only these two strategies remaining under consideration. Therefore, player 2 now
does have a dominated strategy—strategy 3, which is dominated by both strategies 1
and 2 because they always have smaller losses for player 2 (payoffs to player 1) in this
reduced payoff table (for strategy 1: 1 � 4, 1 � 5; for strategy 2: 2 � 4, 0 � 5). Elim-
inating this strategy yields

At this point, strategy 2 for player 1 becomes dominated by strategy 1 because the
latter is better in column 2 (2 � 0) and equally good in column 1 (1 � 1). Eliminating
the dominated strategy leads to

Strategy 2 for player 2 now is dominated by strategy 1 (1 � 2), so strategy 2 should be
eliminated.

Consequently, both players should select their strategy 1. Player 1 then will receive
a payoff of 1 from player 2 (that is, politician 1 will gain 1,000 votes from politician 2).

If you would like to see another example of solving a game by using the concept
of dominated strategies, one is provided in the Solved Examples section of the book’s
website.

In general, the payoff to player 1 when both players play optimally is referred to as
the value of the game. A game that has a value of 0 is said to be a fair game. Since this
particular game has a value of 1, it is not a fair game.

The concept of a dominated strategy is a very useful one for reducing the size of
the payoff table that needs to be considered and, in unusual cases like this one, actu-
ally identifying the optimal solution for the game. However, most games require an-
other approach to at least finish solving, as illustrated by the next two variations of the
example.

15.2 SOLVING SIMPLE GAMES—A PROTOTYPE EXAMPLE 665

1 2 3

1 1 2 4
2 1 0 5

1 2

1 1 2
2 1 0

1 2

1 1 2
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Variation 2 of the Example

Now suppose that the current data give Table 15.4 as the payoff table for player 1 (politi-
cian 1). This game does not have dominated strategies, so it is not obvious what the play-
ers should do. What line of reasoning does game theory say they should use?

Consider player 1. By selecting strategy 1, he could win 6 or could lose as much as 3.
However, because player 2 is rational and thus will seek a strategy that will protect him-
self from large payoffs to player 1, it seems likely that player 1 would incur a loss by
playing strategy 1. Similarly, by selecting strategy 3, player 1 could win 5, but more probably
his rational opponent would avoid this loss and instead administer a loss to player 1 which
could be as large as 4. On the other hand, if player 1 selects strategy 2, he is guaranteed
not to lose anything and he could even win something. Therefore, because it provides the
best guarantee (a payoff of 0), strategy 2 seems to be a “rational” choice for player 1
against his rational opponent. (This line of reasoning assumes that both players are averse
to risking larger losses than necessary, in contrast to those individuals who enjoy gam-
bling for a large payoff against long odds.)

Now consider player 2. He could lose as much as 5 or 6 by using strategy 1 or 3,
but is guaranteed at least breaking even with strategy 2. Therefore, by the same rea-
soning of seeking the best guarantee against a rational opponent, his apparent choice is
strategy 2.

If both players choose their strategy 2, the result is that both break even. Thus, in this
case, neither player improves upon his best guarantee, but both also are forcing the op-
ponent into the same position. Even when the opponent deduces a player’s strategy, the
opponent cannot exploit this information to improve his position. Stalemate.

The end product of this line of reasoning is that each player should play in such a
way as to minimize his maximum losses whenever the resulting choice of strategy cannot
be exploited by the opponent to then improve his position. This so-called minimax cri-
terion is a standard criterion proposed by game theory for selecting a strategy. In effect,
this criterion says to select a strategy that would be best even if the selection were being
announced to the opponent before the opponent chooses a strategy. In terms of the pay-
off table, it implies that player 1 should select the strategy whose minimum payoff is
largest, whereas player 2 should choose the one whose maximum payoff to player 1 is the
smallest. This criterion is illustrated in Table 15.4, where strategy 2 is identified as the max-
imin strategy for player 1 and strategy 2 is the minimax strategy for player 2. The result-
ing payoff of 0 is the value of the game, so this is a fair game.

Notice the interesting fact that the same entry in this payoff table yields both the max-
imin and minimax values. The reason is that this entry is both the minimum in its row
and the maximum of its column. The position of any such entry is called a saddle point.
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■ TABLE 15.4 Payoff table for player 1 for variation 2 of the political 
campaign problem

Player 2

Strategy 1 2 3 Minimum

1 �3 �2 �6 �3
Player 1 2 �2 �0 �2 �0 ← Maximin value

3 �5 �2 �4 �4

Maximum: 5 �0 �6
↑
Minimax value
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The fact that this game possesses a saddle point was actually crucial in determining
how it should be played. Because of the saddle point, neither player can take advantage
of the opponent’s strategy to improve his own position. In particular, when player 2 pre-
dicts or learns that player 1 is using strategy 2, player 2 would incur a loss instead of
breaking even if he were to change from his original plan of using his strategy 2. Simi-
larly, player 1 would only worsen his position if he were to change his plan. Thus, nei-
ther player has any motive to consider changing strategies, either to take advantage of his
opponent or to prevent the opponent from taking advantage of him. Therefore, since this
is a stable solution (also called an equilibrium solution), players 1 and 2 should exclu-
sively use their maximin and minimax strategies, respectively.

As the next variation illustrates, some games do not possess a saddle point, in which
case a more complicated analysis is required.

Variation 3 of the Example

Late developments in the campaign result in the final payoff table for player 1 (politician 1)
given by Table 15.5. How should this game be played?

Suppose that both players attempt to apply the minimax criterion in the same way as in
variation 2. Player 1 can guarantee that he will lose no more than 2 by playing strategy 1.
Similarly, player 2 can guarantee that he will lose no more than 2 by playing strategy 3.

However, notice that the maximin value (�2) and the minimax value (2) do not coin-
cide in this case. The result is that there is no saddle point.

What are the resulting consequences if both players plan to use the strategies just de-
rived? It can be seen that player 1 would win 2 from player 2, which would make player
2 unhappy. Because player 2 is rational and can therefore foresee this outcome, he would
then conclude that he can do much better, actually winning 2 rather than losing 2, by play-
ing strategy 2 instead. Because player 1 is also rational, he would anticipate this switch
and conclude that he can improve considerably, from �2 to 4, by changing to strategy 2.
Realizing this, player 2 would then consider switching back to strategy 3 to convert a loss
of 4 to a gain of 3. This possibility of a switch would cause player 1 to consider again
using strategy 1, after which the whole cycle would start over again. Therefore, even
though this game is being played only once, any tentative choice of a strategy leaves that
player with a motive to consider changing strategies, either to take advantage of his op-
ponent or to prevent the opponent from taking advantage of him.

In short, the originally suggested solution (player 1 to play strategy 1 and player 2 to
play strategy 3) is an unstable solution, because the payoff table does not have a saddle
point so it is necessary to develop a more satisfactory solution. But what kind of solution
should it be?

15.2 SOLVING SIMPLE GAMES—A PROTOTYPE EXAMPLE 667

■ TABLE 15.5 Payoff table for player 1 for variation 3 of the political 
campaign problem

Player 2

Strategy 1 2 3 Minimum

1 �0 �2 �2 �2
Player 1 2 �5 �4 �3 �3

← Maximin value

3 �2 �3 �4 �4

Maximum: 5 �4 �2
↑
Minimax value
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■ 15.3 GAMES WITH MIXED STRATEGIES

Whenever a game does not possess a saddle point, game theory advises each player to as-
sign a probability distribution over her set of strategies. To express this mathematically, let

xi � probability that player 1 will use strategy i (i � 1, 2, . . . , m),
yj � probability that player 2 will use strategy j ( j � 1, 2, . . . , n),

where m and n are the respective numbers of available strategies. Thus, player 1 would
specify her plan for playing the game by assigning values to x1, x2, . . . , xm. Because these
values are probabilities, they would need to be nonnegative and add to 1. Similarly, the
plan for player 2 would be described by the values she assigns to her decision variables
y1, y2, . . . , yn. These plans (x1, x2, . . . , xm) and (y1, y2, . . . , yn) are usually referred to
as mixed strategies, and the original strategies are then called pure strategies.

When the game is actually played, it is necessary for each player to use one of her
pure strategies. However, this pure strategy would be chosen by using some random de-
vice to obtain a random observation from the probability distribution specified by the mixed
strategy, where this observation would indicate which particular pure strategy to use.

To illustrate, suppose that players 1 and 2 in variation 3 of the political campaign problem
(see Table 15.5) select the mixed strategies (x1, x2, x3) � (�

1
2

�, �
1
2

�, 0) and (y1, y2, y3) � (0, �
1
2

�, �
1
2

�),
respectively. This selection would say that player 1 is giving an equal chance (probabil-
ity of �

1
2

�) of choosing either (pure) strategy 1 or 2, but he is discarding strategy 3 entirely.
Similarly, player 2 is randomly choosing between his last two pure strategies. To play
the game, each player could then flip a coin to determine which of his two acceptable
pure strategies he will actually use.

The key fact seems to be that whenever one player’s strategy is predictable, the op-
ponent can take advantage of this information to improve his position. Therefore, an es-
sential feature of a rational plan for playing a game such as this one is that neither player
should be able to deduce which strategy the other will use. Hence, in this case, rather than
applying some known criterion for determining a single strategy that will definitely be
used, it is necessary to choose among alternative acceptable strategies on some kind of
random basis. By doing this, neither player knows in advance which of his own strategies
will be used, let alone what his opponent will do.

The same situation arises with the odds and evens game introduced in Sec. 15.1. The
payoff table for this game shown in Table 15.1 does not have a saddle point, so the game
does not have a stable solution regarding which strategy (show one finger or two fingers)
each player should choose for each play of the game. In fact, it would be foolish for a
player to always show the same number of fingers, since then the opponent could begin to
always show the number of fingers that would win every time. Even if a player’s strategy
were to become only somewhat predictable because of past tendencies or patterns, the op-
ponent can take advantage of this information to improve his chances of winning. Ac-
cording to game theory, the rational way to play the odds and evens game is to make the
choice of the strategy completely randomly each time. This can be done, for example, by
flipping a coin (without showing the result to the opponent) and then showing, say, one
finger if the coin comes up heads and showing two fingers if the coin comes up tails.

This suggests, in very general terms, the kind of approach that is required for games
lacking a saddle point. In the next section we discuss the approach more fully. Given this
foundation, the following two sections will develop procedures for finding an optimal way
of playing such games. Variation 3 of the political campaign problem will continue to be
used to illustrate these ideas as they are developed.
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Although no completely satisfactory measure of performance is available for evalu-
ating mixed strategies, a very useful one is the expected payoff. By applying the proba-
bility theory definition of expected value, this quantity is

Expected payoff for player 1 � �
m

i�1
�
n

j�1
pijxiyj,

where pij is the payoff if player 1 uses pure strategy i and player 2 uses pure strategy j. In
the example of mixed strategies just given, there are four possible payoffs (�2, 2, 4, �3),
each occurring with a probability of �

1
4

�, so the expected payoff is �
1
4

�(�2 � 2 � 4 � 3) � �
1
4

�.
Thus, this measure of performance does not disclose anything about the risks involved in
playing the game, but it does indicate what the average payoff will tend to be if the game
is played many times.

By using this measure, game theory extends the concept of the minimax criterion to
games that lack a saddle point and thus need mixed strategies. In this context, the minimax
criterion says that a given player should select the mixed strategy that minimizes the maxi-
mum expected loss to himself. Equivalently, when we focus on payoffs (player 1) rather than
losses (player 2), this criterion says to maximin instead, i.e., maximize the minimum expected
payoff to the player. By the minimum expected payoff we mean the smallest possible expected
payoff that can result from any mixed strategy with which the opponent can counter. Thus,
the mixed strategy for player 1 that is optimal according to this criterion is the one that pro-
vides the guarantee (minimum expected payoff) that is best (maximal). (The value of this best
guarantee is the maximin value, denoted by v

�
.) Similarly, the optimal strategy for player 2 is

the one that provides the best guarantee, where best now means minimal and guarantee refers
to the maximum expected loss that can be administered by any of the opponent’s mixed strate-
gies. (This best guarantee is the minimax value, denoted by v�.)

Recall that when only pure strategies were used, games not having a saddle point
turned out to be unstable (no stable solutions). The reason was essentially that v

�
� v�, so

that the players would want to change their strategies to improve their positions. 
Similarly, for games with mixed strategies, it is necessary that v

�
� v� for the optimal so-

lution to be stable. Fortunately, according to the minimax theorem of game theory, this
condition always holds for such games.

Minimax theorem: If mixed strategies are allowed, the pair of mixed strategies
that is optimal according to the minimax criterion provides a stable solution with
v
�

� v� � v (the value of the game), so that neither player can do better by uni-
laterally changing her or his strategy.

One proof of this theorem is included in Sec. 15.5.
Although the concept of mixed strategies becomes quite intuitive if the game is played

repeatedly, it requires some interpretation when the game is to be played just once. In this
case, using a mixed strategy still involves selecting and using one pure strategy (randomly
selected from the specified probability distribution), so it might seem more sensible to ig-
nore this randomization process and just choose the one “best” pure strategy to be used.
However, when a game does not have a saddle point, we have already illustrated in the pre-
ceding section for both variation 3 of the political campaign problem and the odds and evens
game that a player must not allow the opponent to deduce what his strategy will be (i.e., the
solution procedure under the rules of game theory must not definitely identify which pure
strategy will be used when the game is unstable). Furthermore, even if the opponent is able
to use only his knowledge of the tendencies of the first player to deduce probabilities (for
the pure strategy chosen) that are different from those for the optimal mixed strategy, then
the opponent still can take advantage of this knowledge to reduce the expected payoff to the
first player. Therefore, the only way to guarantee attaining the optimal expected payoff v is
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■ TABLE 15.6 Reduced payoff table for player 1 for variation 3 of the political
campaign problem

Player 2

Probability y1 y2 y3

Pure
Probability Strategy 1 2 3

x1 1 0 �2 �2
Player 1

1 � x1 2 5 �4 �3 

(y1, y2, y3) Expected Payoff

(1, 0, 0) 0x1 � 5(1 � x1) � 5 � 5x1

(0, 1, 0) �2x1 � 4(1 � x1) � 4 � 6x1

(0, 0, 1) 2x1 � 3(1 � x1) � �3 � 5x1

to randomly select the pure strategy to be used from the probability distribution for the op-
timal mixed strategy. (Valid statistical procedures for making such a random selection are
discussed in Sec. 20.4.)

Now we need to show how to find the optimal mixed strategy for each player. There
are several methods of doing this. One is a graphical procedure that may be used when-
ever one of the players has only two (undominated) pure strategies; this approach is described
in the next section. When larger games are involved, the usual method is to transform the
problem to a linear programming problem that then can be solved by the simplex method
on a computer; Sec. 15.5 discusses this approach.

■ 15.4 GRAPHICAL SOLUTION PROCEDURE

Consider any game with mixed strategies such that, after dominated strategies are elimi-
nated, one of the players has only two pure strategies. To be specific, let this player be
player 1. Because her mixed strategies are (x1, x2) and x2 � 1 � x1, it is necessary for her
to solve only for the optimal value of x1. However, it is straightforward to plot the ex-
pected payoff as a function of x1 for each of her opponent’s pure strategies. This graph
can then be used to identify the point that maximizes the minimum expected payoff. The
opponent’s minimax mixed strategy can also be identified from the graph.

To illustrate this procedure, consider variation 3 of the political campaign problem
(see Table 15.5). Notice that the third pure strategy for player 1 is dominated by her second,
so the payoff table can be reduced to the form given in Table 15.6. Therefore, for each of
the pure strategies available to player 2, the expected payoff for player 1 will be:

Now plot these expected-payoff lines on a graph, as shown in Fig. 15.1. For any given
values of x1 and (y1, y2, y3), the expected payoff will be the appropriate weighted aver-
age of the corresponding points on these three lines. In particular,

Expected payoff for player 1 � y1(5 � 5x1) � y2(4 � 6x1) � y3(�3 � 5x1).

Remember that player 2 wants to minimize this expected payoff for player 1. Given x1,
player 2 can minimize this expected payoff by choosing the pure strategy that corresponds
to the “bottom” line for that x1 in Fig. 15.1 (either �3 � 5x1 or 4 � 6x1, but never 
5 � 5x1). According to the minimax criterion (which actually is a maximin criterion from
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the viewpoint of player 1), player 1 wants to maximize this minimum expected payoff.
Consequently, player 1 should select the value of x1 where the bottom line peaks, i.e.,
where the (�3 � 5x1) and (4 � 6x1) lines intersect, which yields an expected payoff of

v
�

� v � max {min{�3 � 5x1, 4 � 6x1}}.
0�x1�1

To solve algebraically for this optimal value of x1 at the intersection of the two lines 
�3 � 5x1 and 4 � 6x1, we set

�3 � 5x1 � 4 � 6x1,

which yields x1 � �
1
7
1
�. Thus, (x1, x2) � (�

1
7
1
�, �

1
4
1
�) is the optimal mixed strategy for player 1, and

v
�

� v � �3 � 5��
1
7
1
�� � �

1
2
1
�

is the value of the game.
To find the corresponding optimal mixed strategy for player 2, we now reason as fol-

lows. According to the definition of the minimax value v� and the minimax theorem, the
expected payoff resulting from the optimal strategy (y1, y2, y3) � (y*1, y*2, y*3) will satisfy
the condition

y*1(5 � 5x1) � y*2(4 � 6x1) � y*3(�3 � 5x1) � v� � v � �
1
2
1
�

for all values of x1 (0 � x1 � 1). Furthermore, when player 1 is playing optimally (that
is, x1 � �

1
7
1
�), this inequality will be an equality (by the minimax theorem), so that

�
2
1
0
1
�y*1 � �

1
2
1
�y*2 � �

1
2
1
�y*3 � v � �

1
2
1
�.

Because (y1, y2, y3) is a probability distribution, it is also known that

y*1 � y*2 � y*3 � 1.

Therefore, y*1 � 0 because y*1 � 0 would violate the next-to-last equation; i.e., the ex-
pected payoff on the graph at x1 � �

1
7
1
� would be above the maximin point. (In general, any

15.4 GRAPHICAL SOLUTION PROCEDURE 671

E
xp

ec
te

d 
pa

yo
ff

�4

�3

�2

�1

0

1

2

3

4

5

6

Maximin point 5 � 5x1

4 � 6x1

�3 � 5x1

x1
1
4

1
2

3
4

1.01
4

1
2

3
4

■ FIGURE 15.1
Graphical procedure 
for solving games.
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line that does not pass through the maximin point must be given a zero weight to avoid
increasing the expected payoff above this point.)

Hence,

y*2 (4 � 6x1) � y*3 (�3 � 5x1) 

But y*2 and y*3 are numbers, so the left-hand side is the equation of a straight line, which
is a fixed weighted average of the two “bottom” lines on the graph. Because the ordinate
of this line must equal �

1
2
1
� at x1 � �

1
7
1
�, and because it must never exceed �

1
2
1
�, the line neces-

sarily is horizontal. (This conclusion is always true unless the optimal value of x1 is ei-
ther 0 or 1, in which case player 2 also should use a single pure strategy.) Therefore,

y*2(4 � 6x1) � y*3(�3 � 5x1) � �
1
2
1
�, for 0 � x1 � 1.

Hence, to solve for y*2 and y*3, select two values of x1 (say, 0 and 1), and solve the result-
ing two simultaneous equations. Thus,

�4y*2 � 3y*3 � �
1
2
1
�,

�2y*2 � 2y*3 � �
1
2
1
�,

which has a simultaneous solution of y*2 � �
1
5
1
� and y*3 � �

1
6
1
�. Therefore, the optimal mixed

strategy for player 2 is (y1, y2, y3) � (0, �
1
5
1
�, �

1
6
1
�).

If, in another problem, there should happen to be more than two lines passing
through the maximin point, so that more than two of the y*j values can be greater than
zero, this condition would imply that there are many ties for the optimal mixed strat-
egy for player 2. One such strategy can then be identified by setting all but two of these
y*j values equal to zero and solving for the remaining two in the manner just described.
For the remaining two, the associated lines must have positive slope in one case and
negative slope in the other.

Although this graphical procedure has been illustrated for only one particular prob-
lem, essentially the same reasoning can be used to solve any game with mixed strategies
that has only two undominated pure strategies for one of the players. The Solved 
Examples section of the book’s website provides another example where, in this case, it
is player 2 that has only two undominated strategies, so the graphical solution procedure
is applied initially from the viewpoint of that player.

for 0 � x1 � 1,

for x1 � �
1
7
1
�.

� �
1
2
1
�

� �
1
2
1
�

⎧
⎪
⎨
⎪
⎩
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■ 15.5 SOLVING BY LINEAR PROGRAMMING

Any game with mixed strategies can be solved by transforming the problem to a linear
programming problem. As you will see, this transformation requires little more than ap-
plying the minimax theorem and using the definitions of the maximin value v

�
and mini-

max value v�.
First, consider how to find the optimal mixed strategy for player 1. As indicated in

Sec. 15.3,

Expected payoff for player 1 � �
m

i�1
�
n

j�1
pijxiyj
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and the strategy (x1, x2, . . . , xm) is optimal if

�
m

i�1
�
n

j�1
pijxiyj 	 v

�
� v

for all opposing strategies (y1, y2, . . . , yn). Thus, this inequality will need to hold, e.g., for
each of the pure strategies of player 2, that is, for each of the strategies (y1, y2, . . . , yn)
where one yj � 1 and the rest equal 0. Substituting these values into the inequality yields

�
m

i�1
pijxi 	 v for j � 1, 2, . . . , n,

so that the inequality implies this set of n inequalities. Furthermore, this set of n inequalities
implies the original inequality (rewritten)

�
n

j�1
yj��

m

i�1
pijxi� 	 �

n

j�1
yjv � v,

since

�
n

j�1
yj � 1.

Because the implication goes in both directions, it follows that imposing this set of n lin-
ear inequalities is equivalent to requiring the original inequality to hold for all strategies
(y1, y2, . . . , yn). But these n inequalities are legitimate linear programming constraints,
as are the additional constraints

x1 � x2 � 


 � xm � 1
xi 	 0, for i � 1, 2, . . . , m

that are required to ensure that the xi are probabilities. Therefore, any solution (x1, x2,
. . . , xm) that satisfies this entire set of linear programming constraints is the desired
optimal mixed strategy.

Consequently, the problem of finding an optimal mixed strategy has been reduced to
finding a feasible solution for a linear programming problem, which can be done as de-
scribed in Chap. 4. The two remaining difficulties are that (1) v is unknown and (2) the
linear programming problem has no objective function. Fortunately, both these difficul-
ties can be resolved at one stroke by replacing the unknown constant v by the variable
xm�1 and then maximizing xm�1, so that xm�1 automatically will equal v (by definition)
at the optimal solution for the linear programming problem!

The Linear Programming Formulation

To summarize, player 1 would find his optimal mixed strategy by using the simplex method
to solve the linear programming problem:

Maximize xm�1,

subject to

p11x1 � p21x2 � 


 � pm1xm � xm�1 	 0
p12x1 � p22x2 � 


 � pm2xm � xm�1 	 0




















































p1nx1 � p2nx2 � 


 � pmnxm � xm�1 	 0

x1 � x2 � 


 � xm � 1
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and

xi 	 0, for i � 1, 2, . . . , m.

Note that xm�1 is not restricted to be nonnegative, whereas the simplex method can be
applied only after all the variables have nonnegativity constraints. However, this matter
can be easily rectified, as will be discussed shortly.

Now consider player 2. He could find his optimal mixed strategy by rewriting the
payoff table as the payoff to himself rather than to player 1 and then by proceeding 
exactly as just described. However, it is enlightening to summarize his formulation in
terms of the original payoff table. By proceeding in a way that is completely analogous
to that just described, player 2 would conclude that his optimal mixed strategy is given
by an optimal solution to the linear programming problem:

Minimize yn�1,

subject to

p11y1 � p12y2 � 


 � p1nyn � yn�1 � 0
p21y1 � p22y2 � 


 � p2nyn � yn�1 � 0





















































pm1y1 � pm2y2 � 


 � pmnyn � yn�1 � 0

y1 � y2 � 


 � yn � 1

and

yj 	 0, for j � 1, 2, . . . , n.

It is easy to show (see Prob. 15.5-6 and its hint) that this linear programming problem and
the one given for player 1 are dual to each other in the sense described in Secs. 6.1 and 6.4.
This fact has several important implications. One implication is that the optimal mixed strate-
gies for both players can be found by solving only one of the linear programming problems
because the optimal dual solution is an automatic by-product of the simplex method calcula-
tions to find the optimal primal solution. A second implication is that this brings all duality
theory (described in Chap. 6) to bear upon the interpretation and analysis of games.

A related implication is that this provides a simple proof of the minimax theorem.
Let x*m�1 and y*n�1 denote the value of xm�1 and yn�1 in the optimal solution of the re-
spective linear programming problems. It is known from the strong duality property given
in Sec. 6.1 that �x*m�1 � �y*n�1, so that x*m�1 � y*n�1. However, it is evident from the
definition of v

�
and v� that v

�
� x*m�1 and v� � y*n�1, so it follows that v

�
� v�, as claimed by

the minimax theorem.
One remaining loose end needs to be tied up, namely, what to do about xm�1 and

yn�1 being unrestricted in sign in the linear programming formulations. If it is clear that
v 	 0 so that the optimal values of xm�1 and yn�1 are nonnegative, then it is safe to in-
troduce nonnegativity constraints for these variables for the purpose of applying the sim-
plex method. However, if v � 0, then an adjustment needs to be made. One possibility is
to use the approach described in Sec. 4.6 for replacing a variable without a nonnegativity
constraint by the difference of two nonnegative variables. Another is to reverse players 1
and 2 so that the payoff table would be rewritten as the payoff to the original player 2,
which would make the corresponding value of v positive. A third, and the most commonly
used, procedure is to add a sufficiently large fixed constant to all the entries in the pay-
off table that the new value of the game will be positive. (For example, setting this con-
stant equal to the absolute value of the largest negative entry will suffice.) Because this
same constant is added to every entry, this adjustment cannot alter the optimal mixed
strategies in any way, so they can now be obtained in the usual manner. The indicated
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value of the game would be increased by the amount of the constant, but this value can
be readjusted after the solution has been obtained.

Application to Variation 3 of the Political Campaign Problem

To illustrate this linear programming approach, consider again variation 3 of the political
campaign problem after dominated strategy 3 for player 1 is eliminated (see Table 15.6).
Because there are some negative entries in the reduced payoff table, it is unclear at the
outset whether the value of the game v is nonnegative (it turns out to be). For the mo-
ment, let us assume that v 	 0 and proceed without making any of the adjustments dis-
cussed in the preceding paragraph.

To write out the linear programming model for player 1 for this example, note that
pij in the general model is the entry in row i and column j of Table 15.6, for i � 1, 2 and
j � 1, 2, 3. The resulting model is

Maximize x3,

subject to

5x2 � x3 	 0
�2x1 � 4x2 � x3 	 0

2x1 � 3x2 � x3 	 0
x1 � x2 � 1

and

x1 	 0, x2 	 0.

Applying the simplex method to this linear programming problem (after adding the
constraint x3 	 0) yields x*1 � �

1
7
1
�, x*2 � �

1
4
1
�, x*3 � �

1
2
1
� as the optimal solution. (See Probs. 15.5-8

and 15.5-9.) Consequently, just as was found by the graphical procedure in the preceding
section, the optimal mixed strategy for player 1 according to the minimax criterion is 
(x1, x2) � (�

1
7
1
�, �

1
4
1
�), and the value of the game is v � x*3 � �

1
2
1
�. The simplex method also yields

the optimal solution for the dual (given next) of this problem, namely, y*1 � 0, y*2 � �
1
5
1
�,

y*3 � �
1
6
1
�, y*4 � �

1
2
1
�, so the optimal mixed strategy for player 2 is (y1, y2, y3) � (0, �

1
5
1
�, �

1
6
1
�).

The dual of the preceding problem is just the linear programming model for 
player 2 (the one with variables y1, y2, . . . , yn, yn�1) shown earlier in this section. (See
Prob. 15.5-7.) By plugging in the values of pij from Table 15.6, this model is

Minimize y4,

subject to

� 2y2 � 2y3 � y4 � 0
5y1 � 4y2 � 3y3 � y4 � 0
y1 � y2 � y3 � 1

and

y1 	 0, y2 	 0, y3 	 0.

Applying the simplex method directly to this model (after adding the constraint y4 	 0)
yields the optimal solution: y*1 � 0, y*2 � �

1
5
1
�, y*3 � �

1
6
1
�, y*4 � �

1
2
1
� (as well as the optimal

dual solution x*1 � �
1
7
1
�, x*2 � �

1
4
1
�, x*3 � �

1
2
1
�). Thus, the optimal mixed strategy for player 2

is (y1, y2, y3) � (0, �
1
5
1
�, �

1
6
1
�), and the value of the game is again seen to be v � y*4 � �

1
2
1
�.

Because we already had found the optimal mixed strategy for player 2 while dealing
with the first model, we did not have to solve the second one. In general, you always can
find optimal mixed strategies for both players by choosing just one of the models (either
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676 CHAPTER 15 GAME THEORY

one) and then using the simplex method to solve for both an optimal solution and an op-
timal dual solution.

When the simplex method was applied to both of these linear programming models,
a nonnegativity constraint was added that assumed that v 	 0. If this assumption were vi-
olated, both models would have no feasible solutions, so the simplex method would stop
quickly with this message. To avoid this risk, we could have added a positive constant,
say, 3 (the absolute value of the largest negative entry), to all the entries in Table 15.6.
This then would increase by 3 all the coefficients of x1, x2, y1, y2, and y3 in the inequal-
ity constraints of the two models. (See Prob. 15.5-2.)

■ 15.6 EXTENSIONS

Although this chapter has considered only two-person, zero-sum games with a finite num-
ber of pure strategies, game theory extends far beyond this kind of game. In fact, exten-
sive research has been done on a number of more complicated types of games, including
the ones summarized in this section.

The simplest generalization is to the two-person, constant-sum game. In this case, the
sum of the payoffs to the two players is a fixed constant (positive or negative) regardless
of which combination of strategies is selected. The only difference from a two-person, zero-
sum game is that, in the latter case, the constant must be zero. A nonzero constant may
arise instead because, in addition to one player winning whatever the other one loses, the
two players may share some reward (if the constant is positive) or some cost (if the con-
stant is negative) for participating in the game. Adding this fixed constant does nothing to
affect which strategies should be chosen. Therefore, the analysis for determining optimal
strategies is exactly the same as described in this chapter for two-person, zero-sum games.

A more complicated extension is to the n-person game, where more than two play-
ers may participate in the game. This generalization is particularly important because, in
many kinds of competitive situations, frequently more than two competitors are involved.
This may occur, for example, in competition among business firms, in international diplo-
macy, and so forth. Unfortunately, the existing theory for such games is less satisfactory
than it is for two-person games.

Another generalization is the nonzero-sum game, where the sum of the payoffs to the
players need not be 0 (or any other fixed constant). This case reflects the fact that many com-
petitive situations include noncompetitive aspects that contribute to the mutual advantage or
mutual disadvantage of the players. For example, the advertising strategies of competing com-
panies can affect not only how they will split the market but also the total size of the market
for their competing products. However, in contrast to a constant-sum game, the size of the
mutual gain (or loss) for the players depends on the combination of strategies chosen.

Because mutual gain is possible, nonzero-sum games are further classified in terms
of the degree to which the players are permitted to cooperate. At one extreme is the non-
cooperative game, where there is no preplay communication between the players. At the
other extreme is the cooperative game, where preplay discussions and binding agreements
are permitted. For example, competitive situations involving trade regulations between
countries, or collective bargaining between labor and management, might be formulated
as cooperative games. When there are more than two players, cooperative games also allow
some of or all the players to form coalitions.

Still another extension is to the class of infinite games, where the players have an infi-
nite number of pure strategies available to them. These games are designed for the kind of
situation where the strategy to be selected can be represented by a continuous decision vari-
able. For example, this decision variable might be the time at which to take a certain action,
or the proportion of one’s resources to allocate to a certain activity, in a competitive situation.
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■ 15.7 CONCLUSIONS

The general problem of how to make decisions in a competitive environment is a very com-
mon and important one. The fundamental contribution of game theory is that it provides a
basic conceptual framework for formulating and analyzing such problems in simple situa-
tions. However, there is a considerable gap between what the theory can handle and the
complexity of most competitive situations arising in practice. Therefore, the conceptual tools
of game theory usually play just a supplementary role in dealing with these situations.

Because of the importance of the general problem, research is continuing with some
success to extend the theory to more complex situations.
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The symbol to the left of some of the problems (or their parts) has
the following meaning:

C: Use the computer with any of the software options available to
you (or as instructed by your instructor) to solve the problem.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

15.1-1. The labor union and management of a particular company
have been negotiating a new labor contract. However, negotiations
have now come to an impasse, with management making a “final”
offer of a wage increase of $1.10 per hour and the union making
a “final” demand of a $1.60 per hour increase. Therefore, both
sides have agreed to let an impartial arbitrator set the wage in-
crease somewhere between $1.10 and $1.60 per hour (inclusively).

The arbitrator has asked each side to submit to her a confi-
dential proposal for a fair and economically reasonable wage in-
crease (rounded to the nearest dime). From past experience, both
sides know that this arbitrator normally accepts the proposal of the
side that gives the most from its final figure. If neither side changes
its final figure, or if they both give in the same amount, then the
arbitrator normally compromises halfway between ($1.35 in this
case). Each side now needs to determine what wage increase to
propose for its own maximum advantage.

Formulate this problem as a two-person, zero-sum game.

15.1-2. Two manufacturers currently are competing for sales in
two different but equally profitable product lines. In both cases the
sales volume for manufacturer 2 is three times as large as that for
manufacturer 1. Because of a recent technological breakthrough,
both manufacturers will be making a major improvement in both
products. However, they are uncertain as to what development and
marketing strategy to follow.

If both product improvements are developed simultaneously,
either manufacturer can have them ready for sale in 12 months.
Another alternative is to have a “crash program” to develop only one
product first to try to get it marketed ahead of the competition. By
doing this, manufacturer 2 could have one product ready for sale
in 9 months, whereas manufacturer 1 would require 10 months
(because of previous commitments for its production facilities).
For either manufacturer, the second product could then be ready
for sale in an additional 9 months.

For either product line, if both manufacturers market their im-
proved models simultaneously, it is estimated that manufacturer 1
would increase its share of the total future sales of this product by
8 percent of the total (from 25 to 33 percent). Similarly, manufac-
turer 1 would increase its share by 20, 30, and 40 percent of the
total if it marketed the product sooner than manufacturer 2 by 2,
6, and 8 months, respectively. On the other hand, manufacturer 1
would lose 4, 10, 12, and 14 percent of the total if manufacturer 2
marketed it sooner by 1, 3, 7, and 10 months, respectively.

Formulate this problem as a two-person, zero-sum game, and
then determine which strategy the respective manufacturers should
use according to the minimax criterion.

15.1-3. Consider the following parlor game to be played between
two players. Each player begins with three chips: one red, one
white, and one blue. Each chip can be used only once.

To begin, each player selects one of her chips and places it
on the table, concealed. Both players then uncover the chips and
determine the payoff to the winning player. In particular, if both
players play the same kind of chip, it is a draw; otherwise, the fol-
lowing table indicates the winner and how much she receives from
the other player. Next, each player selects one of her two remain-
ing chips and repeats the procedure, resulting in another payoff ac-
cording to the following table. Finally, each player plays her one
remaining chip, resulting in the third and final payoff.

Formulate this problem as a two-person, zero-sum game by iden-
tifying the form of the strategies and payoffs.

15.2-1. Reconsider Prob. 15.1-1.
(a) Use the concept of dominated strategies to determine the best

strategy for each side.
(b) Without eliminating dominated strategies, use the minimax cri-

terion to determine the best strategy for each side.

15.2-2.* For the game having the following payoff table, determine
the optimal strategy for each player by successively eliminating
dominated strategies. (Indicate the order in which you eliminated
strategies.)

15.2-3. Consider the game having the following payoff table:

Determine the optimal strategy for each player by successively elim-
inating dominated strategies. Give a list of the dominated strategies

678 CHAPTER 15 GAME THEORY

Winning Chip Payoff ($)

Red beats white 50
White beats blue 40
Blue beats red 30
Matching colors 0

Player 2

Strategy 1 2 3

1 �3 1 �2
Player 1 2 �1 2 �1

3 �1 0 �2

Player 2

Strategy 1 2 3 4

1 �2 �3 �1 1
Player 1 2 �1 �1 �2 2

3 �1 �2 �1 3

■ PROBLEMS

hil23453_ch15_661-681.qxd  1/22/70  7:26 AM  Page 678 Final PDF to printer



(and the corresponding dominating strategies) in the order in which
you were able to eliminate them.

15.2-4. Find the saddle point for the game having the following
payoff table.

Use the minimax criterion to find the best strategy for each player.
Does this game have a saddle point? Is it a stable game?

15.2-5. Find the saddle point for the game having the following
payoff table.

Use the minimax criterion to find the best strategy for each player.
Does this game have a saddle point? Is it a stable game?

15.2-6. Two companies share the bulk of the market for a partic-
ular kind of product. Each is now planning its new marketing plans
for the next year in an attempt to wrest some sales away from the
other company. (The total sales for the product are relatively fixed,
so one company can increase its sales only by winning them away
from the other.) Each company is considering three possibilities:
(1) better packaging of the product, (2) increased advertising, and
(3) a slight reduction in price. The costs of the three alternatives
are quite comparable and sufficiently large that each company will
select just one. The estimated effect of each combination of alter-
natives on the increased percentage of the sales for company 1 is
as follows:

Each company must make its selection before learning the deci-
sion of the other company.
(a) Without eliminating dominated strategies, use the minimax (or

maximin) criterion to determine the best strategy for each
company.

(b) Now identify and eliminate dominated strategies as far as pos-
sible. Make a list of the dominated strategies, showing the or-
der in which you were able to eliminate them. Then show the
resulting reduced payoff table with no remaining dominated
strategies.

15.2-7.* Two politicians soon will be starting their campaigns
against each other for a certain political office. Each must now se-
lect the main issue she will emphasize as the theme of her cam-
paign. Each has three advantageous issues from which to choose,
but the relative effectiveness of each one would depend upon the
issue chosen by the opponent. In particular, the estimated increase
in the vote for politician 1 (expressed as a percentage of the total
vote) resulting from each combination of issues is as follows:

However, because considerable staff work is required to research
and formulate the issue chosen, each politician must make her own
choice before learning the opponent’s choice. Which issue should
she choose?

For each of the situations described here, formulate this prob-
lem as a two-person, zero-sum game, and then determine which
issue should be chosen by each politician according to the speci-
fied criterion.
(a) The current preferences of the voters are very uncertain, so

each additional percent of votes won by one of the politicians
has the same value to her. Use the minimax criterion.

(b) A reliable poll has found that the percentage of the voters cur-
rently preferring politician 1 (before the issues have been
raised) lies between 45 and 50 percent. (Assume a uniform dis-
tribution over this range.) Use the concept of dominated strate-
gies, beginning with the strategies for politician 1.

(c) Suppose that the percentage described in part (b) actually were
45 percent. Should politician 1 use the minimax criterion?
Explain. Which issue would you recommend? Why?

15.2-8. Briefly describe what you feel are the advantages and dis-
advantages of the minimax criterion.

15.3-1. Consider the odds and evens game introduced in Sec. 15.1
and whose payoff table is shown in Table 15.1.
(a) Show that this game does not have a saddle point.
(b) Write an expression for the expected payoff for player 1 (the

evens player) in terms of the probabilities of the two players
using their respective pure strategies. Then show what this ex-
pression reduces to for the following three cases: (i) Player 2
definitely uses his first strategy, (ii) player 2 definitely uses his
second strategy, (iii) player 2 assigns equal probabilities to us-
ing his two strategies.

(c) Repeat part (b) when player 1 becomes the odds player instead.

Player 2

Strategy 1 2 3

1 �1 �1 1
Player 1 2 �2 �0 3

3 �3 �1 2
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Player 2

Strategy 1 2 3 4

1 �3 �3 �2 �4
Player 1 2 �4 �2 �1 �1

3 �1 �1 �2 �0

Player 2

Strategy 1 2 3

1 2 �3 �1
Player 1 2 1 �4 �0

3 3 �2 �1

Issue for
Politician 2

1 2 3

1 �7 �1 �3
Issue for

2 �1 �0 �2
Politician 1

3 �5 �3 �1
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15.3-2. Consider the following parlor game between two players. It
begins when a referee flips a coin, notes whether it comes up heads
or tails, and then shows this result to player 1 only. Player 1 may
then (i) pass and thereby pay $5 to player 2 or (ii) bet. If player 1
passes, the game is terminated. However, if he bets, the game con-
tinues, in which case player 2 may then either (i) pass and thereby
pay $5 to player 1 or (ii) call. If player 2 calls, the referee then shows
him the coin; if it came up heads, player 2 pays $10 to player 1;
if it came up tails, player 2 receives $10 from player 1.
(a) Give the pure strategies for each player. (Hint: Player 1 will

have four pure strategies, each one specifying how he would
respond to each of the two results the referee can show him;
player 2 will have two pure strategies, each one specifying how
he will respond if player 1 bets.)

(b) Develop the payoff table for this game, using expected values
for the entries when necessary. Then identify and eliminate any
dominated strategies.

(c) Show that none of the entries in the resulting payoff table are
a saddle point. Then explain why any fixed choice of a pure
strategy for each of the two players must be an unstable solu-
tion, so mixed strategies should be used instead.

(d) Write an expression for the expected payoff for player 1 in terms
of the probabilities of the two players using their respective pure
strategies. Then show what this expression reduces to for the fol-
lowing three cases: (i) Player 2 definitely uses his first strategy,
(ii) player 2 definitely uses his second strategy, (iii) player 2 as-
signs equal probabilities to using his two strategies.

15.4-1. Consider the odds and evens game introduced in Sec. 15.1
and whose payoff table is shown in Table 15.1. Use the graphical
procedure described in Sec. 15.4 from the viewpoint of player 1
(the evens player) to determine the optimal mixed strategy for each
player according to the minimax criterion. Then do this again from
the viewpoint of player 2 (the odds player). Also give the corre-
sponding value of the game.

15.4-2. Reconsider Prob. 15.3-2. Use the graphical procedure de-
scribed in Sec. 15.4 to determine the optimal mixed strategy for
each player according to the minimax criterion. Also give the cor-
responding value of the game.

15.4-3. Consider the game having the following payoff table:

Use the graphical procedure described in Sec. 15.4 to determine
the value of the game and the optimal mixed strategy for each
player according to the minimax criterion. Check your answer for
player 2 by constructing his payoff table and applying the graph-
ical procedure directly to this table.

15.4-4.* For the game having the following payoff table, use the
graphical procedure described in Sec. 15.4 to determine the value

680 CHAPTER 15 GAME THEORY

A. J. Swim Team G. N. Swim Team

Entry Entry

1 2 John Mark 1 2

Butterfly
stroke 1:01.6 59.1 57.5 58.4 1:03.2 59.8

Backstroke 1:06.8 1:05.6 1:03.3 1:02.6 1:04.9 1:04.1
Breaststroke 1:13.9 1:12.5 1:04.7 1:06.1 1:15.3 1:11.8

Player 2

Strategy 1 2

1 �3 �2
Player 1

2 �1 �2

of the game and the optimal mixed strategy for each player ac-
cording to the minimax criterion.

15.4-5. The A. J. Swim Team soon will have an important swim
meet with the G. N. Swim Team. Each team has a star swimmer
(John and Mark, respectively) who can swim very well in the 100-
yard butterfly, backstroke, and breaststroke events. However, the
rules prevent them from being used in more than two of these
events. Therefore, their coaches now need to decide how to use
them to maximum advantage.

Each team will enter three swimmers per event (the maximum
allowed). For each event, the following table gives the best time
previously achieved by John and Mark as well as the best time for
each of the other swimmers who will definitely enter that event.
(Whichever event John or Mark does not swim, his team’s third
entry for that event will be slower than the two shown in the table.)

The points awarded are 5 points for first place, 3 points for
second place, 1 point for third place, and none for lower places.
Both coaches believe that all swimmers will essentially equal their
best times in this meet. Thus, John and Mark each will definitely
be entered in two of these three events.
(a) The coaches must submit all their entries before the meet with-

out knowing the entries for the other team, and no changes are
permitted later. The outcome of the meet is very uncertain, so
each additional point has equal value for the coaches. Formu-
late this problem as a two-person, zero-sum game. Eliminate
dominated strategies, and then use the graphical procedure de-
scribed in Sec. 15.4 to find the optimal mixed strategy for each
team according to the minimax criterion.

(b) The situation and assignment are the same as in part (a), ex-
cept that both coaches now believe that the A. J. team will win
the swim meet if it can win 13 or more points in these three
events, but will lose with less than 13 points. [Compare the re-
sulting optimal mixed strategies with those obtained in part (a).]

(c) Now suppose that the coaches submit their entries during the
meet one event at a time. When submitting his entries for an
event, the coach does not know who will be swimming that
event for the other team, but he does know who has swum in

Player 2

Strategy 1 2 3

1 4 3 1
Player 1

2 0 1 2
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preceding events. The three key events just discussed are swum
in the order listed in the table. Once again, the A. J. team needs
13 points in these events to win the swim meet. Formulate this
problem as a two-person, zero-sum game. Then use the con-
cept of dominated strategies to determine the best strategy for
the G. N. team that actually “guarantees” it will win under the
assumptions being made.

(d) The situation is the same as in part (c). However, now assume
that the coach for the G. N. team does not know about game
theory and so may, in fact, choose any of his available strate-
gies that have Mark swimming two events. Use the concept of
dominated strategies to determine the best strategies from
which the coach for the A. J. team should choose. If this coach
knows that the other coach has a tendency to enter Mark in the
butterfly and the backstroke more often than in the breaststroke,
which strategy should she choose?

15.5-1. Consider the odds and evens game introduced in Sec. 15.1
and whose payoff table is shown in Table 15.1.
(a) Use the approach described in Sec. 15.5 to formulate the prob-

lem of finding optimal mixed strategies according to the mini-
max criterion as two linear programming problems, one for
player 1 (the evens player) and the other for player 2 (the odds
player) as the dual of the first problem.

C (b) Use the simplex method to find these optimal mixed strategies.

15.5-2. Refer to the last paragraph of Sec. 15.5. Suppose that 3 were
added to all the entries of Table 15.6 to ensure that the correspond-
ing linear programming models for both players have feasible solu-
tions with x3 	 0 and y4 	 0. Write out these two models. Based on
the information given in Sec. 15.5, what are the optimal solutions
for these two models? What is the relationship between x*3 and y*4?
What is the relationship between the value of the original game v
and the values of x*3 and y*4?

15.5-3.* Consider the game having the following payoff table:

(a) Use the approach described in Sec. 15.5 to formulate the prob-
lem of finding optimal mixed strategies according to the mini-
max criterion as a linear programming problem.

C (b) Use the simplex method to find these optimal mixed strategies.

15.5-4. Follow the instructions of Prob. 15.5-3 for the game having
the following payoff table:

15.5-5. Follow the instructions of Prob. 15.5-3 for the game having
the following payoff table:

15.5-6. Section 15.5 presents a general linear programming for-
mulation for finding an optimal mixed strategy for player 1 and for
player 2. Using Table 6.14, show that the linear programming prob-
lem given for player 2 is the dual of the problem given for player 1.
(Hint: Remember that a dual variable with a nonpositivity con-
straint yi� � 0 can be replaced by yi � �yi� with a nonnegativity
constraint yi 	 0.)

15.5-7. Consider the linear programming models for players 1
and 2 given near the end of Sec. 15.5 for variation 3 of the polit-
ical campaign problem (see Table 15.6). Follow the instructions of
Prob. 15.5-6 for these two models.

15.5-8. Consider variation 3 of the political campaign problem
(see Table 15.6). Refer to the resulting linear programming model
for player 1 given near the end of Sec. 15.5. Ignoring the objec-
tive function variable x3, plot the feasible region for x1 and x2

graphically (as described in Sec. 3.1). (Hint: This feasible region
consists of a single line segment.) Next, write an algebraic expres-
sion for the maximizing value of x3 for any point in this feasible
region. Finally, use this expression to demonstrate that the optimal
solution must, in fact, be the one given in Sec. 15.5.

C 15.5-9. Consider the linear programming model for player 1
given near the end of Sec. 15.5 for variation 3 of the political cam-
paign problem (see Table 15.6). Verify the optimal mixed strate-
gies for both players given in Sec. 15.5 by applying an automatic
routine for the simplex method to this model to find both its opti-
mal solution and its optimal dual solution.

15.5-10. Consider the general m � n, two-person, zero-sum game.
Let pij denote the payoff to player 1 if he plays his strategy 
i (i � 1, . . . , m) and player 2 plays her strategy j ( j � 1, . . . , n).
Strategy 1 (say) for player 1 is said to be weakly dominated by
strategy 2 (say) if p1j � p2j for j � 1, . . . , n and p1j � p2j for one
or more values of j.
(a) Assume that the payoff table possesses one or more saddle

points, so that the players have corresponding optimal pure
strategies under the minimax criterion. Prove that eliminating
weakly dominated strategies from the payoff table cannot elim-
inate all these saddle points and cannot produce any new ones.

(b) Assume that the payoff table does not possess any saddle
points, so that the optimal strategies under the minimax crite-
rion are mixed strategies. Prove that eliminating weakly dom-
inated pure strategies from the payoff table cannot eliminate
all optimal mixed strategies and cannot produce any new ones.

PROBLEMS 681

Player 2

Strategy 1 2 3 4

1 5 0 3 1
Player 1 2 2 4 3 2

3 3 2 0 4

Player 2

Strategy 1 2 3

1 �4 2 �3
Player 1 2 �1 0 �3

3 �2 3 �2

Player 2

Strategy 1 2 3 4 5

1 �1 �3 �2 �2 �1
2 �2 �3 �0 �3 �2

Player 1
3 �0 �4 �1 �3 �2
4 �4 �0 �2 �2 �1
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16C H A P T E R

Decision Analysis

The previous chapters have focused mainly on decision making when the conse-
quences of alternative decisions are known with a reasonable degree of certainty.

This decision-making environment enabled formulating helpful mathematical models
(linear programming, integer programming, nonlinear programming, etc.) with objec-
tive functions that specify the estimated consequences of any combination of decisions.
Although these consequences usually cannot be predicted with complete certainty, they
could at least be estimated with enough accuracy to justify using such models (along
with sensitivity analysis, etc.).

However, decisions often must be made in environments that are much more fraught
with uncertainty. Here are a few examples.

1. A manufacturer introducing a new product into the marketplace. What will be the re-
action of potential customers? How much should be produced? Should the product be
test marketed in a small region before deciding upon full distribution? How much ad-
vertising is needed to launch the product successfully?

2. A financial firm investing in securities. Which are the market sectors and individual
securities with the best prospects? Where is the economy headed? How about interest
rates? How should these factors affect the investment decisions?

3. A government contractor bidding on a new contract. What will be the actual costs of
the project? Which other companies might be bidding? What are their likely bids?

4. An agricultural firm selecting the mix of crops and livestock for the upcoming sea-
son. What will be the weather conditions? Where are prices headed? What will
costs be?

5. An oil company deciding whether to drill for oil in a particular location. How likely
is oil there? How much? How deep will they need to drill? Should geologists investi-
gate the site further before drilling?

These are the kinds of decision making in the face of great uncertainty that decision
analysis is designed to address. Decision analysis provides a framework and methodol-
ogy for rational decision making when the outcomes are uncertain.

Chapter 15 describes how game theory also can be used for certain kinds of decision
making in the face of uncertainty. There are some similarities in the approaches used by
game theory and decision analysis. However, there also are differences because they are
designed for different kinds of applications. We will describe these similarities and dif-
ferences in Sec. 16.2.

682
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16.1 A PROTOTYPE EXAMPLE 683

Frequently, one question to be addressed with decision analysis is whether to make
the needed decision immediately or to first do some testing (at some expense) to reduce
the level of uncertainty about the outcome of the decision. For example, the testing
might be field testing of a proposed new product to test consumer reaction before mak-
ing a decision on whether to proceed with full-scale production and marketing of the
product. This testing is referred to as performing experimentation. Therefore, decision
analysis divides decision making between the cases of without experimentation and with
experimentation.

The first section introduces a prototype example that will be carried throughout the
chapter for illustrative purposes. Sections 16.2 and 16.3 then present the basic principles
of decision making without experimentation and decision making with experimentation. We
next describe decision trees, a useful tool for depicting and analyzing the decision process
when a series of decisions needs to be made. Section 16.5 then discusses how spreadsheets
are used to perform sensitivity analysis on decision trees. Section 16.6 introduces utility
theory, which provides a way of calibrating the possible outcomes of the decision to re-
flect the true value of these outcomes to the decision maker. We then conclude the chap-
ter by discussing the practical application of decision analysis and summarizing a variety
of applications that have been very beneficial to the organizations involved.

■ TABLE 16.1 Prospective profits for the Goferbroke Company

Status Payoff

Alternative
of Land

Oil Dry

Drill for oil $700,000 �$100,000
Sell the land $ 90,000 �$ 90,000

Chance of status 1 in 4 3 in 4 

■ 16.1 A PROTOTYPE EXAMPLE

The GOFERBROKE COMPANY owns a tract of land that may contain oil. A consulting
geologist has reported to management that she believes there is one chance in four of oil.

Because of this prospect, another oil company has offered to purchase the land for
$90,000. However, Goferbroke is considering holding the land in order to drill for oil
itself. The cost of drilling is $100,000. If oil is found, the resulting expected revenue
will be $800,000, so the company’s expected profit (after deducting the cost of drilling)
will be $700,000. A loss of $100,000 (the drilling cost) will be incurred if the land is
dry (no oil).

Table 16.1 summarizes these data. Section 16.2 discusses how to approach the deci-
sion of whether to drill or sell based just on these data. (We will refer to this as the first
Goferbroke Co. problem.)

However, before deciding whether to drill or sell, another option is to conduct a de-
tailed seismic survey of the land to obtain a better estimate of the probability of finding oil.
(This more involved decision process will be referred to as the full Goferbroke problem.)
Section 16.3 discusses this case of decision making with experimentation, at which point
the necessary additional data will be provided.

This company is operating without much capital, so a loss of $100,000 would be quite
serious. In Sec. 16.6, we describe how to refine the evaluation of the consequences of the
various possible outcomes.
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684 CHAPTER 16 DECISION ANALYSIS

Before seeking a solution to the first Goferbroke Co. problem, we will formulate a gen-
eral framework for decision making.

In general terms, the decision maker must choose an alternative from a set of pos-
sible decision alternatives. The set contains all the feasible alternatives under consideration
for how to proceed with the problem of concern.

This choice of an alternative must be made in the face of uncertainty, because the
outcome will be affected by random factors that are outside the control of the decision
maker. These random factors determine what situation will be found at the time that the
decision alternative is executed. Each of these possible situations is referred to as a pos-
sible state of nature.

For each combination of a decision alternative and a state of nature, the decision
maker knows what the resulting payoff would be. The payoff is a quantitative measure of
the value to the decision maker of the consequences of the outcome. For example, the
payoff frequently is represented by the net monetary gain (profit), although other mea-
sures also can be used (as described in Sec. 16.6). If the consequences of the outcome do
not become completely certain even when the state of nature is given, then the payoff be-
comes an expected value (in the statistical sense) of the measure of the consequences. 
A payoff table commonly is used to provide the payoff for each combination of an ac-
tion and a state of nature.

If you previously studied game theory (Chap. 15), we should point out an interesting
analogy between this decision analysis framework and the two-person, zero-sum games
described in Chap. 15. The decision maker and nature can be viewed as the two players
of such a game. The alternatives and the possible states of nature can then be viewed as
the available strategies for these respective players, where each combination of strategies
results in some payoff to player 1 (the decision maker). From this viewpoint, the decision
analysis framework can be summarized as follows:

1. The decision maker needs to choose one of the decision alternatives.
2. Nature then would choose one of the possible states of nature.
3. Each combination of a decision alternative and state of nature would result in a payoff,

which is given as one of the entries in a payoff table.
4. This payoff table should be used to find an optimal alternative for the decision maker

according to an appropriate criterion.

Soon we will present three possibilities for this criterion, where the first one (the max-
imin payoff criterion) comes from game theory.

However, this analogy to two-person, zero-sum games breaks down in one important
respect. In game theory, both players are assumed to be rational and choosing their strate-
gies to promote their own welfare. This description still fits the decision maker, but cer-
tainly not nature. By contrast, nature now is a passive player that chooses its strategies
(states of nature) in some random fashion. This change means that the game theory cri-
terion for how to choose an optimal strategy (alternative) will not appeal to many deci-
sion makers in the current context.

One additional element needs to be added to the decision analysis framework. The
decision maker generally will have some information that should be taken into account
about the relative likelihood of the possible states of nature. Such information can usually
be translated to a probability distribution, acting as though the state of nature is a random
variable, in which case this distribution is referred to as a prior distribution. Prior dis-
tributions are often subjective in that they may depend upon the experience or intuition

■ 16.2 DECISION MAKING WITHOUT EXPERIMENTATION
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Following the merger of Conoco Inc. and the Phillips
Petroleum Company in 2002, ConocoPhillips became
the third-largest integrated energy company in the United
States. Especially active in exploration and production,
it was the world’s largest independent pure-play explo-
ration and production company in 2013, with operations
and activities in 30 countries. Like any company in this
industry, the management of ConocoPhillips must grap-
ple continually with decisions about the allocation of
limited investment capital across a set of risky petroleum
exploration projects. These decisions have a great im-
pact on the profitability of the company.

In the early 1990s, the then Phillips Petroleum Com-
pany became an industry leader in the application of so-
phisticated OR methodology to aid these decisions by de-
veloping a decision analysis software package called
DISCOVERY. The user interface allows a geologist or
engineer to model the uncertainties associated with a pro-
ject and then the software interprets the inputs and con-

structs a decision tree that shows all the decision nodes
(including opportunities to obtain additional seismic in-
formation) and the intervening event nodes. A key fea-
ture of the software is the use of an exponential utility
function (to be introduced in Sec. 16.6) to incorporate
management’s attitudes about financial risk. An intuitive
questionnaire is used to measure corporate risk prefer-
ences in order to determine an appropriate value of the
risk tolerance parameter for this utility function.

Management uses the software to (1) evaluate petro-
leum exploration projects with a consistent risk-taking
policy across the company, (2) rank projects in terms of
overall preference, (3) identify the firm’s appropriate level of
participation in these projects, and (4) stay within budget.

Source: M. R. Walls, G. T. Morahan, and J. S. Dyer: “Decision
Analysis of Exploration Opportunities in the Onshore US at
Phillips Petroleum Company,” Interfaces, 25(6): 39–56, Nov.–Dec.
1995. (A link to this article is provided on our website,
www.mhhe.com/hillier.)

An Application Vignette

of an individual. The probabilities for the respective states of nature provided by the prior
distribution are called prior probabilities.

Formulation of the Prototype Example in This Framework

As indicated in Table 16.1, the Goferbroke Co. has two possible decision alternatives un-
der consideration: drill for oil or sell the land. The possible states of nature are that the
land contains oil and that it does not, as designated in the column headings of Table 16.1
by oil and dry. Since the consulting geologist has estimated that there is one chance in
four of oil (and so three chances in four of no oil), the prior probabilities of the two states
of nature are 0.25 and 0.75, respectively. Therefore, with the payoff in units of thousands
of dollars of profit, the payoff table can be obtained directly from Table 16.1, as shown
in Table 16.2.

We will use this payoff table next to find the optimal alternative according to each of
the three criteria described below.

The Maximin Payoff Criterion

If the decision maker’s problem were to be viewed as a game against nature, then game
theory would say to choose the decision alternative according to the minimax criterion

■ TABLE 16.2 Payoff table for the decision analysis 
formulation of the first Goferbroke Co. problem

State of Nature

Alternative Oil Dry

1. Drill for oil 700 �100
2. Sell the land 90 90

Prior probability 0.25 0.75
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686 CHAPTER 16 DECISION ANALYSIS

(as described in Sec. 15.2). From the viewpoint of player 1 (the decision maker), this cri-
terion is more aptly named the maximin payoff criterion, as summarized below:

Maximin payoff criterion: For each possible decision alternative, find the
minimum payoff over all possible states of nature. Next, find the maximum of
these minimum payoffs. Choose the alternative whose minimum payoff gives
this maximum.

Table 16.3 shows the application of this criterion to the prototype example. Thus, since
the minimum payoff for selling (90) is larger than that for drilling (�100), the former al-
ternative (sell the land) will be chosen.

The rationale for this criterion is that it provides the best guarantee of the payoff that
will be obtained. Regardless of what the true state of nature turns out to be for the ex-
ample, the payoff from selling the land cannot be less than 90, which provides the best
available guarantee. Thus, this criterion takes the pessimistic viewpoint that, regardless of
which alternative is selected, the worst state of nature for that alternative is likely to oc-
cur, so we should choose the alternative which provides the best payoff with its worst
state of nature.

This rationale is quite valid when one is competing against a rational and malevolent
opponent. However, this criterion is not often used in games against nature because it is
an extremely conservative criterion in this context. In effect, it assumes that nature is a
conscious opponent that wants to inflict as much damage as possible on the decision maker.
Nature is not a malevolent opponent, and the decision maker does not need to focus solely
on the worst possible payoff from each alternative. This is especially true when the worst
possible payoff from an alternative comes from a relatively unlikely state of nature.

Thus, this criterion normally is of interest only to a very cautious decision maker.

The Maximum Likelihood Criterion

The next criterion focuses on the most likely state of nature, as summarized below.

Maximum likelihood criterion: Identify the most likely state of nature (the one
with the largest prior probability). For this state of nature, find the decision al-
ternative with the maximum payoff. Choose this decision alternative.

Applying this criterion to the example, Table 16.4 indicates that the Dry state has the
largest prior probability. In the Dry column, the sell alternative has the maximum payoff,
so the choice is to sell the land.

The appeal of this criterion is that the most important state of nature is the most
likely one, so the alternative chosen is the best one for this particularly important state
of nature. Basing the decision on the assumption that this state of nature will occur tends
to give a better chance of a favorable outcome than assuming any other state of nature.

■ TABLE 16.3 Application of the maximin payoff criterion to the first 
Goferbroke Co. problem

State of Nature

Alternative Oil Dry Minimum

1. Drill for oil 700 �100 �100
2. Sell the land 90 90 90 ← Maximin value

Prior probability 0.25 0.75 
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Furthermore, the criterion does not rely on questionable subjective estimates of the prob-
abilities of the respective states of nature other than identifying the most likely state.

The major drawback of the criterion is that it completely ignores much relevant in-
formation. No state of nature is considered other than the most likely one. In a problem
with many possible states of nature, the probability of the most likely one may be quite
small, so focusing on just this one state of nature is quite unwarranted. Even in the 
example, where the prior probability of the Dry state is 0.75, this criterion ignores the ex-
tremely attractive payoff of 700 if the company drills and finds oil. In effect, the criterion
does not permit gambling on a low-probability big payoff, no matter how attractive the
gamble may be.

Bayes’ Decision Rule1

Our third criterion, and the one commonly chosen, is Bayes’ decision rule, described below:

Bayes’ decision rule: Using the best available estimates of the probabilities of
the respective states of nature (currently the prior probabilities), calculate the ex-
pected value of the payoff for each of the possible decision alternatives. Choose
the decision alternative with the maximum expected payoff.

For the prototype example, these expected payoffs are calculated directly from
Table 16.2 as follows:

E[Payoff (drill)] � 0.25(700) � 0.75(�100)
� 100.

E[Payoff (sell)] � 0.25(90) � 0.75(90)
� 90.

Since 100 is larger than 90, the alternative selected is to drill for oil.
Note that this choice contrasts with the selection of the sell alternative under each of

the two preceding criteria.
The big advantage of Bayes’ decision rule is that it incorporates all the available in-

formation, including all the payoffs and the best available estimates of the probabilities
of the respective states of nature.

It is sometimes argued that these estimates of the probabilities necessarily are largely
subjective and so are too shaky to be trusted. There is no accurate way of predicting the

16.2 DECISION MAKING WITHOUT EXPERIMENTATION 687

1The origin of this name is that this criterion is often credited to the Reverend Thomas Bayes, a nonconform-
ing 18th-century English minister who won renown as a philosopher and mathematician. (The same basic idea
has even longer roots in the field of economics.) This decision rule also is sometimes called the expected mon-
etary value (EMF) criterion, although this is a misnomer for those cases where the measure of the payoff is
something other than monetary value (as in Sec. 16.6).

■ TABLE 16.4 Application of the maximum likelihood criterion to the first
Goferbroke Co. problem

State of Nature

Alternative Oil Dry

1. Drill for oil 700 �100 �100
2. Sell the land 90 90 90 ← Maximum in this column

Prior probability 0.25 0.75

↑
Maximum
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688 CHAPTER 16 DECISION ANALYSIS

future, including a future state of nature, even in probability terms. This argument has
some validity. The reasonableness of the estimates of the probabilities should be assessed
in each individual situation.

Nevertheless, under many circumstances, past experience and current evidence enable
one to develop reasonable estimates of the probabilities. Using this information should
provide better grounds for a sound decision than ignoring it. Furthermore, experimentation
frequently can be conducted to improve these estimates, as described in the next section. There-
fore, we will be using only Bayes’ decision rule throughout the remainder of the chapter.

To assess the effect of possible inaccuracies in the prior probabilities, it often is help-
ful to conduct sensitivity analysis, as described below.

Sensitivity Analysis with Bayes’ Decision Rule

Sensitivity analysis commonly is used with various applications of operations research to
study the effect if some of the numbers included in the mathematical model are not cor-
rect. In this case, the mathematical model is represented by the payoff table shown in
Table 16.2. The numbers in this table that are most questionable are the prior probabili-
ties. We will focus the sensitivity analysis on these numbers, although a similar approach
could be applied to the payoffs given in the table.

The sum of the two prior probabilities must equal 1, so increasing one of these prob-
abilities automatically decreases the other one by the same amount, and vice versa. Gofer-
broke’s management feels that the true chances of having oil on the tract of land are likely
to lie somewhere between 15 and 35 percent. In other words, the true prior probability of
having oil is likely to be in the range from 0.15 to 0.35, so the corresponding prior prob-
ability of the land being dry would range from 0.85 to 0.65.

Letting

p � prior probability of oil,

the expected payoff from drilling for any p is

E[Payoff (drill)] � 700p � 100(1 � p)
� 800p � 100.

The slanting line in Fig. 16.1 shows the plot of this expected payoff versus p. Since the
payoff from selling the land would be 90 for any p, the flat line in Fig. 16.1 gives E[Payoff
(sell)] versus p.

The four dots in Fig. 16.1 show the expected payoff for the two decision alternatives
when p � 0.15 or p � 0.35. When p � 0.15, the decision swings over to selling the land by
a wide margin (an expected payoff of 90 versus only 20 for drilling). However, when p �
0.35, the decision is to drill by a wide margin (expected payoff � 180 versus only 90 for sell-
ing). Thus, the decision is very sensitive to p. This sensitivity analysis has revealed that it is
important to do more, if possible, to develop a more precise estimate of the true value of p.

The point in Fig. 16.1 where the two lines intersect is the crossover point where the
decision shifts from one alternative (sell the land) to the other (drill for oil) as the prior
probability increases. To find this point, we set

E[Payoff (drill)] � E[Payoff (sell)]
800p � 100 � 90

p � �
1
8
9
0
0
0

� � 0.2375

Conclusion: Should sell the land if p � 0.2375.
Should drill for oil if p � 0.2375.
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Thus, when trying to refine the estimate of the true value of p, the key question is whether
it is smaller or larger than 0.2375.

For other problems that have more than two decision alternatives, the same kind of
analysis can be applied. The main difference is that there now would be more than two
lines (one per alternative) in the graphical display corresponding to Fig. 16.1. However,
the top line for any particular value of the prior probability still indicates which alterna-
tive should be chosen. With more than two lines, there might be more than one crossover
point where the decision shifts from one alternative to another.

You can see another example of performing this kind of analysis with three deci-
sion alternatives in the Solved Examples section of the book’s website. (This same 
example also illustrates the application of all three decision criteria considered in this 
section.)

For a problem with more than two possible states of nature, the most straightforward
approach is to focus the sensitivity analysis on only two states at a time as described above.
This again would involve investigating what happens when the prior probability of one
state increases as the prior probability of the other state decreases by the same amount,
holding fixed the prior probabilities of the remaining states. This procedure then can be
repeated for as many other pairs of states as desired.

Because the decision the Goferbroke Co. should make depends so critically on the
true probability of oil, serious consideration should be given to conducting a seismic sur-
vey to estimate this probability more closely. We will explore this option in the next two
sections.

16.2 DECISION MAKING WITHOUT EXPERIMENTATION 689
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■ FIGURE 16.1
Graphical display of how the
expected payoff for each
decision alternative changes
when the prior probability of
oil changes for the first
Goferbroke Co. problem.
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690 CHAPTER 16 DECISION ANALYSIS

■ 16.3 DECISION MAKING WITH EXPERIMENTATION

Frequently, additional testing (experimentation) can be done to improve the preliminary
estimates of the probabilities of the respective states of nature provided by the prior proba-
bilities. These improved estimates are called posterior probabilities.

We first update the Goferbroke Co. example to incorporate experimentation, then
describe how to derive the posterior probabilities, and finally discuss how to decide whether
it is worthwhile to conduct experimentation.

Continuing the Prototype Example

As mentioned at the end of Sec. 16.1, an available option before making a decision is to
conduct a detailed seismic survey of the land to obtain a better estimate of the probabil-
ity of oil. The cost is $30,000.

A seismic survey obtains seismic soundings that indicate whether the geological struc-
ture is favorable to the presence of oil. We will divide the possible findings of the survey
into the following two categories:

USS: Unfavorable seismic soundings; oil is fairly unlikely.
FSS: Favorable seismic soundings; oil is fairly likely.

Based on past experience, if there is oil, then the probability of unfavorable seismic 
soundings is

P(USS⏐State � Oil) � 0.4, so P(FSS⏐State � Oil) � 1 � 0.4 � 0.6.

Similarly, if there is no oil (i.e., the true state of nature is Dry), then the probability of
unfavorable seismic soundings is estimated to be

P(USS⏐State � Dry) � 0.8, so P(FSS⏐State � Dry) � 1 � 0.8 � 0.2.

We soon will use these data to find the posterior probabilities of the respective states
of nature given the seismic soundings.

Posterior Probabilities

Proceeding now in general terms, we let

n � number of possible states of nature;

P(State � state i) � prior probability that true state of nature is
state i, for i � 1, 2, . . . , n;

Finding � finding from experimentation (a random
variable);

Finding j � one possible value of finding;

P(State � state i⏐Finding � finding j) � posterior probability that true state of nature
is state i, given that Finding � finding j, for
i � 1, 2, . . . , n.

The question currently being addressed is the following:

Given P(State � state i) and P(Finding � finding j⏐State � state i),
for i � 1, 2, . . . , n, what is P(State � state i⏐Finding � finding j)?

This question is answered by combining the following standard formulas of proba-
bility theory:

P(State � state i⏐Finding � finding j) �
P(State � state i, Finding � finding j)
����

P(Finding � finding j)
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The Workers’ Compensation Board (WCB) of British
Columbia, Canada, is responsible for the occupational
health and safety, rehabilitation, and compensation interests
of this province’s workers and employers. In 2011, it ac-
cepted nearly 104,000 claims for compensation.

A key factor in controlling WCB costs is to identify
those short-term disability claims that pose a potentially
high financial risk of converting into a far more expen-
sive long-term disability claim unless there is intensive
early claim-management intervention to provide the
needed medical treatment and rehabilitation. The ques-
tion was how to accurately identify these high-risk claims
so as to minimize the expected total cost of claim com-
pensation and claim-management intervention.

An OR team was formed to study this problem by
applying decision analysis. For each of numerous cate-
gories of injury claims, based on the nature of the injury,
the gender and age of the worker, etc., a decision tree
was used to evaluate whether that category should be 

classified as low risk (not requiring intervention) or high
risk (requiring intervention), depending on the severity
of the injury. For each category, a calculation was made
of the cutoff point on the critical number of short-term
disability claim days paid that would trigger claim-man-
agement intervention, so as to minimize the expected cost
of claim payments and intervention. A key in making this
calculation was assessing the posterior probability that a
claim would become a long-term disability claim, given
the number of short-term disability claim days paid.

This application of decision analysis with decision
trees is now saving WCB approximately US $4 million
per year while also enabling some injured workers to re-
turn to work sooner.

Source: E. Urbanovich, E. E. Young, M. L. Puterman, and
S. O. Fattedad: “Early Detection of High-Risk Claims at the
Workers’Compensation Board of British Columbia,” Interfaces,
33(4): 15–26, July–Aug. 2003. (A link to this article is provided
on our website, www.mhhe.com/hillier.)

An Application Vignette

P(Finding � finding j) � �
n

k�1
P(State � state k, Finding � finding j)

P(State � state i, Finding � finding j) �
P(Finding � finding j⏐State � state i) P(State � state i).

Therefore, for each i � 1, 2, . . . , n, the desired formula for the corresponding posterior
probability is

P(State � state i⏐Finding � finding j) �

(This formula often is referred to as Bayes’ theorem because it was developed by Thomas
Bayes, the same 18th-century mathematician who is credited with developing Bayes’ de-
cision rule.)

Now let us return to the prototype example and apply this formula. If the finding of the
seismic survey is unfavorable seismic soundings (USS), then the posterior probabilities are

P(State � Oil⏐Finding � USS) � � �
1
7

�,

P(State � Dry⏐Finding � USS) � 1 � �
1
7

� � �
6
7

�.

Similarly, if the seismic survey gives favorable seismic soundings (FSS), then

P(State � Oil⏐Finding � FSS) � � �
1
2

�,

P(State � Dry⏐Finding � FSS) � 1 � �
1
2

� � �
1
2

�.

0.6(0.25)
���
0.6(0.25) � 0.2(0.75)

0.4(0.25)
���
0.4(0.25) � 0.8(0.75)

P(Finding � finding j⏐State � state i) P(State � state i)
�������

�
n

k�1
P(Finding � finding j⏐State � state k) P(State � state k)
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The probability tree diagram in Fig. 16.2 shows a nice way of organizing these
calculations in an intuitive manner. The prior probabilities in the first column and the con-
ditional probabilities in the second column are part of the input data for the problem. Mul-
tiplying each probability in the first column by a probability in the second column gives the
corresponding joint probability in the third column. Each joint probability then becomes the
numerator in the calculation of the corresponding posterior probability in the fourth column.
Cumulating the joint probabilities with the same finding (as shown at the bottom of the fig-
ure) provides the denominator for each posterior probability with this finding. (If you would
like to see another example of using a probability tree diagram to determine the posterior
probabilities, one is included in the Solved Examples section of the book’s website.)

Your OR Courseware also includes an Excel template for computing these posterior
probabilities, as shown in Fig. 16.3.

After these computations have been completed, Bayes’ decision rule can be applied
just as before, with the posterior probabilities now replacing the prior probabilities. Again,
by using the payoffs (in units of thousands of dollars) from Table 16.2 and subtracting
the cost of the experimentation, we obtain the results shown below.

Expected payoffs if finding is unfavorable seismic soundings (USS):

E[Payoff (drill⏐Finding � USS)] � �
1
7

�(700) � �
6
7

�(�100) � 30

� �15.7.

E[Payoff (sell⏐Finding � USS)] � �
1
7

�(90) � �
6
7

�(90) � 30

� 60.

Prior
Probabilities

P(state)

Conditional
Probabilities

P(finding|state)

Joint
Probabilities

P(state and finding)

Posterior
Probabilities

P(state|finding)

0.25(0.6) = 0.15

0.25(0.4) = 0.1

0.75(0.2) = 0.15

0.75(0.8) = 0.6

0.15
0.3

= 0.5

0.1
0.7

= 0.14

0.15
0.3

= 0.5

0.6
0.7

= 0.86

Oil and USS

Dry and FSS

Dry and USS Dry, given USS

Dry, given FSS

Oil, given USS

Oil and FSS Oil, given FSS

FSS, given Oil0.6

USS, given Oil

USS, given Dry

FSS, given Dry0.2 

 O
il0.2

5

0.75Dry

0.4

0.8

Unconditional probabilities:  
P(finding)                

P(FSS) = 0.15 + 0.15 =  0.3
P(USS)      = 0.1 + 0.6 = 0.7

■ FIGURE 16.2
Probability tree diagram for
the full Goferbroke Co.
problem showing all the
probabilities leading to the
calculation of each posterior
probability of the state of
nature given the finding of
the seismic survey.
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Expected payoffs if finding is favorable seismic soundings (FSS):

E[Payoff (drill⏐Finding � FSS)] � �
1
2

�(700) � �
1
2

�(�100) � 30

� 270.

E[Payoff (sell⏐Finding � FSS)] � �
1
2

�(90) � �
1
2

�(90) � 30

� 60.

Since the objective is to maximize the expected payoff, these results yield the optimal pol-
icy shown in Table 16.5.

However, what this analysis does not answer is whether it is worth spending $30,000
to conduct the experimentation (the seismic survey). Perhaps it would be better to forgo

16.3 DECISION MAKING WITH EXPERIMENTATION 693

■ TABLE 16.5 The optimal policy with experimentation, under Bayes’ decision
rule, for the full Goferbroke Co. problem

Finding from Optimal Expected Payoff Expected Payoff Including
Seismic Survey Alternative Excluding Cost of Survey Cost of Survey

USS Sell the land 90 60
FSS Drill for oil 300 270

■ FIGURE 16.3
This posterior probabilities
template in your OR
Courseware enables efficient
calculation of posterior
probabilities, as illustrated
here for the full Goferbroke
Co. problem.
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694 CHAPTER 16 DECISION ANALYSIS

this major expense and just use the optimal solution without experimentation (drill for oil,
with an expected payoff of $100,000). We address this issue next.

The Value of Experimentation

Before performing any experiment, we should determine its potential value. We present
two complementary methods of evaluating its potential value.

The first method assumes (unrealistically) that the experiment will remove all uncer-
tainty about what the true state of nature is, and then this method makes a very quick cal-
culation of what the resulting improvement in the expected payoff would be (ignoring the
cost of the experiment). This quantity, called the expected value of perfect information, pro-
vides an upper bound on the potential value of the experiment. Therefore, if this upper
bound is less than the cost of the experiment, the experiment definitely should be forgone.

However, if this upper bound exceeds the cost of the experiment, then the second
(slower) method should be used next. This method calculates the actual improvement in
the expected payoff (ignoring the cost of the experiment) that would result from per-
forming the experiment. Comparing this improvement (called the expected value of ex-
perimentation) with the cost indicates whether the experiment should be performed.

Expected Value of Perfect Information. Suppose now that the experiment could
definitely identify what the true state of nature is, thereby providing “perfect” informa-
tion. Whichever state of nature is identified, you naturally choose the action with the
maximum payoff for that state. We do not know in advance which state of nature will be
identified, so a calculation of the expected payoff with perfect information (ignoring
the cost of the experiment) requires weighting the maximum payoff for each state of na-
ture by the prior probability of that state of nature.

This calculation is shown at the bottom of Table 16.6 for the full Goferbroke Co.
problem, where the expected value of perfect information is 242.5. Thus, if the Goferbroke
Co. could learn before choosing its action whether the land contains oil, the expected pay-
off as of now (before acquiring this information) would be $242,500 (excluding the cost
of the experiment generating the information).

To evaluate whether the experiment should be conducted, we now use this quantity
to calculate the expected value of perfect information.

The expected value of perfect information, abbreviated EVPI, is calculated as

EVPI � expected payoff with perfect information � expected payoff without
experimentation.2

■ TABLE 16.6 Expected payoff with perfect information 
for the full Goferbroke Co. problem

State of Nature

Alternative Oil Dry     

1. Drill for oil 700 �100
2. Sell the land 90 90

Maximum payoff 700 90
Prior probability 0.25 0.75

Expected payoff with perfect information � 0.25(700) � 0.75(90) � 242.5

2The value of perfect information is a random variable equal to the payoff with perfect information minus the
payoff without experimentation. EVPI is the expected value of this random variable.
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Thus, since experimentation usually cannot provide perfect information, EVPI provides
an upper bound on the expected value of experimentation.

For this same example, we found in Sec. 16.2 that the expected payoff without ex-
perimentation (under Bayes’ decision rule) is 100. Therefore,

EVPI � 242.5 � 100 � 142.5.

Since 142.5 far exceeds 30, the cost of experimentation (a seismic survey), it may be
worthwhile to proceed with the seismic survey. To find out for sure, we now go to the
second method of evaluating the potential benefit of experimentation.

Expected Value of Experimentation. Rather than just obtain an upper bound on the
expected increase in payoff (excluding the cost of the experiment) due to performing ex-
perimentation, we now will do somewhat more work to calculate this expected increase
directly. This quantity is called the expected value of experimentation. (It also is some-
times called the expected value of sample information.)

Calculating this quantity requires first computing the expected payoff with experimen-
tation (excluding the cost of the experiment). Obtaining this latter quantity requires doing
all the work described earlier to find all the posterior probabilities, the resulting optimal pol-
icy with experimentation, and the corresponding expected payoff (excluding the cost of the
experiment) for each possible finding from the experiment. Then each of these expected
payoffs needs to be weighted by the probability of the corresponding finding, that is,

Expected payoff with experimentation � �
j

P(Finding � finding j)
E[payoff⏐Finding � finding j ],

where the summation is taken over all possible values of j.
For the prototype example, we have already done all the work to obtain the terms on

the right side of this equation. The values of P(Finding � finding j) for the two possible
findings from the seismic survey—unfavorable (USS) and favorable (FSS)—were calculated
at the bottom of the probability tree diagram in Fig. 16.2 as

P(USS) � 0.7, P(FSS) � 0.3.

For the optimal policy with experimentation, the corresponding expected payoff (exclud-
ing the cost of the seismic survey) for each finding was obtained in the third column of
Table 16.5 as

E(Payoff⏐Finding � USS) � 90,

E(Payoff⏐Finding � FSS) � 300.

With these numbers,

Expected payoff with experimentation � 0.7(90) � 0.3(300)

� 153.

Now we are ready to calculate the expected value of experimentation:

The expected value of experimentation, abbreviated EVE, is calculated as

EVE � expected payoff with experimentation � expected payoff without experimentation.

Thus, EVE identifies the potential value of experimentation.

For the Goferbroke Co.,

EVE � 153 � 100 � 53.

16.3 DECISION MAKING WITH EXPERIMENTATION 695
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■ FIGURE 16.4
The decision tree (before
including any numbers) for
the full Goferbroke Co.
problem.

Since this value exceeds 30, the cost of conducting a detailed seismic survey (in units of
thousands of dollars), this experimentation should be done.

■ 16.4 DECISION TREES

Decision trees provide a useful way of visually displaying the problem and then organiz-
ing the computational work already described in the preceding two sections. These trees
are especially helpful when a sequence of decisions must be made.

Constructing the Decision Tree

The prototype example involves a sequence of two decisions:

1. Should a seismic survey be conducted before an action is chosen?
2. Which action (drill for oil or sell the land) should be chosen?

The corresponding decision tree (before adding numbers and performing computations)
is displayed in Fig. 16.4.

The junction points in the decision tree are referred to as nodes (or forks), and the
lines are called branches.

A decision node, represented by a square, indicates that a decision needs to be
made at that point in the process. An event node (or chance node), represented
by a circle, indicates that a random event occurs at that point.
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The Westinghouse Science and Technology Center his-
torically has been the Westinghouse Electric Corporation’s
main research and development (R&D) arm to develop new
technology. The process of evaluating R&D projects to de-
cide which ones should be initiated and then which ones
should be continued as progress is made (or not made) is
particularly challenging for management because of the
great uncertainties and very long time horizons involved.
The actual launch date for an embryonic technology may be
years, even decades, removed from its inception as a mod-
est R&D proposal to investigate the technology’s potential.

As the Center came under increasing pressure to re-
duce costs and deliver high-impact technology quickly,
the Center’s controller funded an operations research pro-
ject to improve this evaluation process. The OR team de-
veloped a decision tree approach to analyzing any R&D
proposal while considering its complete sequence of key
decision points. The first decision point is whether to fund

the proposed embryonic project for the first year or so.
If its early technical milestones are reached, the next de-
cision point is whether to continue funding the project
for some period. This may then be repeated one or more
times. If the late technical milestones are reached, the next
decision point is whether to prelaunch because the inno-
vation still meets strategic business objectives. If a strate-
gic fit is achieved, the final decision point is whether to
commercialize the innovation now or to delay its launch,
or to abandon it altogether. A decision tree with a pro-
gression of decision nodes and intervening event nodes
provides a natural way of depicting and analyzing such
an R&D project.

Source: R. K. Perdue, W. J. McAllister, P. V. King, and 
B. G. Berkey: “Valuation of R and D Projects Using Options
Pricing and Decision Analysis Models,” Interfaces, 29(6):
57–74, Nov.–Dec. 1999. (A link to this article is provided on
our website, www.mhhe.com/hillier.)

An Application Vignette

Thus, in Fig. 16.4, the first decision is represented by decision node a. Node b is an
event node representing the random event of the outcome of the seismic survey. The two
branches emanating from event node b represent the two possible outcomes of the survey.
Next comes the second decision (nodes c, d, and e) with its two possible choices. If the
decision is to drill for oil, then we come to another event node (nodes f, g, and h), where
its two branches correspond to the two possible states of nature.

Note that the path followed from node a to reach any terminal branch (except the
bottom one) is determined both by the decisions made and by random events that are out-
side the control of the decision maker. This is characteristic of problems addressed by
decision analysis.

The next step in constructing the decision tree is to insert numbers into the tree as shown
in Fig. 16.5. The numbers under or over the branches that are not in parentheses are the cash
flows (in thousands of dollars) that occur at those branches. For each path through the tree
from node a to a terminal branch, these same numbers then are added to obtain the result-
ing total payoff shown in boldface to the right of that branch. The last set of numbers is the
probabilities of random events. In particular, since each branch emanating from an event
node represents a possible random event, the probability of this event occurring from this
node has been inserted in parentheses along this branch. From event node h, the probabili-
ties are the prior probabilities of these states of nature, since no seismic survey has been
conducted to obtain more information in this case. However, event nodes f and g lead out
of a decision to do the seismic survey (and then to drill). Therefore, the probabilities from
these event nodes are the posterior probabilities of the states of nature, given the finding from
the seismic survey, where these numbers are given in Figs. 16.2 and 16.3. Finally, we have the
two branches emanating from event node b. The numbers here are the probabilities of these
findings from the seismic survey, Favorable (FSS) or Unfavorable (USS), as given under-
neath the probability tree diagram in Fig. 16.2 or in cells C15:C16 of Fig. 16.3.

Performing the Analysis

Having constructed the decision tree, including its numbers, we now are ready to analyze
the problem by using the following procedure:
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698 CHAPTER 16 DECISION ANALYSIS

1. Start at the right side of the decision tree and move left one column at a time. For each
column, perform either step 2 or step 3 depending upon whether the nodes in that col-
umn are event nodes or decision nodes.

2. For each event node, calculate its expected payoff by multiplying the expected payoff
of each branch (shown in boldface to the right of the branch) by the probability of that
branch and then summing these products. Record this expected payoff for each decision
node in boldface next to the node, and designate this quantity as also being the ex-
pected payoff for the branch leading to this node.

3. For each decision node, compare the expected payoffs of its branches and choose the
alternative whose branch has the largest expected payoff. In each case, record the choice
on the decision tree by inserting a double dash as a barrier through each rejected branch.

To begin the procedure, consider the rightmost column of nodes, namely, event nodes
f, g, and h. Applying step 2, their expected payoffs (EP) are calculated as

EP � �
1
7

�(670) � �
6
7

�(�130) � �15.7, for node f,

EP � �
1
2

�(670) � �
1
2

�(�130) � 270, for node g,

EP � �
1
4

�(700) � �
3
4

�(�100) � 100, for node h.
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■ FIGURE 16.5
The decision tree in Fig. 16.4
after adding both the
probabilities of random
events and the payoffs.
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These expected payoffs then are placed above these nodes, as shown in Fig. 16.6.
Next, we move one column to the left, which consists of decision nodes c, d, and e.

The expected payoff for a branch that leads to an event node now is recorded in boldface
over that event node. Therefore, step 3 can be applied as follows:

Node c: Drill alternative has EP � �15.7.
Sell alternative has EP � 60.

60 � �15.7, so choose the Sell alternative.

Node d: Drill alternative has EP � 270.
Sell alternative has EP � 60.

270 � 60, so choose the Drill alternative.

Node e: Drill alternative has EP � 100.
Sell alternative has EP � 90.

100 � 90, so choose the Drill alternative.

The expected payoff for each chosen alternative now would be recorded in boldface over
its decision node, as already shown in Fig. 16.6. The chosen alternative also is indicated
by inserting a double dash as a barrier through each rejected branch.

Next, moving one more column to the left brings us to node b. Since this is an
event node, step 2 of the procedure needs to be applied. The expected payoff for each

16.4 DECISION TREES 699
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■ FIGURE 16.6
The final decision tree that
records the analysis for the
full Goferbroke Co. problem
when using monetary
payoffs.
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700 CHAPTER 16 DECISION ANALYSIS

■ 16.5 USING SPREADSHEETS TO PERFORM SENSITIVITY 
ANALYSIS ON DECISION TREES

Some helpful spreadsheet software now is available for constructing and analyzing de-
cision trees on spreadsheets. We will describe and illustrate how to use Analytic Solver
Platform for Education (ASPE) to construct and analyze decision trees in Excel. In-
structions for installing this software are on the very first page of the book (before the
title page) and also on the book’s website, www.mhhe/hillier.  If you are a Mac user
(ASPE is not compatible with Mac versions of Excel) or you or your instructor simply
prefer to use different software, a supplement to this chapter on the website contains in-
structions for TreePlan, another popular Excel add-in for constructing and analyzing de-
cision trees in Excel.

To simplify the discussion, we will begin by illustrating the construction of a small
decision tree for the first Goferbroke Co. problem (no consideration of conducting a seis-
mic survey) before considering the full problem.

of its branches is recorded over the following decision node. Therefore, the expected
payoff is

EP � 0.7(60) � 0.3(270) � 123, for node b,

as recorded over this node in Fig. 16.6.
Finally, we move left to node a, a decision node. Applying step 3 yields

Node a: Do seismic survey has EP � 123.
No seismic survey has EP � 100.

123 � 100, so choose Do seismic survey.

This expected payoff of 123 now would be recorded over the node, and a double dash in-
serted to indicate the rejected branch, as already shown in Fig. 16.6.

This procedure has moved from right to left for analysis purposes. However, having
completed the decision tree in this way, the decision maker now can read the tree from
left to right to see the actual progression of events. The double dashes have closed off the
undesirable paths. Therefore, given the payoffs for the final outcomes shown on the right
side, Bayes’ decision rule says to follow only the open paths from left to right to achieve
the largest possible expected payoff.

Following the open paths from left to right in Fig. 16.6 yields the following optimal
policy, according to Bayes’ decision rule:

Optimal policy:
Do the seismic survey.
If the result is unfavorable, sell the land.
If the result is favorable, drill for oil.
The expected payoff (including the cost of the seismic survey) is 123 ($123,000).

This (unique) optimal solution naturally is the same as that obtained in the preceding sec-
tion without the benefit of a decision tree. (See the optimal policy with experimentation
given in Table 16.5 and the conclusion at the end of Sec. 16.3 that experimentation is
worthwhile.)

For any decision tree, this backward induction procedure always will lead to the
optimal policy (or policies) after the probabilities are computed for the branches emanat-
ing from an event node.

Another example of solving a decision tree in this way is included in the Solved 
Examples section of the book’s website.
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■ FIGURE 16.7
The Decision Tree dialog box
used to specify that the
initial node of the first
Goferbroke problem is a
decision node with two
branches, Drill and Sell, with
values (partial payoffs) of
–100 and 90, respectively.

Using ASPE to Construct the Decision Tree for the 
First Goferbroke Co. Problem

Consider the first Goferbroke Co. problem (no seismic survey) as summarized earlier
in Table 16.2. To begin creating a decision tree using ASPE, select Add Node from the
Decision Tree/Node menu. This brings up the dialog box shown in Fig. 16.7. Here you
can choose the type of node (Decision or Event), give names to each of the branches,
and specify a value for each branch (the partial payoff associated with that branch).
The default names for the branches of a decision node in ASPE are Decision 1 and
Decision 2. These can be changed (or more branches added) by double-clicking on the
branch name (or in the next blank row to add a branch) and typing in a new name. The
initial node in the first Goferbroke problem is a decision node with two branches: Drill
and Sell. The payoff associated with drilling is –100 (the $100,000 cost of drilling)
and the payoff associated with selling is 90 (the $90,000 selling price). After making
all of these entries as shown in Fig.16.7, clicking OK then yields the decision tree shown
in Fig. 16.8.

If the decision is to drill, the next event is to learn whether or not the land contains
oil. To create an event node, click on the cell containing the triangle terminal node at the
end of the drill branch (cell F3 in Fig. 16.8) and choose Add Node from the Decision
Tree/Node menu on the ASPE ribbon to bring up the dialog box shown in Fig. 16.9. The
node is an event node with two branches, Oil and Dry, with probabilities 0.25 and 0.75,
respectively, and values (partial payoffs) of 800 and 0, respectively, as entered into the
dialog box in Fig. 16.9. After clicking OK, the final decision tree is shown in Fig. 16.10.
(Note that ASPE, by default, shows all probabilities as a percentage, with 25% and 75%
in H1 and H6, rather than 0.25 and 0.75.)
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■ FIGURE 16.9
The Decision Tree dialog box
used to specify that the
second node of the first
Goferbroke problem is an
event node with two
branches, Oil and Dry, with
values (partial payoffs) of
800 and 0, and with
probabilities of 0.25 and
0.75, respectively.

■ FIGURE 16.10
The decision tree constructed
and solved by ASPE for the
first Goferbroke Co. problem
as presented in Table 16.2,
where the 1 in cell B9
indicates that the top branch
(the Drill alternative) should
be chosen.

■ FIGURE 16.8
The initial, partial decision
tree created by ASPE by
selecting Add Node from the
Decision Tree/Node menu on
the ASPE ribbon and
specifying a Decision node
with two branches named
Drill and Sell, with partial
payoffs of –100 and 90,
respectively.
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At any time, you also can click on any existing node and make changes using var-
ious choices under the Decision Tree menu on the ASPE ribbon. For example, under the
Node submenu, you can choose Add Node, Change Node, Delete Node, Copy Node, or
Paste Node. Under the Branch submenu, you can choose Add Branch, Change Branch,
or Delete Branch.

The Decision Tree for the Full Goferbroke Co. Problem

Now consider the full Goferbroke Co. problem, where the first decision to be made is
whether to conduct a seismic survey. Continuing the procedure described above, ASPE
would be used to construct and solve the decision tree shown in Fig. 16.11. Although the
form is somewhat different, note that this decision tree is completely equivalent to the one
in Fig. 16.6. Besides the convenience of constructing the tree directly on a spreadsheet,
ASPE also provides the key advantage of automatically solving the decision tree. Rather
than relying on hand calculations as in Fig. 16.6, ASPE instantaneously calculates all the
expected payoffs at each stage of the tree, as shown next to each node, as soon as the 
decision tree is constructed. Instead of using double dashes, ASPE puts a number inside
each decision node indicating which branch should be chosen (assuming the branches 
emanating from that node are numbered consecutively from top to bottom).

Organizing the Spreadsheet to Perform Sensitivity Analysis

The end of Sec. 16.2 illustrated how sensitivity analysis can be performed on a small 
problem (the first Goferbroke Co. problem), where only a single decision (drill or sell)
needs to be made. In that case, the analysis was quite straightforward because the 
expected payoff for each decision alternative could be expressed as a simple function of
the model parameter (the prior probability of oil) being considered. By contrast, when a
sequence of decisions needs to be made, as for the full Goferbroke Co. problem, sensi-
tivity analysis becomes somewhat more involved. There now are more model parameters
(the various costs, revenues, and probabilities) that might have sufficient uncertainty to
warrant performing sensitivity analysis. Furthermore, finding the maximum expected 
payoff for any particular values of the model parameters now requires solving a decision
tree. Therefore, using spreadsheet software such as ASPE that automatically solves the
decision tree becomes very helpful.

Beginning with the spreadsheet that already contains the decision tree, the next step
is to expand and organize this spreadsheet for performing sensitivity analysis. We now
will illustrate this for the full Goferbroke Co. problem by starting with the spreadsheet in
Fig. 16.11 that contains the decision tree constructed by ASPE.

It is helpful to begin by consolidating the data and results into a new section, as shown
on the right-hand side of Fig. 16.12. All the data cells in the decision tree now would need
to make reference to the consolidated data cells (cells V4:V11), as illustrated by the 
formulas shown for cells P6 and P11 at the bottom of the figure. Similarly, the summarized
results to the right of the decision tree make reference to the output cells within the de-
cision tree (the decision nodes in cells B29, F41, J11, and J26, as well as the expected
payoff in cell A30) by using the formulas for cells U19, V15, V26, and W19:W20 dis-
played at the bottom of Fig. 16.12.

The probability data in the decision tree are complicated by the fact that the poste-
rior probabilities will need to be updated any time a change is made in any of the prior
probability data. Fortunately, the template for calculating posterior probabilities (as shown
in Fig. 16.3) can be used to do these calculations. The relevant portion of this template
(B3:H19) has been copied (using the Copy and Paste commands in the Edit menu) to the
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spreadsheet in Fig. 16.12 (now appearing in U30:AA46). The data for the template refer
to the probability data in the data cells PriorProbabilityOfOil (V9), ProbFSSGivenOil
(V10), and ProbUSSGivenDry (V11), as shown in the formulas for cells V33:X34 at the
bottom of Fig. 16.12. The template automatically calculates the probability of each find-
ing and the posterior probabilities (in cells V42:X43) based on these data. The decision
tree then refers to these calculated probabilities when they are needed, as shown in the
formulas for cells P3:P11 in Fig. 16.12.

Consolidating the data and results offers a couple of advantages. First, it ensures
that each piece of data is in only one place. Each time that piece of data is needed in
the decision tree, a reference is made to the single data cell. This greatly simplifies
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■ FIGURE 16.11
The decision tree constructed
and solved by ASPE for the
full Goferbroke Co. problem
that also considers whether
to do a seismic survey.
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16.5 USING SPREADSHEETS TO PERFORM SENSITIVITY ANALYSIS 705

■ FIGURE 16.12
In preparation for
performing sensitivity
analysis on the full
Goferbroke problem, the
data and results have been
consolidated on the
spreadsheet to the right of
the decision tree.

sensitivity analysis. To change a piece of data, you need to change it in only one place
rather than searching through the entire tree to find and change all occurrences of that
piece of data. A second advantage of consolidating the data and results is that it makes
it easy for anyone to interpret the model. It is not necessary to understand ASPE or how
to read a decision tree in order to see what data were used in the model or what the
suggested plan of action and expected payoff are.

While it takes some time and effort to consolidate the data and results, including all
the necessary cross-referencing, this step is truly essential for performing sensitivity analy-
sis. Many pieces of data are used in several places on the decision tree. For example, the
revenue if Goferbroke finds oil appears in cells P6, P21, and L36. Performing sensitivity
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■ FIGURE 15.11
In preparation for
performing sensitivity
analysis on the full
Goferbroke problem, the
data and results have been
consolidated on the
spreadsheet to the right of
the decision tree.

bottom of Fig. 15.11. The template automatically calculates the probability of each find-
ing and the posterior probabilities (in cells V42:X43) based on these data. The decision
tree then refers to these calculated probabilities when they are needed, as shown in the
formulas for cells P3:P11 in Fig. 15.11.

Consolidating the data and results offers a couple of advantages. First, it assures
that each piece of data is in only one place. Each time that piece of data is needed in
the decision tree, a reference is made to the single data cell. This greatly simplifies
sensitivity analysis. To change a piece of data, you need to change it in only one place
rather than searching through the entire tree to find and change all occurrences of that
piece of data. A second advantage of consolidating the data and results is that it makes
it easy for anyone to interpret the model. It is not necessary to understand TreePlan or
how to read a decision tree in order to see what data were used in the model or what
the suggested plan of action and expected payoff are.

While it takes some time and effort to consolidate the data and results, including all
the necessary cross-referencing, this step is truly essential for performing sensitivity analy-
sis. Many pieces of data are used in several places on the decision tree. For example, the
revenue if Goferbroke finds oil appears in cells P6, P21, and L36. Performing sensitivity
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706 CHAPTER 16 DECISION ANALYSIS

analysis on this piece of data now requires changing its value in only one place (cell V6)
rather than three (cells P6, P21, and L36). The benefits of consolidation are even more
important for the probability data. Changing any prior probability may cause all the pos-
terior probabilities to change. By including the posterior probability template, you can
change the prior probability in one place, and then all the other probabilities are calcu-
lated and updated appropriately.

After making any change in the cost data, revenue data, or probability data in Fig. 16.12,
the spreadsheet nicely summarizes the new results after the actual work to obtain these
results is instantly done by the posterior probability template and the decision tree. There-
fore, experimenting with alternative data values in a trial-and-error manner is one useful
way of performing sensitivity analysis.

Now let’s see how this sensitivity analysis can be done more systematically by using a
data table.

Using a Data Table to Do Sensitivity Analysis Systematically

To systematically determine how the decisions and expected payoffs change as the prior
probability of oil (or any other data) changes, we could continue selecting new trial val-
ues of the prior probability of oil at random. However, a better approach is to systemati-
cally consider a range of values. A feature built into Excel, called a data table, is designed
to perform just this sort of analysis. Data tables are used to show the results of a certain
output cells for various trial values of a data cell. 

To use data tables, first make a table on the spreadsheet with headings as shown in
columns Y through AD in Fig.16.13. In the first column of the table (Y5:Y15), list the
trial values for the data cell (the prior probability of oil), except leave the first row blank.
The headings of the next columns specify which output will be evaluated. For each of
these columns, use the first row of the table (cells Y4:AD4) to write an equation that refers
to the relevant output cell. In this case, the cells of interest are (1) the decision of whether
to do the survey (V15), (2) if so, whether to drill if the survey is favorable or unfavorable
(W19 and W20), (3) if not, whether to drill (U19), and (4) the value of ExpectedPayoff
(V26). The equations for Y4:AD4 referring to these output cells are shown below the
spreadsheet in Fig. 16.13.

Next, select the entire table (Y4:AD15) and then choose Data Table from the What-
If Analysis menu of the Data tab. In the Data Table dialog box (as shown at the bottom
right of Fig.16.13), indicate the column input cell (V9), which refers to the data cell that
is being changed in the first column of the table.

Clicking OK then generates the table shown in Fig. 16.13. For each trial value for
the data cell listed in the first column of the table, the corresponding output cell values
are calculated and displayed in the other columns of the table. Some of the output in the
data table is not relevant. For example, when the decision is to not do the survey in col-
umn Z, the results in columns AA and AB (what to do given favorable or unfavorable sur-
vey results) are not relevant. Similarly, when the decision is to do the survey in column
Z, the results in column AC (what to do if you don’t do the survey) are not relevant. 
The relevant output has been formatted in boldface to make it stand out compared to the
irrelevant output. 

Figure 16.13 reveals that the optimal initial decision switches from Sell without a sur-
vey to doing the survey somewhere between 0.1 and 0.2 for the prior probability of oil, and
then switches again to Drill without a survey somewhere between 0.3 and 0.4. Using the
spreadsheet in Fig. 16.12, trial-and-error analysis soon leads to the following conclusions
about how the optimal policy depends on this probability.
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■ FIGURE 16.13
The data table that shows the optimal policy and expected payoff for various trial values of the prior probability of oil.

Optimal Policy

Let p � Prior probability of oil.

If p � 0.168, then sell the land (no seismic survey).

If 0.169 � p � 0.308, then do the survey: drill if favorable and sell if not.

If p � 0.309, then drill for oil (no seismic survey).

■ 16.6 UTILITY THEORY

Thus far, when applying Bayes’ decision rule, we have assumed that the expected payoff
in monetary terms is the appropriate measure of the consequences of taking an action.
However, in many situations this assumption is inappropriate.

For example, suppose that an individual is offered the choice of (1) accepting a 50:50
chance of winning $100,000 or nothing or (2) receiving $40,000 with certainty. Many peo-
ple would prefer the $40,000 even though the expected payoff on the 50:50 chance of
winning $100,000 is $50,000. A company may be unwilling to invest a large sum of money
in a new product even when the expected profit is substantial if there is a risk of losing
its investment and thereby becoming bankrupt. People buy insurance even though it is a
poor investment from the viewpoint of the expected payoff.
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Do these examples invalidate Bayes’ decision rule? Fortunately, the answer is no,
because there is a way of transforming monetary values to an appropriate scale that
reflects the decision maker’s preferences. This scale is called the utility function for
money.

Utility Functions for Money

Figure 16.14 shows a typical utility function U(M) for money M. It indicates that an in-
dividual having this utility function would value obtaining $30,000 twice as much as
$10,000 and would value obtaining $100,000 twice as much as $30,000. This reflects the
fact that the person’s highest-priority needs would be met by the first $10,000. Having
this decreasing slope of the function as the amount of money increases is referred to as
having a decreasing marginal utility for money. Such an individual is referred to as be-
ing risk-averse.

However, not all individuals have a decreasing marginal utility for money. Some peo-
ple are risk seekers instead of risk-averse, and they go through life looking for the “big
score.” The slope of their utility function increases as the amount of money increases, so
they have an increasing marginal utility for money.

The intermediate case is that of a risk-neutral individual, who prizes money at its
face value. Such an individual’s utility for money is simply proportional to the amount
of money involved. Although some people appear to be risk-neutral when only small
amounts of money are involved, it is unusual to be truly risk-neutral with very large
amounts.

It also is possible to exhibit a mixture of these kinds of behavior. For example, an in-
dividual might be essentially risk-neutral with small amounts of money, then become a risk
seeker with moderate amounts, and then turn risk-averse with large amounts. In addition,
one’s attitude toward risk can shift over time depending upon circumstances.

An individual’s attitude toward risk also may be different when dealing with one’s
personal finances than when making decisions on behalf of an organization. For example,
managers of a business firm need to consider the company’s circumstances and the col-
lective philosophy of top management in determining the appropriate attitude toward risk
when making managerial decisions.3

The fact that different people have different utility functions for money has an im-
portant implication for decision making in the face of uncertainty:

When a utility function for money is incorporated into a decision analysis approach to a
problem, this utility function must be constructed to fit the preferences and values of the
decision maker involved. (The decision maker can be either a single individual or a group
of people.)

The scale of the utility function is irrelevant. In other words, it doesn’t matter
whether the value of U(M) at the dashed lines in Fig. 16.14 are 0.25, 0.5, 0.75, 1 (as
shown) or 10,000, 20,000, 30,000, 40,000, or whatever. All the utilities can be multi-
plied by any positive constant without affecting which alternative course of action will
have the largest expected utility. It also is possible to add the same constant (positive
or negative) to all the utilities without affecting which course of action will have the
largest expected utility.

For these reasons, we have the liberty to set the value of U(M) arbitrarily for two val-
ues of M, so long as the higher monetary value has the higher utility. It is particularly

3For a survey of the shape of the utility function for 332 owner-managers and the impact of this shape on or-
ganizational behavior, see J. M. E. Pennings and A. Smidts, “The Shape of Utility Functions and Organizational
Behavior,” Management Science, 49: 1251–1263, 2003.
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U(M)

$10,000 $30,000 $60,000 $100,000 M

1

0.75
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0.25

0

■ FIGURE 16.14
A typical utility function for
money, where U(M) is the
utility of obtaining an
amount of money M.

convenient (although certainly not necessary) to set U(M) � 0 for the smallest value of
M under consideration and to set U(M) � 1 for the largest M, as was done in Fig. 16.14.
By assigning a utility of 0 to the worst outcome and a utility of 1 to the best outcome,
and then determining the utilities of the other outcomes accordingly, it becomes easy to
see the relative utility of each outcome along the scale from worst to best.

The key to constructing the utility function for money to fit the decision maker is the
following fundamental property of utility functions:

Fundamental Property: Under the assumptions of utility theory, the decision
maker’s utility function for money has the property that the decision maker is in-
different between two alternative courses of action if the two alternatives have
the same expected utility.

To illustrate how this fundamental property can be used, suppose that the decision 
maker has the utility function shown in Fig. 16.14. Thus, for example, the utility of receiv-
ing $10,000 is 0.25. To see how this utility of 0.25 could have been obtained, suppose that
the decision maker is asked what value of p would make her indifferent between the first
alternative of definitely receiving the $10,000 or instead accepting the following offer:

Offer: An opportunity to obtain either $100,000 (utility � 1) with probability
p or nothing (utility � 0) with probability (1 � p).
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710 CHAPTER 16 DECISION ANALYSIS

Thus,

E(utility) � p, for this offer.

Now see what happens if the decision maker chooses p � 0.25 as her point of indiffer-
ence between the two alternatives:

One alternative: Accept the offer with p � 0.25.
This yields E(utility) � 0.25.

The other alternative: Definitely receive $10,000.
Since the decision maker is indifferent between the two 
alternatives, the fundamental property says they must have the 
same expected utility. Therefore, this alternative’s utility also is 
0.25, just as shown in Fig. 16.14.

This example illustrates one way in which the decision maker’s utility function for
money in Fig. 16.14 would have been constructed in the first place. The decision maker
would be made the same hypothetical offer to obtain either a large amount of money
($100,000) with probability p or nothing. Then, for each of a few smaller amounts of money
($10,000, $30,000, and $60,000), the decision maker would be asked to choose a value of
p that would make her indifferent between the offer and definitely obtaining that amount
of money. The utility of the smaller amount of money then is p. Choosing p � 0.25, 0.5,
and 0.75 when considering $10,000, $30,000, and $60,000, respectively, yields Fig. 16.14. 

This procedure, called the equivalent lottery method for determining utilities, is out-
lined below.

Equivalent Lottery Method

1. Determine the largest potential payoff, M � maximum, and assign it some utility, e.g.,
U(maximum) � 1.

2. Determine the smallest potential payoff, M � minimum, and assign it some utility
smaller than in step 1, e.g., U(minimum) � 0.

3. To determine the utility of another potential payoff M, the decision maker is offered
the following two hypothetical alternatives:

A1: Obtain a payoff of maximum with probability p,
Obtain a payoff of minimum with probability 1 � p.

A2: Definitely obtain a payoff of M.

Question to the decision maker: What value of p makes you indifferent between these
two alternatives? The resulting utility of M then is

U(M) � p U(maximum) � (1 � p) U(minimum),

which simplifies to

U(M) � p, if U(minimum) � 0, U(maximum) � 1.

Now we are ready to summarize the basic role of utility functions in decision analysis.

When the decision maker’s utility function for money is used to measure the relative worth
of the various possible monetary outcomes, Bayes’ decision rule replaces monetary pay-
offs by the corresponding utilities. Therefore, the optimal action (or series of actions) is
the one which maximizes the expected utility.

Only utility functions for money have been discussed here. However, we should men-
tion that utility functions can sometimes still be constructed when some of or all the
important consequences of the alternative courses of action are not monetary. (For example,
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the consequences of a doctor’s decision alternatives in treating a patient involve the future
health of the patient.) Nevertheless, under these circumstances, it is important to incorpo-
rate such value judgments into the decision process. This is not necessarily easy, since it
may require making value judgments about the relative desirability of rather intangible con-
sequences. Nevertheless, under these circumstances, it is important to incorporate such value
judgments into the decision process.

Applying Utility Theory to the Full Goferbroke Co. Problem

At the end of Sec. 16.1, we mentioned that the Goferbroke Co. was operating without
much capital, so a loss of $100,000 would be quite serious. The owner of the company
already has gone heavily into debt to keep going. The worst-case scenario would be to
come up with $30,000 for a seismic survey and then still lose $100,000 by drilling when
there is no oil. This scenario would not bankrupt the company at this point, but definitely
would leave it in a precarious financial position.

On the other hand, striking oil is an exciting prospect, since earning $700,000 finally
would put the company on a fairly solid financial footing.

To apply the owner’s (decision maker’s) utility function for money to the problem as
described in Secs. 16.1 and 16.3, it is necessary to identify the utilities for all the pos-
sible monetary payoffs. In units of thousands of dollars, these possible payoffs and the
corresponding utilities are given in Table 16.7. We now will discuss how these utilities
were obtained.

As a starting point in constructing the utility function, since we have the liberty to
set the value of U(M) arbitrarily for two values of M (so long as the higher monetary
value has the higher utility), it was convenient to set U(�130) � 0 and U(700) � 1.
Then the equivalent lottery method was applied to determine the utility for another of
the possible monetary payoffs, M � 90, by posing the following question to the deci-
sion maker (the owner of the Goferbroke Co.).

Suppose you have only the following two alternatives. In units of thousands of dollars,
alternative 1 is to obtain a payoff of 700 with probability p and a payoff of �130 (loss
of 130) with probability 1 � p. Alternative 2 is to definitely obtain a payoff of 90. What
value of p makes you indifferent between these two alternatives?

The decision maker’s choice: p � 1–
3, so U(90) � 0.333. 

Next, the equivalent lottery method was applied in the same way to M � �100. In this
case, the decision maker’s point of indifference was p � 1—

20, so U(�100) � 0.05.
At this point, a smooth curve was drawn through U(�130), U(�100), U(90), and U(700)

to obtain the decision maker’s utility function for money shown in Fig. 16.15. The values on
this curve at M � 60 and M � 670 provide the corresponding utilities, U(60) � 0.30 and
U(670) � 0.97, which completes the list of utilities given in the right column of Table 16.7.

16.6 UTILITY THEORY 711

■ TABLE 16.7 Utilities for the full
Goferbroke Co. problem

Monetary Payoff Utility

�130 0
�100 0.05

60 0.30
90 0.333

670 0.97
700 1
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■ FIGURE 16.15
The utility function for
money of the owner 
of the Goferbroke Co.

The shape of this curve indicates that the owner of the Goferbroke Co. is moderately risk
averse. By contrast, the dashed line drawn at 45° in Fig. 16.15 shows what his utility
function would have been if he were risk-neutral.

By nature, the owner of the Goferbroke Co. actually is inclined to be a risk seeker.
However, the difficult financial circumstances of his company, which he badly wants to
keep solvent, have forced him to adopt a moderately risk-averse stance in addressing his
current decisions.

Another Approach for Estimating U(M)

The above procedure for constructing U(M) asks the decision maker to repeatedly make
a difficult decision about which probability would make him or her indifferent between
two alternatives. Many individuals would be uncomfortable with making this kind of
decision. Therefore, an alternative approach is sometimes used instead to estimate the util-
ity function for money.

This approach is to assume that the utility function has a certain mathematical form,
and then adjust this form to fit the decision maker’s attitude toward risk as closely as 
possible. For example, one particularly popular form to assume (because of its relative
simplicity) is the exponential utility function,

U(M) � 1 � e��MR�,
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where R is the decision maker’s risk tolerance. This utility function has a decreasing mar-
ginal utility for money, so it is designed to fit a risk-averse individual. A great aversion
to risk corresponds to a small value of R (which would cause the utility function curve to
bend sharply), whereas a small aversion to risk corresponds to a large value of R (which
gives a much more gradual bend in the curve).

Since the owner of the Goferbroke Co. has a relatively small aversion to risk, the
utility function curve in Fig. 16.15 bends quite slowly. It bends particularly slowly for
the large values of M near the right side of Fig. 16.15, so the corresponding value of R
in this region is approximately R � 2000. On the other hand, the owner becomes much
more risk-averse when large losses can occur, since this now would threaten bankruptcy,
so the utility function curve has considerably more curvature in this region where M has
large negative values. Therefore, the corresponding value of R is considerably smaller, only
about R � 500, in this region.

Unfortunately, it is not possible to use two different values of R for the same utility
function. A drawback of the exponential utility function is that it assumes a constant
aversion to risk (a fixed value of R), regardless of how much (or how little) money the
decision maker currently has. This doesn’t fit the Goferbroke Co. situation, since the cur-
rent shortage of money makes the owner much more concerned than usual about incur-
ring a large loss.

In other situations where the consequences of the potential losses are not as severe,
assuming an exponential utility function may provide a reasonable approximation. In such
a case, here is an easy (slightly approximate) way of estimating the appropriate value of R.
The decision maker would be asked to choose the number R that would make him (or her)
indifferent between the following two alternatives:

A1: A 50-50 gamble where he would gain R dollars with probability 0.5 and lose �
R
2

�
dollars with probability 0.5.

A2: Neither gain nor lose anything.

ASPE includes the option of using the exponential utility function. Clicking on
the Options button on the ASPE ribbon reveals an Options dialog box. Under the Tree
tab, choose Exponential Utility Function and specify the value of R in the Risk Toler-
ance box. Clicking OK then revises the decision tree to incorporate the exponential
utility function. (We will not pursue this approach any further and now will return to
the Goferbroke example while using the utilities obtained with the equivalent lottery
method.)

Using a Decision Tree to Analyze the Goferbroke Co. 
Problem with Utilities

Now that the utility function for money of the owner of the Goferbroke Co. has been ob-
tained in Table 16.7 (and Fig. 16.15), this information can be used with a decision tree as
summarized next:

The procedure for using a decision tree to analyze the problem now is identical to that 
described in the preceding section except for substituting utilities for monetary payoffs. There-
fore, the value obtained to evaluate each node of the tree now is the expected utility there
rather than the expected (monetary) payoff. Consequently, the optimal decisions selected by
Bayes’ decision rule maximize the expected utility for the overall problem.

Thus, our final decision tree shown in Fig. 16.16 closely resembles the one in
Fig. 16.6 given in Sec. 16.4. The nodes and branches are exactly the same, as are the
probabilities for the branches emanating from the event nodes. For informational purposes,
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■ FIGURE 16.16
The final decision tree for the
full Goferbroke Co. problem,
using the owner’s utility
function for money to
maximize expected utility.

the total monetary payoffs still are given to the right of the terminal branches (but we no
longer bother to show the individual monetary payoffs next to any of the branches). How-
ever, we now have added the utilities on the right side. It is these numbers that have been
used to compute the expected utilities given next to all the nodes.

These expected utilities lead to the same decisions at nodes a, c, and d as in Fig. 16.6,
but the decision at node e now switches to sell instead of drill. However, the backward
induction procedure still leaves node e on a closed path. Therefore, the overall optimal
policy remains the same as given at the end of Sec. 16.4 (do the seismic survey; sell if
the result is unfavorable; drill if the result is favorable).

The approach used in the preceding sections of maximizing the expected monetary
payoff amounts to assuming that the decision maker is risk-neutral, so that U(M) � M.
By using utility theory, the optimal solution now reflects the decision maker’s attitude
about risk. Because the owner of the Goferbroke Co. adopted only a moderately risk-averse
stance, the optimal policy did not change from before. For a somewhat more risk-averse owner,
the optimal solution would switch to the more conservative approach of immediately sell-
ing the land (no seismic survey). (See Prob. 16.6-1.)

The current owner is to be commended for incorporating utility theory into a deci-
sion analysis approach to his problem. Utility theory helps to provide a rational approach
to decision making in the face of uncertainty. However, many decision makers are not 
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In one sense, this chapter’s prototype example (the Goferbroke Co. problem) is a typical
application of decision analysis. Like other applications, management needed to make
some decisions (Do a seismic survey? Drill for oil or sell the land?) in the face of great
uncertainty. The decisions were difficult because their payoffs were so unpredictable. The
outcome depended on factors that were outside management’s control (does the land con-
tain oil or is it dry?). Therefore, management needed a framework and methodology for
rational decision making in this uncertain environment. These are the usual characteris-
tics of applications of decision analysis.

However, in other ways, the Goferbroke problem is not such a typical application. It
was oversimplified to include only two possible states of nature (Oil and Dry), whereas
there actually would be a considerable number of distinct possibilities. For example, the
actual state might be dry, a small amount of oil, a moderate amount, a large amount, and
a huge amount, plus different possibilities concerning the depth of the oil and soil condi-
tions that impact the cost of drilling to reach the oil. Management also was considering
only two alternatives for each of two decisions. Real applications commonly involve more
decisions, more alternatives to be considered for each one, and many possible states of
nature.

When dealing with larger problems, the decision tree can explode in size, with per-
haps many thousand terminal branches. In this case, it clearly would not be feasible to
construct the tree by hand, including computing posterior probabilities, and calculating
the expected payoffs (or utilities) for the various nodes, and then identifying the opti-
mal decisions. Fortunately, some excellent software packages (mainly for personal com-
puters) are available specifically for doing this work. (See Selected Reference 11 for a
survey of these software packages.) Furthermore, special algebraic techniques are be-
ing developed and incorporated into the computer solvers for dealing with ever larger
problems.4

Sensitivity analysis also can become unwieldy on large problems. Although it normally
is supported by the computer software, the amount of data generated can easily overwhelm
an analyst or decision maker. Therefore, some graphical techniques, such as tornado charts,
have been developed to organize the data in a readily understandable way.5

Other kinds of graphical techniques also are available to complement the decision
tree in representing and solving decision analysis problems. One that has become quite
popular is called the influence diagram, and researchers continue to develop others as
well.6

4For example, see C. W. Kirkwood, “An Algebraic Approach to Formulating and Solving Large Models for
Sequential Decisions under Uncertainty,” Management Science, 39: 900–913, July 1993.
5For further information, see T. G. Eschenbach, “Spiderplots versus Tornado Diagrams for Sensitivity Analysis,”
Interfaces, 22: 40–46, Nov.–Dec. 1992. Also see Chapter 5 in Selected Reference 4.
6For example, see C. Bielza and P. P. Shenoy, “A Comparison of Graphical Techniques for Asymmetric Deci-
sion Problems,” Management Science, 45(11): 1552–1569, Nov. 1999. Also see Chapters 3 and 4 in Selected
Reference 4.

■ 16.7 THE PRACTICAL APPLICATION OF DECISION ANALYSIS

sufficiently comfortable with the relatively abstract notion of utilities, or with working
with probabilities to construct a utility function, to be willing to use this approach. Con-
sequently, utility theory is not yet used very widely in practice.
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7For further information, see the two articles on decision conferencing in the November–December 1992 issue
of Interfaces, where one describes an application in Australia and the other summarizes the experience of 26
decision conferences in Hungary.  Although somewhat dated now, this issue of Interfaces is a special issue de-
voted entirely to decision analysis and risk analysis that contains many interesting articles.

Many strategic business decisions are made collectively by several members of man-
agement. One technique for group decision making is called decision conferencing. This
is a process where the group comes together for discussions in a decision conference with
the help of an analyst and a group facilitator. The facilitator works directly with the group
to help it structure and focus discussions, think creatively about the problem, bring as-
sumptions to the surface, and address the full range of issues involved. The analyst uses
decision analysis to assist the group in exploring the implications of the various decision
alternatives. With the assistance of a computerized group decision support system, the an-
alyst builds and solves models on the spot, and then performs sensitivity analysis to re-
spond to what-if questions from the group.7

Applications of decision analysis commonly involve a partnership between the man-
agerial decision maker (whether an individual or a group) and an analyst (whether an in-
dividual or a team) with training in OR. Some companies do not have a staff member who
is qualified to serve as the analyst. Therefore, a considerable number of management con-
sulting firms specializing in decision analysis have been formed to fill this role. 

If you would like to do more reading about the practical application of decision analy-
sis, we suggest that you turn to Selected Reference 9. This article was the leadoff paper
in the first issue of the journal Decision Analysis that focuses on applied research in de-
cision analysis. The article provides a detailed discussion of various publications that pre-
sent applications of decision analysis.

■ 16.8 CONCLUSIONS

Decision analysis has become an important technique for decision making in the face of
uncertainty. It is characterized by enumerating all the available decision alternatives, iden-
tifying the payoffs for all possible outcomes, and quantifying the subjective probabilities
for all the possible random events. When these data are available, decision analysis be-
comes a powerful tool for determining an optimal course of action.

One option that can be readily incorporated into the analysis is to perform experi-
mentation to obtain better estimates of the probabilities of the possible states of nature.
Decision trees are a useful visual tool for analyzing this option or any series of decisions.

Utility theory provides a way of incorporating the decision maker’s attitude toward
risk into the analysis.

Good software (including ASPE in your OR Courseware) is becoming widely avail-
able for performing decision analysis. (Selected Reference 11 provides a survey of such
software.)
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■ PROBLEMS

The symbols to the left of some of the problems (or their parts)
have the following meaning:

T: The Excel template for posterior probabilities can be helpful.
A: ASPE should be used.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

16.2-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 16.2.
Briefly describe how decision analysis was applied in this study.
Then list the various financial and nonfinancial benefits that resulted
from this study.

16.2-2.* Silicon Dynamics has developed a new computer chip that
will enable it to begin producing and marketing a personal computer
if it so desires. Alternatively, it can sell the rights to the computer
chip for $15 million. If the company chooses to build computers, the
profitability of the venture depends upon the company’s ability to
market the computer during the first year. It has sufficient access to
retail outlets that it can guarantee sales of 10,000 computers. On the
other hand, if this computer catches on, the company can sell 100,000
computers. For analysis purposes, these two levels of sales are taken
to be the two possible outcomes of marketing the computer, but it
is unclear what their prior probabilities are. If the decision is to go
ahead with producing and marketing the computer, the company will
produce as many chips as it finds it will be able to sell, but not more.
The cost of setting up the assembly line is $6 million. The differ-
ence between the selling price and the variable cost of each com-
puter is $600.
(a) Develop a decision analysis formulation of this problem by

identifying the decision alternatives, the states of nature, and
the payoff table.

(b) Develop a graph that plots the expected payoff for each of the
decision alternatives versus the prior probability of selling
10,000 computers.

(c) Referring to the graph developed in part (b), use algebra to
solve for the crossover point. Explain the significance of this
point.

A (d) Develop a graph that plots the expected payoff (when using
Bayes’ decision rule) versus the prior probability of selling
10,000 computers.

(e) Assuming the prior probabilities of the two levels of sales are
both 0.5, which decision alternative should be chosen?

16.2-3. Jean Clark is the manager of the Midtown Saveway Grocery
Store. She now needs to replenish her supply of strawberries. Her
regular supplier can provide as many cases as she wants. However,
because these strawberries already are very ripe, she will need to sell
them tomorrow and then discard any that remain unsold. Jean esti-
mates that she will be able to sell 12, 13, 14, or 15 cases tomorrow.
She can purchase the strawberries for $7 per case and sell them for
$18 per case. Jean now needs to decide how many cases to purchase.

Jean has checked the store’s records on daily sales of straw-
berries. On this basis, she estimates that the prior probabilities are
0.1, 0.3, 0.4, and 0.2 for being able to sell 12, 13, 14, and 15 cases
of strawberries tomorrow.
(a) Develop a decision analysis formulation of this problem by

identifying the decision alternatives, the states of nature, and
the payoff table.

(b) How many cases of strawberries should Jean purchase if she
uses the maximin payoff criterion?

(c) How many cases should be purchased according to the maxi-
mum likelihood criterion?

(d) How many cases should be purchased according to Bayes’ deci-
sion rule?

(e) Jean thinks she has the prior probabilities just about right for sell-
ing 12 cases and selling 15 cases, but is uncertain about how to
split the prior probabilities for 13 cases and 14 cases. Reapply
Bayes’ decision rule when the prior probabilities of 13 and 
14 cases are (i) 0.2 and 0.5, (ii) 0.4 and 0.3, and (iii) 0.5 and 0.2.

16.2-4.* Warren Buffy is an enormously wealthy investor who has
built his fortune through his legendary investing acumen. He cur-
rently has been offered three major investments and he would like
to choose one. The first one is a conservative investment that would
perform very well in an improving economy and only suffer a small
loss in a worsening economy. The second is a speculative investment
that would perform extremely well in an improving economy but
would do very badly in a worsening economy. The third is a counter-
cyclical investment that would lose some money in an improving
economy but would perform well in a worsening economy.

Warren believes that there are three possible scenarios over
the lives of these potential investments: (1) an improving economy,
(2) a stable economy, and (3) a worsening economy. He is pes-
simistic about where the economy is headed, and so has assigned
prior probabilities of 0.1, 0.5, and 0.4, respectively, to these three
scenarios. He also estimates that his profits under these respective
scenarios are those given by the following table:

Which investment should Warren make under each of the fol-
lowing criteria?
(a) Maximin payoff criterion.
(b) Maximum likelihood criterion.
(c) Bayes’ decision rule.

Improving Stable Worsening
Economy Economy Economy

Conservative 
investment �$30 million $ 5 million �$10 million

Speculative 
investment �$40 million $10 million �$30 million

Countercyclical 
investment �$10 million 0 �$15 million

Prior probability 0.1 0.5 0.4
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16.2-5. Reconsider Prob. 16.2-4. Warren Buffy decides that Bayes’
decision rule is his most reliable decision criterion. He believes
that 0.1 is just about right as the prior probability of an improving
economy, but is quite uncertain about how to split the remaining
probabilities between a stable economy and a worsening economy.
Therefore, he now wishes to do sensitivity analysis with respect to
these latter two prior probabilities.
(a) Reapply Bayes’ decision rule when the prior probability of a

stable economy is 0.3 and the prior probability of a worsening
economy is 0.6.

(b) Reapply Bayes’ decision rule when the prior probability of a
stable economy is 0.7 and the prior probability of a worsening
economy is 0.2.

(c) Graph the expected profit for each of the three investment
alternatives versus the prior probability of a stable economy
(with the prior probability of an improving economy fixed
at 0.1). Use this graph to identify the crossover points where
the decision shifts from one investment to another.

(d) Use algebra to solve for the crossover points identified in part
(c).

A (e) Develop a graph that plots the expected profit (when using
Bayes’ decision rule) versus the prior probability of a stable
economy.

16.2-6. You are given the following payoff table (in units of thou-
sands of dollars) for a decision analysis problem:

(a) Which alternative should be chosen under the maximin payoff
criterion?

(b) Which alternative should be chosen under the maximum like-
lihood criterion?

(c) Which alternative should be chosen under Bayes’ decision rule?
(d) Using Bayes’ decision rule, do sensitivity analysis graphi-

cally with respect to the prior probabilities of states S1 and
S2 (without changing the prior probability of state S3) to de-
termine the crossover point where the decision shifts from
one alternative to the other. Then use algebra to calculate this
crossover point.

(e) Repeat part (d ) for the prior probabilities of states S1 and S3.
(f) Repeat part (d ) for the prior probabilities of states S2 and S3.
(g) If you feel that the true probabilities of the states of nature are

within 10 percent of the given prior probabilities, which alter-
native would you choose?

16.2-7. Dwight Moody is the manager of a large farm with
1,000 acres of arable land. For greater efficiency, Dwight always

devotes the farm to growing one crop at a time. He now needs
to make a decision on which one of four crops to grow during
the upcoming growing season. For each of these crops, Dwight
has obtained the following estimates of crop yields and net in-
comes per bushel under various weather conditions.

After referring to historical meteorological records, Dwight also
estimated the following prior probabilities for the weather during
the growing season:

(a) Develop a decision analysis formulation of this problem by
identifying the decision alternatives, the states of nature, and
the payoff table.

(b) Use Bayes’ decision rule to determine which crop to grow.
(c) Using Bayes’ decision rule, do sensitivity analysis with respect

to the prior probabilities of moderate weather and damp
weather (without changing the prior probability of dry weather)
by re-solving when the prior probability of moderate weather
is 0.2, 0.3, 0.4, and 0.6.

16.2-8.* A new type of airplane is to be purchased by the Air
Force, and the number of spare engines to be ordered must be de-
termined. The Air Force must order these spare engines in batches
of five, and it can choose among only 15, 20, or 25 spares. The
supplier of these engines has two plants, and the Air Force must
make its decision prior to knowing which plant will be used. How-
ever, the Air Force knows from past experience that two-thirds of
all types of airplane engines are produced in Plant A, and only
one-third are produced in Plant B. The Air Force also knows that
the number of spare engines required when production takes place
at Plant A is approximated by a Poisson distribution with mean
� � 21, whereas the number of spare engines required when pro-
duction takes place at Plant B is approximated by a Poisson dis-
tribution with mean � � 24. The cost of a spare engine purchased
now is $400,000, whereas the cost of a spare engine purchased at
a later date is $900,000. Spares must always be supplied if they are
demanded, and unused engines will be scrapped when the airplanes
become obsolete. Holding costs and interest are to be neglected.
From these data, the total costs (negative payoffs) have been com-
puted as follows:

State of Nature

Alternative S1 S2 S3

A1 220 170 110
A2 200 180 150

Prior probability 0.6 0.3 0.1

Expected Yield, Bushels/Acre

Weather Crop 1 Crop 2 Crop 3 Crop 4

Dry 20 15 30 40
Moderate 35 20 25 40
Damp 40 30 25 40

Net income per bushel $1.00 $1.50 $1.00 $0.50 

Dry 0.3
Moderate 0.5
Damp 0.2

PROBLEMS 719
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Determine the optimal alternative under Bayes’ decision rule.

16.3-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 16.3. Briefly
describe how decision analysis was applied in this study. Then list the
various financial and nonfinancial benefits that resulted from this study.

16.3-2.* Reconsider Prob. 16.2-2. Management of Silicon 
Dynamics now is considering doing full-fledged market research
at a cost of $1 million to predict which of the two levels of de-
mand is likely to occur. Previous experience indicates that such
market research is correct two-thirds of the time. Assume that the
prior probabilities of the two levels of sales are both 0.5.
(a) Find EVPI for this problem.
(b) Does the answer in part (a) indicate that it might be worth-

while to perform this market research?
(c) Develop a probability tree diagram to obtain the posterior prob-

abilities of the two levels of demand for each of the two pos-
sible outcomes of the market research.

T (d) Use the Excel template for posterior probabilities to check
your answers in part (c).

(e) Find EVE. Is it worthwhile to perform the market research?

16.3-3. You are given the following payoff table (in units of thou-
sands of dollars) for a decision analysis problem:

(a) According to Bayes’ decision rule, which alternative should be
chosen?

(b) Find EVPI.
(c) You are given the opportunity to spend $1,000 to obtain more in-

formation about which state of nature is likely to occur. Given
your answer to part (b), might it be worthwhile to spend this
money?

16.3-4.* Betsy Pitzer makes decisions according to Bayes’ deci-
sion rule. For her current problem, Betsy has constructed the fol-
lowing payoff table (in units of dollars):

(a) Which alternative should Betsy choose?
(b) Find EVPI.
(c) What is the most that Betsy should consider paying to obtain

more information about which state of nature will occur?

16.3-5. Using Bayes’ decision rule, consider the decision analysis
problem having the following payoff table (in units of thousands
of dollars):

(a) Which alternative should be chosen? What is the resulting ex-
pected payoff?

(b) You are offered the opportunity to obtain information which
will tell you with certainty whether the first state of nature
S1 will occur. What is the maximum amount you should pay
for the information? Assuming you will obtain the informa-
tion, how should this information be used to choose an al-
ternative? What is the resulting expected payoff (excluding
the payment)?

(c) Now repeat part (b) if the information offered concerns S2

instead of S1.
(d) Now repeat part (b) if the information offered concerns S3

instead of S1.
(e) Now suppose that the opportunity is offered to provide infor-

mation which will tell you with certainty which state of nature
will occur (perfect information). What is the maximum amount
you should pay for the information? Assuming you will obtain
the information, how should this information be used to choose
an alternative? What is the resulting expected payoff (exclud-
ing the payment)?

(f) If you have the opportunity to do some testing that will give
you partial additional information (not perfect information)
about the state of nature, what is the maximum amount you
should consider paying for this information?

16.3-6. Reconsider the Goferbroke Co. prototype example, in-
cluding its analysis in Sec. 16.3. With the help of a consulting
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State of Nature

Alternative S1 S2 S3

A1 4 0 0
A2 0 2 0
A3 3 0 1

Prior probability 0.2 0.5 0.3

State of Nature

Alternative S1 S2 S3

A1 �100 10 100
A2 �10 20 50
A3 �10 10 60

Prior probability 0.2 0.3 0.5

State of Nature

Alternative � � 21 � � 24

Order 15 1.155 
 107 1.414 
 107

Order 20 1.012 
 107 1.207 
 107

Order 25 1.047 
 107 1.135 
 107

State of Nature

Alternative S1 S2 S3

A1 50 100 �100
A2 0 10 �10
A3 20 40 �40

Prior probability 0.5 0.3 0.2
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geologist, some historical data have been obtained that provide
more precise information on the likelihood of obtaining favor-
able seismic soundings on similar tracts of land. Specifically,
when the land contains oil, favorable seismic soundings are ob-
tained 80 percent of the time. This percentage changes to 40 per-
cent when the land is dry.
(a) Revise Fig. 16.2 to find the new posterior probabilities.
T (b) Use the Excel template for posterior probabilities to check

your answers in part (a).
(c) What is the resulting optimal policy?

16.3-7. You are given the following payoff table (in units of dollars):

You have the option of paying $100 to have research done to bet-
ter predict which state of nature will occur. When the true state of
nature is S1, the research will accurately predict S1 60 percent of
the time (but will inaccurately predict S2 40 percent of the time).
When the true state of nature is S2, the research will accurately
predict S2 80 percent of the time (but will inaccurately predict S1

20 percent of the time).
(a) Given that the research is not done, use Bayes’ decision rule

to determine which decision alternative should be chosen.
(b) Find EVPI. Does this answer indicate that it might be worth-

while to do the research?
(c) Given that the research is done, find the joint probability of

each of the following pairs of outcomes: (i) the state of nature
is S1 and the research predicts S1, (ii) the state of nature is S1

and the research predicts S2, (iii) the state of nature is S2 and
the research predicts S1, and (iv) the state of nature is S2 and
the research predicts S2.

(d) Find the unconditional probability that the research predicts
S1. Also find the unconditional probability that the research
predicts S2.

(e) Given that the research is done, use your answers in parts
(c) and (d ) to determine the posterior probabilities of the
states of nature for each of the two possible predictions of
the research.

T (f) Use the Excel template for posterior probabilities to obtain
the answers for part (e).

(g) Given that the research predicts S1, use Bayes’ decision rule to
determine which decision alternative should be chosen and the
resulting expected payoff.

(h) Repeat part (g) when the research predicts S2.
(i) Given that research is done, what is the expected payoff when

using Bayes’ decision rule?
(j) Use the preceding results to determine the optimal policy re-

garding whether to do the research and the choice of the de-
cision alternative.

16.3-8.* Reconsider Prob. 16.2-8. Suppose now that the Air Force
knows that a similar type of engine was produced for an earlier
version of the type of airplane currently under consideration. The
order size for this earlier version was the same as for the current
type. Furthermore, the probability distribution of the number of
spare engines required, given the plant where production takes
place, is believed to be the same for this earlier airplane model
and the current one. The engine for the current order will be pro-
duced in the same plant as the previous model, although the Air
Force does not know which of the two plants this is. The Air Force
does have access to the data on the number of spares actually re-
quired for the older version, but the supplier has not revealed the
production location.
(a) How much money is it worthwhile to pay for perfect infor-

mation on which plant will produce these engines?
(b) Assume that the cost of the data on the old airplane model is

free and that 30 spares were required. You are given that the
probability of 30 spares, given a Poisson distribution with mean
�, is 0.013 for � � 21 and 0.036 for � � 24. Find the optimal
action under Bayes’ decision rule.

16.3-9.* Vincent Cuomo is the credit manager for the Fine Fabrics
Mill. He is currently faced with the question of whether to extend
$100,000 credit to a potential new customer, a dress manufacturer.
Vincent has three categories for the creditworthiness of a company:
poor risk, average risk, and good risk, but he does not know which
category fits this potential customer. Experience indicates that
20 percent of companies similar to this dress manufacturer are poor
risks, 50 percent are average risks, and 30 percent are good risks.
If credit is extended, the expected profit for poor risks is �$15,000,
for average risks $10,000, and for good risks $20,000. If credit is
not extended, the dress manufacturer will turn to another mill.
Vincent is able to consult a credit-rating organization for a fee of
$5,000 per company evaluated. For companies whose actual
credit record with the mill turns out to fall into each of the three
categories, the following table shows the percentages that were
given each of the three possible credit evaluations by the credit-
rating organization.

(a) Develop a decision analysis formulation of this problem by iden-
tifying the decision alternatives, the states of nature, and the pay-
off table when the credit-rating organization is not used.

(b) Assuming the credit-rating organization is not used, use Bayes’
decision rule to determine which decision alternative should
be chosen.

(c) Find EVPI. Does this answer indicate that consideration should
be given to using the credit-rating organization?

State of Nature

Alternative S1 S2

A1 400 �100
A2 0 �100

Prior probability 0.4 0.6

Actual Credit Record

Credit Evaluation Poor Average Good

Poor 50% 40% 20%
Average 40 50 40
Good 10 10 40
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(d) Assume now that the credit-rating organization is used. De-
velop a probability tree diagram to find the posterior proba-
bilities of the respective states of nature for each of the three
possible credit evaluations of this potential customer.

T (e) Use the Excel template for posterior probabilities to obtain
the answers for part (d ).

(f) Determine Vincent’s optimal policy.

16.3-10. An athletic league does drug testing of its athletes,
10 percent of whom use drugs. This test, however, is only 95
percent reliable. That is, a drug user will test positive with prob-
ability 0.95 and negative with probability 0.05, and a nonuser
will test negative with probability 0.95 and positive with prob-
ability 0.05.

Develop a probability tree diagram to determine the poste-
rior probability of each of the following outcomes of testing an
athlete.
(a) The athlete is a drug user, given that the test is positive.
(b) The athlete is not a drug user, given that the test is positive.
(c) The athlete is a drug user, given that the test is negative.
(d) The athlete is not a drug user, given that the test is negative.
T (e) Use the Excel template for posterior probabilities to check

your answers in the preceding parts.

16.3-11. Management of the Telemore Company is considering
developing and marketing a new product. It is estimated to be twice
as likely that the product would prove to be successful as unsuc-
cessful. It it were successful, the expected profit would be $1,500,000.
If unsuccessful, the expected loss would be $1,800,000. A mar-
keting survey can be conducted at a cost of $300,000 to predict
whether the product would be successful. Past experience with
such surveys indicates that successful products have been pre-
dicted to be successful 80 percent of the time, whereas unsuccessful
products have been predicted to be unsuccessful 70 percent of the
time.
(a) Develop a decision analysis formulation of this problem by

identifying the decision alternatives, the states of nature, and
the payoff table when the market survey is not conducted.

(b) Assuming the market survey is not conducted, use Bayes’ de-
cision rule to determine which decision alternative should be
chosen.

(c) Find EVPI. Does this answer indicate that consideration should
be given to conducting the market survey?

T (d) Assume now that the market survey is conducted. Find
the posterior probabilities of the respective states of na-
ture for each of the two possible predictions from the mar-
ket survey.

(e) Find the optimal policy regarding whether to conduct the
market survey and whether to develop and market the new
product.

16.3-12. The Hit-and-Miss Manufacturing Company produces
items that have a probability p of being defective. These items
are produced in lots of 150. Past experience indicates that p for
an entire lot is either 0.05 or 0.25. Furthermore, in 80 percent of
the lots produced, p equals 0.05 (so p equals 0.25 in 20 percent

of the lots). These items are then used in an assembly, and ulti-
mately their quality is determined before the final assembly leaves
the plant. Initially the company can either screen each item in a
lot at a cost of $10 per item and replace defective items or use
the items directly without screening. If the latter action is 
chosen, the cost of rework is ultimately $100 per defective item.
Because screening requires scheduling of inspectors and equip-
ment, the decision to screen or not screen must be made 2 days
before the screening is to take place. However, one item can be
taken from the lot and sent to a laboratory for inspection, and its
quality (defective or nondefective) can be reported before the
screen/no screen decision must be made. The cost of this initial
inspection is $125.
(a) Develop a decision analysis formulation of this problem by

identifying the decision alternatives, the states of nature,
and the payoff table if the single item is not inspected in
advance.

(b) Assuming the single item is not inspected in advance, use
Bayes’ decision rule to determine which decision alternative
should be chosen.

(c) Find EVPI. Does this answer indicate that consideration should
be given to inspecting the single item in advance?

T (d) Assume now that the single item is inspected in advance.
Find the posterior probabilities of the respective states 
of nature for each of the two possible outcomes of this 
inspection.

(e) Find EVE. Is inspecting the single item worthwhile?
(f) Determine the optimal policy.

T 16.3-13.* Consider two weighted coins. Coin 1 has a probabil-
ity of 0.3 of turning up heads, and coin 2 has a probability of 0.6
of turning up heads. A coin is tossed once; the probability that coin
1 is tossed is 0.6, and the probability that coin 2 is tossed is 0.4.
The decision maker uses Bayes’ decision rule to decide which coin
is tossed. The payoff table is as follows:

(a) What is the optimal alternative before the coin is tossed?
(b) What is the optimal alternative after the coin is tossed if the

outcome is heads? If it is tails?

16.3-14. There are two biased coins with probabilities of landing
heads of 0.8 and 0.4, respectively. One coin is chosen at random
(each with probability �

1
2

�) to be tossed twice. You are to receive
$100 if you correctly predict how many heads will occur in two
tosses.
(a) Using Bayes’ decision rule, what is the optimal prediction, and

what is the corresponding expected payoff?

State of Nature

Alternative Coin 1 Tossed Coin 2 Tossed

Say coin 1 tossed �0 �1
Say coin 2 tossed �1 �0

Prior probability 0.6 0.4
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T (b) Suppose now that you may observe a practice toss of the
chosen coin before predicting. Use the Excel template for
posterior probabilities to find the posterior probabilities for
which coin is being tossed.

(c) Determine your optimal prediction after observing the practice
toss. What is the resulting expected payoff?

(d) Find EVE for observing the practice toss. If you must pay $30
to observe the practice toss, what is your optimal policy?

16.4-1. Read the referenced article that fully describes the OR
study summarized in the application vignette presented in Sec. 16.4.
Briefly describe how decision analysis was applied in this study.
Then list the various financial and nonfinancial benefits that re-
sulted from this study.

16.4-2.* Reconsider Prob.16.3-2. The management of Silicon 
Dynamics now wants to see a decision tree displaying the entire
problem. Construct and solve this decision tree by hand.

16.4-3. You are given the decision tree below, where the numbers
in parentheses are probabilities and the numbers on the far right
are payoffs at these terminal points. Analyze this decision tree to
obtain the optimal policy.

16.4-4.* The Athletic Department of Leland University is consid-
ering whether to hold an extensive campaign next year to raise
funds for a new athletic field. The response to the campaign de-
pends heavily upon the success of the football team this fall. In the
past, the football team has had winning seasons 60 percent of the
time. If the football team has a winning season (W) this fall, then
many of the alumnae and alumni will contribute and the campaign

will raise $3 million. If the team has a losing season (L), few will
contribute and the campaign will lose $2 million. If no campaign
is undertaken, no costs are incurred. On September 1, just before
the football season begins, the Athletic Department needs to make
its decision about whether to hold the campaign next year.
(a) Develop a decision analysis formulation of this problem by

identifying the decision alternatives, the states of nature, and
the payoff table.

(b) According to Bayes’ decision rule, should the campaign be 
undertaken?

(c) Find EVPI.
(d) A famous football guru, William Walsh, has offered his ser-

vices to help evaluate whether the team will have a winning
season. For $100,000, he will carefully evaluate the team
throughout spring practice and then throughout preseason
workouts. William then will provide his prediction on Sep-
tember 1 regarding what kind of season, W or L, the team
will have. In similar situations in the past when evaluating
teams that have winning seasons 50 percent of the time, his
predictions have been correct 75 percent of the time. Con-
sidering that this team has more of a winning tradition, if
William predicts a winning season, what is the posterior
probability that the team actually will have a winning sea-
son? What is the posterior probability of a losing season?
If Williams predicts a losing season instead, what is the pos-
terior probability of a winning season? Of a losing season?
Show how these answers are obtained from a probability
tree diagram.

T (e) Use the Excel template for posterior probabilities to obtain
the answers requested in part (d ).

(f ) Draw the decision tree for this entire problem by hand. An-
alyze this decision tree to determine the optimal policy re-
garding whether to hire William and whether to undertake the
campaign.

16.4-5. The comptroller of the Macrosoft Corporation has 
$100 million of excess funds to invest. She has been instructed
to invest the entire amount for one year in either stocks or bonds
(but not both) and then to reinvest the entire fund in either stocks
or bonds (but not both) for one year more. The objective is to
maximize the expected monetary value of the fund at the end of
the second year.

The annual rates of return on these investments depend on the
economic environment, as shown in the following table:

The probabilities of growth, recession, and depression for the first
year are 0.7, 0.3, and 0, respectively. If growth occurs in the first
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(0.6)

(0.2)

(0.4)

Rate of Return

Economic Environment Stocks Bonds

Growth �20% 5%
Recession �10 10
Depression �50 20
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year, these probabilities remain the same for the second year. How-
ever, if a recession occurs in the first year, these probabilities
change to 0.2, 0.7, and 0.1, respectively, for the second year.
(a) Construct the decision tree for this problem by hand.
(b) Analyze the decision tree to identify the optimal policy.

16.4-6 On Monday, a certain stock closed at $10 per share. On
Tuesday, you expect the stock to close at $9, $10, or $11 per share,
with respective probabilities 0.3, 0.3, and 0.4. On Wednesday, you
expect the stock to close 10 percent lower, unchanged, or 10 per-
cent higher than Tuesday’s close, with the following probabilities:

On Tuesday, you are directed to buy 100 shares of the stock be-
fore Thursday. All purchases are made at the end of the day, at the
known closing price for that day, so your only options are to buy
at the end of Tuesday or at the end of Wednesday. You wish to de-
termine the optimal strategy for whether to buy on Tuesday or de-
fer the purchase until Wednesday, given the Tuesday closing price,
to minimize the expected purchase price. Develop and evaluate a
decision tree by hand for determining the optimal strategy.

16.4-7. Use the scenario given in Prob.16.3-9.
(a) Draw and properly label the decision tree. Include all the pay-

offs but not the probabilities.
T (b) Find the probabilities for the branches emanating from the

event nodes.
(c) Apply the backward induction procedure, and identify the re-

sulting optimal policy.

16.4-8. Use the scenario given in Prob.16.3.-11.
(a) Draw and properly label the decision tree. Include all the pay-

offs but not the probabilities.
T (b) Find the probabilities for the branches emanating from the

event nodes.
(c) Apply the backward induction procedure, and identify the re-

sulting optimal policy.

16.4-9. Use the scenario given in Prob.16.3-12.
(a) Draw and properly label the decision tree. Include all the pay-

offs but not the probabilities.
T (b) Find the probabilities for the branches emanating from the

event nodes.
(c) Apply the backward induction procedure, and identify the re-

sulting optimal policy.

16.4-10. Use the scenario given in Prob.16.3-13.
(a) Draw and properly label the decision tree. Include all the pay-

offs but not the probabilities.
T (b) Find the probabilities for the branches emanating from the

event nodes.

(c) Apply the backward induction procedure, and identify the re-
sulting optimal policy.

A 16.4-11. The executive search being conducted for Western
Bank by Headhunters Inc. may finally be bearing fruit. The posi-
tion to be filled is a key one—Vice President for Information
Processing—because this person will have responsibility for de-
veloping a state-of-the-art management information system that
will link together Western’s many branch banks. However, Head-
hunters feels they have found just the right person, Matthew Fenton,
who has an excellent record in a similar position for a midsized
bank in New York.

After a round of interviews, Western’s president believes that
Matthew has a probability of 0.7 of designing the management in-
formation system successfully. If Matthew is successful, the com-
pany will realize a profit of $2 million (net of Matthew’s salary,
training, recruiting costs, and expenses). If he is not successful, the
company will realize a net loss of $400,000.

For an additional fee of $20,000, Headhunters will provide a
detailed investigative process (including an extensive background
check, a battery of academic and psychological tests, etc.) that will
further pinpoint Matthew’s potential for success. This process has
been found to be 90 percent reliable; i.e., a candidate who would
successfully design the management information system will pass
the test with probability 0.9, and a candidate who would not suc-
cessfully design the system will fail the test with probability 0.9.

Western’s top management needs to decide whether to hire
Matthew and whether to have Headhunters conduct the detailed in-
vestigative process before making this decision.
(a) Construct the decision tree for this problem.
T (b) Find the probabilities for the branches emanating from the

event nodes.
(c) Analyze the decision tree to identify the optimal policy.
(d) Now suppose that the Headhunters’ fee for administering its

detailed investigative process is negotiable. What is the maxi-
mum amount that Western Bank should pay?

A 16.5-1. Reconsider the original version of the Silicon Dynamics
problem described in Prob.16.2-2.
(a) Assuming the prior probabilities of the two levels of sales are

both 0.5, use ASPE to construct and solve the decision tree for
this problem. According to this analysis, which decision alter-
native should be chosen?

(b) Perform sensitivity analysis systematically by generating a data
table that shows the optimal decision alternative and the expected
payoff (when using Bayes’ decision rule) when the prior prob-
ability of selling 10,000 computers is 0, 0.1, 0.2, ..., 1.

A 16.5-2. Now reconsider the expanded version of the Silicon 
Dynamics problem described in Probs.16.3-2 and 16.4-2.
(a) Use ASPE to construct and solve the decision tree for this 

problem.
(b) Perform sensitivity analysis systematically by generating a data

table that shows the optimal policy and the expected payoff
(when using Bayes’ decision rule) when the prior probability
of selling 10,000 computers is 0, 0.1, 0.2, … , 1.

Today’s Close 10% Lower Unchanged 10% Higher

$ 9 0.4 0.3 0.3
$10 0.2 0.2 0.6
$11 0.1 0.2 0.7
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(c) Assume now that the prior probabilities of the two levels of
service are both 0.5. However, there is some uncertainty in the
financial data ($15 million, $6 million, and $600) stated in
Prob. 16.2.2. Each could vary from its base value by as much
as 10 percent. For each one, perform sensitivity analysis to find
what would happen if its value were at either end of this range
of variability (without any change in the other two pieces of
data) by adjusting the values in the data cells accordingly. Then
do the same for the eight cases where all these pieces of data
are at one end or the other of their ranges of variability.

A 16.5-3. Reconsider the decision tree given in Prob. 16.4-3. Use
ASPE to construct and solve this decision tree.

A 16.5-4. Reconsider Prob.16.4-5. Use ASPE to construct and
solve the decision tree for this problem.

A 16.5-5. Reconsider Prob.16.4-6. Use ASPE to construct and
solve the decision tree for this problem.

A 16.5-6. Jose Morales manages a large outdoor fruit stand in one
of the less affluent neighborhoods of San Jose, California. To 
replenish his supply, Jose buys boxes of fruit early each morning
from a grower south of San Jose. About 90 percent of the boxes
of fruit turn out to be of satisfactory quality, but the other 10 per-
cent are unsatisfactory. A satisfactory box contains 80 percent ex-
cellent fruit and will earn $200 profit for Jose. An unsatisfactory
box contains 30 percent excellent fruit and will produce a loss of
$1,000. Before Jose decides to accept a box, he is given the op-
portunity to sample one piece of fruit to test whether it is excellent.
Based on that sample, he then has the option of rejecting the box
without paying for it. Jose wonders (1) whether he should continue
buying from this grower, (2) if so, whether it is worthwhile sam-
pling just one piece of fruit from a box, and (3) if so, whether he
should be accepting or rejecting the box based on the outcome of
this sampling.

Use ASPE (and the Excel template for posterior probabilities)
to construct and solve the decision tree for this problem.

16.5-7.* The Morton Ward Company is considering the introduc-
tion of a new product that is believed to have a 50-50 chance of be-
ing successful. One option is to try out the product in a test market,
at a cost of $5 million, before making the introduction decision. Past
experience shows that ultimately successful products are approved
in the test market 80 percent of the time, whereas ultimately unsuc-
cessful products are approved in the test market only 25 percent of
the time. If the product is successful, the net profit to the company
will be $40 million; if unsuccessful, the net loss will be $15 million.
(a) Discarding the option of trying out the product in a test mar-

ket, develop a decision analysis formulation of the problem by
identifying the decision alternatives, states of nature, and pay-
off table. Then apply Bayes’ decision rule to determine the op-
timal decision alternative.

(b) Find EVPI.
A (c) Now include the option of trying out the product in a test

market. Use ASPE (and the Excel template for posterior

probabilities) to construct and solve the decision tree for this
problem.

A (d) Perform sensitivity analysis systematically for the option
considered in part (c) by generating a data table that shows
the optimal policy and the expected payoff when the prior
probability that the new product will be successful is 0, 0.1,
0.2,…, 1.

A (e) Assume now that the prior probability that the new product
will be successful is 0.5. However, there is some uncertainty
in the stated profit and loss figures ($40 million and 
$15 million). Either could vary from its base by as much as
25 percent in either direction. Use ASPE calculations to gen-
erate a graph for each that plots the expected profit over this
range of variability.

A 16.5-8. Chelsea Bush is an emerging candidate for her party’s
nomination for President of the United States. She now is consid-
ering whether to run in the high-stakes Super Tuesday primaries.
If she enters the Super Tuesday (S.T.) primaries, she and her ad-
visers believe that she will either do well (finish first or second)
or do poorly (finish third or worse) with probabilities 0.4 and 0.6,
respectively. Doing well on Super Tuesday will net the candidate’s
campaign approximately $16 million in new contributions, whereas
a poor showing will mean a loss of $10 million after numerous TV
ads are paid for. Alternatively, she may choose not to run at all on
Super Tuesday and incur no costs.

Chelsea’s advisers realize that her chances of success on Super
Tuesday may be affected by the outcome of the smaller New Hamp-
shire (N.H.) primary occurring three weeks before Super Tuesday.
Political analysts feel that the results of New Hampshire’s primary
are correct two-thirds of the time in predicting the results of the
Super Tuesday primaries. Among Chelsea’s advisers is a decision
analysis expert who uses this information to calculate the follow-
ing probabilities:

P{Chelsea does well in S.T. primaries, given she does well in
N.H.} � �

4
7

�

P{Chelsea does well in S.T. primaries, given she does poorly
in N.H.} � �

1
4

�

P{Chelsea does well in N.H. primary} � �
1
7
5
�

The cost of entering and campaigning in the New Hampshire pri-
mary is estimated to be $1.6 million.

Chelsea feels that her chance of winning the nomination de-
pends largely on having substantial funds available after the Super
Tuesday primaries to carry on a vigorous campaign the rest of the
way. Therefore, she wants to choose the strategy (whether to run
in the New Hampshire primary and then whether to run in the 
Super Tuesday primaries) that will maximize her expected funds
after these primaries.
(a) Construct and solve the decision tree for this problem.
(b) Perform sensitivity analysis systematically by generating a data

table that shows Chelsea’s optimal policy and expected payoff
when the prior probability that she will do well in the New
Hampshire primary is each of the following multiples of 1/15:
0, 1, 2, … , 15.
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(c) Assume now that the prior probability that Chelsea will do
well in the New Hampshire primary is indeed 7/15. However,
there is some uncertainty in the estimates of a gain of 
$16 million or a loss of $10 million depending on the show-
ing on Super Tuesday. Either amount could differ from this
estimate by as much as 25 percent in either direction. For
each of these two financial figures, perform sensitivity analy-
sis to check how the results in part (a) would change if the
value of the financial figure were at either end of this range
of variability (without any change in the value of the other
financial figure). Then do the same for the four cases where
both financial figures are at one end or the other of their
ranges of variability.

16.6-1. Reconsider the Goferbroke Co. prototype example, in-
cluding the application of utilities in Sec. 16.6. The owner now has
decided that, given the company’s precarious financial situation,
he needs to take a much more risk-averse approach to the prob-
lem. Therefore, he has revised the utilities given in Table 16.7 
as follows: U(�130) � 0, U(�100) � 0.1, U(60) � 0.4, U(90)
� 0.45, U(670) � 0.985, and U(700) � 1.
(a) Analyze the revised decision tree corresponding to Fig. 16.16

by hand to obtain the new optimal policy.
A (b) Use ASPE to construct and solve this revised decision tree.

16.6-2.* You live in an area that has a possibility of incurring a
massive earthquake, so you are considering buying earthquake in-
surance on your home at an annual cost of $180. The probability
of an earthquake damaging your home during one year is 0.001.
If this happens, you estimate that the cost of the damage (fully cov-
ered by earthquake insurance) will be $160,000. Your total assets
(including your home) are worth $250,000.
(a) Apply Bayes’ decision rule to determine which alternative

(take the insurance or not) maximizes your expected assets
after one year.

(b) You now have constructed a utility function that measures how
much you value having total assets worth x dollars (x 	 0). This
utility function is U(x) � �x�. Compare the utility of reducing
your total assets next year by the cost of the earthquake insur-
ance with the expected utility next year of not taking the earth-
quake insurance. Should you take the insurance?

16.6-3. For your graduation present from college, your parents are
offering you your choice of two alternatives. The first alternative
is to give you a money gift of $19,000. The second alternative is
to make an investment in your name. This investment will quickly
have the following two possible outcomes:

Your utility for receiving M thousand dollars is given by the util-
ity function U(M) � �M � 6�. Which choice should you make to
maximize expected utility?

16.6-4.* Reconsider Prob.16.6-3. You now are uncertain about
what your true utility function for receiving money is, so you
are in the process of constructing this utility function. So far,
you have found that U(19) � 16.7 and U(30) � 20 are the util-
ity of receiving $19,000 and $30,000, respectively. You also have
concluded that you are indifferent between the two alternatives
offered to you by your parents. Use this information to find
U(10).

16.6-5. You wish to construct your personal utility function U(M)
for receiving M thousand dollars. After setting U(0) � 0, you next
set U(1) � 1 as your utility for receiving $1,000. You next want to
find U(10) and then U(5).
(a) You offer yourself the following two hypothetical alternatives:

A1: Obtain $10,000 with probability p.
Obtain 0 with probability (1 � p).

A2: Definitely obtain $1,000.

You then ask yourself the question: What value of p makes you
indifferent between these two alternatives? Your answer is 
p � 0.125. Find U(10).

(b) You next repeat part (a) except for changing the second alter-
native to definitely receiving $5,000. The value of p that
makes you indifferent between these two alternatives now is
p � 0.5625. Find U(5).

(c) Repeat parts (a) and (b), but now use your personal choices
for p.

16.6-6. You are given the following payoff table:

(a) Assume that your utility function for the payoffs is U(x)
� �x�. Plot the expected utility of each alternative versus the
value of p on the same graph. For each alternative, find the
range of values of p over which this alternative maximizes
the expected utility.

A (b) Now assume that your utility function is the exponential 
utility function with a risk tolerance of R � 50. Use ASPE
to construct and solve the resulting decision tree in turn for 
p � 0.25, p � 0.5, and p � 0.75.
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Outcome Probability

Receive $10,000 0.3
Receive $30,000 0.7

State of Nature

Alternative S1 S2

A1 25 36
A2 100 0
A3 0 49

Prior probability p 1 � p
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16.6-7. Dr. Switzer has a seriously ill patient but has had trouble
diagnosing the specific cause of the illness. The doctor now has nar-
rowed the cause down to two alternatives: disease A or disease B.
Based on the evidence so far, she feels that the two alternatives are
equally likely.

Beyond the testing already done, there is no test available to
determine if the cause is disease B. One test is available for dis-
ease A, but it has two major problems. First, it is very expensive.
Second, it is somewhat unreliable, giving an accurate result only
80 percent of the time. Thus, it will give a positive result (indicat-
ing disease A) for only 80 percent of patients who have disease A,
whereas it will give a positive result for 20 percent of patients who
actually have disease B instead.

Disease B is a very serious disease with no known treatment.
It is sometimes fatal, and those who survive remain in poor health
with a poor quality of life thereafter. The prognosis is similar for
victims of disease A if it is left untreated. However, there is a fairly
expensive treatment available that eliminates the danger for those
with disease A, and it may return them to good health. Unfortu-
nately, it is a relatively radical treatment that always leads to death
if the patient actually has disease B instead.

The probability distribution for the prognosis for this patient
is given for each case in the following table, where the column
headings (after the first one) indicate the disease for the patient.

The patient has assigned the following utilities to the possible 
outcomes:

In addition, these utilities should be incremented by �2 if the 
patient incurs the cost of the test for disease A and by �1 if the pa-
tient (or the patient’s estate) incurs the cost of the treatment for dis-
ease A.

Use decision analysis with a complete decision tree to deter-
mine if the patient should undergo the test for disease A and then
how to proceed (receive the treatment for disease A?) to maximize
the patient’s expected utility.

16.6-8. You want to choose between decision alternatives A1 and A2

in the following decision tree, but you are uncertain about the value
of the probability p, so you need to perform sensitivity analysis of p
as well.

Your utility function for money (the payoff received) is

U(M) � �
(a) For p � 0.25, determine which alternative is optimal in the

sense that it maximizes the expected utility of the payoff.
(b) Determine the range of values of the probability p (0 � p �

0.5) for which this same alternative remains optimal.

M2 if M 	 0
M2 if M � 0.
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Outcome Probabilities

No Treatment
Receive Treatment

for Disease A

Outcome A B A B

Die 0.2 0.5 0 1.0
Survive with 
poor health 0.8 0.5 0.5 0

Return to 
good health 0 0 0.5 0

Outcome Utility

Die 0
Survive with poor health 10
Return to good health 30

Payoff

10

�5

3

�2

2

0

A1

A2

p

2p

1 � p

1 � 2p

0.5

0.5
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CASE 16.1 Brainy Business
While El Niño is pouring its rain on northern California,
Charlotte Rothstein, CEO, major shareholder and founder of
Cerebrosoft, sits in her office, contemplating the decision she
faces regarding her company’s newest proposed product,
Brainet. This has been a particularly difficult decision. Brainet
might catch on and sell very well. However, Charlotte is con-
cerned about the risk involved. In this competitive market,
marketing Brainet also could lead to substantial losses. Should
she go ahead anyway and start the marketing campaign? Or
just abandon the product? Or perhaps buy additional market-
ing research information from a local market research com-
pany before deciding whether to launch the product? She has
to make a decision very soon and so, as she slowly drinks
from her glass of high protein-power multivitamin juice, she
reflects on the events of the past few years.

Cerebrosoft was founded by Charlotte and two friends
after they had graduated from business school. The company
is located in the heart of Silicon Valley. Charlotte and her
friends managed to make money in their second year in busi-
ness and continued to do so every year since. Cerebrosoft
was one of the first companies to sell software over the In-
ternet and to develop PC-based software tools for the mul-
timedia sector. Two of the products generate 80 percent of
the company’s revenues: Audiatur and Videatur. Each prod-
uct has sold more than 100,000 units during the past year.
Business is done over the Internet: customers can download
a trial version of the software, test it, and if they are satis-
fied with what they see, they can purchase the product (by
using a password that enables them to disable the time
counter in the trial version). Both products are priced at
$75.95 and are exclusively sold over the Internet.

Users can “surf the Web,” accessing information avail-
able world wide. Users can also make files available on the
Internet, and this is how Cerebrosoft generates its sales.
Selling software over the Internet eliminates many of the
traditional cost factors of consumer products: packaging,
storage, distribution, sales force, and so on. Instead, poten-
tial customers can download a trial version, take a look at
it (that is, use the product) before its trial period expires,
and then decide whether to buy it. Furthermore, Cerebrosoft
can always make the most recent files available to the cus-
tomer, avoiding the problem of having outdated software in
the distribution pipeline.

Charlotte is interrupted in her thoughts by the arrival of
Jeannie Korn. Jeannie is in charge of marketing for on-line
products and Brainet has had her particular attention from
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the beginning. She is more than ready to provide the advice
that Charlotte has requested. “Charlotte, I think we should
really go ahead with Brainet. The software engineers have
convinced me that the current version is robust and we want
to be on the market with this as soon as possible! From the
data for our product launches during the past two years we
can get a rather reliable estimate of how the market will re-
spond to the new product, don’t you think? And look!” She
pulls out some presentation slides. “During that time period
we launched 12 new products altogether and 4 of them sold
more than 30,000 units during the first 6 months alone! Even
better: the last two we launched even sold more than 40,000
copies during the first two quarters!” Charlotte knows these
numbers as well as Jeannie does. After all, two of these
launches have been products she herself helped to develop.
But she feels uneasy about this particular product launch.
The company has grown rapidly during the past three years
and its financial capabilities are already rather stretched. 
A poor product launch for Brainet would cost the company
a lot of money, something that isn’t available right now due
to the investments Cerebrosoft has recently made.

Later in the afternoon, Charlotte meets with Reggie
Ruffin, a jack-of-all-trades and the production manager.
Reggie has a solid track record in his field and Charlotte
wants his opinion on the Brainet project.

“Well, Charlotte, quite frankly I think that there are
three main factors that are relevant to the success of this pro-
ject: competition, units sold, and cost—ah, and of course
our pricing. Have you decided on the price yet?”

“I am still considering which of the three strategies
would be most beneficial to us. Selling for $50.00 and try-
ing to maximize revenues—or selling for $30.00 and trying
to maximize market share. Of course, there is still your third
alternative; we could sell for $40.00 and try to do both.”

At this point Reggie focuses on the sheet of paper in
front of him. “And I still believe that the $40.00 alternative
is the best one. Concerning the costs, I checked the records;
basically we have to amortize the development costs we in-
curred for Brainet. So far we have spent $800,000 and we
expect to spend another $50,000 per year for support and
shipping the CDs to those who want a hard copy on top of
their downloaded software.” Reggie next hands a report to
Charlotte. “Here we have some data on the industry. I just
received that yesterday, hot off the press. Let’s see what we
can learn about the industry here.” He shows Charlotte some
of the highlights. Reggie then agrees to compile the most
relevant information contained in the report and have it ready
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for Charlotte the following morning. It takes him long into
the night to gather the data from the pages of the report, but
in the end he produces three tables, one for each of the three
alternative pricing strategies. Each table shows the corre-
sponding probability of various amounts of sales given the
level of competition (high, medium, or low) that develops
from other companies.

The next morning Charlotte is sipping from another
power drink. Jeannie and Reggie will be in her office any
moment now and, with their help, she will have to decide
what to do with Brainet. Should they launch the product? If
so, at what price?

When Jeannie and Reggie enter the office, Jeannie im-
mediately bursts out: “Guys, I just spoke to our marketing
research company. They say that they could do a study for
us about the competitive situation for the introduction of
Brainet and deliver the results within a week.”

“How much do they want for the study?”

“I knew you’d ask that, Reggie. They want $10,000 and
I think it’s a fair deal.”

At this point Charlotte steps into the conversation. “Do
we have any data on the quality of the work of this mar-
keting research company?”

“Yes, I do have some reports here. After analyzing them,
I have come to the conclusion that the marketing research
company is not very good in predicting the competitive en-
vironment for medium or low pricing. Therefore, we should
not ask them to do the study for us if we decide on one of
these two pricing strategies. However, in the case of high
pricing, they do quite well: given that the competition turned
out to be high, they predicted it correctly 80 percent of the
time, while 15 percent of the time they predicted medium
competition in that setting. Given that the competition turned
out to be medium, they predicted high competition 15 per-
cent of the time and medium competition 80 percent of the
time. Finally, for the case of low competition, the numbers

■ TABLE 1 Probability distribution of unit sales, given a high price ($50)

Level of Competition

Sales High Medium Low

50,000 units 0.2 0.25 0.3
30,000 units 0.25 0.3 0.35
20,000 units 0.55 0.45 0.35 

■ TABLE 2 Probability distribution of unit sales, given a medium price ($40)

Level of Competition

Sales High Medium Low

50,000 units 0.25 0.30 0.40
30,000 units 0.35 0.40 0.50
20,000 units 0.40 0.30 0.10

■ TABLE 3 Probability distribution of unit sales, given a low price ($30)

Level of Competition

Sales High Medium Low

50,000 units 0.35 0.40 0.50
30,000 units 0.40 0.50 0.45
20,000 units 0.25 0.10 0.05

hil23453_ch16_682-730.qxd  1/22/70  7:31 AM  Page 729 Final PDF to printer



CASE 16.2 Smart Steering Support
The CEO of Bay Area Automobile Gadgets is contem-
plating whether to add a road scanning device to the com-
pany’s driver support system. A series of decisions need to
be made. Should basic research into the road scanning de-
vice be undertaken? If the research is successful, should
the company develop the product or sell the technology?
In the case of successful product development, should the
company market the product or sell the product concept?
Decision analysis needs to be applied to address these is-
sues. Part of the analysis will involve using the CEO’s util-
ity function.

CASE 16.3  Who Wants to be a
Millionaire?
You are a contestant on “Who Wants to be a Millionaire?”
and have just answered the $250,000 question correctly. If
you decide to go on to the $500,000 question and then to

the $1,000,000 question, you still have the option available
of using the “phone a friend” lifeline on one of the ques-
tions to improve your chances of answering correctly. You
now want to use decision analysis (including a decision tree
and utility theory) to decide how to proceed.

CASE 16.4  University Toys and the
Engineering Professor Action Figures
University Toys has developed a series of Engineering Pro-
fessor Action Figures for the local engineering school and
management needs to decide how to market the dolls in the
face of uncertainty about the demand. One option is to 
immediately ramp up for full production, advertising, and
sales. Another option is to test-market the product first. A
complication with this option is a rumor that a competitor
is about to enter the market with a similar product. Decision
analysis (including a decision tree and sensitivity analysis)
now needs to be used to decide how to proceed.

730 CHAPTER 16 DECISION ANALYSIS

were 90 percent of the time a correct prediction, 7 percent
of the time a ‘medium’ prediction and 3 percent of the time
a ‘high’ prediction.”

Charlotte feels that all these numbers are too much for
her. “Don’t we have a simple estimate of how the market
will react?”

“Some prior probabilities, you mean? Sure, from our
past experience, the likelihood of facing high competition is
20 percent, whereas it is 70 percent for medium competi-
tion and 10 percent for low competition,” Jeannie has her
numbers always ready when needed.

All that is left to do now is to sit down and make sense
of all this. . . . 

(a) For the initial analysis, ignore the opportunity of obtaining
more information by hiring the marketing research company.
Identify the decision alternatives and the states of nature. Con-
struct the payoff table. Then formulate the decision problem
in a decision tree. Clearly distinguish between decision and
event nodes and include all the relevant data.

(b) What is Charlotte’s decision if she uses the maximum likeli-
hood criterion? The maximin payoff criterion?

(c) What is Charlotte’s decision if she uses Bayes’ decision rule?
(d) Now consider the possibility of doing the market research. De-

velop the corresponding decision tree. Calculate the relevant
probabilities and analyze the decision tree. Should Cerebrosoft
pay the $10,000 for the marketing research? What is the over-
all optimal policy?

■ PREVIEW OF ADDED CASES ON OUR WEBSITE (www.mhhe.com/hillier)
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17C H A P T E R

Queueing Theory

Queues (waiting lines) are a part of everyday life. We all wait in queues to buy a movie
ticket, make a bank deposit, pay for groceries, mail a package, obtain food in a cafe-

teria, start a ride in an amusement park, etc. We have become accustomed to considerable
amounts of waiting, but still get annoyed by unusually long waits.

However, having to wait is not just a petty personal annoyance. The amount of time
that a nation’s populace wastes by waiting in queues is a major factor in both the quality
of life there and the efficiency of the nation’s economy.

Great inefficiencies also occur because of other kinds of waiting than people stand-
ing in line. For example, making machines wait to be repaired may result in lost pro-
duction. Vehicles (including ships and trucks) that need to wait to be unloaded may
delay subsequent shipments. Airplanes waiting to take off or land may disrupt later
travel schedules. Delays in telecommunication transmissions due to saturated lines may
cause data glitches. Causing manufacturing jobs to wait to be performed may disrupt
subsequent production. Delaying service jobs beyond their due dates may result in lost
future business.

Queueing theory is the study of waiting in all these various guises. It uses queueing
models to represent the various types of queueing systems (systems that involve queues
of some kind) that arise in practice. Formulas for each model indicate how the corre-
sponding queueing system should perform, including the average amount of waiting that
will occur, under a variety of circumstances.

Therefore, these queueing models are very helpful for determining how to oper-
ate a queueing system in the most effective way. Providing too much service capac-
ity to operate the system involves excessive costs. But not providing enough service
capacity results in excessive waiting and all its unfortunate consequences. The mod-
els enable finding an appropriate balance between the cost of service and the amount
of waiting.

After some general discussion, this chapter presents most of the more elementary
queueing models and their basic results. Section 17.10 discusses how the information pro-
vided by queueing theory can be used to design queueing systems that minimize the total
cost of service and waiting, and then Chap. 26 (on the book’s website) elaborates con-
siderably further on the application of queueing theory in this way.
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The emergency room of COUNTY HOSPITAL provides quick medical care for emergency
cases brought to the hospital by ambulance or private automobile. At any hour there is
always one doctor on duty in the emergency room. However, because of a growing ten-
dency for emergency cases to use these facilities rather than go to a private physician,
the hospital has been experiencing a continuing increase in the number of emergency room
visits each year. As a result, it has become quite common for patients arriving during peak
usage hours (the early evening) to have to wait until it is their turn to be treated by the doc-
tor. Therefore, a proposal has been made that a second doctor should be assigned to the
emergency room during these hours, so that two emergency cases can be treated simulta-
neously. The hospital’s management engineer has been assigned to study this question.

The management engineer began by gathering the relevant historical data and then
projecting these data into the next year. Recognizing that the emergency room is a queue-
ing system, she applied several alternative queueing theory models to predict the waiting
characteristics of the system with one doctor and with two doctors, as you will see in the
latter sections of this chapter (see Tables 17.2 and 17.3).

Input
source

Customers
Queue

Service
mechanism

Served
customers

Queueing system■ FIGURE 17.1
The basic queueing process.

■ 17.1 PROTOTYPE EXAMPLE

■ 17.2 BASIC STRUCTURE OF QUEUEING MODELS

The Basic Queueing Process

The basic process assumed by most queueing models is the following. Customers requir-
ing service are generated over time by an input source. These customers enter the queueing
system and join a queue if service is not immediately available. At certain times, a mem-
ber of the queue is selected for service by some rule known as the queue discipline. The
required service is then performed for the customer by the service mechanism, after which
the customer leaves the queueing system. This process is depicted in Fig. 17.1.

Many alternative assumptions can be made about the various elements of the queue-
ing process; they are discussed next.

Input Source (Calling Population)

One characteristic of the input source is its size. The size is the total number of customers
that might require service from time to time, i.e., the total number of distinct potential cus-
tomers. This population from which arrivals come is referred to as the calling popula-
tion. The size may be assumed to be either infinite or finite (so that the input source also
is said to be either unlimited or limited ). Because the calculations are far easier for the
infinite case, this assumption often is made even when the actual size is some relatively
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large finite number; and it should be taken to be the implicit assumption for any queue-
ing model that does not state otherwise. The finite case is more difficult analytically because
the number of customers in the queueing system affects the number of potential customers
outside the system at any time. However, the finite assumption must be made if the rate at
which the input source generates new customers is significantly affected by the number of
customers in the queueing system.

The statistical pattern by which customers are generated over time must also be spec-
ified. The common assumption is that they are generated according to a Poisson process;
i.e., the number of customers generated until any specific time has a Poisson distribution.
As we discuss in Sec. 17.4, this case is the one where arrivals to the queueing system occur
randomly but at a certain fixed mean rate, regardless of how many customers already are
there (so the size of the input source is infinite). An equivalent assumption is that the prob-
ability distribution of the time between consecutive arrivals is an exponential distribution.
(The properties of this distribution are described in Sec. 17.4.) The time between con-
secutive arrivals is referred to as the interarrival time.

Any unusual assumptions about the behavior of arriving customers must also be spec-
ified. One example is balking, where the customer refuses to enter the system and is lost
if the queue is too long.

Queue

The queue is where customers wait before being served. A queue is characterized by the
maximum permissible number of customers that it can contain. Queues are called infinite
or finite, according to whether this number is infinite or finite. The assumption of an 
infinite queue is the standard one for most queueing models, even for situations where there
actually is a (relatively large) finite upper bound on the permissible number of customers,
because dealing with such an upper bound would be a complicating factor in the analysis.
However, for queueing systems where this upper bound is small enough that it actually
would be reached with some frequency, it becomes necessary to assume a finite queue.

Queue Discipline

The queue discipline refers to the order in which members of the queue are selected for
service. For example, it may be first-come-first-served, random, according to some pri-
ority procedure, or some other order. First-come-first-served usually is assumed by queue-
ing models, unless it is stated otherwise.

Service Mechanism

The service mechanism consists of one or more service facilities, each of which contains
one or more parallel service channels, called servers. If there is more than one service
facility, the customer may receive service from a sequence of these (service channels in
series). At a given facility, the customer enters one of the parallel service channels and is
completely serviced by that server. A queueing model must specify the arrangement of
the facilities and the number of servers (parallel channels) at each one. Most elementary
models assume one service facility with either one server or a finite number of servers.

The time elapsed from the commencement of service to its completion for a customer
at a service facility is referred to as the service time (or holding time). A model of a par-
ticular queueing system must specify the probability distribution of service times for each
server (and possibly for different types of customers), although it is common to assume
the same distribution for all servers (all models in this chapter make this assumption). The
service-time distribution that is most frequently assumed in practice (largely because it is
far more tractable than any other) is the exponential distribution discussed in Sec. 17.4,

17.2 BASIC STRUCTURE OF QUEUEING MODELS 733

hil23453_ch17_731-799.qxd  1/22/70  7:33 AM  Page 733 Final PDF to printer



and most of our models will be of this type. Other important service-time distributions
are the degenerate distribution (constant service time) and the Erlang (gamma) distribu-
tion, as illustrated by models in Sec. 17.7.

An Elementary Queueing Process

As we have already suggested, queueing theory has been applied to many different types
of waiting-line situations. However, the most prevalent type of situation is the following:
A single waiting line (which may be empty at times) forms in the front of a single ser-
vice facility, within which are stationed one or more servers. Each customer generated by
an input source is serviced by one of the servers, perhaps after some waiting in the queue
(waiting line). The queueing system involved is depicted in Fig. 17.2.

Notice that the queueing process in the prototype example of Sec. 17.1 is of this type.
The input source generates customers in the form of emergency cases requiring medical
care. The emergency room is the service facility, and the doctors are the servers.

A server need not be a single individual; it may be a group of persons, e.g., a repair
crew that combines forces to perform simultaneously the required service for a customer.
Furthermore, servers need not even be people. In many cases, a server can instead be a
machine, a vehicle, an electronic device, etc. By the same token, the customers in the
waiting line need not be people. For example, they may be items waiting for a certain
operation by a given type of machine, or they may be cars waiting in front of a tollbooth.

It is not necessary that there actually be a physical waiting line forming in front of a
physical structure that constitutes the service facility. The members of the queue may instead
be scattered throughout an area, waiting for a server to come to them, e.g., machines wait-
ing to be repaired. The server or group of servers assigned to a given area constitutes the
service facility for that area. Queueing theory still gives the average number waiting, the
average waiting time, and so on, because it is irrelevant whether the customers wait together
in a group. The only essential requirement for queueing theory to be applicable is that changes
in the number of customers waiting for a given service occur just as though the physical sit-
uation described in Fig. 17.2 (or a legitimate counterpart) prevailed.

Except for Sec. 17.9, all the queueing models discussed in this chapter are of the
elementary type depicted in Fig. 17.2. Many of these models further assume that all
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Service
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Queue

Served customers

Served customers

Queueing system

Customers

■ FIGURE 17.2
An elementary queueing
system (each customer is
indicated by a C and each
server by an S).
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interarrival times are independent and identically distributed and that all service times
are independent and identically distributed. Such models conventionally are labeled as
follows:

Distribution of service times

– / – / – Number of servers

Distribution of interarrival times,

where M � exponential distribution (Markovian), as described in Sec. 17.4,

D � degenerate distribution (constant times), as discussed in Sec. 17.7,

Ek � Erlang distribution (shape parameter � k), as described in Sec. 17.7,

G � general distribution (any arbitrary distribution allowed),1 as discussed in
Sec. 17.7.

For example, the M/M/s model discussed in Sec. 17.6 assumes that both interarrival times
and service times have an exponential distribution and that the number of servers is s (any
positive integer). The M/G/1 model discussed in Sec. 17.7 assumes that interarrival times
have an exponential distribution, but it places no restriction on what the distribution of
service times must be, whereas the number of servers is restricted to be exactly 1. Vari-
ous other models that fit this labeling scheme also are introduced in Sec. 17.7.

Terminology and Notation

Unless otherwise noted, the following standard terminology and notation will be used:

State of system � number of customers in queueing system.

Queue length � number of customers waiting for service to begin.

� state of system minus number of customers being served.

N(t) � number of customers in queueing system at time t (t � 0).

Pn(t) � probability of exactly n customers in queueing system at time t,
given number at time 0.

s � number of servers (parallel service channels) in queueing system.

�n � mean arrival rate (expected number of arrivals per unit time) of
new customers when n customers are in system.

�n � mean service rate for overall system (expected number of cus-
tomers completing service per unit time) when n customers are in
system. Note: �n represents combined rate at which all busy servers
(those serving customers) achieve service completions.

�, �, � � see following paragraph.

When �n is a constant for all n, this constant is denoted by �. When the mean service
rate per busy server is a constant for all n � 1, this constant is denoted by �. (In this case,
�n � s� when n � s, that is, when all s servers are busy.) Under these circumstances, 1/�
and 1/� are the expected interarrival time and the expected service time, respectively. Also,
� � �/(s�) is the utilization factor for the service facility, i.e., the expected fraction of

17.2 BASIC STRUCTURE OF QUEUEING MODELS 735

1When we refer to interarrival times, it is conventional to replace the symbol G by GI � general independent
distribution.
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time the individual servers are busy, because �/(s�) represents the fraction of the system’s
service capacity (s�) that is being utilized on the average by arriving customers (�).

Certain notation also is required to describe steady-state results. When a queueing
system has recently begun operation, the state of the system (number of customers in the
system) will be greatly affected by the initial state and by the time that has since elapsed.
The system is said to be in a transient condition. However, after sufficient time has
elapsed, the state of the system becomes essentially independent of the initial state and
the elapsed time (except under unusual circumstances).2 The system has now essentially
reached a steady-state condition, where the probability distribution of the state of the
system remains the same (the steady-state or stationary distribution) over time. Queueing
theory has tended to focus largely on the steady-state condition, partially because the tran-
sient case is more difficult analytically. (Some transient results exist, but they are gener-
ally beyond the technical scope of this book.) The following notation assumes that the
system is in a steady-state condition:

Pn � probability of exactly n customers in queueing system.

L � expected number of customers in queueing system � �
�

n�0
nPn.

Lq � expected queue length (excludes customers being served) � �
�

n�s

(n � s)Pn.

� � waiting time in system (includes service time) for each individual customer.

W � E(�).

�q � waiting time in queue (excludes service time) for each individual customer.

Wq � E(�q).

Relationships between L, W, Lq, and Wq

Assume that �n is a constant � for all n. It has been proved that in a steady-state queue-
ing process,

L � �W.

(Because John D. C. Little provided the first rigorous proof, this equation sometimes is
referred to as Little’s formula.) Furthermore, the same proof also shows that

Lq � �Wq.

If the �n are not equal, then � can be replaced in these equations by ��, the average
arrival rate over the long run. (We shall show later how �� can be determined for some 
basic cases.)

Now assume that the mean service time is a constant, 1/� for all n � 1. It then fol-
lows that

W � Wq � �
�
1

�.

These relationships are extremely important because they enable all four of the
fundamental quantities—L, W, Lq, and Wq—to be immediately determined as soon as
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2When � and � are defined, these unusual circumstances are that � � 1, in which case the state of the system
tends to grow continually larger as time goes on.
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one is found analytically. This situation is fortunate because some of these quantities
often are much easier to find than others when a queueing model is solved from basic
principles.
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■ 17.3 EXAMPLES OF REAL QUEUEING SYSTEMS

Our description of queueing systems in Sec. 17.2 may appear relatively abstract and
applicable to only rather special practical situations. On the contrary, queueing sys-
tems are surprisingly prevalent in a wide variety of contexts. To broaden your horizons
on the applicability of queueing theory, we shall briefly mention various examples of
real queueing systems that fall into several broad categories. We then will describe queue-
ing systems in several prominent companies (plus one city) and the award-winning stud-
ies that were conducted to design these systems.

Some Classes of Queueing Systems

One important class of queueing systems that we all encounter in our daily lives is com-
mercial service systems, where outside customers receive service from commercial or-
ganizations. Many of these involve person-to-person service at a fixed location, such as a
barber shop (the barbers are the servers), bank teller service, checkout stands at a grocery
store, and a cafeteria line (service channels in series). However, many others do not, such
as home appliance repairs (the server travels to the customers), a vending machine (the
server is a machine), and a gas station (the cars are the customers).

Another important class is transportation service systems. For some of these sys-
tems the vehicles are the customers, such as cars waiting at a tollbooth or traffic light
(the server), a truck or ship waiting to be loaded or unloaded by a crew (the server), and
airplanes waiting to land or take off from a runway (the server). (An unusual example
of this kind is a parking lot, where the cars are the customers and the parking spaces
are the servers, but there is no queue because arriving customers go elsewhere to park if
the lot is full.) In other cases, the vehicles, such as taxicabs, fire trucks, and elevators,
are the servers.

In recent years, queueing theory probably has been applied most to internal service
systems, where the customers receiving service are internal to the organization. Exam-
ples include materials-handling systems, where materials-handling units (the servers) move
loads (the customers); maintenance systems, where maintenance crews (the servers) repair
machines (the customers); and inspection stations, where quality control inspectors (the
servers) inspect items (the customers). Employee facilities and departments servicing
employees also fit into this category. In addition, machines can be viewed as servers
whose customers are the jobs being processed. A related example is a computer labo-
ratory, where each computer is viewed as the server.

There is now growing recognition that queueing theory also is applicable to social
service systems. For example, a judicial system is a queueing network, where the courts
are service facilities, the judges (or panels of judges) are the servers, and the cases
waiting to be tried are the customers. A legislative system is a similar queueing network,
where the customers are the bills waiting to be processed. Various health-care systems
also are queueing systems. You already have seen one example in Sec. 17.1 (a hospital
emergency room), but you can also view ambulances, X-ray machines, and hospital
beds as servers in their own queueing systems. Similarly, families waiting for low- and
moderate-income housing, or other social services, can be viewed as customers in a
queueing system.
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Although these are four broad classes of queueing systems, they still do not exhaust
the list. In fact, queueing theory first began early in the 20th century with applica-
tions to telephone engineering (the founder of queueing theory, A. K. Erlang, was an
employee of the Danish Telephone Company in Copenhagen), and telephone engi-
neering still is an important application. Furthermore, we all have our own personal
queues—homework assignments, books to be read, and so forth. However, these exam-
ples are sufficient to suggest that queueing systems do indeed pervade many areas of
society.

Some Award-Winning Studies to Design Queueing Systems

The prestigious Franz Edelman Awards for Achievement in Operations Research and the
Management Sciences are awarded annually by the Institute of Operations Research and
the Management Sciences (INFORMS) for the year’s best applications of OR. A rather
substantial number of these awards have been given for innovative applications of queue-
ing theory to the design of queueing systems.

Two of these award-winning applications of queueing theory are described in appli-
cation vignettes later in this chapter (Secs. 17.6 and 17.9). The selected references at the
end of the chapter also include a sampling of articles describing some other award-
winning applications. (A link to all these articles, including for the application vignettes,
is provided on the book’s website.) We briefly describe below a few of these other appli-
cations of queueing theory that now are considered classics in the field.

As described in Selected Reference A1, one of the early first-prize winners of the
Edelman competition was the Xerox Corporation. The company had recently introduced
a major new duplicating system that was proving to be particularly valuable for its own-
ers. Consequently, these customers were demanding that Xerox’s tech reps reduce the
waiting times to repair the machines. An OR team then applied queueing theory to study
how to best meet the new service requirements. This resulted in replacing the previous
one-person tech rep territories by larger three-person tech rep territories. This change had
the dramatic effect of both substantially reducing the average waiting times of the cus-
tomers and increasing the utilization of the tech reps by over 50 percent. (Chapter 11 of
Selected Reference 9 presents a case study that is based on this application of queueing
theory by the Xerox Corporation.)

L.L. Bean, Inc., the large telemarketer and mail-order catalog house, relied mainly
on queueing theory for its award-winning study of how to allocate its telecommunica-
tions resources that is described in Selected Reference A5. The telephone calls coming
in to its call center to place orders are the customers in a large queueing system, with
the telephone agents as the servers. The key questions being asked during the study were
the following:

1. How many telephone trunk lines should be provided for incoming calls to the call
center?

2. How many telephone agents should be scheduled at various times?
3. How many hold positions should be provided for customers waiting for a telephone

agent? (Note that the limited number of hold positions causes the system to have a
finite queue.)

For each interesting combination of these three quantities, queueing models provide
the measures of performance of the queueing system. Given these measures, the OR team
carefully assessed the cost of lost sales due to making some customers either incur a busy
signal or be placed on hold too long. By adding the cost of the telemarketing resources,
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the team then was able to find the combination of the three quantities that minimizes the
expected total cost. This resulted in cost savings of $9 to $10 million per year.

Another first prize in the Edelman competition was won by AT&T for a study that
combined the use of queueing theory and simulation (the subject of Chap. 20). As described
in Selected Reference A2, the queueing models are of both AT&T’s telecommunication
network and the call center environment for the typical business customers of AT&T that
have such a center. The purpose of the study was to develop a user-friendly PC-based sys-
tem that AT&T’s business customers can use to guide them in how to design or redesign
their call centers. Since call centers have been one of the United States’ fastest-growing
industries, this system had been used about 2,000 times by AT&T’s business customers
by the time of the article. This resulted in more than $750 million in annual profit for
these customers.

Hewlett-Packard (HP) is a leading multinational manufacturer of electronic equip-
ment. Some years ago, the company installed a mechanized assembly-line system for
manufacturing ink-jet printers at its plant in Vancouver, Washington, to meet the explod-
ing demand for such printers. It soon became apparent that the system installed would
not be fast enough or reliable enough to meet the company’s production goals. There-
fore, a joint team of management scientists from HP and the Massachusetts Institute
of Technology (MIT) was formed to study how to redesign the system to improve its
performance.

As described in Selected Reference A4 for this award-winning study, the HP/MIT team
quickly realized that the assembly-line system could be modeled as a special kind of
queueing system where the customers (the printers to be assembled) go through a series
of servers (assembly operations) in a fixed sequence. A special queueing model for this
kind of system quickly provided the analytical results that were needed to determine how
the system should be redesigned to achieve the required capacity in the most economical
way. The changes included adding some buffer storage space at strategic points to better
maintain the flow of work to the subsequent stations and to dampen the effect of machine
failures. The new design increased productivity about 50 percent and yielded incremen-
tal revenues of approximately $280 million in printer sales as well as additional revenue
from ancillary products. This innovative application of the special queueing model also
provided HP with a new method for creating rapid and effective system designs subse-
quently in other areas of the company.
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■ 17.4 THE ROLE OF THE EXPONENTIAL DISTRIBUTION

The operating characteristics of queueing systems are determined largely by two statisti-
cal properties, namely, the probability distribution of interarrival times (see “Input Source”
in Sec. 17.2) and the probability distribution of service times (see “Service Mechanism” in 
Sec. 17.2). For real queueing systems, these distributions can take on almost any form.
(The only restriction is that negative values cannot occur.) However, to formulate a queue-
ing theory model as a representation of the real system, it often is necessary to spec-
ify the assumed form of each of these distributions. To be useful, the assumed form
should be sufficiently realistic that the model provides reasonable predictions while,
at the same time, being sufficiently simple that the model is mathematically tractable.
Based on these considerations, the most important probability distribution in queueing
theory is the exponential distribution.

Suppose that a random variable T represents either interarrival or service times. 
(We shall refer to the occurrences marking the end of these times—arrivals or service
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fT(t)

0 t

�

E(T) � 1
�

■ FIGURE 17.3
Probability density function
for the exponential
distribution.

completions—as events.) This random variable is said to have an exponential distribution
with parameter � if its probability density function is

fT(t) � �
as shown in Fig. 17.3. In this case, the cumulative probabilities are

P{T � t} � 1 � e��t

(t � 0),
P{T 	 t} � e��t

and the expected value and variance of T are, respectively,

E(T) � �
�
1

�,

var(T) � �
�
1
2�.

What are the implications of assuming that T has an exponential distribution for a
queueing model? To explore this question, let us examine six key properties of the expo-
nential distribution.

Property 1: fT(t) is a strictly decreasing function of t (t � 0).

One consequence of Property 1 is that

P{0 � T � 
t} 	 P{t � T � t � 
t}

for any strictly positive values of 
t and t. [This consequence follows from the fact that
these probabilities are the area under the fT(t) curve over the indicated interval of length

t, and the average height of the curve is less for the second probability than for the first.]
Therefore, it is not only possible but also relatively likely that T will take on a small value
near zero. In fact,

P�0 � T � �
1
2

� �
�
1

�� � 0.393

whereas

P��
1
2

� �
�
1

� � T � �
3
2

� �
�
1

�� � 0.383,

so that the value T takes on is more likely to be “small” [i.e., less than half of E(T)] than
“near” its expected value [i.e., no further away than half of E(T)], even though the second
interval is twice as wide as the first.

for t � 0
for t � 0,

�e��t

0
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Is this really a reasonable property for T in a queueing model? If T represents service
times, the answer depends upon the general nature of the service involved, as discussed next.

If the service required is essentially identical for each customer, with the server always
performing the same sequence of service operations, then the actual service times tend to
be near the expected service time. Small deviations from the mean may occur, but usually
because of only minor variations in the efficiency of the server. A small service time far
below the mean is essentially impossible, because a certain minimum time is needed to
perform the required service operations even when the server is working at top speed. The
exponential distribution clearly does not provide a close approximation to the service-time
distribution for this type of situation.

On the other hand, consider the type of situation where the specific tasks required of
the server differ among customers. The broad nature of the service may be the same, but
the specific type and amount of service differ. For example, this is the case in the County
Hospital emergency room problem discussed in Sec. 17.1. The doctors encounter a wide
variety of medical problems. In most cases, they can provide the required treatment rather
quickly, but an occasional patient requires extensive care. Similarly, bank tellers and gro-
cery store checkout clerks are other servers of this general type, where the required
service is often brief but must occasionally be extensive. An exponential service-time dis-
tribution would seem quite plausible for this type of service situation.

If T represents interarrival times, Property 1 rules out situations where potential cus-
tomers approaching the queueing system tend to postpone their entry if they see another
customer entering ahead of them. On the other hand, it is entirely consistent with the com-
mon phenomenon of arrivals occurring “randomly,” described by subsequent properties.
Thus, when arrival times are plotted on a time line, they sometimes have the appearance
of being clustered with occasional large gaps separating clusters, because of the substan-
tial probability of small interarrival times and the small probability of large interarrival
times, but such an irregular pattern is all part of true randomness.

Property 2: Lack of memory.

This property can be stated mathematically as

P{T 	 t � 
t⏐T 	 
t} � P{T 	 t}

for any positive quantities t and 
t. In other words, the probability distribution of the
remaining time until the event (arrival or service completion) occurs always is the same,
regardless of how much time (
t) already has passed. In effect, the process “forgets” its
history. This surprising phenomenon occurs with the exponential distribution because

P{T 	 t � 
t⏐T 	 
t} �

�

� �
e�

e

�

�

(

�

t�







t

t)

�

� e��t

� P{T 	 t}.

For interarrival times, this property describes the common situation where the time
until the next arrival is completely uninfluenced by when the last arrival occurred. For
service times, the property is more difficult to interpret. We should not expect it to hold
in a situation where the server must perform the same fixed sequence of operations for
each customer, because then a long elapsed service should imply that probably little 

P{T 	 t � 
t}
��

P{T 	 
t}

P{T 	 
t, T 	 t � 
t}
���

P{T 	 
t}
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remains to be done. However, in the type of situation where the required service opera-
tions differ among customers, the mathematical statement of the property may be quite
realistic. For this case, if considerable service has already elapsed for a customer, the only
implication may be that this particular customer requires more extensive service than most.

Property 3: The minimum of several independent exponential random variables
has an exponential distribution.

To state this property mathematically, let T1, T2, . . . , Tn be independent exponential
random variables with parameters �1, �2, . . . , �n, respectively. Also let U be the random
variable that takes on the value equal to the minimum of the values actually taken on by
T1, T2, . . . , Tn; that is,

U � min {T1, T2, . . . , Tn}.

Thus, if Ti represents the time until a particular kind of event occurs, then U represents
the time until the first of the n different events occurs. Now note that for any t � 0,

P{U 	 t} � P{T1 	 t, T2 	 t, . . . , Tn 	 t}
� P{T1 	 t}P{T2 	 t} ��� P{Tn 	 t}
� e��1te��2t ��� e��nt

� exp ���
n

i�1
�it�,

so that U indeed has an exponential distribution with parameter

� � �
n

i�1
�i.

This property has some implications for interarrival times in queueing models. In
particular, suppose that there are several (n) different types of customers, but the inter-
arrival times for each type (type i) have an exponential distribution with parameter �i

(i � 1, 2, . . . , n). By Property 2, the remaining time from any specified instant until
the next arrival of a customer of type i has this same distribution. Therefore, let Ti be
this remaining time, measured from the instant a customer of any type arrives. Property
3 then tells us that U, the interarrival times for the queueing system as a whole, has an
exponential distribution with parameter � defined by the last equation. As a result, you
can choose to ignore the distinction between customers and still have exponential inter-
arrival times for the queueing model.

However, the implications are even more important for service times in multiple-server
queueing models than for interarrival times. For example, consider the situation where all
the servers have the same exponential service-time distribution with parameter �. For this
case, let n be the number of servers currently providing service, and let Ti be the remaining
service time for server i (i � 1, 2, . . . , n), which also has an exponential distribution with
parameter �i � �. It then follows that U, the time until the next service completion from
any of these servers, has an exponential distribution with parameter � � n�. In effect, the
queueing system currently is performing just like a single-server system where service
times have an exponential distribution with parameter n�. We shall make frequent use of
this implication for analyzing multiple-server models later in the chapter.

When using this property, it sometimes is useful to also determine the probabilities
for which of the exponential random variables will turn out to be the one which has the
minimum value. For example, you might want to find the probability that a particular
server j will finish serving a customer first among n busy exponential servers. It is fairly
straightforward (see Prob. 17.4-9) to show that this probability is proportional to the 
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parameter �j. In particular, the probability that Tj will turn out to be the smallest of the n
random variables is

P{Tj � U} �
�j

�
n

i�1
�i

, for j � 1, 2, . . . , n.

Property 4: Relationship to the Poisson distribution.

Suppose that the time between consecutive occurrences of some particular kind of
event (e.g., arrivals or service completions by a continuously busy server) has an expo-
nential distribution with parameter �. Property 4 then has to do with the resulting impli-
cation about the probability distribution of the number of times this kind of event occurs
over a specified time. In particular, let X(t) be the number of occurrences by time t (t � 0),
where time 0 designates the instant at which the count begins. The probability distribu-
tion of a random variable X(t) defined in this way is the Poisson distribution with para-
meter �t. The form of this distribution is

P{X(t) � n} � �
(�t)

n

n

!
e��t

�, for n � 0, 1, 2, . . . .

For example, with n � 0,

P{X(t) � 0} � e��t,

which is just the probability from the exponential distribution that the first event occurs
after time t. The mean of this Poisson distribution is

E{X(t)} � �t,

so that the expected number of events per unit time is �. Thus, � is said to be the mean rate
at which the events occur. When the events are counted on a continuing basis, the counting
process {X(t); t � 0} is said to be a Poisson process with parameter � (the mean rate).

This property provides useful information about service completions when service
times have an exponential distribution with parameter �. We obtain this information by
defining X(t) as the number of service completions achieved by a continuously busy server
in elapsed time t, where � � �. For multiple-server queueing models, X(t) can also be
defined as the number of service completions achieved by n continuously busy servers in
elapsed time t, where � � n�.

The property is particularly useful for describing the probabilistic behavior of arrivals
when interarrival times have an exponential distribution with parameter �. In this case,
X(t) is the number of arrivals in elapsed time t, where � � � is the mean arrival rate.
Therefore, arrivals occur according to a Poisson input process with parameter �. Such
queueing models also are described as assuming a Poisson input.

Arrivals sometimes are said to occur randomly, meaning that they occur in accor-
dance with a Poisson input process. One intuitive interpretation of this phenomenon is
that every time period of fixed length has the same chance of having an arrival regardless
of when the preceding arrival occurred, as suggested by the following property.

Property 5: For all positive values of t, P{T � t � 
t⏐T 	 t} � � 
t, for small 
t.

Continuing to interpret T as the time from the last event of a certain type (arrival or
service completion) until the next such event, we suppose that a time t already has elapsed
without the event’s occurring. We know from Property 2 that the probability that the
event will occur within the next time interval of fixed length 
t is a constant (identified
in the next paragraph), regardless of how large or small t is. Property 5 goes further
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to say that when the value of 
t is small, this constant probability can be approximated
very closely by � 
t. Furthermore, when considering different small values of 
t, this
probability is essentially proportional to 
t, with proportionality factor �. In fact, � is
the mean rate at which the events occur (see Property 4), so that the expected number
of events in the interval of length 
t is exactly � 
t. The only reason that the probabil-
ity of an event’s occurring differs slightly from this value is the possibility that more than
one event will occur, which has negligible probability when 
t is small.

To see why Property 5 holds mathematically, note that the constant value of our prob-
ability (for a fixed value of 
t 	 0) is just

P{T � t � 
t⏐T 	 t} � P{T � 
t}
� 1 � e�� 
t,

for any t � 0. Therefore, because the series expansion of ex for any exponent x is

ex � 1 � x � �
�

n�2
�
n
xn

!
�,

it follows that

P{T � t � 
t⏐T 	 t} � 1 � 1 � � 
t � �
�

n�2
�
(��

n!

t)n

�

� � 
t, for small 
t,3

because the summation terms become relatively negligible for sufficiently small values 
of � 
t.

Because T can represent either interarrival or service times in queueing models, this
property provides a convenient approximation of the probability that the event of interest
occurs in the next small interval (
t) of time. An analysis based on this approximation
also can be made exact by taking appropriate limits as 
t � 0.

Property 6: Unaffected by aggregation or disaggregation.

This property is relevant primarily for verifying that the input process is Poisson.
Therefore, we shall describe it in these terms, although it also applies directly to the ex-
ponential distribution (exponential interarrival times) because of Property 4.

We first consider the aggregation (combining) of several Poisson input processes into one
overall input process. In particular, suppose that there are several (n) different types of cus-
tomers, where the customers of each type (type i) arrive according to a Poisson input process
with parameter �i (i � 1, 2, . . . , n). Assuming that these are independent Poisson processes,
the property says that the aggregate input process (arrival of all customers without regard to
type) also must be Poisson, with parameter (mean arrival rate) � � �1 � �2 � � � � � �n. In
other words, having a Poisson process is unaffected by aggregation.

This part of the property follows directly from Properties 3 and 4. The latter prop-
erty implies that the interarrival times for customers of type i have an exponential distri-
bution with parameter �i. For this identical situation, we already discussed for Property 3
that it implies that the interarrival times for all customers also must have an exponential
distribution, with parameter � � �1 � �2 � � � � � �n. Using Property 4 again then im-
plies that the aggregate input process is Poisson.

The second part of Property 6 (“unaffected by disaggregation”) refers to the reverse
case, where the aggregate input process (the one obtained by combining the input processes
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� �.P{T � t � 
t⏐T 	 t}
���


t
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for several customer types) is known to be Poisson with parameter �, but the question
now concerns the nature of the disaggregated input processes (the individual input
processes for the individual customer types). Assuming that each arriving customer has a
fixed probability pi of being of type i (i � 1, 2, . . . , n), with

�i � pi� and �
n

i�1
pi � 1,

the property says that the input process for customers of type i also must be Poisson with
parameter �i. In other words, having a Poisson process is unaffected by disaggregation.

As one example of the usefulness of this second part of the property, consider the
following situation. Indistinguishable customers arrive according to a Poisson process with
parameter �. Each arriving customer has a fixed probability p of balking (leaving with-
out entering the queueing system), so the probability of entering the system is 1 � p. Thus,
there are two types of customers—those who balk and those who enter the system. The
property says that each type arrives according to a Poisson process, with parameters p�
and (1 � p)�, respectively. Therefore, by using the latter Poisson process, queueing models
that assume a Poisson input process can still be used to analyze the performance of the
queueing system for those customers who enter the system.

Another example in the Solved Examples section of the book’s website illustrates
the application of several of the properties of the exponential distribution presented in
this section.
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■ 17.5 THE BIRTH-AND-DEATH PROCESS

Most elementary queueing models assume that the inputs (arriving customers) and outputs
(leaving customers) of the queueing system occur according to the birth-and-death process.
This important process in probability theory has applications in various areas. However,
in the context of queueing theory, the term birth refers to the arrival of a new customer
into the queueing system, and death refers to the departure of a served customer. The state
of the system at time t (t � 0), denoted by N(t), is the number of customers in the queue-
ing system at time t. The birth-and-death process describes probabilistically how N(t)
changes as t increases. Broadly speaking, it says that individual births and deaths occur
randomly, where their mean occurrence rates depend only upon the current state of the sys-
tem. More precisely, the assumptions of the birth-and-death process are the following:

Assumption 1. Given N(t) � n, the current probability distribution of the remaining
time until the next birth (arrival) is exponential with parameter �n (n � 0, 1, 2, . . .).

Assumption 2. Given N(t) � n, the current probability distribution of the remaining time
until the next death (service completion) is exponential with parameter �n (n � 1, 2, . . .).

Assumption 3. The random variable of assumption 1 (the remaining time until the next
birth) and the random variable of assumption 2 (the remaining time until the next death)
are mutually independent. The next transition in the state of the process is either

n � n � 1 (a single birth)

or

n � n � 1 (a single death),

depending on whether the former or latter random variable is smaller.
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For a queueing system, �n and �n respectively represent the mean arrival rate and
the mean rate of service completions, when there are n customers in the system. For some
queueing systems, the values of the �n will be the same for all values of n, and the �n

also will be the same for all n except for such small n (e.g., n � 0) that a server is idle.
However, the �n and the �n also can vary considerably with n for some queueing systems.

For example, one of the ways in which �n can be different for different values of n
is if potential arriving customers become increasingly likely to balk (refuse to enter the
system) as n increases. Similarly, �n can be different for different n because customers in
the queue become increasingly likely to renege (leave without being served) as the queue
size increases. Another example in the Solved Examples section of the book’s website
illustrates a queueing system where both balking and reneging occur. This example then
demonstrates how the general results for the birth-and-death process lead directly to var-
ious measures of performance for this queueing system.

Analysis of the Birth-and-Death Process

The assumptions of the birth-and-death process indicate that probabilities involving how
the process will evolve in the future depend only on the current state of the process, and
so are independent of events in the past. This “lack-of-memory property” is the key char-
acteristic of any Markov chain. Therefore, the birth-and-death process is a special type of
continuous time Markov chain. (Section 29.8 provides a detailed description of continu-
ous time Markov chains and their properties, including an introduction to the general 
procedure for finding steady-state probabilities that will be applied in the remainder of
this section.) Recall that the exponential distribution has the lack-of-memory property
(Property 2 in Sec. 17.4.) Therefore, queueing models that are based exclusively on ex-
ponential distributions (which include all the models in the next section that are based on
the birth-and-death process) can be represented by a continuous time Markov chain. Such
queueing models are far more tractable analytically than any other.

Thus, the rich theory of continuous time Markov chains plays a fundamental role in the
background for the analysis of many queueing models, including those based on the birth-
and-death process. However, we will not need to delve explicitly into this theory in this in-
troductory chapter on queueing theory. Therefore, you will not need any prior background
on continuous time Markov chains for this chapter and we will not mention them again.

Because Property 4 for the exponential distribution (see Sec. 17.4) implies that the
�n and �n are mean rates, we can summarize these assumptions by the rate diagram shown
in Fig. 17.4. The arrows in this diagram show the only possible transitions in the state of
the system (as specified by assumption 3), and the entry for each arrow gives the mean
rate for that transition (as specified by assumptions 1 and 2) when the system is in the
state at the base of the arrow.

Except for a few special cases, analysis of the birth-and-death process is very diffi-
cult when the system is in a transient condition. Some results about the probability dis-
tribution of N(t) have been obtained, but they are too complicated to be of much practi-
cal use. On the other hand, it is relatively straightforward to derive this distribution after
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■ FIGURE 17.4
Rate diagram for the birth-
and-death process.
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17.5 THE BIRTH-AND-DEATH PROCESS 747

the system has reached a steady-state condition (assuming that this condition can be
reached). This derivation can be done directly from the rate diagram, as outlined next.

Consider any particular state of the system n (n � 0, 1, 2, . . .). Starting at time 0,
suppose that a count is made of the number of times that the process enters this state and
the number of times it leaves this state, as denoted below:

En(t) � number of times that process enters state n by time t.

Ln(t) � number of times that process leaves state n by time t.

Because the two types of events (entering and leaving) must alternate, these two numbers
must always either be equal or differ by just 1; that is,

⏐En(t) � Ln(t)⏐ � 1.

Dividing through both sides by t and then letting t � � gives

	�En

t
(t)
� � �

Ln

t
(t)
�	 � �

1
t
�, so lim

t→�	�En

t
(t)
� � �

Ln

t
(t)
�	 � 0.

Dividing En(t) and Ln(t) by t gives the actual rate (number of events per unit time) at
which these two kinds of events have occurred, and letting t � � then gives the mean
rate (expected number of events per unit time):

lim
t→�

�
En

t
(t)
� � mean rate at which process enters state n.

lim
t→�

�
Ln

t
(t)
� � mean rate at which process leaves state n.

These results yield the following key principle:

Rate In � Rate Out Principle. For any state of the system n (n � 0, 1, 2, . . .),

mean entering rate � mean leaving rate.

The equation expressing this principle is called the balance equation for state n. After
constructing the balance equations for all the states in terms of the unknown Pn probabili-
ties, we can solve this system of equations (plus an equation stating that the probabilities
must sum to 1) to find these probabilities.

To illustrate a balance equation, consider state 0. The process enters this state only
from state 1. Thus, the steady-state probability of being in state 1 (P1) represents the pro-
portion of time that it would be possible for the process to enter state 0. Given that the
process is in state 1, the mean rate of entering state 0 is �1. (In other words, for each
cumulative unit of time that the process spends in state 1, the expected number of times
that it would leave state 1 to enter state 0 is �1.) From any other state, this mean rate is 0.
Therefore, the overall mean rate at which the process leaves its current state to enter state
0 (the mean entering rate) is

�1P1 � 0(1 � P1) � �1P1.

By the same reasoning, the mean leaving rate from state 0 must be �0P0, so the balance
equation for state 0 is

�1P1 � �0P0.

For every other state there are two possible transitions both into and out of the state.
Therefore, each side of the balance equations for these states represents the sum of the
mean rates for the two transitions involved. Otherwise, the reasoning is just the same as
for state 0. These balance equations are summarized in Table 17.1.
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Notice that the first balance equation contains two variables for which to solve (P0 and
P1), the first two equations contain three variables (P0, P1, and P2), and so on, so that there
always is one “extra” variable. Therefore, the procedure in solving these equations is to solve
in terms of one of the variables, the most convenient one being P0. Thus, the first equation
is used to solve for P1 in terms of P0; this result and the second equation are then used to
solve for P2 in terms of P0; and so forth. At the end, the requirement that the sum of all the
probabilities equal 1 can be used to evaluate P0.

Results for the Birth-and-Death Process

Applying this procedure yields the following results:

To simplify notation, let

Cn � , for n � 1, 2, . . . ,

and then define Cn � 1 for n � 0. Thus, the steady-state probabilities are

Pn � CnP0, for n � 0, 1, 2, . . . .

The requirement that

�
�

n�0
Pn � 1

�n�1�n�2 ��� �0

■ TABLE 17.1 Balance equations for the 
birth-and-death process

State Rate In � Rate Out

0 �1P1 � �0P0

1 �0P0 � �2P2 � (�1 � �1)P1

2 �1P1 � �3P3 � (�2 � �2)P2

� �

n � 1 �n�2Pn�2 � �nPn � (�n�1 � �n�1)Pn�1

n �n�1Pn�1 � �n�1Pn�1 � (�n � �n)Pn

� � 
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State:

0: P1 � �
�
�0

1
�P0

1: P2 � �
�
�1

2
�P1 � �

�
1

2
�(�1P1 � �0P0) � �

�
�1

2
�P1 � �

�
�1

2

�
�

0

1
�P0

2: P3 � �
�
�2

3
�P2 � �

�
1

3
�(�2P2 � �1P1) � �

�
�2

3
�P2 � �

�
�

3

2

�
�1

2

�
�

0

1
�P0

� �

n � 1: Pn � �
�
�
n�

n

1�Pn�1 � �
�
1

n
�(�n�1Pn�1 � �n�2Pn�2) � �

�
�
n�

n

1�Pn�1 � �
�
�
n�

n�
1�

n�

n�

1

2

��
�
�
��

�
�

1

0�P0

n: Pn�1 � �
�

�

n�

n

1
�Pn � �

�n

1
�1
�(�nPn � �n�1Pn�1) � �

�
�

n�

n

1
�Pn � �

�
�

n

n

�

�n

1

�

�
1

n

�
�
�
�
�
�

�
�

0

1
�P0

� �

�n�n�1 ��� �1
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implies that

��
�

n�0
Cn�P0 � 1,

so that

P0 � ��
�

n�0
Cn�

�1

.

When a queueing model is based on the birth-and-death process, so the state of the
system n represents the number of customers in the queueing system, the key measures
of performance for the queueing system (L, Lq, W, and Wq) can be obtained immediately
after calculating the Pn from the above formulas. The definitions of L and Lq given in
Sec. 17.2 specify that

L � �
�

n�0
nPn, Lq � �

�

n�s

(n � s)Pn.

Furthermore, the relationships given at the end of Sec. 17.2 yield

W � �
L

��
�, Wq � �

L

��
q
�,

where �� is the average arrival rate over the long run. Because �n is the mean arrival rate
while the system is in state n (n � 0, 1, 2, . . .) and Pn is the proportion of time that the
system is in this state,

�� � �
�

n�0
�nPn.

Several of the expressions just given involve summations with an infinite number of
terms. Fortunately, these summations have analytic solutions for a number of interesting
special cases,4 as seen in the next section. Otherwise, they can be approximated by sum-
ming a finite number of terms on a computer.

These steady-state results have been derived under the assumption that the �n and �n

parameters have values such that the process actually can reach a steady-state condition.
This assumption always holds if �n � 0 for some value of n greater than the initial state,
so that only a finite number of states (those less than this n) are possible. It also always
holds when � and � are defined (see “Terminology and Notation” in Sec. 17.2) and �
� �/(s�) � 1. It does not hold if ��

n�1 Cn � �.
Section 17.6 describes several queueing models that are special cases of the birth-and-

death process. Therefore, the general steady-state results just given in shaded boxes will
be used over and over again to obtain the specific steady-state results for these models.

17.5 THE BIRTH-AND-DEATH PROCESS 749

4These solutions are based on the following known results for the sum of any geometric series:

�
N

n�0
xn � �

1
1
�

�
xN

x

�1

�, for any x � 1,

�
�

n�0
xn � �

1
1
�x
�, if ⏐x⏐ � 1.
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Because each of the mean rates �0, �1, . . . and �1, �2, . . . for the birth-and-death process
can be assigned any nonnegative value, we have great flexibility in modeling a queueing sys-
tem. Probably the most widely used models in queueing theory are based directly upon this
process. Because of assumptions 1 and 2 (and Property 4 for the exponential distribution),
these models are said to have a Poisson input and exponential service times. The models
differ only in their assumptions about how the �n and �n change with n. We present three of
these models in this section for three important types of queueing systems.

The M/M/s Model

As described in Sec. 17.2, the M/M/s model assumes that all interarrival times are independently
and identically distributed according to an exponential distribution (i.e., the input process is Pois-
son), that all service times are independent and identically distributed according to another
exponential distribution, and that the number of servers is s (any positive integer). Conse-
quently, this model is just the special case of the birth-and-death process where the queueing
system’s mean arrival rate and mean service rate per busy server are constant (� and �, re-
spectively) regardless of the state of the system. When the system has just a single server (s
� 1), the implication is that the parameters for the birth-and-death process are �n � � (n � 0,
1, 2, . . .) and �n � � (n � 1, 2, . . .). The resulting rate diagram is shown in Fig. 17.5a.

However, when the system has multiple servers (s 	 1), the �n cannot be expressed
this simply, as explained below.

System Service Rate: The system service rate �n represents the mean rate of
service completions for the overall queueing system when there are n customers
in the system. With multiple servers and n 	 1, �n is not the same as �, the mean
service rate per busy server. Instead,

�n = n� when n � s,
�n = s� when n � s.

Using these formulas for �n, the rate diagram for the birth-and-death process shown in
Fig. 17.4 reduces to the rate diagrams shown in Fig. 17.5 for the M/M/s model.

When s� exceeds the mean arrival rate �, that is, when

� � �
s
�
�
� � 1,
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0 1 2 n3 n � 2 n � 1 n � 1State: …

  

� � �



�



�



�

0 1 2 s3 s � 2 s � 1 s � 1State: … …

  

� 2� 3�



(s � 1)�



s�



s�

(a) Single-server case (s � 1)

(b) Multiple-server case (s 	 1)

n � ,   
�n � �,  

n �   ,
  
�n � 

n�,  
s�,   


…

for n � 0, 1, 2, ...

for n � 1, 2, ..., s
for n � s, s � 1, ...

for n � 0, 1, 2, ...
for n � 1, 2, ...

■ FIGURE 17.5
Rate diagrams for the M/M/s
model.

■ 17.6 QUEUEING MODELS BASED ON THE BIRTH-AND-DEATH PROCESS
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KeyCorp is a major bank holding company in the United
States. The company emphasizes consumer banking and,
as of the beginning of 2013, it operated well over a thou-
sand branch banks in 14 states.

To help grow its business, KeyCorp management ini-
tiated an extensive OR study some years ago to determine
how to improve customer service (defined primarily as 
reducing customer waiting time before beginning service)
while also providing cost-effective staffing. A service-
quality goal was set that at least 90 percent of the customers
should have waiting times of less than 5 minutes.

The key tool in analyzing this problem was the M/M/s
queueing model, which proved to fit this application very
well. To apply this model, data were gathered that re-
vealed that the average service time required to process
a customer was a distressingly high 246 seconds. With
this average service time and typical mean arrival rates,
the model indicated that a 30 percent increase in the num-
ber of tellers would be needed to meet the service-qual-
ity goal. This prohibitively expensive option led man-
agement to conclude that an extensive campaign needed

to be undertaken to drastically reduce the average service
time by both reengineering the customer session and pro-
viding better management of staff. Over a period of three
years, this campaign led to a reduction in the average 
service time all the way down to 115 seconds. Frequent
reapplication of the M/M/s model then revealed how the
service-quality goal can be substantially surpassed while
actually reducing personnel levels through improved
scheduling of the personnel in the various branch banks.

The net result has been savings of nearly $20 million
per year with vastly improved service that enables 96 per-
cent of the customers to wait less than 5 minutes. This
improvement extended throughout the company since the
percentage of branch banks who meet the service-quality
goal has increased from 42 percent to 94 percent. Surveys
also confirm a great increase in customer satisfaction.

Source: S. K. Kotha, M. P. Barnum, and D. A. Bowen: “KeyCorp
Service Excellence Management System,” Interfaces, 26(1):
54–74, Jan.–Feb. 1996. (A link to this article is provided on our
website, www.mhhe.com/hillier.)

An Application Vignette

a queueing system fitting this model will eventually reach a steady-state condition. (Re-
call from Sec. 17.2 that � is referred to as the utilization factor because it represents the
expected fraction of time that the individual servers are busy.) In this situation, the steady-
state results derived in Sec. 17.5 for the general birth-and-death process are directly ap-
plicable. However, these results simplify considerably for this model and yield closed-
form expressions for Pn, L, Lq, and so forth, as shown next.

Results for the Single-Server Case (M/M/1). For s � 1, the Cn factors for the
birth-and-death process reduce to

Cn � ��
�
�

��
n

� �n, for n � 0, 1, 2, . . . 

Therefore, using the results given in Sec. 17.5,

Pn � �nP0, for n � 0, 1, 2, . . . ,

where

P0 � ��
�

n�0
�n�

�1

� ��1 �
1

�
��

�1

� 1 � �.

Thus,

Pn � (1 � �)�n, for n � 0, 1, 2, . . . .

Consequently,

L � �
�

n�0
n(1 � �)�n
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� (1 � �)� �
�

n�0
�
d
d
�
� (�n)

� (1 � �)� �
d
d
�
� ��

�

n�0
�n�

� (1 � �)� �
d
d
�
� ��1 �

1
�

��
� �

1 �
�

�
� � �

� �
�

�
�.

Similarly,

Lq � �
�

n�1
(n � 1)Pn

� L � 1(1 � P0)

� �
�(�

�
�

2

�)
�.

When � � �, so that the mean arrival rate exceeds the mean service rate, the preceding
solution “blows up” (because the summation for computing P0 diverges). For this case, the
queue would “explode” and grow without bound. If the queueing system begins operation with
no customers present, the server might succeed in keeping up with arriving customers over a
short period of time, but this is impossible in the long run. (Even when � � �, the expected
number of customers in the queueing system slowly grows without bound over time because,
even though a temporary return to no customers present always is possible, the probabilities
of huge numbers of customers present become increasingly significant over time.)

Assuming again that � � �, we now can derive the probability distribution of the wait-
ing time in the system (so including service time) � for a random arrival when the queue
discipline is first-come-first-served. If this arrival finds n customers already in the system,
then the arrival will have to wait through n � 1 exponential service times, including his or
her own. (For the customer currently being served, recall the lack-of-memory property for
the exponential distribution discussed in Sec. 17.4.) Therefore, let T1, T2, . . . be independent
service-time random variables having an exponential distribution with parameter �, and let

Sn�1 � T1 � T2 � ��� � Tn�1, for n � 0, 1, 2, . . . ,

so that Sn�1 represents the conditional waiting time given n customers already in the sys-
tem. As discussed in Sec. 17.7, Sn�1 is known to have an Erlang distribution.5 Because the
probability that the random arrival will find n customers in the system is Pn, it follows that

P{� 	 t} � �
�

n�0
PnP{Sn�1 	 t},

which reduces after considerable manipulation (see Prob. 17.6-17) to

P{� 	 t} � e��(1��)t, for t � 0.

The surprising conclusion is that � has an exponential distribution with parameter 
�(1 � �). Therefore,

W � E(�) � �
�(1

1
� �)
�
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5Outside queueing theory, this distribution is known as the gamma distribution.
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� �
� �

1
�

�.

These results include service time in the waiting time. In some contexts (e.g., the County
Hospital emergency room problem described in Sec. 17.1), the more relevant waiting time
is just until service begins. Thus, consider the waiting time in the queue (so excluding ser-
vice time) �q for a random arrival when the queue discipline is first-come-first-served. If
this arrival finds no customers already in the system, then the arrival is served immediately,
so that

P{�q � 0} � P0 � 1 � �.

If this arrival finds n 	 0 customers already there instead, then the arrival has to wait
through n exponential service times until his or her own service begins, so that

P{�q 	 t} � �
�

n�1
PnP{Sn 	 t}

� �
�

n�1
(1 � �)�nP{Sn 	 t}

� � �
�

n�0
PnP{Sn�1 	 t}

� �P{� 	 t}
� �e��(1��)t, for t � 0.

Note that Wq does not quite have an exponential distribution, because P{�q � 0} 	 0.
However, the conditional distribution of �q, given that �q 	 0, does have an exponential
distribution with parameter �(1 � �), just as � does, because

P{�q 	 t⏐�q 	 0} � �
P

P

{

{

�

�

q

q

	

	

0

t}

}
� � e��(1��)t, for t � 0.

By deriving the mean of the (unconditional) distribution of �q (or applying either 
Lq � �Wq or Wq � W � 1/�),

Wq � E(�q) � �
�(�

�
� �)
�.

If you would like to see another example that applies the M/M/1 model to determine
which type of materials handling equipment a company should purchase, one is provided
in the Solved Examples section of the book’s website.

Results for the Multiple-Server Case (s 	 1). When s 	 1, the Cn factors become

�
(�

n
/�
!
)n

� for n � 1, 2, . . . , s
Cn �

�
(�

s
/�
!

)s

���
s
�
�
��

n�s

� �
(
s
�
!s
/�
n�

)n

s� for n � s, s � 1, . . . .

Consequently, if � � s� [so that � � �/(s�) � 1], then  plugging these expressions into
the results for the birth-and-death process given in Sec. 17.5 yields

P0 � 1��1 � �
s�1

n�1
�
(�

n
/�
!
)n

� � �
(�

s
/�
!

)s

� �
�

n�s
��

s
�
�
��

n�s



⎧⎪⎪⎨⎪⎪⎩
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� 1���
s�1

n�0
�
(�

n
/�
!
)n

� � �
(�

s
/�
!

)s

� �
1 � �

1
/(s�)
�,

where the n � 0 term in the last summation yields the correct value of 1 because of the
convention that n! � 1 when n � 0. These Cn factors also give

�
(�

n
/�
!
)n

�P0 if 0 � n � s
Pn �

�
(
s
�
!s
/�
n�

)n

s�P0 if n � s.

Furthermore,

Lq � �
�

n�s

(n � s)Pn

� �
�

j�0
jPs�j

� �
�

j�0
j �

(�
s
/�
!

)s

�� jP0

� P0�
(�

s
/�
!

)s

�� �
�

j�0
�
d
d
�
� (� j)

� P0�
(�

s
/�
!

)s

�� �
d
d
�
�� �

�

j�0
� j�

� P0�
(�

s
/�
!

)s

�� �
d
d
�
���1 �

1
�

��
� �

s
P
!
0

(1
(�

�
/�

�
)s

)
�
2�;

Wq � �
L

�
q
�;

W � Wq � �
�
1

�;

L � ��Wq � �
�
1

�� � Lq � �
�
�

�.

Figure 17.6 shows how L changes with � for various values of s.
The single-server method for finding the probability distribution of waiting times also

can be extended to the multiple-server case. This yields6 (for t � 0)

P{� 	 t} � e��t� � �
and

P{�q 	 t} � (1 � P{�q � 0})e�s�(1��)t,

where

P{�q � 0} � �
s�1

n�0
Pn.

1 � e��t(s�1��/�)

��
s � 1 � �/�

1 � P0(�/�)s

⎧⎪⎪⎨⎪⎪⎩
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6When s � 1 � �/� � 0, (1 � e��t(s�1��/�))/(s � 1 � �/�) should be replaced by �t.

s!(1 � �)
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The above formulas for the various measures of performance (including the Pn) are
relatively imposing for hand calculations. However, this chapter’s Excel file in your OR
Courseware includes an Excel template that performs all these calculations simultaneously
for any values of t, s, �, and � you want, provided that � � s�.

If � � s�, so that the mean arrival rate exceeds the maximum mean rate of service
completions, then the queue grows without bound, so the preceding steady-state solutions
are not applicable.

The County Hospital Example with the M/M/s Model. For the County
Hospital emergency room problem (see Sec. 17.1), the management engineer has concluded
that the emergency cases arrive pretty much at random (a Poisson input process), so that
interarrival times have an exponential distribution. She also has concluded that the time
spent by a doctor treating the cases approximately follows an exponential distribution.
Therefore, she has chosen the M/M/s model for a preliminary study of this queueing system.

By projecting the available data for the early evening shift into next year, she 
estimates that patients will arrive at an average rate of 1 every �

1
2

� hour. A doctor requires
an average of 20 minutes to treat each patient. Thus, with one hour as the unit of time,

�
�
1

� � �
1
2

� hour per customer
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■ FIGURE 17.6
Values for L for the M/M/s
model (Sec. 17.6).
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■ TABLE 17.2 Steady-state results from the M/M/s
model for the County Hospital problem

s � 1 s � 2

� �
2
3

� �
1
3

�

P0 �
1
3

� �
1
2

�

P1 �
2
9

� �
1
3

�

Pn for n � 2 �
1
3

���
2
3

��
n

��
1
3

��
n

Lq �
4
3

� �
1
1
2
�

L 2 �
3
4

�

Wq �
2
3

� hour �
2
1
4
� hour

W 1 hour �
3
8

� hour

P{�q 	 0} 0.667 0.167

P��q 	 �
1
2

�� 0.404 0.022

P{�q 	 1} 0.245 0.003

P{�q 	 t} �
2
3

�e�t �
1
6

�e�4t

P{� 	 t} e�t �
1
2

�e�3t(3 � e�t)

and

�
�
1

� � �
1
3

� hour per customer,

so that

� � 2 customers per hour

and

� � 3 customers per hour.

The two alternatives being considered are to continue having just one doctor during this
shift (s � 1) or to add a second doctor (s � 2). In both cases,

� � �
s
�
�
� � 1,

so that the system should approach a steady-state condition. (Actually, because � is some-
what different during other shifts, the system will never truly reach a steady-state condition,
but the management engineer feels that steady-state results will provide a good approxima-
tion.) Therefore, the preceding equations are used to obtain the results shown in Table 17.2.

756 CHAPTER 17 QUEUEING THEORY
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On the basis of these results, she tentatively concluded that a single doctor would
be inadequate next year for providing the relatively prompt treatment needed in a hos-
pital emergency room. You will see later (Sec. 17.8) how she checked this conclusion by
applying another queueing model that provides a better representation of the real queue-
ing system in one crucial way.

You can see another example of an application of the M/M/1 model in the Solved
Examples section of the book’s website, where the issue in this case is whether three
employees in a fast-food restaurant should work together as one fast server or separately
as three considerably slower servers.

The Finite Queue Variation of the M/M/s Model 
(Called the M/M/s/K Model)

We mentioned in the discussion of queues in Sec. 17.2 that queueing systems sometimes
have a finite queue; i.e., the number of customers in the system is not permitted to exceed
some specified number (denoted by K) so the queue capacity is K � s. Any customer that
arrives while the queue is “full” is refused entry into the system and so leaves forever. From
the viewpoint of the birth-and-death process, the mean input rate into the system becomes
zero at these times. Therefore, the one modification needed in the M/M/s model to intro-
duce a finite queue is to change the �n parameters to

�n � �
Because �n � 0 for some values of n, a queueing system that fits this model always will
eventually reach a steady-state condition, even when � � �/s� � 1.

This model commonly is labeled M/M/s/K, where the presence of the fourth sym-
bol distinguishes it from the M/M/s model. The single difference in the formulation
of these two models is that K is finite for the M/M/s/K model and K � � for the M/M/s
model.

The usual physical interpretation for the M/M/s/K model is that there is only limited
waiting room that will accommodate a maximum of K customers in the system. For exam-
ple, for the County Hospital emergency room problem, this system actually would have a
finite queue if the policy were to send arriving patients to another hospital whenever there
already are K patients in the emergency room. 

Another possible interpretation is that arriving customers will leave and “take their
business elsewhere” whenever they find too many customers (K ) ahead of them in the
system because they are not willing to incur a long wait. This balking phenomenon is
quite common in commercial service systems. However, are other models available (e.g.,
see Prob. 17.5-5) that fit this interpretation even better.

The rate diagram for this model is identical to that shown in Fig. 17.5 for the M/M/s
model, except that it stops with state K.

Results for the Single-Server Case (M/M/1/K). For this case,

��
�
�

��
n

� �n for n � 0, 1, 2, . . . , K
Cn �

0 for n 	 K.

⎧⎪⎨⎪⎩

� for n � 0, 1, 2, . . . , K � 1
0 for n � K.
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Therefore, for � � 1,7 the results for the birth-and-death process in Sec. 17.5 reduce to

P0 � �
�K

n�0

1
(�/�)n�

� 1�� 
� �

1
1
�

�
�K

�
�1�,

so that

Pn � �
1

1
�

�
�K

�
�1� �n, for n � 0, 1, 2, . . . , K.

Hence,

L � �
K

n�0
nPn

� �
1

1
�

�
�K

�
�1� � �

K

n�0
�
d
d
�
�(�n)

� �
1

1
�

�
�K

�
�1� � �

d
d
�
���

K

n�0
�n�

� �
1

1
�

�
�K

�
�1� � �

d
d
�
���1 1

�
�
�K

�

�1

��
� �

� �
1 �

�
�

� � �
(K

1
�
�

1
�
)
K
�
�

K

1

�1

�.

As usual (when s � 1),

Lq � L � (1 � P0).

Notice that the preceding results do not require that � � � (i.e., that � � 1).
When � � 1, it can be verified that the second term in the final expression for L con-

verges to 0 as K � �, so that all the preceding results do indeed converge to the corre-
sponding results given earlier for the M/M/1 model.

The waiting-time distributions can be derived by using the same reasoning as for the
M/M/1 model (see Prob. 17.6-28). However, no simple expressions are obtained in this
case, so computer calculations are required. Fortunately, even though L � �W and 
Lq � �Wq for the current model because the �n are not equal for all n (see the end of
Sec. 17.2), the expected waiting times for customers entering the system still can be
obtained directly from the expressions given at the end of Sec. 17.5:

W � �
L

��
�, Wq � �

L

��
q
�,

�(K � 1)�K � K�K�1 � 1
���

(1 � �K�1)(1 � �)

1 � (�/�)K�1

��
1 � �/�
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7If � � 1, then Pn � 1/(K � 1) for n � 0, 1, 2, . . . , K, so that L � K/2.
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where

�� � �
�

n�0
�nPn

� �
K�1

n�0
�Pn

� �(1 � PK).

Results for the Multiple-Server Case (s 	 1). Because this model does not allow
more than K customers in the system, K is the maximum number of servers that could
ever be used. Therefore, assume that s � K. In this case, Cn becomes

�
(�

n
/�
!
)n

� for n � 0, 1, 2, . . . , s

Cn �
�
(�

s
/�
!

)s

� ��
s
�
�
��

n�s

� �
(
s
�
!s
/�
n�

)n

s� for n � s, s � 1, . . . , K

0 for n 	 K.

Hence,

�
(�

n
/�
!
)n

�P0 for n � 1, 2, . . . , s

Pn �
�
(
s
�
!s
/�
n�

)n

s�P0 for n � s, s � 1, . . . , K

0 for n 	 K,

where

P0 � 1���
s

n�0
�
(�

n
/�
!
)n

� � �
(�

s
/�
!

)s

� �
K

n�s�1
��

s
�
�
��

n�s

.

(These formulas continue to use the convention that n! � 1 when n � 0.)
Adapting the derivation of Lq for the M/M/s model to this case yields

Lq � �
s
P
!
0

(
(
1
�
�
/�)

�

s

)
�
2� [1 � �K�s � (K � s)�K�s(1 � �)],

where � � �/(s�).8 It can then be shown that

L � �
s�1

n�0
nPn � Lq � s�1 � �

s�1

n�0
Pn�.

W and Wq are obtained from these quantities just as shown for the single-server case.
This chapter’s Excel file includes an Excel template for calculating the above mea-

sures of performance (including the Pn) for this model.
One interesting special case of this model is where K � s so the queue capacity

is K � s � 0. In this case, customers who arrive when all servers are busy will leave
immediately and be lost to the system. This would occur, for example, in a telephone

⎧
⎪
⎪
⎨
⎪
⎪
⎩

⎧⎪
⎪
⎨
⎪
⎪⎩
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8If � � 1, it is necessary to apply L’Hôpital’s rule twice to this expression for Lq. Otherwise, all these multiple-
server results hold for all � 	 0. The reason that this queueing system can reach a steady-state condition even
when � � 1 is that �n � 0 for n � K, so that the number of customers in the system cannot continue to grow
indefinitely.
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network with s trunk lines so callers get a busy signal and hang up when all the trunk
lines are busy. This kind of system (a “queueing system” with no queue) is referred
to as Erlang’s loss system because it was first studied in the early 20th century by 
A. K. Erlang. (As mentioned in Sec.17.3, A. K. Erlang was a Danish telephone engi-
neer who is considered the founder of queueing theory.)

It is common now for the telephone system at a call center to provide some extra
trunk lines that place the caller on hold, but additional callers then get a busy signal. Such
a system also fits this model, where (K � s) is the number of extra trunk lines that place
the caller on hold. Another example in the Solved Examples section of the book’s web-
site illustrates the application of this model to such a system.

The Finite Calling Population Variation of the M/M/s Model

Now assume that the only deviation from the M/M/s model is that (as defined in Sec. 17.2)
the size of the calling population is finite. For this case, let N denote the size of the call-
ing population. Thus, when the number of customers in the queueing system is n (n � 0,
1, 2, . . . , N ), there are only N � n potential customers remaining in the 
calling population.

The most important application of this model has been to the machine repair prob-
lem, where one or more maintenance people are assigned the responsibility of main-
taining in operational order a certain group of N machines by repairing each one that
breaks down. The maintenance people are considered to be individual servers in the
queueing system if they work individually on different machines, whereas the entire
crew is considered to be a single server if crew members work together on each ma-
chine. The machines constitute the calling population. Each one is considered to be a
customer in the queueing system when it is down waiting to be repaired, whereas it is
outside the queueing system while it is operational.

Note that each member of the calling population alternates between being inside
and outside the queueing system. Therefore, the analog of the M/M/s model that fits this
situation assumes that each member’s outside time (i.e., the elapsed time from leaving
the system until returning for the next time) has an exponential distribution with para-
meter �. When n of the members are inside, and so N � n members are outside, the
current probability distribution of the remaining time until the next arrival to the queue-
ing system is the distribution of the minimum of the remaining outside times for the
latter N � n members. Properties 2 and 3 for the exponential distribution imply that
this distribution must be exponential with parameter �n � (N � n)�. Hence, this model
is just the special case of the birth-and-death process that has the rate diagram shown
in Fig. 17.7.

Because �n � 0 for n � N, any queueing system that fits this model will eventually
reach a steady-state condition. The available steady-state results are summarized as follows:

Results for the Single-Server Case (s � 1). When s � 1, the Cn factors in Sec. 17.5
reduce to

N(N � 1) ��� (N � n � 1)��
�
�

��
n

� �
(N

N
�

!
n)!

� ��
�
�

��
n

for n � N
Cn �

0 for n 	 N,

⎧⎪
⎨
⎪⎩
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for this model. Therefore, again using the convention that n! � 1 when n � 0,

P0 � 1��
N

n�0
��(N N

�
!
n)!

���
�
�

��
n

;
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Pn � �
(N

N
�

!
n)!

���
�
�

��
n

P0, if n � 1, 2, . . . , N;

Lq � �
N

n�1
(n � 1)Pn,

which can be reduced to

Lq � N � �
� �

�
�

�(1 � P0);

L � �
N

n�0
nPn � Lq � 1 � P0

� N � �
�
�

�(1 � P0).

Finally,

W � �
L

��
� and Wq � �

L

��
q
�,

where

�� � �
�

n�0
�nPn � �

N

n�0
(N � n)�Pn � �(N � L).
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0 1 2 n Nn � 2 n � 1 N � 1State: …

…

…

N  
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0 1 2 s Ns � 2 s � 1 N � 1State: … …

N (N � 1) 

� 2� s�(s � 1)� s�

(a) Single-server case (s � 1)

(b) Multiple-server case (s 	 1)

�n � 
n�,           
s�,             


(N � 1) (N � n � 2) (N � n � 1)

(N � s � 2) (N � s � 1)

n �  
 (N � n),
 0,

for n � 0, 1, 2, ..., N
for n � N

n �  
 (N � n),
 0,

for n � 0, 1, 2, ..., N
for n � N
for n � 1, 2, ..., s
for n � s, s � 1, ...

�n �   �, for n � 1, 2, ...

■ FIGURE 17.7
Rate diagrams for the finite
calling population variation
of the M/M/s model.

Results for the Multiple-Server Case (s 	 1). For N � s 	 1,

�
(N �

N
n
!
)!n!

���
�
�

��
n

for n � 0, 1, 2, . . . , s

Cn � ��
�
�

��
n

for n � s, s � 1, . . . , N

0 for n 	 N.

N!
��
(N � n)!s!sn�s

⎧
⎪
⎪
⎨
⎪
⎪
⎩
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Hence, the results for the birth-and-death process in Sec. 17.5 yield

�
(N �

N
n
!
)!n!

� ��
�
�

��
n

P0 if 0 � n � s

Pn � ��
�
�

��
n

P0 if s � n � N

0 if n 	 N,

where

P0 � 1���
s�1

n�0
�
(N �

N
n
!
)!n!

���
�
�

��
n

� �
N

n�s
��

�
�

��
n

.

Finally,

Lq � �
N

n�s

(n � s)Pn

and

L � �
s�1

n�0
nPn � Lq � s�1 � �

s�1

n�0
Pn�,

which then yield W and Wq by the same equations as in the single-server case.
This chapter’s Excel files include an Excel template for performing all the above

calculations.
Extensive tables of computational results also are available9 for this model for both

the single-server and multiple-server cases.
For both cases, it has been shown10 that the preceding formulas for Pn and P0 (and

so for Lq, L, W, and Wq) also hold for a generalization of this model. In particular, we can
drop the assumption that the times spent outside the queueing system by the members of
the calling population have an exponential distribution, even though this takes the model
outside the realm of the birth-and-death process. As long as these times are identically
distributed with mean 1/� (and the assumption of exponential service times still holds),
these outside times can have any probability distribution!

N!
��
(N � n)!s!sn�s

N!
��
(N � n)!s!sn�s

⎧
⎪
⎪
⎨
⎪
⎪
⎩
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9L. G. Peck and R. N. Hazelwood, Finite Queueing Tables, Wiley, New York, 1958.
10B. D. Bunday and R. E. Scraton, “The G/M/r Machine Interference Model,” European Journal of Operational
Research, 4: 399–402, 1980.

■ 17.7 QUEUEING MODELS INVOLVING 
NONEXPONENTIAL DISTRIBUTIONS

Because all the queueing theory models in the preceding section (except for one gen-
eralization in the last paragraph) are based on the birth-and-death process, both their in-
terarrival and service times are required to have exponential distributions. As discussed
in Sec. 17.4, this type of probability distribution has many convenient properties for
queueing theory, but it provides a reasonable fit for only certain kinds of queueing sys-
tems. In particular, the assumption of exponential interarrival times implies that arrivals
occur randomly (a Poisson input process), which is a reasonable approximation in many
situations but not when the arrivals are carefully scheduled or regulated. Furthermore,
the actual service-time distribution frequently deviates greatly from the exponential
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form, particularly when the service requirements of the customers are quite similar.
Therefore, it is important to have available other queueing models that use alternative
distributions.

Unfortunately, the mathematical analysis of queueing models with nonexponential
distributions is much more difficult. However, it has been possible to obtain some useful
results for a few such models. The derivations of these results are beyond the level of this
book, but in this section we shall summarize the models and their results.

The M/G/1 Model

As introduced in Sec. 17.2, the M/G/1 model assumes that the queueing system has a sin-
gle server and a Poisson input process (exponential interarrival times) with a fixed mean
arrival rate �. As usual, it is assumed that the customers have independent service times
with the same probability distribution. However, no restrictions are imposed on what this
service-time distribution can be. In fact, it is only necessary to know (or estimate) the
mean 1/� and variance �2 of this distribution.

Any such queueing system can eventually reach a steady-state condition if � � �/� � 1.
The readily available steady-state results11 for this general model are the following:

P0 � 1 � �,

Lq � �
�
2

2

(
�
1

2

�
�

�
�
)

2

�,

L � � � Lq,

Wq � �
L

�
q
�,

W � Wq � �
�
1

�.

Considering the complexity involved in analyzing a model that permits any service-time
distribution, it is remarkable that such a simple formula can be obtained for Lq. This for-
mula is one of the most important results in queueing theory because of its ease of use
and the prevalence of M/G/1 queueing systems in practice. This equation for Lq (or its
counterpart for Wq) commonly is referred to as the Pollaczek-Khintchine formula, named
after two pioneers in the development of queueing theory who derived the formula inde-
pendently in the early 1930s.

For any fixed expected service time 1/�, notice that Lq, L, Wq, and W all increase as
�2 is increased. This result is important because it indicates that the consistency of the
server has a major bearing on the performance of the service facility—not just the server’s
average speed. This key point is illustrated in the next subsection.

When the service-time distribution is exponential, � 2 � 1/�2, and the preceding
results will reduce to the corresponding results for the M/M/1 model given at the begin-
ning of Sec. 17.6.

The complete flexibility in the service-time distribution provided by this model is
extremely useful, so it is unfortunate that efforts to derive similar results for the multiple-
server case have been unsuccessful. However, some multiple-server results have been
obtained for the important special cases described by the following two models. (Excel

17.7 QUEUEING MODELS INVOLVING NONEXPONENTIAL DISTRIBUTIONS 763

11A recursion formula also is available for calculating the probability distribution of the number of customers
in the system; see A. Hordijk and H. C. Tijms, “A Simple Proof of the Equivalence of the Limiting Distribu-
tion of the Continuous-Time and the Embedded Process of the Queue Size in the M/G/1 Queue,” Statistica Neer-
landica, 36: 97–100, 1976.
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templates are available in this chapter’s Excel file for performing the calculations for
both the M/G/1 model and the two models considered below when s � 1.)

The M/D/s Model

When the service consists of essentially the same routine task to be performed for all cus-
tomers, there tends to be little variation in the service time required. The M/D/s model often
provides a reasonable representation for this kind of situation, because it assumes that all ser-
vice times actually equal some fixed constant (the degenerate service-time distribution) and
that we have a Poisson input process with a fixed mean arrival rate �.

When there is just a single server, the M/D/1 model is just the special case of the
M/G/1 model where �2 � 0, so that the Pollaczek-Khintchine formula reduces to

Lq � �
2(1

�
�

2

�)
�,

where L, Wq, and W are obtained from Lq as just shown. Notice that these Lq and Wq are
exactly half as large as those for the exponential service-time case of Sec. 17.6 (the M/M/1
model), where �2 � 1/�2, so decreasing �2 can greatly improve the measures of perfor-
mance of a queueing system.

For the multiple-server version of this model (M/D/s), a complicated method is avail-
able12 for deriving the steady-state probability distribution of the number of customers in
the system and its mean [assuming � � �/(s�) � 1]. These results have been tabulated
for numerous cases,13 and the means (L) also are given graphically in Fig. 17.8.

The M/Ek/s Model

The M/D/s model assumes zero variation in the service times (� � 0), whereas the expo-
nential service-time distribution assumes a very large variation (� � 1/�). Between these
two rather extreme cases lies a long middle ground (0 � � � 1/�), where most actual service-
time distributions fall. Another kind of theoretical service-time distribution that fills this
middle ground is the Erlang distribution (named after the founder of queueing theory).

The probability density function for the Erlang distribution is

f(t) � �
(k

(�
�

k)
1

k

)!
� t k�1e�k�t, for t � 0,

where � and k are strictly positive parameters of the distribution and k is further re-
stricted to be integer. (Except for this integer restriction and the definition of the para-
meters, this distribution is identical to the gamma distribution.) Its mean and standard
deviation are

Mean � �
�
1

�

and

Standard deviation � ��
�k�
1
��� �

�
1

� .

Thus, k is the parameter that specifies the degree of variability of the service times rela-
tive to the mean. It usually is referred to as the shape parameter.

12See N. U. Prabhu: Queues and Inventories, Wiley, New York, 1965, pp. 32–34; also see pp. 286–288 in 
Selected Reference 5.
13F. S. Hillier and O. S. Yu, with D. Avis, L. Fossett, F. Lo, and M. Reiman, Queueing Tables and Graphs,
Elsevier North-Holland, New York, 1981.
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17.7 QUEUEING MODELS INVOLVING NONEXPONENTIAL DISTRIBUTIONS 765

The Erlang distribution is a very important distribution in queueing theory for two
reasons. To describe the first one, suppose that T1, T2, . . . , Tk are k independent ran-
dom variables with an identical exponential distribution whose mean is 1/(k�). Then
their sum

T � T1 � T2 � ��� � Tk

has an Erlang distribution with parameters � and k. The discussion of the exponential dis-
tribution in Sec. 17.4 suggested that the time required to perform certain kinds of tasks
might well have an exponential distribution. However, the total service required by a cus-
tomer may involve the server’s performing not just one specific task but a sequence of k
tasks. If the respective tasks have an independent and identical exponential distribution
for their duration, the total service time will have an Erlang distribution. This will be the
case, e.g., if the server must perform the same exponential task k independent times for
each customer.

The Erlang distribution also is very useful because it is a large (two-parameter) fam-
ily of distributions permitting only nonnegative values. Hence, empirical service-time dis-
tributions can usually be reasonably approximated by an Erlang distribution. In fact, both
the exponential and the degenerate (constant) distributions are special cases of the Erlang
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■ FIGURE 17.8
Values of L for the M/D/s
model (Sec. 17.7).
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distribution, with k � 1 and k � �, respectively. Intermediate values of k provide inter-
mediate distributions with mean � 1/�, mode � (k � 1)/(k�), and variance � 1/(k�2), as
suggested by Fig. 17.9. Therefore, after estimating the mean and variance of an empiri-
cal service-time distribution, these formulas for the mean and variance can be used to
choose the integer value of k that matches the estimates most closely.

Now consider the M/Ek/1 model, which is just the special case of the M/G/1 model
where service times have an Erlang distribution with shape parameter � k. Applying the
Pollaczek-Khintchine formula with �2 � 1/(k�2) (and the accompanying results given for
M/G/1) yields

Lq � � �
1

2
�
k

k
� �

�(�
�
�

2

�)
�,

Wq � �
1

2
�
k

k
� �

�(�
�
� �)
�,

W � Wq � �
�
1

�,

L � �W.

With multiple servers (M/Ek/s), the relationship of the Erlang distribution to the 
exponential distribution just described can be exploited to formulate a modified birth-and-death
process in terms of individual exponential service phases (k per customer) rather than
complete customers. However, it has not been possible to derive a general steady-state
solution [when � � �/(s�) � 1] for the probability distribution of the number of cus-
tomers in the system as we did in Sec. 17.5. Instead, advanced theory is required to solve
individual cases numerically. Once again, these results have been obtained and tabulated
for numerous cases.14 The means (L) also are given graphically in Fig. 17.10 for some
cases where s � 2.

The Solved Examples section of the book’s website includes another example that
applies the M/Ek/s model for both s � 1 and s � 2 to choose the less costly alternative.

�2/(k�2) � �2

��
2(1 � �)
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■ FIGURE 17.9
A family of Erlang
distributions with constant
mean 1/�.

14Ibid.
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Models without a Poisson Input

All the queueing models presented thus far have assumed a Poisson input process (expo-
nential interarrival times). However, this assumption is violated if the arrivals are sched-
uled or regulated in some way that prevents them from occurring randomly, in which case
another model is needed.

As long as the service times have an exponential distribution with a fixed parameter,
three such models are readily available. These models are obtained by merely reversing
the assumed distributions of the interarrival and service times in the preceding three mod-
els. Thus, the first new model (GI/M/s) imposes no restriction on what the interarrival
time distribution can be. In this case, there are some steady-state results available15 (par-
ticularly in regard to waiting-time distributions) for both the single-server and multiple-
server versions of the model, but these results are not nearly as convenient as the simple
expressions given for the M/G/1 model. The second new model (D/M/s) assumes that all
interarrival times equal some fixed constant, which would represent a queueing system
where arrivals are scheduled at regular intervals. The third new model (Ek /M/s) assumes
an Erlang interarrival time distribution, which provides a middle ground between 
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Values of L for the M/Ek /2
model (Sec. 17.7).

15For example, see pp. 259–270 of Selected Reference 5.
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regularly scheduled (constant) and completely random (exponential) arrivals. Extensive
computational results have been tabulated16 for these latter two models, including the val-
ues of L given graphically in Figs. 17.11 and 17.12.

If neither the interarrival times nor the service times for a queueing system have an
exponential distribution, then there are three additional queueing models for which com-
putational results also are available.17 One of these models (Em/Ek /s) assumes an Erlang
distribution for both these times. The other two models (Ek /D/s and D/Ek /s) assume that
one of these times has an Erlang distribution and the other time equals some fixed constant.

Other Models

Although you have seen in this section a large number of queueing models that involve
nonexponential distributions, we have far from exhausted the list. For example, another dis-
tribution that occasionally is used for either interarrival times or service times is the 
hyperexponential distribution. The key characteristic of this distribution is that even
though only nonnegative values are allowed, its standard deviation � actually is larger than
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■ FIGURE 17.11
Values of L for the D/M/s
model (Sec. 17.7).

16Hillier and Yu, op. cit.
17Ibid.
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its mean 1/�. This characteristic is in contrast to the Erlang distribution, where � � 1/� in
every case except k � 1 (exponential distribution), which has � � 1/�. To illustrate a typ-
ical situation where � 	 1/� can occur, we suppose that the service involved in the queue-
ing system is the repair of some kind of machine or vehicle. If many of the repairs turn
out to be routine (small service times) but occasional repairs require an extensive overhaul
(very large service times), then the standard deviation of service times will tend to be quite
large relative to the mean, in which case the hyperexponential distribution may be used to
represent the service-time distribution. Specifically, this distribution would assume that
there are fixed probabilities, p and (1 � p), for which kind of repair will occur, that the
time required for each kind has an exponential distribution, but that the parameters for these
two exponential distributions are different. (In general, the hyperexponential distribution is
such a composite of two or more exponential distributions.)

Another family of distributions coming into general use consists of phase-type 
distributions (some of which also are called generalized Erlangian distributions). These
distributions are obtained by breaking down the total time into a number of phases, each
having an exponential distribution, where the parameters of these exponential distribu-
tions may be different and the phases may be either in series or in parallel (or both). A
group of phases being in parallel means that the process randomly selects one of the
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phases to go through each time according to specified probabilities. This approach is, in
fact, how the hyperexponential distribution is derived, so this distribution is a special
case of the phase-type distributions. Another special case is the Erlang distribution, which
has the restrictions that all its k phases are in series and that these phases have the same
parameter for their exponential distributions. Removing these restrictions means that
phase-type distributions in general can provide considerably more flexibility than the Erlang
distribution in fitting the actual distribution of interarrival times or service times observed
in a real queueing system. This flexibility is especially valuable when using the actual
distribution directly in the model is not analytically tractable, and the ratio of the mean
to the standard deviation for the actual distribution does not closely match the available
ratios (�k� for k � 1, 2, . . .) for the Erlang distribution.

Since they are built up from combinations of exponential distributions, queueing mod-
els using phase-type distributions still can be formulated in terms of transitions that only
involve exponential distributions. The resulting model generally will have an infinite num-
ber of states, so solving for the steady-state distribution of the state of the system requires
solving an infinite system of linear equations that has a relatively complicated structure.
Solving such a system is far from a routine thing, but theoretical advances have enabled
us to solve these queueing models numerically in some cases. An extensive tabulation of
these results for models with various phase-type distributions (including the hyperexpo-
nential distribution) is available.18
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■ 17.8 PRIORITY-DISCIPLINE QUEUEING MODELS

In priority-discipline queueing models, the queue discipline is based on a priority system.
Thus, the order in which members of the queue are selected for service is based on their
assigned priorities.

Many real queueing systems fit these priority-discipline models much more closely
than other available models. Rush jobs are taken ahead of other jobs, and important cus-
tomers may be given precedence over others. Patients in a hospital emergency room also
will generally be prioritized for treatment depending on the severity of their illness or in-
jury. (We will return to the County Hospital example with priorities later in this section.)
Therefore, the use of priority-discipline models often provides a very welcome refinement
over the more usual queueing models.

We present two basic priority-discipline models here. Since both models make the
same assumptions, except for the nature of the priorities, we first describe the models to-
gether and then summarize their results separately.

The Models

Both models assume that there are N priority classes (class 1 has the highest priority and
class N has the lowest) and that whenever a server becomes free to begin serving a new
customer from the queue, the one customer selected is that member of the highest prior-
ity class represented in the queue who has waited longest. In other words, customers are
selected to begin service in the order of their priority classes, but on a first-come-first-
served basis within each priority class. A Poisson input process and exponential service
times are assumed for each priority class. Except for one special case considered later,
the models also make the somewhat restrictive assumption that the expected service time
is the same for all priority classes. However, the models do permit the mean arrival rate
to differ among priority classes.

18L. P. Seelen, H. C. Tijms, and M. H. Van Hoorn, Tables for Multi-Server Queues, North-Holland, Amsterdam, 1985.
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17.8 PRIORITY-DISCIPLINE QUEUEING MODELS 771

The distinction between the two models is whether the priorities are nonpreemptive
or preemptive. With nonpreemptive priorities, a customer being served cannot be ejected
back into the queue (preempted) if a higher-priority customer enters the queueing system.
Therefore, once a server has begun serving a customer, the service must be completed
without interruption. The first model assumes nonpreemptive priorities.

With preemptive priorities, the lowest-priority customer being served is preempted
(ejected back into the queue) whenever a higher-priority customer enters the queueing
system. A server is thereby freed to begin serving the new arrival immediately. (When a
server does succeed in finishing a service, the next customer to begin receiving service is
selected just as described at the beginning of this subsection, so a preempted customer
normally will get back into service again and, after enough tries, will eventually finish.)
Because of the lack-of-memory property of the exponential distribution (see Sec. 17.4),
we do not need to worry about defining the point at which service begins when a pre-
empted customer returns to service; the distribution of the remaining service time always
is the same. (For any other service-time distribution, it becomes important to distinguish
between preemptive-resume systems, where service for a preempted customer resumes at
the point of interruption, and preemptive-repeat systems, where service must start at the
beginning again.) The second model assumes preemptive priorities.

For both models, if the distinction between customers in different priority classes
were ignored, Property 6 for the exponential distribution (see Sec. 17.4) implies that all
customers would arrive according to a Poisson input process. Furthermore, all customers
have the same exponential distribution for service times. Consequently, the two models
actually are identical to the M/M/s model studied in Sec. 17.6 except for the order in which
customers are served. Therefore, when we count just the total number of customers in the
system, the steady-state distribution for the M/M/s model also applies to both models.
Consequently, the formulas for L and Lq also carry over, as do the expected waiting-time
results (by Little’s formula) W and Wq, for a randomly selected customer. What changes
is the distribution of waiting times, which was derived in Sec. 17.6 under the assumption
of a first-come-first-served queue discipline. With a priority discipline, this distribution
has a much larger variance, because the waiting times of customers in the highest prior-
ity classes tend to be much smaller than those under a first-come-first-served discipline,
whereas the waiting times in the lowest priority classes tend to be much larger. By the
same token, the breakdown of the total number of customers in the system tends to be
disproportionately weighted toward the lower-priority classes. But this condition is just
the reason for imposing priorities on the queueing system in the first place. We want to
improve the measures of performance for each of the higher-priority classes at the expense
of performance for the lower-priority classes. To determine how much improvement is being
made, we need to obtain such measures as expected waiting time in the system and expected
number of customers in the system for the individual priority classes. Expressions for these
measures are given next for the two models in turn.

Results for the Nonpreemptive Priorities Model

Let Wk be the steady-state expected waiting time in the system (including service time)
for a member of priority class k. Then

Wk � �
ABk

1
�1Bk
� � �

�
1

�, for k � 1, 2, . . . , N,

where A � s!�
s�

r
�
s

�
� �

s�1

j�0
�
r
j!

j

� � s�,

B0 � 1,
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Bk � 1 � �
�k

i�

s�
1 �i�,

s � number of servers,

� � mean service rate per busy server,

�i � mean arrival rate for priority class i,

� � �
N

i�1
�i,

r � �
�
�

�.

(This result assumes that

�
k

i�1
�i � s�,

so that priority class k can reach a steady-state condition.) Little’s formula still applies to
individual priority classes, so Lk, the steady-state expected number of members of prior-
ity class k in the queueing system (including those being served), is

Lk � �kWk, for k � 1, 2, . . . , N.

To determine the expected waiting time in the queue (excluding service time) for prior-
ity class k, merely subtract 1/� from Wk; the corresponding expected queue length is
again obtained by multiplying by �k. For the special case where s � 1, the expression
for A reduces to A � �2/�.

An Excel template is provided in your OR Courseware for performing the above
calculations.

The Solved Examples section of the book’s website provides an example that il-
lustrates the application of the nonpreemptive priorities model for determining how
many turret lathes a factory should have when the jobs fall into three priority classes.

A Single-Server Variation of the Nonpreemptive Priorities Model

The above assumption that the expected service time 1/� is the same for all priority classes
is a fairly restrictive one. In practice, this assumption sometimes is violated because of
differences in the service requirements for the different priority classes.

Fortunately, for the special case of a single server, it is possible to allow different ex-
pected service times and still obtain useful results. Let 1/�k denote the mean of the expo-
nential service-time distribution for priority class k, so

�k � mean service rate for priority class k, for k � 1, 2, . . . , N.

Then the steady-state expected waiting time in the system for a member of priority class k is

Wk � �
bk�

ak

1bk
� � �

�
1

k
�, for k � 1, 2, . . . , N,

where ak � �
k

i�1
�
�
�i

2
i

�,

b0 � 1,

bk � 1 � �
k

i�1
�
�
�i

i
�.

This result holds as long as

�
k

i�1
�
�
�i

i
� � 1,
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which enables priority class k to reach a steady-state condition. Little’s formula can be used
as described above to obtain the other main measures of performance for each priority class.

Results for the Preemptive Priorities Model

For the preemptive priorities model, we need to reinstate the assumption that the expected
service time is the same for all priority classes. Using the same notation as for the origi-
nal nonpreemptive priorities model, having the preemption changes the total expected
waiting time in the system (including the total service time) to

Wk � �
Bk

1
�

/�
1Bk
�, for k � 1, 2, . . . , N,

for the single-server case (s � 1). When s 	 1, Wk can be calculated by an iterative pro-
cedure that will be illustrated soon by the County Hospital example. The Lk continue to
satisfy the relationship

Lk � �kWk, for k � 1, 2, . . . , N.

The corresponding results for the queue (excluding customers in service) also can be ob-
tained from Wk and Lk as just described for the case of nonpreemptive priorities. Because
of the lack-of-memory property of the exponential distribution (see Sec. 17.4), preemp-
tions do not affect the service process (occurrence of service completions) in any way.
The expected total service time for any customer still is 1/�.

This chapter’s Excel files include an Excel template for calculating the above mea-
sures of performance for the single-server case.

The County Hospital Example with Priorities

For the County Hospital emergency room problem, the management engineer has noticed
that the patients are not treated on a first-come-first-served basis. Rather, the admitting
nurse seems to divide the patients into roughly three categories: (1) critical cases, where
prompt treatment is vital for survival; (2) serious cases, where early treatment is impor-
tant to prevent further deterioration; and (3) stable cases, where treatment can be delayed
without adverse medical consequences. Patients are then treated in this order of priority,
where those in the same category are normally taken on a first-come-first-served basis.
A doctor will interrupt treatment of a patient if a new case in a higher-priority category ar-
rives. Approximately 10 percent of the patients fall into the first category, 30 percent into
the second, and 60 percent into the third. Because the more serious cases will be sent to
the hospital for further care after receiving emergency treatment, the average treatment time
by a doctor in the emergency room actually does not differ greatly among these categories.

The management engineer has decided to use a priority-discipline queueing model as
a reasonable representation of this queueing system, where the three categories of patients
constitute the three priority classes in the model. Because treatment is interrupted by the
arrival of a higher-priority case, the preemptive priorities model is the appropriate one.
Given the previously available data (� � 3 and � � 2), the preceding percentages yield 
�1 � 0.2, �2 � 0.6, and �3 � 1.2. Table 17.3 gives the resulting expected waiting times in
the queue (so excluding treatment time) for the respective priority classes19 when there is
one (s � 1) or two (s � 2) doctors on duty. (The corresponding results for the nonpre-
emptive priorities model also are given in Table 17.3 to show the effect of preempting.)

17.8 PRIORITY-DISCIPLINE QUEUEING MODELS 773

19Note that these expected times can no longer be interpreted as the expected time before treatment begins when
k 	 1, because treatment may be interrupted at least once, causing additional waiting time before service is 
completed.
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Deriving the Preemptive Priority Results. These preemptive priority results for 
s � 2 were obtained as follows. Because the waiting times for priority class 1 customers
are completely unaffected by the presence of customers in the lower-priority classes, W1

will be the same for any other values of �2 and �3, including �2 � 0 and �3 � 0. There-
fore, W1 must equal W for the corresponding one-class model (the M/M/s model in Sec. 17.6)
with s � 2, � � 3, and � � �1 � 0.2, which yields

W1 � W � 0.33370 hour, for � � 0.2

so

W1 � �
�
1

� � 0.33370 � 0.33333 � 0.00037 hour.

Now consider the first two priority classes. Again note that customers in these classes
are completely unaffected by lower-priority classes ( just priority class 3 in this case),
which can therefore be ignored in the analysis. Let W�1�2 be the expected waiting time in
the system (so including service time) of a random arrival in either of these two classes,
so the probability is �1/(�1 � �2) � �

1
4

� that this arrival is in class 1 and �2/(�1 � �2) � �
3
4

�

that it is in class 2. Therefore,

W�1�2 � �
1
4

�W1 � �
3
4

�W2.

Furthermore, because the expected waiting time for this same random arrival is the same
for any queue discipline, W�1�2 must also equal W for the M/M/s model in Sec. 17.6, with
s � 2, � � 3, and � � �1 � �2 � 0.8, which yields

W�1�2 � W � 0.33937 hour, for � � 0.8.

Combining these facts gives

W2 � �
4
3

� �0.33937 � �
1
4

� (0.33370) � 0.34126 hour.

�W2 � �
�
1

� � 0.00793 hour.�
Finally, let W�1�3 be the expected waiting time in the system (so including service

time) for a random arrival in any of the three priority classes, so the probabilities are
0.1, 0.3, and 0.6 that it is in classes 1, 2, and 3, respectively. Therefore,
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■ TABLE 17.3 Steady-state results from the priority-discipline models 
for the County Hospital problem

Preemptive Nonpreemptive
Priorities Priorities

s � 1 s � 2 s � 1 s � 2

A — — 4.5 36
B1 0.933 — 0.933 0.967
B2 0.733 — 0.733 0.867
B3 0.333 — 0.333 0.667

W1 � �
�
1

� 0.024 hour 0.00037 hour 0.238 hour 0.029 hour

W2 � �
�
1

� 0.154 hour 0.00793 hour 0.325 hour 0.033 hour

W3 � �
�
1

� 1.033 hours 0.06542 hour 0.889 hour 0.048 hour
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W�1�3 � 0.1W1 � 0.3W2 � 0.6W3.

Furthermore, W�1�3 must also equal W for the M/M/s model in Sec. 17.6, with s � 2,
� � 3, and � � �1 � �2 � �3 � 2, so that (from Table 17.2)

W�1�3 � W � 0.375 hour, for � � 2.

Consequently,

W3 � �
0
1
.6
� [0.375 � 0.1(0.33370) � 0.3(0.34126)]

� 0.39875 hour.

�W3 � �
�
1

� � 0.06542 hour.�
The corresponding Wq results for the M/M/s model in Sec. 17.6 also could have been

used in exactly the same way to derive the Wk � 1/� quantities directly.

Conclusions. When s � 1, the Wk � 1/� values in Table 17.3 for the preemptive priori-
ties case indicate that providing just a single doctor would cause critical cases to wait about
1�

1
2

� minutes (0.024 hour) on the average, serious cases to wait more than 9 minutes, and sta-
ble cases to wait more than 1 hour. (Contrast these results with the average wait of Wq � �

2
3

�

hour for all patients that was obtained in Table 17.2 under the first-come-first-served queue
discipline.) However, these values represent statistical expectations, so some patients have
to wait considerably longer than the average for their priority class. This wait would not be
tolerable for the critical and serious cases, where a few minutes can be vital. By contrast,
the s � 2 results in Table 17.3 (preemptive priorities case) indicate that adding a second doc-
tor would virtually eliminate waiting for all but the stable cases. Therefore, the management
engineer recommended that there be two doctors on duty in the emergency room during the
early evening hours next year. The board of directors for County Hospital adopted this rec-
ommendation and simultaneously raised the charge for using the emergency room!
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■ 17.9 QUEUEING NETWORKS

Thus far we have considered only queueing systems that have a single service facility with
one or more servers. However, queueing systems encountered in OR studies are sometimes
actually queueing networks, i.e., networks of service facilities where customers must re-
ceive service at some of or all these facilities. For example, orders being processed through
a job shop must be routed through a sequence of machine groups (service facilities). It is
therefore necessary to study the entire network to obtain such information as the expected
total waiting time, expected number of customers in the entire system, and so forth.

Because of the importance of queueing networks, research into this area has been
very active. However, this is a difficult area, so we limit ourselves to a brief introduction.

One result is of such fundamental importance for queueing networks that this find-
ing and its implications warrant special attention here. This fundamental result is the fol-
lowing equivalence property for the input process of arriving customers and the output
process of departing customers for certain queueing systems.

Equivalence property: Assume that a service facility with s servers and an
infinite queue has a Poisson input with parameter � and the same exponential
service-time distribution with parameter � for each server (the M/M/s model),
where s� 	 �. Then the steady-state output of this service facility is also a
Poisson process with parameter �.
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For many decades, General Motors Corporation (GM)
enjoyed its position as the world’s largest automotive
manufacturer. However, ever since the late 1980s, when
the productivity of GM’s plants ranked near the bottom
in the industry, the company’s market position has 
been steadily eroding due to ever-increasing foreign 
competition.

To counter this foreign competition, GM management
initiated a long-term operations research project many
years ago to predict and improve the throughput perfor-
mance of the company’s several hundred production lines
throughout the world. The goal was to greatly increase
the company’s productivity throughout its manufacturing
operations and thereby provide GM with a strategic com-
petitive advantage. 

The most important analytical tool used in this pro-
ject has been a complicated queueing model that uses a
simple single-server model as a building block. The over-
all model begins by considering a two-station production
line where each station is modeled as a single-server
queueing system with constant interarrival times and con-
stant service times with the following exceptions. The
server (commonly a machine) at each station occasion-
ally breaks down and does not resume serving until a re-
pair is completed. The server  at the first station also shuts
down when it completes a service and the buffer between
the stations is full. The server at the second station shuts

down when it completes a service and has not yet re-
ceived a job from the first station.

The next step in the analysis is to extend this queueing
model for a two-station production line to one for a pro-
duction line with any number of stations. This larger queue-
ing model then is used to analyze how production lines
should be designed to maximize their throughput. (The
technique of simulation described in Chap. 20 also is used
for this purpose for relatively complex production lines.)

This application of queueing theory (and simula-
tion), along with supporting data-collection systems,
has reaped remarkable benefits for GM. According to
impartial industry sources, its plants, which once were
among the least productive in the industry, now rank
among the very best. The resulting improvements in
production throughput in over 30 vehicle plants and 
10 countries has yielded over $2.1 billion in docu-
mented savings and increased revenue. These dramatic
results led to General Motors winning the prestigious
First Prize in the 2005 international competition for the
Franz Edelman Award for Achievement in Operations
Research and the Management Sciences.

Source: J. M. Alden, L. D. Burns, T. Costy, R. D. Hutton, C. A.
Jackson, D. S. Kim, K. A. Kohls, J. H. Owen, M. A. Turnquist,
and D. J. Vander Veen: “General Motors Increases Its Production
Throughput,” Interfaces, 36(1): 6–25, Jan.–Feb. 2006. (A link to
this article is provided on our website, www.mhhe.com/hillier.)

An Application Vignette

Notice that this property makes no assumption about the type of queue discipline used.
Whether it is first-come-first-served, random, or even a priority discipline as in Sec. 17.8,
the served customers will leave the service facility according to a Poisson process. The cru-
cial implication of this fact for queueing networks is that if these customers must then go
to another service facility for further service, this second facility also will have a Poisson
input. With an exponential service-time distribution, the equivalence property will hold for
this facility as well, which can then provide a Poisson input for a third facility, etc. We dis-
cuss the consequences for two basic kinds of networks next.

Infinite Queues in Series

Suppose that customers must all receive service at a series of m service facilities in a fixed
sequence. Assume that each facility has an infinite queue (no limitation on the number of
customers allowed in the queue), so that the series of facilities form a system of infinite
queues in series. Assume further that the customers arrive at the first facility according to
a Poisson process with parameter � and that each facility i (i � 1, 2, . . . , m) has an ex-
ponential service-time distribution with parameter �i for its si servers, where si�i 	 �. It
then follows from the equivalence property that (under steady-state conditions) each ser-
vice facility has a Poisson input with parameter �. Therefore, the elementary M/M/s model
of Sec. 17.6 (or its priority-discipline counterparts in Sec. 17.8) can be used to analyze
each service facility independently of the others!
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Being able to use the M/M/s model to obtain all measures of performance for each facil-
ity independently, rather than analyzing interactions between facilities, is a tremendous sim-
plification. For example, the probability of having n customers at a given facility is given by
the formula for Pn in Sec. 17.6 for the M/M/s model. The joint probability of n1 customers
at facility 1, n2 customers at facility 2, . . . then is the product of the individual probabilities
obtained in this simple way. In particular, this joint probability can be expressed as

P{(N1, N2, . . . , Nm) � (n1, n2, . . . , nm)} � Pn1
Pn2

���Pnm
.

(This simple form for the solution is called the product form solution.) Similarly, the
expected total waiting time and the expected number of customers in the entire sys-
tem can be obtained by merely summing the corresponding quantities obtained at the
respective facilities.

Unfortunately, the equivalence property and its implications do not hold for the case
of finite queues discussed in Sec. 17.6. This case is actually quite important in practice,
because there is often a definite limitation on the queue length in front of service facili-
ties in networks. For example, only a small amount of buffer storage space is typically
provided in front of each facility (station) in a production-line system. For such systems
of finite queues in series, no simple product form solution is available. The facilities must
be analyzed jointly instead, and only limited results have been obtained.

Jackson Networks

Systems of infinite queues in series are not the only queueing networks where the M/M/s
model can be used to analyze each service facility independently of the others. Another
prominent kind of network with this property (a product form solution) is the Jackson net-
work, named after the individual (James R. Jackson) who first characterized the network
and showed that this property holds a few decades ago.

The characteristics of a Jackson network are the same as assumed above for the sys-
tem of infinite queues in series, except now the customers visit the facilities in different
orders (and may not visit them all). For each facility, its arriving customers come from
both outside the system (according to a Poisson process) and the other facilities. These
characteristics are summarized below:

A Jackson network is a system of m service facilities where facility i (i � 1,
2, . . . , m) has

1. An infinite queue
2. Customers arriving from outside the system according to a Poisson input process with

parameter ai

3. si servers with an exponential service-time distribution with parameter �i.

A customer leaving facility i is routed next to facility j ( j � 1, 2, . . . , m) with probability
pij or departs the system with probability

qi � 1 � �
m

j�1
pij.

Any such network has the following key property:

Under steady-state conditions, each facility j ( j � 1, 2, . . . , m) in a Jackson network
behaves as if it were an independent M/M/s queueing system with arrival rate

�j � aj � �
m

i�1
�i pij,

where sj�j 	 �j.
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This key property cannot be proved directly from the equivalence property this time
(the reasoning would become circular), but its intuitive underpinning is still provided by the
latter property. The intuitive viewpoint (not quite technically correct) is that, for each facility
i, its input processes from the various sources (outside and other facilities) are independent
Poisson processes, so the aggregate input process is Poisson with parameter �i (Property 6
in Sec. 17.4). The equivalence property then says that the aggregate output process for fa-
cility i must be Poisson with parameter �i. By disaggregating this output process (Prop-
erty 6 again), the process for customers going from facility i to facility j must be Poisson
with parameter �ipij. This process becomes one of the Poisson input processes for facility j,
thereby helping to maintain the series of Poisson processes in the overall system.

The equation given for obtaining �j is based on the fact that �i is the departure rate
as well as the arrival rate for all customers using facility i. Because pij is the proportion
of customers departing from facility i who go next to facility j, the rate at which cus-
tomers from facility i arrive at facility j is �ipij. Summing this product over all i, and then
adding this sum to aj, gives the total arrival rate to facility j from all sources.

To calculate �j from this equation requires knowing the �i for i � j, but these �i also
are unknowns given by the corresponding equations. Therefore, the procedure is to solve
simultaneously for �1, �2, . . . , �m by obtaining the simultaneous solution of the entire
system of linear equations for �j for j � 1, 2, . . . , m. Your IOR Tutorial includes an in-
teractive procedure for solving for the �j in this way.

To illustrate these calculations, consider a Jackson network with three service facili-
ties that have the parameters shown in Table 17.4. Plugging into the formula for �j for
j � 1, 2, 3, we obtain

�1 � 1 � 0.1�2 � 0.4�3

�2 � 4 � 0.6�1 � 0.4�3

�3 � 3 � 0.3�1 � 0.3�2.

(Reason through each equation to see why it gives the total arrival rate to the corresponding
facility.) The simultaneous solution for this system is

�1 � 5, �2 � 10, �3 � 7�
1
2

�.

Given this simultaneous solution, each of the three service facilities now can be ana-
lyzed independently by using the formulas for the M/M/s model given in Sec. 17.6. For ex-
ample, to obtain the distribution of the number of customers Ni � ni at facility i, note that

�
1
2

� for i � 1

�i � �
s
�

i�
i

i
� � �

1
2

� for i � 2

�
3
4

� for i � 3.

⎧⎪
⎪
⎪
⎨
⎪
⎪⎪⎩
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■ TABLE 17.4 Data for the example of a Jackson network

pij

Facility j sj �j aj i � 1 i � 2 i � 3

j � 1 1 10 1 0 0.1 0.4
j � 2 2 10 4 0.6 0 0.4
j � 3 1 10 3 0.3 0.3 0

hil23453_ch17_731-799.qxd  1/22/70  7:33 AM  Page 778 Final PDF to printer



Plugging these values (and the parameters in Table 17.4) into the formula for Pn gives

Pn1
� �

1
2

���
1
2

��
n1

for facility 1,

�
1
3

� for n2 � 0

Pn2
� �

1
3

� for n2 � 1 for facility 2,

�
1
3

���
1
2

��
n2�1

for n2 � 2

Pn3
� �

1
4

���
3
4

��
n3

for facility 3.

The joint probability of (n1, n2, n3) then is given simply by the product form solution

P{(N1, N2, N3) � (n1, n2, n3)} � Pn1
Pn2

Pn3
.

In a similar manner, the expected number of customers Li at facility i can be calcu-
lated from Sec. 17.6 as

L1 � 1, L2 � �
4
3

�, L3 � 3.

The expected total number of customers in the entire system then is

L � L1 � L2 � L3 � 5�
1
3

�.

Obtaining W, the expected total waiting time in the system (including service times)
for a customer, is a little trickier. You cannot simply add the expected waiting times at the
respective facilities, because a customer does not necessarily visit each facility exactly
once. However, Little’s formula can still be used, where the system arrival rate � is the
sum of the arrival rates from outside to the facilities, � � a1 � a2 � a3 � 8. Thus,

W � � �
2
3

�.

In conclusion, we should point out that there do exist other (more complicated) kinds
of queueing networks where the individual service facilities can be analyzed indepen-
dently from the others. In fact, finding queueing networks with a product form solution
has been the Holy Grail for research on queueing networks. Some sources of additional
information are Selected References 1 and 2.

L
��
a1 � a2 � a3

⎧⎪
⎪
⎪
⎨
⎪
⎪⎪⎩

■ 17.10 THE APPLICATION OF QUEUEING THEORY

Because of the wealth of information provided by queueing theory, it is widely used to
guide the design (or redesign) of queueing systems. We now turn our focus to how queue-
ing theory is applied in this way.

A number of decisions may need to be made when designing a queueing system. The
possible decisions include

1. Number of servers at a service facility.
2. Efficiency of the servers.
3. Number of service facilities.
4. Amount of waiting space in the queue.
5. Any priorities for different categories of customers.
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The first of these (how many servers?) is the decision that arises most frequently and
we will focus our attention on this one a little later in this section.

The two primary considerations in making these kinds of decisions typically are 
(1) the cost of the service capacity provided by the queueing system and (2) the consequences
of making the customers wait in the queueing system. Providing too much service capac-
ity causes excessive costs. Providing too little causes excessive waiting. Therefore, the goal
is to find an appropriate trade-off between the service cost and the amount of waiting.

Two basic approaches are available for seeking this trade-off. One is to establish one
or more criteria for a satisfactory level of service in terms of how much waiting would
be acceptable. For example, one possible criterion might be that the expected waiting time
in the system should not exceed a certain number of minutes. Another might be that at
least 95 percent of the customers should wait no longer than a certain number of minutes
in the system. Similar criteria in terms of the expected number of customers in the sys-
tem (or the probability distribution of this number) also could be used. The criteria also
might be stated in terms of the waiting time or the number of customers in the queue in-
stead of in the system. Once the criterion or criteria have been selected, it then is usually
straightforward to use trial and error to find the least costly design of the queueing sys-
tem that satisfies all the criteria.

The other basic approach for seeking the best trade-off involves assessing the costs
associated with the consequences of making customers wait. For example, suppose that
the queueing system is an internal service system (as described in Sec. 17.3), where the
customers are the employees of a for-profit company. Making these employees wait at 
the queueing system causes lost productivity, which results in lost profit. This lost profit
is the waiting cost associated with the queueing system. By expressing this waiting cost
as a function of the amount of waiting, the problem of determining the best design of the
queueing system can now be posed as minimizing the expected total cost (service cost
plus waiting cost) per unit time.

We spell out this latter approach below for the problem of determining the optimal
number of servers to provide.

How Many Servers Should Be Provided?

To formulate the objective function when the decision variable is the number of servers s at
a particular service facility, let

E(TC) � expected total cost per unit time,

E(SC) � expected service cost per unit time,

E(WC) � expected waiting cost per unit time.

Then the objective is to choose the number of servers so as to

Minimize E(TC) � E(SC) � E(WC).

When each server costs the same, the service cost is

E(SC) � Css,

where Cs is the marginal cost of a server per unit time. To evaluate WC for any value of
s, note that L � �W gives the expected total amount of waiting in the queueing system
per unit time. Therefore, when the waiting cost is proportional to the amount of waiting,
this cost can be expressed as

E(WC) � CwL,
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where Cw is the waiting cost per unit time for each customer in the queueing system. There-
fore, after estimating the constants, Cs and Cw, the goal is to choose the value of s so as to

Minimize E(TC) � Css � CwL.

By choosing the queueing model that fits the queueing system, the value of L can be ob-
tained for various values of s. Increasing s decreases L, at first rapidly and then gradually
more slowly.

Figure 17.13 shows the general shape of the E(SC), E(WC), and E(TC) curves ver-
sus the number of servers s. (For better conceptualization, we have drawn these as smooth
curves even though the only feasible values of s are s = 1, 2, . . . .) By calculating E(TC)
for consecutive values of s until E(TC) stops decreasing and starts increasing instead, it
is straightforward to find the number of servers that minimizes total cost. The following
example illustrates this process.

An Example

The Acme Machine Shop has a tool crib to store tools required by the shop mechanics. Two
clerks run the tool crib. The clerks hand out the tools as the mechanics arrive and request
them. The tools then are returned to the clerks when they are no longer needed. There have
been complaints from supervisors that their mechanics have had to waste too much time
waiting to be served at the tool crib, so it appears as if there should be more clerks. On the
other hand, management is exerting pressure to reduce overhead in the plant, and this 
reduction would lead to fewer clerks. To resolve these conflicting pressures, an OR study is
being conducted to determine just how many clerks the tool crib should have.

The tool crib constitutes a queueing system, with the clerks as its servers and the me-
chanics as its customers. After gathering some data on interarrival times and service times,
the OR team has concluded that the queueing model that fits this queueing system best is
the M/M/s model. The estimates of the mean arrival rate � and the mean service rate (per
server) � are

� � 120 customers per hour,
� � 80 customers per hour,
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cost curves for determining
the number of servers to
provide.
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so the utilization factor for the two clerks is

� � �
s
�

�
� � �

2
1
(
2
8
0
0)
� � 0.75.

The total cost to the company of each tool crib clerk is about $20 per hour, so Cs � $20.
While a mechanic is busy, the value to the company of his or her output averages about
$48 per hour, so Cw � $48. Therefore, the OR team now needs to find the number of
servers (tool crib clerks) s that will

Minimize E(TC) � $20 s + $48 L.

An Excel template has been provided in your OR Courseware for calculating these
costs with the M/M/s model. All you need to do is enter the data for the model along with
the unit service cost Cs, the unit waiting cost Cw, and the number of servers s you want
to try. The template then calculates E(SC), E(WC), and E(TC). This is illustrated in 
Fig. 17.14 with s � 3 for this example. By repeatedly entering alternative values of s, the
template then can reveal which value minimizes E(TC) in a matter of seconds.

Table 17.5 shows the data that would be generated from this template by repeating these
calculations for s � 1, 2, 3, 4, and 5. Since the utilization factor for s � 1 is � � 1.5, a single
clerk would be unable to keep up with the customers, so this option is ruled out. All larger
values of s are feasible, but s � 3 has the smallest expected total cost. Furthermore, s � 3
would decrease the current expected total cost for s � 2 by $61 per hour. Therefore, despite
management’s current drive to reduce overhead (which includes the cost of tool crib clerks),
the OR team recommends that a third clerk be added to the tool crib. Note that this recom-
mendation would decrease the utilization factor for the clerks from an already modest 0.75 all
the way down to 0.5. However, because of the large improvement in the productivity of the
mechanics (who are much more expensive than the clerks) through decreasing their time wasted
waiting at the tool crib, management adopts the recommendation.

Other Issues

Chapter 26 on the book’s website expands considerably further on the application of queue-
ing theory, including how to deal with some other issues not considered above.

For example, the analysis displayed in Fig. 17.14 and Table 17.5 assumed that the
waiting cost is proportional to the amount of waiting, but this sometimes is not the case.
If a company has one or two of its employees in a queueing system, this may not be very
serious in terms of their lost productivity because others may be able to handle all of the
available productive work. However, having additional employees in the queueing system
may result in a sharp increase in lost productivity and the resulting lost profit, so the wait-
ing cost becomes a nonlinear function of the number in the system. Similarly, the conse-
quences to a commercial service system for making its customers wait may be minimal
for short waits but much more serious for long waits. In this case, the waiting cost be-
comes a nonlinear function of the waiting time. Section 26.3 describes the formulation of
nonlinear waiting-cost functions and then the calculation of E(WC) with such functions.

Section 26.4 discusses a decision model where the decision variables are both the
number of servers and the mean service rate for the servers. An interesting issue that arises
here is whether it is better have one fast server (several people working together to serve
each customer rapidly) or several slow servers (several people working separately to serve
different customers).

Section 26.4 also presents a decision model where the decision variables are the num-
ber of service facilities and the number of servers per facility to provide service to a call-
ing population of potential customers. Given the mean arrival rate for the entire calling
population, increasing the number of facilities enables decreasing the mean arrival rate

hil23453_ch17_731-799.qxd  1/22/70  7:33 AM  Page 782 Final PDF to printer



17.10 THE APPLICATION OF QUEUEING THEORY 783

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

A B C D E F G

Economic Analysis of Acme Machine Shop Example

Data Results
λ = 120 (mean arrival rate) L = 1.736842105
μ = 80 (mean service rate) Lq = 0.236842105
s = 3 (# servers)

W = 0.014473684
Pr(W > t) = 0.02581732 Wq = 0.001973684

when t = 0.05
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1 0 0.210526316
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0 4 0.059210526
0 Cost of Service $60.00 5 0.029605263
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■ FIGURE 17.14 
This Excel template for using economic analysis to choose the number of servers with the M/M/s model is applied here
to the Acme Machine Shop example with s � 3.

■ TABLE 17.5 Calculation of E(TC) for alternative s in the Acme Machine 
Shop example

s � L E(SC) � Css E(WC) � CwL E(TC) � E(SC) � E(WC)

1 1.50 � $20 � �

2 0.75 3.43 $40 $164.57 $204.57
3 0.50 1.74 $60 $83.37 $143.37
4 0.375 1.54 $80 $74.15 $154.15
5 0.30 1.51 $100 $72.41 $172.41
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Queueing systems are prevalent throughout society. The adequacy of these systems can
have an important effect on the quality of life and productivity.

Queueing theory studies queueing systems by formulating mathematical models of
their operation and then using these models to derive measures of performance. This analy-
sis provides vital information for effectively designing queueing systems that achieve an
appropriate balance between the cost of providing a service and the cost associated with
waiting for that service.

This chapter presented the most basic models of queueing theory for which particu-
larly useful results are available. However, many other interesting models could be con-
sidered if space permitted. In fact, several thousand research papers formulating and/or
analyzing queueing models have already appeared in the technical literature, and many
more are being published each year!

The exponential distribution plays a fundamental role in queueing theory for represent-
ing the distribution of interarrival and service times. One reason is that interarrival times com-
monly have this distribution and assuming this distribution for service times often provides a
reasonable approximation as well. Another reason is that queueing models based on the ex-
ponential distribution are far more tractable than any others. For example, extensive results can
be obtained for queueing models based on the birth-and-death process, which requires that
both interarrival times and service times have exponential distributions. Phase-type distribu-
tions such as the Erlang distribution, where the total time is broken down into individual phases
having an exponential distribution, also are somewhat tractable. Useful analytical results have
been obtained for only a relatively few queueing models making other assumptions.

Priority-discipline queueing models are useful for the common situation where some
categories of customers are given priority over others for receiving service.

In another common situation, customers must receive service at several different ser-
vice facilities. Models for queueing networks are gaining widespread use for such situa-
tions. This is an area of especially active ongoing research.

When no tractable model that provides a reasonable representation of the queueing
system under study is available, a common approach is to obtain relevant performance
data by developing a computer program for simulating the operation of the system. This
technique is discussed in Chap. 20.

Section 17.10 briefly describes how queueing theory can be used to help design ef-
fective queueing systems and then Chap. 26 (on the book’s website) expands consider-
ably further on this subject.
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■ 17.11 CONCLUSIONS

(workload) at each facility. The number of service facilities also affects how much time
each customer will need to spend in traveling to and from the nearest facility. The waiting
cost now needs to be a function of the total time lost by a customer by either waiting at a
service facility or traveling to and from the facility. Therefore, Sec. 26.5 presents some
travel-time models for determining the expected round-trip travel time for each customer.
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“Ch. 17—Queueing Theory” Excel Files:

Template for M/M/s Model
Template for Finite Queue Variation of M/M/s Model
Template for Finite Calling Population Variation of M/M/s Model
Template for M/G/1 Model
Template for M/D/1 Model
Template for M/Ek /1 Model
Template for Nonpreemptive Priorities Model
Template for Preemptive Priorities Model
Template for M/M/s Economic Analysis of Number of Servers

“Ch. 17—Queueing Theory” LINGO File for Selected Examples

Glossary for Chapter 17

See Appendix 1 for documentation of the software.

786 CHAPTER 17 QUEUEING THEORY

To the left of each of the following problems (or their parts), we
have inserted a T whenever one of the templates listed above can
be helpful. An asterisk on the problem number indicates that at
least a partial answer is given in the back of the book.

17.2-1.* Consider a typical barber shop. Demonstrate that it is a
queueing system by describing its components.

17.2-2.* Newell and Jeff are the two barbers in a barber shop they
own and operate. They provide two chairs for customers who are
waiting to begin a haircut, so the number of customers in the shop
varies between 0 and 4. For n � 0, 1, 2, 3, 4, the probability Pn

that exactly n customers are in the shop is P0 � �
1
1
6
�, P1 � �

1
4
6
�,

P2 � �
1
6
6
�, P3 � �

1
4
6
�, P4 � �

1
1
6
�.

(a) Calculate L. How would you describe the meaning of L to
Newell and Jeff?

(b) For each of the possible values of the number of customers in
the queueing system, specify how many customers are in the
queue. Then calculate Lq. How would you describe the mean-
ing of Lq to Newell and Jeff?

(c) Determine the expected number of customers being served.
(d) Given that an average of 4 customers per hour arrive and stay

to receive a haircut, determine W and Wq. Describe these two
quantities in terms meaningful to Newell and Jeff.

(e) Given that Newell and Jeff are equally fast in giving haircuts,
what is the average duration of a haircut?

17.2-3. Mom-and-Pop’s Grocery Store has a small adjacent park-
ing lot with three parking spaces reserved for the store’s customers.
During store hours, cars enter the lot and use one of the spaces at
a mean rate of 2 per hour. For n � 0, 1, 2, 3, the probability Pn

that exactly n spaces currently are being used is P0 � 0.2, P1 � 0.3,
P2 � 0.3, P3 � 0.2.

(a) Describe how this parking lot can be interpreted as being a
queueing system. In particular, identify the customers and the
servers. What is the service being provided? What constitutes
a service time? What is the queue capacity?

(b) Determine the basic measures of performance—L, Lq, W, and
Wq—for this queueing system.

(c) Use the results from part (b) to determine the average length
of time that a car remains in a parking space.

17.2-4. For each of the following statements about the queue in a
queueing system, label the statement as true or false and then jus-
tify your answer by referring to a specific statement in the chapter.
(a) The queue is where customers wait in the queueing system un-

til their service is completed.
(b) Queueing models conventionally assume that the queue can

hold only a limited number of customers.
(c) The most common queue discipline is first-come-first-served.

17.2-5. Midtown Bank always has two tellers on duty. Customers
arrive to receive service from a teller at a mean rate of 40 per hour.
A teller requires an average of 2 minutes to serve a customer. When
both tellers are busy, an arriving customer joins a single line to
wait for service. Experience has shown that customers wait in line
an average of 1 minute before service begins.
(a) Describe why this is a queueing system.
(b) Determine the basic measures of performance—Wq, W, Lq, and

L—for this queueing system. (Hint: We don’t know the prob-
ability distributions of interarrival times and service times for
this queueing system, so you will need to use the relationships
between these measures of performance to help answer the
question.)

■ PROBLEMS20

20See also the end of Chap. 26 (on the book’s website) for additional problems involving the application of queueing theory.
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17.2-6. Explain why the utilization factor � for the server in a
single-server queueing system must equal 1 � P0, where P0 is
the probability of having 0 customers in the system.

17.2-7. You are given two queueing systems, Q1 and Q2. The mean
arrival rate, the mean service rate per busy server, and the steady-
state expected number of customers for Q2 are twice the corre-
sponding values for Q1. Let Wi � the steady-state expected waiting
time in the system for Qi, for i � 1, 2. Determine W2/W1.

17.2-8. Consider a single-server queueing system with any service-
time distribution and any distribution of interarrival times (the
GI/G/1 model). Use only basic definitions and the relationships
given in Sec. 17.2 to verify the following general relationships:
(a) L � Lq � (1 � P0).
(b) L � Lq � �.
(c) P0 � 1 � �.

17.2-9. Show that

L � �
s�1

n�0
nPn � Lq � s�1 � �

s�1

n�0
Pn�

by using the statistical definitions of L and Lq in terms of the Pn.

17.3-1. Identify the customers and the servers in the queueing sys-
tem in each of the following situations:
(a) The checkout stand in a grocery store.
(b) A fire station.
(c) The tollbooth for a bridge.
(d) A bicycle repair shop.
(e) A shipping dock.
(f) A group of semiautomatic machines assigned to one operator.
(g) The materials-handling equipment in a factory area.
(h) A plumbing shop.
(i) A job shop producing custom orders.
(j) A secretarial typing pool.

17.4-1. Suppose that a queueing system has two servers, an ex-
ponential interarrival time distribution with a mean of 2 hours, and
an exponential service-time distribution with a mean of 2 hours for
each server. Furthermore, a customer has just arrived at 12:00 noon.
(a) What is the probability that the next arrival will come (i) be-

fore 1:00 P.M., (ii) between 1:00 and 2:00 P.M., and (iii) after
2:00 P.M.?

(b) Suppose that no additional customers arrive before 1:00 P.M.
Now what is the probability that the next arrival will come be-
tween 1:00 and 2:00 P.M.?

(c) What is the probability that the number of arrivals between
1:00 and 2:00 P.M. will be (i) 0, (ii) 1, and (iii) 2 or more?

(d) Suppose that both servers are serving customers at 1:00 P.M.
What is the probability that neither customer will have service
completed (i) before 2:00 P.M., (ii) before 1:10 P.M., and 
(iii) before 1:01 P.M.?

17.4-2.* The jobs to be performed on a particular machine arrive
according to a Poisson input process with a mean rate of two per
hour. Suppose that the machine breaks down and will require 1 hour

to be repaired. What is the probability that the number of new jobs
that will arrive during this time is (a) 0, (b) 2, and (c) 5 or more?

17.4-3. The time required by a mechanic to repair a machine has
an exponential distribution with a mean of 4 hours. However, a
special tool would reduce this mean to 2 hours. If the mechanic
repairs a machine in less than 2 hours, he is paid $100; otherwise,
he is paid $80. Determine the mechanic’s expected increase in pay
per machine repaired if he uses the special tool.

17.4-4. A three-server queueing system has a controlled arrival
process that provides customers in time to keep the servers con-
tinuously busy. Service times have an exponential distribution with
mean 0.5.

You observe the queueing system starting up with all three
servers beginning service at time t � 0. You then note that the first
completion occurs at time t � 1. Given this information, determine
the expected amount of time after t � 1 until the next service com-
pletion occurs.

17.4-5. A queueing system has three servers with expected service
times of 20 minutes, 15 minutes, and 10 minutes. The service times
have an exponential distribution. Each server has been busy with
a current customer for 5 minutes. Determine the expected remain-
ing time until the next service completion.

17.4-6. Consider a queueing system with two types of customers.
Type 1 customers arrive according to a Poisson process with a mean
rate of 5 per hour. Type 2 customers also arrive according to a Pois-
son process with a mean rate of 5 per hour. The system has two
servers, both of which serve both types of customers. For both types,
service times have an exponential distribution with a mean of 
10 minutes. Service is provided on a first-come-first-served basis.
(a) What is the probability distribution (including its mean) of the

time between consecutive arrivals of customers of any type?
(b) When a particular type 2 customer arrives, she finds two type 1

customers there in the process of being served but no other
customers in the system. What is the probability distribution
(including its mean) of this type 2 customer’s waiting time in
the queue?

17.4-7. Consider a two-server queueing system where all service
times are independent and identically distributed according to an
exponential distribution with a mean of 10 minutes. Service is pro-
vided on a first-come-first-served basis. When a particular customer
arrives, he finds that both servers are busy and no one is waiting
in the queue.
(a) What is the probability distribution (including its mean and

standard deviation) of this customer’s waiting time in the queue?
(b) Determine the expected value and standard deviation of this

customer’s waiting time in the system.
(c) Suppose that this customer still is waiting in the queue 5 min-

utes after its arrival. Given this information, how does this
change the expected value and the standard deviation of this
customer’s total waiting time in the system from the answers
obtained in part (b)?

PROBLEMS 787
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17.4-8. For each of the following statements regarding service
times modeled by the exponential distribution, label the statement
as true or false and then justify your answer by referring to spe-
cific statements in the chapter.
(a) The expected value and variance of the service times are al-

ways equal.
(b) The exponential distribution always provides a good approxi-

mation of the actual service-time distribution when each cus-
tomer requires the same service operations.

(c) At an s-server facility, s 	 1, with exactly s customers already
in the system, a new arrival would have an expected waiting
time before entering service of 1/� time units, where � is the
mean service rate for each busy server.

17.4-9. As for Property 3 of the exponential distribution, let T1,
T2, . . . , Tn be independent exponential random variables with
parameters �1, �2, . . . , �n, respectively, and let U � min{T1,
T2, . . . , Tn}. Show that the probability that a particular random
variable Tj will turn out to be smallest of the n random variables is

P{Tj � U} � �j��
n

i�1
�i, for j � 1, 2, . . . , n.

(Hint: P{Tj � U} � �
0
� P{Ti 	 Tj for all i � j⏐Tj � t}�je

��jtdt.)

17.5-1. Consider the birth-and-death process with all �n � 2 (n �
1, 2, . . .), �0 � 3, �1 � 2, �2 � 1, and �n � 0 for n � 3, 4, . . . .
(a) Display the rate diagram.
(b) Calculate P0, P1, P2, P3, and Pn for n � 4, 5, . . . .
(c) Calculate L, Lq, W, and Wq.

17.5-2. Consider a birth-and-death process with just three attain-
able states (0, 1, and 2), for which the steady-state probabilities are
P0, P1, and P2, respectively. The birth-and-death rates are summa-
rized in the following table:

(a) Construct the rate diagram for this birth-and-death process.
(b) Develop the balance equations.
(c) Solve these equations to find P0, P1, and P2.
(d) Use the general formulas for the birth-and-death process to cal-

culate P0, P1, and P2. Also calculate L, Lq, W, and Wq.

17.5-3. Consider the birth-and-death process with the following
mean rates. The birth rates are �0 � 2, �1 � 3, �2 � 2, �3 � 1, and
�n � 0 for n 	 3. The death rates are �1 � 3, �2 � 4, �3 � 1, and
�n � 2 for n 	 4.
(a) Construct the rate diagram for this birth-and-death process.
(b) Develop the balance equations.
(c) Solve these equations to find the steady-state probability dis-

tribution P0, P1, . . . .

(d) Use the general formulas for the birth-and-death process to cal-
culate P0, P1, . . . . Also calculate L, Lq, W, and Wq.

17.5-4. Consider the birth-and-death process with all �n � 2 (n � 0,
1, . . .), �1 � 2, and �n � 4 for n � 2, 3, . . . .
(a) Display the rate diagram.
(b) Calculate P0 and P1. Then give a general expression for Pn in

terms of P0 for n � 2, 3, . . . .
(c) Consider a queueing system with two servers that fits this

process. What is the mean arrival rate for this queueing sys-
tem? What is the mean service rate for each server when it is
busy serving customers?

17.5-5.* A service station has one gasoline pump. Cars wanting
gasoline arrive according to a Poisson process at a mean rate of 15
per hour. However, if the pump already is being used, these po-
tential customers may balk (drive on to another service station). In
particular, if there are n cars already at the service station, the prob-
ability that an arriving potential customer will balk is n/3 for n � 1,
2, 3. The time required to service a car has an exponential distri-
bution with a mean of 4 minutes.
(a) Construct the rate diagram for this queueing system.
(b) Develop the balance equations.
(c) Solve these equations to find the steady-state probability dis-

tribution of the number of cars at the station. Verify that this
solution is the same as that given by the general solution for
the birth-and-death process.

(d) Find the expected waiting time (including service) for those
cars that stay.

17.5-6. A maintenance person has the job of keeping two ma-
chines in working order. The amount of time that a machine works
before breaking down has an exponential distribution with a mean
of 10 hours. The time then spent by the maintenance person to re-
pair the machine has an exponential distribution with a mean of
8 hours.
(a) Show that this process fits the birth-and-death process by defin-

ing the states, specifying the values of the �n and �n, and then
constructing the rate diagram.

(b) Calculate the Pn.
(c) Calculate L, Lq, W, and Wq.
(d) Determine the proportion of time that the maintenance person

is busy.
(e) Determine the proportion of time that any given machine is

working.

17.5-7. Consider a single-server queueing system where interar-
rival times have an exponential distribution with parameter � and
service times have an exponential distribution with parameter �.
In addition, customers renege (leave the queueing system without
being served) if their waiting time in the queue grows too large. In
particular, assume that the time each customer is willing to wait in
the queue before reneging has an exponential distribution with a
mean of 1/�.
(a) Construct the rate diagram for this queueing system.
(b) Develop the balance equations.
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State Birth Rate Death Rate

0 1 —
1 1 2
2 0 2
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17.5-8.* A certain small grocery store has a single checkout stand
with a full-time cashier. Customers arrive at the stand “randomly”
(i.e., a Poisson input process) at a mean rate of 30 per hour. When
there is only one customer at the stand, she is processed by the
cashier alone, with an expected service time of 1.5 minutes. How-
ever, the stock boy has been given standard instructions that when-
ever there is more than one customer at the stand, he is to help the
cashier by bagging the groceries. This help reduces the expected
time required to process a customer to 1 minute. In both cases, the
service-time distribution is exponential.
(a) Construct the rate diagram for this queueing system.
(b) What is the steady-state probability distribution of the number

of customers at the checkout stand?
(c) Derive L for this system. (Hint: Refer to the derivation of L

for the M/M/1 model at the beginning of Sec. 17.6.) Use this
information to determine Lq, W, and Wq.

17.5-9. A department has one word-processing operator. Documents
produced in the department are delivered for word processing ac-
cording to a Poisson process with an expected interarrival time of 20
minutes. When the operator has just one document to process, the ex-
pected processing time is 15 minutes. When she has more than one
document, then editing assistance that is available reduces the ex-
pected processing time for each document to 10 minutes. In both
cases, the processing times have an exponential distribution.
(a) Construct the rate diagram for this queueing system.
(b) Find the steady-state distribution of the number of documents

that the operator has received but not yet completed.
(c) Derive L for this system. (Hint: Refer to the derivation of L

for the M/M/1 model at the beginning of Sec. 17.6.) Use this
information to determine Lq, W, and Wq.

17.5-10. Customers arrive at a queueing system according to a
Poisson process with a mean arrival rate of 2 customers per minute.
The service time has an exponential distribution with a mean of
1 minute. An unlimited number of servers are available as needed
so customers never wait for service to begin. Calculate the steady-
state probability that exactly 1 customer is in the system.

17.5-11. Suppose that a single-server queueing system fits all the
assumptions of the birth-and-death process except that customers
always arrive in pairs. The mean arrival rate is 2 pairs per hour 
(4 customers per hour) and the mean service rate (when the server
is busy) is 5 customers per hour.
(a) Construct the rate diagram for this queueing system.
(b) Develop the balance equations.
(c) For comparison purposes, display the rate diagram for the cor-

responding queueing system that completely fits the birth-and-
death process, i.e., where customers arrive individually at a
mean rate of 4 per hour.

17.5-12. Consider a single-server queueing system with a finite
queue that can hold a maximum of 2 customers excluding any 
being served. The server can provide batch service to 2 customers
simultaneously, where the service time has an exponential 

distribution with a mean of 1 unit of time regardless of the num-
ber being served. Whenever the queue is not full, customers ar-
rive individually according to a Poisson process at a mean rate of
1 per unit of time.
(a) Assume that the server must serve 2 customers simultane-

ously. Thus, if the server is idle when only 1 customer is in
the system, the server must wait for another arrival before
beginning service. Formulate the queueing model in terms of
transitions that only involve exponential distributions by
defining the appropriate states and then constructing the rate
diagram. Give the balance equations, but do not solve 
further.

(b) Now assume that the batch size for a service is 2 only if 2 cus-
tomers are in the queue when the server finishes the preced-
ing service. Thus, if the server is idle when only 1 customer
is in the system, the server must serve this single customer,
and any subsequent arrivals must wait in the queue until ser-
vice is completed for this customer. Formulate the resulting
queueing model in terms of transitions that only involve ex-
ponential distributions by defining the appropriate states and
then constructing the rate diagram. Give the balance equations,
but do not solve further.

17.5-13. Consider a queueing system that has two classes of cus-
tomers, two clerks providing service, and no queue. Potential cus-
tomers from each class arrive according to a Poisson process, with
a mean arrival rate of 10 customers per hour for class 1 and 5 cus-
tomers per hour for class 2, but these arrivals are lost to the sys-
tem if they cannot immediately enter service.

Each customer of class 1 that enters the system will receive
service from either one of the clerks that is free, where the 
service times have an exponential distribution with a mean of 
5 minutes.

Each customer of class 2 that enters the system requires the
simultaneous use of both clerks (the two clerks work together as a
single server), where the service times have an exponential distri-
bution with a mean of 5 minutes. Thus, an arriving customer of
this kind would be lost to the system unless both clerks are free to
begin service immediately.
(a) Formulate the queueing model in terms of transitions that only

involve exponential distributions by defining the appropriate
states and constructing the rate diagram.

(b) Now describe how the formulation in part (a) can be fitted into
the format of the birth-and-death process.

(c) Use the results for the birth-and-death process to calculate the
steady-state joint distribution of the number of customers of
each class in the system.

(d) For each of the two classes of customers, what is the expected
fraction of arrivals who are unable to enter the system?

17.6-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 17.6.
Briefly describe how queueing theory was applied in this study.
Then list the various financial and nonfinancial benefits that resulted
from this study.
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17.6-2.* The 4M Company has a single turret lathe as a key work
center on its factory floor. Jobs arrive at this work center accord-
ing to a Poisson process at a mean rate of 2 per day. The process-
ing time to perform each job has an exponential distribution with
a mean of �

1
4

� day. Because the jobs are bulky, those not being worked
on are currently being stored in a room some distance from the
machine. However, to save time in fetching the jobs, the produc-
tion manager is proposing to add enough in-process storage space
next to the turret lathe to accommodate 3 jobs in addition to the
one being processed. (Excess jobs will continue to be stored tem-
porarily in the distant room.) Under this proposal, what proportion
of the time will this storage space next to the turret lathe be ade-
quate to accommodate all waiting jobs?
(a) Use available formulas to calculate your answer.
T (b) Use the corresponding Excel template to obtain the proba-

bilities needed to answer the question.

17.6-3. Customers arrive at a single-server queueing system accord-
ing to a Poisson process at a mean rate of 10 per hour. If the server
works continuously, the number of customers that can be served in
an hour has a Poisson distribution with a mean of 15. Determine the
proportion of time during which no one is waiting to be served.

17.6-4. Consider the M/M/1 model, with � � �.
(a) Determine the steady-state probability that a customer’s actual

waiting time in the system is longer than the expected waiting
time in the system, i.e., P{� 	 W}.

(b) Determine the steady-state probability that a customer’s actual
waiting time in the queue is longer than the expected waiting
time in the queue, i.e., P{�q 	 Wq}.

17.6-5. Verify the following relationships for an M/M/1 queueing
system:

� � �
(1

W
�

qP
P

0

0)2

�, � � �
1
W
�

qP
P
0

0�.

17.6-6. It is necessary to determine how much in-process storage
space to allocate to a particular work center in a new factory. Jobs
arrive at this work center according to a Poisson process with a
mean rate of 3 per hour, and the time required to perform the nec-
essary work has an exponential distribution with a mean of 0.5
hour. Whenever the waiting jobs require more in-process storage
space than has been allocated, the excess jobs are stored tem-
porarily in a less convenient location. If each job requires 1 square
foot of floor space while it is in in-process storage at the work cen-
ter, how much space must be provided to accommodate all wait-
ing jobs (a) 50 percent of the time, (b) 90 percent of the time, and
(c) 99 percent of the time? Derive an analytical expression to an-
swer these three questions. Hint: The sum of a geometric series is

�
N

n�0
xn � �

1
1
�

�
xN

x

�1

�.

17.6-7. Consider the following statements about an M/M/1 queue-
ing system and its utilization factor �. Label each of the statements
as true or false, and then justify your answer.
(a) The probability that a customer has to wait before service be-

gins is proportional to �.

(b) The expected number of customers in the system is propor-
tional to �.

(c) If � has been increased from � � 0.9 to � � 0.99, the effect of
any further increase in � on L, Lq, W, and Wq will be relatively
small as long as � � 1.

17.6-8. Customers arrive at a single-server queueing system in ac-
cordance with a Poisson process with an expected interarrival time
of 25 minutes. Service times have an exponential distribution with
a mean of 30 minutes.

Label each of the following statements about this system as
true or false, and then justify your answer.
(a) The server definitely will be busy forever after the first cus-

tomer arrives.
(b) The queue will grow without bound.
(c) If a second server with the same service-time distribution is

added, the system can reach a steady-state condition.

17.6-9. For each of the following statements about an M/M/1 queue-
ing system, label the statement as true or false and then justify your
answer by referring to specific statements in the chapter.
(a) The waiting time in the system has an exponential distribution.
(b) The waiting time in the queue has an exponential distribution.
(c) The conditional waiting time in the system, given the number

of customers already in the system, has an Erlang (gamma)
distribution.

17.6-10. The Friendly Neighbor Grocery Store has a single check-
out stand with a full-time cashier. Customers arrive randomly at
the stand at a mean rate of 30 per hour. The service-time distribu-
tion is exponential, with a mean of 1.5 minutes. This situation has
resulted in occasional long lines and complaints from customers.
Therefore, because there is no room for a second checkout stand,
the manager is considering the alternative of hiring another 
person to help the cashier by bagging the groceries. This help 
would reduce the expected time required to process a customer to
1 minute, but the distribution still would be exponential.

The manager would like to have the percentage of time that
there are more than two customers at the checkout stand down be-
low 25 percent. She also would like to have no more than 5 per-
cent of the customers needing to wait at least 5 minutes before
beginning service, or at least 7 minutes before finishing service.
(a) Use the formulas for the M/M/1 model to calculate L, W, Wq,

Lq, P0, P1, and P2 for the current mode of operation. What is
the probability of having more than two customers at the check-
out stand?

T (b) Use the Excel template for this model to check your answers
in part (a). Also find the probability that the waiting time
before beginning service exceeds 5 minutes, and the prob-
ability that the waiting time before finishing service exceeds
7 minutes.

(c) Repeat part (a) for the alternative being considered by the
manager.

(d) Repeat part (b) for this alternative.
(e) Which approach should the manager use to satisfy her criteria

as closely as possible?
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T 17.6-11. The Centerville International Airport has two runways,
one used exclusively for takeoffs and the other exclusively for land-
ings. Airplanes arrive in the Centerville air space to request land-
ing instructions according to a Poisson process at a mean rate of
10 per hour. The time required for an airplane to land after re-
ceiving clearance to do so has an exponential distribution with a
mean of 3 minutes, and this process must be completed before giv-
ing clearance to do so to another airplane. Airplanes awaiting clear-
ance must circle the airport.

The Federal Aviation Administration has a number of criteria
regarding the safe level of congestion of airplanes waiting to land.
These criteria depend on a number of factors regarding the airport
involved, such as the number of runways available for landing. For
Centerville, the criteria are (1) the average number of airplanes wait-
ing to receive clearance to land should not exceed 1, (2) 95 percent
of the time, the actual number of airplanes waiting to receive clear-
ance to land should not exceed 4, (3) for 99 percent of the airplanes,
the amount of time spent circling the airport before receiving clear-
ance to land should not exceed 30 minutes (since exceeding this
amount of time often would require rerouting the plane to another
airport for an emergency landing before its fuel runs out).
(a) Evaluate how well these criteria are currently being satisfied.
(b) A major airline is considering adding this airport as one of its

hubs. This would increase the mean arrival rate to 15 airplanes
per hour. Evaluate how well the above criteria would be satis-
fied if this happens.

(c) To attract additional business [including the major airline men-
tioned in part (b)], airport management is considering adding
a second runway for landings. It is estimated that this eventu-
ally would increase the mean arrival rate to 25 airplanes per
hour. Evaluate how well the above criteria would be satisfied
if this happens.

T 17.6-12. The Security & Trust Bank employs 4 tellers to serve
its customers. Customers arrive according to a Poisson process at
a mean rate of 2 per minute. However, business is growing and
management projects that the mean arrival rate will be 3 per minute
a year from now. The transaction time between the teller and cus-
tomer has an exponential distribution with a mean of 1 minute.

Management has established the following guidelines for a sat-
isfactory level of service to customers. The average number of cus-
tomers waiting in line to begin service should not exceed 1. At least
95 percent of the time, the number of customers waiting in line should
not exceed 5. For at least 95 percent of the customers, the time spent
in line waiting to begin service should not exceed 5 minutes.
(a) Use the M/M/s model to determine how well these guidelines

are currently being satisfied.
(b) Evaluate how well the guidelines will be satisfied a year from

now if no change is made in the number of tellers.
(c) Determine how many tellers will be needed a year from now

to completely satisfy these guidelines.

17.6-13. Consider the M/M/s model.
T (a) Suppose there is one server and the expected service time is

exactly 1 minute. Compare L for the cases where the mean
arrival rate is 0.5, 0.9, and 0.99 customers per minute, re-
spectively. Do the same for Lq, W, Wq, and P{� 	 5}. What
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conclusions do you draw about the impact of increasing the
utilization factor � from small values (e.g., � � 0.5) to fairly
large values (e.g., � � 0.9) and then to even larger values
very close to 1 (e.g., � � 0.99)?

(b) Now suppose there are two servers and the expected service
time is exactly 2 minutes. Follow the instructions for part (a).

T 17.6-14. Consider the M/M/s model with a mean arrival rate of
10 customers per hour and an expected service time of 5 minutes.
Use the Excel template for this model to obtain and print out the
various measures of performance (with t � 10 and t � 0, respec-
tively, for the two waiting time probabilities) when the number of
servers is 1, 2, 3, 4, and 5. Then, for each of the following possi-
ble criteria for a satisfactory level of service (where the unit of time
is 1 minute), use the printed results to determine how many servers
are needed to satisfy this criterion.
(a) Lq � 0.25
(b) L � 0.9
(c) Wq � 0.1
(d) W � 6
(e) P{�q 	 0} � 0.01
(f) P{� 	 10} � 0.2

(g) �
s

n�0
Pn � 0.95

17.6-15. A gas station with only one gas pump employs the fol-
lowing policy: If a customer has to wait, the price is $3.50 per
gallon; if she does not have to wait, the price is $4.00 per gallon.
Customers arrive according to a Poisson process with a mean rate
of 20 per hour. Service times at the pump have an exponential dis-
tribution with a mean of 2 minutes. Arriving customers always wait
until they can eventually buy gasoline. Determine the expected
price of gasoline per gallon.

17.6-16. You are given an M/M/1 queueing system with mean ar-
rival rate � and mean service rate �. An arriving customer receives
n dollars if n customers are already in the system. Determine the
expected cost in dollars per customer.

17.6-17. Section 17.6 gives the following equations for the M/M/1
model:

(1) P{� 	 t} � �
�

n�0
PnP{Sn�1 	 t}.

(2) P{� 	 t} � e��(1��)t.

Show that Eq. (1) reduces algebraically to Eq. (2). (Hint: Use dif-
ferentiation, algebra, and integration.)

17.6-18. Derive Wq directly for the following cases by developing
and reducing an expression analogous to Eq. (1) in Prob. 17.6-17.
(Hint: Use the conditional expected waiting time in the queue given
that a random arrival finds n customers already in the system.)
(a) The M/M/1 model
(b) The M/M/s model

T 17.6-19. Consider an M/M/2 queueing system with � � 4 and 
� � 3. Determine the mean rate at which service completions
occur during the periods when no customers are waiting in the queue.
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T 17.6-20. You are given an M/M/2 queueing system with � � 4
per hour and � � 6 per hour. Determine the probability that an ar-
riving customer will wait more than 30 minutes in the queue, given
that at least 2 customers are already in the system.

17.6-21.* In the Blue Chip Life Insurance Company, the deposit
and withdrawal functions associated with a certain investment
product are separated between two clerks, Clara and Clarence. De-
posit slips arrive randomly (a Poisson process) at Clara’s desk at
a mean rate of 16 per hour. Withdrawal slips arrive randomly 
(a Poisson process) at Clarence’s desk at a mean rate of 14 per hour.
The time required to process either transaction has an exponential
distribution with a mean of 3 minutes. To reduce the expected wait-
ing time in the system for both deposit slips and withdrawal slips,
the actuarial department has made the following recommendations:
(1) Train each clerk to handle both deposits and withdrawals, and
(2) put both deposit and withdrawal slips into a single queue that
is accessed by both clerks.
(a) Determine the expected waiting time in the system under cur-

rent procedures for each type of slip. Then combine these results
to calculate the expected waiting time in the system for a ran-
dom arrival of either type of slip.

T (b) If the recommendations are adopted, determine the expected
waiting time in the system for arriving slips.

T (c) Now suppose that adopting the recommendations would re-
sult in a slight increase in the expected processing time. Use
the Excel template for the M/M/s model to determine by trial
and error the expected processing time (within 0.001 hour)
that would cause the expected waiting time in the system for
a random arrival to be essentially the same under current
procedures and under the recommendations.

17.6-22. People’s Software Company has just set up a call center
to provide technical assistance on its new software package. Two
technical representatives are taking the calls, where the time re-
quired by either representative to answer a customer’s questions has
an exponential distribution with a mean of 8 minutes. Calls are ar-
riving according to a Poisson process at a mean rate of 10 per hour.

By next year, the mean arrival rate of calls is expected to de-
cline to 5 per hour, so the plan is to reduce the number of techni-
cal representatives to one then.
T (a) Assuming that � will continue to be 7.5 calls per hour for

next year’s queueing system, determine L, Lq, W, and Wq for
both the current system and next year’s system. For each of
these four measures of performance, which system yields
the smaller value?

(b) Now assume that � will be adjustable when the number of
technical representatives is reduced to one. Solve algebraically
for the value of � that would yield the same value of W as for
the current system.

(c) Repeat part (b) with Wq instead of W.

17.6-23. Consider a generalization of the M/M/1 model where the
server needs to “warm up” at the beginning of a busy period, and
so serves the first customer of a busy period at a slower rate than
other customers. In particular, if an arriving customer finds the

server idle, the customer experiences a service time that has an ex-
ponential distribution with parameter �1. However, if an arriving
customer finds the server busy, that customer joins the queue and
subsequently experiences a service time that has an exponential
distribution with parameter �2, where �1 � �2. Customers arrive
according to a Poisson process with mean rate �.
(a) Formulate this model in terms of transitions that only involve

exponential distributions by defining the appropriate states and
constructing the rate diagram accordingly.

(b) Develop the balance equations.
(c) Suppose that numerical values are specified for �1, �2, and �,

and that � � �2 (so that a steady-state distribution exists). Since
this model has an infinite number of states, the steady-state dis-
tribution is the simultaneous solution of an infinite number of
balance equations (plus the equation specifying that the sum of
the probabilities equals 1). Suppose that you are unable to ob-
tain this solution analytically, so you wish to use a computer to
solve the model numerically. Considering that it is impossible
to solve an infinite number of equations numerically, briefly de-
scribe what still can be done with these equations to obtain an
approximation of the steady-state distribution. Under what cir-
cumstances will this approximation be essentially exact?

(d) Given that the steady-state distribution has been obtained, give
explicit expressions for calculating L, Lq, W, and Wq.

(e) Given this steady-state distribution, develop an expression for
P{� 	 t} that is analogous to Eq. (1) in Prob. 17.6-17.

17.6-24. For each of the following models, write the balance equa-
tions and show that they are satisfied by the solution given in Sec.
17.6 for the steady-state distribution of the number of customers
in the system.
(a) The M/M/1 model.
(b) The finite queue variation of the M/M/1 model, with K � 2.
(c) The finite calling population variation of the M/M/1 model,

with N � 2.

T 17.6-25. Consider a telephone system with three lines. Calls ar-
rive according to a Poisson process at a mean rate of 6 per hour.
The duration of each call has an exponential distribution with a
mean of 15 minutes. If all lines are busy, calls will be put on hold
until a line becomes available.
(a) Print out the measures of performance provided by the Excel

template for this queueing system (with t � 1 hour and t � 0,
respectively, for the two waiting time probabilities).

(b) Use the printed result giving P{�q 	 0} to identify the steady-
state probability that a call will be answered immediately (not
put on hold). Then verify this probability by using the printed
results for the Pn.

(c) Use the printed results to identify the steady-state probability
distribution of the number of calls on hold.

(d) Print out the new measures of performance if arriving calls are
lost whenever all lines are busy. Use these results to identify
the steady-state probability that an arriving call is lost.

17.6-26.* Janet is planning to open a small car-wash operation, and
she must decide how much space to provide for waiting cars. Janet
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estimates that customers would arrive randomly (i.e., a Poisson in-
put process) with a mean rate of 1 every 4 minutes, unless the wait-
ing area is full, in which case the arriving customers would take
their cars elsewhere. The time that can be attributed to washing one
car has an exponential distribution with a mean of 3 minutes. Com-
pare the expected fraction of potential customers that will be lost
because of inadequate waiting space if (a) 0 spaces (not including
the car being washed), (b) 2 spaces, and (c) 4 spaces were provided.

17.6-27. Consider the finite queue variation of the M/M/s model.
Derive the expression for Lq given in Sec. 17.6 for this model.

17.6-28. For the finite queue variation of the M/M/1 model, de-
velop an expression analogous to Eq. (1) in Prob. 17.6-17 for the
following probabilities:
(a) P{� 	 t}.
(b) P{�q 	 t}.
[Hint: Arrivals can occur only when the system is not full, so the
probability that a random arrival finds n customers already there
is Pn /(1 � PK).]

17.6-29. George is planning to open a drive-through photo-
developing booth with a single service window that will be open
approximately 200 hours per month in a busy commercial area.
Space for a drive-through lane is available for a rental of $200 per
month per car length. George needs to decide how many car lengths
of space to provide for his customers.

Excluding this rental cost for the drive-through lane, George
believes that he will average a profit of $4 per customer served
(nothing for a drop off of film and $8 when the photographs are
picked up). He also estimates that customers will arrive randomly
(a Poisson process) at a mean rate of 20 per hour, although those
who find the drive-through lane full will be forced to leave. Half
of the customers who find the drive-through lane full wanted to
drop off film, and the other half wanted to pick up their pho-
tographs. The half who wanted to drop off film will take their busi-
ness elsewhere instead. The other half of the customers who find
the drive-through lane full will not be lost because they will keep
trying later until they can get in and pick up their photographs.
George assumes that the time required to serve a customer will
have an exponential distribution with a mean of 2 minutes.
T (a) Find L and the mean rate at which customers are lost when

the number of car lengths of space provided is 2, 3, 4, and 5.
(b) Calculate W from L for the cases considered in part (a).
(c) Use the results from part (a) to calculate the decrease in the

mean rate at which customers are lost when the number of car
lengths of space provided is increased from 2 to 3, from 3 to
4, and from 4 to 5. Then calculate the increase in expected
profit per hour (excluding space rental costs) for each of these
three cases.

(d) Compare the increases in expected profit found in part (c) with
the cost per hour of renting each car length of space. What
conclusion do you draw about the number of car lengths of
space that George should provide?

17.6-30. At the Forrester Manufacturing Company, one repair techni-
cian has been assigned the responsibility of maintaining three machines.

For each machine, the probability distribution of the running time be-
fore a breakdown is exponential, with a mean of 9 hours. The repair
time also has an exponential distribution, with a mean of 2 hours.
(a) Which queueing model fits this queueing system?
T (b) Use this queueing model to find the probability distribution

of the number of machines not running, and the mean of
this distribution.

(c) Use this mean to calculate the expected time between a machine
breakdown and the completion of the repair of that machine.

(d) What is the expected fraction of time that the repair technician
will be busy?

T (e) As a crude approximation, assume that the calling popula-
tion is infinite and that machine breakdowns occur randomly
at a mean rate of 3 every 9 hours. Compare the result from
part (b) with that obtained by making this approximation
while using (i) the M/M/s model and (ii) the finite queue
variation of the M/M/s model with K � 3.

T (f) Repeat part (b) when a second repair technician is made
available to repair a second machine whenever more than
one of these three machines require repair.

17.6-31. Reconsider the specific birth-and-death process described
in Prob. 17.5-1.
(a) Identify a queueing model (and its parameter values) in 

Sec. 17.6 that fits this process.
T (b) Use the corresponding Excel template to obtain the answers

for parts (b) and (c) of Prob. 17.5-1.

T 17.6-32.* The Dolomite Corporation is making plans for a new
factory. One department has been allocated 12 semiautomatic ma-
chines. A small number (yet to be determined) of operators will be
hired to provide the machines the needed occasional servicing (load-
ing, unloading, adjusting, setup, and so on). A decision now needs to
be made on how to organize the operators to do this. Alternative 1 is
to assign each operator to her own machines. Alternative 2 is to pool
the operators so that any idle operator can take the next machine need-
ing servicing. Alternative 3 is to combine the operators into a single
crew that will work together on any machine needing servicing.

The running time (time between completing service and the
machine’s requiring service again) of each machine is expected to
have an exponential distribution, with a mean of 150 minutes. The
service time is assumed to have an exponential distribution, with
a mean of 15 minutes (for Alternatives 1 and 2) or 15 minutes di-
vided by the number of operators in the crew (for Alternative 3).
For the department to achieve the required production rate, the ma-
chines must be running at least 89 percent of the time on average.
(a) For Alternative 1, what is the maximum number of machines

that can be assigned to an operator while still achieving the re-
quired production rate? What is the resulting utilization of each
operator?

(b) For Alternative 2, what is the minimum number of operators
needed to achieve the required production rate? What is the
resulting utilization of the operators?

(c) For Alternative 3, what is the minimum size of the crew needed
to achieve the required production rate? What is the resulting
utilization of the crew?
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17.6-33. A shop contains three identical machines that are subject
to a failure of a certain kind. Therefore, a maintenance system is
provided to perform the maintenance operation (recharging) required
by a failed machine. The time required by each operation has an ex-
ponential distribution with a mean of 30 minutes. However, with
probability �

1
3

�, the operation must be performed a second time (with
the same distribution of time) in order to bring the failed machine
back to a satisfactory operational state. The maintenance system
works on only one failed machine at a time, performing all the op-
erations (one or two) required by that machine, on a first-come-first-
served basis. After a machine is repaired, the time until its next 
failure has an exponential distribution with a mean of 3 hours.
(a) How should the states of the system be defined in order to for-

mulate a model for this queueing system in terms of transitions
that only involve exponential distributions? (Hint: Given that a
first operation is being performed on a failed machine, com-
pleting this operation successfully and completing it unsuc-
cessfully are two separate events of interest. Then useProperty
6 regarding disaggregation for the exponential distribution.)

(b) Construct the corresponding rate diagram.
(c) Develop the balance equations.

17.7-1.* Consider the M/G/1 model.
(a) Compare the expected waiting time in the queue if the service-

time distribution is (i) exponential, (ii) constant, (iii) Erlang
with the amount of variation (i.e., the standard deviation)
halfway between the constant and exponential cases.

(b) What is the effect on the expected waiting time in the queue
and on the expected queue length if both � and � are doubled
and the scale of the service-time distribution is changed 
accordingly?

17.7-2. Consider the M/G/1 model with � � 0.2 and � � 0.25.
T (a) Use the Excel template for this model (or hand calculations)

to find the main measures of performance—L, Lq, W, Wq—for
each of the following values of �: 4, 3, 2, 1, 0.

(b) What is the ratio of Lq with � � 4 to Lq with � � 0? What
does this say about the importance of reducing the variability
of the service times?

(c) Calculate the reduction in Lq when � is reduced from 4 to 3,
from 3 to 2, from 2 to 1, and from 1 to 0. Which is the largest
reduction? Which is the smallest?

(d) Use trial and error with the template to see approximately how
much � would need to be increased with � � 4 to achieve the
same Lq as with � � 0.25 and � � 0.

17.7-3. Consider the following statements about an M/G/1 queue-
ing system, where �2 is the variance of service times. Label each
statement as true or false, and then justify your answer.
(a) Increasing �2 (with fixed � and �) will increase Lq and L, but

will not change Wq and W.
(b) When choosing between a tortoise (small � and �2) and a hare

(large � and �2) to be the server, the tortoise always wins by
providing a smaller Lq.

(c) With � and � fixed, the value of Lq with an exponential service-
time distribution is twice as large as with constant service times.
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(d) Among all possible service-time distributions (with � and �
fixed), the exponential distribution yields the largest value of Lq.

17.7-4. Marsha operates an expresso stand. Customers arrive ac-
cording to a Poisson process at a mean rate of 30 per hour. The
time needed by Marsha to serve a customer has an exponential dis-
tribution with a mean of 75 seconds.
(a) Use the M/G/1 model to find L, Lq, W, and Wq.
(b) Suppose Marsha is replaced by an expresso vending machine

that requires exactly 75 seconds for each customer to operate.
Find L, Lq, W, and Wq.

(c) What is the ratio of Lq in part (b) to Lq in part (a)?
T (d) Use trial and error with the Excel template for the M/G/1

model to see approximately how much Marsha would need
to reduce her expected service time to achieve the same Lq

as with the expresso vending machine.

17.7-5. Antonio runs a shoe repair store by himself. Customers ar-
rive to bring a pair of shoes to be repaired according to a Poisson
process at a mean rate of 1 per hour. The time Antonio requires to
repair each individual shoe has an exponential distribution with a
mean of 15 minutes.
(a) Consider the formulation of this queueing system where the

individual shoes (not pairs of shoes) are considered to be the
customers. For this formulation, construct the rate diagram and
develop the balance equations, but do not solve further.

(b) Now consider the formulation of this queueing system where
the pairs of shoes are considered to be the customers. Identify
the specific queueing model that fits this formulation.

(c) Calculate the expected number of pairs of shoes in the shop.
(d) Calculate the expected amount of time from when a customer

drops off a pair of shoes until they are repaired and ready to
be picked up.

T (e) Use the corresponding Excel template to check your answers
in parts (c) and (d ).

17.7-6.* The maintenance base for Friendly Skies Airline has fa-
cilities for overhauling only one airplane engine at a time. There-
fore, to return the airplanes to use as soon as possible, the policy
has been to stagger the overhauling of the four engines of each air-
plane. In other words, only one engine is overhauled each time an
airplane comes into the shop. Under this policy, airplanes have ar-
rived according to a Poisson process at a mean rate of 1 per day.
The time required for an engine overhaul (once work has begun)
has an exponential distribution with a mean of �

1
2

� day.
A proposal has been made to change the policy so that all four

engines are overhauled consecutively each time an airplane comes
into the shop. Although this would quadruple the expected service
time, each plane would need to come to the maintenance base only
one-fourth as often.

Management now needs to decide whether to continue the sta-
tus quo or adopt the proposal. The objective is to minimize the av-
erage amount of flying time lost by the entire fleet per day due to
engine overhauls.
(a) Compare the two alternatives with respect to the average

amount of flying time lost by an airplane each time it comes
to the maintenance base.
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(b) Compare the two alternatives with respect to the average num-
ber of airplanes losing flying time due to being at the mainte-
nance base.

(c) Which of these two comparisons is the appropriate one for
making management’s decision? Explain.

17.7-7. Reconsider Prob. 17.7-6. Management has adopted the
proposal but now wants further analysis conducted of this new
queueing system.
(a) How should the state of the system be defined in order to for-

mulate the queueing model in terms of transitions that only in-
volve exponential distributions

(b) Construct the corresponding rate diagram.

17.7-8. The McAllister Company factory currently has two tool
cribs, each with a single clerk, in its manufacturing area. One tool
crib handles only the tools for the heavy machinery; the second
one handles all other tools. However, for each crib the mechanics
arrive to obtain tools at a mean rate of 24 per hour, and the ex-
pected service time is 2 minutes.

Because of complaints that the mechanics coming to the tool
crib have to wait too long, it has been proposed that the two tool
cribs be combined so that either clerk can handle either kind of
tool as the demand arises. It is believed that the mean arrival rate
to the combined two-clerk tool crib would double to 48 per hour
and that the expected service time would continue to be 2 minutes.
However, information is not available on the form of the probabil-
ity distributions for interarrival and service times, so it is not clear
which queueing model would be most appropriate.

Compare the status quo and the proposal with respect to the
total expected number of mechanics at the tool crib(s) and the ex-
pected waiting time (including service) for each mechanic. Do this
by tabulating these data for the four queueing models considered
in Figs. 17.6, 17.8, 17.10, and 17.11 (use k � 2 when an Erlang
distribution is appropriate).

17.7-9.* Consider a single-server queueing system with a Pois-
son input, Erlang service times, and a finite queue. In particu-
lar, suppose that k � 2, the mean arrival rate is 2 customers per
hour, the expected service time is 0.25 hour, and the maximum
permissible number of customers in the system is 2. This sys-
tem can be formulated in terms of transitions that only involve
exponential distributions by dividing each service time into two
consecutive phases, each having an exponential distribution with
a mean of 0.125 hour, and then defining the state of the system
as (n, p), where n is the number of customers in the system (n
� 0, 1, 2), and p indicates the phase of the customer being served
(p � 0, 1, 2, where p � 0 means that no customer is being
served).
(a) Construct the corresponding rate diagram. Write the balance

equations, and then use these equations to solve for the steady-
state distribution of the state of this queueing system.

(b) Use the steady-state distribution obtained in part (a) to iden-
tify the steady-state distribution of the number of customers in
the system (P0, P1, P2) and the steady-state expected number
of customers in the system (L).

(c) Compare the results from part (b) with the corresponding re-
sults when the service-time distribution is exponential.

17.7-10. Consider the E2/M/1 model with � � 4 and � � 5. This
model can be formulated in terms of transitions that only involve
exponential distributions by dividing each interarrival time into two
consecutive phases, each having an exponential distribution with a
mean of 1/(2�) � 0.125, and then defining the state of the system
as (n, p), where n is the number of customers in the system (n �
0, 1, 2, . . .) and p indicates the phase of the next arrival (not yet
in the system) ( p � 1, 2).

Construct the corresponding rate diagram (but do not solve
further).

17.7-11. A company has one repair technician to keep a large
group of machines in running order. Treating this group as an in-
finite calling population, individual breakdowns occur according
to a Poisson process at a mean rate of 1 per hour. For each break-
down, the probability is 0.9 that only a minor repair is needed, in
which case the repair time has an exponential distribution with a
mean of �

1
2

� hour. Otherwise, a major repair is needed, in which case
the repair time has an exponential distribution with a mean of 5
hours. Because both of these conditional distributions are expo-
nential, the unconditional (combined) distribution of repair times
is hyperexponential.
(a) Compute the mean and standard deviation of this hyperexponen-

tial distribution. [Hint: Use the general relationships from 
probability theory that, for any random variable X and any pair
of mutually exclusive events E1 and E2, E(X) � E(X⏐E1)P(E1) �
E(X⏐E2)P(E2) and var(X) � E(X2) � E(X)2.] Compare this stan-
dard deviation with that for an exponential distribution having
this mean.

(b) What are P0, Lq, L, Wq, and W for this queueing system?
(c) What is the conditional value of W, given that the machine

involved requires major repair? A minor repair? What is the
division of L between machines requiring the two types of
repairs? (Hint: Little’s formula still applies for the individual
categories of machines.)

(d) How should the states of the system be defined in order to for-
mulate this queueing system in terms of transitions that only
involve exponential distributions (Hint: Consider what addi-
tional information must be given, besides the number of ma-
chines down, for the conditional distribution of the time re-
maining until the next event of each kind to be exponential.)

(e) Construct the corresponding rate diagram.

17.7-12. Consider the finite queue variation of the M/G/1 model,
where K is the maximum number of customers allowed in the sys-
tem. For n � 1, 2, . . . , let the random variable Xn be the number
of customers in the system at the moment tn when the nth customer
has just finished being served. (Do not count the departing cus-
tomer.) The times {t1, t2, . . .} are called regeneration points. Fur-
thermore, {Xn} (n � 1, 2, . . .) is a discrete time Markov chain and
is known as an embedded Markov chain. Embedded Markov chains
are useful for studying the properties of continuous time stochas-
tic processes such as for an M/G/1 model.

PROBLEMS 795
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Now consider the particular special case where K � 4, the ser-
vice time of successive customers is a fixed constant, say, 10 min-
utes, and the mean arrival rate is 1 every 50 minutes. Therefore,
{Xn} is an embedded Markov chain with states 0, 1, 2, 3. (Because
there are never more than 4 customers in the system, there can
never be more than 3 in the system at a regeneration point.) Be-
cause the system is observed at successive departures, Xn can never
decrease by more than 1. Furthermore, the probabilities of transi-
tions that result in increases in Xn are obtained directly from the
Poisson distribution.
(a) Find the one-step transition matrix for the embedded Markov

chain. (Hint: In obtaining the transition probability from
state 3 to state 3, use the probability of 1 or more arrivals
rather than just 1 arrival, and similarly for other transitions
to state 3.)

(b) Use the corresponding routine in the Markov chains area of
your IOR Tutorial to find the steady-state probabilities for the
number of customers in the system at regeneration points.

(c) Compute the expected number of customers in the system at
regeneration points, and compare it to the value of L for the
M/D/1 model (with K � �) in Sec. 17.7.

17.8-1.* Southeast Airlines is a small commuter airline serving
primarily the state of Florida. Their ticket counter at a certain
airport is staffed by a single ticket agent. There are two sepa-
rate lines—one for first-class passengers and one for coach-class
passengers. When the ticket agent is ready for another customer,
the next first-class passenger is served if there are any in line.
If not, the next coach-class passenger is served. Service times
have an exponential distribution with a mean of 3 minutes for
both types of customers. During the 12 hours per day that the
ticket counter is open, passengers arrive randomly at a mean rate
of 2 per hour for first-class passengers and 10 per hour for coach-
class passengers.
(a) What kind of queueing model fits this queueing system?
T (b) Find the main measures of performance—L, Lq, W, and Wq—

for both first-class passengers and coach-class passengers.
(c) What is the expected waiting time before service begins for

first-class customers as a fraction of this waiting time for
coach-class customers?

(d) Determine the average number of hours per day that the ticket
agent is busy.

T 17.8-2. Consider the model with nonpreemptive priorities pre-
sented in Sec. 17.8. Suppose there are two priority classes, with 
�1 � 2 and �2 � 3. In designing this queueing system, you are of-
fered the choice between the following alternatives: (1) one fast
server (� � 6) and (2) two slow servers (� � 3).

Compare these alternatives with the usual four mean mea-
sures of performance (W, L, Wq, Lq) for the individual priority
classes (W1, W2, L1, L2, and so forth). Which alternative is pre-
ferred if your primary concern is expected waiting time in the
system for priority class 1 (W1)? Which is preferred if your pri-
mary concern is expected waiting time in the queue for priority
class 1?

17.8-3. Consider the single-server variation of the nonpreemptive
priorities model presented in Sec. 17.8. Suppose there are three
priority classes, with �1 � 1, �2 � 1, and �3 � 1. The expected
service times for priority classes 1, 2, and 3 are 0.4, 0.3, and 0.2,
respectively, so �1 � 2.5, �2 � 3�

1
3

�, and �3 � 5.
(a) Calculate W1, W2, and W3.
(b) Repeat part (a) when using the approximation of applying

the general model for nonpreemptive priorities presented in
Sec. 17.8 instead. Since this general model assumes that the
expected service time is the same for all priority classes, use
an expected service time of 0.3 so � � 3�

1
3

�. Compare the results
with those obtained in part (a) and evaluate how good an
approximation is provided by making this assumption.

T 17.8-4.* A particular work center in a job shop can be repre-
sented as a single-server queueing system, where jobs arrive ac-
cording to a Poisson process, with a mean rate of 8 per day. Although
the arriving jobs are of three distinct types, the time required to
perform any of these jobs has the same exponential distribution,
with a mean of 0.1 working day. The practice has been to work on
arriving jobs on a first-come-first-served basis. However, it is im-
portant that jobs of type 1 not wait very long, whereas the wait is
only moderately important for jobs of type 2 and is relatively unim-
portant for jobs of type 3. These three types arrive with a mean
rate of 2, 4, and 2 per day, respectively. Because all three types
have experienced rather long delays on average, it has been pro-
posed that the jobs be selected according to an appropriate prior-
ity discipline instead.

Compare the expected waiting time (including service) for each
of the three types of jobs if the queue discipline is (a) first-come-
first-served, (b) nonpreemptive priority, and (c) preemptive priority.

T 17.8-5. Reconsider the County Hospital emergency room prob-
lem as analyzed in Sec. 17.8. Suppose that the definitions of the
three categories of patients are tightened somewhat in order to
move marginal cases into a lower category. Consequently, only 5
percent of the patients will qualify as critical cases, 20 percent as
serious cases, and 75 percent as stable cases. Develop a table show-
ing the data presented in Table 17.3 for this revised problem.

17.8-6. Reconsider the queueing system described in Prob. 17.4-6.
Suppose now that type 1 customers are more important than type 2
customers. If the queue discipline were changed from first-come-
first-served to a priority system with type 1 customers being given
nonpreemptive priority over type 2 customers, would this increase,
decrease, or keep unchanged the expected total number of cus-
tomers in the system?
(a) Determine the answer without any calculations, and then pre-

sent the reasoning that led to your conclusion.
T (b) Verify your conclusion in part (a) by finding the expected

total number of customers in the system under each of these
two queue disciplines.

17.8-7. Consider the queueing model with a preemptive prior-
ity queue discipline presented in Sec. 17.8. Suppose that s � 1,
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N � 2, and (�1 � �2) � �; and let Pij be the steady-state prob-
ability that there are i members of the higher-priority class and
j members of the lower-priority class in the queueing system 
(i � 0, 1, 2, . . . ; j � 0, 1, 2, . . .). Use a method analogous to
that presented in Sec. 17.5 to derive a system of linear equations
whose simultaneous solution is the Pij. Do not actually obtain
this solution.

17.9-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 17.9.
Briefly describe how queueing theory was applied in this study.
Then list the various financial and nonfinancial benefits that resulted
from this study.

17.9-2. Consider a queueing system with two servers, where the
customers arrive from two different sources. From source 1, the cus-
tomers always arrive 2 at a time, where the time between consecu-
tive arrivals of pairs of customers has an exponential distribution
with a mean of 20 minutes. Source 2 is itself a two-server queue-
ing system, which has a Poisson input process with a mean rate of
7 customers per hour, and the service time from each of these two
servers has an exponential distribution with a mean of 15 minutes.
When a customer completes service at source 2, he or she imme-
diately enters the queueing system under consideration for another
type of service. In the latter queueing system, the queue discipline
is preemptive priority where customers from source 1 always have
preemptive priority over customers from source 2. However, ser-
vice times are independent and identically distributed for both types
of customers according to an exponential distribution with a mean
of 6 minutes.
(a) First focus on the problem of deriving the steady-state distri-

bution of only the number of source 1 customers in the queue-
ing system under consideration. Define the states and construct
the rate diagram for most efficiently deriving this distribution
(but do not actually derive it).

(b) Now focus on the problem of deriving the steady-state distri-
bution of the total number of customers of both types in the
queueing system under consideration. Define the states and
construct the rate diagram for most efficiently deriving this dis-
tribution (but do not actually derive it).

(c) Now focus on the problem of deriving the steady-state joint
distribution of the number of customers of each type in the
queueing system under consideration. Define the states and
construct the rate diagram for deriving this distribution (but do
not actually derive it).

17.9-3. Consider a system of two infinite queues in series, where
each of the two service facilities has a single server. All service
times are independent and have an exponential distribution, with a
mean of 3 minutes at facility 1 and 4 minutes at facility 2. Facility
1 has a Poisson input process with a mean rate of 10 per hour.
(a) Find the steady-state distribution of the number of customers

at facility 1 and then at facility 2. Then show the product form
solution for the joint distribution of the number at the respec-
tive facilities.

(b) What is the probability that both servers are idle?
(c) Find the expected total number of customers in the system and

the expected total waiting time (including service times) for a
customer.

17.9-4. Under the assumptions specified in Sec. 17.9 for a system
of infinite queues in series, this kind of queueing network actually
is a special case of a Jackson network. Demonstrate that this is true
by describing this system as a Jackson network, including speci-
fying the values of the aj and the pij, given � for this system.

17.9-5. Consider a Jackson network with three service facilities
having the parameter values shown below.

T (a) Find the total arrival rate at each of the facilities.
(b) Find the steady-state distribution of the number of customers

at facility 1, facility 2, and facility 3. Then show the product
form solution for the joint distribution of the number at the re-
spective facilities.

(c) What is the probability that all the facilities have empty queues
(no customers waiting to begin service)?

(d) Find the expected total number of customers in the system.
(e) Find the expected total waiting time (including service times)

for a customer.

T 17.10-1. When describing economic analysis of the number of
servers to provide in a queueing system, Sec. 17.10 introduces
a basic cost model where the objective is to minimize E(TC) �
Css � CwL. The purpose of this problem is to enable you to explore
the effect that the relative sizes of Cs and Cw have on the optimal
number of servers.

Suppose that the queueing system under consideration fits the
M/M/s model with � � 8 customers per hour and � � 10 customers
per hour. Use the Excel template in your OR Courseware for eco-
nomic analysis with the M/M/s model to find the optimal number
of servers for each of the following cases.
(a) Cs � $100 and Cw � $10.
(b) Cs � $100 and Cw � $100.
(c) Cs � $10 and Cw � $100.

T 17.10-2.* Jim McDonald, manager of the fast-food hamburger
restaurant McBurger, realizes that providing fast service is a key
to the success of the restaurant. Customers who have to wait very
long are likely to go to one of the other fast-food restaurants in
town next time. He estimates that each minute a customer has to
wait in line before completing service costs him an average of 
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pij

Facility j sj �j aj i � 1 i � 2 i � 3

j � 1 1 40 10 0 0.3 0.4
j � 2 1 50 15 0.5 0 0.5
j � 3 1 30 3 0.3 0.2 0
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30 cents in lost future business. Therefore, he wants to be sure that
enough cash registers always are open to keep waiting to a mini-
mum. Each cash register is operated by a part-time employee who
obtains the food ordered by each customer and collects the pay-
ment. The total cost for each such employee is $9 per hour.

During lunch time, customers arrive according to a Poisson
process at a mean rate of 66 per hour. The time needed to serve a
customer is estimated to have an exponential distribution with a
mean of 2 minutes.

Determine how many cash registers Jim should have open dur-
ing lunch time to minimize his expected total cost per hour.

T 17.10-3. The Garrett-Tompkins Company provides three copy ma-
chines in its copying room for the use of its employees. However,
due to recent complaints about considerable time being wasted wait-
ing for a copier to become free, management is considering adding
one or more additional copy machines.

During the 2,000 working hours per year, employees arrive at
the copying room according to a Poisson process at a mean rate of

30 per hour. The time each employee needs with a copy machine
is believed to have an exponential distribution with a mean of 5
minutes. The lost productivity due to an employee spending time
in the copying room is estimated to cost the company an average
of $25 per hour. Each copy machine is leased for $3,000 per year.

Determine how many copy machines the company should
have to minimize its expected total cost per hour.

17.11-1. From the bottom part of the selected references given
at the end of the chapter, select one of these award-winning ap-
plications of queueing theory. Read this article and then write a
two-page summary of the application and the benefits (including
nonfinancial benefits) it provided.

17.11-2. From the bottom part of the selected references given at
the end of the chapter, select three of these award-winning appli-
cations of queueing theory. For each one, read the article and then
write a one-page summary of the application and the benefits (in-
cluding nonfinancial benefits) it provided.
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■ CASES

CASE 17.1 Reducing In-Process
Inventory
Jim Wells, vice-president for manufacturing of the Northern
Airplane Company, is exasperated. His walk through the
company’s most important plant this morning has left him
in a foul mood. However, he now can vent his temper at
Jerry Carstairs, the plant’s production manager, who has just
been summoned to Jim’s office.

“Jerry, I just got back from walking through the plant,
and I am very upset.” “What is the problem, Jim?” “Well,
you know how much I have been emphasizing the need to
cut down on our in-process inventory.” “Yes, we’ve been
working hard on that,” responds Jerry. “Well, not hard
enough!” Jim raises his voice even higher. “Do you know
what I found by the presses?” “No.” “Five metal sheets still
waiting to be formed into wing sections. And then, right next
door at the inspection station, 13 wing sections! The in-
spector was inspecting one of them, but the other 12 were
just sitting there. You know we have a couple hundred thou-
sand dollars tied up in each of those wing sections. So be-
tween the presses and the inspection station, we have a few
million bucks worth of terribly expensive metal just sitting
there. We can’t have that!”

The chagrined Jerry Carstairs tries to respond. “Yes, Jim,
I am well aware that that inspection station is a bottleneck. It
usually isn’t nearly as bad as you found it this morning, but
it is a bottleneck. Much less so for the presses. You really
caught us on a bad morning.” “I sure hope so,” retorts Jim,
“but you need to prevent anything nearly this bad happening

even occasionally. What do you propose to do about it?” Jerry
now brightens noticeably in his response. “Well actually, I’ve
already been working on this problem. I have a couple pro-
posals on the table and I have asked an operations research
analyst on my staff to analyze these proposals and report back
with recommendations.” “Great,” responds Jim, “glad to see
you are on top of the problem. Give this your highest prior-
ity and report back to me as soon as possible.” “Will do,”
promises Jerry.

Here is the problem that Jerry and his OR analyst are
addressing. Each of 10 identical presses is being used to
form wing sections out of large sheets of specially
processed metal. The sheets arrive randomly to the group
of presses at a mean rate of 7 per hour. The time required
by a press to form a wing section out of a metal sheet has
an exponential distribution with a mean of 1 hour. When
finished, the wing sections arrive randomly at an inspec-
tion station at the same mean rate as the metal sheets ar-
rived at the presses (7 per hour). A single inspector has the
full-time job of inspecting these wing sections to make sure
they meet specifications. Each inspection takes her 7�

1
2

� minutes,
so she can inspect 8 wing sections per hour. This inspec-
tion rate has resulted in a substantial average amount of
in-process inventory at the inspection station (i.e., the aver-
age number of wing sheets waiting to complete inspection
is fairly large), in addition to that already found at the group
of machines.

The cost of this in-process inventory is estimated to be
$8 per hour for each metal sheet at the presses or each wing
section at the inspection station. Therefore, Jerry Carstairs
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has made two alternative proposals to reduce the average
level of in-process inventory.

Proposal 1 is to use slightly less power for the presses
(which would increase their average time to form a wing
section to 1.2 hours), so that the inspector can keep up with
their output better. This also would reduce the cost of the
power for running each machine from $7.00 to $6.50 per
hour. (By contrast, increasing to maximum power would in-
crease this cost to $7.50 per hour while decreasing the av-
erage time to form a wing section to 0.8 hour.)

Proposal 2 is to substitute a certain younger inspector for this
task. He is somewhat faster (albeit with some variability in his in-
spection times because of less experience), so he should keep up
better. (His inspection time would have an Erlang distribution
with a mean of 7.2 minutes and a shape parameter k � 2.) This
inspector is in a job classification that calls for a total compen-
sation (including benefits) of $19 per hour, whereas the current
inspector is in a lower job classification where the compensa-
tion is $17 per hour. (The inspection times for each of these
inspectors are typical of those in the same job classification.)

You are the OR analyst on Jerry Carstair’s staff who has
been asked to analyze this problem. He wants you to “use

the latest OR techniques to see how much each proposal
would cut down on in-process inventory and then make your
recommendations.”

(a) To provide a basis of comparison, begin by evaluating the
status quo. Determine the expected amount of in-process 
inventory at the presses and at the inspection station. Then
calculate the expected total cost per hour when considering
all of the following: the cost of the in-process inventory, the
cost of the power for runnng the presses, and the cost of
the inspector.

(b) What would be the effect of proposal 1? Why? Make specific
comparisons to the results from part (a). Explain this outcome
to Jerry Carstairs.

(c) Determine the effect of proposal 2. Make specific compar-
isons to the results from part (a). Explain this outcome to Jerry
Carstairs.

(d) Make your recommendations for reducing the average level
of in-process inventory at the inspection station and at the
group of machines. Be specific in your recommendations,
and support them with quantitative analysis like that done
in part (a). Make specific comparisons to the results from
part (a), and cite the improvements that your recommenda-
tions would yield.

PREVIEW OF AN ADDED CASE ON OUR WEBSITE 799

■ PREVIEW OF AN ADDED CASE ON OUR WEBSITE (www.mhhe.com/hillier)

CASE 17.2 Queueing Quandary
Many angry customers are complaining about the long
waits needed to get through to a call center. It appears that
more service representatives are needed to answer the
calls. Another option is to train the service representatives

further to enable them to answer calls more efficiently.
Some possible criteria for satisfactory levels of service
have been proposed. Queueing theory needs to be applied
to determine how the operation of the call center should
be redesigned.
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18C H A P T E R

Inventory Theory 

“Sorry, we’re out of that item.” How often have you heard that during shopping trips?
In many of these cases, what you have encountered are stores that aren’t doing a

very good job of managing their inventories (stocks of goods being held for future use or
sale). They aren’t placing orders to replenish inventories soon enough to avoid shortages.
These stores could benefit from the kinds of techniques of scientific inventory manage-
ment that are described in this chapter.

It isn’t just retail stores that must manage inventories. In fact, inventories pervade
the business world. Maintaining inventories is necessary for any company dealing with
physical products, including manufacturers, wholesalers, and retailers. For example,
manufacturers need inventories of the materials required to make their products. They
also need inventories of the finished products awaiting shipment. Similarly, both whole-
salers and retailers need to maintain inventories of goods to be available for purchase
by customers.

The annual costs associated with storing (“carrying”) inventory can be very large,
ranging as high as a quarter of the value of the inventory. Therefore, the costs being in-
curred for the storage of inventory in the United States run into the hundreds of billions
of dollars annually. Reducing storage costs by avoiding unnecessarily large inventories
can enhance any firm’s competitiveness.

Some Japanese companies were pioneers in introducing the just-in-time inventory
system—a system that emphasizes planning and scheduling so that the needed materials
arrive “just-in-time” for their use. Huge savings are thereby achieved by reducing inven-
tory levels to a bare minimum.

Many companies in other parts of the world also have been revamping the way in
which they manage their inventories. The application of operations research techniques in
this area (sometimes called scientific inventory management) is providing a powerful tool
for gaining a competitive edge.

How do companies use operations research to improve their inventory policy for when
and how much to replenish their inventory? They use scientific inventory management
comprising the following steps:

1. Formulate a mathematical model describing the behavior of the inventory system.
2. Seek an optimal inventory policy with respect to this model.
3. Use a computerized information processing system to maintain a record of the current

inventory levels.
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18.1 EXAMPLES 801

4. Using this record of current inventory levels, apply the optimal inventory policy to sig-
nal when and how much to replenish inventory.

The mathematical inventory models used with this approach can be divided into two
broad categories—deterministic models and stochastic models—according to the pre-
dictability of demand involved. The demand for a product in inventory is the number of
units that will need to be withdrawn from inventory for some use (e.g., sales) during a
specific period. If the demand in future periods can be forecast with considerable preci-
sion, it is reasonable to use an inventory policy that assumes that all forecasts will always
be completely accurate. This is the case of known demand where a deterministic inven-
tory model would be used. However, when demand cannot be predicted very well, it be-
comes necessary to use a stochastic inventory model where the demand in any period is
a random variable rather than a known constant.

There are several basic considerations involved in determining an inventory policy that
must be reflected in the mathematical inventory model. These are illustrated in the examples
presented in the first section and then are described in general terms in Sec. 18.2. Section 18.3
develops and analyzes deterministic inventory models for situations where the inventory level
is under continuous review. Section 18.4 does the same for situations where the planning is
being done for a series of periods rather than continuously. Section 18.5 extends certain de-
terministic models to coordinate the inventories at various points along a company’s supply
chain. The following two sections present stochastic models, first under continuous review,
and then for dealing with a perishable product over a single period. (A supplement to this
chapter on the book’s website introduces stochastic periodic-review models for multiple pe-
riods.) Section 18.8 then introduces a relatively new area of inventory theory, called revenue
management, that is concerned with maximizing a company’s expected revenue when deal-
ing with the special kind of perishable product whose entire inventory must be provided to
customers at a designated point in time or be lost forever. (Certain service industries, such as
an airline company providing its entire inventory of seats on an particular flight at the des-
ignated time for the flight, now make extensive use of revenue management.)

■ 18.1 EXAMPLES

We present two examples in rather different contexts (a manufacturer and a wholesaler)
where an inventory policy needs to be developed.

EXAMPLE 1 Manufacturing Speakers for TV Sets

A television manufacturing company produces its own speakers, which are used in the pro-
duction of its television sets. The television sets are assembled on a continuous production
line at a rate of 8,000 per month, with one speaker needed per set. The speakers are pro-
duced in batches because they do not warrant setting up a continuous production line, and
relatively large quantities can be produced in a short time. Therefore, the speakers are placed
into inventory until they are needed for assembly into television sets on the production line.
The company is interested in determining when to produce a batch of speakers and how
many speakers to produce in each batch. Several costs must be considered:

1. Each time a batch is produced, a setup cost of $12,000 is incurred. This cost includes the
cost of “tooling up,” administrative costs, record keeping, and so forth. Note that the
existence of this cost argues for producing speakers in large batches.

2. The unit production cost of a single speaker (excluding the setup cost) is $10, inde-
pendent of the batch size produced. (In general, however, the unit production cost need
not be constant and may decrease with batch size.)
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3. The production of speakers in large batches leads to a large inventory. The estimated
holding cost of keeping a speaker in stock is $0.30 per month. This cost includes the
cost of capital tied up in inventory. Since the money invested in inventory cannot be
used in other productive ways, this cost of capital consists of the lost return (referred to
as the opportunity cost) because alternative uses of the money must be forgone. Other
components of the holding cost include the cost of leasing the storage space, the cost
of insurance against loss of inventory by fire, theft, or vandalism, taxes based on the
value of the inventory, and the cost of personnel who oversee and protect the inventory.

4. Company policy prohibits deliberately planning for shortages of any of its components.
However, a shortage of speakers occasionally crops up, and it has been estimated that
each speaker that is not available when required costs $1.10 per month. This shortage
cost includes the extra cost of installing speakers after the television set is fully as-
sembled otherwise, the interest lost because of the delay in receiving sales revenue, the
cost of extra record keeping, and so forth.

We will develop the inventory policy for this example with the help of the first in-
ventory model presented in Sec. 18.3.

EXAMPLE 2 Wholesale Distribution of Bicycles

A wholesale distributor of bicycles is having trouble with shortages of its most popular
model and is currently reviewing the inventory policy for this model. The distributor pur-
chases this model bicycle from the manufacturer monthly and then supplies it to various
bicycle shops in the western United States in response to purchase orders. What the total
demand from bicycle shops will be in any given month is quite uncertain. Therefore, the
question is, How many bicycles should be ordered from the manufacturer for any given
month, given the stock level leading into that month?

The distributor has analyzed her costs and has determined that the following are
important:

1. The ordering cost, i.e., the cost of placing an order plus the cost of the bicycles being
purchased, has two components: The administrative cost involved in placing an order is
estimated as $2,000, and the actual cost of each bicycle is $350 for this wholesaler.

2. The holding cost, i.e., the cost of maintaining an inventory, is $10 per bicycle remaining
at the end of the month. This cost represents the costs of capital tied up, warehouse
space, insurance, taxes, and so on.

3. The shortage cost is the cost of not having a bicycle on hand when needed. This par-
ticular model is easily reordered from the manufacturer, and stores usually accept a
delay in delivery. Still, although shortages are permissible, the distributor feels that she
incurs a loss, which she estimates to be $150 per bicycle per month of shortage. This
estimated cost takes into account the possible loss of future sales because of the loss
of customer goodwill. Other components of this cost include lost interest on delayed
sales revenue, and additional administrative costs associated with shortages. If some
stores were to cancel orders because of delays, the lost revenues from these lost sales
would need to be included in the shortage cost. Fortunately, such cancellations nor-
mally do not occur for this distributor.

We will return to a variation of this example again in Sec. 18.7.

These examples illustrate that there are two possibilities for how a firm replenishes in-
ventory, depending on the situation. One possibility is that the firm produces the needed units
itself (like the television manufacturer producing speakers). The other is that the firm orders
the units from a supplier (like the bicycle distributor ordering bicycles from the manufacturer).
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Inventory models do not need to distinguish between these two ways of replenishing in-
ventory, so we will use such terms as producing and ordering interchangeably.

Both examples deal with one specific product (speakers for a certain kind of television
set or a certain bicycle model). In most inventory models, just one product is being consid-
ered at a time. All the inventory models presented in this chapter assume a single product.
(Multiproduct models also are important, but are beyond the scope of this introduction to
inventory theory.)

Both examples indicate that there exists a trade-off between the costs involved. The
next section discusses the basic cost components of inventory models for determining the
optimal trade-off between these costs.

■ 18.2 COMPONENTS OF INVENTORY MODELS

Because inventory policies affect profitability, the choice among policies depends upon
their relative profitability. As already seen in Examples 1 and 2, some of the costs that
determine this profitability are (1) the ordering costs, (2) holding costs, and (3) shortage
costs. Other relevant factors include (4) revenues, (5) salvage costs, and (6) discount rates.
These six factors are described in turn below.

The cost of ordering an amount z (either through purchasing or producing this
amount) can be represented by a function c(z). The simplest form of this function is one
that is directly proportional to the amount ordered, that is, c � z, where c represents the
unit price paid. Another common assumption is that c(z) is composed of two parts: a term
that is directly proportional to the amount ordered and a term that is a constant K for z
positive and is 0 for z � 0. For this case,

c(z) � cost of ordering z units

� �
where K � setup cost and c � unit cost.

The constant K includes the administrative cost of ordering or, when producing, the
costs involved in setting up to start a production run.

There are other assumptions that can be made about the cost of ordering, but this
chapter is restricted to the cases just described.

In Example 1, the speakers are produced and the setup cost for a production run is
$12,000. Furthermore, each speaker costs $10, so that the production cost when ordering
a production run of z speakers is given by

c(z) � 12,000 � 10z, for z � 0.

In Example 2, the distributor orders bicycles from the manufacturer and the ordering cost
is given by

c(z) � 2,000 � 350z, for z � 0.

The holding cost (sometimes called the storage cost) represents all the costs associated
with the storage of the inventory until it is sold or used. Included are the cost of capital tied
up, space, insurance, protection, and taxes attributed to storage. The holding cost can be as-
sessed either continuously or on a period-by-period basis. In the latter case, the cost may be
a function of the maximum quantity held during a period, the average amount held, or the
quantity in inventory at the end of the period. The end-of period option simplifies the analy-
sis, so it usually will be adopted when assessing the holding cost on a period-by-period
basis in this chapter.

Applying this end-of-period option to the bicycle example, the holding cost is $10
per bicycle remaining at the end of the month. However, in the TV speakers example, the

if z � 0
if z � 0,

0
K � cz
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804 CHAPTER 18 INVENTORY THEORY

holding cost is assessed continuously, where the rate of assessment is $0.30 per speaker
in inventory per month, so the average holding cost per month is $0.30 times the average
number of speakers in inventory.

The shortage cost (sometimes called the unsatisfied demand cost) is incurred when
the amount of the commodity required (demand) exceeds the available stock. This cost
depends upon which of the following two cases applies.

In one case, called backlogging, the excess demand is not lost, but instead is held un-
til it can be satisfied when the next normal delivery replenishes the inventory. For a firm
incurring a temporary shortage in supplying its customers (as for the bicycle example), the
shortage cost then can be interpreted as the loss of customers’ goodwill and the subsequent
reluctance to do business with the firm plus the cost of delayed revenue and the extra ad-
ministrative costs. For a manufacturer incurring a temporary shortage in materials needed
for production (such as a shortage of speakers for assembly into television sets), the short-
age cost becomes the cost associated with delaying the completion of the production process.

In the second case, called no backlogging, if any excess of demand over available stock
occurs, the firm cannot wait for the next normal delivery to meet the excess demand. Either
(1) the excess demand is met by a priority shipment, or (2) it is not met at all because the
orders are canceled. For situation 1, the shortage cost can be viewed as the cost of the pri-
ority shipment. For situation 2, the shortage cost is the loss of current revenue from not
meeting the demand plus the cost of losing future business because of lost goodwill.1

Revenue may or may not be included in the model. If both the price and the demand
for the product are established by the market and so are outside the control of the com-
pany, the revenue from sales (assuming demand is met) is independent of the firm’s in-
ventory policy and may be neglected. However, if revenue is neglected in the model, the
loss in revenue must then be included in the shortage cost whenever the firm cannot meet
the demand and the sale is lost. Furthermore, even in the case where demand is backlogged,
the cost of the delay in revenue must also be included in the shortage cost. With these in-
terpretations, revenue will not be considered explicitly in the remainder of this chapter.

The salvage value of an item is the value of a leftover item when no further inven-
tory is desired. The salvage value represents the disposal value of the item to the firm,
perhaps through a discounted sale. The negative of the salvage value is called the salvage
cost. If there is a cost associated with the disposal of an item, the salvage cost may be
positive. We assume hereafter that any salvage cost is incorporated into the holding cost.

Finally, the discount rate takes into account the time value of money. When a firm
ties up capital in inventory, the firm is prevented from using this money for alternative pur-
poses. For example, it could invest this money in secure investments, say, government
bonds, and have a return on investment 1 year hence of, say, 3 percent. Thus, $1 invested
today would be worth $1.03 in year 1, or alternatively, a $1 profit 1 year hence is equiva-
lent to � � $1/$1.03 today. The quantity � is known as the discount factor. Thus, in adding
up the total profit from an inventory policy, the profit or costs 1 year hence should be multi-
plied by �; in 2 years hence by �2; and so on. (Units of time other than 1 year also can be
used.) The total profit calculated in this way normally is referred to as the net present value.

In problems having short time horizons, � may be assumed to be 1 (and thereby ne-
glected) because the current value of $1 delivered during this short time horizon does not
change very much. However, in problems having long time horizons, the discount factor
should be included.

1An analysis of situation 2 is provided by E. T. Anderson, G. J. Fitzsimons, and D. Simester, “Measuring and
Mitigating the Costs of Stockouts,” Management Science, 52(11): 1751–1763, Nov. 2006. For an analysis of
whether backlogging or no backlogging provides a less costly policy under various circumstances, see 
B. Janakiraman, S. Seshadri, and J. G. Shanthikumar, “A Comparison of the Optimal Costs of Two Canonical
Inventory Systems,” Operations Research, 55(5): 866–875, Sept.–Oct. 2007.
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In using quantitative techniques to seek optimal inventory policies, we use the crite-
rion of minimizing the total (expected) cost (or discounted cost if the time horizon is a
long one). Under the assumptions that the price and demand for the product are not un-
der the control of the company and that the lost or delayed revenue is included in the
shortage penalty cost, minimizing cost is equivalent to maximizing net income. Another
useful criterion is to keep the inventory policy simple, i.e., keep the rule for indicating
when to order and how much to order both understandable and easy to implement. Most
of the policies considered in this chapter possess this property.

As mentioned at the beginning of the chapter, inventory models are usually classified
as either deterministic or stochastic according to whether the demand for a period is known
or is a random variable having a known probability distribution. The production of batches
of speakers in Example 1 of Sec. 18.1 illustrates deterministic demand because the speak-
ers are used in television assemblies at a fixed rate of 8,000 per month. The bicycle shops’
purchases of bicycles from the wholesale distributor in Example 2 of Sec. 18.1 illustrates
random demand because the total monthly demand varies from month to month accord-
ing to some probability distribution. Another component of an inventory model is the lead
time, which is the amount of time between the placement of an order to replenish inven-
tory (through either purchasing or producing) and the receipt of the goods into inventory.
If the lead time always is the same (a fixed lead time), then the replenishment can be
scheduled just when desired. Most models in this chapter assume that each replenishment
occurs just when desired, either because the delivery is nearly instantaneous or because
it is known when the replenishment will be needed and there is a fixed lead time.

Another classification refers to whether the current inventory level is being monitored
continuously or periodically. In continuous review, an order is placed as soon as the stock
level falls down to the prescribed reorder point. In periodic review, the inventory level is
checked at discrete intervals, e.g., at the end of each week, and ordering decisions are
made only at these times even if the inventory level dips below the reorder point between
the preceding and current review times. (In practice, a periodic review policy can be used
to approximate a continuous review policy by making the time interval sufficiently small.)

■ 18.3 DETERMINISTIC CONTINUOUS-REVIEW MODELS

The most common inventory situation faced by manufacturers, retailers, and wholesalers
is that stock levels are depleted over time and then are replenished by the arrival of a batch
of new units. A simple model representing this situation is the following economic order
quantity model or, for short, the EOQ model. (It sometimes is also referred to as the
economic lot-size model.)

Units of the product under consideration are assumed to be withdrawn from inven-
tory continuously at a known constant rate, denoted by d; that is, the demand is d units
per unit time. It is further assumed that inventory is replenished when needed by order-
ing (through either purchasing or producing) a batch of fixed size (Q units), where all Q
units arrive simultaneously at the desired time. For the basic EOQ model to be presented
first, the only costs to be considered are

K � setup cost for ordering one batch,

c � unit cost for producing or purchasing each unit,

h � holding cost per unit per unit of time held in inventory.

The objective is to determine when and by how much to replenish inventory so as to min-
imize the sum of these costs per unit time.

18.3 DETERMINISTIC CONTINUOUS-REVIEW MODELS 805
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We assume continuous review, so that inventory can be replenished whenever the in-
ventory level drops sufficiently low. We shall first assume that shortages are not allowed
(but later we will relax this assumption). With the fixed demand rate, shortages can be
avoided by replenishing inventory each time the inventory level drops to zero, and this
also will minimize the holding cost. Figure 18.1 depicts the resulting pattern of inventory
levels over time when we start at time 0 by ordering a batch of Q units in order to in-
crease the initial inventory level from 0 to Q and then repeat this process each time the
inventory level drops back down to 0.

Example 1 in Sec. 18.1 (manufacturing speakers for TV sets) fits this model and will
be used to illustrate the following discussion.

The Basic EOQ Model

To summarize, in addition to the costs specified above, the basic EOQ model makes the
following assumptions.

Assumptions (Basic EOQ Model)

1. A known constant demand rate of d units per unit time.
2. The order quantity (Q) to replenish inventory arrives all at once just when desired,

namely, when the inventory level drops to 0.
3. Planned shortages are not allowed.

In regard to assumption 2, there usually is a lag between when an order is placed and
when it arrives in inventory. As indicated in Sec. 18.2, the amount of time between the
placement of an order and its receipt is referred to as the lead time. The inventory level
at which the order is placed is called the reorder point. To satisfy assumption 2, this re-
order point needs to be set at

Reorder point � (demand rate) � (lead time).

Thus, assumption 2 is implicitly assuming a constant lead time.
The time between consecutive replenishments of inventory (the vertical line segments

in Fig. 18.1) is referred to as a cycle. For the speaker example, a cycle can be viewed as
the time between production runs. Thus, if 24,000 speakers are produced in each pro-
duction run and are used at the rate of 8,000 per month, then the cycle length is
24,000/8,000 � 3 months. In general, the cycle length is Q/d.

The total cost per unit time T is obtained from the following components:

Production or ordering cost per cycle � K � cQ.

Inventory level

Batch size Q�Q

0 Q
d

2Q
d

Time t

Q �
 dt

■ FIGURE 18.1
Diagram of inventory level as
a function of time for the
basic EOQ model.
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The average inventory level during a cycle is (Q � 0)/2 � Q/2 units, and the corresponding
cost is hQ/2 per unit time. Because the cycle length is Q/d,

Holding cost per cycle � �
h
2
Q
d

2

�.

Therefore,

Total cost per cycle � K � cQ � �
h
2
Q
d

2

�,

so the total cost per unit time is

T � � �
d
Q
K
� � dc � �

h
2
Q
�.

The value of Q, say Q*, that minimizes T is found by setting the first derivative to
zero (and noting that the second derivative is positive), which yields

��
d
Q
K
2� � �

h
2

� � 0,

so that

Q* � ��
2d

h
K
��,

which is the well-known EOQ formula.2 (It also is sometimes referred to as the square
root formula.) The corresponding cycle time, say t*, is

t* � �
Q
d
*
� � ��

2
d
K
h
��.

It is interesting to observe that Q* and t* change in intuitively plausible ways when
a change is made in K, h, or d. As the setup cost K increases, both Q* and t* increase
(fewer setups). When the unit holding cost h increases, both Q* and t* decrease (smaller
inventory levels). As the demand rate d increases, Q* increases (larger batches) but t* de-
creases (more frequent setups).

These formulas for Q* and t* will now be applied to the speaker example. The ap-
propriate parameter values from Sec. 18.1 are

K � 12,000, h � 0.30, d � 8,000,

so that

Q* � ��(2)(8,0�0
0
0
.3
)(
0
12�,000)
�� � 25,298

and

t* � �
2
8
5
,
,
0
2
0
9
0
8

� � 3.2 months.

Hence, the optimal solution is to set up the production facilities to produce speakers once
every 3.2 months and to produce 25,298 speakers each time. (The total cost curve is rather

K � cQ � hQ2/(2d)
���

Q/d

2At the time of this writing, we can celebrate the 100th anniversary of this famous formula. An interesting historical
account of this model and formula, including a reprint of a 1913 paper that started it all, is given by D. Erlenkotter,
“Ford Whitman Harris and the Economic Order Quantity Model,” Operations Research, 38: 937–950, 1990.
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808 CHAPTER 18 INVENTORY THEORY

flat near this optimal value, so any similar production run that might be more convenient,
say 24,000 speakers every 3 months, would be nearly optimal.)

The Solved Examples section of the book’s website includes another example of ap-
plying the basic EOQ model when considerable sensitivity analysis also needs to be per-
formed.

The EOQ Model with Planned Shortages

One of the banes of any inventory manager is the occurrence of an inventory shortage
(sometimes referred to as a stockout)—demand that cannot be met currently because the
inventory is depleted. This causes a variety of headaches, including dealing with unhappy
customers and having extra record keeping to arrange for filling the demand later
(backorders) when the inventory can be replenished. By assuming that planned shortages
are not allowed, the basic EOQ model presented above satisfies the common desire of
managers to avoid shortages as much as possible. (Nevertheless, unplanned shortages can
still occur if the demand rate and deliveries do not stay on schedule.)

However, there are situations where permitting limited planned shortages makes sense
from a managerial perspective. The most important requirement is that the customers gen-
erally are able and willing to accept a reasonable delay in filling their orders if need be.
If so, the costs of incurring shortages described in Secs. 18.1 and 18.2 (including lost fu-
ture business) should not be exorbitant. If the cost of holding inventory is high relative to
these shortage costs, then lowering the average inventory level by permitting occasional
brief shortages may be a sound business decision.

The EOQ model with planned shortages addresses this kind of situation by replac-
ing only the third assumption of the basic EOQ model with the following new assumption:

Planned shortages now are allowed. When a shortage occurs, the affected customers will
wait for the product to become available again. Their backorders are filled immediately
when the order quantity arrives to replenish inventory.

Under these assumptions, the pattern of inventory levels over time has the appear-
ance shown in Fig. 18.2. The saw-toothed appearance is the same as in Fig. 18.1. How-
ever, now the inventory levels extend down to negative values that reflect the number of
units of the product that are backordered.

Let

p � shortage cost per unit short per unit of time short,

S � inventory level just after a batch of Q units is added to inventory,

Q � S � shortage in inventory just before a batch of Q units is added.

The total cost per unit time now is obtained from the following components:

Production or ordering cost per cycle � K � cQ.

Inventory level

Batch size Q� � S

S

0 Time t

S �
 dt

S
d

Q
d

■ FIGURE 18.2
Diagram of inventory level as
a function of time for the
EOQ model with planned
shortages.
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During each cycle, the inventory level is positive for a time S/d. The average inventory
level during this time is (S � 0)/2 � S/2 units, and the corresponding cost is hS/2 per unit
time. Hence,

Holding cost per cycle � �
h
2
S
� �

S
d

� � �
h
2
S
d

2

�.

Similarly, shortages occur for a time (Q � S)/d. The average amount of shortages during
this time is (0 � Q � S)/2 � (Q � S)/2 units, and the corresponding cost is p(Q � S)/2
per unit time. Hence,

Shortage cost per cycle � �
p(Q

2
� S)
� �

Q �
d

S
� � �

p(Q
2
�
d

S)2

�.

Therefore,

Total cost per cycle � K � cQ � �
h
2
S
d

2

� � �
p(Q

2
�
d

S)2

�,

and the total cost per unit time is

T � 

� �
d
Q
K
� � dc � �

h
2
S
Q

2

� � �
p(Q

2
�
Q

S)2

�.

In this model, there are two decision variables (S and Q), so the optimal values (S*
and Q*) are found by setting the partial derivatives �T/�S and �T/�Q equal to zero. Thus,

�
�
�
T
S
� � �

h
Q
S
� � �

p(Q
Q
� S)
� � 0.

�
�
�
Q
T
� � ��

d
Q
K
2� � �

2
h
Q
S2

2� � �
p(Q

Q
� S)
� � �

p(Q
2Q

�
2
S)2

� � 0.

Solving these equations simultaneously leads to

S* � ��
2d

h
K
�� ��

p �
p

h
��, Q* � ��

2d
h
K
�� ��

p �
p

h
��.

The optimal cycle length t* is given by

t* � �
Q
d
*
� � ��

2
d
K
h
�� ��

p �
p

h
��.

The maximum shortage is

Q* � S* � ��
2d

p
K
�� ��

p �
h

h
��.

In addition, from Fig. 18.2, the fraction of time that no shortage exists is given by

�
Q
S*

*
/
/
d
d

� � �
p �

p
h

�,

which is independent of K.
When either p or h is made much larger than the other, the above quantities behave

in intuitive ways. In particular, when p � � with h constant (so shortage costs domi-
nate holding costs), Q* � S* � 0 whereas both Q* and t* converge to their values for

K � cQ � hS2/(2d) � p(Q�S)2/(2d)
����

Q/d
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810 CHAPTER 18 INVENTORY THEORY

the basic EOQ model. Even though the current model permits shortages, p � � implies
that having them is not worthwhile.

On the other hand, when h � � with p constant (so holding costs dominate shortage
costs), S* � 0. Thus, having h � � makes it uneconomical to have positive inventory
levels, so each new batch of Q* units goes no further than removing the current shortage
in inventory.

If planned shortages are permitted in the speaker example, the shortage cost is esti-
mated in Sec. 18.1 as

p � 1.10.

As before,

K � 12,000, h � 0.30, d � 8,000,

so now

S* � ��(2)(8,0�0
0
0
.3
)(
0
12�,000)
�� ��

1.1
1
�
.1�0.3
�� � 22,424,

Q* � ��(2)(8,0�0
0
0
.3
)(
0
12�,000)
�� ��

1.1
1
�
.1�0.3
�� � 28,540,

and

t* � �
2
8
8
,
,
0
5
0
4
0
0

� � 3.6 months.

Hence, the production facilities are to be set up every 3.6 months to produce 28,540 speak-
ers. The maximum shortage is 6,116 speakers. Note that Q* and t* are not very different
from the no-shortage case. The reason is that p is much larger than h.

The EOQ Model with Quantity Discounts

When specifying their cost components, the preceding models have assumed that the unit
cost of an item is the same regardless of the quantity in the batch. In fact, this assump-
tion resulted in the optimal solutions being independent of this unit cost. The EOQ model
with quantity discounts replaces this assumption with the following new assumption:

The unit cost of an item now depends on the quantity in the batch. In particular, an in-
centive is provided to place a large order by replacing the unit cost for a small quantity
by a smaller unit cost for every item in a larger batch, and perhaps by even smaller unit
costs for even larger batches.

Otherwise, the assumptions are the same as for the basic EOQ model.
To illustrate this model, consider the TV speakers example introduced in Sec. 18.1.

Suppose now that the unit cost for every speaker is c1 � $11 if less than 10,000 speakers
are produced, c2 � $10 if production falls between 10,000 and 80,000 speakers, and 
c3 � $9.50 if production exceeds 80,000 speakers. What is the optimal policy? The solu-
tion to this specific problem will reveal the general method.

From the results for the basic EOQ model, the total cost per unit time Tj if the unit
cost is cj is given by

Tj � �
d
Q
K
� � dcj � �

h
2
Q
�, for j � 1, 2, 3.

(This expression assumes that h is independent of the unit cost of the items, but a com-
mon small refinement would be to make h proportional to the unit cost to reflect the fact
that the cost of capital tied up in inventory varies in this way.) A plot of Tj versus Q is
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shown in Fig. 18.3 for each j, where the solid part of each curve extends over the feasi-
ble range of values of Q for that discount category.

For each curve, the value of Q that minimizes Tj is found just as for the basic EOQ
model. For K � 12,000, h � 0.30, and d � 8,000, this value is

��(2)(8,0�0
0
0
.3
)(
0
12�,000)
�� � 25,298.

(If h were not independent of the unit cost of the items, then the minimizing value of Q
would be slightly different for the different curves.) This minimizing value of Q is a fea-
sible value for the cost function T2. For any fixed Q, T2 	 T1, so T1 can be eliminated
from further consideration. However, T3 cannot be immediately discarded. Its minimum
feasible value (which occurs at Q � 80,000) must be compared to T2 evaluated at 25,298
(which is $87,589). Because T3 evaluated at 80,000 equals $89,200, it is better to pro-
duce in quantities of 25,298, so this quantity is the optimal value for this set of quantity
discounts.

If the quantity discount led to a unit cost of $9 (instead of $9.50) when production
exceeded 80,000, then T3 evaluated at 80,000 would equal $85,200, and the optimal pro-
duction quantity would become 80,000.

Although this analysis concerned a specific problem, the same approach is applica-
ble to any similar problem. Here is a summary of the general procedure:

1. For each available unit cost cj, use the EOQ formula for the EOQ model to calculate
its optimal order quantity Q*j.

2. For each cj where Q*j is within the feasible range of order quantities for cj, calculate
the corresponding total cost per unit time Tj.

3. For each cj where Q*j is not within this feasible range, determine the order quantity Qj

that is at the endpoint of this feasible range that is closest to Q*j. Calculate the total
cost per unit time Tj for Qj and cj.

4. Compare the Tj obtained for all the cj and choose the minimum Tj. Then choose the
order quantity Qj obtained in step 2 or 3 that gives this minimum Tj.

A similar analysis can be used for other types of quantity discounts, such as incre-
mental quantity discounts where a cost c0 is incurred for the first q0 units, c1 for the next
q1 units, and so on.
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T1 (unit cost equals $11)

T2 (unit cost equals $10)

T3 (unit cost equals $9.50)

■ FIGURE 18.3
Total cost per unit time for
the speaker example with
quantity discounts.
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Some Useful Excel Templates

For your convenience, we have included five Excel templates for the EOQ models in this
chapter’s Excel file on the book’s website. Two of these templates are for the basic EOQ
model. In both cases, you enter basic data (d, K, and h), as well as the lead time for the
deliveries and the number of working days per year for the firm. The template then cal-
culates the firm’s total annual expenditures for setups and for holding costs, as well as the
sum of these two costs (the total variable cost). It also calculates the reorder point—the
inventory level at which the order needs to be placed to replenish inventory so the re-
plenishment will arrive when the inventory level drops to 0. One template (the Solver
version) enables you to enter any order quantity you want and then see what the annual
costs and reorder point would be. This version also enables you to use Solver to solve for
the optimal order quantity. The second template (the analytical version) uses the EOQ
formula to obtain the optimal order quantity.

The corresponding pair of templates also is provided for the EOQ model with planned
shortages. After entering the data (including the unit shortage cost p), each of these tem-
plates will obtain the various annual costs (including the annual shortage cost). With the
Solver version, you can either enter trial values of the order quantity Q and maximum
shortage Q � S or solve for the optimal values, whereas the analytical version uses the
formulas for Q* and Q* � S* to obtain the optimal values. The corresponding maximum
inventory level S* also is included in the results.

The final template is an analytical version for the EOQ model with quantity discounts.
This template includes the refinement that the unit holding cost h is proportional to the
unit cost c, so

h � Ic,

where the proportionality factor I is referred to as the inventory holding cost rate. Thus,
the data entered includes I along with d and K. You also need to enter the number of dis-
count categories (where the lowest-quantity category with no discount counts as one of
these), as well as the unit price and range of order quantities for each of the categories.
The template then finds the feasible order quantity that minimizes the total annual cost
for each category, and also shows the individual annual costs (including the annual pur-
chase cost) that would result. Using this information, the template identifies the overall
optimal order quantity and the resulting total annual cost.

All these templates can be helpful for calculating a lot of information quickly after
entering the basic data for the problem. However, perhaps a more important use is for per-
forming sensitivity analysis on these data. You can immediately see how the results would
change for any specific change in the data by entering the new data values in the spread-
sheet. Doing this repeatedly for a variety of changes in the data is a convenient way to
perform sensitivity analysis.

Observations about EOQ Models

1. If it is assumed that the unit cost of an item is constant throughout time, independent
of the batch size (as with the first two EOQ models), the unit cost does not appear in
the optimal solution for the batch size. This result occurs because no matter what in-
ventory policy is used, the same number of units is required per unit time, so this cost
per unit time is fixed.

2. The analysis of the EOQ models assumed that the batch size Q is constant from cycle
to cycle. The resulting optimal batch size Q* actually minimizes the total cost per unit
time for any cycle, so the analysis shows that this constant batch size should be used
from cycle to cycle even if a constant batch size is not assumed.
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3. The optimal inventory level at which inventory should be replenished can never be
greater than zero under these models. Waiting until the inventory level drops to zero
(or less than zero when planned shortages are permitted) reduces both holding costs
and the frequency of incurring the setup cost K. However, if the assumptions of a known
constant demand rate and the order quantity will arrive just when desired (because of
a constant lead time) are not completely satisfied, it may become prudent to plan to
have some “safety stock” left when the inventory is scheduled to be replenished. This
is accomplished by increasing the reorder point above that implied by the model.

4. The basic assumptions of the EOQ models are rather demanding ones. They seldom are
satisfied completely in practice. For example, even when a constant demand rate is planned
(as with the production line in the TV speakers example in Sec. 18.1), interruptions and
variations in the demand rate still are likely to occur. It also is very difficult to satisfy the
assumption that the order quantity to replenish inventory arrives just when desired.
Although the schedule may call for a constant lead time, variations in the actual lead times
often will occur. Fortunately, the EOQ models have been found to be robust in the sense
that they generally still provide nearly optimal results even when their assumptions are
only rough approximations of reality. This is a key reason why these models are so widely
used in practice. However, in those cases where the assumptions are significantly violated,
it is important to do some preliminary analysis to evaluate the adequacy of an EOQ model
before it is used. This preliminary analysis should focus on calculating the total cost per
unit time provided by the model for various order quantities and then assessing how this
cost curve would change under more realistic assumptions. 

5. Selected Reference 4 provides much more information about a variety of deterministic
and stochastic EOQ models and their applications.

Different Types of Demand for a Product

Example 2 (wholesale distribution of bicycles) introduced in Sec. 18.1 focused on man-
aging the inventory of one model of bicycle. The demand for this product is generated by
the wholesaler’s customers (various retailers) who purchase these bicycles to replenish
their inventories according to their own schedules. The wholesaler has no control over this
demand. Because this model is sold separately from other models, its demand does not
even depend on the demand for any of the company’s other products. Such demand is re-
ferred to as independent demand.

The situation is different for the speaker example introduced in Sec. 18.1. Here, the prod-
uct under consideration—television speakers—is just one component being assembled into
the company’s final product—television sets. Consequently, the demand for the speakers
depends on the demand for the television set. The pattern of this demand for the speak-
ers is determined internally by the production schedule that the company establishes for
the television sets by adjusting the production rate for the production line producing the
sets. Such demand is referred to as dependent demand.

The television manufacturing company produces a considerable number of products—
various parts and subassemblies—that become components of the television sets. Like the
speakers, these various products also are dependent-demand products.

Because of the dependencies and interrelationships involved, managing the inven-
tories of dependent-demand products can be considerably more complicated than for in-
dependent-demand products. A popular technique for assisting in this task is material
requirements planning, abbreviated as MRP. MRP is a computer-based system for
planning, scheduling, and controlling the production of all the components of a final
product. The system begins by “exploding” the product by breaking it down into all its
subassemblies and then into all its individual component parts. A production schedule

18.3 DETERMINISTIC CONTINUOUS-REVIEW MODELS 813
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814 CHAPTER 18 INVENTORY THEORY

is then developed, using the demand and lead time for each component to determine the de-
mand and lead time for the subsequent component in the process. In addition to a master
production schedule for the final product, a bill of materials provides detailed information
about all its components. Inventory status records give the current inventory levels, num-
ber of units on order, etc., for all the components. When more units of a component need
to be ordered, the MRP system automatically generates either a purchase order to the ven-
dor or a work order to the internal department that produces the component.3

The Role of Just-In-Time (JIT) Inventory Management

When the basic EOQ model was used to calculate the optimal production lot size for the
speaker example, a very large quantity (25,298 speakers) was obtained. This enables hav-
ing relatively infrequent setups to initiate production runs (only once every 3.2 months).
However, it also causes large average inventory levels (12,649 speakers), which leads to
a large total holding cost per year of over $45,000.

The basic reason for this large cost is the high setup cost of K � $12,000 for each
production run. The setup cost is so sizable because the production facilities need to be
set up again from scratch each time. Consequently, even with less than four production
runs per year, the annual setup cost is over $45,000, just like the annual holding costs.

Rather than continuing to tolerate a $12,000 setup cost each time in the future, another
option for the company is to seek ways to reduce this setup cost. One possibility is to de-
velop methods for quickly transferring machines from one use to another. Another is to ded-
icate a group of production facilities to the production of speakers so they would remain set
up between production runs in preparation for beginning another run whenever needed.

Suppose the setup cost could be drastically reduced from $12,000 all the way down
to K � $120. This would reduce the optimal production lot size from 25,298 speakers
down to Q* � 2,530 speakers, so a new production run lasting only a brief time would
be initiated more than 3 times per month. This also would reduce both the annual setup
cost and the annual holding cost from over $45,000 down to only slightly over $4,500
each. By having such frequent (but inexpensive) production runs, the speakers would be
produced essentially just in time for their assembly into television sets.

Just in time actually is a well-developed philosophy for managing inventories. A just-
in-time (JIT) inventory system places great emphasis on reducing inventory levels to a
bare minimum, and so providing the items just in time as they are needed. This philoso-
phy was first developed in Japan, beginning with the Toyota Company in the late 1950s,
and is given part of the credit for the remarkable gains in Japanese productivity through
much of the late 20th century. The philosophy also has become popular in other parts of
the world, including the United States, in more recent years.4

Although the just-in-time philosophy sometimes is misinterpreted as being incom-
patible with using an EOQ model (since the latter gives a large order quantity when the
setup cost is large), they actually are complementary. A JIT inventory system focuses on
finding ways to greatly reduce the setup costs so that the optimal order quantity will be
small. Such a system also seeks ways to reduce the lead time for the delivery of an or-
der, since this reduces the uncertainty about the number of units that will be needed when
the delivery occurs. Another emphasis is on improving preventive maintenance so that the
required production facilities will be available to produce the units when they are needed.

3A series of articles on pp. 32–44 of the September 1996 issue of IIE Solutions provides further information
about MRP.
4For further information about applications of JIT in the United States, see R. E. White, J. N. Pearson, and J. R.
Wilson, “JIT Manufacturing: A Survey of Implementations in Small and Large U.S. Manufacturing,” Management
Science, 45: 1–15, 1999. Also see H. Chen, M. Z. Frank, and O. Q. Wu, “What Actually Happened to the In-
ventories of American Companies Between 1981 and 2000,” Management Science, 51(7): 1015–1031, July 2005.
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The preceding section explored the basic EOQ model and some of its variations. The results
were dependent upon the assumption of a constant demand rate. When this assumption is
relaxed, i.e., when the amounts that need to be withdrawn from inventory are allowed to vary
from period to period, the EOQ formula no longer ensures a minimum-cost solution.

Consider the following periodic-review model. Planning is to be done for the next
n periods regarding how much (if any) to produce or order to replenish inventory at the be-
ginning of each of the periods. (The order to replenish inventory can involve either purchas-
ing the units or producing them, but the latter case is far more common with applications of
this model, so we mainly will use the terminology of producing the units.) The demands for
the respective periods are known (but not the same in every period) and are denoted by

ri � demand in period i, for i � 1, 2, . . . , n.

These demands must be met on time. There is no stock on hand initially, but there is still
time for a delivery at the beginning of period 1.

The costs included in this model are similar to those for the basic EOQ model:

K � setup cost for producing or purchasing any units to replenish inventory at be-
ginning of period,

c � unit cost for producing or purchasing each unit,

h � holding cost for each unit left in inventory at end of period.

Note that this holding cost h is assessed only on inventory left at the end of a period.
There also are holding costs for units that are in inventory for a portion of the period be-
fore being withdrawn to satisfy demand. However, these are fixed costs that are indepen-
dent of the inventory policy and so are not relevant to the analysis. Only the variable costs
that are affected by which inventory policy is chosen, such as the extra holding costs that
are incurred by carrying inventory over from one period to the next, are relevant for se-
lecting the inventory policy.

By the same reasoning, the unit cost c is an irrelevant fixed cost because, over all the
time periods, all inventory policies produce the same number of units at the same cost.
Therefore, c will be dropped from the analysis hereafter.

The objective is to minimize the total cost over the n periods. This is accomplished
by ignoring the fixed costs and minimizing the total variable cost over the n periods, as
illustrated by the following example.

An Example

An airplane manufacturer specializes in producing small airplanes. It has just received an
order from a major corporation for 10 customized executive jet airplanes for the use of the
corporation’s upper management. The order calls for three of the airplanes to be delivered

■ 18.4 A DETERMINISTIC PERIODIC-REVIEW MODEL

Still another emphasis is on improving the production process to guarantee good quality.
Providing just the right number of units just in time does not provide any leeway for in-
cluding defective units.

In more general terms, the focus of the just-in-time philosophy is on avoiding waste
wherever it might occur in the production process. One form of waste is unnecessary in-
ventory. Others are unnecessarily large setup costs, unnecessarily long lead times,
production facilities that are not operational when they are needed, and defective items.
Minimizing these forms of waste is a key component of superior inventory management.

18.4 A DETERMINISTIC PERIODIC-REVIEW MODEL 815
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816 CHAPTER 18 INVENTORY THEORY

(and paid for) during the upcoming winter months (period 1), two more to be delivered
during the spring (period 2), three more during the summer (period 3), and the final two
during the fall (period 4).

Setting up the production facilities to meet the corporation’s specifications for these
airplanes requires a setup cost of $2 million. The manufacturer has the capacity to produce
all 10 airplanes within a couple of months, when the winter season will be under way.
However, this would necessitate holding seven of the airplanes in inventory, at a cost of
$200,000 per airplane per period, until their scheduled delivery times. To reduce or elim-
inate these substantial holding costs, it may be worthwhile to produce a smaller number of
these airplanes now and then to repeat the setup (again incurring the cost of $2 million) in
some or all of the subsequent periods to produce additional small numbers. Management
would like to determine the least costly production schedule for filling this order.

Thus, using the notation of the model, the demands for this particular airplane dur-
ing the four upcoming periods (seasons) are

r1 � 3, r2 � 2, r3 � 3, r4 � 2.

Using units of millions of dollars, the relevant costs are

K � 2, h � 0.2.

The problem is to determine how many airplanes to produce (if any) during the begin-
ning of each of the four periods in order to minimize the total variable cost.

The high setup cost K gives a strong incentive not to produce airplanes every period
and preferably just once. However, the significant holding cost h makes it undesirable to
carry a large inventory by producing the entire demand for all four periods (10 airplanes) at
the beginning. Perhaps the best approach would be an intermediate strategy where airplanes
are produced more than once but less than four times. For example, one such feasible so-
lution (but not an optimal one) is depicted in Fig. 18.4, which shows the evolution of the
inventory level over the next year that results from producing three airplanes at the begin-
ning of the first period, six airplanes at the beginning of the second period, and one airplane
at the beginning of the fourth period. The dots give the inventory levels after any produc-
tion at the beginning of the four periods.

How can the optimal production schedule be found? For this model in general, pro-
duction (or purchasing) is automatic in period 1, but a decision on whether to produce
must be made for each of the other n � 1 periods. Therefore, one approach to solving this
model is to enumerate, for each of the 2n�1 combinations of production decisions, the

Period

6

5

4

3

2

1

0 1 2 3 4 

Inventory
level

■ FIGURE 18.4
The inventory levels that
result from one sample
production schedule for the
airplane example.
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possible quantities that can be produced in each period where production is to occur. This
approach is rather cumbersome, even for moderate-sized n, so a more efficient method is
desirable. Such a method is described next in general terms, and then we will return to
finding the optimal production schedule for the example. Although the general method
can be used when either producing or purchasing to replenish inventory, we now will only
use the terminology of producing for definiteness.

An Algorithm

The key to developing an efficient algorithm for finding an optimal inventory policy (or
equivalently, an optimal production schedule) for the above model is the following insight
into the nature of an optimal policy.

An optimal policy (production schedule) produces only when the inventory level
is zero.

To illustrate why this result is true, consider the policy shown in Fig. 18.4 for the ex-
ample. (Call it policy A.) Policy A violates the above characterization of an optimal pol-
icy because production occurs at the beginning of period 4 when the inventory level is
greater than zero (namely, one airplane). However, this policy can easily be adjusted to
satisfy the above characterization by simply producing one less airplane in period 2 and
one more airplane in period 4. This adjusted policy (call it B) is shown by the dashed line
in Fig. 18.5 wherever B differs from A (the solid line). Now note that policy B must have
less total cost than policy A. The setup costs (and the production costs) for both policies
are the same. However, the holding cost is smaller for B than for A because B has less in-
ventory than A in periods 2 and 3 (and the same inventory in the other periods). There-
fore, B is better than A, so A cannot be optimal.

This characterization of optimal policies can be used to identify policies that are not
optimal. In addition, because it implies that the only choices for the amount produced at
the beginning of the ith period are 0, ri, ri � ri�1, . . . , or ri � ri�1 � 


 � rn, it can be
exploited to obtain an efficient algorithm that is related to the deterministic dynamic pro-
gramming approach described in Sec. 11.3.

In particular, define

Ci � total variable cost of an optimal policy for periods i, i � 1, . . . , n when
period i starts with zero inventory (before producing), for i � 1, 2, . . . , n.

Period

6

5

4

3

2

1

0 1 2 3 4 

Inventory
level

A

B

B

AA and B A and B

■ FIGURE 18.5
Comparison of two inventory
policies (production
schedules) for the airplane
example.
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818 CHAPTER 18 INVENTORY THEORY

By using the dynamic programming approach of solving backward period by period, these
Ci values can be found by first finding Cn, then finding Cn�1, and so on. Thus, after Cn,
Cn�1, . . . , Ci�1 are found, then Ci can be found from the recursive relationship

Ci � minimum {Cj�1 � K � h[ri�1 � 2ri�2 � 3ri�3 � 


 � ( j � i)rj]},
j�i, i�1, . . . , n

where j can be viewed as an index that denotes the (end of the) period when the inventory
reaches a zero level for the first time after production at the beginning of period i. In the
time interval from period i through period j, the term with coefficient h represents the total
holding cost over this interval. When j � n, the term Cn�1 � 0. The minimizing value of j
indicates that if the inventory level does indeed drop to zero upon entering period i, then the
production in period i should cover all demand from period i through this period j.

The algorithm for solving the model consists basically of solving for Cn, Cn�1, . . . , C1

in turn. For i � 1, the minimizing value of j then indicates that the production in period 1
should cover the demand through period j, so the second production will be in period j � 1.
For i � j � 1, the new minimizing value of j identifies the time interval covered by the sec-
ond production, and so forth to the end. We will illustrate this approach with the example.

The application of this algorithm is much quicker than the full dynamic programming
approach.5 As in dynamic programming, Cn, Cn�1, . . . , C2 must be found before C1 is
obtained. However, the number of calculations is much smaller, and the number of pos-
sible production quantities is greatly reduced.

Application of the Algorithm to the Example

Returning to the airplane example, first we consider the case of finding C4, the cost of
the optimal policy from the beginning of period 4 to the end of the planning horizon:

C4 � C5 � 2 � 0 � 2 � 2.

To find C3, we must consider two cases, namely, the first time after period 3 when
the inventory reaches a zero level occurs at (1) the end of the third period or (2) the end
of the fourth period. In the recursive relationship for C3, these two cases correspond to
(1) j � 3 and (2) j � 4. Denote the corresponding costs (the right-hand side of the recur-
sive relationship with this j) by C3

(3) and C3
(4), respectively. The policy associated with

C3
(3) calls for producing only for period 3 and then following the optimal policy for pe-

riod 4, whereas the policy associated with C3
(4) calls for producing for periods 3 and 4.

The cost C3 is then the minimum of C3
(3) and C3

(4). These cases are reflected by the poli-
cies given in Fig. 18.6.

C3
(3) � C4 � 2 � 2 � 2 � 4.

C3
(4) � C5 � 2 � 0.2(2) � 0 � 2 � 0.4 � 2.4.

C3 � min{4, 2.4} � 2.4.

Therefore, if the inventory level drops to zero upon entering period 3 (so production
should occur then), the production in period 3 should cover the demand for both periods
3 and 4.

To find C2, we must consider three cases, namely, the first time after period 2 when
the inventory reaches a zero level occurs at (1) the end of the second period, (2) the end
of the third period, or (3) the end of the fourth period. In the recursive relationship for C2,

5The full dynamic programming approach is useful, however, for solving generalizations of the model (e.g.,
nonlinear production cost and holding cost functions) where the above algorithm is no longer applicable. (See
Probs. 18.4-3 and 18.4-4 for examples where dynamic programming would be used to deal with generalizations
of the model.)
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these cases correspond to (1) j � 2, (2) j � 3, and (3) j � 4, where the corresponding costs
are C2

(2), C2
(3), and C2

(4), respectively. The cost C2 is then the minimum of C2
(2), C2

(3), and C2
(4).

C2
(2) � C3 � 2 � 2.4 � 2 � 4.4.

C2
(3) � C4 � 2 � 0.2(3) � 2 � 2 � 0.6 � 4.6.

C2
(4) � C5 � 2 � 0.2[3 � 2(2)] � 0 � 2 � 1.4 � 3.4.

C2 � min{4.4, 4.6, 3.4} � 3.4.

Consequently, if production occurs in period 2 (because the inventory level drops to zero),
this production should cover the demand for all the remaining periods.

Finally, to find C1, we must consider four cases, namely, the first time after period 1
when the inventory reaches zero occurs at the end of (1) the first period, (2) the second
period, (3) the third period, or (4) the fourth period. These cases correspond to j � 1, 2,
3, 4 and to the costs C1

(1), C1
(2), C1

(3), C1
(4), respectively. The cost C1 is then the minimum

of C1
(1), C1

(2), C1
(3), and C1

(4).

C1
(1) � C2 � 2 � 3.4 � 2 � 5.4.

C1
(2) � C3 � 2 � 0.2(2) � 2.4 � 2 � 0.4 � 4.8.

C1
(3) � C4 � 2 � 0.2[2 � 2(3)] � 2 � 2 � 1.6 � 5.6.

C1
(4) � C5 � 2 � 0.2[2 � 2(3) � 3(2)] � 0 � 2 � 2.8 � 4.8.

C1 � min{5.4, 4.8, 5.6, 4.8} � 4.8.

Note that C1
(2) and C1

(4) tie as the minimum, giving C1. This means that the policies
corresponding to C1

(2) and C1
(4) tie as being the optimal policies. The C1

(4) policy says to pro-
duce enough in period 1 to cover the demand for all four periods. The C1

(2) policy covers only
the demand through period 2. Since the latter policy has the inventory level drop to zero at the
end of period 2, the C3 result is used next, namely, produce enough in period 3 to cover the
demand for periods 3 and 4. The resulting production schedules are summarized below.

Optimal Production Schedules

1. Produce 10 airplanes in period 1.

Total variable cost � $4.8 million.

2. Produce 5 airplanes in period 1 and 5 airplanes in period 3.

Total variable cost � $4.8 million.

3 4

1

2

3

4

5

0

Inventory level Schedule resulting in C3
(3)

Period 3 4

1

2

3

4

5

0

Inventory level Schedule resulting in C3
(4)

Period

■ FIGURE 18.6
Alternative production
schedules when production 
is required at the beginning
of period 3 for the airplane
example.
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820 CHAPTER 18 INVENTORY THEORY

■ 18.5 DETERMINISTIC MULTIECHELON INVENTORY MODELS
FOR SUPPLY CHAIN MANAGEMENT

Our growing global economy has caused a dramatic shift in inventory management in
recent years. Now, as never before, the inventory of many manufacturers is scattered
throughout the world. Even the inventory of an individual product may be dispersed
globally.

A manufacturer’s inventory may be stored initially at the point or points of manu-
facture (one echelon of the inventory system), then at national or regional warehouses (a
second echelon), then at field distribution centers (a third echelon), and so on. Thus, each
stage at which inventory is held in the progression through a multistage inventory system
is called an echelon of the inventory system. Such a system with multiple echelons of
inventory is referred to as a multiechelon inventory system. In the case of a fully inte-
grated corporation that both manufactures its products and sells them at the retail level,
its echelons will extend all the way to its retail outlets.

Some coordination is needed between the inventories of any particular product at the
different echelons. Since the inventory at each echelon (except the last one) is used to re-
plenish the inventory at the next echelon as needed, the inventory level currently needed
at an echelon is affected by how soon replenishment will be needed at the various loca-
tions for the next echelon.

The analysis of multiechelon inventory systems is a major challenge. However, con-
siderable innovative research (with roots tracing back to the middle of the 20th century)
has been conducted to develop tractable multiechelon inventory models. With the grow-
ing prominence of multiechelon inventory systems, this undoubtedly will continue to be
a very active area of research.

Another key concept that has emerged in the global economy is that of supply chain
management. This concept pushes the management of a multiechelon inventory system
one step further by also considering what needs to happen to bring a product into the in-
ventory system in the first place. However, as with inventory management, the main pur-
pose still is to win the competitive battle against other companies in bringing the product
to the customers as promptly as possible.

A supply chain is a network of facilities that procure raw materials, transform them
into intermediate goods and then final products, and finally deliver the products to cus-
tomers through a distribution system that includes a multiechelon inventory system. Thus,
a supply chain spans procurement, manufacturing, and distribution. Since inventories are
needed at all these stages, effective inventory management is one key element in manag-
ing the supply chain. To fill orders efficiently, it is necessary to understand the linkages
and interrelationships of all the key elements of the supply chain. Therefore, integrated
management of the supply chain has become a key success factor for some of today’s
leading companies.

To aid in supply chain management, multiechelon inventory models now are likely
to include echelons that incorporate the early part of the supply chain as well as the ech-
elons for the distribution of the finished product. Thus, the first echelon might be the
inventory of raw materials or components that eventually will be used to produce the
product. A second echelon could be the inventory of subassemblies that are produced from
the raw materials or components in preparation for later assembling the subassemblies
into the final product. This might then lead into the echelons for the distribution of the

If you would like to see another example applying this algorithm, one is provided
in the Solved Examples section of the book’s website.
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Founded in 1837, Deere & Company (also commonly
known as John Deere) is a leading worldwide producer
of equipment for agriculture, forestry, and consumer use.
The company sells its products through an international
network of independently owned dealers and retailers.  Its
quarterly worldwide net sales and revenues set a new
record of nearly $11 billion in the second quarter of 2013.

For decades, the Commercial and Consumer Equip-
ment (C&CE) Division of Deere pushed inventories to
the dealers, booked the revenues, and hoped that the
dealers had the right products to sell at the right time.
However, the division had an inventory-to-annual-sales
ratio of 58 percent based on inventories at Deere and at
its dealers in 2001, so inventory costs were getting badly
out of control. Ironically, although dealers had large in-
ventories, they often did not have the right products in
stock.

C&CE’s supply chain managers needed to cut in-
ventory levels while improving product availability and
delivery performance. They had read about inventory op-
timization successes in Fortune, so they hired a leading
OR consulting firm (SmartOps) to tackle this challenge.

With 300 products, 2,500 North American dealers, five
plants and associated warehouses, seven European ware-
houses, and several retailers’ consignment warehouses,
the coordination and optimization of C&CE’s supply
chain was indeed a formidable challenge.

However, SmartOps rose to this challenge very suc-
cessfully by applying state-of-the-art inventory opti-
mization techniques embedded in its multistage inventory
planning and optimization software product to set trust-
worthy targets. C&CE used these targets, together with
appropriate dealer incentives, to transform the operation
of its entire supply chain on an enterprise-wide basis. In
the process, Deere improved its factories’ on-time ship-
ments from 63 percent to 92 percent, while maintaining
customer service levels at 90 percent. By the end of 2004,
the C&CE Division also had exceeded its goal of $1 billion
of inventory reduction or avoidance.

Source: Troyer, L., J. Smith, S. Marshall, E. Yaniv, S. Tayur, M.
Barkman, A. Kaya, and Y. Liu: “Improving Asset Management
and Order Fulfillment at Deere & Company’s C&CE Division,”
Interfaces, 35(1): 76–87, Jan.–Feb. 2005. (A link to this article
is provided on our website, www.mhhe.com/hillier.)

An Application Vignette

finished product, starting with storage at the point or points of manufacture, then at na-
tional or regional warehouses, then at field distribution centers, and so on.

The usual objective for a multiechelon inventory model is to coordinate the invento-
ries at the various echelons so as to minimize the total cost associated with the entire mul-
tiechelon inventory system. This is a natural objective for a fully integrated corporation
that operates this entire system. It might also be a suitable objective when certain eche-
lons are managed by either the suppliers or the customers of the company. The reason is
that a key concept of supply chain management is that a company should strive to develop
an informal partnership relationship with its suppliers and customers that enables them
jointly to maximize their total profit. This often leads to developing mutually beneficial
supply contracts that enable reducing the total cost of operating a jointly managed multi-
echelon inventory system.

The analysis of multiechelon inventory models tends to be considerably more com-
plicated than those for single-facility inventory models considered elsewhere in this
chapter. However, we present two relatively tractable multiechelon inventory models below
that illustrate the relevant concepts.

A Model for a Serial Two-Echelon System

The simplest possible multiechelon inventory system is one where there are only two ech-
elons and only a single installation at each echelon. Figure 18.7 depicts such a system,
where the inventory at installation 1 is used to periodically replenish the inventory at in-
stallation 2. For example, installation 1 might be a factory producing a certain product
with occasional production runs, and installation 2 might be the distribution center for
that product. Alternatively, installation 2 might be the factory producing the product, and
then installation 1 is another facility where the components needed to produce that prod-
uct are themselves either produced or received from suppliers.
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822 CHAPTER 18 INVENTORY THEORY

Since the items at installation 1 and installation 2 may be somewhat different, we will
refer to them as item 1 and item 2, respectively. The units of item 1 and item 2 are de-
fined so that exactly one unit of item 1 is needed to obtain one unit of item 2. For ex-
ample, if item 1 collectively consists of the components needed to produce the final prod-
uct (item 2), then one set of components needed to produce one unit of the final product
is defined as one unit of item 1.

The model makes the following assumptions.

Assumptions for Serial Two-Echelon Model

1. The assumptions of the basic EOQ model (see Sec. 18.3) hold at installation 2. Thus,
there is a known constant demand rate of d units per unit time, an order quantity of
Q2 units is placed in time to replenish inventory when the inventory level drops to zero,
and planned shortages are not allowed.

2. The relevant costs at installation 2 are a setup cost of K2 each time an order is placed
and a holding cost of h2 per unit per unit time.

3. Installation 1 uses its inventory to provide a batch of Q2 units to installation 2 imme-
diately each time an order is received.

4. An order quantity of Q1 units is placed in time to replenish inventory at installation 1
before a shortage would occur.

5. Similarly to installation 2, the relevant costs at installation 1 are a setup cost of K1 each
time an order is placed and a holding cost of h1 per unit per unit time.

6. The units increase in value when they are received and processed at installation 2, so
h1 	 h2.

7. The objective is to minimize the sum of the variable costs per unit time at the two in-
stallations. (This will be denoted by C.)

The word “immediately” in assumption 3 implies that there is essentially zero lead time
between when installation 2 places an order for Q2 units and installation 1 fills that order.
In reality, it would be common to have a significant lead time because of the time needed
for installation 1 to receive and process the order and then to transport the batch to instal-
lation 2. However, as long as the lead time is essentially fixed, this is equivalent to assum-
ing zero lead time for modeling purposes because the order would be placed just in time to
have the batch arrive when the inventory level drops to zero. For example, if the lead time
is one week, the order would be placed one week before the inventory level drops to zero.

Although a zero lead time and a fixed lead time are equivalent for modeling purposes,
we specifically are assuming a zero lead time because it simplifies the conceptualization of
how the inventory levels at the two installations vary simultaneously over time. Figure 18.8
depicts this conceptualization. Because the assumptions of the basic EOQ model hold at in-
stallation 2, the inventory levels there vary according to the familiar saw-tooth pattern first
shown in Fig. 18.1. Each time installation 2 needs to replenish its inventory, installation 1
ships Q2 units of item 1 to installation 2. Item 1 may be identical to item 2 (as in the case
of a factory shipping the final product to a distribution center). If not (as in the case of a
supplier shipping the components needed to produce the final product to a factory), in-
stallation 2 immediately uses the shipment of Q2 units of item 1 to produce Q2 units of
item 2 (the final product). The inventory at installation 2 then gets depleted at the constant

1 2

Inventory at
installation 1

Inventory at
installation 2

■ FIGURE 18.7
A serial two-echelon
inventory system.
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18.5 DETERMINISTIC MULTIECHELON INVENTORY MODELS 823

demand rate of d units per unit time until the next replenishment, which occurs just as the
inventory level drops to 0.

The pattern of inventory levels over time for installation 1 is somewhat more compli-
cated than for installation 2. Q2 units need to be withdrawn from the inventory of instal-
lation 1 to supply installation 2 each time installation 2 needs to add Q2 units to replenish
its inventory. This necessitates replenishing the inventory of installation 1 occasionally, so
an order quantity of Q1 units is placed periodically. Using the same kind of reasoning as
employed in the preceding section (including in Figs. 18.4 and 18.5), the deterministic na-
ture of our model implies that installation 1 should replenish its inventory only at the instant
when its inventory level is zero and it is time to make a withdrawal from the inventory in
order to supply installation 2. The reasoning involves checking what would happen if in-
stallation 1 were to replenish its inventory any later or any earlier than this instant. If the
replenishment were any later than this instant, installation 1 could not supply installation
2 in time to continue following the optimal inventory policy there, so this is unacceptable.
If the replenishment were any earlier than this instant, installation 1 would incur the extra
cost of holding this inventory until it is time to supply installation 2, so it is better to de-
lay the replenishment at installation 1 until this instant. This leads to the following insight:

An optimal policy should have Q1 � nQ2 where n is a fixed positive integer. Furthermore,
installation 1 should replenish its inventory with a batch of Q1 units only when its inven-
tory level is zero and it is time to supply installation 2 with a batch of Q2 units.

This is the kind of policy depicted in Fig. 18.8, which shows the case where n � 3. In
particular, each time installation 1 receives a batch of Q1 units, it simultaneously supplies

Time

Inventory level
at installation 1

Q
1 

− Q
2
 

Q
1 

− 2Q
2

Q
1

Echelon stock, item 1

Installation stock, item 1

Inventory level
at installation 2

0

Installation stock = echelon stock, item 2

Q
2

Time

0
■ FIGURE 18.8
The synchronized inventory
levels at the two installations
when Q1 � 3Q2. The
installation stock is the stock
that is physically being held
at the installation, whereas
the echelon stock includes
both the installation stock
and the stock of the same
item that already is
downstream at the next
installation (if any).
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824 CHAPTER 18 INVENTORY THEORY

installation 2 with a batch of Q2 units, so the amount of stock left on hand (called the in-
stallation stock) at installation 1 becomes (Q1 � Q2) units. After later supplying installa-
tion 2 with two more batches of Q2 units, Fig. 18.8 shows that the next cycle begins with
installation 1 receiving another batch of Q1 units at the same time as when it needs to
supply installation 2 with yet another batch of Q2 units.

The dashed line in the top part of Fig. 18.8 shows another quantity called the echelon
stock for installation 1.

The echelon stock of a particular item at any installation in a multiechelon inventory sys-
tem consists of the stock of the item that is physically on hand at the installation (referred
to as the installation stock) plus the stock of the same item that already is downstream (and
perhaps incorporated into a more finished product) at subsequent echelons of the system.

Since the stock of item 1 at installation 1 is shipped periodically to installation 2, where it
is transformed immediately into item 2, the echelon stock at installation 1 in Fig. 18.8 is
the sum of the installation stock there and the inventory level at installation 2. At time 0,
the echelon stock of item 1 at installation 1 is Q1 because (Q1 � Q2) units remain on hand
and Q2 units have just been shipped to installation 2 to replenish the inventory there. As
the constant demand rate at installation 2 withdraws inventory there accordingly, the ech-
elon stock of item 1 at installation 1 decreases at this same constant rate until the next
shipment of Q1 units is received there. If the echelon stock of item 1 at installation 1 were
to be plotted over a longer period than shown in Fig. 18.8, you would see the same saw-
tooth pattern of inventory levels as in Fig. 18.1.

You will see soon that echelon stock plays a fundamental role in the analysis of
multiechelon inventory systems. The reason is that the saw-tooth pattern of inventory
levels for echelon stock enables using an analysis similar to that for the basic EOQ
model.

Since the objective is to minimize the sum of the variable costs per unit time at the
two installations, the easiest (and commonly used) approach would be to solve separately
for the values of Q2 and Q1 � nQ2 that minimize the total variable cost per unit at
installation 2 and installation 1, respectively. Unfortunately, this approach overlooks (or
ignores) the connections between the variable costs at the two installations. Because the
batch size Q2 for item 2 affects the pattern of inventory levels for item 1 at installation 1,
optimizing Q2 separately without considering the consequences for item 1 does not lead
to an overall optimal solution.

To better understand this subtle point, it may be instructive to begin by optimizing
separately at the two installations. We will do this and then demonstrate that this can lead
to fairly large errors.

The Trap of Optimizing the Two Installations Separately. Let us begin by op-
timizing installation 2 by itself. Since the assumptions for installation 2 fit the basic EOQ
model precisely, the results presented in Sec. 18.3 for this model can be used directly. The
total variable cost per unit time at this installation is

C2 � �
d
Q
K

2

2� � �
h2

2
Q2�.

(This expression for total variable cost differs from the one for total cost given in Sec. 18.3
for the basic EOQ model by deleting the fixed cost, dc, where c is the unit cost of acquir-
ing the item.) The EOQ formula indicates that the optimal order quantity for this installa-
tion by itself is

Q*2� ��
2d

h
K

2

2��,
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so the resulting value of C2 with Q2 � Q*2 is

C*2 � �2dK2h�2�.

Now consider installation 1 with an order quantity of Q1 � nQ2. Figure 18.8 indi-
cates that the average inventory level of installation stock is (n � 1)Q2/2. Therefore, since
installation 1 needs to replenish its inventory with Q1 units every Q1/d � nQ2/d units of
time, the total variable cost per unit time at installation 1 is

C1 � �
n
d
Q
K1

2
� � �

h1(n �
2

1)Q2�.

To find the order quantity Q1 � nQ2 that minimizes C1, given Q2 � Q*2, we need to solve
for the value of n that minimizes C1. Ignoring the requirement that n be an integer, this
is done by differentiating C1 with respect to n, setting the derivative equal to zero (while
noting that the second derivative is positive for positive n), and solving for n, which
yields

n*� �
Q

1

2
*� ��

2d
h
K
1

1�� � ��
K
K

1

2

h
h

2

1
��.

If n* is an integer, then Q1 � n*Q*2 is the optimal order quantity for installation 1, given
Q2 � Q*2. If n* is not an integer, then n* needs to be rounded either up or down to an in-
teger. The rule for doing this is the following.

Rounding Procedure for n*

If n* 	 1, choose n � 1.
If n* � 1, let [n*] be the largest integer � n*, so [n*] � n* 	 [n*] � 1, and then

round as follows.

If �
[

n

n

*
*]
� � �

[n*]

n*
� 1
�, choose n � [n*].

If �
[

n

n

*
*]
� � �

[n*]

n*
� 1
�, choose n � [n*] � 1.

The formula for n* indicates that its value depends on both K1/K2 and h2/h1. If both
of these quantities are considerably greater than 1, then n* also will be considerably greater
than 1. Recall that assumption 6 of the model is that h1 	 h2. This implies that h2/h1 ex-
ceeds 1, perhaps substantially so. The reason assumption 6 usually holds is that item 1
normally increases in value when it gets converted into item 2 (the final product) after
item 1 is transferred to installation 2 (the location where the demand can be met for the
final product). This means that the cost of capital tied up in each unit in inventory (usually
a primary component in holding costs) also will increase as the units move from instal-
lation 1 to installation 2. Similarly, if a production run needs to be set up to produce each
batch at installation 1 (so K1 is large), whereas only a relatively small administrative cost
of K2 is required for installation 2 to place each order, then K1/K2 will be considerably
greater than 1.

The flaw in the above analysis comes in the first step when choosing the order quan-
tity for installation 2. Rather than considering only the costs at installation 2 when doing
this, the resulting costs at installation 1 also should have been taken into account. Let us
turn now to the valid analysis that simultaneously considers both installations by mini-
mizing the sum of the costs at the two locations.

hil23453_ch18_800-876.qxd  1/22/70  7:40 AM  Page 825 Final PDF to printer



826 CHAPTER 18 INVENTORY THEORY

Optimizing the Two Installations Simultaneously. By adding the costs at the
individual installations obtained above, the total variable cost per unit time at the two
installations is

C � C1 � C2 � ��
K
n

1� � K2	�
Q
d

2
� � [(n – 1)h1 � h2]�

Q
2

2�.

The holding costs on the right have an interesting interpretation in terms of the holding
costs for the echelon stock at the two installations. In particular, let

e1 � h1 � echelon holding cost per unit per unit time for installation 1,
e2 � h2 – h1 � echelon holding cost per unit per unit time for installation 2.

Then the holding costs can be expressed as

[(n � 1)h1 � h2] �
Q
2

2� � h1�
nQ

2
2� � (h2 � h1)�

Q
2

2�

� e1�
Q
2

1� � e2�
Q
2

2�,

where Q1/2 and Q2/2 are the average inventory levels of the echelon stock at installa-
tions 1 and 2, respectively. (See Fig. 18.8.) The reason that e2 � h2 – h1 rather than
e2 � h2 is that e1Q1/2 � h1Q1/2 already includes the holding cost for the units of item
1 that are downstream at installation 2, so e2 � h2 – h1 only needs to reflect the value
added by converting the units of item 1 to units of item 2 at installation 2. (This con-
cept of using echelon holding costs based on the value added at each installation will
play an even more important role in our next model where there are more than two
echelons.)

Using these echelon holding costs, we now have

C � ��
K
n

1� � K2	�
Q
d

2
� � (ne1 � e2)�

Q
2

2�.

Differentiating with respect to Q2, setting the derivative equal to zero (while verifying that
the second derivative is positive for positive Q2), and solving for Q2 yields

Q*
2 ���

as the optimal order quantity (given n) at installation 2. Note that this is identical to the
EOQ formula for the basic EOQ model where the total setup cost is K1/n � K2 and the
total unit holding cost is ne1 � e2.

Inserting this expression for Q*
2 into C and performing some algebraic simplification

yields

C � �2d��
K
n

1� � K2�	(ne1 � e2)�.

To solve for the optimal value of the order quantity at installation 1, Q1 � nQ*2, we need
to find the value of n that minimizes C. The usual approach for doing this would be to
differentiate C with respect to n, set this derivative equal to zero, and solve for n. However,
because the expression for C involves taking a square root, doing this directly is not very
convenient. A more convenient approach is to get rid of the square root sign by squaring
C and minimizing C2 instead, since the value of n that minimizes C 2 also is the value
that minimizes C. Therefore, we differentiate C2 with respect to n, set this derivative equal

2d��
K
n

1� � K2	
��

ne1 �e2
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to zero, and solve this equation for n. Since the second derivative is positive for positive n,
this yields the minimizing value of n as

n* � ��
K
K

1

2

e
e

2

1
��.

This is identical to the expression for n* obtained in the preceding subsection except that
h1 and h2 have been replaced here by e1 and e2, respectively. When n* is not an integer,
the procedure for rounding n* to an integer also is the same as described in the preced-
ing subsection.

Obtaining n in this way enables calculating Q*2 with the above expression and then
setting Q*1 � nQ*2.

An Example. To illustrate these results, suppose that the parameters of the model are 

K1 � $1,000, K2 � $100, h1 � $2, h2 � $3, d � 600.

Table 18.1 gives the values of Q*2, n*, n (the rounded value of n*), Q*1, and C* (the re-
sulting total variable cost per unit time) when solving in the two ways described in this
section. Thus, the second column gives the results when using the imprecise approach of
optimizing the two installations separately, whereas the third column uses the valid method
of optimizing the two installations simultaneously.

Note that simultaneous optimization yields rather different results than separate op-
timization. The biggest difference is that the order quantity at installation 2 is nearly twice
as large. In addition, the total variable cost C* is nearly 3 percent smaller. With different
parameter values, the error from separate optimization can sometimes lead to a consider-
ably larger percentage difference in the total variable cost. Thus, this approach provides
a pretty rough approximation. There is no reason to use it since simultaneous optimiza-
tion can be performed just as readily.

A Model for a Serial Multiechelon System

We now will extend the preceding analysis to serial systems with more than two echelons.
Figure 18.9 depicts this kind of system, where installation 1 has its inventory replenished
periodically, then the inventory at installation 1 is used to replenish the inventory at in-
stallation 2 periodically, then installation 2 does the same for installation 3, and so on
down to the final installation (installation N). Some or all of the installations might be
processing centers that process the items received from the preceding installation and
transform them into something closer to the finished product. Installations also are used
to store items until they are ready to be moved to the next processing center or to the next
storage facility that is closer to the customers for the final product. Installation N does
any needed final processing and also stores the final product at a location where it can
immediately meet the demand for that product on a continuous basis.

■ TABLE 18.1 Application of the serial two-echelon model to the example

Separate Optimization Simultaneous Optimization
Quantity of the Installations of the Installations

Q*
2 200 379

n* �15� �5�
n 4 2

Q*
1 800 758

C* $1,950 $1,897
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Since the items may be somewhat different at the different installations as they are
being processed into something closer to the finished product, we will refer to them as
item 1 while they are at installation 1, item 2 while at installation 2, and so forth. The
units of the different items are defined so that exactly one unit of the item from one in-
stallation is needed to obtain one unit of the next item at the next installation.

Our model for a serial multiechelon inventory system is a direct generalization of the
preceding one for a serial two-echelon inventory system, as indicated by the following as-
sumptions for the model.

Assumptions for Serial Multiechelon Model

1. The assumptions of the basic EOQ model (see Sec. 18.3) hold at installation N. Thus,
there is a known constant demand of d units per unit time, an order quantity of QN

units is placed in time in replenish inventory when the inventory level drops to zero,
and planned shortages are not allowed.

2. An order quantity of Q1 units is placed in time to replenish inventory at installation 1
before a shortage would occur.

3. Each installation except installation N uses its inventory to periodically replenish the
inventory of the next installation. Thus, installation i (i � 1, 2, . . . , N � 1) provides
a batch of Qi�1 units to installation (i � 1) immediately each time an order is received
from installation (i � 1).

4. The relevant costs at each installation i (i � 1, 2, . . . , N) are a setup cost of Ki each
time an order is placed and a holding cost of hi per unit per unit time.

5. The units increase in value each time they are received and processed at the next in-
stallation, so h1 	 h2 	 � � � 	 hN.

6. The objective is to minimize the sum of the variable costs per unit time at the N in-
stallations. (This will be denoted by C.)

The word “immediately” in assumption 3 implies that there is essentially zero lead
time between when an installation places an order and the preceding installation fills that
order, although a positive lead time that is fixed causes no complication. With zero lead
time, Fig. 18.10 extends Fig. 18.8 to show how the inventory levels would vary
simultaneously at the installations when there are four installations instead of only two.
In this case, Qi � 2Qi�1 for i � 1, 2, 3, so each of the first three installations needs to
replenish its inventory once for every two times it replenishes the inventory of the next
installation. Consequently, when a complete cycle of replenishments at all four installa-
tions begins at time 0, Fig. 18.10 shows an order of Q1 units arriving at installation 1
when the inventory level had been zero. Half of this order then is immediately used to
replenish the inventory at installation 2. Installation 2 then does the same for installation
3, and installation 3 does the same for installation 4. Therefore, at time 0, some of the
units that just arrived at installation 1 get transferred downstream as far as to the last in-
stallation as quickly as possible. The last installation then immediately starts using its
replenished inventory of the final product to meet the demand of d units per unit time
for that product.

1 2 N.    .    .

Inventory at
installation 1

Inventory at
installation 2

Inventory at
installation N

■ FIGURE 18.9
A serial multiechelon
inventory system.
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Recall that the echelon stock at installation 1 is defined as the stock that is physically
on hand there (the installation stock) plus the stock that already is downstream (and perhaps
incorporated into a more finished product) at subsequent echelons of the inventory system.
Therefore, as the dashed lines in Fig. 18.10 indicate, the echelon stock at installation 1 be-
gins at Q1 units at time 0 and then decreases at the rate of d units per unit time until it is
time to order another batch of Q1 units, after which the saw-tooth pattern continues. The
echelon stock at installations 2 and 3 follow the same saw-tooth pattern, but with shorter
cycles. The echelon stock coincides with the installation stock at installation 4, so the ech-
elon stock again follows a saw-tooth pattern there.

Time

Inventory level
(installation 1)

Q
1 

− Q
2

Q
1

Echelon stock

Installation stock

0

Inventory level
(installation 4)

0

Q
4

Time

Time

Q
2

Q
2 

− Q
3

Inventory level
(installation 2)

Q
3

Q
3 

 − Q
4

Time

Inventory level
(installation 3)

0

0

■ FIGURE 18.10
The synchronized inventory
level at four installations 
(N � 4) when Qi � 2Qi�1
(i � 1, 2, 3), where the solid
lines show the levels of the
installation stock and the
dashed lines do the same 
for the echelon stock.
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This saw-tooth pattern in the basic EOQ model in Sec. 18.3 made the analysis par-
ticularly straightforward. For the same reason, it is convenient to focus on the echelon
stock instead of the installation stock at the respective installations when analyzing the
current model. To do this, we need to use the echelon holding costs,

e1 � h1, e2 � h2 – h1, e3 � h3 – h2, . . . , eN � hN – hN – 1,

where ei is interpreted as the holding cost per unit per unit time on the value added by
converting item (i – 1) from installation (i – 1) into item i at installation i.

Figure 18.10 assumes that the replenishment cycles at the respective installations are
carefully synchronized so that, for example, a replenishment at installation 1 occurs at
the same time as some of the replenishments at the other installations. This makes sense
since it would be wasteful to replenish inventory at an installation before that inventory
is needed. To avoid having inventory left over at the end of a replenishment cycle at an
installation, it also is logical to order only enough to supply the next installation an in-
teger number of times.

An optimal policy should have Qi � niQi�1 (i � 1, 2, . . . , N – 1), where ni is a positive
integer, for any replenishment cycle. (The value of ni can be different for different re-
plenishment cycles.) Furthermore, installation i (i � 1, 2, . . . , N – 1) should replenish its
inventory with a batch of Qi units only when its inventory level is zero and it is time to
supply installation (i � 1) with a batch of Qi � 1 units.

A Revised Problem That Is Easier to Solve. Unfortunately, it is surprisingly diffi-
cult to solve for an optimal solution for this model when N � 2. For example, an optimal
solution can have order quantities that change from one replenishment cycle to the next
at the same installation. Therefore, two simplifying approximations normally are made to
derive a solution.

Simplifying Approximation 1: Assume that the order quantity at an installa-
tion must be the same on every replenishment cycle. Thus, Qi � niQi�1 (i � 1,
2, . . . , N – 1), where ni is a fixed positive integer.

Simplifying Approximation 2: ni � 2mi (i � 1, 2, . . . , N – 1), where mi is a
nonnegative integer, so the only values considered for ni are 1, 2, 4, 8, . . . .

In effect, these simplifying approximations revise the original problem by imposing some
new constraints that reduce the size of the feasible region that needs to be considered.
This revised problem has some additional structure (including the relatively simple cyclic
schedule implied by simplifying approximation 2) that makes it considerably easier to
solve than the original problem. Furthermore, it has been shown that an optimal solution
for the revised problem always is nearly optimal for the original problem, because of the
following key result.

Roundy’s 98 Percent Approximation Property: The revised problem is
guaranteed to provide at least a 98 percent approximation of the original problem
in the following sense. The amount by which the cost of an optimal solution for
the revised problem exceeds the cost of an optimal solution for the original prob-
lem never is more than 2 percent (and usually will be much less). Specifically, if

C* � total variable cost per unit time of an optimal solution for the original
problem,

C� � total variable cost per unit time of an optimal solution for the revised problem,

then

C� – C* � 0.02 C*.
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This often is referred to as Roundy’s 98 percent approximation because the formulation
and proof of this fundamental property (which also holds for some more general types of
multiechelon inventory systems) was developed by Professor Robin Roundy of Brigham
Young University.6

One implication of the two simplifying approximations is that the order quantities for
the revised problem must satisfy the weak inequalities,

Q1 � Q2 � 
 
 
 � QN.

The procedure for solving the revised problem has two phases, where these inequalities
play a key role in phase 1. In particular, consider the following variation of both the orig-
inal problem and the revised problem.

A Relaxation of the Problem: Continue to assume that the order quantity at
an installation must be the same on every replenishment cycle. However, replace
simplifying approximation 2 by the less restrictive requirement that Q1 � Q2

� 
 
 
 � QN. Thus, the only restriction on ni in simplifying approximation 1 is
that each ni � 1 (i � 1, 2, . . . , N � 1), without even requiring that ni be an in-
teger. When ni is not an integer, the resulting lack of synchronization between
the installations is ignored. It is instead assumed that each installation satisfies
the basic EOQ model with inventory being replenished when the echelon in-
ventory level reaches zero, regardless of what the other installations do, so that
the installations can be optimized separately.

Although this relaxation is not a realistic representation of the real problem because it ig-
nores the need to coordinate replenishments at the installations (and so understates the
true holding costs), it provides an approximation that is very easy to solve.

Phase 1 of the solution procedure for solving the revised problem consists of solving
the relaxation of the problem. Phase 2 then modifies this solution by reimposing simpli-
fying approximation 2.

The weak inequalities, Qi � Qi�1 (i � 1, 2, . . . , N � 1), allow for the possibility
that Qi � Qi�1. (This corresponds to having mi � 0 in simplifying approximation 2.) As
suggested by Fig. 18.10, if Qi � Qi�1, whenever installation (i � 1) needs to replenish its
inventory with Qi�1 units, installation i needs to simultaneously order the same number
of units and then (after any necessary processing) immediately transfer the entire batch
to installation (i � 1). Therefore, even though these are separate installations in reality,
for modeling purposes, we can treat them as a single combined installation which is placing
one order for Qi � Qi�1 units with a setup cost of Ki � Ki�1 and an echelon holding cost
of ei � ei�1. This merging of installations (for modeling purposes) is incorporated into
phase 1 of the solution procedure.

We describe and outline the two phases of the solution procedure in turn below.

Phase 1 of the Solution Procedure. Recall that assumption 6 for the model indi-
cates that the objective is to minimize C, the total variable cost per unit time for all the
installations. By using the echelon holding costs, the total variable cost per unit time at
installation i is

Ci � �
d
Q
K

i

i�� �
ei

2
Qi�, for i � 1, 2, . . . , N,

so that

C � 

N

i�1
Ci.

6R. Roundy, “A 98%-Effective Lot-Sizing Rule for a Multi-Product, Multi-Stage Production/Inventory System,”
Mathematics of Operations Research, 11: 699–727, 1986.
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832 CHAPTER 18 INVENTORY THEORY

(This expression for Ci assumes that the echelon inventory is replenished just as its level
reaches zero, which holds for the original and revised problems, but is only an approxi-
mation for the relaxation of the problem because the lack of coordination between instal-
lations in setting order quantities tends to lead to premature replenishments.) Note that Ci

is just the total variable cost per unit time for a single installation that satisfies the basic
EOQ model when ei is the relevant holding cost per unit time at the installation. Therefore,
by first solving the relaxed problem, which only requires optimizing the installations sep-
arately (when using echelon holding costs instead of installation holding costs), the EOQ
formula simply would be used to obtain the order quantity at each installation. It turns out
that this provides a reasonable first approximation of the optimal order quantities when
optimizing the installations simultaneously for the revised problem. Therefore, applying
the EOQ formula in this way is the key step in phase 1 of the solution procedure. Phase 2
then applies the needed coordination between the order quantities by applying simpli-
fying approximation 2.

When applying the EOQ formula to the respective installations, a special situation
arises when Ki/ei 	 Ki�1/ei�1, since this would lead to Qi

* 	 Q*
i�1, which is prohibited by

the relaxation of the problem. To satisfy the relaxation, which requires that Qi � Qi�1,
the best that can be done is to set Qi � Qi�1. As described at the end of the preceding
subsection, this implies that the two installations should be merged for modeling purposes.

Outline of Phase 1 (Solve the Relaxation)

1. If �
K
ei

i� 	 �
K
ei

i

�

�

1

1� for any i � 1, 2, . . . , N � 1, treat installations i and i � 1 as a single
merged installation (for modeling purposes) with a setup cost of Ki � Ki�1 and an ech-
elon holding cost of ei � ei�1 per unit per unit time. After the merger, repeat this step
as needed for any other pairs of consecutive installations (which might include a merged
installation). Then renumber the installations accordingly with N reset as the new to-
tal number of installations.

2. Set

Qi � ��
2d

e
K

i

i��, for i � 1, 2, . . . , N.

3. Set

Ci � �
d
Q
K

i

i� � �
ei

2
Qi�, for i � 1, 2, . . . , N,

C
�

� 

N

i�1
Ci.

Phase 2 of the Solution Procedure. Phase 2 now is used to coordinate the order quan-
tities to obtain a convenient cyclic schedule of replenishments, such as the one illustrated in
Fig. 18.10. This is done mainly by rounding the order quantities obtained in phase 1 to fit
the pattern prescribed in the simplifying approximations. After tentatively determining the
values of ni � 2mi such that Qi � niQi�1 in this way, the final step is to refine the value of
QN to attempt to obtain an overall optimal solution for the revised problem.

This final step involves expressing each Qi in terms of QN. In particular, given each
ni such that Qi � niQi�1, let pi be the product,

pi � nini�1 
 
 
 nN�1, for i � 1, 2, . . . , N � 1,

so that

Qi � piQN, for i � 1, 2, . . . , N � 1,

hil23453_ch18_800-876.qxd  1/22/70  7:40 AM  Page 832 Final PDF to printer



18.5 DETERMINISTIC MULTIECHELON INVENTORY MODELS 833

where pN � 1. Therefore, the total variable cost per unit time at all the installations is

C � 

N

i�1
��p

d

iQ
K

N

i� � �
eip

2
iQN��.

Since C includes only the single order quantity QN, this expression also can be interpreted
as the total variable cost per unit time for a single inventory facility that satisfies the ba-
sic EOQ model with a setup cost and unit holding cost of

Setup cost � 

N

i�1
�
d
p
K

i

i�, Unit holding cost � 

N

i�1
eipi.

Hence, the value of QN that minimizes C is given by the EOQ formula as 

Q*
N ���.

Because this expression requires knowing the ni, phase 2 begins by using the value
of QN calculated in phase 1 as an approximation of Q*N, and then uses this QN to deter-
mine the ni (tentatively), before using this formula to calculate Q*N.

Outline of Phase 2 (Solve the Revised Problem)

1. Set Q*N to the value of QN obtained in phase 1.
2. For i � N � 1, N – 2, . . . , 1 in turn, do the following. Using the value of Qi obtained

in phase 1, determine the nonnegative integer value of m such that

2mQ*i�1 � Qi 	 2m�1Q*i�1.

If �
2m

Q
Q

i

i*�1
� � �

2m�

Q

1Q
i

*i�1�, set ni � 2m and Q*i � niQ*i�1.

If �
2m

Q
Q

i

i*�1
� � �

2m�

Q

1Q
i

*i�1�, set ni � 2m+1 and Q*i � niQ*i�1.

3. Use the values of the ni obtained in step 2 and the above formulas for pi and Q*N
to calculate Q*N. Then use this Q*N to repeat step 2.7 If none of the ni change, use
(Q*1, Q*2, . . . , Q*N) as the solution for the revised problem and calculate the cor-
responding cost C�. If any of the ni did change, repeat step 2 (starting with the cur-
rent Q*N) and then step 3 one more time. Use the resulting solution and calculate C�.

This procedure provides a very good solution for the revised problem. Although the
solution is not guaranteed to be optimal, it often is, and if not, it should be close. Since
the revised problem is itself an approximation of the original problem, obtaining such a
solution for the revised problem is very adequate for all practical purposes. Available the-
ory guarantees that this solution will provide a good approximation of an optimal solution
for the original problem.

Recall that Roundy’s 98 percent approximation property guarantees that the cost of an
optimal solution for the revised problem is within 2 percent of C*, the cost of the unknown
optimal solution for the original problem. In practice, this difference usually is far less

2d

N

i�1
�
K
pi

i�

�



N

i�1
eipi

7A possible complication that would prevent repeating step 2 is if QN–1 	 Q*N with this new value of Q*N. If this
occurs, you can simply stop and use the previous value of (Q*1, Q*2, . . . , Q*N) as the solution for the revised
problem. This same provision also applies for a subsequent attempt to repeat step 2.
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than 2 percent. If the solution obtained by the above procedure is not optimal for the re-
vised problem, Roundy’s results still guarantee that its cost C� is within 6 percent of C*.
Again, the actual difference in practice usually is far less than 6 percent and often is con-
siderably less than 2 percent.

It would be nice to be able to check how close C� is on any particular problem even
though C*is unknown. The relaxation of the problem provides an easy way of doing this.
Because the relaxed problem does not require coordinating the inventory replenishments
at the installations, the cost that is calculated for its optimal solution C

�
is a lower bound

on C*. Furthermore, C
�

normally is extremely close to C*. Therefore, checking how close
C� is to C

�
gives a conservative estimate of how close C� must be to C*, as summarized

below.

Cost Relationships: C
�

� C* � C�, so C� � C* � C� � C
�

, where 
C
�

� cost of an optimal solution for the relaxed problem,
C*� cost of an (unknown) optimal solution for the original problem,
C� � cost of the solution obtained for the revised problem.

You will see in the following rather typical example that, because C� � 1.0047C
�

for
the example, it is known that C� is within 0.47 percent of C*.

An Example. Consider a serial system with four installations that have the setup costs
and unit holding costs shown in Table 18.2.

The first step in applying the model is to convert the unit holding cost hi at each in-
stallation into the corresponding unit echelon holding cost ei that reflects the value added
at each installation. Thus,

e1 � h1 � $0.50, e2 � h2 – h1 � $0.05,
e3 � h3 – h2 � $3, e4 � h4 – h3 � $4.

We now can apply step 1 of phase 1 of the solution procedure to compare each Ki/ei

with Ki�1/ei�1.

�
K
e1

1� � 500, �
K
e2

2� � 120, �
K
e3

3� � 10, �
K
e4

4� � 27.5

These ratios decrease from left to right with the exception that

�
K
e3

3� � 10 	 �
K
e4

4� � 27.5,

so we need to treat installations 3 and 4 as a single merged installation for modeling pur-
poses. After combining their setup costs and their echelon holding costs, we now have the
adjusted data shown in Table 18.3.

Using the adjusted data, Table 18.4 shows the results of applying the rest of the so-
lution procedure to this example.

■ TABLE 18.2 Data for the example of a four-echelon 
inventory system

Installation i Ki hi d � 4,000

1 $250 $0.50
2 $6 $0.55
3 $30 $3.55
4 $110 $7.55
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The second and third columns present the straightforward calculations from steps 2
and 3 of phase 1. For step 1 of phase 2, Q3 � 400 in the second column is carried over
to Q*3 � 400 in the fourth column. For step 2, we find that

21Q*3 	 Q2 	 22Q*3

since

2(400) � 800 	 980 	 4(400) � 1600.

Because

�
2
Q
1Q

2

*3
� � �

9
8
8
0
0
0

� 	 �
1
9
6
8
0
0
0

� � �
2
Q

2Q*3
2

�,

we set n2 � 21 � 2 and Q*2 � n2Q*3 � 800. Similarly, we set n1 � 21 � 2 and Q*1 �
n1Q*2 � 1,600, since

2(800) � 1,600 	 2,000 	 4(800)� 3,200 and �
2
1
,
,
0
6
0
0
0
0

� 	 �
3
2
,
,
2
0
0
0
0
0

�.

After calculating the corresponding Ci, the fourth and fifth columns of the table summa-
rize these results from applying only steps 1 and 2 of phase 2.

The last two columns of the table then summarize the results from completing the
solution procedure by applying step 3 of phase 2. Since p1 � n1n2 � 4 and p2 � n2 � 2,
the formula for Q*N yields Q*3 � 425 as the value of Q3 that is part of the overall optimal
solution for the revised problem. Repeating step 2 with this new Q*3 again yields n2 � 2
and n1 � 2, so Q*2 � n2Q*3 � 850 and Q*1 � n1Q*2 � 1,700. Because n2 and n1 did not
change from the first time through step 2, we indeed now have the desired solution for
the revised problem, so the Ci are calculated accordingly. (This solution is, in fact, opti-
mal for the revised problem.)

Keep in mind that the original installations 3 and 4 have been merged only for modeling
purposes. They presumably will continue to be physically separate installations. Therefore, the

■ TABLE 18.3 Adjusted data for the four-echelon 
example after merging installations 
3 and 4 for modeling purposes

Installation i Ki ei d � 4,000

1 $250 $0.50
2 $6 $0.05
3(� 4) $140 $7

■ TABLE 18.4 Results from applying the solution procedure 
to the four-echelon example

Solution of Initial Solution of Final Solution of
Relaxed Problem Revised Problem Revised Problem

Installation i Qi Ci Qi
* Ci Qi

* Ci

1 2,000 $1,000 1,600 $1,025 1,700 $1,013
2 980 $49 800 $50 850 $49
3(� 4) 400 $2,800 400 $2,800 425 $2,805

C
�

� $3,849 C � $3,875 C� � $3,867
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conclusion in the sixth column of the table that Q*3 � 425 actually means that both installa-
tions 3 and 4 will have an order quantity of 425. As soon as installation 3 receives and processes
each such order, it then will immediately transfer the entire batch to installation 4.

The bottom of the third, fifth, and seventh columns of the table show the total vari-
able cost per unit time for the corresponding solutions. The cost C in the fifth column
is 0.68 percent above C

�
in the third column, whereas C� in the seventh column is only

0.47 percent above C
�

. Since C
�

is a lower bound on C*, the cost of the (unknown) opti-
mal solution for the original problem, this means that stopping after step 2 of phase 2 pro-
vided a solution that is within 0.68 percent of C*, whereas the refinement from going on
to step 3 of phase 2 improved the solution to within 0.47 percent of C*.

Extensions of These Models

The two models presented previously in this section are both for serial inventory systems. As
depicted earlier in Fig. 18.9, this restricts each installation (after the first one) to having only
a single immediate predecessor that replenishes its inventory. By the same token, each instal-
lation (before the last one) replenishes the inventory of only a single immediate successor.

Many real multiechelon inventory systems are more complicated than this. An in-
stallation might have multiple immediate successors, such as when a factory supplies
multiple warehouses or when a warehouse supplies multiple retailers. Such an inventory
system is called a distribution system. Figure 18.11 shows a typical distribution inven-
tory system for a particular product. In this case, this product (among others) is produced
at a single factory, which sets up a quick production run each time it needs to replenish
its inventory of the product. This inventory is used to supply several warehouses in dif-
ferent regions, replenishing their inventories of the product when needed. Each of these
warehouses in turn supply several retailers within its region, replenishing their invento-
ries of the product when needed. If each retailer has (roughly) a known constant demand
rate for the product, an extension of the serial multiechelon model can be formulated for
this distribution inventory system. (We will not pursue this further.)

Inventory
at a factory

Inventories
at warehouses

Inventories
at retailers

1

2

3

4

5

6

7

8

9

10

11

■ FIGURE 18.11
A typical distribution
inventory system.
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Another common generalization of a serial multiechelon inventory system arises when
some installations have multiple immediate predecessors, such as when a subassembly
plant receives its components from multiple suppliers or when a factory receives its sub-
assemblies from multiple subassembly plants. Such an inventory system is called an
assembly system. Figure 18.12 shows a typical assembly inventory system. In this case,
a particular product is assembled at an assembly plant, drawing on inventories of sub-
assemblies maintained there to assemble the product. Each of these inventories of a sub-
assembly is replenished when needed by a plant that produces that subassembly, drawing
on inventories of components maintained there to produce the subassembly. In turn, each
of these inventories of a component is replenished when needed by a supplier that peri-
odically produces this component to replenish its own inventory. Under the appropriate
assumptions, another extension of the serial multiechelon model can be formulated for
this assembly inventory system.

Some multiechelon inventory systems also might include both installations that have
multiple immediate successors and installations that have multiple immediate predecessors.
(Some installations might even fall into both categories.) Some of the greatest challenges
of supply chain management come from dealing with these mixed kinds of multiechelon
inventory systems. A particular challenge arises when separate organizations (e.g., sup-
pliers, a manufacturer, and retailers) control different parts of a multiechelon inventory
system, whether it be a mixed system, a distribution system, or an assembly system. In
this case, a key principle of successful supply chain management is that the organizations
should work together, including through the development of mutually beneficial supply
contracts, to optimize the overall operation of the multiechelon inventory system.

Although the analysis of distribution systems and assembly systems presents some ad-
ditional complications, the approach presented here for the serial multiechelon model (in-
cluding Roundy’s 98 percent approximation property) can be extended to these other kinds
of multiechelon inventory systems as well. Details are provided by Selected Reference 9.
(Also see Selected Reference 1 for additional information about these kinds of inventory
systems, as well as for further details about the models for serial systems.)
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Inventories
at suppliers

Inventories
at subassembly plants

Inventory
at an assembly plant

■ FIGURE 18.12
A typical assembly inventory
system.
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838 CHAPTER 18 INVENTORY THEORY

Another way to extend our serial multiechelon model is to allow the demand for the
product at installation N to occur randomly rather than at a known constant demand rate.
This is an area of ongoing research.8

In more general terms, the study of multiechelon inventory systems currently is a par-
ticularly active area of research. In this era of an increasingly global economy and a grow-
ing need for effective supply management on a global scale, multiechelon inventory sys-
tems will continue to increase in importance.

■ 18.6 A STOCHASTIC CONTINUOUS-REVIEW MODEL

We now turn to stochastic inventory models, which are designed for analyzing inventory
systems where there is considerable uncertainty about future demands. In this section, we
consider a continuous-review inventory system. Thus, the inventory level is being moni-
tored on a continuous basis so that a new order can be placed as soon as the inventory
level drops to the reorder point.

The traditional method of implementing a continuous-review inventory system was
to use a two-bin system. All the units for a particular product would be held in two bins.
The capacity of one bin would equal the reorder point. The units would first be withdrawn
from the other bin. Therefore, the emptying of this second bin would trigger placing a
new order. During the lead time until this order is received, units would then be with-
drawn from the first bin.

In more recent years, two-bin systems have been largely replaced by computerized
inventory systems. Each addition to inventory and each sale causing a withdrawal are
recorded electronically, so that the current inventory level always is in the computer. (For
example, the modern scanning devices at retail store checkout stands may both itemize
your purchases and record the sales of stable products for purposes of adjusting the cur-
rent inventory levels.) Therefore, the computer will trigger a new order as soon as the in-
ventory level has dropped to the reorder point. Several excellent software packages are
available from software companies for implementing such a system.

Because of the extensive use of computers for modern inventory management, con-
tinuous-review inventory systems have become increasingly prevalent for products that
are sufficiently important to warrant a formal inventory policy.

A continuous-review inventory system for a particular product normally will be based
on two critical numbers:

R � reorder point.
Q � order quantity.

For a manufacturer managing its finished products inventory, the order will be for a produc-
tion run of size Q. For a wholesaler or retailer (or a manufacturer replenishing its raw mate-
rials inventory from a supplier), the order will be a purchase order for Q units of the product.

An inventory policy based on these two critical numbers is a simple one.

Inventory policy: Whenever the inventory level of the product drops to R units,
place an order for Q more units to replenish the inventory.

8For example, see H. K. Shang and L.-S. Song, “Newsvendor Bounds and Heuristic for Optimal Policies in Se-
rial Supply Chains,” Management Science, 49(5): 618–638, May 2003. Also see X. Chao and S. X. Zhou, “Prob-
abilistic Solution and Bounds for Serial Inventory Systems with Discounted and Average Costs,” Naval Research
Logistics, 54(6): 623–631, Sept. 2007.
9For example, see M. Zhang, S. Kücükyavuz, and H. Yaman, “A Polyhedral Study of Multiechelon Lot Sizing
with Intermediate Demands,” Operations Research, 60(4): 918-935, July-August 2012. Also see W. T. Huh and
G. Janakiraman, “Technical Note – On Optimal Policies for Inventory Systems with Batch Ordering,” 60(4):
797–802, July–August 2012.
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Such a policy is often called a reorder-point, order-quantity policy, or (R, Q) policy for
short. [Consequently, the overall model might be referred to as the (R, Q) model. Other vari-
ations of these names, such as (Q, R) policy, (Q, R) model, etc., also are sometimes used.]

After summarizing the model’s assumptions, we will outline how R and Q can be
determined.

The Assumptions of the Model

1. Each application involves a single product.
2. The inventory level is under continuous review, so its current value always is known.
3. An (R, Q) policy is to be used, so the only decisions to be made are to choose R and Q.
4. There is a lead time between when the order is placed and when the order quantity

is received. This lead time can be either fixed or variable.
5. The demand for withdrawing units from inventory to sell them (or for any other

purpose) during this lead time is uncertain. However, the probability distribution of
demand is known (or at least estimated).

6. If a stockout occurs before the order is received, the excess demand is backlogged,
so that the backorders are filled once the order arrives.

7. A fixed setup cost (denoted by K ) is incurred each time an order is placed.
8. Except for this setup cost, the cost of the order is proportional to the order quantity Q.
9. A certain holding cost (denoted by h) is incurred for each unit in inventory per unit time.

10. When a stockout occurs, a certain shortage cost (denoted by p) is incurred for each
unit backordered per unit time until the backorder is filled.

This model is closely related to the EOQ model with planned shortages presented in
Sec. 18.3. In fact, all these assumptions also are consistent with that model, with the one
key exception of assumption 5. Rather than having uncertain demand, that model assumed
known demand with a fixed rate.

Because of the close relationship between these two models, their results should be
fairly similar. The main difference is that, because of the uncertain demand for the current
model, some safety stock needs to be added when setting the reorder point to provide some
cushion for having well-above-average demand during the lead time. Otherwise, the trade-
offs between the various cost factors are basically the same, so the order quantities from
the two models should be similar.

Choosing the Order Quantity Q

The most straightforward approach to choosing Q for the current model is to simply use the
formula given in Sec. 18.3 for the EOQ model with planned shortages. This formula is

Q � ��
2d

h
K
�� ��

p �

p
h

��,

where d now is the average demand per unit time, and where K, h, and p are defined in
assumptions 7, 9, and 10, respectively.

This Q will be only an approximation of the optimal order quantity for the current model.
However, no formula is available for the exact value of the optimal order quantity, so an ap-
proximation is needed. Fortunately, the approximation given above is a fairly good one.10

10For further information about the quality of this approximation, see S. Axsäter, “Using the Deterministic EOQ
Formula in Stochastic Inventory Control,” Management Science, 42: 830–834, 1996. Also see Y.-S. Zheng, “On
Properties of Stochastic Systems,” Management Science, 38: 87–103, 1992.
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Choosing the Reorder Point R

A common approach to choosing the reorder point R is to base it on management’s desired
level of service to customers. Thus, the starting point is to obtain a managerial decision on
service level. (Problem 18.6-3 analyzes the factors involved in this managerial decision.)

Service level can be defined in a number of different ways in this context, as outlined
below.

Alternative Measures of Service Level

1. The probability that a stockout will not occur between the time an order is placed and
the order quantity is received.

2. The average number of stockouts per year.
3. The average percentage of annual demand that can be satisfied immediately (no

stockout).
4. The average delay in filling backorders when a stockout occurs.
5. The overall average delay in filling orders (where the delay without a stockout is 0).

Measures 1 and 2 are closely related. For example, suppose that the order quantity Q
has been set at 10 percent of the annual demand, so an average of 10 orders are placed
per year. If the probability is 0.2 that a stockout will occur during the lead time until an
order is received, then the average number of stockouts per year would be 10(0.2) � 2.

Measures 2 and 3 also are related. For example, suppose an average of 2 stockouts
occur per year and the average length of a stockout is 9 days. Since 2(9) � 18 days of
stockout per year are essentially 5 percent of the year, the average percentage of annual
demand that can be satisfied immediately would be 95 percent.

In addition, measures 3, 4, and 5 are related. For example, suppose that the average
percentage of annual demand that can be satisfied immediately is 95 percent and the av-
erage delay in filling backorders when a stockout occurs is 5 days. Since only 5 percent
of the customers incur this delay, the overall average delay in filling orders then would
be 0.05(5) � 0.25 day per order.

A managerial decision needs to be made on the desired value of at least one of these
measures of service level. After selecting one of these measures on which to focus pri-
mary attention, it is useful to explore the implications of several alternative values of this
measure on some of the other measures before choosing the best alternative.

Measure 1 probably is the most convenient one to use as the primary measure, so we
now will focus on this case. We will denote the desired level of service under this mea-
sure by L, so

L � management’s desired probability that a stockout will not occur between the
time an order quantity is placed and the order quantity is received.

Using measure 1 involves working with the estimated probability distribution of the
following random variable.

D � demand during the lead time in filling an order.

For example, with a uniform distribution, the formula for choosing the reorder point R is
a simple one.

If the probability distribution of D is a uniform distribution over the interval from
a to b, set

R � a � L(b � a),

because then

P(D � R) � L.
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Since the mean of this distribution is

E(D) � �
a �

2
b

�,

the amount of safety stock (the expected inventory level just before the order quantity is
received) provided by the reorder point R is

Safety stock � R � E(D) � a � L(b � a) � �
a �

2
b

�

� �L � �
1
2

�	(b � a).

When the demand distribution is something other than a uniform distribution, the pro-
cedure for choosing R is similar.

General Procedure for Choosing R under Service Level Measure 1

1. Choose L.
2. Solve for R such that

P(D � R) � L.

For example, suppose that D has a normal distribution with mean � and variance �2,
as shown in Fig. 18.13. Given the value of L, the table for the normal distribution given
in Appendix 5 then can be used to determine the value of R. In particular, you just need
to find the value of K1�L in this table and then plug into the following formula to find R.

R � � � K1�L�.

The resulting amount of safety stock is

Safety stock � R � � � K1�L�.

To illustrate, if L � 0.75, then K1�L � 0.675, so

R � � � 0.675�,

as shown in Fig. 18.13. This provides

Safety stock � 0.675�.

Your OR Courseware also includes an Excel template that will calculate both the
order quantity Q and the reorder point R for you. You need to enter the average demand
per unit time (d ), the costs (K, h, and p), and the service level based on measure 1. You
also indicate whether the probability distribution of the demand during the lead time is

P(D     R)     0.75

R              0.675

Demand

■ FIGURE 18.13
Calculation of the reorder
point R for the stochastic
continuous-review model
when L � 0.75 and the
probability distribution of the
demand over the lead time is
a normal distribution with
mean � and standard
deviation �.
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a uniform distribution or a normal distribution. For a uniform distribution, you specify
the interval over which the distribution extends by entering the lower endpoint and upper
endpoint of this interval. For a normal distribution, you instead enter the mean � and stan-
dard deviation � of the distribution. After you provide all this information, the template
immediately calculates Q and R and displays these results on the right side.

An Example

Consider once again Example 1 (manufacturing speakers for TV sets) presented in Sec. 18.1.
Recall that the setup cost to produce the speakers is K � $12,000, the unit holding cost is 
h � $0.30 per speaker per month, and the unit shortage cost is p � $1.10 per speaker per month.

Originally, there was a fixed demand rate of 8,000 speakers per month to be assem-
bled into television sets being produced on a production line at this fixed rate. However,
sales of the TV sets have been quite variable, so the inventory level of finished sets has
fluctuated widely. To reduce inventory holding costs for finished sets, management has
decided to adjust the production rate for the sets on a daily basis to better match the out-
put with the incoming orders.

Consequently, the demand for the speakers now is also quite variable. There is a lead
time of 1 month between ordering a production run to produce speakers and having speak-
ers ready for assembly into television sets. The demand for speakers during this lead time
is a random variable D that has a normal distribution with a mean of 8,000 and a stan-
dard deviation of 2,000. To minimize the risk of disrupting the production line producing
the TV sets, management has decided that the safety stock for speakers should be large
enough to avoid a stockout during this lead time 95 percent of the time.

To apply the model, the order quantity for each production run of speakers should be

Q � ��
2d

h
K
�� ��

p �
p

h
�� � ��2(8,00�0

0
.
)
3
(1
0
2,0�00)
�� ��

1.1
1
�
.1�0.3
�� � 28,540.

This is the same order quantity that was found by the EOQ model with planned shortages
in Sec. 18.3 for the previous version of this example where there was a constant (rather than
average) demand rate of 8,000 speakers per month and planned shortages were allowed.
However, the key difference from before is that safety stock now needs to be provided to
counteract the variable demand. Management has chosen a service level of L � 0.95, so the
normal table in Appendix 5 gives K1�L � 1.645. Therefore, the reorder point should be

R � � � K1�L� � 8,000 � 1.645(2,000) � 11,290.

The resulting amount of safety stock is

Safety stock � R � � � 3,290.

The Solved Examples section of the book’s website provides another example of the
application of this model when two shipping options with different distributions for the
lead time are available and the less costly option needs to be identified.

■ 18.7 A STOCHASTIC SINGLE-PERIOD MODEL 
FOR PERISHABLE PRODUCTS

When choosing the inventory model to use for a particular product, a distinction should
be made between two types of products. One type is a stable product, which will re-
main sellable indefinitely so there is no deadline for disposing of its inventory. This is
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the kind of product considered in the preceding sections. The other type, by contrast,
is a perishable product, which can be carried in inventory for only a very limited period
of time before it can no longer be sold. This is the kind of product for which the single-
period model (and its variations) presented in this section is designed. In particular, the
single period in the model is the very limited period before the product can no longer
be sold.

One example of a perishable product is a daily newspaper being sold at a newsstand.
A particular day’s newspaper can be carried in inventory for only a single day before it
becomes outdated and needs to be replaced by the next day’s newspaper. When the
demand for the newspaper is a random variable (as assumed in this section), the owner
of the newsstand needs to choose a daily order quantity that provides an appropriate
trade-off between the potential cost of overordering (the wasted expense of ordering more
newspapers than can be sold) and the potential cost of underordering (the lost profit from
ordering fewer newspapers than can be sold). This section’s model enables solving for
the daily order quantity that would maximize the expected profit.

Because the general problem being analyzed fits this example so well, the problem
is often called the newsvendor problem. However, it has always been recognized that the
model being used is just as applicable to other perishable products as to newspapers. In
fact, most of the applications have been to perishable products other than newspapers,
including the examples of perishable products listed below.

Some Types of Perishable Products

As you read through the list below of various types of perishable products, think about
how the inventory management of such products is analogous to a newsstand dealing with
a daily newspaper since these products also cannot be sold after a single time period. All
that may differ is that the length of this time period may be a week, a month, or even sev-
eral months rather than just one day.

1. Periodicals, such as newspapers and magazines.
2. Flowers being sold by a florist.
3. The makings of fresh food to be prepared in a restaurant.
4. Produce, including fresh fruits and vegetables, to be sold in a grocery store.
5. Christmas trees.
6. Seasonal clothing, such as winter coats, where any goods remaining at the end of the

season must be sold at highly discounted prices to clear space for the next season.
7. Seasonal greeting cards.
8. Fashion goods that will be out of style soon.
9. New cars at the end of a model year.

10. Any product that will be obsolete soon.
11. Vital spare parts that must be produced during the last production run of a certain

model of a product (e.g., an airplane) for use as needed throughout the lengthy field
life of that model.

12. Reservations provided by an airline for a particular flight, since the seats available on
the flight can be viewed as the inventory of a perishable product (they cannot be sold
after the flight has occurred).

This last type is a particularly interesting one because major airlines (and various
other companies involved with transporting passengers) now are making extensive use of
operations research to analyze how to maximize their revenue when dealing with this spe-
cial kind of inventory. This special branch of inventory theory (commonly called revenue
management) is the subject of the next section.
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When managing the inventory of these various types of perishable products, it is
occasionally necessary to deal with some considerations beyond those that will be discussed
in this section. Extensive research has been conducted to extend the model to encompass
these considerations, and considerable progress has been made. (Selected References 5,
8, and 10 provide much more information about this.)

An Example

Refer back to Example 2 in Sec. 18.1, which involves the wholesale distribution of a par-
ticular bicycle model. There now has been a new development. The manufacturer has just
informed the distributor that this model is being discontinued. To help clear out its stock,
the manufacturer is offering the distributor the opportunity to make one final purchase at
very favorable terms, namely, a unit cost of only $200 per bicycle. With these special
arrangements, the distributor also would incur no significant setup cost to place this order.

The distributor feels that this offer provides an ideal opportunity to make one final
round of sales to its customers (bicycle shops) for the upcoming Christmas season for a
reduced price of only $450 per bicycle, thereby making a profit of $250 per bicycle. This
will need to be a one-time sale only because this model soon will be replaced by a new
model that will make it obsolete. Therefore, any bicycles not sold during this sale will be-
come almost worthless. However, the distributor believes that she will be able to dispose
of any remaining bicycles after Christmas by selling them for the nominal price of $100
each (the salvage value), thereby recovering half of her purchase cost. Considering this loss
if she orders more than she can sell, as well as the lost profit if she orders fewer than can
be sold, the distributor needs to decide what order quantity to submit to the manufacturer.

Time Inc. is the largest magazine media company in the
United States. With a portfolio of 21 magazines (all avail-
able in print, online, and on tablet in 2013), one out of
every two American adults reads a Time Inc. magazine
each month.

A magazine is a good example of a perishable prod-
uct, given how quickly each issue goes out of date, so the
inventory model described in this section tends to fit mag-
azines as well. From the viewpoint of Time Inc., this
“newsvendor problem” for each magazine arises at three
different levels—the corporate level, the wholesale level,
and the retail level—but with a complication in each case
that is not fully captured by the assumptions of the model.
At the corporate level, a decision must be made about the
number of copies of the magazine to print, but where the
demand for the magazine is largely determined by nego-
tiations with the wholesalers rather than a random vari-
able. Similarly, each wholesaler must decide how many
copies to take, but where the demand it will realize for
the magazine is largely determined by negotiations with
its retailers rather than a random variable. For each re-
tailer, the demand it will realize for the magazine is in-
deed a random variable, but the data needed to make a
reasonable estimate of the probability distribution for the
random variable may not be available. (For example, if

an issue of the magazine sells out before it is time for 
the next issue, the retailer cannot determine what the de-
mand would have been if an adequate supply had been
available.)

With the help of an OR consultant, a task force
drew on research in inventory management to deter-
mine how to better integrate the decisions being made
at the three levels. Building up from the demand at the
grassroots (retail) level, OR analysis was done to make
the best use of the available data to evaluate each mag-
azine’s national print order, the wholesaler allotment
procedure, and the retail distribution process. Well-
known solutions for formal inventory models had to be
adapted so they could be implemented within the con-
straints of the magazine distribution channel. However,
this OR study succeeded in developing a well-designed
new three-echelon distribution process. The adoption of
this new process has resulted in generating incremen-
tal profits in excess of $3.5 million annually for Time
Inc.

Source: M. A. Koschat, G. L. Berk, J. A. Blatt, N. M. Kunz,
M. H. LePore, and S. Blyakher: “Newsvendors Tackle the
Newsvendor Problem,” Interfaces, 33(3): 72–84, May–June
2003. (A link to this article is provided on our website,
www.mhhe.com/hillier.)

An Application Vignette
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The administrative cost incurred by placing this special order for the Christmas sea-
son is fairly small, so this cost will be ignored until near the end of this section.

Another relevant expense is the cost of maintaining unsold bicycles in inventory
until they can be disposed of after Christmas. Combining the cost of capital tied up in
inventory and other storage costs, this inventory cost is estimated to be $10 per bicycle
remaining in inventory after Christmas. Thus, considering the salvage value of $100 as
well, the unit holding cost is �$90 per bicycle left in inventory at the end.

Two remaining cost components still require discussion, the shortage cost and the
revenue. If the demand exceeds the supply, those customers who fail to purchase a bicy-
cle may bear some ill will, thereby resulting in a “cost” to the distributor. This cost is the
per-item quantification of the loss of goodwill times the unsatisfied demand whenever a
shortage occurs. The distributor considers this cost to be negligible.

If we adopt the criterion of maximizing profit, we must include revenue in the model.
Indeed, the total profit is equal to total revenue minus the costs incurred (the ordering,
holding, and shortage costs). Assuming no initial inventory, this profit for the distri-
butor is

Profit � $450 � number sold by distributor
� $200 � number purchased by distributor
� $90 � number unsold and so disposed of for salvage value.

Let

S � number purchased by distributor
� stock (inventory) level after receiving this purchase (since there is no initial

inventory)

and

D � demand by bicycle shops (a random variable),

so that

min{D, S} � number sold,
max{0, S � D} � number unsold.

Then

Profit � 450 min{D, S} � 200S � 90 max{0, S� D}.

The first term also can be written as

450 min{D, S} � 450D � 450 max{0, D � S}.

The term 450 max{0, D � S} represents the lost revenue from unsatisfied demand.
This lost revenue, plus any cost of the loss of customer goodwill due to unsatisfied demand
(assumed negligible in this example), will be interpreted as the shortage cost throughout
this section.

Now note that 450D is independent of the inventory policy (the value of S chosen)
and so can be deleted from the objective function, which leaves

Relevant profit � �450 max{0, D � S} � 200S � 90 max{0, S � D}

to be maximized. All the terms on the right are the negative of costs, where these costs are
the shortage cost, the ordering cost, and the holding cost (which has a negative value here),
respectively. Rather than maximizing the negative of total cost, we instead will do the
equivalent of minimizing
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Total cost � 450 max{0, D � S} � 200S � 90 max{0, S � D}.

More precisely, since total cost is a random variable (because D is a random variable),
the objective adopted for the model is to minimize the expected total cost.

In the discussion about the interpretation of the shortage cost, we assumed that the
unsatisfied demand was lost (no backlogging). If the unsatisfied demand could be met by
a priority shipment, similar reasoning applies. The revenue component of net income would
become the sales price of a bicycle ($450) times the demand minus the unit cost of the
priority shipment times the unsatisfied demand whenever a shortage occurs. If our whole-
sale distributor could be forced to meet the unsatisfied demand by purchasing bicycles
from the manufacturer for $350 each plus an air freight charge of, say, $20 each, then the
appropriate shortage cost would be $370 per bicycle. (If there were any costs associated
with loss of goodwill, these also would be added to this amount.)

The distributor does not know what the demand for these bicycles will be; i.e., demand
D is a random variable. However, an optimal inventory policy can be obtained if infor-
mation about the probability distribution of D is available. Let

PD(d ) � P{D � d}.

It will be assumed that PD(d ) is known for all values of d � 0, 1, 2, . . . .

We now are in a position to summarize the model in general terms, after which we
will return to the example.

The Assumptions of the Model

1. Each application involves a single perishable product.
2. Each application involves a single time period because the product cannot be sold later.
3. However, it will be possible to dispose of any units of the product remaining at the

end of the period, perhaps even receiving a salvage value for the units.
4. There may be some initial inventory on hand going into this time period, as denoted by

I � initial inventory.

5. The only decision to be made is the number of units to order (either through purchasing
or producing) so they can be placed into inventory at the beginning of the period. Thus,

Q � order quantity,
S � stock (inventory) level after receiving this order

� I � Q.

Given I, it will be convenient to use S as the model’s decision variable, which then
automatically determines Q = S – I.

6. The demand for withdrawing units from inventory to sell them (or for any other pur-
pose) during the period is a random variable D. However, the probability distribution
of D is known (or at least estimated).11

11In practice, it commonly is necessary to estimate the probability distribution from a limited amount of past
demand data. Research on how to drop assumption 6 and instead apply the available demand data directly
includes R. Levi, R. O. Roundy, and D. B. Shmoys, “Provably Near-Optimal Sampling-Based Policies for
Stochastic Inventory Control Models,” Mathematics of Operations Research, 32(4): 821–839, Nov. 2007.
Also see L. Y. Chu, J. G. Shanthikumar, and Z.-J. M. Shen, “Solving Operational Statistics Via a Bayesian
Analysis,” Operations Research Letters, 36(1): 110–116, Jan. 2008.
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7. After deleting the revenue if the demand were satisfied (since this is independent of
the decision S), the objective becomes to minimize the expected total cost, where the
cost components are

K � setup cost for purchasing or producing the entire batch of units,

c � unit cost for purchasing or producing each unit,

h � holding cost per unit remaining at end of period (includes storage cost minus
salvage value),

p � shortage cost per unit of unsatisfied demand (includes lost revenue and cost
of loss of customer goodwill).

Analysis of the Model with No Initial Inventory (I � 0)
and No Setup Cost (K � 0)

Before analyzing the model in its full generality, it will be instructive to begin by consider-
ing the simpler case where I � 0 (no initial inventory) and K � 0 (no setup cost). 

The decision on the value of S, the amount of inventory to acquire, depends heavily on
the probability distribution of demand D. More than the expected demand may be desirable,
but probably less than the maximum possible demand. A trade-off is needed between (1) the
risk of being short and thereby incurring shortage costs and (2) the risk of having an excess
and thereby incurring wasted costs of ordering and holding excess units. This is accomplished
by minimizing the expected value (in the statistical sense) of the sum of these costs.

The amount sold is given by

min{D, S} � �
Hence, the cost incurred if the demand is D and S is stocked is given by

C(D, S) � cS � p max{0, D � S} � h max{0, S � D}.

Because the demand is a random variable [with probability distribution PD(d )], this cost
is also a random variable. The expected cost is then given by C(S), where

C(S) � E[C(D, S)] � 

�

d�0
(cS � p max{0, d � S} � h max{0, S � d})PD(d )

� cS � 

�

d�S

p(d � S)PD(d ) � 

S�1

d�0
h( S � d)PD(d ).

The function C(S) depends upon the probability distribution of D. Frequently, a rep-
resentation of this probability distribution is difficult to find, particularly when the demand
ranges over a large number of possible values. Hence, this discrete random variable is often
approximated by a continuous random variable. Furthermore, when demand ranges over
a large number of possible values, this approximation will generally yield a nearly exact
value of the optimal amount of inventory to stock. In addition, when discrete demand is
used, the resulting expressions may become slightly more difficult to solve analytically.
Therefore, unless otherwise stated, continuous demand is assumed throughout the remain-
der of this chapter.

For this continuous random variable D, let

f(x) � probability density function of D

and

F(d) � cumulative distribution function (CDF) of D,

if D 	 S
if D � S.

D
S
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so

F(d) � d

0
f(x) dx.

When choosing an inventory level S, the CDF F(d) becomes the probability that a short-
age will not occur before the period ends. As in the preceding section, this probability is
referred to as the service level being provided by the order quantity. The corresponding
expected cost C(S) is expressed as

C(S) � E[C(D, S)] � �

0
C(x, S) f(x) dx

� �

0
(cS � p max{0, x � S} � h max{0, S � x}) f(x) dx

� cS � �

S
p(x � S) f(x) dx � S

0
h(S � x) f(x) dx.

It then becomes necessary to find the value of S, say S*, which minimizes C( S). Finding
a formula for S* requires a relatively protracted and sophisticated derivation, so we will
only give the answer here. However, the derivation is provided on the book’s website as
Supplement 1 to this chapter for the more mathematically inclined and curious reader.
(This supplement also briefly extends the model to the case where the holding costs and
shortage costs are nonlinear instead of linear functions.)

This supplement shows that the C(S) function has roughly the shape shown in Fig. 18.14,
because it is a convex function (i.e., the second derivative is nonnegative everywhere). In fact,
it is a strictly convex function (i.e., the second derivative is strictly positive everywhere) if
f(x) � 0 for all x � 0. Furthermore, the first derivative becomes positive for sufficiently large
S, so C(S) must possess a global minimum. This global minimum is shown in Fig. 18.14
as S*, so S � S* is the optimal inventory (stock) level to obtain when the order quantity
(Q � S*) is received at the beginning of the period.

In particular, supplement 1 finds that the optimal inventory level S* is that value which
satisfies

F(S*) � �
p
p

�

�

h
c

�.

C(S)

C(S*)

S* S

■ FIGURE 18.14
Graph of C(S), the expected
cost for the stochastic single-
period model for perishable
products as a function of S
(the inventory level when the
order quantity Q � S – I is
received at the beginning of
the period), given that the
initial inventory is I � 0 and
the setup cost is K � 0.
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Thus, F(S*) is the optimal service level and the corresponding inventory level S* can be
obtained either by solving this equation algebraically or by plotting the CDF and then
identifying S* graphically. To interpret the right-hand side of this equation, the numera-
tor can be viewed as

p � c � unit cost of underordering
� decrease in profit that results from failing to order a unit that could have

been sold during the period.

Similarly,

c � h � unit cost of overordering
� decrease in profit that results from ordering a unit that could not be sold

during the period.

Therefore, denoting the unit cost of underordering and of overordering by Cunder and Cover,
respectively, this equation is specifying that

Optimal service level � �
Cund

C
er

u

�
nde

C
r

over
�.

When the demand has either a uniform or an exponential distribution, an automatic
procedure is available in your IOR Tutorial for calculating S*. A similar Excel template
also is included in this chapter’s Excel files on the book’s website.

If D is assumed to be a discrete random variable having the CDF

F(d) � 

d

n�0
PD(n),

a similar result is obtained. In particular, the optimal inventory level S* is the smallest in-
teger such that

F(S*) � �
p
p

�

�

h
c

�.

The Solved Examples section of the book’s website provides another example in-
volving airline overbooking where D is a discrete random variable. The example below
treats D as a continuous random variable.

Application to the Example

Returning to the bicycle example described at the beginning of this section, we assume
that the demand has an exponential distribution with a mean of 10,000, so that its prob-
ability density function is

f(x) � �
and the CDF is

F(d) � d

0
�
10,

1
000
�e�x/10,000 dx � 1 � e�d/10,000.

From the data given,

c � 200, p � 450, h � �90.

if x � 0

otherwise

�
10,

1
000
�e�x/10,000

0
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Consequently, S* (the optimal inventory level to obtain at the outset to begin meeting the
demand) is that value which satisfies

1 � e�S*/10,000 � � 0.69444.

By using the natural logarithm (denoted by ln), this equation can be solved as follows:

e�S*/10,000 � 0.30556,
ln e�S*/10,000 � ln 0.30556,

�
10

�

,0

S

0

*

0
� � �1.1856,

S* � 11,856.

Therefore, the distributor should stock 11,856 bicycles in the Christmas season. Note that
this number is slightly more than the expected demand of 10,000.

Whenever the demand has an exponential distribution with an expected value of �,
then S* can be obtained from the relation

S* � �� ln �
p
c �

�
h
h

�.

Analysis of the Model with Initial Inventory (I � 0)
but No Setup Cost (K � 0)

Now consider the case where I � 0, so there are already I units in inventory going into
the period but prior to the receipt of the order quantity, Q � S – I. (For example, this case
would arise for the bicycle example if the distributor begins with 500 bicycles before plac-
ing an order, so I � 500.) We continue to assume that K � 0 (no setup cost).

Let

C�(S) � expected cost for the model for any value of I and K (including the current
assumption that K � 0), given that S is the inventory level obtained when
the order quantity is received at the beginning of the period,

so the objective is to choose S � I so as to

Minimize C�(S).
S � I

It will be instructive to compare C�(S) with the cost function used in the preceding sub-
section (and plotted in Fig. 18.14),

C(S) � expected cost for the model, given S, when I � 0 and K � 0.

With K � 0,

C�(S) � c(S � I) � 

S
p(x � S) f(x) dx � S

0
h(S � x) f(x) dx.

Thus, C�(S) is identical to C(S) except for the first term, where C(S) has cS instead of
c(S � I). Therefore,

C�(S) � C(S) � cI.

Since I is a constant, this means that C�(S) achieves its minimum at the same value of S*

as for C(S), as shown in Fig. 18.14. However, since S must be constrained to S � I, if
I � S*, Fig. 18.14 indicates that C�(S) would be minimized over S � I by setting S � I
(i.e., do not place an order). This yields the following inventory policy.

450 � 200
450 � 90
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Optimal Inventory Policy with I � 0 and K � 0

If I 	 S*, order S* � I to bring the inventory level up to S*.
If I � S*, do not order,

where S* again satisfies

F(S*) � �
p
p

�
�

h
c

�.

Thus, in the bicycle example, if there are 500 bicycles on hand, the optimal policy is
to bring the inventory level up to 11,856 bicycles (which implies ordering 11,356 addi-
tional bicycles). On the other hand, if there were 12,000 bicycles already on hand, the
optimal policy would be not to order.

Analysis of the Model with a Setup Cost (K � 0)

Now consider the remaining version of the model where K � 0, so a setup cost of K is
incurred for purchasing or producing the entire batch of units being ordered. (For the bi-
cycle example, if an administrative cost of $8,000 would be incurred to place the special
order for the bicycles for the Christmas season, then K � 8,000.) We now will allow any
value of the initial inventory, so I � 0.

With K � 0, the expected cost C�(S), given the value of the decision variable S, is

C�(S) � K � c(S � I) � 

S
p(x � S) f(x) dx � S

0
h(S � x) f(x) dx if an order is 

placed;

C�(S) � 

S
p(x � S) f(x) dx � S

0
h(S � x) f(x) dx if do not order.

Therefore, in comparison with the expected cost function C(S) that is plotted in Fig. 18.14
(which assumes that I � 0 and K � 0),

C�(S) � K � C(S) � cI if an order is placed;
C�(I) � C(I) � cI if do not order.

Because I is a constant, the cI term in both expressions can be ignored for purposes of
minimizing C�(S) over S � I. Consequently, the plot of C(S) in Fig. 18.14 can be used to
determine if an order should be placed and, if so, what value of S should be selected.

This is what is done in Fig. 18.15, where s* is the value of S such that

C(s*) � K � C(S*).

C(S)

SS*

K

s*

■ FIGURE 18.15
The graph of C(S), the
expected cost (given S) for
the stochastic single-period
model when I � 0 and K � 0,
is being used here to
determine the critical points,
s* and S*, of the optimal
inventory policy for the
version of the model where
I � 0 and K � 0.
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Thus,

if I 	 s*, then C(S*) 	 K � C(I), so should order with S � S*;
if I � s*, then C(S) � K � C(I) for any S � I, so should not order.

In other words, if the initial inventory I is less than s*, then expending the setup cost K
is worthwhile because bringing the inventory level up to S* (by ordering S � I) will
reduce the expected remaining cost by more than K when compared with not ordering.
However, if I � s*, then it becomes impossible to recoup the setup cost K by ordering
any amount. (If I � s*, incurring the setup cost K to order S* � s* will reduce the expected
remaining cost by this same amount, so there is no reason to bother ordering.) This leads
to the following inventory policy.

Optimal Inventory Policy with I � 0 and K � 0

If I 	 s*, order S* � I to bring the inventory level up to S*.
If I* � s*, do not order.
(See the shaded boxed formulas for S* and s* given earlier.)

When the demand has either a uniform or an exponential distribution, an automatic
procedure is available in your IOR Tutorial for calculating s* and S*. A similar Excel
template is also included in this chapter’s Excel files on the book’s website.

This kind of policy is referred to as an (s, S) policy. It has had extensive use in 
industry.

An (s, S) policy also is often used when applying stochastic periodic-review models
to stable products, so multiple periods need to be considered. In this case, finding the
optimal inventory policy is somewhat more complicated since the values of s and S may
need to be different for different periods. The second supplement for this chapter on the
book’s website provides the details.

Returning to the current single-period model, we now will illustrate the calculation
of the optimal inventory policy for the bicycle example when K � 0.

Application to the Example

Suppose that the administrative cost of placing the special order for the bicycles for the
upcoming Christmas season is estimated to be $8,000. Thus, the parameters of the model
now are

K � 8,000, c � 200, p � 450, h � �90.

As indicated earlier, the demand for the bicycles is assumed to have an exponential dis-
tribution with a mean of 10,000.

We found earlier for this example that

S* � 11,856.

To find s*, we need to solve the equation,

C(s*) � K � C(S*),

for s*. Plugging twice into the expression for C(S) given in the early part of this section,
with S � s* on the left-hand side of the equation and S � S* � 11,856 on the right-hand
side, the equation becomes

200s* � 450

s*
(x – s*)�

10,
1
000
�e–x/10,000dx – 90s*

0
(s* – x)�

10,
1
000
�e–x/10,000dx
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� 8,000 � 200(11,856) � 450

11,856
(x � 11,856)�

10,
1
000
�e–x/10,000dx 

– 9011,856

0
(11,856 � x)�

10,
1
000
�e–x/10,000dx.

After lengthy calculations to compute the number on the right-hand side and to reduce
the left-hand side to a simpler expression in terms of s*, this equation eventually leads to
the numerical solution,

s* � 10,674.

Thus, the optimal policy calls for bringing the inventory level up to S* � 11,856 bicycles
if the amount on hand is less than s* � 10,674. Otherwise, no order is placed.

An Approximate Solution for the Optimal Policy 
When the Demand Has an Exponential Distribution

As this example has just illustrated, a lengthy calculation is required to solve for s* even
when the demand has a relatively straightforward distribution such as the exponential dis-
tribution. Therefore, given this demand distribution, we now will develop a close ap-
proximation to the optimal inventory policy that is easy to compute.

As described in Sec. 17.4, for an exponential distribution with a mean of 1/�, the
probability density function f(x) and CDF F(x) are

f(x) � �e–�x, for x � 0,
F(x) � 1 – e–�x, for x � 0.

Consequently, since

F(S*) � �
p
p

�

– c
h

�,

we have

1 � e��S*
� �

p
p

�
�

h
c

�, or e��S*
��

(p � h
p
)

�

�

h
(p � c)
�� �

h
h

�

�

p
c

�,

so

S* � �
�
1

� ln �
h
h

�

�

p
c

�

is the exact solution for S*.
To begin developing an approximation for s*, we begin with the exact equation,

C(s*) � K � C(S*).

Since

C(S) � cS � h S

0
(S � x)�e��x dx � p �

S
(x � S)�e��x dx

� (c � h)S � �
�

1
� (h � p)e��S � �

�
h

�.

This equation becomes

(c � h)s* � �
�
1

�(h � p)e��s*
� �

�
h

� � K � (c � h)S* � �
�
1

�(h � p)e��S*
� �

�
h

�,

or (by using the above result for S*)

(c � h)s* � �
�
1

�(h � p)e��s*
� K � (c � h)S* � �

�
1

�(c � h).
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Although this last equation does not have a closed-form solution for s*, it can be solved
numerically. An approximate analytical solution also can be obtained as follows. By letting

� � S* � s*,

and noting that

e��S* � �
h
h

�

�

p
c

�,

the last equation yields

�
�

1
�(h � p) �

e
e

�

�

�

�

S

s*

*� � ,

which reduces to

e�� � �
c
�
�
K

h
� � �� � 1.

If �� is close to zero, e�� can be expanded into a Taylor series around zero. If the terms
beyond the quadratic term are neglected, the result becomes

1 � �� � �
�2

2
�2

� � �
c
�
�
K

h
� � �� � 1,

so that

� � ��
�(c

2
�
K� h)
��.

Therefore, the desired approximation for s* is

s* � S* � ��
�(c

2
�

K�h)
��.

Using this approximation in the bicycle example results in

K � (c � h)Δ � �
�

1
�(c � h)

���
�
h
h

�

�

p
c

�

■ 18.8 REVENUE MANAGEMENT 

The beginning of the preceding section includes a list of 12 examples of perishable prod-
ucts. The last of these examples (reservations provided by an airline for the available in-
ventory of seats on a particular flight) is of considerable historical interest because its
early analysis led the way to a much broader and highly successful application area of
operations research commonly called revenue management.

The starting point for revenue management was the Airline Deregulation Act of
1978, which loosened control of airline fare prices. New low-cost and charter airlines
then entered the market to take advantage. Among the major airlines, American Airlines

so that

s* � 11,856 � 1,206 � 10,650,

which is quite close to the exact value of s* � 10,674.

� � � � 1,206,(2)(10,000)(8,000)
200�90
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InterContinental Hotels Group (IHG) is the world’s
largest hotel group based on the number of rooms.
Through its various subsidiaries, IHG owns, manages, or
franchises over 4500 hotels and more than 650,000 guest
rooms in nearly 100 countries and territories worldwide.

Following the great success of the airline industry with
adopting a wide variety of revenue management tech-
niques (dynamic pricing based on demand, capacity-con-
trolled discount fares, overbooking, etc.), the hotel in-
dustry recognized that it could adopt some of the same
techniques to substantially increase its revenues. An OR
team began development of a sophisticated revenue man-
agement system in January 2008. This system includes
(1) a market response model that describes demand as a

function of price and other driver variables, (2) analyz-
ing the rate policies of competitors, (3) a model for mea-
suring the revenue benefits of various pricing policies,
and (4) a price optimization model. Substantial testing
was done to test various versions of this system before
adopting a final version. Individual hotels now have rev-
enue managers implementing the system with the sup-
port of a corporate revenue management team.

Initial implementation of this system achieved $145 mil-
lion in incremental revenue. This is expected to grow to ap-
proximately $400 million in additional revenue per year.
Source: Koushik, D., J. A. Higbie, and C. Eister: “Retail
Price Optimization at InterContinental Hotels Group, In-
terfaces, 42(1): 45–57, Jan.–Feb. 2012.

An Application Vignette

led the way in fighting back by introducing capacity-controlled discount fares. A limited
number of discount seats were sold on various flights as needed to match or beat the fares
offered by low-cost airlines, but with restrictions that included the requirement that the
purchase must be made by some substantial number of days (initially 30 days) prior to
departure. The usual much-larger fares would still be provided to the airline’s core cus-
tomer class of business travelers, who typically make their reservations well after the dead-
line for discount fares. (The first model in this section deals with this situation.) 

Another of the oldest and most successful practices of revenue management in the airline
industry has been to do overbooking (providing more reservations than the number of seats
available on a flight, to allow for the considerable number of no-shows that usually occur).
The rule of thumb in the industry is that approximately 15 percent of all seats on a flight would
go unoccupied without some form of overbooking. Therefore, a large amount of additional
revenue can be obtained by doing a significant amount of overbooking without incurring an
undue risk of overselling a flight. However, the penalties have become substantial for denying
admission to a flight for someone with a reservation, so careful analysis must be done to
achieve an appropriate trade-off between the additional revenue from overbooking and the risk
of incurring these penalties. (The second model in this section deals with this situation.) 

When implementing revenue management, a large airline needs to process reserva-
tions for many tens of thousands of passengers flying daily. Therefore, while OR models
and algorithms drive revenue management, the other essential component is sophisticated
information technology. Fortunately, advances in information technology by the 1980s
were providing the needed capability to automate transactions, capture and store vast
amounts of data, quickly execute complex algorithms, and then implement and manage
highly detailed revenue management decisions. 

By 1990, the practice of revenue management at American Airlines had been refined
to the point that it was generating nearly $500 million in additional revenue per year. (Se-
lected Reference A8 tells this story.) By that time, other airlines also were scrambling to
develop similar revenue management capabilities. 

As a result of this history, the practice of revenue management in the airline indus-
try today is pervasive, highly developed, and enormously effective. According to page 10
of Selected Reference 12 (the authoritative treatise on the theory and practice of revenue
management), “by most estimates, the revenue gains from the use of revenue management
systems are roughly comparable to many airlines’ total profitability in a good year (about
4 to 5% of revenues).”

The enormous success of revenue management in the airline industry has led various
other service industries with similar characteristics to develop their own revenue management
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systems. These industries include hotels, cruise ship lines, passenger railways, car rental
companies, tour operators, theaters, and sporting venues. Revenue management also is
growing in the retail industry when dealing with highly perishable products (e.g., grocery
retailers), seasonal products (e.g., apparel retailers), and products that quickly become ob-
solete (e.g., high-tech retailers). 

Achieving these outstanding results sometimes requires developing relatively com-
plex revenue management systems with many categories of customers, fares changing over
time, and so forth. The models and algorithms needed to support such systems are also
relatively complex and so are beyond the scope of this book. However, to convey the gen-
eral idea, we now present two basic models for elementary types of revenue management.
The components of each model are described in general terms to fit any kind of company,
but then the airline context is mentioned parenthetically for concreteness. Each model also
is followed by an airline example. 

A Model for Capacity-Controlled Discount Fares 

A company has an inventory of a certain perishable product (such as the seats on an air-
line flight) to sell to two classes of customers (such as the leisure travelers and business
travelers on the flight). The class 2 customers come first to buy single units of the prod-
uct at a discounted price that is designed to help ensure that the entire inventory can be
sold before the product perishes. There is a deadline for requesting the discounted price,
but the company can terminate the special sale at any earlier point whenever it feels that
enough has been sold. After the discounted price is no longer available, the class 1 cus-
tomers begin arriving to buy single units of the product at full price. The probability dis-
tribution of the demand from class 1 customers is assumed to be known. The decision to
be made is how much of the total inventory should be reserved for class 1 customers, so
the discounted price would be discontinued early if the remaining inventory drops to this
level before the announced deadline for the discount is reached. 

The parameters (and random variable) for the model are 

L � size of the inventory of the perishable product available for sale,

p1 � price per unit paid by class 1 customers,

p2 � price per unit paid by class 2 customers, where p2 	 p1,

D � Demand by class 1 customers (a random variable),

F(x) � cumulative distribution function for D, so F(x) � P(D � x). 

The decision variable is 

x � inventory level that must be reserved for class 1 customers. 

The key to solving for the optimal value of x, denoted by x*, is to ask the following
question and then to answer it by performing marginal analysis. 

Question: Suppose that x units remain in inventory prior to the deadline for
requesting the discounted price p2 and a class 2 customer arrives who wishes to
purchase one unit at that price. Should this request be accepted or denied? 

To address the question, we need to compare the incremental revenue (or the statistical
expectation of the incremental revenue) for the two options. 

If accept request, incremental revenue � p2.

If deny request, incremental revenue   � � 0, if D � x �1
p1, if D � x
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so 

E (incremental revenue) � p1 P(D � x).

Therefore, the request to make the sale to the class 2 customer should be accepted if 

p2 > p1 P(D � x) 

and denied otherwise. Now note that P(D � x) decreases as x increases. Thus, if this in-
equality holds for a particular value of x, this value can be increased to the critical point
x* where 

p2 � p1 P(D � x*)     and     p2 � p1 P(D � x* � 1). 

It then follows that the optimal inventory level to reserve for class 1 customers is x*.
Equivalently, the maximum number of units that should be sold to class 2 customers be-
fore discontinuing the discounted price p2 is L � x*. 

Thus far, we have assumed that the customers are buying single units of the product
(such as the seats on an airline flight) so the probability distribution of D would be a dis-
crete distribution. However, when L is large (such as the number of seats on a large airline
flight), it can be much more convenient computationally to use a continuous distribution
as an approximation. There also are perishable products where fractional amounts can be
purchased, so continuous demand distributions would be appropriate anyway. If continu-
ous demand distributions now are assumed, at least as an approximation, it follows from
the above analysis that the optimal inventory level x* to reserve for class 1 customers is
the one that satisfies the equation,

p2 � p1 P(D � x*). 

Since P(D � x*) � 1 � P(D � x*) � 1 � F(x*), this equation also can be written as 

F(x*) � 1 � �p
p
1

2 .

(When a continuous distribution is being used as an approximation but x* that solves these
two equations is not an integer, x* should be rounded down to an integer in order to satisfy
the expressions defining the optimal integer value of x* given at the end of the preceding
paragraph.) This latter equation clearly shows that the ratio of p2 to p1 plays a critical role in
determining the probability that the entire demand of the class 1 customers will be satisfied. 

An Example Applying This Model for Capacity-Controlled Discount Fares 

BLUE SKIES AIRLINES has decided to apply this model to one of its flights. This flight
can accept 200 reservations for seats in the main cabin. (This number includes an al-
lowance for overbooking because there always are some no-shows.) The flight attracts a
large number of business travelers, who typically make their reservations within a few
days of the flight but are willing to pay a relatively high fare of $1,000 for this flexibil-
ity. However, the substantial majority of the passengers need to be leisure travelers in or-
der to fill up the plane. Therefore, to attract enough of these travelers, a very low discount
fare of $200 is offered to passengers who make their reservations at least 14 days in ad-
vance and satisfy certain other restrictions (including no refunds). 

In the terminology of the above model, the class 1 customers are the business travel-
ers and the class 2 customers are the leisure travelers, so the parameters of the model are 

L � 200, p1 � $1,000, p2 � $200. 

Using data on the number of reservations requested by the class 1 customers for each flight
in the past, it is estimated that the probability distribution of the number of reservations
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requested by these customers for each future flight is approximated by a normal distrib-
ution with a mean of µ � 60 and standard deviation � � 20. Thus, this is the distribution
for the random variable D in the model, where F(x) denotes the cumulative distribution
for D. To solve for x*, the optimal number of reservation slots to reserve for class 1 cus-
tomers, we use the equation provided by the model,

F(x*) � 1 � �p
p
1

2 � 1 � $1,000
$200 

� 0.8.

Using the table for a normal distribution provided by Appendix 5 yields 

x* � µ � K0.2 � � 60 � 0.842(20) � 76.84. 

Since x* actually needs to be an integer, it next is rounded down (as specified by the model)
to the integer 76. By reserving 76 spots for customers willing to pay the fare of $1,000 for
a reservation within a few days of the flight, this implies that L � x* � 124 is the maxi-
mum number of reservations that should be sold at the discount fare of $200 before dis-
continuing this fare, even if this occurs before the deadline of 14 days prior to the flight. 

An Overbooking Model 

As with the preceding model, we again are dealing with a company that has an inventory
of a certain perishable product (such as the seats on an airline flight) to sell to its customers.
We no longer make any distinction between different classes of customers. The units in in-
ventory become available only at a certain point in time, so each customer purchases a unit
by making a nonrefundable reservation in advance to acquire the unit at the designated time.
However, not all customers who make a reservation actually arrive on time to acquire their
units. Those customers who fail to arrive at the designated time are referred to as no-shows.

Because the company anticipates that there will be a significant number of no-shows,
it can increase its revenue by doing some overbooking (selling more reservations than the
available inventory). However, care needs to be taken not to do so much overbooking that
there is a substantial probability of incurring shortages (more demand than inventory). The
reason is that there is a shortage cost incurred each time a customer with a reservation ar-
rives on time to acquire a unit of inventory after the inventory has been depleted. For ex-
ample, in the airline industry, a denied-boarding cost is incurred each time a customer with
a reservation for a particular flight is bumped (denied admission to the flight), where this
cost may include any refund of the purchase price, compensation for the inconvenience,
and the cost of the loss of goodwill (lost future bookings). In some cases, this denied-board-
ing cost may consist instead of the compensation provided to a customer who has a seat
but is willing to give it up for another customer who has been denied a seat. 

The basic question addressed by this overbooking model is how much overbooking
should be done so as to maximize the company’s expected profit. The model makes the
following assumptions. 

1. The customers independently make their reservations for a unit of inventory and then have
the same fixed probability of actually arriving at the designated time to acquire the unit. 

2. There is a fixed net revenue obtained for each reservation that is accepted. 
3. There is a fixed shortage cost incurred each time a customer with a reservation arrives

on time to acquire a unit of inventory after the inventory has been depleted. 

Based on these assumptions, the model has the following parameters. 

p � probability that a customer who makes a reservation for a unit of inventory
will actually arrive at the designated time to acquire the unit.

r � net revenue obtained for each reservation that is accepted.

s � shortage cost per unit of unsatisfied demand.
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L � size of the available inventory.

The decision variable for the model is 

n � number of customers that can be given a reservation for a unit of inventory,
so 

n � L � amount of overbooking allowed. 

Given the value of n, the uncertainty is how many of the n customers with reservations for a
unit of inventory will actually arrive at the designated time to acquire this unit. In other words,
what is the demand for withdrawing units from inventory? Denote this random variable by 

D(n) � demand for withdrawing units from inventory. 

It follows from assumption 1 that D(n) has a binomial distribution with parameter p, so 

P{D(n) � d} � � n
d 	 pd (1 � p)n�d � 

d!(n � d)!
n!

pd (1 � p)n�d,

where D(n) has mean np and variance np (1 � p). 
A closely related random variable that will be important in our analysis is the unsat-

isfied demand that will occur when n customers are given a reservation. We denote this
random variable by U(n), so 

U(n) � unsatisfied demand � �
and 

E(U(n)) � 

n

d�L+1
(d � L) P{D(n) � d}.

We will be using marginal analysis (the analysis of the effect of increasing the value of
the decision variable n by 1) to determine the optimal value of n that maximizes expected
profit, so we will need to know the effect on E(U(n)) of increasing the value of n by 1.
Starting with n reservations, the effect of adding on one more reservation is to add 1 to
the unsatisfied demand only if both of two events occur. One necessary event is that the
original n reservations result in depleting the entire inventory, i.e., D(n) � L, and the other
required event is that the customer given the additional reservation actually will arrive at
the designated time to attempt to acquire a unit of inventory. Otherwise, there is no effect
on the unsatisfied demand. Consequently,

�E(U(n)) � E(U(n � 1)) � E(U(n)) � p P{D(n) � L} 

The value of �E(U(n)) depends on the value of n since P{D(n) � L}, the probability
of depleting the inventory, depends on n, the number of reservations. For n 	 L,
�E(U(n)) � 0, whereas �E(U(n)) increases as n increases further since the probability
of depleting the inventory increases as the number of reservations increases. 

The final random variable of interest is the company’s profit that will occur when n
customers are given a reservation. We denote this random variable by P(n), so 

P(n) � profit � r n � s U(n) 

E(P(n)) � r n � s E(U(n)),

�E(P(n)) � E(P(n � 1)) � E(P(n)) � r � s �E(U(n)) � r � s p P{D(n) � L}. 

As just noted above, �E(U(n)) � 0 for n 	 L, whereas �E(U(n)) increases as n increases
further. Therefore, �E(P(n)) � 0 for relatively small values of n and then (assuming that

0, if D(n) � L
D(n) � L, if D(n) > L
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r 	 s p) will switch to �E(P(n)) 	 0 for sufficiently large values of n. It then follows
that n*, the value of n that maximizes E(P(n)), is the one that satisfies 

�E(P(n* � 1)) � 0      and      �E(P(n*)) � 0,

or equivalently,

r > s p P{D(n* � 1) � L}    and     r � s p P{D(n*) � L}. 

Since D(n) has a binomial distribution, it is straightforward (albeit very tedious compu-
tationally) to solve for n* in this way. 

When L is large, it is particularly tedious to use the binomial distribution to perform
these calculations. Therefore, it is common in practice to use the normal approximation
of the binomial distribution for this application (as well as many others). In particular, the
normal distribution with mean n p and variance n p (1 � p) frequently is used as a con-
tinuous approximation of the binomial distribution with parameters n and p, since the
latter distribution has this same mean and variance. With this approach, we now assume
that D(n) has this normal distribution and treat n as a continuous decision variable. The
optimal value of n then is given approximately by the equation,

r � s p P{D(n* � L}, i.e., P{D(n*) � L} � �sp
r

By using the table for a normal distribution given in Appendix 5, it is straightforward to
calculate n*, as will be illustrated by the following example. If n* is not an integer, it next
should be rounded up to an integer in order to satisfy the expressions defining the opti-
mal integer value of n* given at the end of the preceding paragraph. 

An Example Applying This Overbooking Model

TRANSCONTINENTAL AIRLINES has a daily flight (excluding weekends) from San
Francisco to Chicago that is mainly used by business travelers. There are 150 seats avail-
able in the single cabin. The average fare per seat is $300. This is a nonrefundable fare,
so no-shows forfeit the entire fare. 

The company’s policy is to accept 10 percent more reservations than the number of
seats available on nearly all its flights, since roughly 10 percent of all its customers mak-
ing reservations end up being no-shows. However, if its experience with a particular flight
is much different from this, then an exception can be made and the OR group is called in
to analyze what the overbooking policy should be for that particular flight. This is what
has just happened regarding the daily flight from San Francisco to Chicago. Even when
the full quota of 165 reservations has been reached (which happens for most of the flights),
there usually has been a significant number of empty seats. While gathering its data, the
OR group has discovered the reason why. Only 80 percent of the customers who make
reservations for this flight actually show up to take the flight. The other 20 percent forfeit
the fare (or, in most cases, allow their company to do so) because their plans have changed. 

When a customer is bumped from this flight, Transcontinental Airlines arranges to
put the customer on the next available flight to Chicago on another airline. The company’s
average cost for doing this is $200. In addition, the company gives the customer a voucher
worth $400 (but would cost the company just $300) for use on a future flight. The com-
pany also feels that an additional $500 should be assessed for the intangible cost of a loss
of goodwill on the part of the bumped customer. Therefore, the total cost of bumping a
customer is estimated to be $1,000. 

The OR group now wants to apply the overbooking model to determine how many
reservations should be accepted for this flight. Using the data described above, the para-
meters of the model are 
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p � 0.8, r � $300, s � $1,000, L � 150. 

Because L is so large, the group decides to use the normal approximation of the binomial
distribution. Therefore, this approximation of n*, the optimal number of reservations to
accept, is found by solving the equation,

P{D(n*) � 150} � �sp
r  

� 0.375,

where D(n*) has the normal distribution with mean µ � n p � 0.8n and variance 
�2 � np(1 � p) � 0.16n, so � � 0.4�n�. Using the table for a normal distribution given
in Appendix 5, since � � 0.375 and K� � 0.32,

150 � µ

�
�

150 � 0.

0.4�n�
8n

� 0.32,

which reduces to 

0.8n � 0.128 �n� � 150 � 0.

Solving for �n� in this quadratic equation yields 

�n� �
�0.128 � (0.128)

1.6

2 � 4(0.8)(�150)
� 13.6,

which then gives 

n* � (13.6)2 � 184.96.

Since x* actually needs to be an integer, it next is rounded up (as specified by the model)
to the integer 185.12 The conclusion is that the number of reservations to accept for this
flight should be increased from 165 to 185. 

The resulting demand D(185) will have a mean of 0.8(185) � 148 and a standard de-
viation of 0.4 �185��� � 5.44. Thus, Transcontinental Airlines now should be able to nearly
or completely fill the 150 seats of the airplane, without an undue frequency of bumping
customers, whenever the number of reservation requests reaches 185. Therefore, the new
policy of increasing the number of reservations accepted from 165 to 185 should sub-
stantially increase the company’s profits from this flight. 

Other Models 

A variety of models are used for various types of revenue management. These models fre-
quently incorporate some of the ideas introduced in the two models presented in this
section. However, the models used in practice frequently must also incorporate some ad-
ditional features that are not considered in these two basic models. Here is a list of some
practical considerations that may need to be taken into account:

• Different levels of service being provided (e.g., a first class cabin, a business section,
and an economy section on the same airline flight). 

• Different prices charged for the same service (e.g., discounts for seniors, children, stu-
dents, employees, etc.). 

• Different prices charged for the same service based on how much (if any) of it is re-
fundable with an early cancellation. 

12One step in obtaining this solution of 185 was reading the value of K� = 0.32 to two decimal places from the
normal table. However, if interpolation is used to carry K� to additional decimal places, the solution from the
model will change to 186. Using the binomial distribution directly instead of the normal approximation also
leads to a solution of 186.
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• Dynamic pricing based on when the reservation is made and how well the demand is
approaching the capacity. 

• Varying the overbooking level based on the remaining time and expected cancellations
until the service will be provided.

• Having a nonlinear shortage cost for overbooking (e.g., the first few customers may vol-
untarily accept modest compensation to forego the service but then it gets more costly). 

• Customers buy bundles of services in combination under various terms and conditions
(e.g., airline customers arranging a set of connecting flights or hotel customers stay-
ing multiple nights). 

• Customers purchase multiple units (e.g., couples or families or tour groups traveling
together).

Incorporating these and other practical considerations into more sophisticated models
as needed is a real challenge. However, outstanding progress has been made by numer-
ous OR researchers and practitioners. This has become one of the most exciting areas of
application of operations research. Further elaboration is beyond the scope of this book,
but details can be found in Selected Reference 12 and its 591 references. (An upcoming
2nd edition of Selected Reference 12 will update the current state of the art.) 

■ 18.9 CONCLUSIONS

We have introduced only rather basic kinds of inventory models here, but they serve the
purpose of introducing the general nature of inventory models. Furthermore, they are suf-
ficiently accurate representations of many actual inventory situations that they frequently
are useful in practice. For example, the EOQ models have been particularly widely used.
These models are sometimes modified to include some type of stochastic demand, such
as the stochastic continuous-review model does. The stochastic single-period model is a
very convenient one for perishable products. The elementary revenue management mod-
els in Sec. 18.8 are a starting point for the sophisticated kinds of revenue management
analysis that now is extensively applied in the airline industry and other service industries
with similar characteristics.

In today’s global economy, multiechelon inventory models (such as those introduced
in Sec. 18.5) are playing an increasingly important role in helping to manage a company’s
supply chain.

Nevertheless, many inventory situations possess complications that are not taken into
account by the models in this chapter, e.g., interactions between products or complicated
types of multiechelon inventory systems. More complex models have been formulated in
an attempt to fit such situations, but it is difficult to achieve both adequate realism and
sufficient tractability to be useful in practice. The development of useful models for sup-
ply chain management currently is a particularly active area of research. Much research
also is being conducted on developing more sophisticated revenue management models
that take into account more of the complexities that arise in practice.

Continued growth is occurring in the computerization of inventory data processing,
along with an accompanying growth in scientific inventory management.
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Automatic Procedures in IOR Tutorial:

Stochastic Single-Period Model for Perishable Products, No Setup Cost
Stochastic Single-Period Model for Perishable Products, with Setup Cost

“Ch. 18—Inventory Theory” Excel Files:

Templates for the Basic EOQ Model (a Solver Version and an Analytical Version)
Templates for the EOQ Model with Planned Shortages (a Solver Version and an Analytical Version)
Template for the EOQ Model with Quantity Discounts (Analytical Version Only)
Template for the Stochastic Continuous-Review Model
Template for the Stochastic Single-Period Model for Perishable Products, No Setup Cost
Template for the Stochastic Single-Period Model for Perishable Products, with Setup Cost

“Ch. 18—Inventory Theory” LINGO File for Selected Examples

Glossary for Chapter 18

Supplements to This Chapter

Derivation of the Optimal Policy for the Stochastic Single-Period Model for Perishable Products
Stochastic Periodic-Review Models.

See Appendix 1 for documentation of the software.

■ PROBLEMS

To the left of each of the following problems (or their parts), we
have inserted a T whenever one of the templates listed above can
be useful. An asterisk on the problem number indicates that at least
a partial answer is given in the back of the book.

T 18.3-1.* Suppose that the demand for a product is 30 units per
month and the items are withdrawn at a constant rate. The setup
cost each time a production run is undertaken to replenish inven-
tory is $15. The production cost is $1 per item, and the inventory
holding cost is $0.30 per item per month.
(a) Assuming shortages are not allowed, determine how often to

make a production run and what size it should be.
(b) If shortages are allowed but cost $3 per item per month, de-

termine how often to make a production run and what size it
should be.

T 18.3-2. The demand for a product is 600 units per week, and
the items are withdrawn at a constant rate. The setup cost for plac-
ing an order to replenish inventory is $25. The unit cost of each
item is $3, and the inventory holding cost is $0.05 per item per
week.
(a) Assuming shortages are not allowed, determine how often to

order and what size the order should be.
(b) If shortages are allowed but cost $2 per item per week, deter-

mine how often to order and what size the order should be.

18.3-3.* Tim Madsen is the purchasing agent for Computer Center,
a large discount computer store. He has recently added the hottest
new computer, the Power model, to the store’s stock of goods. Sales
of this model now are running at about 13 per week. Tim purchases

these computers directly from the manufacturer at a unit cost of
$3,000, where each shipment takes half a week to arrive.

Tim routinely uses the basic EOQ model to determine the
store’s inventory policy for each of its more important products. For
this purpose, he estimates that the annual cost of holding items in
inventory is 20 percent of their purchase cost. He also estimates that
the administrative cost associated with placing each order is $75.
T (a) Tim currently is using the policy of ordering 5 Power model

computers at a time, where each order is timed to have the
shipment arrive just about when the inventory of these com-
puters is being depleted. Use the Solver version of the Excel
template for the basic EOQ model to determine the various
annual costs being incurred with this policy.

T (b) Use this same spreadsheet to generate a table that shows
how these costs would change if the order quantity were
changed to the following values: 5, 7, 9, . . . , 25.

T (c) Use the Solver to find the optimal order quantity.
T (d) Now use the analytical version of the Excel template for the

basic EOQ model (which applies the EOQ formula directly)
to find the optimal quantity. Compare the results (including
the various costs) with those obtained in part (c).

(e) Verify your answer for the optimal order quantity obtained in
part (d ) by applying the EOQ formula by hand.

(f ) With the optimal order quantity obtained above, how fre-
quently will orders need to be placed on the average? What
should the approximate inventory level be when each order
is placed?

(g) How much does the optimal inventory policy reduce the
total variable inventory cost per year (holding costs plus
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administrative costs for placing orders) for Power model
computers from that for the policy described in part (a)?
What is the percentage reduction?

18.3-4. The Blue Cab Company is the primary taxi company in
the city of Maintown. It uses gasoline at the rate of 10,000 gallons
per month. Because this is such a major cost, the company has
made a special arrangement with the Amicable Petroleum Com-
pany to purchase a huge quantity of gasoline at a reduced price of
$3.50 per gallon every few months. The cost of arranging for each
order, including placing the gasoline into storage, is $2,000. The
cost of holding the gasoline in storage is estimated to be $0.04 per
gallon per month.
T (a) Use the Solver version of the Excel template for the basic

EOQ model to determine the costs that would be incurred
annually if the gasoline were to be ordered monthly.

T (b) Use this same spreadsheet to generate a table that shows how
these costs would change if the number of months between
orders were to be changed to the following values: 1, 2,
3, . . . , 10.

T (c) Use the Solver to find the optimal order quantity.
T (d) Now use the analytical version of the Excel template for the

basic EOQ model to find the optimal order quantity. Com-
pare the results (including the various costs) with those ob-
tained in part (c).

(e) Verify your answer for the optimal order quantity obtained in
part (d ) by applying the EOQ formula by hand.

18.3-5. For the basic EOQ model, use the square root formula to
determine how Q* would change for each of the following changes
in the costs or the demand rate. (Unless otherwise noted, consider
each change by itself.)
(a) The setup cost is reduced to 25 percent of its original value.
(b) The annual demand rate becomes four times as large as its

original value.
(c) Both changes in parts (a) and (b).
(d) The unit holding cost is reduced to 25 percent of its original value.
(e) Both changes in parts (a) and (d ).

18.3-6.* Kris Lee, the owner and manager of the Quality Hard-
ware Store, is reassessing his inventory policy for hammers. He
sells an average of 50 hammers per month, so he has been placing
an order to purchase 50 hammers from a wholesaler at a cost of
$20 per hammer at the end of each month. However, Kris does all
the ordering for the store himself and finds that this is taking a
great deal of his time. He estimates that the value of his time spent
in placing each order for hammers is $75.
(a) What would the unit holding cost for hammers need to be for

Kris’ current inventory policy to be optimal according to the
basic EOQ model? What is this unit holding cost as a per-
centage of the unit acquisition cost?

T (b) What is the optimal order quantity if the unit holding cost ac-
tually is 20 percent of the unit acquisition cost? What is the
corresponding value of TVC � total variable inventory cost
per year (holding costs plus the administrative costs for plac-
ing orders)? What is TVC for the current inventory policy?

T (c) If the wholesaler typically delivers an order of hammers in
5 working days (out of 25 working days in an average
month), what should the reorder point be (according to the
basic EOQ model)?

(d) Kris doesn’t like to incur inventory shortages of important
items. Therefore, he has decided to add a safety stock of
5 hammers to safeguard against late deliveries and larger-than-
usual sales. What is his new reorder point? How much does
this safety stock add to TVC?

18.3-7.* Consider Example 1 (manufacturing speakers for TV
sets) introduced in Sec. 18.1 and used in Sec. 18.3 to illustrate the
EOQ models. Use the EOQ model with planned shortages to solve
this example when the unit shortage cost is changed to $5 per
speaker short per month.

T 18.3-8. Speedy Wheels is a wholesale distributor of bicycles. Its
Inventory Manager, Ricky Sapolo, is currently reviewing the in-
ventory policy for one popular model that is selling at the rate of
500 per month. The administrative cost for placing an order for this
model from the manufacturer is $1,000 and the purchase price is
$400 per bicycle. The annual cost of the capital tied up in inven-
tory is 15 percent of the value (based on purchase price) of these
bicycles. The additional cost of storing the bicycles—including leas-
ing warehouse space, insurance, taxes, and so on—is $40 per bicycle
per year.
(a) Use the basic EOQ model to determine the optimal order quan-

tity and the total variable inventory cost per year.
(b) Speedy Wheel’s customers (retail outlets) generally do not ob-

ject to short delays in having their orders filled. Therefore, man-
agement has agreed to a new policy of having small planned
shortages occasionally to reduce the variable inventory cost. Af-
ter consultations with management, Ricky estimates that the an-
nual shortage cost (including lost future business) would be $150
times the average number of bicycles short throughout the year.
Use the EOQ model with planned shortages to determine the
new optimal inventory policy.

T 18.3-9. Reconsider Prob. 18.3-3. Because of the popularity of
the Power model computer, Tim Madsen has found that customers
are willing to purchase a computer even when none are currently
in stock as long as they can be assured that their order will be filled
in a reasonable period of time. Therefore, Tim has decided to switch
from the basic EOQ model to the EOQ model with planned short-
ages, using a shortage cost of $200 per computer short per year.
(a) Use the Solver version of the Excel template for the EOQ

model with planned shortages (with constraints added in the
Solver dialog box that C10:C11 � integer) to find the new op-
timal inventory policy and its total variable inventory cost per
year (TVC). What is the reduction in the value of TVC found
for Prob. 18.3-3 (and given in the back of the book) when
planned shortages were not allowed?

(b) Use this same spreadsheet to generate a table that shows how
TVC and its components would change if the maximum short-
age were kept the same as found in part (a) but the order quan-
tity were changed to the following values: 15, 17, 19, . . . , 35.
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(c) Use this same spreadsheet to generate a table that shows how
TVC and its components would change if the order quantity
were kept the same as found in part (a) but the maximum short-
age were changed to the following values: 10, 12, 14, . . . , 30.

18.3-10. You have been hired as an operations research consultant
by a company to reevaluate the inventory policy for one of its prod-
ucts. The company currently uses the basic EOQ model. Under this
model, the optimal order quantity for this product is 1,000 units,
so the maximum inventory level also is 1,000 units and the maxi-
mum shortage is 0.

You have decided to recommend that the company switch to
using the EOQ model with planned shortages instead after deter-
mining how large the unit shortage cost ( p) is compared to the unit
holding cost (h). Prepare a table for management that shows what
the optimal order quantity, maximum inventory level, and maxi-
mum shortage would be under this model for each of the follow-
ing ratios of p to h: �

1
3

�, 1, 2, 3, 5, 10.

18.3-11. In the basic EOQ model, suppose the stock is replenished
uniformly (rather than instantaneously) at the rate of b items per
unit time until the order quantity Q is fulfilled. Withdrawals from
the inventory are made at the rate of a items per unit time, where
a 	 b. Replenishments and withdrawals of the inventory are made
simultaneously. For example, if Q is 60, b is 3 per day, and a is
2 per day, then 3 units of stock arrive each day for days 1 to 20,
31 to 50, and so on, whereas units are withdrawn at the rate of 2
per day every day. The diagram of inventory level versus time is
given below for this example.

(a) Find the total cost per unit time in terms of the setup cost K,
production quantity Q, unit cost c, holding cost h, withdrawal
rate a, and replenishment rate b.

(b) Determine the economic order quantity Q*.

18.3-12.* MBI is a manufacturer of personal computers. All its
personal computers use a hard disk drive which it purchases from
Ynos. MBI operates its factory 52 weeks per year, which requires
assembling 100 of these disk drives into computers per week.
MBI’s annual holding cost rate is 20 percent of the value (based
on purchase cost) of the inventory. Regardless of order size, the
administrative cost of placing an order with Ynos has been esti-
mated to be $50. A quantity discount is offered by Ynos for large

orders as shown below, where the price for each category applies
to every disk drive purchased.

T (a) Determine the optimal order quantity according to the EOQ
model with quantity discounts. What is the resulting total
cost per year?

(b) With this order quantity, how many orders need to be placed
per year? What is the time interval between orders?

18.3-13. The Gilbreth family drinks a case of Royal Cola every day,
365 days a year. Fortunately, a local distributor offers quantity dis-
counts for large orders as shown in the table below, where the price
for each category applies to every case purchased. Considering the
cost of gasoline, Mr. Gilbreth estimates it costs him about $5 to go
pick up an order of Royal Cola. Mr. Gilbreth also is an investor in
the stock market, where he has been earning a 20 percent average
annual return. He considers the return lost by buying the Royal Cola
instead of stock to be the only holding cost for the Royal Cola.

T (a) Determine the optimal order quantity according to the EOQ
model with quantity discounts. What is the resulting total
cost per year?

(b) With this order quantity, how many orders need to be placed
per year? What is the time interval between orders?

18.3-14. Kenichi Kaneko is the manager of a production depart-
ment which uses 400 boxes of rivets per year. To hold down his
inventory level, Kenichi has been ordering only 50 boxes each
time. However, the supplier of rivets now is offering a discount
for higher-quantity orders according to the following price
schedule, where the price for each category applies to every box
purchased.

Inventory
 level (20, 20)

(30, 0)
•  •  •

Time (days)
(0, 0)

Point of 
maximum 
inventory

M

Discount Quantity Price (per
Category Purchased Disk Drive)

1 001 to 99 $100
2 100 to 499 95
3 500 or more 90

Discount Quantity Price
Category Purchased (per Case)

1 001 to 49 $4.00
2 050 to 99 3.90
3 100 or more 3.80

Discount Price
Category Quantity (per Box)

1 1,001 to 99 $8.50
2 1,100 to 999 8.00
3 1,000 or more 7.50
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The company uses an annual holding cost rate of 20 percent
of the price of the item. The total cost associated with placing an
order is $80 per order.

Kenichi has decided to use the EOQ model with quantity dis-
counts to determine his optimal inventory policy for rivets.
(a) For each discount category, write an expression for the total

cost per year (TC) as a function of the order quantity Q.
T (b) For each discount category, use the EOQ formula for the

basic EOQ model to calculate the value of Q (feasible or
infeasible) that gives the minimum value of TC. (You may
use the analytical version of the Excel template for the ba-
sic EOQ model to perform this calculation if you wish.)

(c) For each discount category, use the results from parts (a)
and (b) to determine the feasible value of Q that gives the
feasible minimum value of TC and to calculate this value
of TC.

(d) Draw rough hand curves of TC versus Q for each of the dis-
count categories. Use the same format as in Fig. 18.3 (a solid
curve where feasible and a dashed curve where infeasible).
Show the points found in parts (b) and (c). However, you don’t
need to perform any additional calculations to make the curves
particularly accurate at other points.

(e) Use the results from parts (c) and (d ) to determine the optimal
order quantity and the corresponding value of TC.

T (f) Use the Excel template for the EOQ model with quantity
discounts to check your answers in parts (b), (c), and (e).

(g) For discount category 2, the value of Q that minimizes TC
turns out to be feasible. Explain why learning this fact would
allow you to rule out discount category 1 as a candidate for
providing the optimal order quantity without even performing
the calculations for this category that were done in parts (b)
and (c).

(h) Given the optimal order quantity from parts (e) and ( f ), how
many orders need to be placed per year? What is the time in-
terval between orders?

18.3-15. Sarah operates a concession stand at a downtown loca-
tion throughout the year. One of her most popular items is circus
peanuts, selling about 200 bags per month.

Sarah purchases the circus peanuts from Peter’s Peanut Shop.
She has been purchasing 100 bags at a time. However, to encour-
age larger purchases, Peter now is offering her discounts for larger
order sizes according to the following price schedule, where the
price for each category applies to every bag purchased.

Sarah wants to use the EOQ model with quantity discounts to
determine what her order quantity should be. For this purpose, she
estimates an annual holding cost rate of 17 percent of the value

(based on purchase price) of the peanuts. She also estimates a setup
cost of $4 for placing each order.

Follow the instructions of Prob. 18.3-14 to analyze Sarah’s
problem.

18.4-1. Suppose that production planning is to be done for the next
5 months, where the respective demands are r1 � 2, r2 � 4, r3 � 2, r4

� 2, and r5 � 3. The setup cost is $4,000, the unit production cost
is $1,000, and the unit holding cost is $300. Use the deterministic
periodic-review model to determine the optimal production sched-
ule that satisfies the monthly requirements.

18.4-2. Reconsider the example used to illustrate the determinis-
tic periodic-review model in Sec. 18.4. Solve this problem when
the demands are increased by 1 airplane in each period.

18.4-3. Reconsider the example used to illustrate the determinis-
tic periodic-review model in Sec. 18.4. Suppose that the following
single change is made in the example. The cost of producing each
airplane now varies from period to period. In particular, in addi-
tion to the setup cost of $2 million, the cost of producing airplanes
in either period 1 or period 3 is $1.4 million per airplane, whereas
it is only $1 million per airplane in either period 2 or period 4.

Use dynamic programming to determine how many airplanes
(if any) should be produced in each of the four periods to mini-
mize the total cost.

18.4-4.* Consider a situation where a particular product is pro-
duced and placed in in-process inventory until it is needed in a sub-
sequent production process. The number of units required in each
of the next 3 months, the setup cost, and the regular-time unit
production cost (in units of thousands of dollars) that would be in-
curred in each month are as follows:

There currently is 1 unit in inventory, and we want to have 2 units
in inventory at the end of 3 months. A maximum of 3 units can be
produced on regular-time production in each month, although 1 ad-
ditional unit can be produced on overtime at a cost that is 2 larger
than the regular-time unit production cost. The holding cost is
2 per unit for each extra month that it is stored.

Use dynamic programming to determine how many units
should be produced in each month to minimize the total cost.

18.5-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 18.5.
Briefly describe how inventory theory was applied in this study.
Then list the various financial and nonfinancial benefits that resulted
from this study.

Regular-Time
Month Requirement Setup Cost Unit Cost

1 1 5 8
2 3 10 10
3 2 5 9

Discount Order Price
Category Quantity (per Bag)

1 001 to 199 $1.00
2 200 to 499 0.95
3 500 or more 0.90
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18.5-2. Consider an inventory system that fits the model for a se-
rial two-echelon system presented in Sec. 18.5, where K1 �
$15,000, K2 � $500, h1 � $20, h2 � $22, and d � 5,000. Develop
a table like Table 18.1 that shows the results from performing both
separate optimization of the installations and simultaneous opti-
mization of the installations. Then calculate the percentage increase
in the total variable cost per unit time if the results from perform-
ing separate optimization were to be used instead of the results
from the valid approach of performing simultaneous optimization.

18.5-3. A company soon will begin production of a new product.
When this happens, an inventory system that fits the model for a
serial two-echelon system presented in Sec. 18.5 will be used. At
this time, there is great uncertainty about what the setup costs and
holding costs will be at the two installations, as well as what the
demand rate for the new product will be. Therefore, to begin mak-
ing plans for the new inventory system, various combinations of
possible values of the model parameters need to be checked.

Calculate Q*2, n*, n, and Q*1 for the following combinations.
(a) (K1, K2) � ($25,000, $1,000), ($10,000, $2,500), and ($5,000,

$5,000), with h1 � $25, h2 � $250, and d � 2,500.
(b) (h1, h2) � ($10, $500), ($25, $250), and ($50, $100), with

K1 � $10,000, K2 � $2,500, and d � 2,500.
(c) d � 1,000, d � 2,500, and d � 5,000, with K1 � $10,000,

K2 � $2,500, h1 � $25, and h2 � $250.

18.5-4. A company owns both a factory to produce its products and
a retail outlet to sell them. A certain new product will be sold ex-
clusively through this retail outlet. Its inventory of this product will
be replenished when needed from the factory’s inventory, where an
administrative and shipping cost of $200 is incurred each time this
is done. The factory will replenish its own inventory of the product
when needed by setting up for a quick production run. A setup cost
of $5,000 is incurred each time this is done. The annual cost for
holding each unit is $10 when it is held at the factory and $11 when
it is held at the retail outlet. The retail outlet expects to sell 100
units of the product per month. All the assumptions of the model
for a serial two-echelon system presented in Sec. 18.5 apply to the
joint inventory system for the factory and retail outlet.
(a) Suppose that the factory and the retail outlet separately opti-

mize their own inventory policies for the product. Calculate
the resulting Q*2, n*, n, Q*1, and C*.

(b) Suppose that the company simultaneously optimizes the joint
inventory policy for the factory and retail outlet for the prod-
uct. Calculate the resulting Q*2, n*, n, Q*1, and C*.

(c) Calculate the percentage decrease in the total variable cost per
unit time C* that is achieved by using the approach described
in part (b) instead of the one in part (a).

18.5-5. A company produces a certain product by assembling it at
an assembly plant. All the components needed to assemble the prod-
uct are purchased from a single supplier. A shipment of all the com-
ponents is received from the supplier each time the assembly plant
needs to replenish its inventory of the components. The company
incurs a shipping cost of $500 in addition to the purchase price for
the components each time this is done. Each time the supplier needs
to replenish its own inventory of the components, quick production

runs are set up to produce the components. The total cost of setting
up for these production runs is $50,000. The annual cost of hold-
ing each set of components is $50 when it is held by the supplier
and $60 when it is held at the assembly plant. (It is higher in the
latter case since there is more capital tied up in each set of com-
ponents at this stage.) The assembly plant steadily produces 500 units
of the product per month. All the assumptions of the model for a
serial two-echelon system described in Sec. 18.5 apply to the joint
inventory system for the supplier and the assembly plant.
(a) Suppose that the supplier and the assembly plant separately

optimize their own inventory policies for the sets of compo-
nents. Calculate the resulting Q*2, n*, n, and Q*1. Also calculate
C*1 and C*2, the total variable cost per unit time for the supplier
and the assembly plant, respectively, as well as C*� C*1 � C*2.

(b) Suppose that the supplier and the assembly plant cooperate to
simultaneously optimize their joint inventory policy. Calculate
the same quantities as specified in part (a) for this new inven-
tory policy.

(c) Compare the values of C*1, C*2, and C*obtained in parts (a) and
(b). Would either organization lose money by using the joint in-
ventory policy obtained in part (b) instead of the separate poli-
cies obtained in part (a)? If so, what financial arrangement would
need to be made between these separate organizations to induce
the losing organization to agree to a supply contract that follows
the inventory policy obtained in part (b)? Comparing the values
of C*, what would be the total net savings for the two organiza-
tions if they can agree to follow the jointly optimal policy from
part (b) instead of the separate optimal policies from part (a)?

18.5-6. Consider a three-echelon inventory system that fits the
model for a serial multiechelon system presented in Sec. 18.5, where
the model parameters for this particular system are given below.

Develop a table like Table 18.4 that shows the intermediate and fi-
nal results from applying the solution procedure presented in Sec. 18.5
to this inventory system. After calculating the total variable cost
per unit time of the final solution, determine the maximum possi-
ble percentage by which this cost can exceed the corresponding
cost for an optimal solution.

18.5-7. Follow the instructions of Prob. 18.5-6 for a five-echelon
inventory model fitting the corresponding model in Sec. 18.5,
where the model parameters are given below.

Installation i Ki hi d � 1,000

1 $50,000 $ 1
2 2,000 2
3 360 10

Installation i Ki hi d � 1,000

1 $125,000 $ 2
2 20,000 10
3 6,000 15
4 10,000 20
5 250 30
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18.5-8. Reconsider the example of a four-echelon inventory sys-
tem presented in Sec. 18.5, where its model parameters are given
in Table 18.2. Suppose now that the setup costs at the four
installations have changed from what is given in Table 18.2, where
the new values are K1 � $1,000, K2 � $5, K3 � $75, and K4 � $80.
Redo the analysis presented in Sec. 18.5 for this example (as sum-
marized in Table 18.4) with these new setup costs.

18.5-9. One of the many products produced by the Global Corpo-
ration is marketed primarily in the United States. A rough form of
the product is produced in one of the corporation’s plants in Asia
and then is shipped to a plant in the United States for the finish
work. The finished product next is sent to the corporation’s distri-
bution center in the United States. The distribution center stores
the product and then uses this inventory to fill orders from various
wholesalers. These sales to wholesalers remain relatively uniform
throughout the year at a rate of about 10,000 units per month. The
American plant uses its inventory of the finished product to send
a shipment to the distribution center whenever the center needs to
replenish its inventory. The associated administrative and shipping
cost is about $400 per shipment. Whenever the American plant
needs to replenish its inventory, the Asian plant uses its inventory
of the rough product to send a shipment to the American plant,
which then sets up for a quick production run to convert the rough
product to a finished product. Each time this happens, the shipping
cost and setup cost total about $6,000. The Asian plant replenishes
its inventory of the rough product when needed by setting up for
a quick production run. A setup cost of $60,000 is incurred each
time this is done. The monthly cost for holding each unit is $3 at
the Asian plant, $7 at the American plant, and $9 at the distribu-
tion plant. All the assumptions of the model for a serial multi-
echelon system presented in Sec. 18.5 apply to the joint inventory
system at the three locations for the product.

Solve this model by developing a table like Table 18.4 that
shows the intermediate and final results from applying the solution
procedure presented in Sec. 18.5. After calculating the total vari-
able cost per month of the final solution, determine the maximum
possible percentage by which this cost can exceed the corre-
sponding cost for an optimal solution.

18.6-1. Henry Edsel is the owner of Honest Henry’s, the largest
car dealership in its part of the country. His most popular car model
is the Triton, so his largest costs are those associated with order-
ing these cars from the factory and maintaining an inventory of
Tritons on the lot. Therefore, Henry has asked his general man-
ager, Ruby Willis, who once took a course in operations research,
to use this background to develop a cost-effective policy for when
to place these orders for Tritons and how many to order each time.

Ruby decides to use the stochastic continuous-review model
presented in Sec. 18.6 to determine an (R, Q) policy. After some
investigation, she estimates that the administrative cost for placing
each order is $1,500 (a lot of paperwork is needed for ordering
cars), the holding cost for each car is $3,000 per year (15 percent
of the agency’s purchase price of $20,000), and the shortage cost
per car short is $1,000 per year (an estimated probability of �

1
3

� of
losing a car sale and its profit of about $3,000). After considering
both the seriousness of incurring shortages and the high holding

cost, Ruby and Henry agree to use a 75 percent service level (a
probability of 0.75 of not incurring a shortage between the time an
order is placed and the delivery of the cars ordered). Based on
previous experience, they also estimate that the Tritons sell at a
relatively uniform rate of about 900 per year.

After an order is placed, the cars are delivered in about two-
thirds of a month. Ruby’s best estimate of the probability distribution
of demand during the lead time before a delivery arrives is a normal
distribution with a mean of 50 and a standard deviation of 15.
(a) Solve by hand for the order quantity.
(b) Use a table for the normal distribution (Appendix 5) to solve

for the reorder point.
T (c) Use the Excel template for this model in your OR Course-

ware to check your answers in parts (a) and (b).
(d) Given your previous answers, how much safety stock does this

inventory policy provide?
(e) This policy can lead to placing a new order before the deliv-

ery from the preceding order arrives. Indicate when this would
happen.

18.6-2. One of the largest selling items in J.C. Ward’s Department
Store is a new model of refrigerator that is highly energy-efficient.
About 40 of these refrigerators are being sold per month. It takes
about a week for the store to obtain more refrigerators from a
wholesaler. The demand during this time has a uniform distribu-
tion between 5 and 15. The administrative cost of placing each or-
der is $40. For each refrigerator, the holding cost per month is $8
and the shortage cost per month is estimated to be $1.

The store’s inventory manager has decided to use the sto-
chastic continuous-review model presented in Sec. 18.6, with a ser-
vice level (measure 1) of 0.8, to determine an (R, Q) policy.
(a) Solve by hand for R and Q.
T (b) Use the corresponding Excel template to check your answer

in part (a).
(c) What will be the average number of stockouts per year with

this inventory policy?

18.6-3. When using the stochastic continuous-review model pre-
sented in Sec. 18.6, a difficult managerial judgment decision needs
to be made on the level of service to provide to customers. The
purpose of this problem is to enable you to explore the trade-off
involved in making this decision.

Assume that the measure of service level being used is L �
probability that a stockout will not occur during the lead time. Since
management generally places a high priority on providing excel-
lent service to customers, the temptation is to assign a very high
value to L. However, this would result in providing a very large
amount of safety stock, which runs counter to management’s de-
sire to eliminate unnecessary inventory. (Remember the just-in-
time philosophy discussed in Sec. 18.3 that is heavily influencing
managerial thinking today.) Management needs to address the
question of what the best trade-off is between providing good ser-
vice and eliminating unnecessary inventory.

Assume that the probability distribution of demand during the
lead time is a normal distribution with mean � and standard devi-
ation �. Then the reorder point R is R � � � K1�L�, where K1�L

is obtained from Appendix 5. The amount of safety stock provided
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by this reorder point is K1�L�. Thus, if h denotes the holding cost
for each unit held in inventory per year, the average annual holding
cost for safety stock (denoted by C) is C � hK1�L�.
(a) Construct a table with five columns. The first column is the

service level L, with values 0.5, 0.75, 0.9, 0.95, 0.99, and 0.999.
The next four columns give C for four cases. Case 1 is h � $1
and � � 1. Case 2 is h � $100 and � � 1. Case 3 is h � $1
and � � 100. Case 4 is h � $100 and � � 100.

(b) Construct a second table that is based on the table obtained in
part (a). The new table has five rows and the same five columns
as the first table. Each entry in the new table is obtained by
subtracting the corresponding entry in the first table from the
entry in the next row of the first table. For example, the en-
tries in the first column of the new table are 0.75 � 0.5 � 0.25,
0.9 � 0.75 � 0.15, 0.95 � 0.9 � 0.05, 0.99 � 0.95 � 0.04,
and 0.999 � 0.99 � 0.009. Since these entries represent in-
creases in the service level L, each entry in the next four
columns represents the increase in C that would result from
increasing L by the amount shown in the first column.

(c) Based on these two tables, what advice would you give a man-
ager who needs to make a decision on the value of L to use?

18.6-4. The preceding problem describes the factors involved in
making a managerial decision on the service level L to use. It also
points out that for any given values of L, h (the unit holding cost per
year), and � (the standard deviation when the demand during the
lead time has a normal distribution), the average annual holding cost
for the safety stock would turn out to be C � hK1�L�, where C de-
notes this holding cost and K1�L is given in Appendix 5. Thus, the
amount of variability in the demand, as measured by �, has a major
impact on this holding cost C.

The value of � is substantially affected by the duration of the lead
time. In particular, � increases as the lead time increases. The purpose
of this problem is to enable you to explore this relationship further.

To make this more concrete, suppose that the inventory system
under consideration currently has the following values: L � 0.9,
h � $100, and � � 100 with a lead time of 4 days. However, the
vendor being used to replenish inventory is proposing a change in
the delivery schedule that would change your lead time. You want
to determine how this would change � and C.

We assume for this inventory system (as is commonly the
case) that the demands on separate days are statistically indepen-
dent. In this case, the relationship between � and the lead time is
given by the formula

� � �d��1,

where d � number of days in the lead time,
�1 � standard deviation if d � 1.

(a) Calculate C for the current inventory system.
(b) Determine �1. Then find how C would change if the lead time

were reduced from 4 days to 1 day.
(c) How would C change if the lead time were doubled, from 

4 days to 8 days?
(d) How long would the lead time need to be in order for C to

double from its current value with a lead time of 4 days?

18.6-5. What is the effect on the amount of safety stock provided
by the stochastic continuous-review model presented in Sec. 18.6
when the following change is made in the inventory system? (Con-
sider each change independently.)
(a) The lead time is reduced to 0 (instantaneous delivery).
(b) The service level (measure 1) is decreased.
(c) The unit shortage cost is doubled.
(d) The mean of the probability distribution of demand during the

lead time is increased (with no other change to the distribution).
(e) The probability distribution of demand during the lead time is

a uniform distribution from a to b, but now (b � a) has been
doubled.

(f) The probability distribution of demand during the lead time is
a normal distribution with mean � and standard deviation �,
but now � has been doubled.

18.6-6.* Jed Walker is the manager of Have a Cow, a hamburger
restaurant in the downtown area. Jed has been purchasing all the
restaurant’s beef from Ground Chuck (a local supplier) but is con-
sidering switching to Chuck Wagon (a national warehouse) because
its prices are lower.

Weekly demand for beef averages 500 pounds, with some vari-
ability from week to week. Jed estimates that the annual holding
cost is 30 cents per pound of beef. When he runs out of beef, Jed is
forced to buy from the grocery store next door. The high purchase
cost and the hassle involved are estimated to cost him about $3 per
pound of beef short. To help avoid shortages, Jed has decided to keep
enough safety stock to prevent a shortage before the delivery arrives
during 95 percent of the order cycles. Placing an order only requires
sending a simple fax, so the administrative cost is negligible.

Have a Cow’s contract with Ground Chuck is as follows: The
purchase price is $1.49 per pound. A fixed cost of $25 per order
is added for shipping and handling. The shipment is guaranteed to
arrive within 2 days. Jed estimates that the demand for beef dur-
ing this lead time has a uniform distribution from 50 to 150 pounds.

The Chuck Wagon is proposing the following terms: The beef
will be priced at $1.35 per pound. The Chuck Wagon ships via re-
frigerated truck, and so charges additional shipping costs of $200
per order plus $0.10 per pound. The shipment time will be roughly
a week, but is guaranteed not to exceed 10 days. Jed estimates that
the probability distribution of demand during this lead time will be
a normal distribution with a mean of 500 pounds and a standard
deviation of 200 pounds.
T (a) Use the stochastic continuous-review model presented in

Sec. 18.6 to obtain an (R, Q) policy for Have a Cow for each
of the two alternatives of which supplier to use.

(b) Show how the reorder point is calculated for each of these two
policies.

(c) Determine and compare the amount of safety stock provided
by the two policies obtained in part (a).

(d) Determine and compare the average annual holding cost un-
der these two policies.

(e) Determine and compare the average annual acquisition cost
(combining purchase price and shipping cost) under these two
policies.

hil23453_ch18_800-876.qxd  1/22/70  7:40 AM  Page 870 Final PDF to printer



PROBLEMS 871

(f) Since shortages are very infrequent, the only important costs
for comparing the two suppliers are those obtained in parts (d )
and (e). Add these costs for each supplier. Which supplier
should be selected?

(g) Jed likes to use the beef (which he keeps in a freezer) within
a month of receiving it. How would this influence his choice
of supplier?

18.7-1. Read the referenced article that fully describes the OR
study summarized in the application vignette presented in Sec. 18.7.
Briefly describe how inventory theory was applied in this study.
Then list the various financial and nonfinancial benefits that re-
sulted from this study.

T 18.7-2. A newspaper stand purchases newspapers for $0.36 and
sells them for $0.50. The shortage cost is $0.50 per newspaper (be-
cause the dealer buys papers at retail price to satisfy shortages).
The holding cost is $0.002 per newspaper left at the end of the day.
The demand distribution is a uniform distribution between 200 and
300. Find the optimal number of papers to buy.

18.7-3. Freddie the newsboy runs a newstand. Because of a
nearby financial services office, one of the newspapers he sells
is the daily Financial Journal. He purchases copies of this news-
paper from its distributor at the beginning of each day for $1.50
per copy, sells it for $2.50 each, and then receives a refund of
$0.50 from the distributor the next morning for each unsold copy.
The number of requests for this newspaper range from 15 to 18
copies per day. Freddie estimates that there are 15 requests on 
40 percent of the days, 16 requests on 20 percent of the days, 17
requests on 30 percent of the days, and 18 requests on the re-
maining days.
(a) Use Bayes’ decision rule presented in Sec. 16.2 to determine

what Freddie’s new order quantity should be to maximize his
expected daily profit.

(b) Apply Bayes’ decision rule again, but this time with the crite-
rion of minimizing Freddie’s expected daily cost of under-
ordering or overordering.

(c) Use the stochastic single-period model for perishable products
to determine Freddie’s optimal order quantity.

(d) Draw the cumulative distribution function of demand and
then show graphically how the model in part (c) finds the op-
timal order quantity.

18.7-4. Jennifer’s Donut House serves a large variety of dough-
nuts, one of which is a blueberry-filled, chocolate-covered, su-
persized doughnut supreme with sprinkles. This is an extra large
doughnut that is meant to be shared by a whole family. Since the
dough requires so long to rise, preparation of these doughnuts be-
gins at 4:00 in the morning, so a decision on how many to pre-
pare must be made long before learning how many will be needed.
The cost of the ingredients and labor required to prepare each of
these doughnuts is $1. Their sale price is $3 each. Any not sold
that day are sold to a local discount grocery store for $0.50. Over
the last several weeks, the number of these doughnuts sold for $3
each day has been tracked. These data are summarized next.

(a) What is the unit cost of underordering? The unit cost of
overordering?

(b) Use Bayes’decision rule presented in Sec. 16.2 to determine how
many of these doughnuts should be prepared each day to mini-
mize the average daily cost of underordering or overordering.

(c) After plotting the cumulative distribution function of demand,
apply the stochastic single-period model for perishable prod-
ucts graphically to determine how many of these doughnuts to
prepare each day.

(d) Given the answer in part (c), what will be the probability of
running short of these doughnuts on any given day?

(e) Some families make a special trip to the Donut House just to
buy this special doughnut. Therefore, Jennifer thinks that the
cost when they run short might be greater than just the lost
profit. In particular, there may be a cost for lost customer good-
will each time a customer orders this doughnut but none are
available. How high would this cost have to be before they
should prepare one more of these doughnuts each day than was
found in part (c)?

18.7-5.* Swanson’s Bakery is well known for producing the best
fresh bread in the city, so the sales are very substantial. The daily
demand for its fresh bread has a uniform distribution between 300
and 600 loaves. The bread is baked in the early morning, before
the bakery opens for business, at a cost of $2 per loaf. It then is
sold that day for $3 per loaf. Any bread not sold on the day it is
baked is relabeled as day-old bread and sold subsequently at a dis-
count price of $1.50 per loaf.
(a) Apply the stochastic single-period model for perishable prod-

ucts to determine the optimal service level.
(b) Apply this model graphically to determine the optimal num-

ber of loaves to bake each morning.
(c) With such a wide range of possible values in the demand dis-

tribution, it is difficult to draw the graph in part (b) carefully
enough to determine the exact value of the optimal number of
loaves. Use algebra to calculate this exact value.

(d) Given your answer in part (a), what is the probability of in-
curring a shortage of fresh bread on any given day?

(e) Because the bakery’s bread is so popular, its customers are quite
disappointed when a shortage occurs. The owner of the bakery,
Ken Swanson, places high priority on keeping his customers
satisfied, so he doesn’t like having shortages. He feels that the
analysis also should consider the loss of customer goodwill due
to shortages. Since this loss of goodwill can have a negative ef-
fect on future sales, he estimates that a cost of $1.50 per loaf
should be assessed each time a customer cannot purchase fresh

Number Sold Percentage of Days

0 10%
1 15
2 20
3 30
4 15
5 10
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bread because of a shortage. Determine the new optimal num-
ber of loaves to bake each day with this change. What is the
new probability of incurring a shortage of fresh bread on any
given day?

18.7-6. Reconsider Prob. 18.7-5. The bakery owner, Ken Swanson,
now wants you to conduct a financial analysis of various inventory
policies. You are to begin with the policy obtained in the first four
parts of Prob. 18.7-5 (ignoring any cost for the loss of customer
goodwill). As given with the answers in the back of the book, this
policy is to bake 500 loaves of bread each morning, which gives a
probability of incurring a shortage of �

1
3

�.
(a) For any day that a shortage does occur, calculate the revenue

from selling fresh bread.
(b) For those days where shortages do not occur, use the probabil-

ity distribution of demand to determine the expected number of
loaves of fresh bread sold. Use this number to calculate the ex-
pected daily revenue from selling fresh bread on those days.

(c) Combine your results from parts (a) and (b) to calculate the
expected daily revenue from selling fresh bread when consid-
ering all days.

(d) Calculate the expected daily revenue from selling day-old
bread.

(e) Use the results in parts (c) and (d ) to calculate the expected
total daily revenue and then the expected daily profit (exclud-
ing overhead).

(f) Now consider the inventory policy of baking 600 loaves each
morning, so that shortages never occur. Calculate the expected
daily profit (excluding overhead) from this policy.

(g) Consider the inventory policy found in part (e) of Prob. 18.7-5.
As implied by the answers in the back of the book, this policy
is to bake 550 loaves each morning, which gives a probability
of incurring a shortage of �

1
6

�. Since this policy is midway between
the policy considered here in parts (a) to (e) and the one con-
sidered in part ( f ), its expected daily profit (excluding overhead
and the cost of the loss of customer goodwill) also is midway
between the expected daily profit for those two policies. Use this
fact to determine its expected daily profit.

(h) Now consider the cost of the loss of customer goodwill for the
inventory policy analyzed in part (g). Calculate the expected
daily cost of the loss of customer goodwill and then the ex-
pected daily profit when considering this cost.

(i) Repeat part (h) for the inventory policy considered in parts 
(a) to (e).

18.7-7. Reconsider Prob. 18.7-5. The bakery owner, Ken Swanson,
now has developed a new plan to decrease the size of shortages.
The bread will be baked twice a day, once before the bakery
opens (as before) and the other during the day after it becomes
clearer what the demand for that day will be. The first baking
will produce 300 loaves to cover the minimum demand for the
day. The size of the second baking will be based on an estimate
of the remaining demand for the day. This remaining demand is
assumed to have a uniform distribution from a to b, where the val-
ues of a and b are chosen each day based on the sales so far. It is
anticipated that (b � a) typically will be approximately 75, as

opposed to the range of 300 for the distribution of demand in
Prob. 18.7-5.
(a) Ignoring any cost of the loss of customer goodwill [as in parts

(a) to (d ) of Prob. 18.7-5], write a formula for how many loaves
should be produced in the second baking in terms of a and b.

(b) What is the probability of still incurring a shortage of fresh
bread on any given day? How should this answer compare to
the corresponding probability in Prob. 18.7-5?

(c) When b � a � 75, what is the maximum size of a shortage that
can occur? What is the maximum number of loaves of fresh
bread that will not be sold? How do these answers compare to
the corresponding numbers for the situation in Prob. 18.7-5
where only one (early morning) baking occurs per day?

(d) Now consider just the cost of underordering and the cost of
overordering. Given your answers in part (c), how should the ex-
pected total daily cost of underordering and overordering for this
new plan compare with that for the situation in Prob. 18.7-5?
What does this say in general about the value of obtaining as
much information as possible about what the demand will be be-
fore placing the final order for a perishable product?

(e) Repeat parts (a), (b), and (c) when including the cost of the
loss of customer goodwill as in part (e) of Prob. 18.7-5.

18.7-8. Suppose that the demand D for a spare airplane part has
an exponential distribution with mean 50, that is,

�
5
1
0
�e�� /50 for � � 0

�D(�) �

0 otherwise.

This airplane will be obsolete in 1 year, so all production of the
spare part is to take place at present. The production costs now are
$1,000 per item—that is, c � 1,000—but they become $10,000 per
item if they must be supplied at later dates—that is, p � 10,000.
The holding costs, charged on the excess after the end of the pe-
riod, are $300 per item.
T (a) Determine the optimal number of spare parts to produce.
(b) Suppose that the manufacturer has 23 parts already in inven-

tory (from a similar, but now obsolete airplane). Determine
the optimal inventory policy.

(c) Suppose that p cannot be determined now, but the manufac-
turer wishes to order a quantity so that the probability of a
shortage equals 0.1. How many units should be ordered?

(d) If the manufacturer were following an optimal policy that re-
sulted in ordering the quantity found in part (c), what is the
implied value of p?

18.7-9. Reconsider Prob. 18.6-1 involving Henry Edsel’s car deal-
ership. The current model year is almost over, but the Tritons are
selling so well that the current inventory will be depleted before
the end-of-year demand can be satisfied. Fortunately, there still is
time to place one more order with the factory to replenish the in-
ventory of Tritons just about when the current supply will be gone.

The general manager, Ruby Willis, now needs to decide how
many Tritons to order from the factory. Each one costs $20,000. She
then is able to sell them at an average price of $23,000, provided
they are sold before the end of the model year. However, any of these

⎧
⎨
⎩
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Tritons left at the end of the model year would then need to be sold
at a special sale price of $19,500. Furthermore, Ruby estimates that
the extra cost of the capital tied up by holding these cars such an
unusually long time would be $500 per car, so the net revenue would
be only $19,000. Since she would lose $1,000 on each of these cars
left at the end of the model year, Ruby concludes that she needs to
be cautious to avoid ordering too many cars, but she also wants to
avoid running out of cars to sell before the end of the model year if
possible. Therefore, she decides to use the stochastic single-period
model for perishable products to select the order quantity. To do this,
she estimates that the number of Tritons being ordered now that could
be sold before the end of the model year has a normal distribution
with a mean of 50 and a standard deviation of 15.
(a) Determine the optimal service level.
(b) Determine the number of Tritons that Ruby should order from

the factory.

T 18.7-10. Find the optimal ordering policy for the stochastic
single-period model with a setup cost where the demand has the
probability density function

�D(�) �

and the costs are

Holding cost � $1 per item,

Shortage cost � $3 per item,

Setup cost � $1.50,

Production cost � $2 per item.

Show your work, and then check your answer by using the corre-
sponding Excel template in your OR Courseware.

T 18.7-11. Using the approximation for finding the optimal
policy for the stochastic single-period model with a setup cost
when demand has an exponential distribution, find this policy
when

�D(�) �

and the costs are

Holding cost � 40 cents per item,

Shortage cost � $1.50 per item,

Purchase price � $1 per item,

Setup cost � $10.

Show your work, and then check your answer by using the cor-
responding Excel template in your OR Courseware.

18.8-1. Reconsider the Blue Skies Airlines example presented in
Sec. 18.8. Regarding the flight under consideration, recent experi-
ence indicates that the demand for the very low discount fare of
$200 is so high that it may be possible to considerably increase

this fare and still usually fill up the airplane with both leisure and
business travelers. Therefore, management wants to learn how the
optimal number of reservation slots to reserve for class 1 customers
would change if this fare were to be increased. Make this calcula-
tion for new fares of $300, $400, $500, and $600.

18.8-2. The most popular cruise offered by Luxury Cruises is a
three-week cruise in the Mediterranean each July with daily ports
of call at interesting tourist destinations. The ship has 1,000 cab-
ins, so it is a challenge to fill the ship because of the high fares
charged. In particular, the average regular fare for a cabin is
$20,000, which is too high for many potential customers. There-
fore, to help fill the ship, the company offers a special discount
fare for this cruise that averages $12,000 per cabin when it an-
nounces its future cruises a year in advance. The deadline for ob-
taining this discount fare is 11 months before the cruise, and this
discount also can be discontinued earlier at the company’s discre-
tion. Thereafter, the company uses heavy publicity to attract luxury-
seeking customers who make vacation plans later and are willing
to pay the regular fare averaging $20,000 per cabin. Based on past
experience, it is estimated that the number of such luxury-seeking
customers for this cruise has a normal distribution with a mean of
400 and a standard deviation of 100.

Use the model for capacity-controlled discount fares presented
in Sec. 18.8 to determine the maximum number of cabins that
should be sold at the discount fare before reserving the remaining
cabins to be sold at the regular fare.

18.8-3. To help fill its seats for a particular flight, an airline offers
a special nonrefundable fare of $100 for customers who make a
reservation at least 21 days in advance and satisfy other restric-
tions. Thereafter, the fare will be $300. A total of 100 reservations
will be accepted. The number of customers who have requested a
reservation at full fare for this flight in the past always has been
at least 31 and not more than 50. It is estimated that the integer
numbers between 31 and 50 are equally likely.

Use the model for capacity-controlled discount fares to de-
termine how many of the reservations should be reserved for cus-
tomers who would pay full fare.

18.8-4. Reconsider the Transcontinental Airlines example pre-
sented in Sec. 18.8. Management has concluded that the original
estimate of $500 for the intangible cost of a loss of goodwill on
the part of a bumped customer is much too low and should be in-
creased to $1,000. Use the overbooking model to determine the
number of reservations that now should be accepted for this flight.

18.8-5. The management of Quality Airlines has decided to base
its overbooking policy on the overbooking model presented in
Sec. 18.8. This policy now needs to be applied to a new flight from
Seattle to Atlanta. The airplane has 125 seats available for a non-
refundable fare of $250. However, since there commonly are a few
no-shows on similar flights, the airline should accept a few more
than 125 reservations. On those occasions when more than 125
arrive to take the flight, the airline will find volunteers who are
willing to be put free on a later Quality Airlines flight that has avail-
able seats, in return for being given a certificate worth $500 (but

for � � 0

otherwise,

�2
1
5�e�� /25

0

⎧
⎨
⎩
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otherwise,
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0
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that would cost the company just $300) toward any future travel
on this airline. Management feels that an additional $300 should
be assessed for the intangible cost of a loss of goodwill for in-
conveniencing these customers.

Based on previous experience with similar flights having
about 125 reservations, it is estimated that the relative frequency
of the number of no-shows (independent of the exact number of
reservations) will be as shown below.

Instead of using the binomial distribution, use this distribution di-
rectly with the overbooking model to determine how much over-
booking the company should do for this flight.

18.8-6. Consider the overbooking model presented in Sec. 18.8. For
a specific application, suppose that the parameters of the model are
p = 0.5, r = $1,000, s = $5,000, and L = 3. Use the binomial distri-
bution directly (not the normal approximation) to calculate n*, the
optimal number of reservations to accept, by using trial and error.

18.8-7. The Mountain Top Hotel is a luxury hotel in a popular ski
resort area. The hotel always is essentially full during winter months,
so reservations and payments must be made months in advance for
week-long stays from Saturday to Saturday. Reservations can be

canceled until a month in advance but are nonrefundable after that.
The hotel has 100 rooms and the room charge for a week’s stay is
$3,000. Despite this high cost, the hotel’s wealthy customers occa-
sionally will forfeit this money and not show up because their plans
have changed. On the average, about 10 percent of the customers
with reservations are no-shows, so the hotel’s management wants
to do some overbooking. However, it also feels that this should be
done cautiously because the consequences of turning away a cus-
tomer with a reservation would be severe. These consequences in-
clude the cost of quickly arranging for alternative housing in an in-
ferior hotel, providing a voucher for a future stay, and the intangible
cost of a massive loss of goodwill on the part of the furious cus-
tomer who is turned away (and surely will tell many wealthy friends
about this shabby treatment). Management estimates that the cost
that should be imputed to these consequences is $20,000.

Use the overbooking model presented in Sec. 18.8, including
the normal approximation for the binomial distribution, to deter-
mine how much overbooking the hotel should do.

18.8-8. Read the referenced article that fully describes the OR
study summarized in the application vignette presented in Sec.
18.8. Briefly describe how revenue management was applied in
this study; then list the various financial and nonfinancial benefits
that resulted from this study.

18.9-1. From the bottom part of the selected references given at
the end of the chapter, select one of these award-winning applica-
tions of inventory theory. Read this article and then write a two-
page summary of the application and the benefits (including
nonfinancial benefits) it provided.

18.9-2. From the bottom part of the selected references given at the
end of the chapter, select three of these award-winning applications of
inventory theory. For each one, write a one-page summary of the ap-
plication and the benefits (including nonfinancial benefits) it provided.

■ CASES

Number of No-Shows Relative Frequency

0 0%
1 5
2 10
3 10
4 15
5 20
6 15
7 10
8 10
9 5

CASE 18.1 Brushing Up on Inventory
Control
Robert Gates rounds the corner of the street and smiles when
he sees his wife pruning rose bushes in their front yard. He
slowly pulls his car into the driveway, turns off the engine,
and falls into his wife’s open arms.

“How was your day?” she asks.
“Great! The drugstore business could not be better!”

Robert replies, “Except for the traffic coming home from
work! That traffic can drive a sane man crazy! I am so tense
right now. I think I will go inside and make myself a relax-
ing martini.”

Robert enters the house and walks directly into the
kitchen. He sees the mail on the kitchen counter and begins
flipping through the various bills and advertisements until he
comes across the new issue of OR/MS Today. He prepares

his drink, grabs the magazine, treads into the living room,
and settles comfortably into his recliner. He has all that he
wants—except for one thing. He sees the remote control ly-
ing on the top of the television. He sets his drink and mag-
azine on the coffee table and reaches for the remote control.
Now, with the remote control in one hand, the magazine in
the other, and the drink on the table near him, Robert is fi-
nally the master of his domain.

Robert turns on the television and flips the channels
until he finds the local news. He then opens the magazine
and begins reading an article about scientific inventory
management. Occasionally he glances at the television to
learn the latest in business, weather, and sports.

As Robert delves deeper into the article, he becomes
distracted by a commercial on television about toothbrushes.
His pulse quickens slightly in fear because the commercial

hil23453_ch18_800-876.qxd  1/22/70  7:40 AM  Page 874 Final PDF to printer



CASES 875

for Totalee toothbrushes reminds him of the dentist. The
commerical concludes that the customer should buy a
Totalee toothbrush because the toothbrush is Totalee revo-
lutionary and Totalee effective. It certainly is effective; it is
the most popular toothbrush on the market!

At that moment, with the inventory article and the tooth-
brush commercial fresh in his mind, Robert experiences a
flash of brilliance. He knows how to control the inventory
of Totalee toothbrushes at Nightingale Drugstore!

As the inventory control manager at Nightingale Drug-
store, Robert has been experiencing problems keeping 
Totalee toothbrushes in stock. He has discovered that cus-
tomers are very loyal to the Totalee brand name since To-
talee holds a patent on the toothbrush endorsed by 9 out of
10 dentists. Customers are willing to wait for the tooth-
brushes to arrive at Nightingale Drugstore since the drug-
store sells the toothbrushes for 20 percent less than other
local stores. This demand for the toothbrushes at Nightin-
gale means that the drugstore is often out of Totalee 
toothbrushes. The store is able to receive a shipment of
toothbrushes several hours after an order is placed to the
Totalee regional warehouse because the warehouse is only
20 miles away from the store. Nevertheless, the current
inventory situation causes problems because numerous emer-
gency orders cost the store unnecessary time and paper-
work and because customers become disgruntled when
they must return to the store later in the day.

Robert now knows a way to prevent the inventory prob-
lems through scientific inventory management! He grabs his
coat and car keys and rushes out of the house.

As he runs to the car, his wife yells, “Honey, where are
you going?”

“I’m sorry, darling,” Robert yells back. “I have just dis-
covered a way to control the inventory of a critical item at
the drugstore. I am really excited because I am able to ap-
ply my industrial engineering degree to my job! I need to
get the data from the store and work out the new inventory
policy! I will be back before dinner!”

Because rush hour traffic has dissipated, the drive to the
drugstore takes Robert no time at all. He unlocks the dark-
ened store and heads directly to his office where he rum-
mages through file cabinets to find demand and cost data
for Totalee toothbrushes over the past year.

Aha! Just as he suspected! The demand data for the
toothbrushes is almost constant across the months. Whether
in winter or summer, customers have teeth to brush, and they
need toothbrushes. Since a toothbrush will wear out after a
few months of use, customers will always return to buy an-
other toothbrush. The demand data shows that Nightingale
Drugstore customers purchase an average of 250 Totalee
toothbrushes per month (30 days).

After examining the demand data, Robert investigates
the cost data. Because Nightingale Drugstore is such a good
customer, Totalee charges its lowest wholesale price of only
$1.25 per toothbrush. Robert spends about 20 minutes to
place each order with Totalee. His salary and benefits add
up to $18.75 per hour. The annual holding cost for the in-
ventory is 12 percent of the capital tied up in the inventory
of Totalee toothbrushes.

(a) Robert decides to create an inventory policy that normally ful-
fills all demand since he believes that stock-outs are just not worth
the hassle of calming customers or the risk of losing future busi-
ness. He therefore does not allow any planned shortages. Since
Nightingale Drugstore receives an order several hours after it is
placed, Robert makes the simplifying assumption that delivery is
instantaneous. What is the optimal inventory policy under these
conditions? How many Totalee toothbrushes should Robert or-
der each time and how frequently? What is the total variable in-
ventory cost per year with this policy?

(b) Totalee has been experiencing financial problems because the
company has lost money trying to branch into producing other
personal hygiene products, such as hairbrushes and dental
floss. The company has therefore decided to close the ware-
house located 20 miles from Nightingale Drugstore. The drug-
store must now place orders with a warehouse located 350
miles away and must wait 6 days after it places an order to re-
ceive the shipment. Given this new lead time, how many
Totalee toothbrushes should Robert order each time, and when
should he order?

(c) Robert begins to wonder whether he would save money if he
allows planned shortages to occur. Customers would wait to
buy the toothbrushes from Nightingale since they have high
brand loyalty and since Nightingale sells the toothbrushes for
less. Even though customers would wait to purchase the
Totalee toothbrush from Nightingale, they would become un-
happy with the prospect of having to return to the store again
for the product. Robert decides that he needs to place a dol-
lar value on the negative ramifications from shortages. He
knows that an employee would have to calm each disgrun-
tled customer and track down the delivery date for a new
shipment of Totalee toothbrushes. Robert also believes that
customers would become upset with the inconvenience of
shopping at Nightingale and would perhaps begin looking for
another store providing better service. He estimates the costs
of dealing with disgruntled customers and losing customer
goodwill and future sales as $1.50 per unit short per year.
Given the 6-day lead time and the shortage allowance, how
many Totalee toothbrushes should Robert order each time,
and when should he order? What is the maximum shortage
under this optimal inventory policy? What is the total vari-
able inventory cost per year?

(d) Robert realizes that his estimate for the shortage cost is sim-
ply that—an estimate. He realizes that employees sometimes
must spend several minutes with each customer who wishes
to purchase a toothbrush when none is currently available. In
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addition, he realizes that the cost of losing customer goodwill
and future sales could vary within a wide range. He estimates
that the cost of dealing with disgruntled customers and losing
customer goodwill and future sales could range from 85 cents
to $25 per unit short per year. What effect would changing the
estimate of the unit shortage cost have on the inventory pol-
icy and total variable inventory cost per year found in part (c)?

(e) Closing warehouses has not improved Totalee’s bottom line sig-
nificantly, so the company has decided to institute a discount

policy to encourage more sales. Totalee will charge $1.25 per
toothbrush for any order of up to 500 toothbrushes, $1.15 per
toothbrush for orders of more than 500 but less than 1000 tooth-
brushes, and $1 per toothbrush for orders of 1000 toothbrushes
or more. Robert still assumes a 6-day lead time, but he does not
want planned shortages to occur. Under the new discount pol-
icy, how many Totalee toothbrushes should Robert order each
time, and when should he order? What is the total inventory
cost (including purchase costs) per year?

■ PREVIEWS OF ADDED CASES ON OUR WEBSITE (www.mhhe.com/hillier)

CASE 18.2 TNT: Tackling Newsboy’s
Teaching 
A young entrepreneur will be operating a firecracker stand
for the Fourth of July. He has time to place only one order
for the firecrackers he will sell from his stand. After ob-
taining the relevant financial data and some information with
which to estimate the probability distribution of potential
sales, he now needs to determine how many firecracker sets
he should order to maximize his expected profit under dif-
ferent scenarios.

CASE 18.3 Jettisoning Surplus Stock
American Aerospace produces military jet engines. Frequent
shortages of one critical part has been causing delays in the

production of the most popular jet engine, so a new inven-
tory policy needs to be developed for this part. There is a
long lead time between when an order is placed for the part
and when the order quantity is received. The demand for the
part during this lead time is uncertain, but some data are
available for estimating its probability distribution. In the
future, the inventory level of the part will be kept under con-
tinuous review. Decisions now need to be made regarding
the inventory level at which a new order should be placed
and what the order quantity should be.
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19C H A P T E R

Markov Decision Processes

As illustrated in the preceding two chapters, OR studies frequently need to analyze some
kind of stochastic process (a process that evolves over time in a probabilistic man-

ner). Most queueing systems described in Chap. 17 are a stochastic process, because the
number of customers in the system evolves over time in a probabilistic manner based on
the uncertainty about when arrivals will occur and how long the service times will be. Sim-
ilarly, Secs. 18.6 and 18.7 describe inventory systems that are a stochastic process because
the number of items in inventory evolves over time in a probabilistic manner based on the
uncertainty about future demand.

Markov chains are a particularly important type of stochastic process. Markov chains
have the special property that probabilities involving how the process will evolve in the fu-
ture depend only on the current state of the process, and so are independent of events in the
past. (For example, the birth-and-death process described in Sec. 17.5 fits this definition, as
do all the queueing systems described in Sec. 17.6 that are based on the birth-and-death
process.) This lack-of-memory property is referred to as the Markovian property.

Each time a Markov chain is observed, it can be in any one of a number of states. 
A continuous time Markov chain is observed continuously, whereas a discrete time Markov
chain is observed only at discrete points in time (e.g., at the end of each day). Given the
current state of a discrete time Markov chain, a (one-step) transition matrix gives 
the probabilities for what the state will be next time. Given this transition matrix, exten-
sive information can be calculated to describe the behavior of the Markov chain, e.g., the
steady-state probabilities for what state it is in. (Chapter 29 on this book’s website pro-
vides a detailed introduction to Markov chains.)

Many important systems (e.g., many queueing systems) can be modeled as either a
discrete time or continuous time Markov chain. It is useful to describe the behavior of
such a system (as we did in Chap. 17 for queueing systems) in order to evaluate its per-
formance. However, it may be even more useful to design the operation of the system so
as to optimize its performance (as we did in Sec. 17.10 for queueing systems).

This chapter focuses on how to design the operation of a discrete time Markov chain
so as to optimize its performance. Therefore, rather than passively accepting the design of
the Markov chain and the corresponding fixed transition matrix, we now are being proac-
tive. For each possible state of the Markov chain, we make a decision about which one of
several alternative actions should be taken in that state. The action chosen affects the tran-
sition probabilities as well as both the immediate costs (or rewards) and subsequent costs
(or rewards) from operating the system. We want to choose the optimal actions for the 
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State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 0 0 �
1
2

� �
1
2

�

3 0 0 0 1 

A manufacturer has one key machine at the core of one of its production processes. Be-
cause of heavy use, the machine deteriorates rapidly in both quality and output. There-
fore, at the end of each week, a thorough inspection is done that results in classifying the
condition of the machine into one of four possible states:

After historical data on these inspection results are gathered, statistical analysis is done
on how the state of the machine evolves from week to week. The following matrix shows
the relative frequency (probability) of each possible transition from the state in one week
(a row of the matrix) to the state in the following week (a column of the matrix).

878 CHAPTER 19 MARKOV DECISION PROCESSES

State Condition

0 Good as new
1 Operable—minor deterioration
2 Operable—major deterioration
3 Inoperable—output of unacceptable quality

respective states when considering both immediate and subsequent costs. The decision
process for doing this is referred to as a Markov decision process.

The first section gives a prototype example of an application of a Markov decision
process. Section 19.2 formulates the basic model for such a process when the objective
is to find the policy (the actions to take in the respective states) that minimizes the (long-
run) expected average cost per unit time. Section 19.3 describes how linear programming
can then be used to find an optimal policy. (Supplement 1 to this chapter on the book’s
website presents an efficient policy improvement algorithm that also can find an optimal
policy. Supplement 2 discusses the alternative objective of minimizing the expected total
discounted cost instead of focusing on the average cost per unit time.)

■ 19.1 A PROTOTYPE EXAMPLE

In addition, statistical analysis has found that these transition probabilities are unaffected
by also considering what the states were in prior weeks. This “lack-of-memory property”
is the Markovian property that characterizes Markov chains. (Section 29.2 on the book’s
website provides a mathematical definition of this property.) Therefore, letting the ran-
dom variable Xt be the state of the machine at the end of week t, the conclusion is that
the stochastic process {Xt, t � 0, 1, 2, . . .} is a discrete time Markov chain whose (one-
step) transition matrix is just the above matrix.

As the last row in this transition matrix indicates, once the machine becomes inop-
erable (enters state 3), it remains inoperable. In other words, state 3 is what is called an
absorbing state. Leaving the machine in this state would be intolerable, since this would
shut down the production process, so the machine must be replaced. (Repair is not feasi-
ble in this state.) The new machine then will start off in state 0.

hil23453_ch19_877-891.qxd  1/22/70  7:45 AM  Page 878 Final PDF to printer



State Expected Cost Due to Defective Items, $

0 0
1 1,000
2 3,000 

The replacement process takes 1 week to complete so that production is lost for this pe-
riod. The cost of the lost production (lost profit) is $2,000, and the cost of replacing the ma-
chine is $4,000, so the total cost incurred whenever the current machine enters state 3 is $6,000.

Even before the machine reaches state 3, costs may be incurred from the production
of defective items. The expected costs per week from this source are as follows:

We now have mentioned all the relevant costs associated with one particular mainte-
nance policy (replace the machine when it becomes inoperable but do no maintenance
otherwise). Under this policy, the evolution of the state of the system (the succession of
machines) still is a Markov chain, but now with the following transition matrix:

19.1 A PROTOTYPE EXAMPLE 879

State 0 1 2 3

0 0 �
7
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1
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1
1
6
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1
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�
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1
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� �
1
2

�

3 1 0 0 0

1The term long-run indicates that the average should be interpreted as being taken over an extremely long time
so that the effect of the initial state disappears. As time goes to infinity, Sec. 29.5 discusses the fact that the ac-
tual average cost per unit time essentially always converges to the expected average cost per unit time.

To evaluate this maintenance policy, we should consider both the immediate costs in-
curred over the coming week (just described) and the subsequent costs that result from hav-
ing the system evolve in this way. A widely used measure of performance for Markov chains
is the (long-run) expected average cost per unit time.1

To calculate this measure, we first derive the steady-state probabilities �0, �1, �2,
and �3 for this Markov chain. This is done by writing each of these state probabilities as
the sum of the probabilities of all the possible ways to transition into this state in one step
and then solving the resulting system of steady-state equations:

�0 � �3,

�1 � �
7
8

��0 � �
3
4

��1,

�2 � �
1
1
6
��0 � �

1
8

��1 � �
1
2

��2,

�3 � �
1
1
6
��0 � �

1
8

��1 � �
1
2

��2,

1 � �0 � �1 � �2 � �3.

(Although this system of equations is small enough to be solved by hand without great dif-
ficulty, the Steady-State Probabilities procedure in the Markov Chains area of your IOR Tu-
torial provides another quick way of obtaining this solution.) The simultaneous solution is

�0 � �
1
2
3
�, �1 � �

1
7
3
�, �2 � �

1
2
3
�, �3 � �

1
2
3
�.
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Hence, the (long-run) expected average cost per week for this maintenance policy is

0�0 � 1,000�1 � 3,000�2 � 6,000�3 � �
25

1
,0
3
00
� � $1,923.08.

However, there also are other maintenance policies that should be considered and com-
pared with this one. For example, perhaps the machine should be replaced before it reaches
state 3. Another alternative is to overhaul the machine at a cost of $2,000. This option is
not feasible in state 3 and does not improve the machine while in state 0 or 1, so it is of
interest only in state 2. In this state, an overhaul would return the machine to state 1. A
week is required, so another consequence is $2,000 in lost profit from lost production.

In summary, the possible decisions after each inspection are as follows:

For easy reference, Table 19.1 also summarizes the relevant costs for each decision for
each state where that decision could be of interest.

What is the optimal maintenance policy? We will be addressing this question to il-
lustrate the material in the next two sections.

Decision Action Relevant States

1 Do nothing 0, 1, 2
2 Overhaul (return system to state 1) 2
3 Replace (return system to state 0) 1, 2, 3

880 CHAPTER 19 MARKOV DECISION PROCESSES

TABLE 19.1 Cost data for the prototype example

Expected Cost Cost (Lost Total
Due to Producing Maintenance Profit) of Lost Cost per

Decision State Defective Items, $ Cost, $ Production, $ Week, $

1. Do nothing 0 0 0 0 0
1 1,000 0 0 1,000
2 3,000 0 0 3,000

2. Overhaul 2 0 2,000 2,000 4,000
3. Replace 1, 2, 3 0 4,000 2,000 6,000

2The solution procedure given in the next section also assumes that the resulting transition matrix enables any state
to be reached eventually from any other state..

■ 19.2 A MODEL FOR MARKOV DECISION PROCESSES

The model for the Markov decision processes considered in this chapter can be summa-
rized as follows.

1. The state i of a discrete time Markov chain is observed after each transition, where the
possible states are i � 0, 1, . . . , M .

2. After each observation, a decision (action) k is chosen from a set of K possible deci-
sions (k � 1, 2, . . . , K ). (Some of the K decisions may not be relevant for some of
the states.)

3. If decision di � k is made in state i, an immediate cost is incurred that has an expected
value Cik.

4. The decision di � k in state i determines what the transition probabilities2 will be for
the next transition from state i. Denote these transition probabilities by pij(k), for j � 0,
1, . . . , M.
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5. A specification of the decisions for the respective states (d0, d1, . . . , dM) prescribes a
policy for the Markov decision process.

6. The objective is to find an optimal policy according to some cost criterion which con-
siders both immediate costs and subsequent costs that result from the future evolution
of the process. The common criterion considered in this chapter is to minimize the
(long-run) expected average cost per unit time. (An alternative criterion is considered
in Supplement 2 to this chapter.)

To relate this general description to the prototype example presented in Sec. 19.1, recall
that the Markov chain being observed there represents the state (condition) of a particular
machine. After each inspection of the machine, a choice is made between three possible de-
cisions (do nothing, overhaul, or replace). The resulting immediate expected cost is shown
in the rightmost column of Table 19.1 for each relevant combination of state and decision.
Section 19.1 analyzed one particular policy (d0, d1, d2, d3) � (1, 1, 1, 3), where decision 1
(do nothing) is made in states 0, 1, and 2 and decision 3 (replace) is made in state 3. The re-
sulting transition probabilities are shown in the last transition matrix given in Sec. 19.1.

Our general model qualifies to be a Markov decision process because it possesses the
Markovian property of lack of memory that characterizes any Markov process. In partic-
ular, given the current state and decision, any probabilistic statement about the future of
the process is completely unaffected by providing any information about the history of
the process. This Markovian property holds here since (1) the new transition probabilities
depend on only the current state and decision and (2) the immediate expected cost also
depends on only the current state and decision.

19.2 A MODEL FOR MARKOV DECISION PROCESSES 881

In 2003, Bank One Corporation was the sixth-largest
bank in the United States. Bank One Card Services,
Inc., a division of Bank One Corporation, also was the
largest issuer of Visa cards in the United States, on be-
half of both Bank One and several thousand marketing
partners. The following year, Bank One Corporation
merged with JPMorgan Chase under the latter name to
form the third-largest banking institution in the coun-
try. Chase thereafter was used as the brand for its credit
card services.

The credit card business is a natural application area
of operations research because its success depends so
directly on a careful balancing of various quantitative
factors. The annual percentage rate (APR) for interest
charges and the credit line of card accounts influence
both card use and bank profitability. Consumers find
low APR levels and high credit lines attractive. How-
ever, low APR levels may reduce bank profitability,
while indiscriminate increases in credit lines increase
the bank’s exposure to credit loss. It is critical that these
factors be balanced in different ways for different cus-
tomers based on the evolving credit ratings of these 
customers.

With all this in mind, Bank One management asked
its in-house OR group in 1999 to begin the PORTICO
(portfolio control and optimization) project to evaluate
approaches for improving the profitability of its credit

card business. The OR group designed the PORTICO
system using Markov decision processes to select the
APR levels and credit lines for individual card holders
that maximize the net present value of the entire port-
folio of credit card customers. The group used several
variables—including the credit-line level, the APR level,
and some variables describing customer behavior in mak-
ing payments—to determine the state into which to slot
an account in any month. The transition probabilities were
based on 18 months of time-series data on a random sam-
ple of 3 million credit card accounts from the bank’s port-
folio. The decisions to be made for each state of the
Markov decision process are the APR level and credit-line
level for that category of customers in the next month.

A considerable period of testing the PORTICO
model verified that it would substantially increase the
bank’s profitability. As the actual implementation began,
it was estimated that this new process would increase an-
nual profits by over $75 million. This outstanding appli-
cation of Markov decision processes led to Bank One
winning the prestigious Wagner Prize for Excellence in
Operations Research Practice for 2002.

Source: M. S. Trench, S. P. Pederson, E. T. Lau, L. Ma, H. Wang,
and S. K. Nair: “Managing Credit Lines and Prices for Bank
One Credit Cards,” Interfaces, 33(5): 4–21, Sept.–Oct. 2003. (A
link to this article is provided on our website, www.mhhe
.com/hillier.)

An Application Vignette
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882 CHAPTER 19 MARKOV DECISION PROCESSES

Policy Verbal Description d0(R) d1(R) d2(R) d3(R)

Ra Replace in state 3 1 1 1 3
Rb Replace in state 3, overhaul in state 2 1 1 2 3
Rc Replace in states 2 and 3 1 1 3 3
Rd Replace in states 1, 2, and 3 1 3 3 3 

Our description of a policy implies two convenient (but unnecessary) properties that
we will assume throughout the chapter (with one exception). One property is that a pol-
icy is stationary; i.e., whenever the system is in state i, the rule for making the decision
always is the same regardless of the value of the current time t. The second property is
that a policy is deterministic; i.e., whenever the system is in state i, the rule for making
the decision definitely chooses one particular decision. (Because of the nature of the al-
gorithm involved, the next section considers randomized policies instead, where a proba-
bility distribution is used for the decision to be made.)

Using this general framework, we now return to the prototype example and find
the optimal policy by enumerating and comparing all the relevant policies. In doing
this, we will let R denote a specific policy and di(R) denote the corresponding deci-
sion to be made in state i, where decisions 1, 2, and 3 are described at the end of the
preceding section. Since one or more of these three decisions are the only ones that
would be considered in any given state, the only possible values of di(R) are 1, 2, or 3
for any state i.

Solving the Prototype Example by Exhaustive Enumeration

The relevant policies for the prototype example are these:

Each policy results in a different transition matrix, as shown below.

Ra

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 0 0 �
1
2

� �
1
2

�

3 1 0 0 0

Rb

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 0 1 0 0
3 1 0 0 0

Rc

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 1 0 0 0
3 1 0 0 0

Rd

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 1 0 0 0
2 1 0 0 0
3 1 0 0 0
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19.3 LINEAR PROGRAMMING AND OPTIMAL POLICIES 883

Decision k

Cik (in Thousands of Dollars)

State i 1 2 3

0 0 — —
1 1 — 6
2 3 4 6
3 — — 6 

Policy (�0, �1, �2, �3) E(C), in Thousands of Dollars

Ra ��
1
2
3
�, �

1
7
3
�, �

1
2
3
�, �

1
2
3
�� �

1
1
3
�[2(0) � 7(1) � 2(3) � 2(6)] � �

2
1
5
3
� � $1,923

Rb ��
2
2
1
�, �

5
7

�, �
2
2
1
�, �

2
2
1
�� �

2
1
1
�[2(0) � 15(1) � 2(4) � 2(6)] � �

3
2
5
1
� � $1,667

Rc ��
1
2
1
�, �

1
7
1
�, �

1
1
1
�, �

1
1
1
�� �

1
1
1
�[2(0) � 7(1) � 1(6) � 1(6)] � �

1
1
9
1
� � $1,727

Rd ��
1
2

�, �
1
7
6
�, �

3
1
2
�, �

3
1
2
�� �

3
1
2
�[16(0) � 14(6) � 1(6) � 1(6)] � �

9
3
6
2
� � $3,000

From the rightmost column of Table 19.1, the values of Cik are as follows:

The (long-run) expected average cost per unit time E(C) then can be calculated from the
expression

E(C ) � �
M

i�0
Cik�i,

where k � di(R) for each i and (�0, �1, . . . , �M) represents the steady-state distribution
of the state of the system under the policy R being evaluated. After (�0, �1, . . . , �M) are
solved for under each of the four policies (as can be done with your IOR Tutorial), the
calculation of E(C ) is as summarized here:

Thus, the optimal policy is Rb; that is, replace the machine when it is found to be in
state 3, and overhaul the machine when it is found to be in state 2. The resulting (long-
run) expected average cost per week is $1,667.

If you would like to go through another small example, one is provided in the Solved
Examples section of the book’s website.

Using exhaustive enumeration to find the optimal policy is appropriate for such tiny
examples, where there are so few relevant policies. However, many applications have so
many policies that this approach would be completely infeasible. For such cases, a more
efficient method of finding an optimal policy is needed. The next section describes such
a method by using the powerful technique of linear programming. (Supplement 1 to this
chapter presents still another method that is sometimes used.)

� Minimum

■ 19.3 LINEAR PROGRAMMING AND OPTIMAL POLICIES

The preceding section described the main kind of policy (called a stationary, determinis-
tic policy) that is used by Markov decision processes. We saw that any such policy R can
be viewed as a rule that prescribes decision di(R) whenever the system is in state i, for
each i � 0, 1, . . . , M. Thus, R is characterized by the values

{d0(R), d1(R), . . . , dM(R)}.
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Equivalently, R can be characterized by assigning values Dik � 0 or 1 in the matrix

Decision k
1 2 ��� K

State i ,

where each Dik (i � 0, 1, . . . , M and k � 1, 2, . . . , K ) is defined as

Dik � �
Therefore, each row in the matrix must contain a single 1 with the rest of the elements
0s. For example, the optimal policy Rb for the prototype example is characterized by the
matrix

Decision k
1 2 3

State i ;

i.e., do nothing (decision 1) when the machine is in state 0 or 1, overhaul (decision 2) in
state 2, and replace the machine (decision 3) when it is in state 3.

Randomized Policies

Introducing Dik provides motivation for a linear programming formulation. It is hoped
that the expected cost of a policy can be expressed as a linear function of Dik or a related
variable, subject to linear constraints. Unfortunately, the Dik values are integers (0 or 1),
and continuous variables are required for a linear programming formulation. This re-
quirement can be handled by expanding the interpretation of a policy. The previous de-
finition calls for making the same decision every time the system is in state i. The new
interpretation of a policy will call for determining a probability distribution for the deci-
sion to be made when the system is in state i.

With this new interpretation, the Dik now need to be redefined as

Dik � P{decision � k⏐state � i}.

In other words, given that the system is in state i, variable Dik is the probability of choos-
ing decision k as the decision to be made. Therefore, (Di1, Di2, . . . , DiK) is the proba-
bility distribution for the decision to be made in state i.

This kind of policy using probability distributions is called a randomized policy,
whereas the policy calling for Dik � 0 or 1 is a deterministic policy. Randomized policies
can again be characterized by the matrix

Decision k
1 2 ��� K

State i ,

⎤
⎥
⎥
⎥
⎥
⎦

D0K

D1K

DMK

���

���

���

D02

D12

DM2

D01

D11

DM1

⎡
⎢
⎢
⎢
⎢
⎣

0

1

�

M

⎤
⎥
⎥
⎥
⎥
⎦

0

0

0

1

0

0

1

0

1

1

0

0

⎡
⎢
⎢
⎢
⎢
⎣

0

1

2

3

if decision k is to be made in state i
otherwise.

1
0

⎤
⎥
⎥
⎥
⎥
⎦

D0K

D1K

DMK

���

���

���

D02

D12

DM2

D01

D11

DM1

⎡
⎢
⎢
⎢
⎢
⎣

0

1

�

M

����������������������������

�����������������������������
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where each row sums to 1, and now

0 � Dik � 1.

To illustrate, consider a randomized policy for the prototype example given by the matrix

Decision k
1 2 3

State i .

This policy calls for always making decision 1 (do nothing) when the machine is in state 0.
If it is found to be in state 1, it is left as is with probability �

1
2

� and replaced with proba-
bility �

1
2

�, so a coin can be flipped to make the choice. If it is found to be in state 2, it is
left as is with probability �

1
4

�, overhauled with probability �
1
4

�, and replaced with probability �
1
2

�.
Presumably, a random device with these probabilities (possibly a table of random num-
bers) can be used to make the actual decision. Finally, if the machine is found to be in
state 3, it always is replaced.

By allowing randomized policies, so that the Dik are continuous variables instead of
integer variables, it now is possible to formulate a linear programming model for finding
an optimal policy.

A Linear Programming Formulation

The convenient decision variables (denoted here by yik) for a linear programming model
are defined as follows. For each i � 0, 1, . . . , M and k � 1, 2, . . . , K, let yik be the steady-
state unconditional probability that the system is in state i and decision k is made; i.e.,

yik � P{state � i and decision � k}.

Each yik is closely related to the corresponding Dik since, from the rules of conditional
probability,

yik � �iDik,

where �i is the steady-state probability that the Markov chain is in state i. Furthermore,

�i � �
K

k�1
yik,

so that

Dik � �
y
�

ik

i
� � .

There exist three sets of constraints on yik:

1. �
M

i�0
�i � 1 so that �

M

i�0
�
K

k�1
yik � 1.

2. From the relationships between steady-state probabilities,3

�j � �
M

i�0
�ipij(k)

yik�

�
K

k�1
yik

⎤
⎥
⎥
⎥
⎥
⎦

0
�
1
2

�

�
1
2

�

1

0

0
�
1
4

�

0

1
�
1
2

�

�
1
4

�

0

⎡
⎢
⎢
⎢
⎢
⎣

0

1

2

3

19.3 LINEAR PROGRAMMING AND OPTIMAL POLICIES 885

3The argument k is introduced in pij(k) to indicate that the appropriate transition probability depends upon the
decision k.
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so that

�
K

k�1
yjk � �

M

i�0
�
K

k�1
yikpij(k), for j � 0, 1, . . . , M.

3. yik � 0, for i � 0, 1, . . . , M and k � 1, 2, . . . , K.

The long-run expected average cost per unit time is given by

E(C ) � �
M

i�0
�
K

k�1
�iCikDik � �

M

i�0
�
K

k�1
Cikyik.

Hence, the linear programming model is to choose the yik so as to

Minimize Z � �
M

i�0
�
K

k�1
Cikyik,

subject to the constraints

(1) �
M

i�0
�
K

k�1
yik � 1.

(2) �
K

k�1
yjk � �

M

i�0
�
K

k�1
yikpij(k) � 0, for j � 0, 1, . . . , M.

(3) yik � 0, for i � 0, 1, . . . , M; k � 1, 2, . . . , K.

Thus, this model has M � 2 functional constraints and K(M � 1) decision variables. 
[Actually, (2) provides one redundant constraint, so any one of these M � 1 constraints
can be deleted.]

Because this is a linear programming model, it can be solved by the simplex method.
Once the yik values are obtained, each Dik is found from

Dik � .

The optimal solution obtained by the simplex method has some interesting proper-
ties. It will contain M � 1 basic variables yik � 0, so all the remaining variables are non-
basic variables that automatically have a value of 0. It can be shown that yik 	 0 for at
least one k � 1, 2, . . . , K, for each i � 0, 1, . . . , M. Therefore, it follows that yik 	 0
for only one k for each i � 0, 1, . . . , M. Consequently, each Dik � 0 or 1.

The key conclusion is that the optimal policy found by the simplex method is determin-
istic rather than randomized. Thus, allowing policies to be randomized does not help at all in
improving the final policy. However, it serves an extremely useful role in this formulation by
converting integer variables (the Dik) to continuous variables so that linear programming (LP)
can be used. (The analogy in integer programming is to use the LP relaxation so that the sim-
plex method can be applied and then to have the integer solutions property hold so that the
optimal solution for the LP relaxation turns out to be integer anyway.)

Solving the Prototype Example by Linear Programming

Refer to the prototype example of Sec. 19.1. The first two columns of Table 19.1 give the
relevant combinations of states and decisions. Therefore, the decision variables that need
to be included in the model are y01, y11, y13, y21, y22, y23, and y33. (The general expres-
sions given above for the model include yik for irrelevant combinations of states and 

yik�

�
K

k�1
yik

886 CHAPTER 19 MARKOV DECISION PROCESSES
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19.4 CONCLUSIONS 887

Markov decision processes provide a powerful tool for optimizing the performance of
stochastic processes that can be modeled as a discrete time Markov chain. Applications
arise in a variety of areas, such as health care, highway and bridge maintenance, in-
ventory management, machine maintenance, cash-flow management, control of water
reservoirs, forest management, control of queueing systems, and operation of commu-
nication networks. Selected References 10, 11, and 1 provide interesting early surveys
of applications. Selected Reference 9 gives an update on one that won a prestigious
prize, and Selected References 2 and 5 describe other award-winning applications.

A common objective of a Markov decision process is to find a policy (a prescrip-
tion of which action should be taken in each of the possible states of the Markov chain)
that minimizes the (long-run) expected average cost per unit time. (Supplement 2 also
explores the alternative objective of minimizing the expected total discounted cost in-
stead.) A number of methods are available for deriving an optimal policy, including ex-
haustive enumeration and linear programming. (Supplement 1 also describes a policy
improvement algorithm that will do this.)

decisions here, so these yik � 0 in an optimal solution, and they might as well be deleted
at the outset.) The rightmost column of Table 19.1 provides the coefficients of these vari-
ables in the objective function. The transition probabilities pij(k) for each relevant com-
bination of state i and decision k also are spelled out in Sec. 19.1.

The resulting linear programming model is

Minimize Z � 1,000y11 � 6,000y13 � 3,000y21 � 4,000y22 � 6,000y23

� 6,000y33,

subject to

y01 � y11 � y13 � y21 � y22 � y23 � y33 � 1

y01 � (y13 � y23 � y33) � 0

y11 � y13 � ��
7
8

�y01 � �
3
4

�y11 � y22� � 0

y21 � y22 � y23 � ��
1
1
6
�y01 � �

1
8

�y11 � �
1
2

�y21� � 0

y33 � ��
1
1
6
�y01 � �

1
8

�y11 � �
1
2

�y21� � 0

and

all yik � 0.

Applying the simplex method, we obtain the optimal solution

y01 � �
2
2
1
�, (y11, y13) � ��

5
7

�, 0�, (y21, y22, y23) � �0, �
2
2
1
�, 0�, y33 � �

2
2
1
�,

so

D01 � 1, (D11, D13) � (1, 0), (D21, D22, D23) � (0, 1, 0), D33 � 1.

This policy calls for leaving the machine as is (decision 1) when it is in state 0 or 1, over-
hauling it (decision 2) when it is in state 2, and replacing it (decision 3) when it is in state 3.
This is the same optimal policy found by exhaustive enumeration at the end of Sec. 19.2.

The Solved Examples section of the book’s website provides another example of
applying linear programming to obtain an optimal policy for a Markov decision process.

■ 19.4 CONCLUSIONS
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■ PROBLEMS

The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The demonstration example listed above may be helpful.
I: We suggest that you use the corresponding interactive proce-

dure listed above (the printout records your work).
A: The automatic procedures listed above can be helpful.
C: Use the computer with any of the software options available to

you (or as instructed by your instructor) to solve your linear
programming formulation.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

19.2-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 19.2.
Briefly describe how Markov decision processes were applied in
this study. Then list the various financial and nonfinancial benefits
that resulted from this study.

19.2-2.* During any period, a potential customer arrives at a cer-
tain facility with probability �

1
2

�. If there are already two people at
the facility (including the one being served), the potential customer
leaves the facility immediately and never returns. However, if there
is one person or less, he enters the facility and becomes an actual
customer. The manager of the facility has two types of service con-
figurations available. At the beginning of each period, a decision
must be made on which configuration to use. If she uses her “slow”
configuration at a cost of $3 and any customers are present during
the period, one customer will be served and leave the facility with
probability �

3
5

�. If she uses her “fast” configuration at a cost of $9
and any customers are present during the period, one customer will
be served and leave the facility with probability �

4
5

�. The probability
of more than one customer arriving or more than one customer be-
ing served in a period is zero. A profit of $50 is earned when a
customer is served.
(a) Formulate the problem of choosing the service configuration

period by period as a Markov decision process. Identify the
states and decisions. For each combination of state and de-
cision, find the expected net immediate cost (subtracting any
profit from serving a customer) incurred during that period.

(b) Identify all the (stationary deterministic) policies. For each
one, find the transition matrix and write an expression for
the (long-run) expected average net cost per period in terms
of the unknown steady-state probabilities (�0, �1, . . . , �M).

A (c) Use your IOR Tutorial to find these steady-state proba-
bilities for each policy. Then evaluate the expression ob-
tained in part (b) to find the optimal policy by exhaustive
enumeration.

19.2-3.* A student is concerned about her car and does not like
dents. When she drives to school, she has a choice of parking it on
the street in one space, parking it on the street and taking up two
spaces, or parking in the lot. If she parks on the street in one space,

her car gets dented with probability �
1
1
0
�. If she parks on the street

and takes two spaces, the probability of a dent is �
5
1
0
� and the prob-

ability of a $15 ticket is �
1
3
0
�. Parking in a lot costs $5, but the car

will not get dented. If her car gets dented, she can have it repaired,
in which case it is out of commission for 1 day and costs her $50
in fees and cab fares. She can also drive her car dented, but she
feels that the resulting loss of value and pride is equivalent to a
cost of $9 per school day. She wishes to determine the optimal pol-
icy for where to park and whether to repair the car when dented
in order to minimize her (long-run) expected average cost per
school day.
(a) Formulate this problem as a Markov decision process by iden-

tifying the states and decisions and then finding the Cik.
(b) Identify all the (stationary deterministic) policies. For each

one, find the transition matrix and write an expression for
the (long-run) expected average cost per period in terms of
the unknown steady-state probabilities (�0, �1, . . . , �M).

A (c) Use your IOR Tutorial to find these steady-state proba-
bilities for each policy. Then evaluate the expression ob-
tained in part (b) to find the optimal policy by exhaustive
enumeration.

19.2-4. Every Saturday night a man plays poker at his home with
the same group of friends. If he provides refreshments for the group
(at an expected cost of $14) on any given Saturday night, the group
will begin the following Saturday night in a good mood with prob-
ability �

7
8

� and in a bad mood with probability �
1
8

�. However, if he fails
to provide refreshments, the group will begin the following Satur-
day night in a good mood with probability �

1
8

� and in a bad mood
with probability �

7
8

�, regardless of their mood this Saturday. Further-
more, if the group begins the night in a bad mood and then he fails
to provide refreshments, the group will gang up on him so that he
incurs expected poker losses of $75. Under other circumstances,
he averages no gain or loss on his poker play. The man wishes to find
the policy regarding when to provide refreshments that will minimize
his (long-run) expected average cost per week.
(a) Formulate this problem as a Markov decision process by iden-

tifying the states and decisions and then finding the Cik.
(b) Identify all the (stationary deterministic) policies. For each one,

find the transition matrix and write an expression for the (long-
run) expected average cost per period in terms of the unknown
steady-state probabilities (�0, �1, . . . , �M).

A (c) Use your IOR Tutorial to find these steady-state probabilities
for each policy. Then evaluate the expression obtained in part
(b) to find the optimal policy by exhaustive enumeration.

19.2-5.* When a tennis player serves, he gets two chances to serve
in bounds. If he fails to do so twice, he loses the point. If he at-
tempts to serve an ace, he serves in bounds with probability �

3
8

�. If he
serves a lob, he serves in bounds with probability �

7
8

�. If he serves an
ace in bounds, he wins the point with probability �

2
3

�. With an in-
bounds lob, he wins the point with probability �

1
3

�. If the cost is �1
for each point lost and �1 for each point won, the problem is to
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890 CHAPTER 19 MARKOV DECISION PROCESSES

determine the optimal serving strategy to minimize the (long-run)
expected average cost per point. (Hint: Let state 0 denote point over,
two serves to go on next point; and let state 1 denote one serve left.)
(a) Formulate this problem as a Markov decision process by iden-

tifying the states and decisions and then finding the Cik.
(b) Identify all the (stationary deterministic) policies. For each

one, find the transition matrix and write an expression for the
(long-run) expected average cost per point in terms of the un-
known steady-state probabilities (�0, �1, . . . , �M).

A (c) Use your IOR Tutorial to find these steady-state proba-
bilities for each policy. Then evaluate the expression ob-
tained in part (b) to find the optimal policy by exhaustive
enumeration.

19.2-6. Each year Ms. Fontanez has the chance to invest in two
different no-load mutual funds: the Go-Go Fund or the Go-Slow
Mutual Fund. At the end of each year, Ms. Fontanez liquidates her
holdings, takes her profits, and then reinvests. The yearly profits
of the mutual funds depend on where the market stood at the end
of the preceding year. Recently the market has been oscillating
around the 12,000 mark from one year end to the next, according
to the probabilities given in the following transition matrix:

11,000 12,000 13,000

Each year that the market moves up (down) 1,000 points, the Go-
Go Fund has profits (losses) of $20,000, while the Go-Slow Fund
has profits (losses) of $10,000. If the market moves up (down) 2,000
points in a year, the Go-Go Fund has profits (losses) of $50,000,
while the Go-Slow Fund has profits (losses) of only $20,000. If the
market does not change, there is no profit or loss for either fund.
Ms. Fontanez wishes to determine her optimal investment policy in
order to minimize her (long-run) expected average cost (loss minus
profit) per year.
(a) Formulate this problem as a Markov decision process by iden-

tifying the states and decisions and then finding the Cik.
(b) Identify all the (stationary deterministic) policies. For each

one, find the transition matrix and write an expression for the
(long-run) expected average cost per period in terms of the
unknown steady-state probabilities (�0, �1, . . . , �M).

A (c) Use your IOR Tutorial to find these steady-state probabilities
for each policy. Then evaluate the expression obtained in part
(b) to find the optimal policy by exhaustive enumeration.

19.2-7. Buck and Bill Bogus are twin brothers who work at a gas
station and have a counterfeiting business on the side. Each day a de-
cision is made as to which brother will go to work at the gas station,
and then the other will stay home and run the printing press in the
basement. Each day that the machine works properly, it is estimated
that 60 usable $20 bills can be produced. However, the machine is
somewhat unreliable and breaks down frequently. If the machine is
not working at the beginning of the day, Buck can have it in 
working order by the beginning of the next day with probability 0.6.

If Bill works on the machine, the probability decreases to 0.5. If
Bill operates the machine when it is working, the probability is 0.6
that it will still be working at the beginning of the next day. If Buck
operates the machine, it breaks down with probability 0.6. (As-
sume for simplicity that all breakdowns occur at the end of the
day.) The brothers now wish to determine the optimal policy for
when each should stay home in order to maximize their (long-run)
expected average profit (amount of usable counterfeit money pro-
duced) per day.
(a) Formulate this problem as a Markov decision process by iden-

tifying the states and decisions and then finding the Cik.
(b) Identify all the (stationary deterministic) policies. For each one,

find the transition matrix and write an expression for the (long-
run) expected average net profit per period in terms of the un-
known steady-state probabilities (�0, �1, . . . , �M).

A (c) Use your IOR Tutorial to find these steady-state probabilities
for each policy. Then evaluate the expression obtained in part
(b) to find the optimal policy by exhaustive enumeration.

19.2-8. Consider an infinite-period inventory problem involving a
single product where, at the beginning of each period, a decision
must be made about how many items to produce during that pe-
riod. The setup cost is $10, and the unit production cost is $5. The
holding cost for each item not sold during the period is $4 (a max-
imum of 2 items can be stored). The demand during each period
has a known probability distribution, namely, a probability of �

1
3

� of
0, 1, and 2 items, respectively. If the demand exceeds the supply
available during the period, then those sales are lost and a short-
age cost (including lost revenue) is incurred, namely, $8 and $32
for a shortage of 1 and 2 items, respectively.
(a) Consider the policy where 2 items are produced if there are no

items in inventory at the beginning of a period whereas no
items are produced if there are any items in inventory. Deter-
mine the (long-run) expected average cost per period for this
policy. In finding the transition matrix for the Markov chain
for this policy, let the states represent the inventory levels at
the beginning of the period.

(b) Identify all the feasible (stationary deterministic) inventory poli-
cies, i.e., the policies that never lead to exceeding the storage
capacity.

19.3-1. Reconsider Prob. 19.2-2.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

19.3-2.* Reconsider Prob. 19.2-3.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

19.3-3. Reconsider Prob. 19.2-4.
(a) Formulate a linear programming model for finding an optimal

policy.
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PROBLEMS 891

C (b) Use the simplex method to solve this model. Use the re-
sulting optimal solution to identify an optimal policy.

19.3-4.* Reconsider Prob. 19.2-5.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

19.3-5. Reconsider Prob. 19.2-6.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

19.3-6. Reconsider Prob. 19.2-7.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

19.3-7. Reconsider Prob. 19.2-8.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.
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20C H A P T E R

Simulation

In this final chapter, we now are ready to focus on the last of the key techniques of opera-
tions research. Simulation ranks very high among the most widely used of these techniques.

Furthermore, because it is such a flexible, powerful, and intuitive tool, it is continuing to
rapidly grow in popularity.

This technique involves using a computer to imitate (simulate) the operation of an
entire process or system. For example, simulation is frequently used to perform risk analy-
sis on financial processes by repeatedly imitating the evolution of the risky transactions
involved to generate a profile of the possible outcomes. Simulation also is widely used
to analyze stochastic systems that will continue operating indefinitely. For such systems,
the computer randomly generates and records the occurrences of the various events that
drive the system just as if it were physically operating. Because of its speed, the com-
puter can simulate even years of operation in a matter of seconds. Recording the per-
formance of the simulated operation of the system for a number of alternative designs
or operating procedures then enables evaluating and comparing these alternatives before
choosing one.

The first section describes and illustrates the essence of simulation. The following sec-
tion then presents a variety of common applications of simulation. Sections 20.3 and 20.4
focus on two key tools of simulation, the generation of random numbers and the genera-
tion of random observations from probability distributions. Section 20.5 outlines the overall
procedure for applying simulation. The next section describes how some simulations now
can be performed efficiently on spreadsheets. One supplement to the chapter on the book’s
website introduces some special techniques for improving the precision of the estimates of
the measures of performance of the system being simulated. A second supplement presents
an innovative statistical method for analyzing the output of a simulation.

■ 20.1 THE ESSENCE OF SIMULATION
The technique of simulation has long been an important tool of the designer. For exam-
ple, simulating airplane flight in a wind tunnel is standard practice when a new airplane
is designed. Theoretically, the laws of physics could be used to obtain the same informa-
tion about how the performance of the airplane changes as design parameters are altered,

892

hil23453_ch20_892-951.qxd  1/31/70  1:04 PM  Page 892 Final PDF to printer



20.1 THE ESSENCE OF SIMULATION 893

but, as a practical matter, the analysis would be too complicated to do it all. Another 
alternative would be to build real airplanes with alternative designs and test them in actual
flight to choose the final design, but this would be far too expensive (as well as unsafe).
Therefore, after some preliminary theoretical analysis is performed to develop a rough
design, simulating flight in a wind tunnel is a vital tool for experimenting with specific de-
signs. This simulation amounts to imitating the performance of a real airplane in a controlled
environment in order to estimate what its actual performance will be. After a detailed de-
sign is developed in this way, a prototype model can be built and tested in actual flight to
fine-tune the final design.

The Role of Simulation in Operations Research Studies

Simulation plays essentially this same role in many OR studies. However, rather than
designing an airplane, the OR team is concerned with developing a design or operating
procedure for some stochastic system (a system that evolves probabilistically over time).
Some of these stochastic systems resemble the examples of queueing systems and
Markov chains described in Chaps. 17 and 19, and others are more complicated. Rather
than use a wind tunnel, the performance of the real system is imitated by using probabil-
ity distributions to randomly generate various events that occur in the system. Therefore,
a simulation model synthesizes the system by building it up component by component
and event by event. Then the model runs the simulated system to obtain statistical ob-
servations of the performance of the system that result from various randomly generated
events. Because the simulation runs typically require generating and processing a vast
amount of data, these simulated statistical experiments are inevitably performed on a
computer.

When simulation is used as part of an OR study, commonly it is preceded and fol-
lowed by the same steps described earlier for the design of an airplane. In particular, some
preliminary analysis is done first (perhaps with approximate mathematical models) to de-
velop a rough design of the system (including its operating procedures). Then simulation
is used to experiment with specific designs to estimate how well each will perform. After
a detailed design is developed and selected in this way, the system probably is tested in
actual use to fine-tune the final design.

To prepare for simulating a complex system, a detailed simulation model needs to
be formulated to describe the operation of the system and how it is to be simulated. A
simulation model has several basic building blocks:

1. A definition of the state of the system (e.g., the number of customers in a queueing
system).

2. Identify the possible states of the system that can occur.
3. Identify the possible events (e.g., arrivals and service completions in a queueing sys-

tem) that would change the state of the system.
4. A provision for a simulation clock, located at some address in the simulation program,

that will record the passage of (simulated) time.
5. A method for randomly generating the events of the various kinds.
6. A formula for identifying state transitions that are generated by the various kinds of

events.

Great progress has been made in developing special software (described in Sec. 20.5)
for efficiently integrating the simulation model into a computer program and then perform-
ing the simulations. Nevertheless, when dealing with relatively complex systems, simula-
tion tends to be a relatively expensive procedure. After formulating a detailed simulation
model, considerable time often is required to develop and debug the computer programs
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needed to run the simulation. Next, many long computer runs may be needed to obtain
good data on how well all the alternative designs of the system would perform. Finally, all
these data (which only provide estimates of the performance of the alternative designs)
should be carefully analyzed before drawing any final conclusions. This entire process typ-
ically takes a lot of time and effort. Therefore, simulation should not be used when a less
expensive procedure is available that can provide the same (or better) information.

Simulation typically is used when the stochastic system involved is too complex to
be analyzed satisfactorily by the kinds of mathematical models (e.g., queueing models)
described in the preceding chapters. One of the main strengths of a mathematical model
is that it abstracts the essence of the problem and reveals its underlying structure, thereby
providing insight into the cause-and-effect relationships within the system. Therefore,
if the modeler is able to construct a mathematical model that is both a reasonable ide-
alization of the problem and amenable to solution, this approach usually is superior to
simulation. However, many problems are too complex to permit this approach. Thus,
simulation often provides the only practical approach to a problem.

Discrete-Event versus Continuous Simulation

Two broad categories of simulations are discrete-event and continuous simulations.
A discrete-event simulation is one where changes in the state of the system occur

instantaneously at random points in time as a result of the occurrence of discrete events.
For example, in a queueing system where the state of the system is the number of cus-
tomers in the system, the discrete events that change this state are the arrival of a customer
and the departure of a customer due to the completion of its service. Most applications of
simulation in practice are discrete-event simulations.

A continuous simulation is one where changes in the state of the system occur con-
tinuously over time. For example, if the system of interest is an airplane in flight and its
state is defined as the current position of the airplane, then the state is changing continu-
ously over time. Some applications of continuous simulations occur in design studies of
such engineering systems. Continuous simulations typically require using differential
equations to describe the rate of change of the state variables. Thus, the analysis tends to
be relatively complex.

By approximating continuous changes in the state of the system by occasional dis-
crete changes, it often is possible to use a discrete-event simulation to approximate the
behavior of a continuous system. This tends to greatly simplify the analysis.

This chapter focuses hereafter on discrete-event simulations. We assume this type in
all subsequent references to simulation.

Now let us look at two examples to illustrate the basic ideas of simulation. These ex-
amples have been kept considerably simpler than the usual application of this technique
in order to highlight the main ideas more readily. The first system is so simple, in fact,
that the simulation does not even need to be performed on a computer. The second sys-
tem incorporates more of the normal features of a simulation, although it, too, is simple
enough to be solved analytically.

894 CHAPTER 20 SIMULATION

EXAMPLE 1 A Coin-Flipping Game

You are the lucky winner of a sweepstakes contest. Your prize is an all-expense-paid 
vacation at a major hotel in Las Vegas, including some chips for gambling in the hotel
casino.

Upon entering the casino, you find that, in addition to the usual games (blackjack,
roulette, etc.), they are offering an interesting new game with the following rules.
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20.1 THE ESSENCE OF SIMULATION 895

Rules of the Game

1. Each play of the game involves repeatedly flipping an unbiased coin until the differ-
ence between the number of heads tossed and the number of tails is 3.

2. If you decide to play the game, you are required to pay $1 for each flip of the coin.
You are not allowed to quit during a play of the game.

3. You receive $8 at the end of each play of the game.

Thus, you win money if the number of flips required is fewer than 8, but you lose money
if more than 8 flips are required. Here are some examples (where H denotes a head and
T a tail).

How would you decide whether to play this game?
Many people would base this decision on simulation, although they probably would

not call it by that name. In this case, simulation amounts to nothing more than playing
the game alone many times until it becomes clear whether it is worthwhile to play for
money. Half an hour spent in repeatedly flipping a coin and recording the earnings or
losses that would have resulted might be sufficient. This is a true simulation because
you are imitating the actual play of the game without actually winning or losing any
money.

Now let us see how a computer can be used to perform this same simulated experi-
ment. Although a computer cannot flip coins, it can simulate doing so. It accomplishes
this by generating a sequence of random observations from a uniform distribution be-
tween 0 and 1, where these random observations are referred to as uniform random num-
bers over the interval [0, 1]. One easy way to generate these uniform random numbers is
to use the RAND() function in Excel. For example, the lower part of Fig. 20.1 illustrates
that � RAND() has been entered into cell C13 and then copied into the range C14:C62
with the Copy command. (The parentheses need to be included with this function, but
nothing is inserted between them.) This causes Excel to generate the random numbers
shown in cells C13:C62 of the spreadsheet. Rows 27–56 have been hidden to save space
in the figure.

The probabilities for the outcome of flipping a coin are

P(heads) � �
1
2

�, P(tails) � �
1
2

�.

Therefore, to simulate the flipping of a coin, the computer can just let any half of the pos-
sible random numbers correspond to heads and the other half correspond to tails. To be
specific, we will use the following correspondence.

0.0000 to 0.4999 correspond to heads.
0.5000 to 0.9999 correspond to tails.

By using the formula,

� IF(RandomNumber � 0.5, “Heads”, “Tails”),

in each of the column D cells in Fig. 20.1, Excel inserts Heads if the random number is
less than 0.5 and inserts Tails otherwise. Consequently, the first 11 random numbers gen-
erated in column C yield the following sequence of heads (H) and tails (T):

HTTTHHHTHHH,

HHH 3 flips. You win $5
THTTT 5 flips. You win $3
THHTHTHTTTT 11 flips. You lose $3
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1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 0
2 1
2 2
2 3
2 4
2 5
2 6
5 7
5 8
5 9
6 0
6 1
6 2

A B C D E F G
Coin-Flipping Game

Required Difference 3
Cash at End of Game $8

Summary of Game
Number of Flips 11

Winnings -$3

Random Total Total
Flip Number Result Heads Tails Stop?
1 0.3039 Heads 1 0
2 0.7914 Tails 1 1
3 0.8543 Tails 1 2
4 0.6902 Tails 1 3
5 0.3004 Heads 2 3
6 0.0383 Heads 3 3
7 0.3883 Heads 4 3
8 0.6052 Tails 4 4
9 0.2231 Heads 5 4

10 0.4250 Heads 6 4
11 0.3729 Heads 7 4 Stop
12 0.7983 Tails 7 5 NA
13 0.2340 Heads 8 5 NA
14 0.0082 Heads 9 5 NA
45 0.7539 Tails 23 22 NA
46 0.2989 Heads 24 22 NA
47 0.6427 Tails 24 23 NA
48 0.2824 Heads 25 23 NA
49 0.2124 Heads 26 23 NA
50 0.6420 Tails 26 24 NA

1 1
1 2
1 3

1 4
1 5
1 6
1 7

C D E F
Random Total Total
Number Result Heads Tails

=RAND() =IF(RandomNumber<0.5,"Heads","Tails") =IF(Result="Heads",1,0) =Flip-TotalHeads
=RAND() =IF(RandomNumber<0.5,"Heads","Tails") =E13+IF(Result="Heads",1,0) =Flip-TotalHeads
=RAND() =IF(RandomNumber<0.5,"Heads","Tails") =E14+IF(Result="Heads",1,0) =Flip-TotalHeads

: : : :
: : : :

1 2
1 3

1 4
1 5
1 6
1 7
1 8
1 9

G
Stop?

=IF(ABS(TotalHeads-TotalTails)>=RequiredDifference,"Stop","")
=IF(G15="",IF(ABS(TotalHeads-TotalTails)>=RequiredDifference,"Stop",""),"NA")
=IF(G16="",IF(ABS(TotalHeads-TotalTails)>=RequiredDifference,"Stop",""),"NA")

:
:

6
7
8

C D
Summary of Game

Number of Flips =COUNTBLANK(Stop?)+1
Winnings =CashAtEndOfGame-NumberOfFlips

Range Name Cells
CashAtEndOfGame D4
Flip B13:B62
NumberOfFlips D7
RandomNumber C13:C62
RequiredDifference D3
Result D13:D62
Stop? G13:G62
TotalHeads E13:E62
TotalTails F13:F62
Winnings D8

■ FIGURE 20.1
A spreadsheet model for a simulation of the coin-flipping game (Example 1).
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at which point the game stops because the number of heads (7) exceeds the number of tails
(4) by 3. Cells D7 and D8 record the total number of flips (11) and resulting winnings 
($8 � $11 � �$3).

The equations in the bottom part of Fig. 20.1 show the formulas that have been
entered into the various cells by entering them at the top and then using the Copy com-
mand to copy them down the columns. Using these equations, the spreadsheet then
records the simulation of one complete play of the game. To virtually ensure that the
game will be completed, 50 flips of the coin have been simulated. Columns E and F
record the cumulative number of heads and tails after each flip. The equations entered
into the column G cells leave each cell blank until the difference in the numbers of
heads and tails reaches 3, at which point STOP is inserted into the cell. Thereafter, NA
(for Not Applicable) is inserted instead. Using the equations shown just below the
spreadsheet in Fig. 20.1, cells D7 and D8 record the outcome of the simulated play of
the game.

Such simulations of plays of the game can be repeated as often as desired with this
spreadsheet. Each time, Excel will generate a new sequence of random numbers, and so
a new sequence of heads and tails. (Excel will repeat a sequence of random numbers
only if you select the range of numbers you want to repeat, copy this range with the
Copy command, select Paste Special from the Edit menu, choose the Values option, and
click on OK.)

Simulations normally are repeated many times to obtain a more reliable estimate of
an average outcome. Therefore, this same spreadsheet has been used to generate the data
table in Fig. 20.2 for 14 plays of the game. As indicated on the right-hand side of Fig. 20.2,
this is done by creating a table with the column headings shown in columns J, K, and L,
and then entering equations into the first row of the data table that refer to the output cells
of interest in Fig. 20.1, so �NumberOfFlips is entered into cell K6 and � Winnings is
entered into cell L6, while leaving cell J6 blank. The next step is to select the entire

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

1

2

3

4

5

6

7
8

9
10
11
12

13

14
15
16
17

18
19
20

21

22

23

I J K L M

Data Table for Coin-Flipping Game

(14 Replications)

Number

Play of Flips Winnings

3 $5

1 9 -$1
2 5 $3

3 7 $1
4 11 -$3
5 5 $3
6 3 $5

7 3 $5

8 11 -$3
9 7 $1

10 15 -$7
11 3 $5

12 7 $1
13 9 -$1
14 5 3

Average 7.14 $0.86

Select the 
whole table 
(J6:L20), 
before 
choosing 
Table from 
the Data 
menu.

4
5
6

K L
Number
of Flips Winnings

=NumberOfFlips =Winnings

22

J K L

Average =AVERAGE(K7:K20) =AVERAGE(L7:L20)

Range Name Cell

NumberOfFlips D7
Winnings D8

■ FIGURE 20.2
A data table that records 
the results of performing 
14 replications of a
simulation with the
spreadsheet in Fig. 20.1.
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contents of the table (cells J6:L20) and then choose Data Table from the What-If Analy-
sis menu of the Data tab. Finally, choose any blank cell (e.g., cell E4) for the column
input cell and click OK. Excel then enters the numbers in the first column of the table
(J7:J20) and uses the entire original spreadsheet (Fig. 20.1) in cells C13:G62 to recal-
culate the output cells in columns K and L for each row where any number is entered
in row J. Entering the equations, �AVERAGE(K7:K20) or (L7:L20), into cells K22 and
L22 provides the averages given in these cells.

Although this particular simulation run required using two spreadsheets—one to
perform each replication of the simulation and the other to record the outcomes of the
replications on a data table—we should point out that the replications of some other
simulations can be performed on a single spreadsheet. This is the case whenever each
replication can be performed and recorded on a single row of the spreadsheet. For ex-
ample, if only a single uniform random number is needed to perform a replication, then
the entire simulation run can be done and recorded by using a spreadsheet similar to
Fig. 20.1.

Returning to Fig. 20.2, cell K22 shows that this sample of 14 plays of the game gives
a sample average of 7.14 flips. The sample average provides an estimate of the true mean
of the underlying probability distribution of the number of flips required for a play of the
game. Hence, this sample average of 7.14 would seem to indicate that, on the average,
you should win about $0.86 (cell L22) each time you play the game. Therefore, if you do
not have a relatively high aversion to risk, it appears that you should choose to play this
game, preferably a large number of times.

However, beware! One common error in the use of simulation is that conclusions
are based on overly small samples, because statistical analysis was inadequate or totally
lacking. In this case, the sample standard deviation is 3.67, so that the estimated stan-
dard deviation of the sample average is 3.67/�14� � 0.98. Therefore, even if it is as-
sumed that the probability distribution of the number of flips required for a play of the
game is a normal distribution (which is a gross assumption because the true distribu-
tion is skewed ), any reasonable confidence interval for the true mean of this distribu-
tion would extend far above 8. Hence, a much larger sample size is required before we
can draw a valid conclusion at a reasonable level of statistical significance. Unfortu-
nately, because the standard deviation of a sample average is inversely proportional to
the square root of the sample size, a large increase in the sample size is required to
yield a relatively small increase in the precision of the estimate of the true mean. In this
case, it appears that 100 simulated plays (replications) of the game might be adequate,
depending on how close the sample average then is to 8, but 1,000 replications would
be much safer.

It so happens that the true mean of the number of flips required for a play of this
game is 9. (This mean can be found analytically, but not easily.) Thus, in the long run,
you actually would average losing about $1 each time you played the game. Part of the
reason that the above simulated experiment failed to draw this conclusion is that you have
a small chance of a very large loss on any play of the game, but you can never win more
than $5 each time. However, 14 simulated plays of the game were not enough to obtain
any observations far out in the tail of the probability distribution of the amount won or
lost on one play of the game. Only one simulated play gave a loss of more than $3, and
that was only $7.

Figure 20.3 gives the results of running the simulation for 1,000 plays of the games
(with rows 17–1000 not shown). Cell K1008 records the average number of flips as 8.97,
very close to the true mean of 9. With this number of replications, the average winnings
of �$0.97 in cell L1008 now provides a reliable basis for concluding that this game will
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1

2

3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6

1001
1002
1003
1004
1005
1006
1007
1008

I J K L M
Data Table for Coin-Flipping Game
(1000 Replications)

Number
Play of Flips Winnings

5 $3
1 3 $5
2 3 $5
3 7 $1
4 11 -$3
5 13 -$5
6 7 $1
7 3 $5
8 7 $1
9 3 $5

10 9 -$1
995 5 $3
996 27 -$19
997 7 $1
998 3 $5
999 9 -$1

1000 17 -$9

Average 8.97 -$0.97

■ FIGURE 20.3
This data table improves the
reliability of the simulation
recorded in Fig. 20.2 by
performing 1,000 replications
instead of only 14.

not win you money in the long run. (You can bet that the casino already has used simu-
lation to verify this fact in advance.)

Although formally constructing a full-fledged simulation model was not needed to
perform this simple simulation, we do so now for illustrative purposes. The stochastic
system being simulated is the successive flipping of the coin for a play of the game.
The simulation clock records the number of (simulated) flips t that have occurred so
far. The information about the system that defines its current status, i.e., the state of
the system, is

N(t) � number of heads minus number of tails after t flips.

The events that change the state of the system are the flipping of a head or the flipping
of a tail. The event generation method is the generation of a uniform random number over
the interval [0, 1], where

0.0000 to 0.4999 ⇒ a head,
0.5000 to 0.9999 ⇒ a tail.

The state transition formula is

Reset N(t) � �
The simulated game then ends at the first value of t where N(t) � �3, where the result-
ing sampling observation for the simulated experiment is 8 � t, the amount won (posi-
tive or negative) for that play of the game.

The next example will illustrate these building blocks of a simulation model for a
prominent stochastic system from queueing theory.

if flip t is a head
if flip t is a tail.

N(t � 1) � 1
N(t � 1) � 1
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EXAMPLE 2 An M/M/1 Queueing System

Consider the M/M/1 queueing theory model (Poisson input, exponential service times, and
single server) that was discussed at the beginning of Sec. 17.6. Although this model al-
ready has been solved analytically, it will be instructive to consider how to study it by 
using simulation. To be specific, suppose that the values of the mean arrival rate � and
mean service rate � are

� � 3 per hour, � � 5 per hour.

To summarize the physical operation of the system, arriving customers enter the queue,
eventually are served, and then leave. Thus, it is necessary for the simulation model to
describe and synchronize the arrival of customers and the serving of customers.

Starting at time 0, the simulation clock records the amount of (simulated) time t that
has transpired so far during the simulation run. The information about the queueing sys-
tem that defines its current status, i.e., the state of the system, is

N(t) � number of customers in system at time t.

The events that change the state of the system are the arrival of a customer or a ser-
vice completion for the customer currently in service (if any). We shall describe the event
generation method a little later. The state transition formula is

Reset N(t) � �
There are two basic methods used for advancing the simulation clock and recording

the operation of the system. We did not distinguish between these methods for Example 1
because they actually coincide for that simple situation. However, we now describe and
illustrate these two time advance methods (fixed-time incrementing and next-event in-
crementing) in turn.

With the fixed-time incrementing time advance method, the following two-step
procedure is used repeatedly.

Summary of Fixed-Time Incrementing

1. Advance time by a small fixed amount.
2. Update the system by determining what events occurred during the elapsed time in-

terval and what the resulting state of the system is. Also record desired information
about the performance of the system.

For the queueing theory model under consideration, only two types of events can oc-
cur during each of these elapsed time intervals, namely, one or more arrivals and one or
more service completions. Furthermore, the probability of two or more arrivals or of two
or more service completions during an interval is negligible for this model if the interval
is relatively short. Thus, the only two possible events during such an interval that need to
be investigated are the arrival of one customer and the service completion for one cus-
tomer. Each of these events has a known probability.

To illustrate, let us use 0.1 hour (6 minutes) as the small fixed amount by which the
clock is advanced each time. (Normally, a considerably smaller time interval would be
used to render negligible the probability of multiple arrivals or multiple service comple-
tions, but this choice will create more action for illustrative purposes.) Because both in-
terarrival times and service times have an exponential distribution, the probability PA that
a time interval of 0.1 hour will include an arrival is

PA � 1 � e�3/10 � 0.259,

if arrival occurs at time t
if service completion occurs at time t.

N(t) � 1
N(t) � 1

→
⏐⎯
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■ TABLE 20.1 Fixed-time incrementing applied to Example 2

t, time Arrival in Departure
(min) N(t) rA Interval? rD in Interval?

0 0
6 1 0.096 Yes —

12 1 0.569 No 0.665 No
18 1 0.764 No 0.842 No
24 0 0.492 No 0.224 Yes
30 0 0.950 No —
36 0 0.610 No —
42 1 0.145 Yes —
48 1 0.484 No 0.552 No
54 1 0.350 No 0.590 No
60 0 0.430 No 0.041 Yes

and the probability PD that it will include a departure (service completion), given that a
customer was being served at the beginning of the interval, is

PD � 1 � e�5/10 � 0.393.

To randomly generate either kind of event according to these probabilities, the 
approach is similar to that in Example 1. The computer again is used to generate a 
uniform random number over the interval [0, 1], that is, a random observation from
the uniform distribution between 0 and 1. If we denote this uniform random number
by rA,

rA � 0.259 ⇒ arrival occurred,
rA � 0.259 ⇒ arrival did not occur.

Similarly, with another uniform random number rD,

rD � 0.393 ⇒ departure occurred,
rD � 0.393 ⇒ departure did not occur,

given that a customer was being served at the beginning of the time interval. With no cus-
tomer in service then (i.e., no customers in the system), it is assumed that no departure
can occur during the interval even if an arrival does occur.

Table 20.1 shows the result of using this approach for 10 iterations of the fixed-time
incrementing procedure, starting with no customers in the system and using time units of
minutes.

Step 2 of the procedure (updating the system) includes recording the desired mea-
sures of performance about the aggregate behavior of the system during this time inter-
val. For example, it could record the number of customers in the queueing system and the
waiting time of any customer who just completed his or her wait. If it is sufficient to esti-
mate only the mean rather than the probability distribution of each of these random variables,
the computer will merely add the value (if any) at the end of the current time interval to a
cumulative sum. The sample averages will be obtained after the simulation run is completed
by dividing these sums by the sample sizes involved, namely, the total number of time in-
tervals and the total number of customers, respectively.

To illustrate this estimating procedure, suppose that the simulation run in Table 20.1
were being used to estimate W, the steady-state expected waiting time of a customer in the
queueing system (including service). Two customers arrived during this simulation run, one
during the first time interval and the other during the seventh one, and each remained in
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→
⏐⎯

the system for three time intervals. Therefore, since the duration of each time interval is
0.1 hour, the estimate of W is

Est{W} � �
3 �

2
3

� (0.1 hour) � 0.3 hour.

This is, of course, only an extremely rough estimate, based on a sample size of only
two. (Using the formula for W given in Sec. 17.6, its true value is W � 1/(� � �) � 0.5
hour.) A much, much larger sample size normally would be used.

Another deficiency with using only Table 20.1 is that this simulation run started with
no customers in the system, which causes the initial observations of waiting times to
tend to be somewhat smaller than the expected value when the system is in a steady-
state condition. Since the goal is to estimate the steady-state expected waiting time, it
is important to run the simulation for some time without collecting data until it is be-
lieved that the simulated system has essentially reached a steady-state condition. (The
second supplement to this chapter on the book’s website describes a special method for
circumventing this problem.) This initial period waiting to essentially reach a steady-state
condition before collecting data is called the warm-up period.

Next-event incrementing differs from fixed-time incrementing in that the simulation
clock is incremented by a variable amount rather than by a fixed amount each time. This
variable amount is the time from the event that has just occurred until the next event of
any kind occurs; i.e., the clock jumps from event to event. A summary follows.

Summary of Next-Event Incrementing

1. Advance time to the time of the next event of any kind.
2. Update the system by determining its new state that results from this event and by ran-

domly generating the time until the next occurrence of any event type that can occur
from this state (if not previously generated). Also record desired information about the
performance of the system.

For this example the computer needs to keep track of two future events, namely, the
next arrival and the next service completion (if a customer currently is being served).
These times are obtained by taking a random observation from the probability distribu-
tion of interarrival and service times, respectively. As before, the computer takes such a
random observation by generating and using a random number. (This technique for tak-
ing a random observation from a probability distribution will be discussed in Sec. 20.4.)
Thus, each time an arrival or service completion occurs, the computer determines how
long it will be until the next time this event will occur, adds this time to the current clock
time, and then stores this sum in a computer file. (If the service completion leaves no cus-
tomers in the system, then the generation of the time until the next service completion is
postponed until the next arrival occurs.) To determine which event will occur next, the
computer finds the minimum of the clock times stored in the file. To expedite the book-
keeping involved, simulation programming languages provide a “timing routine” that de-
termines the occurrence time and type of the next event, advances time, and transfers con-
trol to the appropriate subprogram for the event type.

Table 20.2 shows the result of applying this approach through five iterations of the
next-event incrementing procedure, starting with no customers in the system and using
time units of minutes. For later reference, we include the uniform random numbers rA and
rD used to generate the interarrival times and service times, respectively, by the method
to be described in Sec. 20.4. These rA and rD are the same as those used in Table 20.1 in
order to provide a truer comparison between the two time advance mechanisms.

The Excel files for this chapter in your OR Courseware include an automatic pro-
cedure, called Queueing Simulator, for applying the next-event incrementing procedure
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■ TABLE 20.2 Next-event incrementing applied to Example 2

Next Next
t, time Interarrival Service Next Next Next
(min) N(t) rA Time rD Time Arrival Departure Event

0 0 0.096 2.019 — — 2.019 — Arrival
2.019 1 0.569 16.833 0.665 13.123 18.852 15.142 Departure

15.142 0 — — — — 18.852 — Arrival
18.852 1 0.764 28.878 0.842 22.142 47.730 40.994 Departure
40.994 0 — — — — 47.730 — Arrival
47.730 1 

■ FIGURE 20.4
The output obtained by using the Queueing Simulator that is included in this chapter’s Excel files to perform a
simulation of Example 2 over a period of 10,000 customer arrivals.

to various kinds of queueing systems. (This software is a good example of discrete-event
simulation software that is widely used for applying simulation.) Queueing Simulator al-
lows the queueing system to have either a single server or multiple servers. Several op-
tions (exponential, Erlang, degenerate, uniform, or translated exponential) are available
for the probability distributions of interarrival times and service times. Figure 20.4 shows
the input and output (in units of hours) from applying Queueing Simulator to the cur-
rent example for a simulation run with 10,000 customer arrivals. Using the notation for
various measures of performance for queueing systems introduced in Sec. 17.2, column F
gives the estimate of each of these measures provided by the simulation run. [Using the
formulas given in Sec. 17.6 for an M/M/1 queueing system, the true values of these mea-
sures are L � 1.5, Lq � 0.9, W � 0.5, Wq � 0.3, P0 � 0.4, and Pn � 0.4(0.6)n.] Columns
G and H show the corresponding 95 percent confidence interval for each of these mea-
sures. Note that these confidence intervals are somewhat wider than might have been
expected after such a long simulation run. In general, surprisingly long simulation runs
are required to obtain relatively precise estimates (narrow confidence intervals) for the
measures of performance for a queueing system (or for most stochastic systems).
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■ 20.2 SOME COMMON TYPES OF APPLICATIONS OF SIMULATION

Simulation is an exceptionally versatile technique. It can be used (with varying degrees
of difficulty) to investigate virtually any kind of stochastic system. This versatility has
made simulation the most widely used OR technique for studies dealing with such sys-
tems, and its popularity is continuing to increase.

Because of the tremendous diversity of its applications, it is impossible to enumerate
all the specific areas in which simulation has been used. However, we will briefly describe
here some particularly important categories of applications.

The next-event incrementing procedure is considerably better suited for this exam-
ple and similar stochastic systems than the fixed-time incrementing procedure. Next-
event incrementing requires fewer iterations to cover the same amount of simulated time,
and it generates a precise schedule for the evolution of the system rather than a rough
approximation.

The next-event incrementing procedure will be illustrated again in the second sup-
plement to this chapter on the book’s website in the context of a full statistical experi-
ment for estimating certain measures of performance for another queueing system. That
supplement also describes the statistical method that is used by Queueing Simulator to
obtain its point estimates and confidence intervals.

Several pertinent questions about how to conduct a simulation study of this type still re-
main to be answered. These answers are presented in a broader context in subsequent sections.

More Examples in Your OR Courseware

Simulation examples are easier to understand when they can be observed in action, rather
than just talked about on a printed page. Therefore, the simulation area of your IOR Tu-
torial includes an automatic procedure called “Animation of a Queueing System” that shows
a simulation where you actually observe the customers entering and leaving a queueing
system. Thus, viewing this animation illustrates the sequence of events that the next-event
incrementing procedure would generate during the simulation of a queueing system. In ad-
dition, the simulation area of your OR Tutor includes two demonstration examples that
should be viewed at this time.

Both demonstration examples involve a bank that plans to open up a new branch of-
fice. The questions address how many teller windows to provide and then how many tellers
to have on duty at the outset. Therefore, the system being studied is a queueing system.
However, in contrast to the M/M/1 queueing system just considered in Example 2, this
queueing system is too complicated to be solved analytically. This system has multiple
servers (tellers), and the probability distributions of interarrival times and service times
do not fit the standard models of queueing theory. Furthermore, in the second demon-
stration, it has been decided that one class of customers (merchants) needs to be given
nonpreemptive priority over other customers, but the probability distributions for this class
are different from those for other customers. These complications are typical of those that
can be readily incorporated into a simulation study.

In both demonstrations, you will be able to see customers arrive and served customers
leave as well as the next-event incrementing procedure being applied simultaneously to
the simulation run.

The demonstrations also introduce you to an interactive procedure called “Interac-
tively Simulate Queueing Problem” in your IOR Tutorial that you should find very help-
ful in dealing with some of the problems at the end of this chapter.
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The first three categories concern types of stochastic systems considered in detail in
other chapters. It is common to use the kinds of mathematical models described in those
chapters to analyze simplified versions of the system and then to apply simulation to re-
fine the results.

Design and Operation of Queueing Systems

Section 17.3 gives many examples of commonly encountered queueing systems that il-
lustrate how such systems pervade many areas of society. Many mathematical models are
available (including those presented in Chap. 17) for analyzing relatively simple types of
queueing systems. Unfortunately, these models can only provide rough approximations at
best of more complicated queueing systems. However, simulation is well suited for deal-
ing with even very complicated queueing systems, so many of its applications fall into
this category.

The two demonstration examples of simulation in your OR Tutor (both dealing with
how much teller service to provide a bank’s customers) are of this type. Because queueing
applications of simulation are so pervasive, your OR Courseware includes an automatic
procedure called Queueing Simulator (illustrated earlier in Fig. 20.4) for simulating queue-
ing systems. (As already pointed out in the preceding section, this special procedure is pro-
vided in one of this chapter’s Excel files.)

Among the award-winning applications of queueing models described in Sec. 17.3,
one of these also made heavy use of simulation. This was an application that involved
AT&T developing a PC-based system to help its business customers design or redesign
their call centers, resulting in more than $750 million in annual profit for these 
customers.

Managing Inventory Systems

Sections 18.6 and 18.7 present models for the management of simple kinds of inventory
systems when the products involved have uncertain demand. However, inventory systems
that arise in practice often have complications that are not taken into account by these
particular models. Although other mathematical models sometimes can help analyze these
more complicated systems, simulation often plays a key role as well.

Section 20.6 will illustrate the application of simulation to a relatively simple kind
of inventory system.

Estimating the Probability of Completing a Project by the Deadline

One of the key concerns of a project manager is whether his or her team will be able to
complete the project by the deadline. Section 22.4 (on the book’s website) describes how
the PERT three-estimate approach can be used to obtain a rough estimate of the proba-
bility of meeting the deadline with the current project plan. That section also describes
three simplifying approximations made by this approach to be able to estimate this prob-
ability. Unfortunately, because of these approximations, the resulting estimate always is
overly optimistic, and sometimes by a considerable amount.

Consequently, it is becoming increasingly common now to use simulation to obtain
a better estimate of this probability. This involves generating random observations from
the probability distributions of the duration of the various activities in the projects. By us-
ing the project network, it then is straightforward to simulate when each activity begins
and ends, and so when the project finishes. By repeating this simulation thousands of
times (in one computer run), a very good estimate can be obtained of the probability of
meeting the deadline.
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For nearly a century after its founding in 1914, Merrill
Lynch was a leading full-service financial service firm
that strove to bring Wall Street to Main Street by making
financial markets accessible to everyone. It then was pur-
chased in 2008 by the Bank of America Corporation and
given the new name Merrill Lynch Wealth Management
as part of the merged corporate and investment bank now
called Bank of America Merrill Lynch. 

Prior to this merger, Merrill Lynch employed a highly
trained sales force of over 15,000 financial advisors
throughout the United States and operated in 36 countries. A
Fortune 100 company with net revenues of $26 billion in
2005, it managed client assets that totaled over $1.7 trillion.

Faced with increasing competition from discount
brokerage firms and electronic brokerage firms, a task
force was formed in late 1998 to recommend a product or
service response to the marketplace challenge. Merrill
Lynch’s strong operations research group was charged
with doing the detailed analysis of two potential new pric-
ing options for clients. One option would replace charging
for trades individually by charging a fixed percentage of a
client’s assets at Merrill Lynch and then allowing an
unlimited number of free trades and complete access to a
financial advisor. The other option would allow self-
directed investors to  invest online directly for a fixed low
fee per trade without consulting a financial advisor.

The great challenge facing the OR group was to
determine a “sweet spot” for the prices for these options
that would be likely to grow the firm’s business and

increase its revenues while minimizing the risk of losing
revenue instead. A key tool in attacking this problem
proved to be simulation. To undertake a major simulation
study, the group assembled and evaluated an extensive
volume of data on the assets and trading activity of the
firm’s five million clients. For each segment of the client
base, a careful analysis was done of its offer-adoption
behavior by using managerial judgment, market research,
and experience with clients. With this input, the group
then formulated and ran a simulation model with various
pricing scenarios to identify the pricing sweet spot.

The implementation of these results had a profound
impact on Merrill Lynch’s competitive position, restoring
it to a leadership role in the industry. Instead of continuing
to lose ground to the fierce new competition, client assets
managed by the company had increased by $22 billion
and its incremental revenue reached $80 million within
18 months. The CEO of Merrill Lynch called the new
strategy “the most important decision we as a firm have
made (in the last 20 years).” This enormously successful
application of simulation led to Merrill Lynch winning the
prestigious First Prize in the 2001 international competi-
tion for the Franz Edelman Award for Achievement in
Operations Research and the Management Sciences.

Source: S. Altschuler, D. Batavia, J. Bennett, R. Labe, B. Liao,
R. Nigam, and J. Oh: “Pricing Analysis for Merrill Lynch Inte-
grated Choice,” Interfaces, 32(1): 5–19, Jan.–Feb. 2002. (A link to
this article is provided on our website, www.mhhe.com/hillier.)

An Application Vignette

A detailed illustration of this particular kind of application can be found in Sec. 28.2
on the book’s website.

Design and Operation of Manufacturing Systems

Surveys consistently show that a large proportion of the applications of simulation involve
manufacturing systems. Many of these systems can be viewed as a queueing system of
some kind (e.g., a queueing system where the machines are the servers and the jobs to be
processed are the customers). However, various complications inherent in these systems
(e.g., occasional machine breakdowns, defective items needing to be reworked, and mul-
tiple types of jobs) go beyond the scope of the usual queueing models. Such complica-
tions can be handled readily by simulation.

Here are a few examples of the kinds of questions that might be addressed.

1. How many machines of each type should be provided?
2. How many materials-handling units of each type should be provided?
3. Considering their due dates for completion of the entire production process, what rule

should be used to choose the order in which the jobs currently at a machine should be
processed?

4. What are realistic due dates for jobs?
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5. What will be the bottleneck operations in a new production process as currently de-
signed?

6. What will be the throughput (production rate) of a new production process?

Selected Reference A1 describes an award-winning application of this last type  As
also described more briefly in the application vignette in Sec. 17.9. General Motors Cor-
poration was so successful in applying simulation to predict and improve the throughput
performance of its production lines that it both increased revenue and saved over $2.1 bil-
lion in 30 vehicle plants and 10 countries. 

Section 20.5 will include an application vignette that describes how Sasol (an inte-
grated energy and chemical company based in South Africa) uses a gas factory simula-
tion model, a liquid factory simulation model, and a fuels blending simulation model to
guide its decisions about its production processes. This has resulted in an estimated value
addition to Sasol in excess of $230 million over the first decade of use of these simula-
tion models.

Design and Operation of Distribution Systems

Any major manufacturing corporation needs an efficient distribution system for distributing
its goods from its factories and warehouses to its customers. There are many uncertainties
involved in the operation of such a system. When will vehicles become available for ship-
ping the goods? How long will a shipment take? What will be the demands of the various
customers? By generating random observations from the relevant probability distributions,
simulation can readily deal with these kinds of uncertainties. Thus, it is used quite often to
test various possibilities for improving the design and operation of these systems.

Financial Risk Analysis

Financial risk analysis was one of the earliest application areas of simulation, and it
continues to be a very active area. For example, consider the evaluation of a proposed
capital investment with uncertain future cash flows. By generating random observations
from the probability distributions for the cash flow in each of the respective time periods
(and considering relationships between time periods), simulation can generate thousands
of scenarios for how the investment will turn out. This provides a probability distribu-
tion of the return (e.g., net present value) from the investment. This distribution (some-
times called the risk profile) enables management to assess the risk involved in making
the investment.

A similar approach enables analyzing the risk associated with investing in various se-
curities, including the more exotic financial instruments such as puts, calls, futures, stock
options, etc.

Section 28.4 on the book’s website provides a detailed example of using simulation
for financial risk analysis.

Health Care Applications

Health care is another area where, like the evaluation of risky investments, analyzing fu-
ture uncertainties is central to current decision making. However, rather than dealing with
uncertain future cash flows, the uncertainties now involve such things as the evolution of
human diseases.

Here are a few examples of the kinds of simulations that have been performed to
guide the design of health care systems.
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1. Simulating the use of hospital resources when treating patients with coronary heart disease.
2. Simulating health expenditures under alternative insurance plans.
3. Simulating the cost and effectiveness of screening for the early detection of a disease.
4. Simulating the use of the complex of surgical services at a medical center.
5. Simulating the timing and location of calls for ambulance services.
6. Simulating the matching of donated kidneys with transplant recipients.
7. Simulating the operation of an emergency room.

Applications to Other Service Industries

Like health care, other service industries also have proved to be fertile fields for the ap-
plication of simulation. These industries include government services, banking, hotel man-
agement, restaurants, educational institutions, disaster planning, the military, amusement
parks, and many others. In many cases, the systems being simulated are, in fact, queue-
ing systems of some type.

Military Applications

There is probably no other sector of society where simulation is used as extensively as in
the military. The military reliance on simulation to perform war gaming actually traces back
several centuries and the U.S. military academics have included war gaming in their curricu-
lum from their inception. However, the advent of powerful computers has led to a phenome-
nal growth in the military use of simulation, especially in the U.S. Department of Defense.
War gaming to simulate military operations is now routinely used to plan future military op-
erations, update military doctrine, and train officers. Simulation also is widely used to help
make military procurement decisions.

New Applications

More new innovative applications of simulation are being made each year. Many of these
applications are first announced publicly at the annual Winter Simulation Conference,
held each December in some U.S. city. Since its beginning in 1967, this conference has
been an institution in the simulation field. It now is attended by nearly a thousand par-
ticipants, divided roughly equally between academics and practitioners. Hundreds of 
papers are presented to announce both methodological advances and new innovative 
applications.

■ 20.3 GENERATION OF RANDOM NUMBERS

As the examples in Sec. 20.1 demonstrated, implementing a simulation model requires
random numbers to obtain random observations from probability distributions. One method
for generating such random numbers is to use a physical device such as a spinning disk
or an electronic randomizer. Several tables of random numbers have been generated in
this way, including one containing 1 million random digits, published by the Rand Cor-
poration. An excerpt from the Rand table is given in Table 20.3.

Physical devices now have been replaced by the computer as the primary source for
generating random numbers. For example, we pointed out in Sec. 20.1 that Excel uses the
RAND() function for this purpose. Many other software packages also have the capability
of generating random numbers whenever needed during a simulation run.
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Characteristics of Random Numbers

The procedure used by a computer to obtain random numbers is called a random number
generator.

A random number generator is an algorithm that produces sequences of num-
bers that follow a specified probability distribution and possess the appearance
of randomness.

The reference to sequences of numbers means that the algorithm produces many random num-
bers in a serial manner. Although an individual user may need only a few of the numbers,
generally the algorithm must be capable of producing many numbers. Probability distribu-
tion implies that a probability statement can be associated with the occurrence of each num-
ber produced by the algorithm.

We shall reserve the term random number to mean a random observation from some
form of a uniform distribution, so that all possible numbers are equally likely. When we
are interested in some other probability distribution (as in the next section), we shall re-
fer to random observations from that distribution.

Random numbers can be divided into two main categories, random integer numbers
and uniform random numbers, defined as follows:

A random integer number is a random observation from a discretized uniform dis-
tribution over some range n

�
, n

�
� 1, . . . , n�. The probabilities for this distribution are

P(n
�

) � P(n
�

� 1) � . . . � P(n�) �

Usually, n
�

� 0 or 1, and these are convenient values for most applications. (If n
�

has another value, then subtracting either n
�

or n
�

� 1 from the random integer
number changes the lower end of the range to either 0 or 1.)

1
�� .
n� � n

�
� 1
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■ TABLE 20.3 Table of random digits

09656 96657 64842 49222 49506 10145 48455 23505 90430 04180
24712 55799 60857 73479 33581 17360 30406 05842 72044 90764
07202 96341 23699 76171 79126 04512 15426 15980 88898 06358
84575 46820 54083 43918 46989 05379 70682 43081 66171 38942
38144 87037 46626 70529 27918 34191 98668 33482 43998 75733

48048 56349 01986 29814 69800 91609 65374 22928 09704 59343
41936 58566 31276 19952 01352 18834 99596 09302 20087 19063
73391 94006 03822 81845 76158 41352 40596 14325 27020 17546
57580 08954 73554 28698 29022 11568 35668 59906 39557 27217
92646 41113 91411 56215 69302 86419 61224 41936 56939 27816

07118 12707 35622 81485 73354 49800 60805 05648 28898 60933
57842 57831 24130 75408 83784 64307 91620 40810 06539 70387
65078 44981 81009 33697 98324 46928 34198 96032 98426 77488
04294 96120 67629 55265 26248 40602 25566 12520 89785 93932
48381 06807 43775 09708 73199 53406 02910 83292 59249 18597

00459 62045 19249 67095 22752 24636 16965 91836 00582 46721
38824 81681 33323 64086 55970 04849 24819 20749 51711 86173
91465 22232 02907 01050 07121 53536 71070 26916 47620 01619
50874 00807 77751 73952 03073 69063 16894 85570 81746 07568
26644 75871 15618 50310 72610 66205 82640 86205 73453 90232

Source: Reproduced with permission from The Rand Corporation, A Million Random Digits with
100,000 Normal Deviates. Copyright, The Free Press, Glencoe, IL, 1955, top of p. 182.
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A uniform random number is a random observation from a (continuous) uni-
form distribution over some interval [a, b]. The probability density function of
this uniform distribution is

�
b �

1
a

� if a 	 x 	 b
f(x) �

0 otherwise.

When a and b are not specified, they are assumed to be a � 0 and b � 1.

The random numbers initially generated by a computer usually are random integer
numbers. However, if desired, these numbers can immediately be converted to a uniform
random number as follows:

For a given random integer number in the range 0 to n�, dividing this number by
n� yields (approximately) a uniform random number. (If n� is small, this approxi-
mation should be improved by adding �

1
2

� to the random integer number and then
dividing by n� � 1 instead.)

This is the usual method used for generating uniform random numbers. With the huge
values of n� commonly used, it is an essentially exact method.

Strictly speaking, the numbers generated by the computer should not be called random
numbers because they are predictable and reproducible (which sometimes is advanta-
geous), given the random number generator being used. Therefore, they are sometimes
given the name pseudo-random numbers. However, the important point is that they 
satisfactorily play the role of random numbers in the simulation if the method used to
generate them is valid.

Various relatively sophisticated statistical procedures have been proposed for testing
whether a generated sequence of numbers has an acceptable appearance of randomness.
Basically the requirements are that each successive number in the sequence have an equal
probability of taking on any one of the possible values and that it be statistically inde-
pendent of the other numbers in the sequence.

Congruential Methods for Random Number Generation

There are a number of random number generators available, of which the most popular
are the congruential methods (additive, multiplicative, and mixed). The mixed congruen-
tial method includes features of the other two, so we shall discuss it first.

The mixed congruential method generates a sequence of random integer numbers over
the range from 0 to m � 1. The method always calculates the next random number from the
last one obtained, given an initial random number x0, called the seed, which may be obtained
from some published source such as the Rand table. In particular, it calculates the (n � 1)st
random number xn�1 from the nth random number xn by using the recurrence relation

xn�1 ≡ (axn � c)(modulo m),

where a, c, and m are positive integers (a � m, c � m). This mathematical notation sig-
nifies that xn�1 is the remainder when axn � c is divided by m. Thus, the possible values
of xn�1 are 0, 1, . . . , m � 1, so that m represents the desired number of different values
that could be generated for the random numbers.

To illustrate, suppose that m � 8, a � 5, c � 7, and x0 � 4. The resulting sequence
of random numbers is calculated in Table 20.4. (The sequence is not continued further
because it would just begin repeating the numbers in the same order.) Note that this se-
quence includes each of the eight possible numbers exactly once. This property is a nec-
essary one for a sequence of random integer numbers, but it does not occur with some
choices of a and c. (Try a � 4, c � 7, and x0 � 3.) Fortunately, there are rules available

⎧
⎨
⎩
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■ TABLE 20.4 Illustration of the mixed congruential method

n xn 5xn � 7 (5xn � 7)/8 xn�1

0 4 27 3 � �
3
8

� 3

1 3 22 2 � �
6
8

� 6

2 6 37 4 � �
5
8

� 5

3 5 32 4 � �
0
8

� 0

4 0 7 0 � �
7
8

� 7

5 7 42 5 � �
2
8

� 2

6 2 17 2 � �
1
8

� 1

7 1 12 1 � �
4
8

� 4

for choosing values of a and c that will guarantee this property. (There are no restric-
tions on the seed x0 because it affects only where the sequence begins and not the pro-
gression of numbers.)

The number of consecutive numbers in a sequence before it begins repeating itself is
referred to as the cycle length. Thus, the cycle length in the example is 8. The maximum
cycle length is m, so the only values of a and c considered are those that yield this max-
imum cycle length.

Table 20.5 illustrates the conversion of random integer numbers to uniform random
numbers. The left column gives the random integer numbers obtained in the rightmost
column of Table 20.4. The right column gives the corresponding uniform random num-
bers from the formula

Uniform random number � .

Note that each of these uniform random numbers lies at the midpoint of one of the eight
equal-sized intervals 0 to 0.125, 0.125 to 0.25, . . . , 0.875 to 1. The small value of m � 8
does not enable us to obtain other values over the interval [0, 1], so we are obtaining fairly
rough approximations of real uniform random numbers. In practice, far larger values of
m generally are used.

The Solved Examples section of the book’s website includes another example of ap-
plying the mixed congruential method with a relatively small value of m(m � 16) and then
converting the resulting random integer numbers to uniform random numbers. This ex-
ample then explores the problems that arise from using such a small value of m.

For a binary computer with a word size of b bits, the usual choice for m is m � 2b;
this is the total number of nonnegative integers that can be expressed within the capacity
of the word size. (Any undesired integers that arise in the sequence of random numbers
are just not used.) With this choice of m, we can ensure that each possible number occurs
exactly once before any number is repeated by selecting any of the values a � 1, 5, 9,
13, . . . and c � 1, 3, 5, 7, . . . . For a decimal computer with a word size of d digits, the
usual choice for m is m � 10d, and the same property is ensured by selecting any of the
values a � 1, 21, 41, 61, . . . and c � 1, 3, 7, 9, 11, 13, 17, 19, . . . (that is, all positive

random integer number � �
1
2

�

���
m
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■ TABLE 20.5 Converting random integer numbers to uniform 
random numbers

Random Integer Number Uniform Random Number

3 0.4375
6 0.8125
5 0.6875
0 0.0625
7 0.9375
2 0.3125
1 0.1875
4 0.5625 
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odd integers except those ending with the digit 5). The specific selection can be made on
the basis of the serial correlation between successively generated numbers, which differs
considerably among these alternatives.1

Occasionally, random integer numbers with only a relatively small number of digits
are desired. For example, suppose that only three digits are desired, so that the possible
values can be expressed as 000, 001, . . . , 999. In such a case, the usual procedure still is
to use m � 2b or m � 10d, so that an extremely large number of random integer numbers
can be generated before the sequence starts repeating itself. However, except for purposes
of calculating the next random integer number in this sequence, all but three digits of each
number generated would be discarded to obtain the desired three-digit random integer num-
ber. One convention is to take the last three digits (i.e., the three trailing digits).

The multiplicative congruential method is just the special case of the mixed con-
gruential method where c � 0. The additive congruential method also is similar, but it
sets a � 1 and replaces c by some random number preceding xn in the sequence, for ex-
ample, xn�1 (so that more than one seed is required to start calculating the sequence).

The mixed congruential method provides tremendous flexibility in choosing a par-
ticular random number generator (a specific combination of values of a, c, and m). How-
ever, great care needs to be taken in choosing the random number generator because most
combinations of values of a, c, and m lead to undesirable properties (e.g., a cycle length
less than m). When researchers identify attractive random number generators, extensive
testing is done to find any flaws, and this might lead to a better random number generator.
For example, some years ago, m � 231 was considered an attractive choice, but experts
now question its acceptability and may instead recommend that certain much larger num-
bers, including specific values of m near 2191, be used.2

1See R. R. Coveyou, “Serial Correlation in the Generation of Pseudo-Random Numbers,” Journal of the Asso-
ciation of Computing Machinery, 7: 72–74, 1960.
2For recommendations on the choice of the random number generator, see P. L’Ecuyer, R. Simard, E. J. Chen, and
W. D. Kelton, “An Object-Oriented Random-Number Package with Many Long Streams and Substreams,” Opera-
tions Research, 50: 1073–1075, 2002.  Also see P. L'Ecuyer, "Uniform Random Number Generation," pp. 55–81 in
Selected Reference 7, as well as pp. 138–144 in Selected Reference 11.

■ 20.4 GENERATION OF RANDOM OBSERVATIONS 
FROM A PROBABILITY DISTRIBUTION

Given a sequence of random numbers, how can one generate a sequence of random ob-
servations from a given probability distribution? Several different approaches are avail-
able, depending on the nature of the distribution.
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Simple Discrete Distributions

For some simple discrete distributions, a sequence of random integer numbers can be used
to generate random observations in a straightforward way. Merely allocate the possible
values of a random number to the various outcomes in the probability distribution in di-
rect proportion to the respective probabilities of those outcomes.

For Example 1 in Sec. 20.1, where flips of a coin are being simulated, the possible
outcomes of one flip are a head or a tail, where each outcome has a probability of �

1
2

�. There-
fore, rather than using uniform random numbers (as was done in Sec. 20.1), it would have
been sufficient to use random digits to generate the outcomes. Five of the ten possible
values of a random digit (say, 0, 1, 2, 3, 4) would be assigned an association with a head
and the other five (say, 5, 6, 7, 8, 9) a tail.

As another example, consider the probability distribution of the outcome of a throw of
two dice. It is known that the probability of throwing a 2 is �

3
1
6
� (as is the probability of throw-

ing a 12), the probability of throwing a 3 is �
3
2
6
�, and so on. Therefore, �

3
1
6
� of the possible val-

ues of a random integer number should be associated with throwing a 2, �
3
2
6
� of the values

with throwing a 3, and so forth. Thus, if two-digit random integer numbers are being used,
72 of the 100 values will be selected for consideration, so that a random integer number
will be rejected if it takes on any one of the other 28 values. Then 2 of the 72 possible val-
ues (say, 00 and 01) will be assigned an association with throwing a 2, four of them (say
02, 03, 04, and 05) will be assigned an association with throwing a 3, and so on.

Using random integer numbers in this kind of way is convenient when they either are
being drawn from a table of random numbers or are being generated directly by a con-
gruential method. However, when performing the simulation on a computer, it usually is
more convenient to have the computer generate uniform random numbers and then use
them in the corresponding way. All the subsequent methods for generating random ob-
servations use uniform random numbers (numbers that are random observations from a
continuous uniform distribution over the interval from 0 to 1).

The Inverse Transformation Method

For more complicated distributions, whether discrete or continuous, the inverse transfor-
mation method can sometimes be used to generate random observations. Letting X be the
random variable involved, we denote the cumulative distribution function by

F(x) � P{X 	 x}.

Generating each observation then requires the following two steps.

Summary of Inverse Transformation Method

1. Generate a uniform random number r between 0 and 1.
2. Set F(x) � r and solve for x, which then is the desired random observation from the

probability distribution.

This procedure is illustrated in Fig. 20.5 for the case where F(x) is plotted graphically and
the uniform random number r happens to be 0.5269.

Although the graphical procedure illustrated by Fig. 20.5 is convenient if the simu-
lation is done manually, the computer must revert to some alternative approach. For dis-
crete distributions, a table lookup approach can be taken by constructing a table that gives
a “range” (jump) in the value of F(x) for each possible value of X � x. Excel provides a
convenient VLOOKUP function to implement this approach when performing a simula-
tion on a spreadsheet.

To illustrate how this function works, suppose that a company is simulating the main-
tenance program for its machines. The time between breakdowns of one of these ma-
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chines always is 4, 5, or 6 days, where these times occur with probabilities 0.25, 0.5, and
0.25, respectively. The first step in simulating these breakdowns is to create the table
shown in Fig. 20.6 somewhere in the spreadsheet. Note that each number in the second
column gives the cumulative probability prior to the number of days in the third column.
The second and third columns (below the column headings) constitute the “lookup table.”
The VLOOKUP function has three arguments. The first argument gives the address of the
cell that is providing the uniform random number being used. The second argument identi-
fies the range of cell addresses for the lookup table. The third argument indicates which col-
umn of the lookup table (the second and third columns in Fig. 20.6) provides the random
observation, so this argument equals 2 in this case. The VLOOKUP function with these three
arguments is entered as the equation for each cell in the spreadsheet where a random obser-
vation from the distribution is to be entered.

For certain continuous distributions, the inverse transformation method can be im-
plemented on a computer by first solving the equation F(x) � r analytically for x. An
example in the Solved Examples section of the book’s website illustrates this approach
(after first applying the graphical approach). 

We also illustrate this approach next with the exponential distribution.

Exponential and Erlang Distributions

As indicated in Sec. 17.4, the cumulative distribution function for the exponential dis-
tribution is

F(x) � 1 � e��x, for x � 0,

where 1/� is the mean of the distribution. Setting F(x) � r thereby yields

1 � e��x � r,

Distribution of time between breakdowns

Probability Cumulative Number of Days

0.25 0.00 4
0.5 0.25 5
0.25 0.75 6

■ FIGURE 20.6
The table that would be
constructed in a spreadsheet
for using Excel’s VLOOKUP
function to implement the
inverse transformation
method for the maintenance
program example.

Random observation

F(x)

0

1

r � 0.5269

x

■ FIGURE 20.5
Illustration of the inverse
transformation method for
obtaining a random
observation from a given
probability distribution.
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3For example, see J. H. Ahrens and V. Dieter, “Efficient Table-Free Sampling Methods for Exponential, Cauchy,
and Normal Distributions,” Communications of the ACM, 31: 1330–1337, 1988.

so that

e��x � 1 � r.

Therefore, taking the natural logarithm (denoted by ln) of both sides gives

ln e��x � ln (1 � r),

so that

��x � ln (1 � r),

which yields

x � �
ln (

�
1

�
� r)
� .

Now note that 1 � r is itself a uniform random number. Therefore, to save a subtraction,
it is common in practice simply to use the original uniform random number r directly in
place of 1 � r. This gives

Random observation � �
�

ln
�
r

as the desired random observation from the exponential distribution.
This direct application of the inverse transformation method provides the most

straightforward way of generating random observations from an exponential distribution.
(More complicated techniques also have been developed for this distribution3 that are
faster for a computer than calculating a logarithm.)

A natural extension of this procedure for the exponential distribution also can be used
to generate a random observation from an Erlang (gamma) distribution (see Sec. 17.7).
The sum of k independent exponential random variables, each with mean 1/(k�), has the
Erlang distribution with shape parameter k and mean 1/�. Therefore, given a sequence of
k uniform random numbers between 0 and 1, say, r1, r2, . . . , rk, the desired random ob-
servation from the Erlang distribution is

x � �
k

i�1

1n ri

�k�
,

which reduces to

x � ��
k
1
�
� ln ��

k

i�1
ri	,

where 
 denotes multiplication.

Normal and Chi-Square Distributions

A particularly simple (but inefficient) technique for generating a random observation from
a normal distribution is obtained by applying the central limit theorem. Because a uni-
form random number has a uniform distribution from 0 to 1, it has mean �

1
2

� and standard
deviation 1/�12�. Therefore, this theorem implies that the sum of n uniform random num-
bers has approximately a normal distribution with mean n/2 and standard deviation �n/12�.
Thus, if r1, r2, . . . , rn are a sample of uniform random numbers, then

x � �
n

i�1
ri � � � �

n
2

�
�

�
�n/12�

�
�
�n/12�
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is a random observation from an approximately normal distribution with mean � and stan-
dard deviation �. This approximation is an excellent one (except in the tails of the distri-
bution), even with small values of n. Thus, values of n from 5 to 10 may be adequate; 
n � 12 also is a convenient value, because it eliminates the square root terms from the
preceding expression.

Since tables of the normal distribution are widely available (e.g., see Appendix 5),
another simple method to generate a close approximation of a random observation is to
use such a table to implement the inverse transformation method directly. This is fairly
convenient when you are generating a few random observations by hand, but less so for
computer implementation since it requires storing a large table and then using a table
lookup.

Various exact techniques for generating random observations from a normal distri-
bution have also been developed.4 These exact techniques are sufficiently fast that, in
practice, they generally are used instead of the approximate methods described above.
A routine for one of these techniques usually is already incorporated into a software
package with simulation capabilities. For example, Excel uses the function,
NORMINV(RAND(), �, �), to generate a random observation from a normal distribu-
tion with mean � and standard deviation �.

A simple method for handling the chi-square distribution is to use the fact that it is
obtained by summing squares of standardized normal random variables. Thus, if y1,
y2, . . . , yn are n random observations from a normal distribution with mean 0 and stan-
dard deviation 1, then

x � �
n

i�1
yi

2

is a random observation from a chi-square distribution with n degrees of freedom.

The Acceptance-Rejection Method

For many continuous distributions, it is not feasible to apply the inverse transformation
method because x � F�1(r) cannot be computed (or at least computed efficiently). There-
fore, several other types of methods have been developed to generate random observations
from such distributions. Frequently, these methods are considerably faster than the inverse
transformation method even when the latter method can be used. To provide some notion
of the approach for these alternative methods, we now illustrate one called the acceptance-
rejection method on a simple example.

Consider the triangular distribution having the probability density function

f(x) �

The acceptance-rejection method uses the following two steps (perhaps repeatedly) to gen-
erate a random observation.

1. Generate a uniform random number r1 between 0 and 1, and set x � 2r1 (so that the
range of possible values of x is 0 to 2).

2. Accept x with

Probability � � if 0 	 x 	 1
if 1 	 x 	 2,

x
1 � (x � 1)

if 0 	 x 	 1
if 1 	 x 	 2
otherwise.

x
1 � (x � 1)
0

⎧
⎨
⎩

4See again the reference cited in footnote 3.
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to be the desired random observation [since this probability equals f(x)]. Otherwise,
reject x and repeat the two steps.

To randomly generate the event of accepting (or rejecting) x according to this prob-
ability, the method implements step 2 as follows:

3. Generate a uniform random number r2 between 0 and 1.

Accept x if r2 	 f(x).
Reject x if r2 � f(x).

If x is rejected, repeat the two steps.

Because x � 2r1 is being accepted with a probability � f(x), the probability distribution
of accepted values has f(x) as its density function, so accepted values are valid random
observations from f(x).

We were fortunate in this example that the largest value of f(x) for any x was exactly
1. If this largest value were L � 1 instead, then r2 would be multiplied by L in step 2.
With this adjustment, the method is easily extended to other probability density functions
over a finite interval, and similar concepts can be used over an infinite interval as well.

■ 20.5 OUTLINE OF A MAJOR SIMULATION STUDY

Thus far, this chapter has focused mainly on the process of performing a simulation and
some applications from doing so. We now place this material into broader perspective by
briefly outlining all the typical steps involved in a major operations research study that is
based on applying simulation. (Nearly the same steps also apply when the study is ap-
plying other operations research techniques instead.)

Step 1: Formulate the Problem and Plan the Study
The operations research team needs to begin by meeting with management to address the
following kinds of questions.

1. What is the problem that management wants studied?
2. What are the overall objectives for the study?
3. What specific issues should be addressed?
4. What kinds of alternative system configurations should be considered?
5. What measures of performance of the system are of interest to management?
6. What are the time constraints for performing the study?

In addition, the team also will meet with engineers and operational personnel to learn the
details of just how the system would operate. (The team generally will also include one
or more members with a first-hand knowledge of the system.)

Step 2: Collect the Data and Formulate the Simulation Model

The types of data needed depend on the nature of the system to be simulated. For exam-
ple, key pieces of data for a queueing system would be the distribution of interarrival
times and the distribution of service times. For most other cases as well, it is the probability
distributions of the relevant quantities that are needed. Generally, it will only be possible to
estimate these distributions, but it is important to do so. In order to generate representative
scenarios of how a system will perform, it is essential for simulation to generate random ob-
servations from these distributions rather than simply using averages.
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Sasol is an integrated energy and chemicals company
that is based in South Africa. It operates in 38 countries,
and it had a market capitalization of over $23 billion in
2009.

Historically, the petrochemical industry based busi-
ness decisions on the average results throughout its pro-
duction processes. However, Sasol’s operations research
team recognized that these production processes actually
are stochastic systems that involve substantial variability
and dynamic interactions. Therefore, for the first time in
the industry, this team introduced the use of simulations
to much more adequately consider the effect of all this
variability and dynamic interaction.

Three large simulation models were developed to
meet Sasol’s needs. The gas factory model covers the
process from raw materials to the production of synthetic
crude oil. The liquid factory model simulates the refining
of the synthetic crude oil and the associated chemical
production processes. The fuels blending model blends

the different fuel components into multiple grades of
gasoline and diesel.

This industry is one where frequent changes need to
be made in its facilities and production processes because
of changes in government regulations, fuel specifica-
tions, availability of raw materials, prices of these materi-
als, etc. Sasol uses one or more of its simulation models
to evaluate the viable options for changes in its facilities
and production processes whenever the need arises.

This industry-leading use of simulation has enabled
Sasol to radically improve its decision making. This
use during its first decade (2000 to 2009) has resulted
in an estimated value addition to Sasol in excess of
$230 million.

Source: M. Meyer and 11 other co-authors, “Innovative Deci-
sion Support in a Petrochemical Production Environment,”
Interfaces, 41(1): 79–92, Jan.–Feb. 2011. (A link to this article
is provided on our Web site, www.mhhe.com/hillier.)

An Application Vignette

A simulation model often is formulated in terms of a flow diagram that links together
the various components of the system. Operating rules are given for each component, in-
cluding the probability distributions that control when events will occur there.

Step 3: Check the Accuracy of the Simulation Model

Before constructing a computer program, the OR team should engage the people most in-
timately familiar with how the system will operate in checking the accuracy of the simula-
tion model. This often is done by performing a structured walk-through of the conceptual
model, using an overhead projector, before an audience of all the key people. Typically at
such meetings, several erroneous model assumptions will be discovered and corrected, a few
new assumptions will be added, and some issues will be resolved about how much detail is
needed in the various parts of the model.

Step 4: Select the Software and Construct a Computer Program

There are several major classes of software used for simulations. One is spreadsheet soft-
ware. Example 1 in Sec. 20.1 illustrated how Excel is able to perform some basic simu-
lations on a spreadsheet. In addition, some excellent Excel add-ins now are available to
enhance this kind of spreadsheet modeling. The next section focuses on the use of one
powerful add-in of this type.

Other classes of software for simulations are intended for more extensive applica-
tions where it is no longer convenient to use spreadsheet software. One such class is a
general-purpose programming language, such as C, FORTRAN, BASIC, etc. Such lan-
guages (and their predecessors) often were used in the early history of the field because
of their great flexibility for programming any sort of simulation. However, because of
the considerable programming time required, they are not used nearly as much now.

Many commercial software packages that don’t use spreadsheets also have been de-
veloped specifically to perform simulations. Historically, these simulation software pack-
ages have been classified into two categories, general-purpose simulation languages and

hil23453_ch20_892-951.qxd  1/22/70  8:18 AM  Page 918 Final PDF to printer



20.5 OUTLINE OF A MAJOR SIMULATION STUDY 919

application-oriented simulators. General-purpose simulation languages provide many of
the features needed to program any simulation model efficiently. Application-oriented sim-
ulators (or just simulators for short) are designed for simulating fairly specific types of
systems. However, as time has gone on, the distinction between these two categories has
become increasingly blurred. General-purpose simulation languages now may include some
special features that make them almost as well suited as simulators for certain specific kinds
of applications. Conversely, today’s simulators tend to include more flexibility then they pre-
viously had for dealing with a broader class of systems.

Another way of categorizing simulation software packages is by whether they use an
event-scheduling approach or a process approach to discrete-event simulation modeling. The
event-scheduling approach closely follows the next-event incrementing time advance method
described in Sec. 20.1. The process approach still uses next-event incrementing in the back-
ground but focuses the modeling instead on describing the processes that generate the events.
Most contemporary simulation software packages now use the process approach. 

It has become increasingly common for simulation software packages to include 
animation capabilities for displaying simulations in action. In an animation, key elements
of a system are represented in a computer display by icons that change shape, color, or
position when there is a change in the state of the simulation system. The major reason
for the popularity of animation is its ability to communicate the essence of a simulation
model (or of a simulation run) to managers and other key personnel.

Because of the growing importance of simulation, there now are a few dozen soft-
ware companies marketing simulation software packages. Selected Reference 11 provides
a survey of these packages. (OR/MS Today updates this survey every two years.)

Step 5: Test the Validity of the Simulation Model

After the computer program has been constructed and debugged, the next key step is to
test whether the simulation model incorporated into the program is providing valid results
for the system it is representing. Specifically, will the measures of performance for the
real system be closely approximated by the values of these measures generated by the
simulation model?

In some cases, a mathematical model may be available to provide results for a simple ver-
sion of the system. If so, these results also should be compared with the simulation results.

When no real data are available to compare with simulation results, one possibility
is to conduct a field test to collect such data. This would involve constructing a small pro-
totype of some version of the proposed system and placing it into operation.

Another useful validation test is to have knowledgeable operational personnel check
the creditability of how the simulation results change as the configuration of the simu-
lated system is changed. Watching animations of simulation runs also is a useful way of
checking the validity of the simulation model.

Step 6: Plan the Simulations to Be Performed

At this point, you need to begin making decisions on which system configurations to sim-
ulate. This often is an evolutionary process, where the initial results for a range of config-
urations help you to hone in on which specific configurations warrant detailed investigation.

Decisions also need to be made now on some statistical issues. One such issue (unless
using the special technique described in the second supplement to this chapter on the
book’s website) is the length of the warm-up period while waiting for the system to es-
sentially reach a steady-state condition before starting to collect data. Preliminary
simulation runs often are used to analyze this issue. Since systems frequently require a
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surprisingly long time to essentially reach a steady-state condition, it is helpful to select
starting conditions for a simulated system that appear to be roughly representative of
steady-state conditions in order to reduce this required time as much as possible.

Another key statistical issue is the length of the simulation run following the warm-
up period for each system configuration being simulated. Keep in mind that simulation
does not produce exact values for the measures of performance of a system. Instead, each
simulation run can be viewed as a statistical experiment that is generating statistical ob-
servations of the performance of the simulated system. These observations are used to
produce statistical estimates of the measures of performance. Increasing the length of a
run increases the precision of these estimates. (The first supplement to this chapter on the
book’s website also describes special variance-reducing techniques that can sometimes
be used to increase the precision of these estimates.)

The statistical theory for designing statistical experiments conducted through simu-
lation is little different than for experiments conducted by directly observing the perfor-
mance of a physical system.5 Therefore, the inclusion of a professional statistician (or at
least an experienced simulation analyst with a strong statistical background) on the OR
team can be invaluable at this step.

Step 7: Conduct the Simulation Runs and Analyze the Results

The output from the simulation runs now provides statistical estimates of the desired measures
of performance for each system configuration of interest. In addition to a point estimate of
each measure, a confidence interval normally should be obtained to indicate the range of likely
values of the measure (just as was done in Fig. 20.4 for Example 2 in Sec. 20.1). The second
supplement to this chapter on the book’s website describes one method for doing this.6

5For details about the relevant statistical theory for applying simulation, see Chaps. 7–8 in Selected Reference 11.
Also see Selected References 8 and 9 for authoritative treatises on the design and analysis of simulation experiments.
6See pp. 87, 93, 159, and 178 in Selected Reference 11 for alternative methods.

The U.S. Federal Aviation Administration (FAA) is
charged with managing air traffic in the national airspace.
Air traffic controllers are used to guide individual flights
to keep them safely separated from every other flight. In
addition, the FAA controls aggregate flows of flights to
keep arrivals at each airport within manageable levels
and to adjust to adverse weather conditions by rerouting
traffic as needed. When bad weather or congestions
occurs, traffic managers are used to decide which flights
should be held on the ground and which flights already
airborne should be rerouted.

A particularly difficult problem for traffic managers
arises when extended lines of thunderstorms block major
flight routes. Such severe weather across a wide area can
result in enormous, system-wide disruptions, leading to
billions of dollars annually in increased operating costs
and revenue loss to airlines as well as great inconve-
nience for the flying public. Therefore, in 2005, the FAA
commissioned a year-long simulation study by an opera-
tions research team to develop better operating proce-
dures for traffic managers in this situation.

The resulting simulation model was a very complex
one that incorporated the actions and interactions of
hundreds or thousands of flights that were being con-
trolled by the FAA infrastructure. For many months,
this model was used to test various proposed operating
procedures under typical severe weather conditions to
determine the best of these procedures. These conclu-
sions then were incorporated into a computerized deci-
sion-support system that traffic managers would use
thereafter to guide their decisions under such weather
conditions.

This innovation has been estimated to save aircraft
operators $1 billion to $3 billion in operating costs by
reducing the delays and cancellations over the first
decade of use. It also is estimated to reduce passenger
delays by more than a million hours per year.

Source: V. P. Sud, M. Tanino, J. Wetherly, M. Brennan, M.
Lehky, K. Howard, and R. Oiesen, “Reducing Flight Delays
Through Better Traffic Management,” Interfaces, 39(1): 35-45,
Jan.–Feb. 2009. (A link to this article is provided on our web-
site, www.mhhe.com/hillier.)

An Application Vignette
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These results might immediately indicate that one system configuration is clearly su-
perior to the others. More often, they will identify the few strong candidates to be the best
one. In the latter case, some longer simulation runs would be conducted to better com-
pare these candidates.7 Additional runs also might be used to fine-tune the details of what
appears to be the best configuration.

Step 8: Present Recommendations to Management

After completing its analysis, the OR team needs to present its recommendations to man-
agement. This usually would be done through both a written report and a formal oral
presentation to the managers responsible for making the decisions regarding the system
under study.

The report and presentation should summarize how the study was conducted, includ-
ing documentation of the validation of the simulation model. A demonstration of the ani-
mation of a simulation run might be included to better convey the simulation process and
add credibility. Numerical results that provide the rationale for the recommendations need
to be included.

Management usually involves the OR team further in the initial implementation of
the new system, including the indoctrination of the affected personnel.

7Methodology for using simulation to attempt to identify the best system configuration is referred to as simu-
lation optimization. This is a very active area of current research. For example, see Selected References 6 and
13. The last subsection in the next section also illustrates the use of simulation optimization.

■ 20.6 PERFORMING SIMULATIONS ON SPREADSHEETS

Section 20.5 outlines the typical steps involved in major simulation studies of complex sys-
tems, including the use of general simulation languages or specialized simulators that are
needed to study most such systems efficiently. However, not all simulation studies are nearly
that involved. In fact, when studying relatively simple systems, it is sometimes possible to
run the needed simulations quickly and easily on spreadsheets. In particular, whenever a
spreadsheet model can be formulated to analyze a system without taking uncertainties into
account (except through sensitivity analysis), it usually is possible to extend the model to
use simulation to consider the effect of the uncertainties. Therefore, we now will focus on
these simpler cases where spreadsheets can be used to perform the simulations effectively.

As illustrated by Example 1 in Sec. 20.1, the standard Excel package has some basic
simulation capabilities, including the ability to generate uniform random numbers and to
generate random observations from some probability distributions. An exciting subsequent
advancement has been the development of powerful Excel add-ins that greatly extend these
capabilities. One such add-in is the very versatile Frontline Systems product, Analytic Solver
Platform.  You already have seen a student-friendly version of this product, Analytic Solver
Platform for Education (ASPE), in action for various applications in a few preceding chap-
ters.  You will see throughout this chapter that ASPE also has powerful capabilities for per-
forming simulations. Instructions for installing ASPE are on the very first page of the book 
(before the title page), as well as in Appendix 1 and on the book's website.

This section focuses on the functionality of ASPE to illustrate what can be done with
simulation add-ins. We have included end-of-chapter problems for this section that are
well suited for using ASPE.

Business spreadsheets typically include some input cells that display key data (e.g.,
the various costs associated with producing or marketing a product) and one or more
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output cells that show measures of performance (e.g., the profit from producing or mar-
keting the product). The user writes Excel equations to link the inputs to the outputs so
that the output cells will show the values that correspond to the values that are entered
into the input cells. In some cases, there will be uncertainty about what the correct val-
ues for the input cells will turn out to be. Sensitivity analysis can be used to check how
the outputs change as the values for the input cells change. However, if there is consid-
erable uncertainty about the values of some input cells, a more systematic approach to
analyzing the effect of the uncertainty would be helpful. This is where simulation enters
the picture.

With simulation, instead of entering a single number in an input cell where there
is uncertainty, a probability distribution that describes the uncertainty is entered in-
stead. By generating a random observation from the probability distribution for each
such input cell, the spreadsheet can calculate the output values in the usual way. This
is called a trial by ASPE. By running the number of trials specified by the user (typ-
ically hundreds or thousands), the simulation thereby generates the same number of
random observations of the output values. ASPE records all this information and then
gives you the choice of viewing detailed statistics in tabular or graphical form (or both)
that roughly shows the underlying probability distribution of the output values. A sum-
mary of the results also includes estimates of the mean and standard deviation of this
distribution.

Now let us go through an example in detail to illustrate this process.

An Inventory Management Example—Freddie the Newsboy’s Problem

Consider the following problem being faced by a newsboy named Freddie. One of the daily
newspapers that Freddie sells from his newsstand is the Financial Journal. A distributor
brings the day’s copies of the Financial Journal to the newsstand early each morning. Any
copies unsold at the end of the day are returned to the distributor the next morning. However,
to encourage ordering a large number of copies, the distributor does give a small refund
for unsold copies.

Here are Freddie’s cost figures.

Freddie pays $1.50 per copy delivered.
Freddie sells it at $2.50 per copy.
Freddie’s refund is $0.50 per unsold copy.

Partially because of the refund, Freddie always has taken a plentiful supply. How-
ever, he has become concerned about paying so much for copies that then have to be
returned unsold, particularly since this has been occurring nearly every day. He now
thinks he might be better off by ordering only a minimal number of copies and saving
this extra cost.

To investigate this further, he has compiled the following record of his daily sales.

Freddie sells anywhere between 40 and 70 copies inclusively on any given day. The
frequency of the numbers between 40 and 70 are roughly equal.

The decision that Freddie needs to make is the number of copies to order per day from
the distributor. His objective is to maximize his average daily profit.

You may recognize this problem as an example of the newsvendor problem discussed
in Sec. 18.7. Thus, the stochastic one-period inventory model for perishable products (with
no setup cost) presented there can be used to solve this problem. However, for illustrative
purposes, we now will show how simulation can be used to analyze this simple inventory

922 CHAPTER 20 SIMULATION
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system in the same way that it analyzes more complex inventory systems that are beyond
the reach of available inventory models.

A Spreadsheet Model for This Problem

Figure 20.7 shows a spreadsheet model for this problem. Given the data cells C4:C6, the
decision variable is the order quantity to be entered in cell C9. (The number 60 has been
entered arbitrarily in this figure as a first guess of a reasonable value.) The bottom of the
figure shows the equations used to calculate the output cells C14:C16. These output cells
are then used to calculate the output cell Profit (C18).

The only uncertain input quantity in this spreadsheet is the day’s demand in cell C12.
This quantity can be anywhere between 40 and 70 inclusively. Since the frequency of the
integer numbers between 40 and 70 are about the same, the probability distribution of the
day’s demand can reasonably be assumed to be an integer uniform distribution between
40 and 70, as indicated in cells D12:F12. Rather than enter a single number permanently
into SimulatedDemand (C12), what ASPE will do is to enter this probability distribution
into this cell. By using ASPE to generate a random observation from this probability dis-
tribution, the spreadsheet can calculate the output cells in the usual way to complete one
trial. By running the number of trials specified by the user (typically hundreds or thou-

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

A B C D E F

Freddie the Newsboy

Data
Unit Sale Price $2.50

Unit Purchase Cost $1.50
Unit Salvage Value $0.50

Decision Variable
Order Quantity 60

Simulation Limit Limit
Lower Upper

Demand 44 Integer Uniform 40 70

Sales Revenue $110.00
Purchasing Cost $90.00

Salvage Value $8.00

Profit

Mean Profit

$28.00

$46.45

14

12
13

15
16
17
18
19
20

B C

Sales Revenue

Demand

=UnitSalePrice*MIN(OrderQuantity,Demand)

=PsilntUniform(E12,F12)

Purchasing Cost =UnitPurchaseCost*OrderQuantity
Salvage Value =UnitSalvageValue*MAX(OrderQuantity-Demand,0)

Profit

Mean Profit

=SalesRevenue-PurchasingCost+SalvageValue + PsiOutput()

=PsiMean(C18)

Range Name Cell
Demand
MeanProfit

C12
C20

OrderQuantity C9
Profit C18
PurchasingCost C15
SalesRevenue C14
SalvageValue C16
UnitPurchaseCost C5
UnitSalePrice C4
UnitSalvageValue C6

■ FIGURE 20.7
A spreadsheet model for
applying simulation to the
example that involves Freddie
the newsboy. The uncertain
variable cell is Demand
(C12), the results cell is 
Profit (C18), the statistic 
cell is MeanProfit (C20), 
and the decision variable is
OrderQuantity (C9).
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sands), the simulation thereby generates the same number of random observations of the
values in the output cells. ASPE records this information for the output cell(s) of partic-
ular interest (Freddie’s daily profit) and then, at the end, displays it in a variety of con-
venient forms that reveal an estimate of the underlying probability distribution of Fred-
die’s daily profit. (More about this later.)

The Application of ASPE

Five steps are needed to use the spreadsheet in Fig. 20.7 to perform the simulation with
ASPE.

1. Define the uncertain variable cells.
2. Define the results cells. 
3. Define any statistic cells as desired (e.g., the mean profit)
4. Set the simulation options.
5. Run the simulation.

We now describe each of these five steps in turn.

Define the Uncertain Variable Cells. An uncertain variable cell is a cell that has a
random value (such as the daily demand for the Financial Journal), so an assumed prob-
ability distribution needs to be entered into the cell instead of permanently entering a sin-
gle number. The only uncertain variable cell in Fig. 20.7 is Demand (C12).

The following procedure is used to define an uncertain variable cell.

Procedure for Defining an Uncertain Variable Cell

1. Select the cell by clicking on it.
2. Select a probability distribution to enter into the cell by choosing from the Distribu-

tions menu on the ASPE ribbon as shown in Fig. 20.8.
3. Use the dialog box for this probability distribution to enter the parameters for the dis-

tribution, preferably by referring to the cells in the spreadsheet that contain the values
of these parameters.  

4. Click on Save.

The Distributions menu mentioned in step 2 provides a wide variety of 46 probability dis-
tributions from which to choose. Figure 20.8 displays the eight distributions in the Dis-
crete submenu, but many more distributions are available under the other submenus. (When
there is uncertainty about which distribution provides the best fit to historical data, ASPE
provides a procedure to choose an appropriate distribution. This procedure is described in
Sec. 28.6 on the book’s website.)

In Freddie’s case, selecting the integer uniform distribution in the Distributions menu
brings up the dialog box shown in Fig. 20.9, which is used to enter the parameters of the
distribution. For each of the parameters (lower and upper), we refer to the data cells in E12
and F12 on the spreadsheet. After clicking Save, ASPE puts a formula in the cell that is
used to calculate the random values from the distribution. For the integer uniform distrib-
ution in Demand (C12), that formula is =PsiIntUniform(E12, F12). This formula calculates
a random value from the integer uniform distribution with parameters lower=E12 and up-
per=F12. The formula can be copied and pasted just like any other Excel function. (This
can be very handy for simulation models that have lots of similar uncertain variable cells.)

Define the Results Cells. Each output cell that is being used by a simulation to fore-
cast a measure of performance is referred to as a results cell. The spreadsheet model for
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■ FIGURE 20.8 
The Distributions menu on
the ASPE ribbon showing the
distributions available under
the Discrete submenu. In
addition to the 8
distributions displayed here,
38 more distributions are
available in the other
submenus.

■ FIGURE 20.9
The dialog box used to
specify the parameters for
the integer uniform
distribution in the uncertain
variable cell, Demand (C12),
for the spreadsheet model in
Fig. 20.7. The two
parameters for the integer
uniform distribution are
lower and upper, and are
entered here as cell
references to E12 (40) and
F12 (70), respectively.

a simulation often does not include a an objective cell, but a results cell plays roughly
the same role.

The measure of performance of interest to Freddie the newsboy is his daily profit
from selling the Financial Journal, so the only results cell in Fig. 20.7 is Profit (C18).
The following procedure is used to define such a results cell.

Procedure for Defining a Results Cell

1. Select the cell by clicking on it.
2. Choose Output>In Cell from the Results menu on the ASPE ribbon.
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In Fig. 20.7, the results cell (C18) shows a profit value of $28. It is important to note that
this is only the result for the particular random value of the uncertain variable that is cur-
rently showing in the spreadsheet (a Demand of 44).  This is not the result for the entire
simulation run.  It is not even the mean profit from the entire run. It is just one single ran-
dom outcome (a trial). To obtain the results for the entire simulation run, hovering on this
cell will reveal a chart that shows all of the results (more on this later).

Define a Statistic Cell (or Cells)

Since the number in the results cell only gives the result for a single trial of the simula-
tion (before hovering over the cell to show more results), it can be useful to show statis-
tics (measures of performance) directly on the spreadsheet that summarize the results of
the entire simulation run. ASPE refers to such cells as statistic cells. In Fig. 20.7, cell
C20 is defined as a statistic cell to show the mean value of profit ($46.45). ASPE uses
the following procedure to define a statistic cell.

Procedure for Defining a Statistic Cell

1. Click on the results cell for which you want to show a statistic.
2. Choose  the statistic you want to show (e.g., Mean) under the Statistic submenu of the

Results menu on the ASPE ribbon, as shown in Fig. 20.10.
3. Click on the statistic cell in which you want the value of the statistic to be shown.

Set the Simulation Options. The fourth step in the application of ASPE—setting
simulation options—refers to such things as choosing the number of trials to run and de-
ciding on other options regarding how to perform the simulation. This step begins by
clicking on the options button on the ASPE ribbon and selecting the Simulation tab. This
brings up the Simulation Options dialog box shown in Fig. 20.11. Perhaps the most im-
portant option is how many trials to run in the simulation. The figure indicates that 1,000
trials will be run. Other options allow you to change the sampling method or the random
number generator that is used by ASPE. We will keep these at their default values.

926 CHAPTER 20 SIMULATION

■ FIGURE 20.10
The Results menu on the
ASPE ribbon that shows the
statistics available under the
Statistic submenu. Choosing 
a statistic from this submenu
will cause that statistic to be
calculated for the current
simulation run. The value of
this statistic then will appear
within a specified statistic cell.
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■ FIGURE 20.11
The ASPE Options dialog 
box after showing the
Simulation tab.

Run the Simulation. At this point, the stage is set to run the simulation. In fact, the sim-
ulation may already have been run behind the scenes. As seen in either Fig. 20.8 or 20.10,
the Simulate button on the ASPE ribbon contains a lightbulb. If the lightbulb is lit (appears
yellow), this means ASPE is in interactive simulation mode. In this mode, every time a
change in the model is made, the simulation runs automatically in the background and the
results are immediately updated. So if the lightbulb is lit, the simulation has already been
run and the results are ready for viewing. For small and medium sized models, the simu-
lation runs so quickly that you will not even notice the work going on in the background. 

If the lightbulb is not lit (appears gray), then ASPE will only run the simulation
when it is instructed to do so. To run the simulation, you can turn on interactive simu-
lation by clicking on the Simulate button. Alternatively, you can run the simulation
model just once by clicking and holding on the Simulate button to reveal its menu, and
then choosing Run Once. 

With interactive simulation mode on, the statistic cells will always show the results
of the latest simulation run. For example, in Fig. 20.7, the statistic cell MeanProfit (C20)
shows that the mean value of Freddie’s daily profit is $46.45. To view more extensive
results, hover the mouse over the results cell Profit (C18). This will cause a chart to ap-
pear that shows a quick summary of all of the results along with a button labeled Click
here to open full chart. Clicking on this button reveals the results shown in Fig. 20.12. 
The default view is a frequency chart shown on the left side and a statistics table shown
on the right side. The height of the vertical lines in the frequency chart indicates the rel-
ative frequency of the various profit values that were obtained during the simulation run.
For example, consider the tall vertical line at $60. The right-hand side of the chart indi-
cates a frequency of about 350 there, which means that about 350 of the 1000 trials led
to a profit of $60. Thus, the left-hand side of the chart indicates that the estimated prob-
ability of a profit of $60 is 350/1000 � 0.35. This is the profit that results whenever the
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■ FIGURE 20.12
The frequency chart and
statistics table provided by
ASPE to summarize the
results of running the
simulation model in Fig. 20.7
for the example that involves
Freddie the newsboy.

demand equals or exceeds the order quantity of 60. The remainder of the time, the profit
was scattered fairly evenly between $20 and $60. These profit values correspond to trials
where the demand was between 40 and 60 units, with lower profit values corresponding
to demands closer to 40 and higher profit values corresponding to demands closer to 60. 

The statistics table on the right side of Fig. 20.12 summarizes the outcome of the
1,000 trials of the simulation. These 1,000 trials provide a sample of 1,000 random ob-
servations from the underlying probability distribution of Freddie’s daily profit. The most
interesting statistics about this sample provided by the table include the mean of $46.45,
the standard deviation of $13.67, and the mode of $60 (meaning that this was the profit
value that occurred most frequently). The information further down the the table regard-
ing the minimum and maximum profit values also is particularly useful.

Which of these statistics in Fig. 20.12 are particularly relevant really depends on what
Freddie wants to achieve. The mean usually is the most important since, despite the wide
fluctuations in the daily profits, the average daily profit will converge to the mean as time
goes on. Therefore, multiplying the mean by the number of days that the newsstand will
be open during the year gives (very closely) what the total annual profit from selling the
Financial Journal will be, which is a very relevant quantity to want to maximize. How-
ever, if Freddie is an individual who focuses much more on the present than the future,
then the mode might be of considerable interest to him. If he gains particular satisfaction
out of achieving the maximum possible profit of $60 (given an order quantity of 60), then
he will want to make sure that this will happen more often than any other specific profit
(as indicated by the mode of $60). On the other hand, if Freddie is risk averse and so is
particularly concerned with avoiding bad days (profits far below the mean) as much as
possible, then he would have a special interest in having a relatively small standard devi-
ation and a relatively large minimum.

Keep in mind that the statistics in Fig. 20.12 are based on using an order quantity of
60, whereas the objective is to determine the best order quantity. If Freddie has a partic-
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ularly strong interest in more than one of the statistics, one approach would be to rerun
the simulation model in Fig. 20.7 with various order quantities and then let Freddie choose
the one whose set of statistics he likes best. In most situations, however, the mean will 
be the one statistic of special interest. In this case, the objective is to determine the order
quantity that maximizes the mean. (We will assume this objective hereafter.) After esti-
mating the optimal order quantity according to this objective, Freddie then should be
shown the corresponding frequency chart and statistics table (and perhaps other informa-
tion described subsequently as well) to make sure that everything else is satisfactory with
this order quantity.

In addition to the frequency chart and statistics table presented in Fig. 20.12, there
are other useful ways of displaying the results of a simulation run. By clicking on the ap-
propriate tab at the top of the frequency chart, you can display a cumulative frequency,
reverse cumulative frequency, sensitivity, or scatter plot chart. Also, the menu above the
statistics table lets you choose whether to show statistics or a percentiles table (as well as
giving choices for changing various options in the charts). Figure 20.13 shows the cu-
mulative frequency chart on the left and the percentiles table on the right that resulted
from the current simulation run. The percentiles table is based on listing the profit values
generated by the 1,000 trials from smallest to largest, dividing this list into 100 equal parts
(10 values in each), and then recording the value at the end of each part. Thus, the value
5 percent through the list is $22, the value 10 percent through the list is $26, and so forth.
(For example, the intuitive interpretation of the 10 percent percentile of $26 is that 
10 percent of the trials have profit values less than or equal to $26 and the other 90 per-
cent of the trials have profit values greater than or equal to $26, so $26 is the dividing
line between the smallest 10 percent of the values and the largest 90 percent.) The cu-
mulative frequency chart on the left of Fig. 20.13 provides similar (but more detailed) 
information about this same list of the smallest-to-largest profit values. The horizontal
axis shows the entire range of values from the smallest possible profit value ($20) to the
largest possible profit value ($60). For each value in this range, the chart cumulates the
number of actual profits generated by the 1,000 trials that are less than or equal to that
value. This number equals the frequency shown on the right or, when divided by the num-
ber of trials, the probability shown on the left.

■ FIGURE 20.13
Two more ways (a
cumulative frequency chart
and a percentiles table) ASPE
can display the results of
running the simulation
model in Fig. 20.7 for the
example that involves Freddy
the newsboy.
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Figure 20.14 illustrates another of the many ways provided by ASPE for extracting help-
ful information from the results of a simulation run. Freddie the newsboy feels that he has
had a reasonably satisfactory day if he obtains a profit of at least $40 from selling the 
Financial Journal. Therefore, he would like to know the percentage of days that he could 
expect to achieve this much profit if he were to adopt the order quantity currently being 
analyzed (60). To obtain an estimate of this percentage with ASPE, enter $40 as the Lower
Cutoff in the Chart Statistics on the right side of Fig. 20.14. The estimate of this percentage
(64.5 percent) then appears in the Likelihood box just below (and is also displayed above
the chart on the left side). If desired, the probability of obtaining a profit between any two
values also could be estimated by entering both a Lower Cutoff and an Upper Cutoff.

How Accurate Are the Simulation Results?

An important number provided by Fig. 20.12 is the mean of $46.45. This number was
calculated as the average of the 1,000 random observations from the underlying proba-
bility distribution of Freddie’s daily profit that were generated by the 1,000 trials. This
sample average of $46.45 thereby provides an estimate of the true mean of this distribu-
tion. However, the true mean might deviate somewhat from $46.45. How accurate can we
expect this estimate to be?

The answer to this key question is provided by the standard error of $0.43 given at
the bottom of the statistics table in Fig. 20.12. The standard error is calculated as s/�n�,
where s is the sample standard deviation and n is the number of trials. It is an estimate of
the standard deviation of the sample average, so the sample average is within one standard
error of the true mean most of the time. In other words, the true mean can readily deviate
from the sample mean by any amount up to the standard error, but most of the time (ap-
proximately 68 percent of the time), it will not deviate by more than that. Thus, the inter-
val from $46.45 � $0.43 � $46.02 to $46.45 � $0.43 = $46.88 is a 68 percent confidence
interval for the true mean. Similarly, a larger confidence interval can be obtained by using
an appropriate multiple of the standard error to subtract from the sample mean and then
to add to the sample mean. For example, the appropriate multiple for a 95 percent con-
fidence interval is 1.965, so such a confidence interval ranges from $46.45 � 1.965($0.43)
� $45.60 to $46.45 � 1.965($0.43) � $47.30. (This multiple of 1.965 may change slightly
if the number of trials is different from 1,000.) Therefore, it is very likely that the true
mean is somewhere between $45.60 and $47.30.

■ FIGURE 20.14
After setting a lower cutoff of
$40 for desirable profit
values, the Likelihood box
reveals that 64.5 percent of
the trials in Freddie’s
simulation run provided a
profit at least this high.
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ASPE provides a shortcut for calculating the 95% confidence interval. The Mean
Confidence 95% value of $0.85 in the statistics table shows that the 95 percent confi-
dence interval ranges from $46.45 – $0.85 = $45.60 to $46.45+ $0.85 = $47.30.

Parameter Analysis Reports and Trend Charts

The results presented in Fig. 20.12 were from a simulation run that fixed Freddie’s daily
order quantity at 60 copies of the Financial Journal (as indicated in cell C9 of the spread-
sheet in Fig. 20.7). Freddie wanted this order quantity tried first because it seems to pro-
vide a reasonable compromise between being able to fully meet the demand on many
days (about two-thirds of them) and often not having many unsold copies on those days.
However, the results obtained do not reveal whether 60 is the optimal order quantity that
would maximize his average daily profit. Many more simulation runs with other order
quantities will be needed to determine (or at least estimate) the optimal order quantity.

Fortunately, ASPE provides a way to systematically perform multiple simulations by
using parameter cells. This makes it easy to identify at least an approximation of an op-
timal solution for problems with only one or two decision variables. Freddie’s problem
has only a single decision variable, OrderQuantity (C9) in the spreadsheet model of Fig.
20.7, so we now will apply this approach.

An intuitive approach for searching for an optimal solution would be to use trial and
error. Try different values of the decision variable(s), run a simulation for each, and see
which one provides the most favorable estimate of the chosen measure of performance.
The interactive simulation mode in ASPE makes this especially easy, since the results in
the statistic cells are available immediately after changing the value of a decision vari-
able. Using parameter cells allows you to do the same thing in a more systematic way.
After defining a parameter cell, all the desired simulations are run and the results soon
are displayed in the parameter analysis report. If desired, you also can view a trend
chart, that provide additional details about the results.

If you have previously used parameter cells with the Solver in ASPE to generate pa-
rameter analysis reports for performing sensitivity analysis systematically (as was done
in Chap. 7), the parameter analysis reports for simulation models work in much the same
way. Two is the maximum number of decision variables that can be varied simultaneously
in a parameter analysis report.

Since the number of copies that Freddie’s customers want to purchase varies widely
from day to day (anywhere from 40 to 70 copies), it would seem sensible to begin by try-
ing a sampling of possible order quantities, say, 40, 45, 50, 55, 60, 65, and 70. To do this,
the first step is to define the decision variable being investigated—OrderQuantity (C9) in
Fig. 20.7—as a parameter cell by using the following procedure.

Procedure for Defining a Decision Variable as a Parameter Cell

1. Select the cell containing the decision variable by clicking on it.
2. Choose Simulation from the Parameters menu on the ASPE ribbon.
3. Enter the lower limit and the upper limit of the range of values to be simulated for the

decision variable.
4. Click on OK.

Figure 20.15 shows the application of this procedure to Freddie’s problem. Since sim-
ulations will be run for order quantities ranging from 40 to 70, these limits for the range
have been entered.

Now we are ready to generate a parameter analysis report by running simulations for
different values of the parameter cell. First choose Parameter Analysis from the Reports >
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Simulation menu on the ASPE ribbon. This brings up the dialog box in Fig. 20.16 that
allows you to specify which parameter cells to vary and which results to show after the
simulations are run. The choice of which parameter cells to vary is made under Parame-
ters in the bottom half of the dialog box. Clicking on (>>) will select all of the parameter
cells defined so far (moving them to the box on the right). In this case, only one para-
meter has been defined, so this causes the single parameter cell (OrderQuantity) to 
appear on the right. If more parameter cells had been defined, particular parameter cells
can be chosen for immediate analysis by clicking on them and using (>) to move these
individual parameter cells to the list on the right.

■ FIGURE 20.15
This parameter cell dialog
box specifies the
characteristics of the decision
variable OrderQuantity (C9)
in the simulation model in
Fig. 20.7 for the example
that involves Freddie the
newsboy.

■ FIGURE 20.16
This Parameter Analysis dialog
box allows you to specify
which parameter cells to vary
and which results to show
after the simulation run. Here
the OrderQuantity (C9)
parameter cell will be varied
over seven different values
and the value of the mean
will be displayed for each of
the seven simulation runs.
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The choice of which simulation results to show as the parameter cell is varied is made
in the upper half of the dialog box. By selecting the box next to Mean, the mean profit
observed during the simulation run will be displayed for each different value of the 
parameter cell.

Finally, enter the number of Major Axis Points to specify how many different values
of the parameter cell will be included in the parameter analysis report. The values will be
spread evenly between the lower and upper values specified in the parameter cell dialog
box in Fig. 20.15. With seven major axis points, a lower value of 40, and an upper value
of 70, a simulation will be run with order quantities of 40, 45, 50, 55, 60, 65, and 70.
Clicking OK causes ASPE to run each of these simulations.

After ASPE runs the simulations, the parameter analysis report is created in a new
spreadsheet as shown in Figure 20.17. For each of the order quantities shown in column
A, column B gives the mean of the values of the results cell, Profit (C18), obtained in all
the trials of that simulation run. Cells B2:B8 reveal that an order quantity of 55 achieved
the largest mean profit of $47.26, while order quantities of 50 and 60 essentially tied for
the second largest mean profit.

The sharp drop off in mean profits on both sides of these order quantities virtually
guarantees that the optimal order quantity lies between 50 and 60 (and probably close
to 55). To pin this down better, the logical next step would be to generate another para-
meter analysis report that considers all integer order quantities between 50 and 60. You
are asked to do this in Problem 20.6-6. 

ASPE can also generate a variety of charts that show the results over simulation runs
for different values of a parameter cell. After defining a parameter cell, the number of its
values to receive a simulation run needs to be specified. To do this, click on the Options
button on the ASPE ribbon and choose the simulation tab to bring up the Simulation 
Options dialog box shown in Fig. 20.18. The desired number of values of the parameter
cell to simulate then is entered in the Simulations to Run box. This number plays the same
role as the number of Major Axis points in Fig. 20.16 when generating a parameter analy-
sis report. The resulting values of the parameter are spread evenly between the lower and
upper values specified in the parameter cell dialog box in Fig. 20.15. For example, with
seven simulations to run (as specified in Fig. 20.18), the order quantities once again will
be 40, 45, 50, 55, 60, 65, and 70.

Once the number of simulations to run has been specified, a variety of charts can be
generated by choosing a chart from the Charts > Multiple Simulations menu on the ASPE
ribbon. For example, choosing Parameter Analysis from this menu gives the same infor-
mation as the parameter analysis report in Fig. 20.17 in graphical form. 

A particularly interesting type of chart is the trend chart. Choosing Trend Chart from
the Charts>Multiple Simulations menu brings up the dialog box shown in Fig. 20.19. This
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OrderQuantity Mean

■ FIGURE 20.17
The parameter analysis report
for Freddie’s problem.
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dialog box is used to choose which of the simulations should appear in the trend chart.
Clicking on (>>) specifies that all seven simulations should be shown in the trend chart.
Clicking OK then generates the trend chart shown in Fig. 20.20.

■ FIGURE 20.18
This Simulation Options
dialog box allows you to
specify how many
simulations to run before
choosing a chart to show the
results of running simulations
for that number of different
values of a parameter cell.

■ FIGURE 20.19
This trend chart dialog box is
used to specify which
simulations should be used
to show results. Clicking (>>)
causes the results from all of
the simulations to appear in
the trend chart.
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The horizontal axis of the trend chart shows the seven values of the parameter cell
(order quantities of 40, 45, …, 70) for which simulations were run. The vertical axis gives
the profit values obtained during the simulation runs. The curved line through the middle
shows the mean profit for the simulations run at each of the different order quantities.
Surrounding the mean line are two bands summarizing information about the frequency
distribution of the profit values from each simulation run. (On a color monitor, the bands
appear light gray and dark green.) The middle gray band contains the middle 75 percent
of the profit values while the outer dark green band (in combination with the gray band
within it) contains the middle 90 percent of the profit values. (These percentages are listed
above the trend chart.) Thus, 5 percent of the profit values generated in the trials of each
simulation run lie above the top band and 5 percent lie below the bottom band.

The trend chart received its name because it shows the trends graphically as the value
of the decision variable (the order quantity in this case) increases. In Fig. 20.20, for 
example, consider the mean line. In going from an order quantity of 40 to 55, the mean
line is trending upward, but then it is trending downward thereafter. Thus, the mean profit
reaches its peak near an order quantity of 55.

The fact that the trend chart spreads out as it moves to the right provides the further
insight that the variability of the profit values increase as the order quantity is increased.
Although the largest order quantities provide some chance of particularly high profits on
occasional days, they also can lead to an unusually low profit on any given day. This risk
profile may be relevant to Freddie if he is concerned about the variability of his daily
profits.

■ FIGURE 20.20
The trend chart that shows
the trend in the mean and 
in the range of the frequency
distribution as the order
quantity increases for
Freddie’s problem.
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Optimizing with Simulation and ASPE’s Solver

You have just seen how parameter analysis reports and trend charts sometimes can be used
to find at least a close approximation of an optimal solution. In particular, the example
involving Freddie the newsboy demonstrated that they can be quite effective when the 
system being simulated has only a single decision variable and that decision variable is
discrete with only a fairly small number of possible values.  However, this approach does
not work as well when the single decision variable is either a continuous variable or a dis-
crete variable with a large range of possible values. It also is more difficult with two de-
cision variables. (Parameter analysis reports can consider a maximum of two decision vari-
ables, but trend charts are limited to just a single decision variable.) This approach is not
suited at all for larger problems with more than two decision variables or numerous pos-
sible solutions. Many problems in practice fall into these categories.

Fortunately, ASPE includes a tool called Solver that automatically searches for an
optimal solution for simulation models with any number of decision variables and any
number of possible solutions. This Solver was first introduced in Sec. 3.5.  It includes
some solving methods in common with the standard Excel Solver (also introduced in
Sec. 3.5) and these solving methods were used in several chapters to find optimal solu-
tions for linear, integer, and nonlinear programming models. However, the ASPE Solver
also includes some additional functionality, including substantial capabilities in the sim-
ulation area, that are not available with the Excel Solver. In particular, by using ASPE’s
simulation tools, the ASPE Solver can be used very effectively to search for an optimal
solution for a simulation model. (Hereafter, we will simply use the term Solver to mean
ASPE’s Solver.)

Solver conducts its search by executing a series of simulation runs to try a series of
leading candidates to be an optimal solution, where the results so far are used to deter-
mine the most promising remaining candidate to try next. Solver cannot guarantee that
the best solution it finds will literally be an optimal solution. However, given enough
time, it often will find an optimal solution and, if not, usually will find a solution that is
close to optimal. For problems with only a few discrete decision variables, it frequently
will find an optimal solution fairly early in the process and then spend the rest of the
time ruling out other candidate solutions. Thus, although Solver cannot tell when it has
found an optimal solution, it can estimate (within the range of precision provided by sim-
ulation runs) that the other leading candidates are not better than the best solution found
so far.

We will illustrate how to use Solver with Freddie the newsboy’s problem. The para-
meter analysis report generated in Fig. 20.17 indicated that Freddie should order between
50 and 60 copies of the Financial Journal each day. Now let us see how Solver can esti-
mate which specific order quantity would maximize his average daily profit.

Using the simulation model in Fig. 20.7, the goal in Freddie’s problem is to choose
the value of the order quantity that would maximize the mean profit that Freddie will
earn each day. MeanProfit (C20) records the mean profit during the simulation run for a
given value of the order quantity. Selecting this cell and then choosing Max>Normal
from the Objective menu specifies that the objective is to maximize the quantity in this
cell. 

Next, the decision variables need to be defined. In Freddie’s problem, the only deci-
sion to be made is the value for OrderQuantity (C9), so there is only one decision vari-
able. Selecting this cell and choosing Normal from the Decisions menu defines this cell
as a (normal) decision variable. Solver uses a search engine to search for the best value
of the decision variable(s). Therefore, the smaller the search space (as measured by the
number of possible values Solver must search), the faster Solver will be able to solve 
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the problem. Thus, we should take into account any constraints on the possible values of
the decision variable. Since OrderQuantity must be integer, select the cell again and choose
Integer from the Constraints>Variable Type/Bound menu. This greatly reduces the num-
ber of possible values to search since only the integers will need to be considered. In 
addition, since demand is random between a lower limit of 40 and an upper limit of 70,
it is clear that the order quantity also should be somewhere in this range. To specify that
OrderQuantity should be between 40 and 70, we add a pair of bound constraints. First 
select the cell and choose >= from the Constraints>Variable Type/Bound menu. This brings
up the first Add Constraint dialog box shown in Fig. 20.21. Click in the Constraint box
and then on cell E12 to specify that OrderQuantity >= E12 (=40) and then click OK. Sim-
ilarly, choose <= from the Constraints>Variable Type/Bound menu and use the Constraint
box to specify that OrderQuantity <= F12 (=70). The net result of these three constraints
are that OrderQuantity must be an integer between 40 and 70. This has reduced the search
space to just 31 possible values.

The model tab of the model pane should now appear as seen on the left side of Fig.
20.22. (If the model pane is not showing on the right side of the spreadsheet, it can be
toggled on and off by clicking on the Model button on the ASPE ribbon.) The model
pane shows that (1) the objective is to maximize MeanProfit (C20), (2) the decision vari-
able is OrderQuantity (C9), and (3) OrderQuantity should be integer and between 40 and
70. It also shows the simulation settings, which indicate that Demand (C12) is the 
uncertain variable, the results cell is Profit (C18), and MeanProfit (C20) is defined as a
statistic cell.

Before running Solver to optimize Freddie’s problem, we need to consider the settings
on the Engine tab of the Model pane, as seen on the right side of Fig. 20.22. In particular,
the checkbox Automatically Select Engine should be checked to have Solver automati-
cally choose which search engine is most appropriate for the problem. Second, the Max
Time and/or Max Time without Improvement should be specified. Max Time sets a limit

■ FIGURE 20.21
These two Add Constraint
dialog boxes allow you to
specify bounds on the
decision variable,
OrderQuantity (C9), for
Freddie’s problem. The top
dialog box specifies that
OrderQuantity >= E12 (=40).
The bottom dialog box
specifies that OrderQuantity
<= F12 (=70).
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(in seconds) for how long you would like the search to proceed. Leaving this quantity
blank in Fig. 20.22 means that no limit has been placed on the length of the search. This
is OK because we instead have set Max Time without Improvement to 10 seconds. This
will keep the search engine searching until Solver has not improved the solution within
the last 10 seconds.

At this point, clicking on Optimize on the ASPE ribbon begins the search for an op-
timal solution. Solver searches over different order quantities in the search space. For each
trial solution, it runs a simulation to determine the mean profit. Solver then evaluates the
results so far to determine the most promising candidates for the order quantity to try next.
This continues until it has either considered all promising values for the order quantity or
it reaches one of the stopping rules (Max Time or Max Time without Improvement). ASPE
will then put the best value for the order quantity (the one with the largest mean profit)
directly in the spreadsheet. In Freddie’s case, it usually will find the exact optimal solu-
tion, namely, an order quantity of 55 leading to a mean profit of approximately $47.26,
as shown in Fig. 20.23.

Here is a summary of the entire procedure for applying Solver that has just been il-
lustrated for Freddie’s problem.

■ FIGURE 20.22
The model tab and engine
tab of the Model pane for
Freddie’s problem. The
model tab on the left shows
the Solver optimization
settings and the simulation
settings. The objective is to
maximize MeanProfit (C20)
by changing the decision
variable OrderQuantity (C9)
subject to OrderQuantity
being both integer and
between 40 and 70. The
engine tab on the right
specifies that ASPE will
automatically select the
search engine to solve the
model and that it will keep
searching until it hasn’t
found an improved solution
for at least 10 seconds.
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Procedure for Applying Solver

1. Formulate your simulation model on a spreadsheet.
2. Use ASPE to define your uncertain variable cells, results cells, and statistic cells, as

well as to set Simulation Options.
3. Use ASPE to define your decision variables and the objective.
4. If possible, define constraints on the decision variables to reduce the search space.
5. Use the Engine tab of the Model pane to have ASPE automatically select the search

engine and to set the stopping rule (Max Time and/or Max Time without Improvement).
6. Click on Optimize to run the optimization.

If you would like to read more about how to perform simulations on spreadsheets
with ASPE, Chap. 28 on the book’s website provides several additional examples and fur-
ther details. These examples include applications to contract bidding, project management,
cash flow management, financial risk analysis, and revenue management.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

A B C D E F

Freddie the Newsboy

Data
Unit Sale Price $2.50

Unit Purchase Cost $1.50
Unit Salvage Value $0.50

Decision Variable
Order Quantity 55

Simulation Limit Limit
Lower Upper

Demand 46 Integer Uniform 40 70

Sales Revenue $115.00
Purchasing Cost $82.50

Salvage Value $4.50

Profit

Mean Profit

$37.00

$47.26

 

■ FIGURE 20.23
This figure shows the
solution found by ASPE’s
Solver for the example
involving Freddie the
newsboy. The MeanProfit
(C20) reaches its maximum
value of $47.26 when
OrderQuantity (C9) is 55.

Simulation is a widely used tool for estimating the performance of complex stochastic
systems if contemplated designs or operating policies are to be used.

We have focused in this chapter on the use of simulation for predicting the steady-
state behavior of systems whose states change only at discrete points in time. However,
by having a series of runs begin with the prescribed starting conditions, we can also use
simulation to describe the transient behavior of a proposed system. Furthermore, if we
use differential equations, simulation can be applied to systems whose states change
continuously with time.

Simulation is one of the most popular techniques of operations research because it is
such a flexible, powerful, and intuitive tool. In a matter of seconds or minutes, it can sim-

■ 20.7 CONCLUSIONS
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ulate even years of operation of a typical system while generating a series of statistical
observations about the performance of the system over this period. Because of its excep-
tional versatility, simulation has been applied to a wide variety of areas. Furthermore, its
horizons continue to broaden because of the great progress being made in simulation soft-
ware, including software for performing simulations on spreadsheets.

On the other hand, simulation should not be viewed as a panacea when studying sto-
chastic systems. When applicable, analytical methods (such as those presented in Chaps.
16 to 19) have some significant advantages. Simulation is inherently an imprecise tech-
nique. It provides only statistical estimates rather than exact results, and it compares al-
ternatives rather than generating an optimal one (unless special simulation optimization
techniques are being used). Furthermore, despite impressive advances in software, simula-
tion still can be a relatively slow and costly way to study complex stochastic systems. For
such systems, it usually requires a large amount of time and expense for analysis and pro-
gramming, in addition to considerable computer running time. Simulation models tend
to become unwieldy, so that the number of cases that can be run and the accuracy of the
results obtained often turn out to be inadequate. Finally, simulation yields only numerical
data about the performance of the system, so that it provides no additional insight into the
cause-and-effect relationships within the system except for the clues that can be gleaned
from these numbers (and from the analysis required to construct the simulation model).
Therefore, it is very expensive to conduct a sensitivity analysis of the parameter values as-
sumed by the model. The only possible way would be to conduct new series of simulation
runs with different parameter values, which would tend to provide relatively little infor-
mation at a relatively high cost.

For all these reasons, analytical methods (when available) and simulation have im-
portant complementary roles for studying stochastic systems. An analytical method is well
suited for doing at least preliminary analysis, for examining cause-and-effect relationships,
for doing some rough optimization, and for conducting sensitivity analysis. When the
mathematical model for the analytical method does not capture all the important features
of the stochastic system, simulation is well suited for incorporating all these features and
then obtaining detailed information about the measures of performance of the few lead-
ing candidates for the final system configuration.

Simulation provides a way of experimenting with proposed systems or policies with-
out actually implementing them. Sound statistical theory should be used in designing these
experiments. Surprisingly long simulation runs often are needed to obtain statistically sig-
nificant results. However, variance-reducing techniques (described in the first supplement
to this chapter on the book’s website) occasionally can be very helpful in reducing the
length of the runs needed.

Several tactical problems arise when we apply traditional statistical estimation pro-
cedures to simulated experiments. These problems include prescribing appropriate start-
ing conditions, determining how long a warm-up period is needed to essentially reach a
steady-state condition, and dealing with statistically dependent observations. These prob-
lems can be eliminated by using the regenerative method of statistical analysis (described
in the second supplement to this chapter on the book’s website). However, there are some
restrictions on when this method can be applied.

Simulation unquestionably has a very important place in the theory and practice of
OR. It is an invaluable tool for use on those problems where analytical techniques are
inadequate, and its usage is continuing to grow.
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■ LEARNING AIDS FOR THIS CHAPTER ON OUR WEBSITE (www.mhhe.com/hillier)

Solved Examples:

Examples for Chapter 20

Demonstration Examples in OR Tutor:

Simulating a Basic Queueing System
Simulating a Queueing System with Priorities

An Automatic Procedure in IOR Tutorial:

Animation of a Queueing System

Interactive Procedures in IOR Tutorial:

Enter Queueing Problem
Interactively Simulate Queueing Problem

“Ch. 20—Simulation” Excel Files:

Spreadsheet Examples
Queueing Simulator

Excel Add-In:

Analytic Solver Platform for Education (ASPE)

Glossary for Chapter 20

Supplements to This Chapter:

Variance-Reducing Techniques
Regenerative Method of Statistical Analysis

See Appendix 1 for documentation of the software.
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■ PROBLEMS

(c) Describe how uniform random numbers can be used to simu-
late daily sales.

(d) Use the uniform random numbers 0.4476, 0.9713, and 0.0629
to simulate daily sales over 3 days. Compare the average with
the mean obtained in part (b).

E (e) Formulate a spreadsheet model for performing a simulation
of the daily sales. Perform 300 replications and obtain the
average of the sales over the 300 simulated days.

20.1-4. The William Graham Entertainment Company will be
opening a new box office where customers can come to make ticket
purchases in advance for the many entertainment events being held
in the area. Simulation is being used to analyze whether to have
one or two clerks on duty at the box office.

While simulating the beginning of a day at the box office, the
first customer arrives 5 minutes after it opens and then the inter-
arrival times for the next four customers (in order) are 3 minutes,
9 minutes, 1 minute, and 4 minutes, after which there is a long de-
lay until the next customer arrives. The service times for these first
five customers (in order) are 8 minutes, 6 minutes, 2 minutes, 4 min-
utes, and 7 minutes.
(a) For the alternative of a single clerk, plot a graph that shows

the evolution of the number of customers at the box office over
this period.

(b) Use this figure to estimate the usual measures of perfor-
mance—L, Lq, W, Wq, and the Pn (as defined in Sec. 17.2)—
for this queueing system.

(c) Repeat part (a) for the alternative of two clerks.
(d) Repeat part (b) for the alternative of two clerks.

20.1-5. Consider the M/M/1 queueing theory model that was dis-
cussed in Sec. 17.6 and Example 2, Sec. 20.1. Suppose that the
mean arrival rate is 5 per hour, the mean service rate is 10 per hour,
and you are required to estimate the expected waiting time before
service begins by using simulation.
R (a) Starting with the system empty, use next-event increment-

ing to perform the simulation by hand until two service
completions have occurred.

R (b) Starting with the system empty, use fixed-time increment-
ing (with 2 minutes as the time unit) to perform the simu-
lation by hand until two service completions have occurred.

D,I (c) Use the interactive procedure for simulation in your IOR
Tutorial (which incorporates next-event incrementing) to
interactively execute a simulation run until 20 service com-
pletions have occurred.

Q (d) Use the Queueing Simulator to execute a simulation run
with 10,000 customer arrivals.

E (e) Use the Excel template for this model in the Excel files for
Chap. 17 to obtain the usual measures of performance for
this queueing system. Then compare these exact results
with the corresponding point estimates and 95 percent con-
fidence intervals obtained from the simulation run in part
(d ). Identify any measure whose exact result falls outside
the 95 percent confidence interval.

The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The demonstration examples for this chapter may be helpful.
I: We suggest that you use the interactive procedures listed

in Learning Aids (the printout records your work).
E: Use Excel.
A: Use an Excel simulation add-in, preferably the one we rec-

ommend, Analytic Solver Platform for Education (ASPE).
Q: Use the Queueing Simulator.
R: Use three-digit uniform random numbers (0.096, 0.569,

etc.) that are obtained from the consecutive random digits
in Table 20.3, starting from the front of the top row, to do
each problem part.

20.1-1.* Use the uniform random numbers in cells C13:C18 of
Fig. 20.1 to generate six random observations for each of the fol-
lowing situations.
(a) Throwing an unbiased coin.
(b) A baseball pitcher who throws a strike 60 percent of the time

and a ball 40 percent of the time.
(c) The color of a traffic light found by a randomly arriving car

when it is green 40 percent of the time, yellow 10 percent of
the time, and red 50 percent of the time.

20.1-2. The weather can be considered a stochastic system, be-
cause it evolves in a probabilistic manner from one day to the next.
Suppose for a certain location that this probabilistic evolution sat-
isfies the following description:

The probability of rain tomorrow is 0.6 if it is raining today.
The probability of its being clear (no rain) tomorrow is 0.8 if it is
clear today.
(a) Use the uniform random numbers in cells C17:C26 of Fig. 20.1

to simulate the evolution of the weather for 10 days, beginning
the day after a clear day.

E (b) Now use a computer with the uniform random numbers gen-
erated by Excel to perform the simulation requested in part
(a) on a spreadsheet.

20.1-3. Jessica Williams, manager of Kitchen Appliances for the
Midtown Department Store, feels that her inventory levels of stoves
have been running higher than necessary. Before revising the in-
ventory policy for stoves, she records the number sold each day
over a period of 25 days, as summarized below.

(a) Use these data to estimate the probability distribution of daily
sales.

(b) Calculate the mean of the distribution obtained in part (a).

Number sold 2 3 4 5 6

Number of days 4 7 8 5 1
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20.1-6. The Rustbelt Manufacturing Company employs a mainte-
nance crew to repair its machines as needed. Management now
wants a simulation study done to analyze what the size of the crew
should be, where the crew sizes under consideration are 2, 3, and 4.
The time required by the crew to repair a machine has a uniform
distribution over the interval from 0 to twice the mean, where the
mean depends on the crew size. The mean is 4 hours with two crew
members, 3 hours with three crew members, and 2 hours with four
crew members. The time between breakdowns of some machine
has an exponential distribution with a mean of 5 hours. When a
machine breaks down and so requires repair, management wants
its average waiting time before repair begins to be no more than 3
hours. Management also wants the crew size to be no larger than
necessary to achieve this.
(a) Develop a simulation model for this problem by describing its

basic building blocks listed in Sec. 20.1 as they would be 
applied to this situation.

R (b) Consider the case of a crew size of 2. Starting with one
machine needing repair, where this repair is starting just
now, use next-event incrementing to perform the simula-
tion by hand for 20 hours of simulated time.

R (c) Repeat part (b), but this time with fixed-time incrementing
(with 1 hour as the time unit).

D,I (d) Use the interactive procedure for simulation in your IOR
Tutorial (which incorporates next-event incrementing) to
interactively execute a simulation run over a period of
10 breakdowns for each of the three crew sizes under
consideration.

Q (e) Use the Queueing Simulator to simulate this system over a
period of 10,000 breakdowns for each of the three crew
sizes.

(f) Use the M/G/1 queueing model presented in Sec. 17.7 to obtain
the expected waiting time Wq analytically for each of the three
crew sizes. (You can either calculate Wq by hand or use the
template for this model in the Excel files for Chap. 17.) Which
crew size should be used?

20.1-7. While performing a simulation of a single-server queueing
system, the number of customers in the system is 0 for the first 10
minutes, 1 for the next 17 minutes, 2 for the next 24 minutes, 1 for
the next 15 minutes, 2 for the next 16 minutes, and 1 for the next
18 minutes. After this total of 100 minutes, the number becomes 0
again. Based on these results for the first 100 minutes, perform the
following analysis (using the notation for queueing models intro-
duced in Sec. 17.2).
(a) Plot a graph showing the evolution of the number of customers

in the system over these 100 minutes.
(b) Develop estimates of P0, P1, P2, P3.
(c) Develop estimates of L and Lq.
(d) Develop estimates of W and Wq.

20.1-8. View the first demonstration example (Simulating a Basic
Queueing System) in the simulation area of your OR Tutor.
D,I (a) Enter this same problem into the interactive procedure for

simulation in your IOR Tutorial. Interactively execute a
simulation run for 20 minutes of simulated time.

Q (b) Use the Queueing Simulator with 5,000 customer arrivals to
estimate the usual measures of performance for this queue-
ing system under the current plan to provide two tellers.

Q (c) Repeat part (b) if three tellers were to be provided.
Q (d) Now perform some sensitivity analysis by checking the 

effect if the level of business turns out to be even higher
than projected. In particular, assume that the average time
between customer arrivals turns out to be only 0.9 minute
instead of 1.0 minute. Evaluate the alternatives of two tellers
and three tellers under this assumption.

(e) Suppose you were the manager of this bank. Use your simu-
lation results as the basis for a managerial decision on how
many tellers to provide. Justify your answer.

D,I 20.1-9. View the second demonstration example (Simulating a
Queueing System with Priorities) in the simulation area of your
OR Tutor. Then enter this same problem into the interactive pro-
cedure for simulation in your IOR Tutorial. Interactively execute
a simulation run for 20 minutes of simulated time.

20.1-10.* Hugh’s Repair Shop specializes in repairing German and
Japanese cars. The shop has two mechanics. One mechanic works on
only German cars and the other mechanic works on only Japanese
cars. In either case, the time required to repair a car has an expo-
nential distribution with a mean of 0.2 day. The shop’s business has
been steadily increasing, especially for German cars. Hugh projects
that, by next year, German cars will arrive randomly to be repaired
at a mean rate of 4 per day, so the time between arrivals will have an
exponential distribution with a mean of 0.25 day. The mean arrival
rate for Japanese cars is projected to be 2 per day, so the distribution
of interarrival times will be exponential with a mean of 0.5 day.

For either kind of car, Hugh would like the expected waiting
time in the shop before the repair is completed to be no more than
0.5 day.
(a) Formulate a simulation model for performing a simulation to

estimate what the expected waiting time until repair is com-
pleted will be next year for either kind of car.

D,I (b) Considering only German cars, use the interactive procedure
for simulation in your IOR Tutorial to interactively perform
this simulation over a period of 10 arrivals of German cars.

Q (c) Use the Queueing Simulator to perform this simulation for
German cars over a period of 10,000 car arrivals.

Q (d) Repeat part (c) for Japanese cars.
D,I (e) Hugh is considering hiring a second mechanic who spe-

cializes in German cars so that two such cars can be 
repaired simultaneously. (Only one mechanic works on any
one car.) Repeat part (b) for this option.

Q (f) Use the Queueing Simulator with 10,000 arrivals of German
cars to evaluate the option described in part (e).

Q (g) Another option is to train the two current mechanics to work
on either kind of car. This would increase the expected 
repair time by 10 percent, from 0.2 day to 0.22 day. Use the
Queueing Simulator with 20,000 arrivals of cars of either
kind to evaluate this option.

(h) Because both the interarrival-time and service-time distribu-
tions are exponential, the M/M/1 and M/M/s queueing models
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introduced in Sec. 17.6 can be used to evaluate all the above
options analytically. Use these models to determine W, the ex-
pected waiting time until repair is completed, for each of the
cases considered in parts (c), (d ), ( f ), and (g). (You can either
calculate W by hand or use the template for the M/M/s model
in the Excel files for Chap. 17.) For each case, compare the
estimate of W obtained by simulation with the analytical value.
What does this say about the number of car arrivals that should
be included in the simulation?

(i) Based on the above results, which option would you select if
you were Hugh? Why?

20.1-11. Vistaprint produces monitors and printers for computers.
In the past, only some of them were inspected on a sampling 
basis. However, the new plan is that they all will be inspected 
before they are released. Under this plan, the monitors and print-
ers will be brought to the inspection station one at a time as they
are completed. For monitors, the interarrival time will have a uni-
form distribution between 10 and 20 minutes. For printers, the in-
terarrival time will be a constant 15 minutes.

The inspection station has two inspectors. One inspector
works on only monitors and the other one only inspects printers.
In either case, the inspection time has an exponential distribution
with a mean of 10 minutes.

Before beginning the new plan, management wants an evalu-
ation made of how long the monitors and printers will be held up
waiting at the inspection station.
(a) Formulate a simulation model for performing a simulation to

estimate the expected waiting times (both before beginning 
inspection and after completing inspection) for either the mon-
itors or the printers.

D,I (b) Considering only the monitors, use the interactive procedure
for simulation in your IOR Tutorial to interactively perform
this simulation over a period of 10 arrivals of monitors.

D,I (c) Repeat part (b) for the printers.
Q (d) Use the Queueing Simulator to repeat parts (b) and (c) with

10,000 arrivals in each case.
Q (e) Management is considering the option of providing new

inspection equipment to the inspectors. This equipment
would not change the expected time to perform an inspec-
tion but it would decrease the variability of the times. In
particular, for either product, the inspection time would have
an Erlang distribution with a mean of 10 minutes and shape
parameter k � 4. Use the Queueing Simulator to repeat
part (d ) under this option. Compare the results with those
obtained in part (d ).

20.2-1. Read the referenced article that fully describes the OR
study summarized in the application vignette presented in Sec. 20.2.
Briefly describe how simulation was applied in this study. Then list
the various financial and nonfinancial benefits that resulted from
this study.

20.2-2. Section 20.2 introduced an actual application of simula-
tion that is described in Selected Reference A1. Read the corre-
sponding article. Write a two-page summary of the application
and the benefits it provided.

20.3-1.* Use the mixed congruential method to generate the fol-
lowing sequences of random numbers.
(a) A sequence of 10 one-digit random integer numbers such that

xn�1 ≡ (xn � 3) (modulo 10) and x0 � 2
(b) A sequence of eight random integer numbers between 0 and 7

such that xn�1 ≡ (5xn � 1) (modulo 8) and x0 � 1
(c) A sequence of five two-digit random integer numbers such that

xn�1 ≡ (61xn � 27) (modulo 100) and x0 � 10

20.3-2. Reconsider Prob. 20.3-1. Suppose now that you want to
convert these random integer numbers to (approximate) uniform
random numbers. For each of the three parts, give a formula for
this conversion that makes the approximation as close as possible.

20.3-3. Use the mixed congruential method to generate a sequence
of five two-digit random integer numbers such that xn�1 ≡ (41xn � 33)
(modulo 100) and x0 � 48.

20.3-4. Use the mixed congruential method to generate a sequence
of three three-digit random integer numbers such that xn�1 ≡
(201xn � 503) (modulo 1,000) and x0 � 485.

20.3-5. You need to generate five uniform random numbers.
(a) Prepare to do this by using the mixed congruential method

to generate a sequence of five random integer numbers be-
tween 0 and 31 such that xn�1 ≡ (13xn � 15) (modulo 32)
and x0 � 14.

(b) Convert these random integer numbers to uniform random
numbers as closely as possible.

20.3-6. You are given the multiplicative congruential generator 
x0 � 1 and xn�1 ≡ 7xn (modulo 13) for n � 0, 1, 2, . . . .
(a) Calculate xn for n � 1, 2, . . . , 12.
(b) How often does each integer between 1 and 12 appear in the

sequence generated in part (a)?
(c) Without performing additional calculations, indicate how x13,

x14, . . . will compare with x1, x2, . . . .

20.4-1. Reconsider the coin flipping game introduced in Sec. 20.1
and analyzed with simulation in Figs. 20.1, 20.2, and 20.3.
(a) Simulate one play of this game by repeatedly flipping your

own coin until the game ends. Record your results in the for-
mat shown in columns B, D, E, F, and G of Fig. 20.1. How
much would you have won or lost if this had been a real play
of the game?

E (b) Revise the spreadsheet model in Fig. 20.1 by using Excel’s
VLOOKUP function instead of the IF function to generate
each simulated flip of the coin. Then perform a simulation
of one play of the game.

E (c) Use this revised spreadsheet model to generate a data table
with 14 replications like Fig. 20.2.

E (d) Repeat part (c) with 1,000 replications (like Fig. 20.3).

20.4-2.* Apply the inverse transformation method as indicated
next to generate three random observations from the uniform dis-
tribution between �10 and 40 by using the following uniform
random numbers: 0.0965, 0.5692, 0.6658.
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(a) Apply this method graphically.
(b) Apply this method algebraically.
(c) Write the equation that Excel would use to generate each such

random observation.

R 20.4-3. Obtaining uniform random numbers as instructed at the
beginning of the Problems section, generate three random obser-
vations from each of the following probability distributions.
(a) The uniform distribution from 25 to 75.
(b) The distribution whose probability density function is

f(x) �

(c) The distribution whose probability density function is

f(x) �

R 20.4-4. Obtaining uniform random numbers as instructed at the
beginning of the Problems section, generate three random obser-
vations from each of the following probability distributions.
(a) The random variable X has P{X � 0} � �

1
2

�. Given X � 0, it has
a uniform distribution between �5 and 15.

(b) The distribution whose probability density function is

f(x) � �
(c) The geometric distribution with parameter p � �

1
3

�, so that

P{X � k} �

20.4-5. Each time an unbiased coin is flipped three times, the prob-
ability of getting 0, 1, 2, and 3 heads is �

1
8

�, �
3
8

�, �
3
8

�, and �
1
8

�, respectively.
Therefore, with eight groups of three flips each, on the average,
one group will yield 0 heads, three groups will yield 1 head, three
groups will yield 2 heads, and one group will yield 3 heads.
(a) Using your own coin, flip it 24 times divided into eight groups

of three flips each, and record the number of groups with 0
head, with 1 head, with 2 heads, and with 3 heads.

(b) Obtaining uniform random numbers as instructed at the 
beginning of the Problems section, simulate the flips specified
in part (a) and record the information indicated in part (a).

E (c) Formulate a spreadsheet model for performing a simulation
of three flips of the coin and recording the number of heads.
Perform one replication of this simulation.

E (d) Use this spreadsheet to generate a data table with 8 repli-
cations of the simulation. Compare this frequency distribu-
tion of the number of heads with the probability distribution
of the number of heads with three flips.

E (e) Repeat part (d ) with 800 replications.

20.4-6.* The game of craps requires the player to throw two dice
one or more times until a decision has been reached as to whether
he (or she) wins or loses. He wins if the first throw results in a

if k � 1, 2, . . .

otherwise.

�
1
3

�
�
2
3

��
k�1

0

⎧
⎨
⎩

if 1 	 x 	 2
if 2 	 x 	 3.

x � 1
3 � x

if 40 	 x 	 60

otherwise.

�
2

1
00
�(x � 40)

0

⎧
⎨
⎩

if �1 	 x 	 1

otherwise.

�
1
4

�(x � 1)3

0

⎧
⎨
⎩

sum of 7 or 11 or, alternatively, if the first sum is 4, 5, 6, 8, 9, or
10 and the same sum reappears before a sum of 7 has appeared.
Conversely, he loses if the first throw results in a sum of 2, 3, or
12 or, alternatively, if the first sum is 4, 5, 6, 8, 9, or 10 and a sum
of 7 appears before the first sum reappears.
E (a) Formulate a spreadsheet model for performing a simulation

of the throw of two dice. Perform one replication.
E (b) Perform 25 replications of this simulation.
(c) Trace through these 25 replications to determine both the num-

ber of times the simulated player would have won the game of
craps and the number of losses when each play starts with the
next throw after the previous play ends. Use this information
to calculate a preliminary estimate of the probability of win-
ning a single play of the game.

(d) For a large number of plays of the game, the proportion of
wins has approximately a normal distribution with mean �
0.493 and standard deviation � 0.5�n�. Use this information
to calculate the number of simulated plays that would be re-
quired to have a probability of at least 0.95 that the proportion
of wins will be less than 0.5.

R 20.4-7. Obtaining uniform random numbers as instructed at the
beginning of the Problems section, use the inverse transformation
method and the table of the normal distribution given in Appen-
dix 5 (with linear interpolation between values in the table) to
generate 10 random observations (to three decimal places) from a
normal distribution with mean � 1 and variance � 4. Then calcu-
late the sample average of these random observations.

R 20.4-8. Obtaining uniform random numbers as instructed at the
beginning of the Problems section, generate three random observa-
tions (approximately) from a normal distribution with mean � 5 and
standard deviation � 10.
(a) Do this by applying the central limit theorem, using three uni-

form random numbers to generate each random observation.
(b) Now do this by using the table for the normal distribution given

in Appendix 5 and applying the inverse transformation method.

R 20.4-9. Obtaining uniform random numbers as instructed at the
beginning of the Problems section, generate four random observa-
tions (approximately) from a normal distribution with mean � 0
and standard deviation � 1.
(a) Do this by applying the central limit theorem, using three uni-

form random numbers to generate each random observation.
(b) Now do this by using the table for the normal distribution

given in Appendix 5 and applying the inverse transformation
method.

(c) Use your random observations from parts (a) and (b) to gen-
erate random observations from a chi-square distribution with
2 degrees of freedom.

R 20.4-10. Obtaining uniform random numbers as instructed at the
beginning of the Problems section, generate two random observa-
tions from each of the following probability distributions.
(a) The exponential distribution with mean � 10
(b) The Erlang distribution with mean � 10 and shape parameter

k � 2 (that is, standard deviation � 2�2�)
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(c) The normal distribution with mean � 10 and standard devia-
tion � 2�2�. (Use the central limit theorem and n � 6 for each
observation.)

20.4-11. Richard Collins, manager and owner of Richard’s Tire
Service, wishes to use simulation to analyze the operation of his
shop. One of the activities to be included in the simulation is the
installation of automobile tires (including balancing the tires).
Richard estimates that the cumulative distribution function (CDF)
of the probability distribution of the time (in minutes) required to
install a tire has the graph shown below.

(b) Proposal 2: Generate uniform random numbers ri (i � 1,
2, . . .), and then set xi equal to the greatest integer less than
or equal to 1 � 9ri.

(c) Proposal 3: Generate xi from the mixed congruential genera-
tor xn�1 ≡ (4xn � 7) (modulo 9), with starting value x0 � 4.

R 20.4-15. Obtaining uniform random numbers as instructed at the
beginning of the Problems section, use the acceptance-rejection
method to generate three random observations from the triangular
distribution used to illustrate this method in Sec. 20.4.

R 20.4-16. Obtaining uniform random numbers as instructed at the
beginning of the Problems section, use the acceptance-rejection
method to generate three random observations from the probabil-
ity density function

f(x) �

R 20.4-17. An insurance company insures four large risks. The
number of losses for each risk is independent and identically dis-
tributed on the points {0, 1, 2} with probabilities 0.7, 0.2, and 0.1,
respectively. The size of an individual loss has the following cu-
mulative distribution function:

F(x) �

Obtaining uniform random numbers as instructed at the beginning
of the Problems section, perform a simulation experiment twice of
the total loss generated by the four large risks.

20.4-18. A company provides its three employees with health in-
surance under a group plan. For each employee, the probability of
incurring medical expenses during a year is 0.9, so the number of
employees incurring medical expenses during a year has a bino-
mial distribution with p � 0.9 and n � 3. Given that an employee
incurs medical expenses during a year, the total amount for the
year has the distribution $100 with probability 0.9 or $10,000 with
probability 0.1. The company has a $5,000 deductible clause with
the insurance company so that each year the insurance company
pays the total medical expenses for the group in excess of $5,000.
Use the uniform random numbers 0.01 and 0.20, in the order given,
to generate the number of claims based on a binomial distribution
for each of 2 years. Use the following uniform random numbers,
in the order given, to generate the amount of each claim: 0.80, 0.95,
0.70, 0.96, 0.54, 0.01. Calculate the total amount that the insur-
ance company pays for 2 years.

20.5-1. Read the referenced article that fully describes the OR
study summarized in the first application vignette presented in Sec.
20.5. Briefly describe how simulation was applied in this study.
Then list the various financial and nonfinancial benefits that re-
sulted from this study.

if 0 	 x 	 100

if 100 � x 	 200

if x � 200.

�
�
20

x�
�

�
20

x
0

�

1

⎧⎪⎪⎨⎪⎪⎩

if 10 	 x 	 20

otherwise.

�
5
1
0
�(x � 10)

0

⎧
⎨
⎩

(a) Use the inverse transformation method to generate five random
observations from this distribution when using the following
five uniform random numbers: 0.2655, 0.3472, 0.0248, 0.9205,
0.6130.

(b) Use a nested IF function to write an equation that Excel can
use to generate each random observation from this distribution.

R 20.4-12. Obtaining uniform random numbers as instructed at the
beginning of the Problems section, generate four random observa-
tions from an exponential distribution with mean � 1. Then use
these four observations to generate one random observation from
an Erlang distribution with mean � 4 and shape parameter k � 4.

20.4-13. Let r1, r2, . . . , rn be uniform random numbers. Define 

xi � �ln ri and yi � �ln (1 � ri), for i � 1, 2, . . . , n, and z � �
n

i�1

xi. Label each of the following statements as true or false, and then
justify your answer.
(a) The numbers x1, x2, . . . , xn and y1, y2, . . . , yn are random

observations from the same exponential distribution.
(b) The average of x1, x2, . . . , xn is equal to the average of y1,

y2, . . . , yn.
(c) z is a random observation from an Erlang (gamma) distribution.

20.4-14. Consider the discrete random variable X that is uniformly
distributed (equal probabilities) on the set {1, 2, . . . , 9}. You wish
to generate a series of random observations xi (i � 1, 2, . . .) of X.
The following three proposals have been made for doing this. For
each one, analyze whether it is a valid method and, if not, how it
can be adjusted to become a valid method.
(a) Proposal 1: Generate uniform random numbers ri (i � 1,

2, . . .), and then set xi � n, where n is the integer satisfying
n/9 	 ri � (n � 1)/9.

9 11 13 Time70

0.2

0.8

1.0
CDF
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20.5-2. Follow the instructions of Prob. 20.5-1 for the second ap-
plication vignette presented in Sec. 20.5.

A 20.6-1. The results from a simulation run are inherently random.
This problem will demonstrate this fact and investigate the impact of
the number of trials on this randomness. Consider the example in-
volving Freddie the newsboy that was introduced in Sec. 20.6. The
spreadsheet model is available in this chapter’s Excel files on the book’s
website. When using ASPE, make sure that the Monte Carlo sampling
method is chosen in Simulation Options. Use an order quantity of 60.
(a) Set the trials per simulation to 100 in Simulations Options and

run the simulation of Freddie’s problem five times. Note the
mean profit for each simulation run.

(b) Repeat part (a) except set the number of trials per simulation
to 1,000 in Simulation Options.

(c) Compare the results from part (a) and part (b) and comment
on any differences.

A 20.6-2. The Aberdeen Development Corporation (ADC) is re-
considering the Aberdeen Resort Hotel project. It would be located
on the picturesque banks of Grays Harbor and have its own
championship-level golf course.

The cost to purchase the land would be $1 million, payable
now. Construction costs would be approximately $2 million,
payable at the end of the year 1. However, the construction costs
are uncertain. These costs could be up to 20 percent higher or lower
than the estimate of $2 million. Assume that the construction costs
would follow a triangular distribution.

ADC is very uncertain about the annual operating profits (or
losses) that would be generated once the hotel is constructed. Its best
estimate for the annual operating profit that would be generated in
years 2, 3, 4, and 5 is $700,000. Due to the great uncertainty, the es-
timate of the standard deviation of the annual operating profit in each
year also is $700,00. Assume that the yearly profits are statistically
independent and follow the normal distribution.

After year 5, ADC plans to sell the hotel. The selling price is
likely to be somewhere between $4 and $8 million (assume a uni-
form distribution). ADC uses a 10 percent discount rate for calcu-
lating net present value. (For purposes of this calculation, assume
that each year’s profits are received at year end.) Use ASPE to per-
form 1,000 trials of a simulation of this project on a spreadsheet.
(a) What is the mean net present value (NPV) of the project? (Hint:

The NPV(rate, cash stream) function in Excel returns the NPV of
a stream of cash flows assumed to start one year from now. For
example, NPV(10%, C5:F5) returns the NPV at a 10 percent dis-
count rate when C5 is a cash flow at the end of year 1, D5 at the
end of year 2, E5 at the end of year 3, and F5 at the end of year 4.)

(b) What is the estimated probability that the project will yield an
NPV greater than $2 million?

(c) ADC also is concerned about cash flow in years 2, 3, 4, and
5. Generate a forecast of the distribution of the minimum an-
nual operating profit (undiscounted) earned in any of the four
years. What is the mean value of the minimum annual operat-
ing profit over the four years?

(d) What is the probability that the annual operating profit will be
at least $0 in all four years of operation?

A 20.6-3. The Avery Co. factory has been having a maintenance
problem with the control panel for one of its production processes.
This control panel contains four identical electromechanical relays
that have been the cause of the trouble. The problem is that the re-
lays fail fairly frequently, thereby forcing the control panel (and
the production process it controls) to be shut down while a re-
placement is made. The current practice is to replace the relays
only when they fail. The average total cost of doing this has been
$3.19 per hour. To attempt to reduce this cost, a proposal has been
made to replace all four relays whenever any one of them fails to
reduce the frequency with which the control panel must be shut
down. Would this actually reduce the cost?

The pertinent data are the following. For each relay, the oper-
ating time until failure has approximately a uniform distribution from
1,000 to 2,000 hours. The control panel must be shut down for one
hour to replace one relay or for two hours to replace all four relays.
The total cost associated with shutting down the control panel and
replacing relays is $1,000 per hour plus $200 for each new relay.

Use simulation on a spreadsheet to evaluate the cost of the pro-
posal and compare it to the current practice. Use ASPE to perform
1,000 trials (where the end of each trial coincides with the end of a
shutdown of the control panel) and determine the average cost per hour.

A 20.6-4. For one new product to be produced by the Aplus Com-
pany, bushings will need to be drilled into a metal block and 
cylindrical shafts inserted into the bushings. The shafts are required
to have a radius of at least 1.0000 inch, but the radius should be
as little larger than this as possible. With the proposed production
process for producing the shafts, the probability distribution of the
radius of a shaft has a triangular distribution with a minimum of
1.0000 inch, a most likely value of 1.0010 inches, and a maximum
value of 1.0020 inches. With the proposed method of drilling the
bushings, the probability distribution of the radius of a bushing has
a normal distribution with a mean of 1.0020 inches and a standard
deviation of 0.0010 inch. The clearance between a bushing and a
shaft is the difference in their radii. Because they are selected at
random, there occasionally is interference (i.e., negative clearance)
between a bushing and a shaft to be mated.

Management is concerned about the disruption in the pro-
duction of the new product that would be caused by this occasional
interference. Perhaps the production processes for the shafts and
bushings should be improved (at considerable cost) to lessen the
chance of interference. To evaluate the need for such improvements,
management has asked you to determine how frequently interfer-
ence would occur with the currently proposed production processes.

Estimate the probability of interference by using ASPE to per-
form 1,000 trials of a simulation on a spreadsheet.

A 20.6-5. Reconsider Prob. 20.4-6 involving the game of craps.
Now the objective is to estimate the probability of winning a play
of this game. If the probability is greater than 0.5, you will want
to go to Las Vegas to play the game numerous times until you even-
tually win a considerable amount of money. However, if the prob-
ability is less than 0.5, you will stay home.

You have decided to perform simulation on a spreadsheet to
estimate this probability. Use ASPE to perform the number of tri-
als (plays of the game) indicated below twice.
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(a) 100 trials.
(b) 1,000 trials.
(c) 10,000 trials.
(d) The true probability is 0.493. What conclusion do you draw from

the above simulation runs about the number of trials that ap-
pears to be needed to give reasonable assurance of obtaining an
estimate that is within 0.007 of the true probability?

A 20.6-6. Consider the example involving Freddie the newsboy
that was introduced in Sec. 20.6. The spreadsheet model is avail-
able in this chapter’s Excel files on the book’s website. The para-
meter analysis report generated in Sec. 20.6 for Freddie’s problem
suggests that 55 is the best order quantity, but this report only con-
sidered order quantities that were a multiple of 5. Refine the search
by generating a parameter analysis report for Freddie’s problem
that considers all integer order quantities between 50 and 60.

A 20.6-7. Now that Jennifer is in middle school, her parents have
decided that they really must start saving for her college education.
They have $10,000 to invest right now. Furthermore, they plan to save
another $4,000 each year until Jennifer starts college five years from
now. They plan to split their investment evenly between a stock fund
and a bond fund. Historically, the stock fund has had an average an-
nual return of 8 percent with a standard deviation of 6 percent. The
bond fund has had an average annual return of 4 percent with a stan-
dard deviation of 3 percent. (Assume a normal distribution for both.)

Assume that the initial investment ($10,000) is made right now
(year 0) and is split evenly between the two funds (i.e., $5,000 in
each fund). The returns of each fund are allowed to accumulate
(i.e., are reinvested) in the same fund and no redistribution will be
done before Jennifer starts college. Furthermore, four additional
investments of $4,000 will be made and split evenly between both
funds ($2,000 each) at the end of year 1, year 2, year 3, and year
4, plus another $4,000 of savings will be available at the end of
year 5, just in time for Jennifer to begin college. Use a 1000-trial
ASPE simulation to estimate each of the following.
(a) What will be the expected value (mean) of the college fund

at the end of year 5?
(b) What will be the standard deviation of the college fund at the

end of year 5?
(c) What is the probability that the college fund at the end of year

5 will be at least $35,000?
(d) What is the probability that the college fund at the end of year

5 will be at least $40,000?

A  20.6-8. Michael Wise operates a newsstand at a busy intersec-
tion downtown. Demand for the Sunday Times at this newsstand
averages 300 copies with a standard deviation of 50 copies. (As-
sume a normal distribution.) Michael purchases the paper for $0.75
and sells them for $1.25. Any papers at the end of the day are re-
cycled with no monetary return.
(a) Suppose that Michael buys 350 copies for his newsstand each

Sunday morning. Use ASPE to perform 1,000 trials of a sim-
ulation on a spreadsheet. What will be Michael’s mean profit
from selling the Sunday Times? What is the probability that
Michael will make a profit of at least $0?

(b) Generate a parameter analysis report to consider five possible
order quantities between 250 and 350? Which of these order
quantities maximizes Michael’s mean profit?

(c) Generate a trend chart for the five order quantities considered
in part b.

(d) Use ASPE’s Solver to search for the order quantity that max-
imizes Michael’s mean profit?

A  20.6-9.  Road Pavers, Inc. (RPI) is considering bidding on a
county road construction project. RPI has estimated that the cost
of this particular project would be $5 million. In addition, the cost
of putting together a bid is estimated to be $50,000. The county
also will receive four other bids on the project from competitors
of RPI. Past experience with these competitors suggests that each
competitor’s bid is most likely to be 20 percent over the project
cost of $5 million, but could be as low as 5 percent over or as much
as 40 percent over this cost. Assume a triangular distribution for
each of these bids.
(a) Suppose that RPI bids $5.7 million on the project. Use ASPE

to perform 1,000 trials of a simulation on a spreadsheet. What
is the probability that RPI will win the bid? What is RPI’s
mean profit?

(b) Generate a parameter analysis report to consider eight possi-
ble bids between $5.3 million and $6 million in order to 
forecast RPI’s mean profit for each bid. Which of these bids
maximizes RPI’s mean profit?

(c) Generate a trend chart for the eight bids considered in part b.
(d) Use ASPE’s Solver to search for the bid that maximizes RPI’s

mean profit.

A  20.6-10. Flight 120 between Seattle and San Francisco is a pop-
ular flight among both leisure and business travelers. The airplane
holds 112 passengers in a single cabin. Both a discount 7-day 
advance fare and a full-price fare are offered. The airline’s man-
agement is trying to decide (1) how many seats to allocate to its
discount 7-day advance fare and (2) how many tickets to issue in
total (recognizing that there will be some no-shows).

The discount ticket sells for $150 and is nonrefundable. 
Demand for the 7-day advance fares is typically between 50 and
150, but is most likely to be near 90. (Assume a triangular distri-
bution.) The full-price fare (no advance purchase requirement and
fully refundable prior to check-in time) is $400. Excluding cus-
tomers who purchase this ticket and then cancel prior to check-in
time, demand is equally likely to be anywhere between 30 and 70
for these tickets (with essentially all of the demand occurring within
one week of the flight). The average no-show rate is 5 percent for
the nonrefundable discount tickets and 15 percent for the refund-
able full-price tickets, where the latter no-shows occur too late to
qualify for a refund. (The latter no-shows typically are business
people whose plans have changed and whose firm bears the cost
of the wasted ticket.) Assume a binomial distribution for the ac-
tual number of no-shows of each type for a particular flight. If
more ticketed passengers show up than there are seats available,
the extra passengers must be bumped from the flight. A bumped
passenger is rebooked on another flight and given a voucher for a
free ticket on a future flight. The total cost to the airline for bump-
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ing a passenger is $600. There is a fixed cost of $10,000 to oper-
ate each flight.

There are two decisions to be made. First, prior to one week
before the flight, how many tickets should be made available at the
discount fare? Too many and the airline risks losing out on full-
fare passengers. Too few and the airline may have a less-than-full
flight. Second, how many tickets should be issued in total? Too
many and the airline risks needing to bump passengers. Too few
and the airline risks having a less-than-full flight.

(a) Suppose that the airline makes available a maximum of 
75 tickets for the discount fare and a maximum of 120 tick-
ets in total. Use ASPE to generate a 1,000 trial forecast of the
distribution of the profit, the number of seats filled, and the
number of passengers bumped.

(b) Generate a two-dimensional parameter analysis report that
gives the mean profit for all combinations of the following val-
ues of the two decision variables: (1) the maximum number of
tickets made available at the discount fare is a multiple of 

10 between 50 and 90, and (2) the maximum number of 
tickets made available for either fare is 112, 117, 122, 127, or
132.

(c) Use ASPE’s Solver to try to determine the maximum number
of discount fare tickets and the maximum total number of tick-
ets to make available so as to maximize the airline’s mean
profit.

20.7-1. From the bottom part of the Selected References given at
the end of the chapter, select one of these award-winning applica-
tions of simulation. Read this article and then write a two-page
summary of the application and the benefits (including nonfinan-
cial benefits) it provided.

20.7-2. From the bottom part of the Selected References given at
the end of the chapter, select three of these award-winning appli-
cations of simulation. For each one, read the article and then write
a one-page summary of the application and the benefits (including
nonfinancial benefits) it provided.

Month Seasonality Factor Month Seasonality Factor

January 0.79 July 0.74
February 0.88 August 0.98
March 0.95 September 1.06
April 1.05 October 1.10
May 1.09 November 1.16
June 0.84 December 1.18

Cash sales typically account for about 40 percent of
monthly sales, but this figure has been as low as 28 percent
and as high as 48 percent in some months. The remainder
of the sales are made on a 30-day interest-free credit basis, with
full payment received one month after delivery. In December
2014, 42 percent of sales were cash sales and 58 percent were
on credit.

The production costs depend upon the labor and mater-
ial costs. The plastics required to manufacture the action fig-
ures fluctuate in price from month to month, depending on
market conditions. Because of these fluctuations, production
costs can be anywhere from $6 to $8 per unit. In addition to
these variable production costs, the company incurs a fixed
cost of $15,000 per month for manufacturing the action fig-
ures. The company assembles the products to order. When a
batch of a particular action figure is ordered, it is immedi-
ately manufactured and shipped within a couple days.

The company utilizes eight molding machines to mold
the action figures. These machines occasionally break down

CASE 20.1 Reducing In-Process
Inventory, Revisted
Reconsider case 17.1. The current and proposed queueing
systems in this case were to be analyzed with the help of
queueing models to determine how to reduce in-process in-
ventory as much as possible. However, these same queue-
ing systems also can be effectively analyzed by applying
simulation with the help of the Queueing Simulator in your
OR Courseware.

Use simulation to perform all the analysis requested in
this case.

CASE 20.2 Action Adventures
The Adventure Toys Company manufactures a popular line
of action figures and distributes them to toy stores at the
wholesale price of $10 per unit. Demand for the action fig-
ures is seasonal, with the highest sales occurring before
Christmas and during the spring. The lowest sales occur dur-
ing the summer and winter (post-Christmas) months.

Each month the monthly “base” sales follow a normal dis-
tribution with mean equal to the previous month’s actual “base”
sales and with a standard deviation of 500 units. The actual
sales in any month are the monthly base sales multiplied by
the seasonality factor for the month, as shown in the table be-
low. Base sales in December 2014 were 6,000, with actual
sales equal to (1.18)(6,000) � 7,080. It is now January 1, 2015.

■ CASES
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and require a $5,000 replacement part. Each machine requires
a replacement part with a 10 percent probability each month.

The company has a policy of maintaining a minimum
cash balance of at least $20,000 at the end of each month.
The balance at the end of December 2014 (or equivalently,
at the beginning of January 2015) is $25,000. If required, the
company will take out a short-term (1 month) loan to cover
expenses and maintain the minimum balance. The loans must
be paid back the following month with interest (using the
current month’s loan interest rate). For example, if March’s
annual interest rate is 6 percent (so 0.5 percent per month)
and a $1,000 loan is taken out in March, then $1,005 is due
in April. However, a new loan can be taken out each month.

Any balance remaining at the end of a month (includ-
ing the minimum balance) is carried forward to the follow-
ing month, and also earns savings interest. For example, if
the ending balance in March is $20,000, and March’s sav-
ings interest is 3 percent per annum (so 0.25 percent per
month), then $50 of savings interest is earned in April.

Both the loan interest rate and the savings interest
rate are set monthly based upon the Prime rate. The loan
interest rate is set at Prime � 2 percent, while the sav-
ings interest rate is set at Prime � 2 percent. However, the
loan interest rate is capped at (can’t exceed) 9 percent and
the savings interest rate will never drop below 2 percent.

The Prime rate in December 2014 was 5 percent per an-
num. This rate depends upon the whims of the Federal Reserve

Board. In particular, for each month there is a 70 percent
chance it will stay unchanged, a 10 percent chance it will in-
crease by 25 basis points (0.25 percent), a 10 percent chance
it will decrease by 25 basis points, a 5 percent chance it will
increase by 50 basis points, and a 5 percent chance it will de-
crease by 50 basis points.

(a) Formulate a simulation model on a spreadsheet to track the
company’s cash flows from month to month. Indicate the
probability distributions (both the type and the parameters)
for the assumption cells directly on the spreadsheet. Simulate
1,000 trials for the year 2015, and paste your results in the
spreadsheet.

(b) Adventure Toys management wants information about what
the company’s net worth might be at the end of 2015, in-
cluding the likelihood that the net worth will exceed zero.
(The net worth is defined here as the ending cash balance
plus savings interest and account receivables minus any loans
and interest due.) Display the results of your simulation run
from part (a) in the various forms that you think would be
helpful to management in analyzing this issue.

(c) Arrangements need to be made to obtain a specific credit
limit from the bank for the short-term loans that might be
needed during 2015. Therefore, Adventure Toys management
also would like information regarding the size of the largest
short-term loan that might be needed during 2015. Display
the results of your simulation run from part (a) in the vari-
ous forms that you think would be helpful to management in
analyzing this issue.

■ PREVIEWS OF ADDED CASES ON OUR WEBSITE (www.mhhe.com/hillier)

CASE 20.3 Planning Planers
A factory’s planer department has had a difficult time keep-
ing up with its workload, which has seriously disrupted the
production schedule for subsequent operations. At times, the
work pours in and a big backlog builds up. Then there might
be a long pause when not much comes in, so the planers
stand idle part of the time. Three separate proposals have
been made to relive the bottleneck in the planer department:
(1) obtain one additional planer, (2) eliminate the variabil-
ity of the interarrival times of the jobs, and (3) reduce the
variability of the time required to perform the jobs. Any one
or any combination of these proposals can be adopted. With
the help of the Queueing Simulator, simulation is to be used
to determine what should be done so as to minimize the
expected total cost per hour.

CASE 20.4 Pricing under Pressure
A client of a large investment bank is interested in pur-
chasing a European call option for a certain stock that pro-
vides him with the right to purchase the stock at a fixed price
12 weeks from today. The client then would exercise this
option in 12 weeks only if this fixed price is less than the
market price of the stock at that time. The bank now needs
to determine what price should be charged for the call op-
tion. This price should be the mean value of the option in
12 weeks. Based on a random walk model of how a stock
price evolves from week to week, simulation is to be used
to estimate this mean value. To start, the various elements
of a simulation model need to be carefully formulated.
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1A P P E N D I X

Documentation for the 
OR Courseware

You will find a wealth of software resources on the book’s
website (www.mhhe.com/hillier). The entire software

package is called OR Courseware.
The individual software packages are discussed briefly

below.

OR TUTOR

OR Tutor is a Web document consisting of a set of HTML
pages that often contain JavaScript. Any browser that sup-
ports JavaScript can be used. It can be viewed with either an
IBM-compatible PC or a Macintosh.

This resource has been designed to be your personal tu-
tor by illustrating and illuminating key concepts in an in-
teractive manner. It contains 16 demonstration examples that
supplement the examples in the book in ways that cannot be
duplicated on the printed page. Each one vividly demon-
strates one of the algorithms or concepts of OR in action.
Most combine an algebraic description of each step with a
geometric display of what is happening. Some of these geo-
metric displays become quite dynamic, with moving points
or moving lines, to demonstrate the evolution of the algo-
rithm. The demonstration examples also are integrated with
the book, using the same notation and terminology, with ref-
erences to material in the book, etc. Students find them an
enjoyable and effective learning aid.

IOR TUTORIAL

Another key tutorial feature of the OR Courseware is a
software package called Interactive Operations Research
Tutorial, or IOR Tutorial for short. A product of Accelet
Corporation, it has been designed specifically for use with
this book. Innovative tutorial features are employed to

make the process of learning the algorithms in the book as
efficient and enjoyable as possible. It is implemented in
Java 2, so it can operate on any platform.

IOR Tutorial features a large number of interactive pro-
cedures for the various topic areas covered in the book. Each
of these interactive procedures enables you to interactively
execute one of the algorithms of OR. While viewing all rel-
evant information on the computer screen, you make the de-
cision on how the next step of the algorithm should be per-
formed, and then the computer does all the necessary number
crunching to execute that step. When a previous mistake is
discovered, the procedure allows you to quickly backtrack
to correct the mistake. To get you started properly, the com-
puter points out any mistake made on the first iteration
(where possible). When done, you can print out all the work
performed to turn in for homework.

In our judgment, these interactive procedures provide the
“right” way in this computer age for students to do homework
designed to help them learn the algorithms of OR. The pro-
cedures enable you to focus on concepts rather than mindless
number crunching, thereby making the learning process far
more efficient and effective as well as stimulating. They also
point you in the right direction, including organizing the work
to be done. However, the procedures do not do the thinking
for you. As in any good homework assignment, you are al-
lowed to make mistakes (and to learn from those mistakes),
so that hard thinking will need to be done to try to stay on
the right path. We have been careful in designing the division
of labor between the computer and the student to provide an
efficient, complete learning process.

Once you have learned the logic of a particular algorithm
with the help of an interactive procedure, you will want to be
able to apply the algorithm quickly with an automatic proce-
dure thereafter. Such a procedure is provided by one or more
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of the software packages discussed below for most of the al-
gorithms described in this book. However, for certain algo-
rithms that are not included in these commercial packages (as
well as a few that are), we have provided special automatic
procedures in IOR Tutorial. These procedures are designed
only for solving the textbook-size problems in the book.

EXCEL FILES

The OR Courseware includes separate Excel files for nearly
every chapter in this book. The files for each chapter typi-
cally include several spreadsheets that will help you formu-
late and solve the various kinds of models described in the
chapter. Two types of spreadsheets are included. First, each
time an example is presented that can be solved using Ex-
cel, the complete spreadsheet formulation and solution is
given in that chapter’s Excel files. This provides a conve-
nient reference, or even a useful template, when you set up
spreadsheets to solve similar problems with Solver (or ASPE
discussed in the next subsection).  (Solver comes with Ex-
cel, but like any Excel add-in, it needs to be installed before
it is operational.) Second, for many of the models in the
book, template files are provided that already include all the
equations necessary to solve the model. You simply enter
the data for the model and the solution is immediately 
calculated.

ANALYTIC SOLVER PLATFORM FOR
EDUCATION (ASPE)

New with this edition of the textbook is a very powerful Ex-
cel add-in from Frontline Systems, Inc. called Analytic Solver
Platform for Education (ASPE). Some special features of
ASPE are a significantly enhanced version of the basic Solver
included with Excel, the ability to build decision trees within
Excel (as described in Sec. 16.5), and tools to build simula-
tion models within Excel (as described in Sec. 20.6).

Frontline Systems has made arrangements to provide a
free 140-day license to use ASPE for original purchasers of
this book. Instructors need to obtain a Textbook Code and
Course Code so their students can download the software.
This is done by sending an email to academic@solver.com or
calling 775-831-0300 x101, pressing 0, and asking for the aca-
demic coordinator. Students then would follow the instructions
at the URL www.solver.com/student. For additional informa-
tion, visit www.solver.com/professor-and-students. Similar in-
structions for downloading and installing ASPE also are pro-
vided on the very first page of the book (before the title
page), as well as on the book’s website.

When ASPE is installed, a new tab is available on the Ex-
cel ribbon called Analytic Solver Platform. The buttons on this
ribbon are used to interact with ASPE. The data for Excel’s
Solver and ASPE are compatible with each other. Making a

change with one makes the same change in the other. Thus,
you can work with either Excel’s Solver or ASPE, and then
go back and forth without losing any Solver data.

MPL/SOLVERS
As discussed at length in Secs. 3.6 and 4.8, MPL is a state-
of-the-art modeling language and it also supports a consid-
erable number of elite solvers. The student version of MPL
and several of these solvers is included in the OR Course-
ware. Although this student version is limited to much smaller
problems than the massive linear, integer, and nonlinear pro-
gramming problems commonly solved in practice by the full
version, it still can handle far larger problems than any you
will encounter in this book.

The book’s website provides an extensive MPL tutorial and
documentation, as well as MPL/Solvers formulations and solu-
tions for virtually every example in the book to which they can
be applied. The student version of MPL includes OptiMax Com-
ponent Library, which enables fully integrating MPL models
into Excel and solving. It also includes the student version of
the following solvers: CPLEX (for linear, integer, and quadratic
programming), GUROBI (for linear, integer, and quadratic pro-
gramming), CoinMP (for linear and integer programming), SU-
LUM (for linear and integer programming), CONOPT (for con-
vex programming), and LGO (for global optimization).

The website for further exploring MPL and its solvers is
www.maximalsoftware.com.

LINGO/LINDO FILES
This book also features the popular modeling language LINGO
(see especially the end of Sec. 3.6, the supplements to Chap. 3,
and Appendix 4.1), including the traditional LINDO syntax
subset (see Sec. 4.8 and Appendix 4.1). A student version of
LINGO (with the LINDO subset) is included in the OR
Courseware. Updated student versions of LINGO/LINDO (as
well as the companion spreadsheet solver What’sBest!) also
can be downloaded from the website, www.lindo.com.

The OR Courseware includes extensive LINGO/LINDO
files or (when LINDO is not relevant) LINGO files for many
of the chapters. Each file provides the LINGO and LINDO
models and solutions for the various examples in the chapter
to which they can be applied. The book’s website also pro-
vides LINGO and LINDO tutorials.
www.solver.com/student

UPDATES
The software world evolves very rapidly during the lifetime
of one edition of a textbook. We believe that the documen-
tation provided in this appendix is accurate at the time of
this writing, but changes inevitably will occur as time passes.

You can visit the book’s website, www.mhhe.com/hillier,
for information about software updates.

hil23453_app_952-968.qxd  1/31/70  11:04 AM  Page 953 Final PDF to printer



2A P P E N D I X

Convexity

A s introduced in Chap. 13, the concept of convexity is
frequently used in OR work, especially in the area of non-

linear programming. Therefore, we further introduce the prop-
erties of convex or concave functions and convex sets here.

CONVEX OR CONCAVE FUNCTIONS 
OF A SINGLE VARIABLE

We begin with definitions.

Definitions: A function of a single variable f(x) is
a convex function if, for each pair of values of x,
say, x� and x� (x� � x�),

f [�x� � (1 � �)x�] � �f(x�) � (1 � �) f(x�)

for all values of � such that 0 � � � 1. It is a
strictly convex function if � can be replaced by �.
It is a concave function (or a strictly concave
function) if this statement holds when � is re-
placed by � (or by 	).

This definition of a convex function has an enlighten-
ing geometric interpretation. Consider the graph of the func-
tion f(x) drawn as a function of x, as illustrated in Fig. A2.1
for a function f(x) that decreases for x � 1, is constant for
1 � x � 2, and increases for x 	 2. Then [x�, f(x�)] and [x�,
f(x�)] are two points on the graph of f(x), and [�x� � (1 � �)x�,
�f(x�) � (1 � �) f(x�)] represents the various points on the
line segment between these two points (but excluding these
endpoints) when 0 � � � 1. Thus, the � inequality in the de-
finition indicates that this line segment lies entirely above or
on the graph of the function, as in Fig. A2.1. Therefore, f(x)
is convex if, for each pair of points on the graph of f(x), the
line segment joining these two points lies entirely above or
on the graph of f(x).

For example, the particular choice of x� and x� shown in
Fig. A2.1 results in the entire line segment (except the two
endpoints) lying above the graph of f(x). This also occurs for
other choices of x� and x� where either x� � 1 or x� 	 2 (or
both). If 1 � x� � x� � 2, then the entire line segment lies
on the graph of f(x). Therefore, this f(x) is convex.

This geometric interpretation indicates that f(x) is con-
vex if it only “bends upward” whenever it bends at all. (This
condition is sometimes referred to as concave upward, as
opposed to concave downward for a concave function.) To
be more precise, if f(x) possesses a second derivative every-
where, then f(x) is convex if and only if d2f(x)/dx2 � 0 for
all possible values of x.

The definitions of a strictly convex function, a concave
function, and a strictly concave function also have analogous
geometric interpretations. These interpretations are summa-
rized below in terms of the second derivative of the function,
which provides a convenient test of the status of the function.

Convexity test for a function of a single variable:
Consider any function of a single variable f(x) that
possesses a second derivative at all possible values
of x. Then f(x) is

1. Convex if and only if 

d

d

2f
x
(
2
x)


 � 0 for all possi-

ble values of x

2. Strictly convex if and only if 

d

d

2f
x
(
2
x)


 	 0 for all

possible values of x

3. Concave if and only if 

d

d

2f
x
(
2
x)


 � 0 for all pos-

sible values of x

4. Strictly concave if and only if 

d

d

2f
x
(
2
x)


 � 0 for all

possible values of x
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Note that a strictly convex function also is convex, but a con-
vex function is not strictly convex if the second derivative
equals zero for some values of x. Similarly, a strictly con-
cave function is concave, but the reverse need not be true.

Figures A2.1 to A2.6 show examples that illustrate these
definitions and this convexity test.

Applying this test to the function in Fig. A2.1, we see
that as x is increased, the slope (first derivative) either in-
creases (for 0 � x � 1 and x 	 2) or remains constant (for
1 � x1 � 2). Therefore, the second derivative always is non-
negative, which verifies that the function is convex. How-
ever, it is not strictly convex because the second derivative
equals zero for 1 � x � 2.

However, the function in Fig. A2.2 is strictly convex be-
cause its slope always is increasing so its second derivative
always is greater than zero.

The piecewise linear function shown in Fig. A2.3
changes its slope at x � 1. Consequently, it does not possess

1 x� x� x2

f(x)

■ FIGURE A2.1
A convex function.

x

f(x)

x� x�

■ FIGURE A2.2
A strictly convex function.

a first or second derivative at this point, so the convexity test
cannot be fully applied. (The fact that the second derivative
equals zero for 0 � x � 1 and x 	 1 makes the function el-
igible to be either convex or concave, depending upon its
behavior at x � 1.) Applying the definition of a concave func-
tion, we see that if 0 � x� � 1 and x� 	 1 (as shown in
Fig. A2.3), then the entire line segment joining [x�, f(x�)] and
[x�, f(x�)] lies below the graph of f(x), except for the two end-
points of the line segment. If either 0 � x� � x� � 1 or 1 �
x� � x�, then the entire line segment lies on the graph of f(x).
Therefore, f(x) is concave (but not strictly concave).

The function in Fig. A2.4 is strictly concave because its
second derivative always is less than zero.

As illustrated in Fig. A2.5, any linear function has its
second derivative equal to zero everywhere and so is both
convex and concave.

The function in Fig. A2.6 is neither convex nor concave
because as x increases, the slope fluctuates between de-
creasing and increasing so the second derivative fluctuates
between being negative and positive.

CONVEX OR CONCAVE FUNCTIONS 
OF SEVERAL VARIABLES

The concept of a convex or concave function of a single vari-
able also generalizes to functions of more than one variable.
Thus, if f(x) is replaced by f(x1, x2, . . . , xn), the definition
still applies if x is replaced everywhere by (x1, x2, . . . , xn).
Similarly, the corresponding geometric interpretation is still
valid after generalization of the concepts of points and line
segments. Thus, just as a particular value of (x, y) is inter-
preted as a point in two-dimensional space, each possible
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value of (x1, x2, . . . , xm) may be thought of as a point in m-
dimensional (Euclidean) space. By letting m � n � 1, the
points on the graph of f(x1, x2, . . . , xn) become the possible
values of [x1, x2, . . . , xn, f(x1, x2, . . . , xn)]. Another point,
(x1, x2, . . . , xn, xn�1), is said to lie above, on, or below the
graph of f(x1, x2, . . . , xn), according to whether xn�1 is larger,
equal to, or smaller than f(x1, x2, . . . , xn), respectively.

Definition: The line segment joining any two
points (x�1, x�2, . . . , x�m) and (x�1, x�2, . . . , x�m) is the
collection of points

(x1, x2, . . . , xm) � [�x1� � (1 � �)x�1, �x2�
� (1 � �)x�2, . . . , �x�m � (1 � �)x�m]

such that 0 � � � 1.

Thus, a line segment in m-dimensional space is a direct
generalization of a line segment in two-dimensional space.
For example, if

(x�1, x�2) � (2, 6), (x1�, x2�) � (3, 4),

then the line segment joining them is the collection of points

(x1, x2) � [3� � 2(1 � �), 4� � 6(1 � �)],

where 0 � � � 1.

Definition: f(x1, x2, . . . , xn) is a convex function
if, for each pair of points on the graph of f(x1,
x2, . . . , xn), the line segment joining these two
points lies entirely above or on the graph of f(x1,
x2, . . . , xn). It is a strictly convex function if this
line segment actually lies entirely above this graph
except at the endpoints of the line segment. Con-
cave functions and strictly concave functions are
defined in exactly the same way, except that above
is replaced by below.

Just as the second derivative can be used (when it ex-
ists everywhere) to check whether a function of a single vari-
able is convex, so second partial derivatives can be used to
check functions of several variables, although in a more

f(x)

x1x� x�

x

f(x)

x� x� x

f(x)

x

f(x)

■ FIGURE A2.3
A concave function.

■ FIGURE A2.4
A strictly concave 
function.

■ FIGURE A2.5
A function that is both 
convex and concave.

■ FIGURE A2.6
A function that is neither 
convex nor concave.
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■ TABLE A2.1 Convexity test for a function of two variables

Strictly Strictly
Quantity Convex Convex Concave Concave
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Values of (x1, x2) All possible values

complicated way. For example, if there are two variables and
all partial derivatives exist everywhere, then the convexity
test assesses whether all three quantities in the first column
of Table A2.1 satisfy the inequalities shown in the appro-
priate column for all possible values of (x1, x2).

When there are more than two variables, the convexity
test is a generalization of the one shown in Table A2.1. For
example, in mathematical terminology, f(x1, x2, . . . , xn) is
convex if and only if its n  n Hessian matrix is positive
semidefinite for all possible values of (x1, x2, . . . , xn).

To illustrate the convexity test for two variables, con-
sider the function

f(x1, x2) � (x1 � x2)2 � x2
1 � 2x1x2 � x2

2.

Therefore,
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, x2)

 � 2 	 0.

Since � 0 holds for all three conditions, f(x1, x2) is convex.
However, it is not strictly convex because the first condition
only gives � 0 rather than 	 0.

Now consider the negative of this function

g(x1, x2) � �f(x1, x2) � �(x1 � x2)2

� �x2
1 � 2x1x2 � x2

2.

In this case,
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(6) 

�2g(
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x
x
1
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, x2)

 � �2 � 0.

Because � 0 holds for the first condition and � 0 holds for
the other two, g(x1, x2) is a concave function. However, it is
not strictly concave since the first condition gives � 0.

Thus far, convexity has been treated as a general prop-
erty of a function. However, many nonconvex functions do
satisfy the conditions for convexity over certain intervals for
the respective variables. Therefore, it is meaningful to talk
about a function being convex over a certain region. For ex-
ample, a function is said to be convex within a neighbor-
hood of a specified point if its second derivative or partial
derivatives satisfy the conditions for convexity at that point.
This concept is useful in Appendix 3.

Finally, two particularly important properties of convex or
concave functions should be mentioned. First, if f(x1,
x2, . . . , xn) is a convex function, then g(x1, x2, . . . , xn) �
�f(x1, x2, . . . , xn) is a concave function, and vice versa, as il-
lustrated by the preceding example where f(x1, x2) � (x1 � x2)

2.
Second, the sum of convex functions is a convex function,
and the sum of concave functions is a concave function.
To illustrate,

f1(x1) � x4
1 � 2x2

1 � 5x1

and

f2(x1, x2) � x2
1 � 2x1x2 � x2

2

are both convex functions, as you can verify by calculating
their second derivatives. Therefore, the sum of these functions

f(x1, x2) � x4
1 � 3x2

1 � 5x1 � 2x1x2 � x2
2

is a convex function, whereas its negative

g(x1, x2) � �x4
1 � 3x2

1 � 5x1 � 2x1x2 � x2
2,

is a concave function.

�2f(x1, x2)




�x2
1
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x

f(x)

x

f(x)

x1

x2

■ FIGURE A2.7
Example of a convex set
determined by a convex function.

■ FIGURE A2.8
Example of a convex set
determined by a concave function.

■ FIGURE A2.9
Example of a convex set
determined by both convex
and concave functions.

x1

x2

1

2

1 20 x1

x2

1

2

1 20

■ FIGURE A2.10
Example of a set that is not convex.

■ FIGURE A2.11
Example of a convex set.

CONVEX SETS

The concept of a convex function leads quite naturally to
the related concept of a convex set. Thus, if f(x1, x2, . . . , xn)
is a convex function, then the collection of points that lie
above or on the graph of f (x1, x2, . . . , xn) forms a convex
set. Similarly, the collection of points that lie below or on
the graph of a concave function is a convex set. These cases
are illustrated in Figs. A2.7 and A2.8 for the case of a sin-
gle independent variable. Furthermore, convex sets have the
important property that, for any given group of convex sets,
the collection of points that lie in all of them (i.e., the in-
tersection of these convex sets) is also a convex set. There-
fore, the collection of points that lie both above or on a
convex function and below or on a concave function is a
convex set, as illustrated in Fig. A2.9. Thus, convex sets may
be viewed intuitively as a collection of points whose bottom
boundary is a convex function and whose top boundary is a
concave function.

Although describing convex sets in terms of convex and
concave functions may be helpful for developing intuition
about their nature, their actual definition has nothing to do
(directly) with such functions.

Definition: A convex set is a collection of points
such that, for each pair of points in the collection,
the entire line segment joining these two points is
also in the collection.

The distinction between nonconvex sets and convex sets
is illustrated in Figs. A2.10 and A2.11. Thus, the set of points
shown in Fig. A2.10 is not a convex set because there exist
many pairs of these points, for example, (1, 2) and (2, 1),
such that the line segment between them does not lie entirely
within the set. This is not the case for the set in Fig. A2.11,
which is convex.

In conclusion, we introduce the useful concept of an ex-
treme point of a convex set.

Definition: An extreme point of a convex set is a
point in the set that does not lie on any line seg-
ment that joins two other points in the set.

Thus, the extreme points of the convex set in Fig. A2.11
are (0, 0), (0, 2), (1, 2), (2, 1), (1, 0), and all the infinite
number of points on the boundary between (2, 1) and (1, 0).
If this particular boundary were a line segment instead, then
the set would have only the five listed extreme points.
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Classical Optimization Methods

This appendix reviews the classical methods of calculus
for finding a solution that maximizes or minimizes (1)

a function of a single variable, (2) a function of several vari-
ables, and (3) a function of several variables subject to equal-
ity constraints on the values of these variables. It is assumed
that the functions considered possess continuous first and
second derivatives and partial derivatives everywhere. Some
of the concepts discussed next have been introduced briefly
in Secs. 13.2 and 13.3.

UNCONSTRAINED OPTIMIZATION OF 
A FUNCTION OF A SINGLE VARIABLE

Consider a function of a single variable, such as that shown
in Fig. A3.1. A necessary condition for a particular solution
x � x* to be either a minimum or a maximum is that



df

d
(
x
x)

 � 0 at x � x*.

Thus, in Fig. A3.1 there are five solutions satisfying these
conditions. To obtain more information about these five 
critical points, it is necessary to examine the second deriv-
ative. Thus, if



d

d

2f
x
(
2
x)


 	 0 at x � x*,

then x* must be at least a local minimum [that is, f(x*) �
f(x) for all x sufficiently close to x*]. Using the language in-
troduced in Appendix 2, we can say that x* must be a local
minimum if f(x) is strictly convex within a neighborhood of
x*. Similarly, a sufficient condition for x* to be a local 
maximum (given that it satisfies the necessary condition) is
that f(x) be strictly concave within a neighborhood of x*
(that is, the second derivative is negative at x*). If the sec-

ond derivative is zero, the issue is not resolved (the point
may even be an inflection point), and it is necessary to ex-
amine higher derivatives.

To find a global minimum [i.e., a solution x* such that
f(x*) � f(x) for all x], it is necessary to compare the local
minima and identify the one that yields the smallest value
of f(x). If this value is less than f(x) as x � �� and as 
x � �� (or at the endpoints of the function, if it is defined
only over a finite interval), then this point is a global mini-
mum. Such a point is shown in Fig. A3.1, along with the
global maximum, which is identified in an analogous way.

However, if f(x) is known to be either a convex or a
concave function (see Appendix 2 for a description of such
functions), the analysis becomes much simpler. In particu-
lar, if f(x) is a convex function, such as the one shown in
Fig. A2.1, then any solution x* such that



df

d
(
x
x)

 � 0 at x � x*

is known automatically to be a global minimum. In other
words, this condition is not only a necessary but also a suf-
ficient condition for a global minimum of a convex func-
tion. This solution need not be unique, since there could be
a tie for the global minimum over a single interval where
the derivative is zero. On the other hand, if f(x) actually is
strictly convex, then this solution must be the only global
minimum. (However, if the function is either always de-
creasing or always increasing, so the derivative is nonzero
for all values of x, then there will be no global minimum at
a finite value of x.)

Similarly, if f(x) is a concave function, then having



df

d
(
x
x)

 � 0 at x � x*
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960 APPENDIX 3 CLASSICAL OPTIMIZATION METHODS

becomes both a necessary and sufficient condition for x* to
be a global maximum.

UNCONSTRAINED OPTIMIZATION OF 
A FUNCTION OF SEVERAL VARIABLES

The analysis for an unconstrained function of several vari-
ables f(x), where x � (x1, x2, . . . , xn), is similar. Thus, a
necessary condition for a solution x � x* to be either a min-
imum or a maximum is that



�
�
f(
x
x
j

)

 � 0 at x � x*, for j � 1, 2, . . . , n.

After the critical points that satisfy this condition are iden-
tified, each such point is then classified as a local minimum
or maximum if the function is strictly convex or strictly con-
cave, respectively, within a neighborhood of the point. (Ad-
ditional analysis is required if the function is neither.) The
global minimum and maximum would be found by compar-
ing the local minima and maxima and then checking the
value of the function as some of the variables approach ��
or ��. However, if the function is known to be convex or
concave, then a critical point must be a global minimum or
a global maximum, respectively.

CONSTRAINED OPTIMIZATION 
WITH EQUALITY CONSTRAINTS

Now consider the problem of finding the minimum or max-
imum of the function f(x), subject to the restriction that x
must satisfy all the equations

g1(x) � b1

g2(x) � b2

�

gm(x) � bm,

■ FIGURE A3.1
A function having several
maxima and minima. x

f(x)

Global
minimum

Inflection
point

Local
maximum

Local
minimum

Global
maximum

where m � n. For example, if n � 2 and m � 1, the prob-
lem might be

Maximize f(x1, x2) � x2
1 � 2x2,

subject to

g(x1, x2) � x2
1 � x2

2 � 1.

In this case, (x1, x2) is restricted to be on the circle of ra-
dius 1, whose center is at the origin, so that the goal is to
find the point on this circle that yields the largest value of
f(x1, x2). This example will be solved after a general ap-
proach to the problem is outlined.

A classical method of dealing with this problem is the
method of Lagrange multipliers. This procedure begins by
formulating the Lagrangian function

h(x, �) � f(x) � �
m

i�1
�i[gi(x) � bi],

where the new variables � � (�1, �2, . . . , �m) are called
Lagrange multipliers. Notice the key fact that for the feasi-
ble values of x,

gi(x) � bi � 0, for all i,

so h(x, �) � f(x). Therefore, it can be shown that if (x, �) �
(x*, �*) is a local or global minimum or maximum for the
unconstrained function h(x, �), then x* is a corresponding
critical point for the original problem. As a result, the
method now reduces to analyzing h(x, �) by the procedure
just described for unconstrained optimization. Thus, the 
n � m partial derivatives would be set equal to zero



�
�
x
h
j


 � 

�
�
x
f
j


 � �
m

i�1
�i 


�
�
g
xj

i
 � 0, for j � 1, 2, . . . , n,



�
�
�
h

i

 � �gi(x) � bi � 0, for i � 1, 2, . . . , m,
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and then the critical points would be obtained by solving
these equations for (x, �). Notice that the last m equations
are equivalent to the constraints in the original problem, so
only feasible solutions are considered. After further analy-
sis to identify the global minimum or maximum of h( � ), the
resulting value of x is then the desired solution to the orig-
inal problem.

From a practical computational viewpoint, the method
of Lagrange multipliers is not a particularly powerful pro-
cedure. It is often essentially impossible to solve the equa-
tions to obtain the critical points. Furthermore, even when
the points can be obtained, the number of critical points may
be so large (often infinite) that it is impractical to attempt
to identify a global minimum or maximum. However, for
certain types of small problems, this method can sometimes
be used successfully.

To illustrate, consider the example introduced earlier. In
this case,

h(x1, x2) � x2
1 � 2x2 � �(x2

1 � x2
2 � 1),

so that



�
�
x
h
1


 � 2x1 � 2�x1 � 0,



�
�
x
h
2


 � 2 � 2�x2 � 0,



�
�
�
h

 � �(x2

1 � x2
2 � 1) � 0.

The first equation implies that either � � 1 or x1 � 0. If 
� � 1, then the other two equations imply that x2 � 1 and
x1 � 0. If x1 � 0, then the third equation implies that 
x2 � �1. Therefore, the two critical points for the original
problem are (x1, x2) � (0, 1) and (0, �1). Thus, it is appar-
ent that these points are the global maximum and minimum,
respectively.

THE DERIVATIVE OF A DEFINITE INTEGRAL

In presenting the classical optimization methods just de-
scribed, we have assumed that you are already familiar with
derivatives and how to obtain them. However, there is a spe-
cial case of importance in OR work that warrants additional

explanation, namely, the derivative of a definite integral. In
particular, consider how to find the derivative of the function

F(y) � �h(y)

g(y)
f(x, y) dx,

where g(y) and h(y) are the limits of integration expressed
as functions of y.

To begin, suppose that these limits of integration are
constants, so that g(y) � a and h(y) � b, respectively. For
this special case, it can be shown that, given the regularity
conditions assumed in the first paragraph of this appendix,
the derivative is



d
d
y

 �b

a
f(x, y) dx � �b

a


�f(

�

x
y
, y)

 dx.

For example, if f(x, y) � e�xy, a � 0, and b � �, then



d
d
y

 ��

0
e�xy dx � ��

0
(�x)e�xy dx � �


y
1
2


at any positive value of y. Thus, the intuitive procedure of
interchanging the order of differentiation and integration is
valid for this case.

However, finding the derivative becomes a little more
complicated than this when the limits of integration are func-
tions. In particular,



d
d
y

 �h(y)

g(y)
f(x, y) dx � �h(y)

g(y)


�f(

�

x
y
, y)

 dx

� f(h(y), y) 

dh

d
(
y
y)

 � f(g(y), y) 


dg
d
(
y
y)

,

where f(h(y), y) is obtained by writing out f(x, y) and then
replacing x by h(y) wherever it appears, and similarly for
f(g(y), y). To illustrate, if f(x, y) � x2y3, g(y) � y, and 
h(y) � 2y, then



d
d
y

 �2y

y
x2y3 dx � �2y

y
3x2y2 dx � (2y)2y3(2) � y2y3(1)

� 14y5

at any positive value of y.
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Matrices and Matrix Operations

A matrix is a rectangular array of numbers. For example,

A �

is a 3  2 matrix (where 3  2 is said “3 by 2”) because it
is a rectangular array of numbers with three rows and two
columns. (Matrices are denoted in this book by boldface
capital letters.) The numbers in the rectangular array are
called the elements of the matrix. For example,

B � � �
is a 2  4 matrix whose elements are 1, 2.4, 0, �3�, �4, 2,
�1, and 15. Thus, in more general terms,

A � � ⏐⏐aij⏐⏐

is an m  n matrix, where a11, . . . , amn represent the num-
bers that are the elements of this matrix; ⏐⏐aij⏐⏐ is shorthand
notation for identifying the matrix whose element in row i
and column j is aij for every i � 1, 2, . . . , m and j � 1,
2, . . . , n.

MATRIX OPERATIONS

Because matrices do not possess a numerical value, they
cannot be added, multiplied, and so on as if they were in-
dividual numbers. However, it is sometimes desirable to
perform certain manipulations on arrays of numbers. There-
fore, rules have been developed for performing operations

⎤
⎥
⎥
⎥
⎥
⎦

a1n

a2n

amn

���

���

���

a12

a22

am2

a11

a21

am1

⎡
⎢
⎢
⎢
⎢
⎣

�3�
15

0

�1

2.4

2

1

�4

⎤
⎥
⎥
⎥
⎦

5

0

1

2

3

1

⎡
⎢
⎢
⎢
⎣

4A P P E N D I X

�������������������������

on matrices that are analogous to arithmetic operations. To
describe these, let A � ⏐⏐aij⏐⏐ and B � ⏐⏐bij⏐⏐ be two ma-
trices having the same number of rows and the same num-
ber of columns. (We shall change this restriction on the size
of A and B later when discussing matrix multiplication.)

Matrices A and B are said to be equal (A � B) if and
only if all the corresponding elements are equal (aij � bij

for all i and j ).
The operation of multiplying a matrix by a number (de-

note this number by k) is performed by multiplying each
element of the matrix by k, so that

kA � ⏐⏐kaij⏐⏐.

For example,

3� � � � �.

To add two matrices A and B, simply add the correspond-
ing elements, so that

A � B � ⏐⏐aij � bij⏐⏐.

To illustrate,

� � � � � � � �.

Similarly, subtraction is done as follows:

A � B � A � (�1)B,

so that

A � B � ⏐⏐aij � bij⏐⏐.

For example,

� � � � � � � �.
3

5

3

�2

0

1

2

3

3

6

5

1

3

7

7

4

0

1

2

3

3

6

5

1

6

�9

1

0

3

15

2

�3



1
3




0

1

5
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Note that, with the exception of multiplication by a
number, all the preceding operations are defined only when
the two matrices involved are the same size. However, all of
these operations are straightforward because they involve
performing only the same comparison or arithmetic opera-
tion on the corresponding elements of the matrices.

There exists one additional elementary operation that has
not been defined—matrix multiplication—but it is consider-
ably more complicated. To find the element in row i, column j
of the matrix resulting from multiplying matrix A times ma-
trix B, it is necessary to multiply each element in row i of A
by the corresponding element in column j of B and then to add
these products. To do this element-by-element multiplication,
we need the following restriction on the sizes of A and B:

Matrix multiplication AB is defined if and only if the
number of columns of A equals the number of rows of B.

Thus, if A is an m  n matrix and B is an n  s matrix, then
their product is

AB � ⏐⏐�
n

k�1
aikbkj⏐⏐,

where this product is an m  s matrix. However, if A is an
m  n matrix and B is an r  s matrix, where n � r, then
AB is not defined.

To illustrate matrix multiplication,

� � �

� .

On the other hand, if one attempts to multiply these matri-
ces in the reverse order, the resulting product

� �
is not even defined.

Even when both AB and BA are defined,

AB � BA

in general. Thus, matrix multiplication should be viewed as
a specially designed operation whose properties are quite
different from those of arithmetic multiplication. To under-
stand why this special definition was adopted, consider the
following system of equations:

2x1 � x2 � 5x3 � x4 � 20
x1 � 5x2 � 4x3 � 5x4 � 30

3x1 � x2 � 6x3 � 2x4 � 20.

Rather than write out these equations as shown here, they
can be written much more concisely in matrix form as

Ax � b,

where

A � , x � , b � .

It is this kind of multiplication for which matrix multipli-
cation is designed.

Carefully note that matrix division is not defined.
Although the matrix operations described here do not

possess certain of the properties of arithmetic operations,
they do satisfy these laws

A � B � B � A,
(A � B) � C � A � (B � C),

A(B � C) � AB � AC,
A(BC) � (AB)C,

when the relative sizes of these matrices are such that the
indicated operations are defined.

Another type of matrix operation, which has no arith-
metic analog, is the transpose operation. This operation in-
volves nothing more than interchanging the rows and
columns of the matrix, which is frequently useful for per-
forming the multiplication operation in the desired way.
Thus, for any matrix A � ⏐⏐aij⏐⏐, its transpose AT is

AT � ⏐⏐aji⏐⏐.

For example, if

A � ,

then

AT � � �.

SPECIAL KINDS OF MATRICES

In arithmetic, 0 and 1 play a special role. There also exist
special matrices that play a similar role in matrix theory. In
particular, the matrix that is analogous to 1 is the identity
matrix I, which is a square matrix whose elements are 0s
except for 1s along the main diagonal. Thus,

4

0

1

3

2

5

⎤
⎥
⎥
⎥
⎦

5

3

0

2

1

4

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

20

30

20

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

x1

x2

x3

x4

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

1

5

2

5

4

�6

�1

5

1

2

1

3

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

2

0

3

1

4

2

⎡
⎢
⎢
⎢
⎣

1

5

3

2

⎤
⎥
⎥
⎥
⎦

11

4

17

7

12

12

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

1(1) � 2(5)

4(1) � 0(5)

2(1) � 3(5)

1(3) � 2(2)

4(3) � 0(2)

2(3) � 3(2)

⎡
⎢
⎢
⎢
⎣

1

5

3

2

⎤
⎥
⎥
⎥
⎦

2

0

3

1

4

2

⎡
⎢
⎢
⎢
⎣
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I �

The number of rows or columns of I can be specified as de-
sired. The analogy of I to 1 follows from the fact that for
any matrix A,

IA � A � AI,

where I is assigned the appropriate number of rows and
columns in each case for the multiplication operation to be
defined.

Similarly, the matrix that is analogous to 0 is the null
matrix 0, which is a matrix of any size whose elements are
all 0s. Thus,

0 �

Therefore, for any matrix A,

A � 0 � A, A � A � 0, and
0A � 0 � A0,

where 0 is the appropriate size in each case for the opera-
tions to be defined.

On certain occasions, it is useful to partition a matrix into
several smaller matrices, called submatrices. For example,
one possible way of partitioning a 3  4 matrix would be

A � � � �,

where

A12 � [a12, a13, a14], A21 � � �,

A22 � � �
all are submatrices. Rather than perform operations element
by element on such partitioned matrices, we can do them in
terms of the submatrices, provided the partitionings are such
that the operations are defined. For example, if B is a par-
titioned 4  1 matrix such that

B � � � �,
b1

B2

⎤
⎥
⎥
⎥
⎥
⎦

b1

b2

b3

b4

⎡
⎢
⎢
⎢
⎢
⎣

a24

a34

a23

a33

a22

a32

a21

a31

A12

A22

a11

A21

⎤
⎥
⎥
⎥
⎦

a14

a24

a34

a13

a23

a33

a12

a22

a32

a11

a21

a31

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

0

0

0

���

���

���

0

0

0

0

0

0

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

0

0

0

1

���

���

���

���

0

0

1

0

0

1

0

0

1

0

0

0

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
�����������������������

�������������������

then

AB � �
Aa1

2

1

1

b
b

1

1

�
�

A
A

1

2

2

2

B
B

2

2

�.

VECTORS

A special kind of matrix that plays an important role in ma-
trix theory is the kind that has either a single row or a sin-
gle column. Such matrices are often referred to as vectors.
Thus,

x � [x1, x2, . . . , xn]

is a row vector, and

x �

is a column vector. (Vectors are denoted in this book by
boldface lowercase letters.) These vectors also are some-
times called n-vectors to indicate that they have n elements.
For example,

x � [1, 4, �2, 

1
3


, 7]

is a 5-vector.
A null vector 0 is either a row vector or a column vec-

tor whose elements are all 0s, that is,

0 � [0, 0, . . . , 0] or 0 � .

(Although the same symbol 0 is used for either kind of null
vector, as well as for a null matrix, the context normally will
identify which it is.)

One reason vectors play an important role in matrix the-
ory is that any m  n matrix can be partitioned into either
m row vectors or n column vectors, and important proper-
ties of the matrix can be analyzed in terms of these vectors.
To amplify, consider a set of n-vectors x1, x2, . . . , xm of
the same type (i.e., they are either all row vectors or all col-
umn vectors).

Definition: A set of vectors x1, x2, . . . , xm is said
to be linearly dependent if there exist m numbers
(denoted by c1, c2, . . . , cm), some of which are not
zero, such that

c1x1 � c2x2 � ��� � cmxm � 0.

Otherwise, the set is said to be linearly independent.

⎤
⎥
⎥
⎥
⎥
⎦

0

0

�

0

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

x1

x2

�

xn

⎡
⎢
⎢
⎢
⎢
⎣
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To illustrate, if m � 3 and

x1 � [1, 1, 1], x2 � [0, 1, 1], x3 � [2, 5, 5],

then there exist three numbers, namely, c1 � 2, c2 � 3, and
c3 � �1, such that

2x1 � 3x2 � x3 � [2, 2, 2] � [0, 3, 3] � [2, 5, 5]
� [0, 0, 0],

so, x1, x2, x3 are linearly dependent. Note that showing they
are linearly dependent required finding three particular num-
bers (c1, c2, c3) that make c1x1 � c2x2 � c3x3 � 0, which is
not always easy. Also note that this equation implies that

x3 � 2x1 � 3x2.

Thus, x1, x2, x3 can be interpreted as being linearly depen-
dent because one of them is a linear combination of the oth-
ers. However, if x3 were changed to

x3 � [2, 5, 6]

instead, then x1, x2, x3 would be linearly independent be-
cause it is impossible to express one of these vectors (say,
x3) as a linear combination of the other two.

Definition: The rank of a set of vectors is the
largest number of linearly independent vectors that
can be chosen from the set.

Continuing the preceding example, we see that the rank
of the set of vectors x1, x2, x3 was 2 (any pair of the vec-
tors is linearly independent), but it became 3 after x3 was
changed.

Definition: A basis for a set of vectors is a col-
lection of linearly independent vectors taken from
the set such that every vector in the set is a linear
combination of the vectors in the collection (i.e.,
every vector in the set equals the sum of certain
multiples of the vectors in the collection).

To illustrate, any pair of the vectors (say, x1 and x2) con-
stituted a basis for x1, x2, x3 in the preceding example be-
fore x3 was changed. After x3 is changed, the basis becomes
all three vectors.

The following theorem relates the last two definitions.

Theorem A4.1: A collection of r linearly indepen-
dent vectors chosen from a set of vectors is a ba-
sis for the set if and only if the set has rank r.

SOME PROPERTIES OF MATRICES

Given the preceding results regarding vectors, it is now possi-
ble to present certain important concepts regarding matrices.

Definition: The row rank of a matrix is the rank
of its set of row vectors. The column rank of a
matrix is the rank of its column vectors.

For example, if matrix A is

A � ,

then the preceding example of linearly dependent vectors
shows that the row rank of A is 2. The column rank of A is
also 2. (The first two column vectors are linearly indepen-
dent but the second column vector minus the third equals 0.)
Having the same column rank and row rank is no coinci-
dence, as the following general theorem indicates.

Theorem A4.2: The row rank and column rank of
a matrix are equal.

Thus, it is only necessary to speak of the rank of a matrix.
The final concept to be discussed is the inverse of a

matrix. For any nonzero number k, there exists a recipro-
cal or inverse k�1 � 1/k such that

kk�1 � 1 � k�1k.

Is there an analogous concept that is valid in matrix theory?
In other words, for a given matrix A other than the null ma-
trix, does there exist a matrix A�1 such that

AA�1 � I � A�1A?

If A is not a square matrix (i.e., if the number of rows and
the number of columns of A differ), the answer is never, be-
cause these matrix products would necessarily have a dif-
ferent number of rows for the multiplication to be defined
(so that the equality operation would not be defined). How-
ever, if A is square, then the answer is under certain cir-
cumstances, as described by the following definition and
Theorem A4.3.

Definition: A matrix is nonsingular if its rank
equals both the number of rows and the number of
columns. Otherwise, it is singular.

Thus, only square matrices can be nonsingular. A use-
ful way of testing for nonsingularity is provided by the fact
that a square matrix is nonsingular if and only if its deter-
minant is nonzero.

Theorem A4.3:
(a) If A is nonsingular, there is a unique nonsingu-
lar matrix A�1, called the inverse of A, such that
AA�1 � I � A�1A.

⎤
⎥
⎥
⎥
⎦

1

1

5

1

1

5

1

0

2

⎡
⎢
⎢
⎢
⎣
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966 APPENDIX 4 MATRICES AND MATRIX OPERATIONS

(b) If A is nonsingular and B is a matrix for which
either AB � I or BA � I, then B � A�1.
(c) Only nonsingular matrices have inverses.

To illustrate matrix inverses, consider the matrix

A � � �.

Notice that A is nonsingular since its determinant, 5(�1) �
1(�4) � �1, is nonzero. Therefore, A must have an inverse,
which has the unknown elements

A�1 � � �.

To derive A�1, we use the property that

AA�1 � � � � � �,
0

1

1

0
5b�4d5a�4c

b
d

a

c

�4

�1

5

1

so

5a � 4c = 1 5b � 4d = 0
a � c = 0 b � d = 1

Solving these two pairs of simultaneous equations yields
a = 1, c =1 , and b = �4, d = �5, so

A�1 � � �.

Hence,

AA�1 � � � � � � � �,

and

A�1A � � � � � � � �.
0

1

1

0

�4

�1

5

1

�4

�5

1

1

0

1

1

0

�4

�5

1

1

�4

�1

5

1

�4

�5

1

1

a�c b�d
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Table for a Normal Distribution

TABLE A5.1 Areas under the normal curve from K� to �

P{standard normal 	 K�} � ��

K�

e�x2/2 dx � �

K� .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641
0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121

0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776
0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867

0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379
1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681

1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233

2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
2.3 .0107 .0104 .0102 .00990 .00964 .00939 .00914 .00889 .00866 .00842
2.4 .00820 .00798 .00776 .00755 .00734 .00714 .00695 .00676 .00657 .00639

2.5 .00621 .00604 .00587 .00570 .00554 .00539 .00523 .00508 .00494 .00480
2.6 .00466 .00453 .00440 .00427 .00415 .00402 .00391 .00379 .00368 .00357
2.7 .00347 .00336 .00326 .00317 .00307 .00298 .00289 .00280 .00272 .00264
2.8 .00256 .00248 .00240 .00233 .00226 .00219 .00212 .00205 .00199 .00193
2.9 .00187 .00181 .00175 .00169 .00164 .00159 .00154 .00149 .00144 .00139

1


�2��
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968 APPENDIX 5 TABLE FOR A NORMAL DISTRIBUTION

K� .0 .1 .2 .3 .4 .5 .6 .7 .8 .9

3 .00135 .03968 .03687 .03483 .03337 .03233 .03159 .03108 .04723 .04481
4 .04317 .04207 .04133 .05854 .05541 .05340 .05211 .05130 .06793 .06479
5 .06287 .06170 .07996 .07579 .07333 .07190 .07107 .08599 .08332 .08182
6 .09987 .09530 .09282 .09149 .010777 .010402 .010206 .010104 .011523 .011260

Source: F. E. Croxton, Tables of Areas in Two Tails and in One Tail of the Normal Curve. Copyright
1949 by Prentice-Hall, Inc., Englewood Cliffs, NJ.
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969

PARTIAL ANSWERS TO 
SELECTED PROBLEMS

CHAPTER 3

3.1-2. (a)

3.1-5. (x1, x2) � (13, 5); Z � 31.

3.1-11. (b) (x1, x2, x3) � (26.19, 54.76, 20); Z � 2,904.76.

3.2-3. (b) Maximize Z � 9,000x1 � 9,000x2,

subject to

x1 � 1
x2 � 1

10,000x1 � 8,000x2 � 12,000
400x1 � 500x2 � 600

and

x1 � 0, x2 � 0.

3.4-2. (a) Proportionality: OK since it is implied that a fixed fraction of the radiation dosage at a
given entry point is absorbed by a given area.

Additivity: OK since it is stated that the radiation absorption from multiple beams is
additive.

Divisibility: OK since beam strength can be any fractional level.
Certainty: Due to the complicated analysis required to estimate the data on radiation ab-

sorption in different tissue types, there is considerable uncertainty about the
data, so sensitivity analysis should be used.

3.4-11. (b) From Factory 1, ship 200 units to Customer 2 and 200 units to Customer 3.
From Factory 2, ship 300 units to Customer 1 and 200 units to Customer 3.

3.4-12. (c) Z � $152,880; A1 � 60,000; A3 � 84,000; D5 � 117,600. All other decision variables
are 0.

3.4-14. (b) Each optimal solution has Z � $13,330.

x1

2

1

0 1 2 3 4 5 6

x2
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970 PARTIAL ANSWERS TO SELECTED PROBLEMS

3.5-2. (c, e)

3.5-5. (a) Minimize Z � 210C � 180T � 150A,

subject to

90C � 20T � 40A � 200
30C � 80T � 60A � 180
10C � 20T � 60A � 150

and

C � 0, T � 0, A � 0.

CHAPTER 4

4.1-4. (a) The corner-point solutions that are feasible are (0, 0), (0, 1), (�
1
4

�, 1), (�
2
3

�, �
2
3

�), (1, �
1
4

�), and
(1, 0).

4.3-4. (x1, x2, x3) � (0, 10, 6�
2
3

�); Z � 70.

4.6-1. (a, c) (x1, x2) � (2, 1); Z � 7.

4.6-3. (a, c, e) (x1, x2, x3) � (�
4
5

�, �
9
5

�, 0); Z � 7.

4.6-9. (a, b, d) (x1, x2, x3) � (0, 15, 15); Z � 90.
(c) For both the Big M method and the two-phase method, only the final tableau represents a

feasible solution for the real problem.

4.6-13. (a, c) (x1, x2) � (��
8
7

�, �
1
7
8
�); Z � �

8
7
0
�.

4.7-5. (a) (x1, x2, x3) � (0, 1, 3); Z � 7.
(b) y1* � �

1
2

�, y2* � �
5
2

�, y3* � 0. These are the marginal values of resources 1, 2, and 3, respectively.

CHAPTER 5

5.1-1. (a) (x1, x2) � (2, 2) is optimal. Other CPF solutions are (0, 0), (3, 0), and (0, 3).

5.1-12. (x1, x2, x3) � (0, 15, 15) is optimal.

5.2-2. (x1, x2, x3, x4, x5) � (0, 5, 0, �
5
2

�, 0); Z � 50.

5.3-1. (a) Right side is Z � 8, x2 � 14, x6 � 5, x3 � 11.
(b) x1 � 0, 2x1 � 2x2 � 3x3 � 5, x1 � x2 � x3 � 3.

CHAPTER 6

6.1-1. (a) Minimize W � 15y1 � 12y2 � 45y3,

subject to

�y1 � y2 � 5y3 � 10
2y1 � y2 � 3y3 � 20

Resource Usage per Unit
of Each Activity

Resource
Resource Activity 1 Activity 2 Totals Available

1 2 1 10 � 10
2 3 3 20 � 20
3 2 4 20 � 20

Unit Profit 20 30 $166.67
Solution 3.333 3.333 
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and

y1 � 0, y2 � 0, y3 � 0.

6.3-1. (c)
Complementary Basic Solutions

Primal Problem Dual Problem

Basic Solution Feasible? Z � W Feasible? Basic Solution

(0, 0, 20, 10) Yes 0 No (0, 0, �6, �8)

(4, 0, 0, 6) Yes 24 No �1�
1
5

�, 0, 0, �5�
3
5

��
(0, 5, 10, 0) Yes 40 No (0, 4, �2, 0)

�2�
1
2

�, 3�
3
4

�, 0, 0� Yes and optimal 45 Yes and optimal ��
1
2

�, 3�
1
2

�, 0, 0�
(10, 0, �30, 0) No 60 Yes (0, 6, 0, 4)
(0, 10, 0, �10) No 80 Yes (4, 0, 14, 0) 

6.3-7. (c) Basic variables are x1 and x2. The other variables are nonbasic.
(e) x1 � 3x2 � 2x3 � 3x4 � x5 � 6, 4x1 � 6x2 � 5x3 � 7x4 � x5 � 15, x3 � 0, x4 � 0, x5 � 0. 

Optimal CPF solution is (x1, x2, x3, x4, x5) � (�
3
2

�, �
3
2

�, 0, 0, 0).

6.4-3. Maximize W � 8y1 � 6y2,

subject to

y1 � 3y2 � 2
4y1 � 2y2 � 3
2y1 � 2y2 � 1

and

y1 � 0, y2 � 0.

6.4-8. (a) Minimize W � 120y1 � 80y2 � 100y3,

subject to

3y1 � y2 � 3y3 � �1
3y1 � y2 � y3 � �2

y1 � 4y2 � 2y3 � �1

and

y1 � 0, y2 � 0, y3 � 0.

CHAPTER 7

7.1-1. (d) Not optimal, since 2y1 � 3y2 � 3 is violated for y1* � �
1
5

�, y2* � �
3
5

�.
(f) Not optimal, since 3y1 � 2y2 � 2 is violated for y1* � �

1
5

�, y2* � �
3
5

�.

7.2-2. New Basic Solution
Part (x1, x2, x3, x4, x5) Feasible? Optimal?

(a) (0, 30, 0, 0, �30) No No
(b) (0, 20, 0, 0, �10) No No
(c) (0, 10, 0, 0, 60) Yes Yes
(d) (0, 20, 0, 0, 10) Yes Yes
(e) (0, 20, 0, 0, 10) Yes Yes
(f) (0, 10, 0, 0, 40) Yes No
(g) (0, 20, 0, 0, 10) Yes Yes
(h) (0, 20, 0, 0, 10, x6 � �10) No No
(i) (0, 20, 0, 0, 0) Yes Yes 
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7.2-3. �10 � � � �
1
9
0
�

7.2-12. (a) b1 � 2, 6 � b2 � 18, 12 � b3 � 24
(b) 0 � c1 � �

1
2
5
�, c2 � 2

7.3-4. (f) The allowable range for the unit profit from producing toys is $2.50 to $5.00. The cor-
responding range for producing subassemblies is �$3.00 to �$1.50.

7.3-6. (f) For part (a), the change is within the allowable increase of $10, so the optimal solution
does not change. For part (b), the change is outside the allowable decrease of $5, so the
optimal solution might change. For part (c), the sum of the percentages of the allowable
changes is 250 percent, so the 100 percent rule for simultaneous changes in objective
function coefficients indicates that the optimal solution might change.

CHAPTER 8

8.1-2. (x1, x2, x3) � (�
2
3

�, 2, 0) with Z � �
2
3
2
� is optimal.

8.1-6. (a) The new optimal solution is (x1, x2, x3, x4, x5) � (0, 0, 9, 3, 0) with Z � 117.

8.2-1. (a, b)
Range of � Optimal Solution Z(�)

0 � � � 2 (x1, x2) � (0, 5) 120 � 10�

2 � � � 8 (x1, x2) � ��
1
3
0
�, �

1
3
0
�� �

320 �
3

10�
�

8 � � (x1, x2) � (5, 0) 40 � 5�

8.2-4.
Optimal Solution

Range of � x1 x2 Z(�)

0 � � � 1 10 � 2� 10 � 2� 30 � 6�

1 � � � 5 10 � 2� 15 � 3� 35 � �

5 � � � 25 25 � � 0 50 � 2� 

8.3-2. (x1, x2, x3) � (1, 3, 1) with Z � 8 is optimal.

CHAPTER 9

Destination

Today Tomorrow Dummy Supply

Dick 3.0 2.7 0 5
Source

Harry 2.9 2.8 0 4

Demand 3.0 4.0 2

9.1-3. (b)

9.2-2. (a) Basic variables: x11 � 4, x12 � 0, x22 � 4, x23 � 2, x24 � 0, x34 � 5, x35 � 1, x45 � 0; 
Z � 53.

(b) Basic variables: x11 � 4, x23 � 2, x25 � 4, x31 � 0, x32 � 0, x34 � 5, x35 � 1, x42 � 4; Z � 45.
(c) Basic variables: x11 � 4, x23 � 2, x25 � 4, x32 � 0, x34 � 5, x35 � 1, x41 � 0, x42 � 4; Z � 45.

9.2-7. (a) x11 � 3, x12 � 2, x22 � 1, x23 � 1, x33 � 1, x34 � 2; three iterations to reach optimality.
(b, c) x11 � 3, x12 � 0, x13 � 0, x14 � 2, x23 � 2, x32 � 3; already optimal.

9.2-10. x11 � 10, x12 � 15, x22 � 0, x23 � 5, x25 � 30, x33 � 20, x34 � 10, x44 � 10; cost �
$77.30. Also have other tied optimal solutions.
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9.2-11. (b) Let xij be the shipment from plant i to distribution center j. Then x13 � 2, x14 � 10,
x22 � 9, x23 � 8, x31 � 10, x32 � 1; cost � $20,200.

9.3-4. (a)
Task

Backstroke Breaststroke Butterfly Freestyle Dummy

Carl 37.7 43.4 33.3 29.2 0
Chris 32.9 33.1 28.5 26.4 0

Assignee David 33.8 42.2 38.9 29.6 0
Tony 37.0 34.7 30.4 28.5 0
Ken 35.4 41.8 33.6 31.1 0 

CHAPTER 10

10.3-4. (a) O � A � B � D � T or O � A � B � E � D � T, with length � 16.

10.4-1. (a) {(O, A); (A, B); (B, C ); (B, E); (E, D); (D, T)}, with length � 18.

10.5-1. Arc (1, 2) (1, 3) (1, 4) (2, 5) (3, 4) (3, 5) (3, 6) (4, 6) (5, 7) (6, 7)

Flow 4 4 1 4 1 0 3 2 4 5 

10.8-3. (a) Critical path: Start � A � C � E � Finish
Total duration � 12 weeks

(b) New plan:
Activity Duration Cost

A 3 weeks $54,000
B 3 weeks 65,000
C 3 weeks 68,666
D 2 weeks 41,500
E 2 weeks 80,000 

$7,834 is saved by this crashing schedule.

CHAPTER 11

11.3-2.
Store

1 2 3

1 2 2
Allocations

3 2 0

11.3-7. (a) 
Phase (a) (b)

1 2M 2.945M
2 1M 1.055M
3 1M 0

Market share 6% 6.302% 

11.3-11. x1 � �2 � �13� � 1.6056, x2 � 5 � �13� � 1.3944; Z � 98.233.

11.4-3. Produce 2 on first production run; if none acceptable, produce 3 on second run. Expected
cost � $573.
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CHAPTER 12

12.1-2. (a) Minimize Z � 4.5xem � 7.8xec � 3.6xed � 2.9xel � 4.9xsm � 7.2xsc � 4.3xsd

� 3.1xsl,

subject to

xem � xec � xed � xel � 2
xsm � xsc � xsd � xsl � 2

xem � xsm � 1
xec � xsc � 1
xed � xsd � 1
xel � xsl � 1

and

all xij are binary.

12.3-1. (b)

Modified Original
Right-Hand Right-Hand

Constraint Product 1 Product 2 Product 3 Product 4 Totals Side Side

First 5 3 6 4 6000 � 6000 6000
Second 4 6 3 5 12000 � 105999 6000

Marginal revenue $70 $60 $90 $80 $80000
Solution 0 2000 0 0

� � � �

0 9999 0 0
Set Up? 0 1 0 0 1 � 2
Start-up Cost $50,000 $40,000 $70,000 $60,000

Contingency Constraints:

Product 3: 0 � 1 :Product 1 or 2
Product 4: 0 � 1 :Product 1 or 2

Which Constraint (0 � First, 1 � Second): 0 

12.3-5. (b, d) (long, medium, short) � (14, 0, 16), with profit of $95.6 million.

12.4-3. (b)
Right-Hand

Constraint Product 1 Product 2 Product 3 Total Side

Milling 9 3 5 498 � 500
Lathe 5 4 0 349 � 350
Grinder 3 0 2 135 � 150
Sales Potential 0 0 1 0 � 20

Unit Profit 50 20 25 $2870
Solution 45 31 0

� � �

999 999 0
Produce? 1 1 0 2 � 2 

12.4-5. (a) Let xij � �
Mutually exclusive alternatives: For each column of arcs, exactly one arc is included
in the shortest path. Contingent decisions: The shortest path leaves node i only if it en-
ters node i.

if arc i � j is included in shortest path
otherwise.

1
0
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12.5-2. (a) (x1, x2) � (2, 3) is optimal.
(b) None of the feasible rounded solutions are optimal for the integer programming problem.

12.6-1. (x1, x2, x3, x4, x5) � (0, 0, 1, 1, 1), with Z � 6.

12.6-7. (b) Task 1 2 3 4 5

Assignee 1 3 2 4 5

12.6-9. (x1, x2, x3, x4) � (0, 1, 1, 0), with Z � 36.

12.7-2. (a, b) (x1, x2) � (2, 1) is optimal.

12.8-1. (a) x1 � 0, x3 � 0

CHAPTER 13

13.2-7. (a) Concave.

13.4-1. (a) Approximate solution � 1.0125.

13.5-3. Exact solution is (x1, x2) � (2, �2).

13.5-7. (a) Approximate solution is (x1, x2) � (0.75, 1.5). 

13.6-3.
�4x1

3 � 4x1 � 2x2 � 2u1 � u2 � 0 (or � 0 if x1 � 0).
�2x1 � 8x2 � u1 � 2u2 � 0 (or � 0 if x2 � 0).

� 2x1 � x2 � 10 � 0 (or � 0 if u1 � 0).
� x1 � 2x2 � 10 � 0 (or � 0 if u2 � 0).

x1 � 0, x2 � 0, u1 � 0, u2 � 0.

13.6-6. (x1, x2) � (1, 2) cannot be optimal.

13.6-8. (a) (x1, x2) � (1 � 3�1/2, 3�1/2).

13.7-2. (a) (x1, x2) � (2, 0) is optimal.
(b) Minimize Z � z1 � z2,

subject to

2x12x2 � � u1 � y1 � y2 � v1� z1 � z2 � 8
2x1 � 2x2 � u1 � y1 � y2 �� v1 z1 � z2 � 4
x1 � x2 u1 � y1 � y2 y2 � v1 z1� � z2 � 2

x1 � 0, x2 � 0, u1 � 0, y1 � 0, y2 � 0, v1 � 0, z1 � 0,
z2 � 0.

13.8-2. (b) Maximize Z � 3x11 � 3x12 � 15x13 � 4x21 � 4x23,

subject to

x11 � x12 � x13 � 3x21 � 3x22 � 3x23 � 8
5x11 � 5x12 � 5x13 � 2x21 � 2x22 � 2x23 � 14

and

0 � xij � 1, for i � 1, 2, 3; j � 1, 2, 3.

13.9-8. (a) (x1, x2) � ��
1
3

�, �
2
3

��.

13.9-14. (a) P(x; r) � �2x1 � (x2 � 3)2 � r ��x1 �
1

3
� � �

x2 �
1

3
��.

(b) (x1, x2) � �3 � ��
2
r

��
1/2

, 3 � ��
2
r

��
1/3
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CHAPTER 14

14.2-2. The best solution found has links AC, BC, CD, and DE.

14.4-2. (a) For the first child, the options for the first link are 1-2, 1-8, 1-5, and 1-4 so the random
numbers 0.09656 and 0.96657 say to choose link 1-2 and no mutation occurs. The options for the
second link then are 2-3, 2-8, and 2-4, and so forth. A mutation occurs with the fifth link. The com-
plete first child is 1-2-8-5-6-4-7-3-1.

CHAPTER 15

15.2-2. Player 1: strategy 2; player 2: strategy 1.

15.2-7. (a) Politician 1: issue 2; politician 2: issue 2.
(b) Politician 1: issue 1; politician 2: issue 2.

15.4-4. (x1, x2) � (�
2
5

�, �
3
5

�); (y1, y2, y3) � (�
1
5

�, 0, �
4
5

�); v � �
8
5

� .

15.5-3. (a) Maximize x4,

subject to

5x1 � 2x2 � 3x3 � x4 � 0
3x1 � 4x2 � 2x3 � x4 � 0
3x1 � 3x2 � 2x3 � x4 � 0
x1 � 2x2 � 4x3 � x4 � 0
x1 � x2 � x3 � x4 � 1

and

x1 � 0, x2 � 0, x3 � 0, x4 � 0.

CHAPTER 16

16.2-2. (a)
State of Nature

Alternative Sell 10,000 Sell 100,000

Build Computers 0 54
Sell Rights 15 15 

(c) Let p � prior probability of selling 10,000. They should build when p � 0.722, and sell when
p � 0.722.

16.2-4. (c) Warren should make the countercyclical investment.

16.2-8. Order 25.

16.3-2. (a) EVPI � EP (with perfect info) � EP (without more info) � 34.5 � 27 � $7.5 million.
(d)

Data: P (Finding ⏐ State)

State of Prior Finding

Nature Probability Sell 10,000 Sell 100,000

Sell 10,000 0.5 0.666666667 0.333333333
Sell 100,000 0.5 0.333333333 0.666666667 
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16.3-4. (b) EVPI � EP (with perfect info) � EP (without more info) � 53 � 35 � $18
(c) Betsy should consider spending up to $18 to obtain more information.

16.3-8. (a) Up to $230,000
(b) Order 25.

16.3-9. (a)

Posterior P (State ⏐ Finding)
Probabilities: State of Nature

Finding P (Finding) Sell 10,000 Sell 100,000

Sell 10,000 0.5 0.666666667 0.333333333
Sell 100,000 0.5 0.333333333 0.666666667 

State of Nature

Alternative Poor Risk Average Risk Good Risk

Extend Credit �15,000 10,000 20,000
Don’t Extend Credit 0 0 0

Prior Probabilities 0.2 0.5 0.3 

(c) EVPI � EP (with perfect info) � EP (without more info) � 11,000 � 8,000 � $3,000. This in-
dicates that the credit-rating organization should not be used.

16.3-13. (a) Guess coin 1.
(b) Heads: coin 2; tails: coin 1.

16.4-2. The optimal policy is to do no market research and build the computers.

16.4-4. (c) EVPI � EP (with perfect info) � EP (without more info) � 1.8 � 1 � $800,000
(d)

0.6

0.4

0.25

0.25

0.75

0.75

0.45

0.15

0.1

0.3

0.818

0.333

0.182

0.667

W
in

Lose

lose, given win

win, given win

lose, given lose

win, given lose

win and win

win and lose

lose and win

lose and lose

win, given win

win, given lose

lose, given win

lose, given lose

Prior
Probabilities

P (state)

Conditional
Probabilities

P (finding|state)

Joint
Probabilities

P (state and finding)

Posterior
Probabilities

P (state|finding)

(f) Leland University should hire William. If he predicts a winning season then they should hold
the campaign. If he predicts a losing season then they should not hold the campaign.
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16.5-7. (a) Choose to introduce the new product (expected payoff is $12.5 million).
(b) $7.5 million.
(c) The optimal policy is not to test but to introduce the new product.

16.6-2. (a) Choose not to buy insurance (expected payoff is $249,840).
(b) U(insurance) � 499.82

U(no insurance) � 499.8
Optimal policy is to buy insurance.

16.6-4. U(10) � 9

CHAPTER 17

17.2-1. Input source: population having hair; customers: customers needing haircuts; and so forth
for the queue, queue discipline, and service mechanism.

17.2-2. (b) Lq � 0.375
(d) W � Wq � 24.375 minutes

17.4-2. (c) 0.0527

17.5-5. (a) State: 15 10 5

15

0 1 2 3

15 15

(c) P0 � �
2
9
6
�, P1 � �

2
9
6
�, P2 � �

1
3
3
�, P3 � �

1
1
3
�.

(d) W � 0.11 hour.

17.5-8. (b) P0 � �
2
5

�, Pn � (�
3
5

�)(�
1
2

�)n

(c) L � �
6
5

�, Lq � �
3
5

�, W � �
2
1
5
�, Wq � �

5
1
0
�

17.6-2. (a) P0 � P1 � P2 � P3 � P4 � 0.96875 or 97 percent of the time.

17.6-21. (a) Combined expected waiting time � 0.211
(c) An expected process time of 3.43 minutes would cause the expected waiting times to be the

same for the two procedures.

17.6-26. (a) 0.429

17.6-32. (a) three machines
(b) three operators

17.7-1. (a) Wq (exponential) � 2Wq (constant) � �
8
5

�Wq (Erlang).
(b) Wq (new) � �

1
2

� Wq (old) and Lq (new) � Lq (old) for all distributions.

17.7-6. (a, b) Under the current policy an airplane loses 1 day of flying time as opposed to 3.25
days under the proposed policy.
Under the current policy 1 airplane is losing flying time per day as opposed to 0.8125
airplane.
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Results

Reorder point � 6.48
Annual setup cost � $3,900

Annual holding cost � $3,900

Total variable cost � $7,800 
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17.7-9.
Service Distribution P0 P1 P2 L

Erlang 0.561 0.316 0.123 0.561
Exponential 0.571 0.286 0.143 0.571 

17.8-1. (a) This system is an example of a nonpreemptive priority queueing system.

(c) � �
0
0
.
.
0
0
3
8
3
3

� � 0.4

17.8-4. (a) W � �
1
2

�

(b) W1 � 0.20, W2 � 0.35, W3 � 1.10
(c) W1 � 0.125, W2 � 0.3125, W3 � 1.250

17.10-2. 4 cash registers

CHAPTER 18

18.3-1. (a) t � 1.83, Q � 54.77
(b) t � 1.91, Q � 57.45, S � 52.22

18.3-3. (a)

Wq for first-class passengers
����
Wq for coach-class passengers

(d)

Data

d � 676 (demand/year)
K � $75 (setup cost)
h � $600.00 (unit holding cost)
L � 3.5 (lead time in days)

WD � 365 (working days/year) 

Results

Reorder point � 6.5
Annual setup cost � $10,140

Annual holding cost � $ 1,500

Total variable cost � $11,640 

Decision

Q � 5 (order quantity) 

Data

d � 676 (demand/year)
K � $75 (setup cost)
h � $600 (unit holding cost)
L � 3.5 (lead time in days)

WD � 365 (working days/year) 

Decision

Q � 13 (order quantity) 

The results are the same as those obtained in part (c).
(f) Number of orders per year � 52

ROP � 6.5 � inventory level when each order is placed
(g) The optimal policy reduces the total variable inventory cost by $3,840 per year, which is a 

33 percent reduction.

18.3-6. (a) h � $3 per month which is 15 percent of the acquisition cost.
(c) Reorder point is 10.
(d) ROP � 5 hammers, which adds $20 to his TVC (5 hammers 	 $4 holding cost).

18.3-7. t � 3.26, Q � 26,046, S � 24,572
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18.3-12. (a) Optimal Q � 500

18.4-4. Produce 3 units in period 1 and 4 units in period 3.

18.6-6. (b) Ground Chuck: R � 145.
Chuck Wagon: R � 829.

(c) Ground Chuck: safety stock � 45.
Chuck Wagon: safety stock � 329.

(f) Ground Chuck: $39,378.71.
Chuck Wagon: $41,958.61.
Jed should choose Ground Chuck as their supplier.

(g) If Jed would like to use the beef within a month of receiving it, then Ground Chuck is the bet-
ter choice. The order quantity with Ground Chuck is roughly 1 month’s supply, whereas with
Chuck Wagon the optimal order quantity is roughly 3 month’s supply.

18.7-5. (a) Optimal service level � 0.667
(c) Q* � 500
(d) The probability of running short is 0.333.
(e) Optimal service level � 0.833

CHAPTER 19

19.2-2. (c) Use slow service when no customers or one customer is present and fast service when
two customers are present.

19.2-3. (a) The possible states of the car are dented and not dented.
(c) When the car is not dented, park it on the street in one space. When the car is dented, get it

repaired.

19.2-5. (c) State 0: attempt ace; state 1: attempt lob.

19.3-2. (a) Minimize Z � 4.5y02 � 5y03 � 50y14 � 9y15,

subject to

y01 � y02 � y03 � y14 � y15 � 1

y01 � y02 � y03 � ��
1
9
0
�y01 � �

4
5
9
0
�y02 � y03 � y14� � 0

y14 � y15 � ��
1
1
0
�y01 � �

5
1
0
�y02 � y15� � 0

and

all yik � 0.

19.3-4. (a) Minimize Z � ��
1
8

�y01 � �
2
7
4
�y02 � �

1
2

�y11 � �
1
5
2
�y12,

subject to

y01 � y02 � ��
3
8

�y01 � y11 � �
7
8

�y02 � y12� � 0

y11 � y12 � ��
5
8

�y01 � y11 � �
1
8

�y02� � y12 � 0

y01 � y02 � �
1
8

�y11 � y12 � 1

and

yik � 0 for i � 0, 1; k � 1, 2.
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CHAPTER 20

20.1-1. (b) Let the numbers 0.0000 to 0.5999 correspond to strikes and the numbers 0.6000 
to 0.9999 correspond to balls. The random observations for pitches are 0.7520
� ball, 0.4184 � strike, 0.4189 � strike, 0.5982 � strike, 0.9559 � ball, and 0.1403
� strike.

20.1-10. (b) Use � � 4 and � � 5.
(i) Answers will vary. The option of training the two current mechanics significantly decreases the

waiting time for German cars, without a significant impact on the wait for Japanese cars, and
does so without the added cost of a third mechanic. Adding a third mechanic lowers the aver-
age wait for German cars even more, but comes at an added cost for the third mechanic.

20.3-1. (a) 5, 8, 1, 4, 7, 0, 3, 6, 9, 2

20.4-2. (b) F(x) � 0.0965 when x � �5.18
F(x) � 0.5692 when x � 18.46
F(x) � 0.6658 when x � 23.29

20.4-6. (a) Here is a sample replication.

Summary of Results:

Win? (1 � Yes, 0 � No) 0
Number of Tosses � 3 

Simulated Tosses

Toss Die 1 Die 2 Sum

1 4 2 6
2 3 2 5
3 6 1 7
4 5 2 7
5 4 4 8
6 1 4 5
7 2 6 8 

Results

Win? Lose? Continue?

0 0 Yes
0 0 Yes
0 1 No

NA NA No
NA NA No
NA NA No
NA NA No 
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166–174
corner-point solution, 94, 120
cost assumption, 323
cost-benefit - trade-off problems, 47, 53, 60
cost of ordering, 803
cost tables, equivalent, 356–358
County Hospital problem, 732, 755–757, 773–775. See

also queueing models
CPF solutions. See corner-point feasible (CPF) solutions
CPLEX

explanation of, 8
for integer programming, 477

CPM (critical path method)
explanation of, 413
use of, 373, 415

crashing, 417
crashing activities, 417–418
crashing decisions

for activities, 418–420
linear programming and, 420–423

crew scheduling problem, 482–483
CrewSolver, 20
critical path

explanation of, 415
in time-cost trade-offs, 415–417

critical path method (CPM). See CPM (critical path method)
cutting planes, for interger programming problems, 524–525
cut value, 392
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cycle length, 911
cycles

explanation of, 375–376
undirected, 405

D

database requirements, 19
data cells, 62–65
data collection, 12
data mining, 12
decision analysis

decision making with experimentation and, 690–696
decision making without experimentation and, 684–689
decision trees and, 696–707
game theory vs., 663
overview of, 682–683
practical application of, 715–716
prototype example of, 683
sensitivity analysis and, 700–707
utility theory and, 707–715

decision conferencing, 716
decision making with experimentation

posterior probabilities and, 690–694
prototype example of, 690
value of experimentation and, 694–696

decision making without experimentation
Bayes' decision rule and, 687–689
formulation of prototype example of, 685
maximum likelihood criterion and, 686–687
maximum payoff criterion and, 685–686
nature of, 694–695
sensitivity analysis and, 688–689

decision nodes, 696, 699
decision-support system, 20
decision trees

construction of, 696–697
explanation of, 463
illustration of, 465
performing sensitivity analysis on, 700–707
problem analysis using, 697–700

decision variables
duality and, 218
examples of, 28
explanation of, 13, 33
in large linear programming problem, 74
as parameter cell, 931–935

decreasing marginal utility for money, 708
Deere & Company, 821
defining equations, 165
definite integral, 961

degeneracy, 112
D/Ek//s, 768
demand, 801
demand node, 377, 396, 397
dependent demand, 813
dependent-demand products, 813
derivative, of definite integral, 961
descendants, 504
Descriptive analytics, 4
determining reject allowances problem, 463–465
deterministic continuous-review models

demand for products and, 813–814
EOQ model with planned shortages and, 808–810
EOQ model with quantity discounts and, 810–811
Excel and, 812
explanation of, 805–806
illustration of, 806–808
just-in-time inventory management and, 814–815
observations about EOQ models and, 812–813

deterministic dynamic programming
distribution of effort problem and, 452–462
example of, 446–452
explanation of, 445
structure of, 446

deterministic inventory model, 801
deterministic multiechelon inventory models for supply

chain management
assumptions for serial multiechelon model and, 828–832
extensions of, 836–838
model for serial multiechelon system and, 821–825,

827–828
overview of, 820–821
relaxation and, 832–833
revised problem solution and, 833–836
rounding procedure for n* and, 825–827
serial two-echelon model, 821–825

deterministic periodic-review models
algorithm for, 817–820
example of, 815–817
explanation of, 815

Deutsche Post DHL, 599
directed arcs, 374
directed networks, 375
directed path, 375–376
discount factor, 804
discount rate, 804
discrete-event simulation, 894
distributing scientists to research teams problem, 454–458
distribution of effort problem, 452–454
distribution systems, 836, 907
Distribution Unlimited Co. problem, 60–62, 372, 398–399
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diversification, 625
divisibility, as linear programming assumption, 43
dual

explanation of, 197, 214
SOB method to determine form of constraints in, 215–217

dual feasible solution, 213, 290–291
duality properties, 577
duality theorem, 204
duality theory

adapting to other primal forms and, 213–217
applications of, 204–205
complementary basic solutions and, 211–213
dual problem and, 200–202
economic interpretations and, 205–208
explanation of, 197–200
nonlinear programming and, 576
primal-dual relationships and, 203–204, 208–213
sensitivity analysis and, 197, 217–219
simplex method and, 207–208

dual problem
applications of, 204–205
construction of, 213, 214
economic interpretation of, 205–207
explanation of, 197
in linear programming, 213
in minimization form, 198, 216
origin of, 200–202
for other primal forms, 213–217
relationship between primal problem and, 197–200
summary of relationship between primal problem and,

203–204
dual simplex method

example of, 292–294
explanation of, 219, 290–291
summary of, 292

dummy demand node, 396
dummy destination, 323, 327–329
dummy sink, 388
dummy source, 323, 330–332, 388
dynamic programming

deterministic, 445–462
explanation of, 438
probabilistic, 462–468
prototype example of, 438–443

dynamic programming problems, 443–445

E

echelon, 820
echelon stock, 824, 829
economic order quantity model. See EOQ models

efficient frontier, 552
either-or constraints, 483–484, 491
Ek/D/s, 768
Ek/M/s, 767
elementary row operations, 109
element constraints, 529–530
Em/Ek/s, 768
EOQ formula, 807, 815
EOQ models

basic, 806–808
Excel templates for, 812
explanation of, 805–806
observations about, 812–813
with planned shortages, 808–810
with quantity discounts, 810–811

equality constraints, 98, 116–120, 214, 960–961
equivalence property, 775
equivalent cost tables, 356–358
equivalent lottery method, 710–711
Erlang distribution, 752, 764–768, 915
event node, 696
Evolutionary Solver, 602
Excel (Microsoft). See also Solver (Excel)

EOQ model and, 812
maximum flow problem and, 394
minimum cost flow problem and, 399–400
OR applications for, 8
sensitivity analysis and, 138–140
shortest-path problem and, 379–381
for transportation problems, 325–327

expected value of experimentation, 694–696
expected value of perfect information (EVPI), 694–695
exponential distribution

explanation of, 739
properties of, 740–745
in queueing systems, 739–745, 760, 762
random observation generation and, 914–915

exponential growth, 497
exponential service times, 750
exponential time algorithms, 146

F

Fabrics and Fall Fashions (case), 160–162
fair game, 665
fathoming, 502, 504–506, 511–512
fathoming tests, 504–505, 507, 508
feasibility test, 233
feasible region

boundary of, 164
explanation of, 29, 30
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feasible solutions, 35, 99
feasible solutions property, 323, 398
feasible spanning trees, 405–406
Federal Aviation Administration (FAA), 920
financial engineering, 552
financial risk analysis, 907
finite queue variation, 757–760
fixed-charge problem, 486–488
fixed-time incrementing, 900–902
fractional programming, 560–561
Frank-Wolfe algorithm, 591–594
Franz Edelman Awards for Achievement in Operations

Research and the Management Science, 738
Frontline Systems, 70, 143
functional constraints

duality and, 214
explanation of, 34
in ≥ form, 120–122
slack variables and, 171

G

game theory
decision analysis vs., 663
extensions and, 676–677
for games with mixed strategies, 668–670
graphical solution procedure for, 670–672
linear programming to solve, 672–676
overview of, 661
solving simple games with, 663–668
two-person, zero-sum games and, 661–668

gamma distribution, 752n
Gassco, 393
Gaussian elimination, 105–106, 231, 232
General Motors Corporation, 776
genetic algorithms

basic, 647–648
basic concepts of, 645–647
explanation of, 645
generating a child procedure and, 653–655
integer version of nonlinear programming and, 648–651
traveling salesman problem and, 651–653

geometric programming, 560
GI/MI/s model, 767
global maximum, 959–961
global minimum, 959, 961
global optimization, 598–599
Goferbroke Co. problem, 683–707, 711–715. See also

decision analysis
Good Products Company example, 489–492
gradient algorithms, 590, 594

gradient search procedure, 567–572, 619
Graphical Method and Sensitivity Analysis, 137, 233, 260
graphical procedures

game theory and, 670–672
linear programming and, 29–31
nonlinear programming and, 552–556

GRG Nonlinear, 583
GUROBI, 8

H

hard constraints, 264, 268, 270–271
health care applications, 907–908
heuristic algorithms, 500, 501
heuristic procedures, 16
Hewlett-Packard (HP), 388, 739
hill-climbing procedure, 619
holding cost, 803
Hungarian algorithm

additional zero elements and, 358–360
background of, 356
equivalent cost tables and, 356–358
summary of, 360

hyperexponential distribution, 768–770
hyperplanes, 164, 167

I

IBM, 19
identity matrix, 963–964
incumbent, 504
independent demand, 813
Indeval, 73
indicating variables, 171–172
inequality constraints, 98
infeasible solution, 35
infinite game, 676
infinite queues, 776–777
influence diagram, 715
input cells, 921
installation stock, 829, 830
Institute for Operations Research and the Management

Sciences (INFORMS), 5, 738
integer programming (IP)

applications of, 474–475, 478–483
binary, 475–483, 501–512
binary variables in model formulation and, 483–496
branch-and-bound algorithm and, 513–519
branch-and-bound technique and, 501–512
branch-and-cut approach and, 519–525
explanation of, 474
incorporation of constraint programming and, 525–531
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LP relaxation and, 498–503, 513–518, 886
mixed, 474, 491, 513–519
problem-solving perspectives on, 497–501
prototype example of, 475–476
software for, 477

integer solutions property, 325, 350, 398
Intel Corporation, 646
intensification, 625
interarrival time, 733, 735, 739, 741
InterContinental Hotels Group (IHG), 855
Interfaces, 5
interior-point algorithm

in augmented form, 304, 305
centering scheme for implementing concept 3 in, 306
example of, 302
overview of, 301–302
projected gradient to implement concepts 1 and 2 and,

304–305
relevance of gradient for concepts 1 and 2 and, 302–303
summary of, 306–312

interior-point approach
background of, 143–144
key solution concept and, 144, 145
postoptimality analysis and, 147
simplex method vs., 145–146
to solve linear programming problems, 143–147

interior points, 144
internal service systems, 737
International Federation of Operational Research Societies

(IFORS), 5
interrelated activity scheduling, 481
inventory

explanation of, 800
replenishment of, 802–803
scientific management of, 800–801

inventory models
components of, 803–805
deterministic continuous-review, 805–815
deterministic multiechelon, 820–838
deterministic periodic-review, 815–820
stochastic continuous-review, 838–854

inventory policy
examples of, 801–803
in stochastic continuous-review model, 838–839
in stochastic single-period model, 853–854
strategies to improve, 800–801

inventory systems
computerized, 838
management of, 905
multiechelon, 820–837
serial multiechelon, 837

inverse transformation method, 913–914
investment analysis, 478–479
IOR Tutorial, 952–953
IP programming. See integer programming (IP)
iteration, 97, 98, 103–104, 106–107, 187, 342–345
iterative algorithms, 97, 144, 617

J

Jackson networks, 777–779
Job Shop Company problem, 348–353
just-in-time (JIT) inventory management, 800, 814–815

K
Karush-Kuhn-Tucker conditions. See KKT conditions
KeyCorp, 751
KKT conditions

application of, 594
for constrained optimization, 573–577
explanation of, 573
for quadratic programming, 578–579

known constant, 225
known constraints, 226
K out of N constraints, 484–485

L
Lagrange multipliers, 574, 576, 960, 961
Lagrangian function, 960
large linear programming models. See also linear

programming models
computer implementation of simplex method and, 142
example of, 73–78
explanation of, 71–72
interior-point algorithms and, 146
LINGO modeling language and, 78–79
modeling languages for, 72–73

lead time, 805
learning-curve effect, 548
LGO, 8, 599
LINDO

explanation of, 8, 72
for integer programming, 477
for large linear programming models, 72–73, 78
for linear programming, 142–143
use of, 147–151

LINDO API, 72, 78
LINDO Systems, Inc., 72
linear complementarity problem, 562, 579
linear fractional programming, 561
linear functions, piecewise, 589–590
linearly constrained optimization, 558
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linear programming
additivity and, 41–43
allowable range and, 237
applications of, 25–26
assumptions of, 38–44
certainty and, 43
crashing decisions and, 420–423
divisibility and, 43
dual simplex method and, 290–294
examples of, 26–31, 44–62
game theory and, 672–676
goal of, 35–36
interior-point algorithm and, 301–312
optimal policies and, 883–887
overview of, 25–26
parametric, 294–299
postoptimality analysis and, 133–134
proportionality and, 38–41
software for, 142–144
terminology for, 32–34
under uncertainty, 225–276 (See also uncertainty)
upper bound technique and, 299–301

linear programming models
basic information about, 32–34
Excel Solver to solve, 65–71
explanation of, 13–14
forms of, 34–35
method to formulate large, 71–79
parameters and, 276
spreadsheet use for, 62–65
standard form of, 34
symbols use in, 33–34
terminology for solutions of, 35–38

linear programming problems
dual problem in, 213
formulation of, 28–29, 46, 49–62
network optimization models as, 372
simplex method to solve, 26, 93–147 (See also simplex

method)
LINGO

example using, 78–79
explanation of, 72
for integer programming, 477
for linear programming, 142–143
for nonlinear programming, 598
stochastic programming and, 275
use of, 147–151

links, 374
Little's formula, 736, 772
L.L. Bean, Inc., 738
local improvement procedure, 619, 620

local maximum, 959
local minimum, 959
local optima

Excel Solver to find, 599–601
nonlinear programming problems with multiple,

618–621
systematic approach to finding, 601–602

local search procedure, 625
long-run profit maximization, 11
LP relaxation, 498–500, 503, 513–518, 522–525, 886

M

management information systems, 12, 19
manufacturing systems, 906–907
marginal cost analysis, 419–420
Markov chains

explanation of, 877–878
steady-state probabilities and, 879

Markov decision process
explanation of, 878
linear programming and, 883–887
model for, 880–882
prototype example of, 878–880, 882–883

Markovian property, 877, 878
Massachusetts Institute of Technology (MIT), 739
material requirements planning (MRP), 813–814
mathematical models

advantages of, 14
deriving solutions from, 15–18
explanation of, 13
formulation of, 13–15
linear programming, 13–14
pitfalls of, 14
retrospective test of, 19
validation of, 18

matrices
explanation of, 962
properties of, 965–966
transition, 877, 878
types of, 963–964
vectors and, 964–965

matrix form
dual problem and primal problem in, 198, 199
notation in, 175
sensitivity analysis and, 227
simplex method and property revealed by,

183–186
simplex method in, 141, 174–182

matrix multiplication, 963
max-flow min-cut theorem, 392–393
maximization form, primal problem in, 198, 215–216
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maximum flow problem
algorithm for, 388–389
applications of, 387–388
augmenting path algorithm for, 389–390
Excel to formulate and solve, 394
explanation of, 387
finding augmenting path and, 392–393
minimum cost flow problem and, 401–402
Seervada Park problem and, 390–392

maximum likelihood criterion, 686–687
maximum payoff criterion, 686
M/D/s model, 764
M/Ek/s model, 764–767
Memorial Sloan-Kettering Cancer Center (MSKCC), 46
Merrill Lynch, 12, 906
metaheuristics

development of, 16
examples of, 618–623
explanation of, 617
genetic algorithms and, 645–655
nature of, 618–625
simulated annealing and, 636–645
sub-tour reversal algorithm and, 623–625
tabu search and, 625–636
traveling salesman problem and, 621–623

M/G/1 model, 735, 763–764, 767
midpoint rule, 563
Midwest Independent Transmission System Operator, Inc.

(MISO), 479
military simulation applications, 908
minimax criterion, 666, 669
minimax theorem, 669, 674
minimization, simplex method and, 122–123
minimization form, dual problem in, 198, 216
minimum cost flow problem

applications of, 395–397
example of, 398–399
Excel to formulate and solve, 399–400
explanation of, 372–373, 395
formulation of, 397–398
special cases of, 400–403

minimum cover, 525
minimum ratio test, 104, 109
minimum spanning tree problem

algorithm for, 384
applications of, 383–384
explanation of, 377, 382–383
Seervada Park problem and, 384–386
tabu search and, 627–632

mixed congruential method, 910–911
mixed integer programming (MIP). See also integer

programming (IP)

applications of, 486, 487, 491
branch-and-bound algorithm for, 513–519
explanation of, 474

mixed strategies, games with, 668–670, 672
M/M/1 queueing system, 900, 903
M/M/s/K model, 757–760
M/M/s model

application of, 755–757, 777
birth-and-death process and, 750–760
explanation of, 735, 750–751
finite calling population variation of, 760–762
finite queue variation of, 757–760
multiple-server case and, 753–755
single-server case and, 751–753

model validation, 18
modified simplex method, 580–582
Moneyball (Lewis), 4–5
Money in Motion (case), 434–436
move selection rule, 637, 638
MPL (Mathematical Programming Language)

for convex programming, 72, 598
example using, 75–78
explanation of, 8, 142, 953
for integer programming, 477
for large linear programming models, 72, 73

multiple optimal solutions, 36, 113–114
multivariable unconstrained optimization

explanation of, 567, 960
gradient search procedure and, 567–572
Newton’s method and, 572–573

mutiplicative congruential method, 912
mutually exclusive alternatives, 476, 481, 486

N

negative right-hand sides, 120
net flow, 375, 381
Netherlands Railways, 482
net present value, 475, 804
network design, minimum spanning tree problem 

and, 386
network optimization models

maximum flow problem and, 387–394
minimum cost flow problem and, 395–403
minimum spanning tree problem and, 382–386
network simplex method and, 403–412
to optimize project time-cost trade-off, 413–424
overview of, 372–373
prototype example of, 373–374
shortest-path problem and, 377–381

networks
components of, 374
connected, 376
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nonlinear programming
complementarity, 561–562
convex programming, 559, 590–598
explanation of, 547
fractional, 560–561
geometric, 560
graphical illustration of, 552–556
KKT conditions for constrained optimization and,

573–577
linearly constrained optimization and, 558
with multiple local optima, 618–621
multivariable unconstrained optimization and, 567–573
nonconvex programming, 560, 598–602
one-variable unconstrained optimization and, 562–567
portfolio selection with risky securities problem, 550–552
product-mix with price elasticity problem, 548–549
quadratic programming and, 558–559, 577–583
sample applications of, 548–552
separable programming, 559–560, 583–590
simulated annealing and, 642–645
transportation problem with volume discounts on

shipping costs, 549, 550
unconstrained optimization, 557–558

nonnegativity constraints, 34, 97, 491
nonpositivity constraints, 214
nonpreemptive priorities, 771
nonpreemptive priorities model, 771–773
nonzero-sum game, 676
Nori & Leets Co. problem, 51–53
normal distribution, 268, 915–916
normal distribution table, 967–968
n-person game, 676
null matrix, 964
null vector, 964

O

objective cells, 65
objective function

deterministic dynamic programming and, 446
explanation of, 13, 34, 36
in large linear programming problem, 74–75
OR model formulation and, 14
simplex method and, 103
slope-intercept form of, 31

objective function coefficients
allowable range for, 246–248
100 percent rule for simultaneous changes in, 243–244,

261–263
simultaneous changes in, 243–244

objectives, in problem definition, 11

1002 SUBJECT INDEX

directed, 375
explanation of, 372
flows in, 377
project, 414–415
queueing, 775–779
residual, 388
terminology of, 374–377
time-cost trade-off optimization and, 413–424
undirected, 375, 401

network simplex method
BF solutions and feasible spanning trees and, 404–405
completing process in, 409–412
explanation of, 373, 403
leaving basic variable and, 408–409
minimum cost flow problem and, 400
selecting and entering basic variables and, 406–408
upperbound technique and, 403–404

newsvendor problem, 843
Newton's method

explanation of, 565
of multivariable unconstrained optimization, 572–573
one-variable unconstrained optimization and, 566–567
quasi-, 573

next-event incrementing, 902–904
no backlogging, 804
nodes

in decision trees, 696
demand, 377, 396, 397
dummy demand, 396
explanation of, 374, 375
supply, 377
transshipment, 377, 397

nonbasic arcs, 404
nonbasic variables, 100, 210, 217–218, 240
nonconvex programming

challenges related to, 598–599
Evolutionary Solver and, 602
Excel Solver to find local optima and, 599–601
explanation of, 560, 598
multiple local optima and, 618–621
systematic approach to finding local optima and,

601–602
noncooperative game, 676
nonexponential distributions involving queueing 

models
hyperexponential distribution and, 768–769
M/D/s, 764
M/Ek/s, 764–767
M/G/1, 763–764
phase-type distribution and, 769–770
without Poisson input, 767–768
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100 percent rule
for simultaneous changes in objective function

coefficients, 243–244, 261–263
for simultaneous changes in right-hand sides, 238

one-variable unconstrained optimization
bisection method and, 563–565
explanation of, 562–563
Newton's method and, 565–567

Operation Desert Storm, 447
operations research modeling approach

conclusions related to, 21
defining the problem and gathering data in, 10–12
deriving solutions from, 15–17
implementation of, 20–21
mathematical model formulation in, 13–15
model application in, 19–20
model testing in, 18–19

operations research (OR)
analytics and, 3–5
applications of, described in vignettes, 6–7
impact of, 5
nature of, 2–3
origins of, 1–2
team in, 3, 11

OPL-CPLEX Development System, 530
optimality principle, 444
optimality test

for basic feasible solution, 103, 106
for corner-point feasible solution, 95, 96
sensitivity analysis and, 233
simplex method and, 103, 341–342

optimal policies, in Markov decision process, 883–887
optimal solutions

CPF solutions and, 37–38
example of, 31
explanation of, 3, 36
iteration and, 106–107
multiple, 113–114
search for, 16

optimization
classical methods of, 959–961
combinatorial, 621
constrained, 558, 573–577, 960–961
global, 598–599
robust, 264–267
with simulation and ASPE's Solver, 935–939
unconstrained, 557–558, 562–573, 959–960

Optimization Programming Language (OPL),
530–531

optimizing, satisficing vs., 16
OR. See operations research (OR)

OR Courseware
Analytic Solver Platform for Education, 953
Excel files, 953
explanation of, 7
IOR Tutorial, 952–953
LINGO/LINDO files, 953
MPL/Solvers, 953
OR Tutor, 952
updates, 953
use of, 31–32

order quantity Q, 839
OT Tutor, 952
output cells, 64, 922
overall measure of performance, 14
overbooking model, 858–861

P

Pacific Lumber Company (PALCO), 237
P & T Company problem, 319–332. See also

transportation problem
parameter analysis report

two-way, 256–258
use of, 253–255, 931

parameter cell, 931–935
parameters

explanation of, 13
of linear programming model, 34

parameter table, 323, 324, 328, 354
parametric linear programming

explanation of, 140–141, 294
for systemic changes in bi parameters, 296–299
for systemic changes in cj parameters, 294–296

path
augmenting, 389
critical, 415–416
directed, 375–376
undirected, 375–376

payoff, 684
payoff table, 662–664, 667, 668, 684
performance, overall measure of, 14
perishable products, 843–844. See also stochastic single

period model for perishable products
PERT, 413, 415
PERT/CPM, 413
phase-type distributions, 769–770
piecewise linear functions, 589–590
pivot column, 109
pivot number, 109
pivot row, 109
planned shortages, EOQ model with, 808–810
Poisson distribution, 745
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Poisson input
explanation of, 750, 770
models without, 767–768

Poisson input process, 743, 744, 771
Poisson process, 743–745
policy decision, 443
political campaign problem, 675–676
Pollaczek-Khintchine formula, 763, 764
polynomials, 560
polynomial time algorithms, 145–146
portfolio selection, with risky security, 550–552
positive semidefinite matrix, 578
posterior probabilities, 690–694, 697
postoptimality analysis

combining simplex method with interior-point approach
for, 147

Excel and, 138–140
explanation of, 17, 133, 185
parametric linear programming and, 140–141
reoptimization and, 134
sensitivity analysis and, 137–138
shadow prices and, 135–137
use of, 15

predictive analytics, 4
preemptive priorities, 771, 774–775
preemptive priorities model, 773
prescriptive analytics, 4
price-demand curve, 548
price elasticity, product-mix problem with, 548–549
primal-dual relationships. See also duality theory; dual

problem; primal problem
complementary basic solutions and, 209–211
explanation of, 208
relationships between complementary basic solutions

and, 211–213
primal-dual table, 198
primal feasible solution, 213, 290
primal problem

applications of, 204–205
economic interpretation of, 205
explanation of, 197
in maximization for, 215–216
in maximization form, 198, 215–216
relationship between dual problem and, 197–200
summary of relationship between dual problem and,

203–204
principle of optimality, 444
prior distribution, 684–685
priority-discipline queueing models

example of, 773–775
explanation of, 770

nonpreemptive priorities model and, 771–772
preemptive priorities model and, 773
single-server variation of, 772–773
types of, 770–771

prior probabilities, 685, 697
probabilistic dynamic programming

examples of, 463–468
explanation of, 462–463

probability distribution
explanation of, 462–463
generation of random observations from, 912–917

probability tree, 692
problem definition, 11
Procter & Gamble (P&G), 320
product demand, 813–814
production and distribution network design, 480
product-mix problem

explanation of, 27, 490
with price elasticity, 548–549

products
perishable, 842–854
stable, 842

profit function, 548, 549
profit maximization, long-run, 11
profits, goal of satisfactory, 11
project deadlines, 905–906
project networks, 414–415
proportionality

auxiliary binary variables and, 492–495
explanation of, 38
as linear programming assumption, 38–41

pseudo-random numbers, 910
pure strategies, 668, 670

Q

quadratic approximation, 566, 594
quadratic programming

explanation of, 558–559, 577–578
KKT conditions for, 578–579
modified simplex method and, 580–582
software options for, 582–583

quantity discounts, with EOQ model, 810–811
quasi-Newton methods, 573
queue, 732, 733
queue discipline, 732, 733
queueing models

basic structure of, 732–737
birth-and-death process and, 745–762
M/M/s, 750–762
nonexponential distributions and, 762–770
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priority discipline, 770–775
queueing networks

explanation of, 775–776
infinite queues in series and, 776–777
Jackson networks and, 777–779

Queueing Simulator, 902–903
queueing systems

classes of, 737–738
design and operation of, 738–739, 905
explanation of, 732
exponential distribution and, 739–745

queueing theory
applications of, 738, 779–784
background of, 738
explanation of, 731
prototype example of, 732
terminology and notation for, 735–736

R

R, Q policy (reorder-point, order-quantity policy), 839
radiation therapy, two-phase method and, 125–126
radiation therapy example

illustration of, 45–47
primal-dual form and, 217
simplex method and, 123–125

RAND() function (Excel), 895, 908
random digits table, 909
random integer numbers

converted to uniform random numbers, 912
explanation of, 909
generation of, 910
probability distributions and, 913

randomized policy, 884–885
random number generation

computers for, 910
congruential methods for, 910–912
simulation and, 908

random number generators, 909
random numbers

categories of, 909
characteristics of, 909–910
explanation of, 909
move selection rule and, 638
uniform, 895, 910, 911

random observations from probability distribution
explanation of, 909
generation of, 912–917

range names, 63, 65
range of uncertainty, 265
rate in = rate out principle, 747–748

recursive relationship, 444, 445
Reducing In-Process (case), 798–799
regional planning problem, 47–51
relaxation

explanation of, 831
inventory and, 503, 832–833
LP, 498–500, 503, 513–518, 522–525

Reliable Construction Co. problem, 413–424. See also
time-cost trade-offs

reoptimization
in postoptimality analysis, 134
sensitivity analysis and, 233

reorder point, 806, 840–842
replicability, 20
reproducibility, 20
residual capacities, 388, 389
residual network, 388, 389
resource-allocation problems, 29, 44
results cell, 924
retrospective test, 19
revenue, 804
revenue management

in airline industry, 854–855
background of, 854–856
capacity-controlled discount fares and, 856–858
considerations for models used in, 861–862
explanation of, 854
overbooking model and, 858–861

reverse arc, 403
revised simplex method

applications of, 185
explanation of, 186–189

Rijkswaterstaat (Netherlands) study, 15, 17–18
risk-averse, 708
risk-neutral, 708
risk seekers, 708
robust optimization

explanation of, 264–265
extension of, 267
with independent parameters, 265–267
recourse and, 275
stochastic programming and, 272

row reduction, 360
row vector, 964
Russell's approximation method, 338, 340

S

saddle point, 666–667
salvage value, 804, 846
Samsung Electronics Corp., 21
Sasol, 918

SUBJECT INDEX 1005

hil23453_s_idx_992-1018.qxd  1/22/70  1:00 PM  Page 1005 Final PDF to printer



1006 SUBJECT INDEX

satisficing, 16
Save-It Company problem, 53–57
Savvy Stock Selection (case), 615–616
scheduling employment levels problem, 456–462
scientific inventory management,

800
Sears, Roebuck and Company, 626
Seervada Park problem

algorithm for shortest-path problem and, 378–379
maximum flow problem and, 390–392
minimum spanning tree problem and, 383–386
overview of, 373–374

sensible-odd-bizarre method (SOB), 215–217
sensitive parameters

explanation of, 17, 137
sensitivity analysis to identify, 226

sensitivity analysis
application of, 43, 233–250
with Bayes' decision rule, 688–689
changes in bi and, 233–239
changes in coefficients of basic variable and, 244–248
changes in coefficients of nonbasic variable and,

240–244
duality theory and, 197, 217–219
example of, 228–232
explanation of, 13, 197, 226
introduction of new constraint and, 248–250
introduction of new variable and, 244
in postoptimality analysis, 17, 18, 137–138
procedure for, 227–228, 232–233
purpose of, 226
sensitivity report to perform, 259–263
on spreadsheets, 250–263, 700–707
types of, 264

sensitivity reports, 259–263
separable programming

explanation of, 559–560, 583–584
extensions of, 589–590
key property of, 586–589
reformulation as linear programming problem and,

584–586
sequences of numbers, 909
sequential-approximation algorithms, 590–591
sequential linear approximation algorithm (Frank-Wolfe),

591–594
sequential unconstrained algorithms, 590
sequential unconstrained minimization technique. See

SUMT
serial multiechelon system

assumptions for, 828–832
model for, 827–828

serial two-echelon model, 821–825
servers, 733
service industry simulation applications, 908
service level, 848, 849
service time, 733–735, 739, 741, 742
set covering problems, 496
set partitioning problems, 496
shadow price

duality theory and, 185, 219
explanation of, 135–137
sensitivity analysis and, 226

shipment dispatch, 480–481
shipping costs, 549, 550
Shipping Wood to Market (case), 370
shortage cost, 804
shortest-path problem

algorithm for, 378
applications for, 381–382
Excel to formulate and solve, 379–381
minimum cost flow problem and, 401
overview of, 377
Seervada Park, 378–379

simple discrete distributions, 913
simplex method. See also dual simplex method; network

simplex method
algebra of, 101–107
basic feasible solutions in, 105–106, 172–174, 176–177
computer implementation of, 141–143
CPF solutions and, 46, 94–101, 121, 146, 147, 163,

166–174
direction of movement and, 103–104
duality and, 207–208, 219
equality constraints and, 116–120
examples in, 95–96, 123–125
explanation of, 2, 26, 93–95
extensions to augmented form of problem and, 171–174
functional constraints in ≥ form and, 120–122
geometric concepts in, 93–95
interior-point approach and, 145–147
key solution concepts in, 96–98
in matrix form, 141, 174–186
maximum flow problem and, 388
method to set up, 98–101
minimization in, 122–123
modified, 580–582
negative right-hand sides and, 120
no feasible solutions and, 130–131
optimality test and, 103, 341–342
postoptimality analysis and, 133–141
property revealed by matrix form of, 183–186
revised, 185–189
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summary of, 108–111
in tabular form, 107–111
terminology for, 163–166
tie breaking in, 112–115
for transportation problem, 333–347
two-phase method in, 125–130
use of, 26
with variables allowed to be negative, 131–133

simplex tableau, 108, 109, 200, 227–232, 333
simulated annealing

basic concepts of, 636–638
basic simulated annealing algorithm and, 638–639
nonlinear programming and, 642–645
traveling salesman problem and, 639–642

simulated annealing algorithm, 638–639
simulation

continuous, 894
discrete-event, 894
examples of, 894–900
explanation of, 892–893
fixed-time incrementing and, 900–902
next-event incrementing and, 902–904
optimization with, 924–939
in OR studies, 893–894
random number generation and, 908–912
random observation generation from probability

distribution and, 912–917
software for, 893–894, 918–919
spreadsheets for, 921–939
steps in OR research studies based on applying,

917–921
simulation applications

distribution system design and operation, 907
financial risk analysis, 907
health care, 907–908
innovative new, 908
inventory system management, 905
manufacturing systems design and operation, 906–907
military, 908
project completion deadline, 905–906
queuing systems design and operation, 905
service industry, 908

simulation models
checking accuracy of, 918
explanation of, 893
formulation of, 917–918
planning simulations for, 919–920
preparing recommendations based on, 921
simulation run for, 920–921
software for, 918–919
testing validity of, 919

sink, 387
site selection, 479–480
slack variables, 98, 99, 108, 227
slope-intercept form, of objective function, 31
SOB (sensible-odd-bizarre method), 215–217
social service systems, 737
soft constraints, 264, 270
software

linear programming, 142–144
nonlinear programming, 582–583, 597–598
operations research background and development of, 2
for simulation, 893–894, 918–919
for solving BIP models, 477

solid waste reclamation problem, 53–57
solutions. See also basic feasible (BF) solutions; optimal

solutions
corner-point feasible, 36
feasible, 35
infeasible, 35
optimal, 6, 13, 36
suboptimal, 16

Solver (Excel). See also Analytic Solver Platform for
Education (ASPE)

application of, 65
description of, 65–69
to find local optima, 599–601
for integer programming, 477
for linear programming, 143
sensitivity analysis and, 276

source, 387
Southern Confederation of Kibbutzim problem, 47–51
Southwestern Airways example, 495–496
spanning trees

explanation of, 376–377, 627
feasible, 405, 406
minimum, 627–632

spreadsheets
ASPE's Solver and, 70–71
formulating linear programming models on, 62–65
sensitivity analysis on, 250–263, 700–707
software for, 918
Solver use and, 65–69

stable products, 842–843
stable solution, 667
stagecoach problem, 438–443
stages, in dynamic programming problems, 443
standard form, for linear programming model, 34
state of nature, 684
states, in dynamic programming problems, 443
stationary, deterministic policy, 883
statistic cells, 926
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StatoilHydro, 393
steady-state condition, 736, 747, 749
steepest ascent/mildest descent approach, 625
stochastic continuous-review model

assumptions of, 839
example of, 842
explanation of, 838–839
order quantity Q and, 839
reorder point R and, 840–842

stochastic inventory model, 801
stochastic process, 877
stochastic programming with recourse

applications of, 274–275
example of, 272–274
explanation of, 271–272

stochastic single period model for perishable products
analysis of, 847–852
application of, 849–850, 852–853
assumptions of, 846–847
example of, 844–846
explanation of, 842–843
optimal policy and, 853–854
types of perishable products and, 843–844

stock portfolios, 550–552
strong duality property, 674
structural constraints. See functional constraints
submatrices, 964
suboptimal solutions, 16
sub-tour reversal, 622–623
sub-tour reversal algorithm, 623–625
SULUM, 8
SUMT

example of, 596–597
explanation of, 590, 595–596
summary of, 596

superoptimal basic solution, 231
Supersuds Corporation example, 492–495
supply chain, 820
supply chain management. See deterministic multiechelon

inventory models for supply chain management
supply node, 377
surplus variable, 121–122
Swift & Company, 27
symbols, use in linear programming models, 33–34
symmetry property, 204
system service rate, 750–751

T

table lookup approach, 913
tabular form, simplex method in, 107–111

tabu list, 625
tabu search

basic tabu search algorithm and, 626–627
explanation of, 625
minimum spanning tree problem with constraints and,

627–632
traveling salesman problem and, 632–636

Taco Bell Corporation, 498
tasks, 348, 350
teams, 3, 11
technological coefficients, 138
time advance methods, 900
time-cost trade-offs

crashing decisions and, 418–423
critical path and, 415–417
for individual activities, 417–418
network model and, 413
project networks and, 414–415
prototype example of, 413–414

Time Inc., 844
transient condition, 736, 746
transition matrix, 877, 878
transition probabilities, 880
transportation problem

basic feasible (BF) solutions and, 336–345
with dummy destination, 327–329
with dummy source, 330–332
Excel to formulate and solve, 325–327
explanation of, 318
generalizations of, 332
minimum cost flow problem and, 400
model of, 322–325
prototype example of, 319–322
streamlined simplex method for, 333–347
with volume discounts on shipping costs, 549, 550

transportation service systems, 737
transportation simplex method

application of, 351–352
drawback of, 352
explanation of, 333
features of example of, 345–347
initialization of, 335–341
iteration for, 342–345
optimality test for, 341–342
set up for, 333–335
summary of, 345

transportation simplex tableau, 335, 346–347
transpose operation, 963
transshipment node, 377, 397
transshipment problem, minimum cost flow 

problem and, 401
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traveling salesman problem
example of, 621–623
genetic algorithms and, 651–653
simulated annealing and, 639–642
tabu search and, 632–636

trend charts, 931
two-bin system, 838
two-person

constant-sum game, 676
zero-sum games

explanation of, 661–663
formulation of, 663–668

two-phase method
explanation of, 125–126
use of, 126–130

U

unbounded Z, 36, 113
uncertainty

chance constraints and, 268–271
overview of, 225–226
robust optimization and, 264–267
sensitivity analysis and, 226–233
sensitivity analysis application and, 233–250
sensitivity analysis on spreadsheets and, 250–264
stochastic programming with recourse and,

271–275
unconstrained optimization

explanation of, 557–558
multivariable, 567–573, 960
one-variable, 562–567, 959–960

undirected arcs, 374–375
undirected networks, 375, 401
undirected path, 375–376
uniform random numbers, 895, 910, 911
Union Airways problem, 57–60
United Airlines, 396
unstable solution, 667
upper bound technique

example of, 300–301
explanation of, 299–300
network simplex method and, 403–404

utility function (U/M) for money M, 708–713
utility theory

application of, 711–715
equivalent lottery method and, 710–711
estimating U/M and, 712–713
overview of, 707–708
utility functions for money and, 708–710

utilization factor, 735–736, 751

V

value of game, 665
variables

artificial, 117
binary, 349, 475, 483–496
with bound on negative values allowed, 132
decision, 13, 28, 33, 74, 218
indicating, 171
negative, 131–132
in network simplex method, 406–408
with no bound on negative values allowed,

132–133
nonbasic, 100, 210, 217–218, 240
slack, 98, 99, 108, 227
surplus, 121–122

variance-reducing techniques, 920
vectors

of basic variables, 176
explanation of, 964–965

Vogel's approximation method, 337–341

W

waiting cost, 780
warm-up period, 902
Waste Management, Inc., 515
Welch's, Inc., 63
Westinghouse Science and Technology Center, 697
what-if analysis, 17
winning in Las Vegas problem, 466–468
Winter Simulation Conference, 908
World Health Council problem, 446–452
Worldwide Corporation problem, 73–79
Wyndor Glass Co. problem

additivity assumption and, 41–43
approach to, 27–28
background of, 26
certainty assumption and, 43
chance constraints and, 269, 270
complementary basic solutions for, 210
conclusions about, 31, 36, 37
constraint boundary equations for, 172–174
constraints in, 164
CPF solutions for, 165, 166, 169–170
divisibility assumption and, 43
dual simplex method and, 292–294
formulation of mathematical model for, 28–29
graphical solution to, 29–31
interior-point algorithm and, 145
LINDO and LINGO use and, 147–150
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nonlinear programming and, 552–556, 587–588
primal and dual problems for, 199, 202
proportionality assumption and, 38–41
sensitivity analysis and, 228–232, 234–236, 238–242,

245–258
simplex method and, 94–98, 102, 108–111, 113–117,

131, 132, 183–184, 186, 188
spreadsheets for, 62–71, 251–258
stochastic programming and, 272–274
uncertainty and, 266, 267

X

Xerox Corporation, 738

Y

yes/no decisions, 349, 474, 483, 495

Z

zero elements, 358–360
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Errata 
Introduction to Operations Research 10th ed 

 
Page Line Was Should be 
vii 30-31 Institute of Operations Institute for Operations 
viii 32 Institute of Operations Institute for Operations 
xxx 26 Daniel Flystra Daniel Fylstra 
566 23      
567 5 after the table Each x to some power Insert a subscript i 
738 11 Institute of Operations Institute for Operations 
 
 
 



For nearly fve decades, Introduction to Operations Research has been the classic text on operations research. 
Tis edition provides more coverage of dramatic real-world applications than ever before. Te hallmark 
features continue to be clear and comprehensive coverage of fundamentals, an extensive set of interesting 
problems and cases, and a wealth of state-of-the-art, user-friendly software. 

New to the Tenth Edition 
•  A chapter on linear programming under uncertainty that includes topics such as robust optimization, 
chance constraints, and stochastic programming with recourse

•  A section on the recent rise of analytics together with operations research
•  Analytic Solver Platform for Education – exciting new software that provides an all-in-one package 
for formulating and solving many OR models in spreadsheets

Additional Features
Te text website (www.mhhe.com/hillier) contains many other software options, including: 

•  Student versions of the MPL Modeling System and its elite solvers, as well as an MPL tutorial and 
formulation examples from the text 

•  Student versions of LINGO and LINDO with many formulation examples from the text 
•  OR Tutor and IOR Tutorial for efciently learning various algorithms
•  Excel spreadsheet formulations and solutions, using either the standard Excel Solver or the Analytic 
Solver Platform for Education, for the examples in the text 

•  Many Excel templates for automatically solving a variety of models

Digital supplements ConnectPlus (125917400X) and LearnSmart (1259173992) have been added to this 
textbook package to make it convenient for students to learn the material and easier for instructors to assign 
and grade their work. See below for more on these products.

McGraw-Hill Connect® Engineering provides online presentation, assignment, 
and assessment solutions. A robust set of questions and activities are presented 
and aligned with the textbook’s learning outcomes. Integrate grade reports easily 

with Learning Management Systems (LMS), such as WebCT and Blackboard—and much more. 
ConnectPlus® Engineering provides students with all the advantages of Connect Engineering, plus 24/7 
online access to a media-rich eBook. www.mcgrawhillconnect.com

McGraw-Hill LearnSmart® is available as a standalone product or 
an integrated feature of McGraw-Hill Connect Engineering. It is an adaptive learning system designed to 
help students learn faster, study more efciently, and retain more knowledge for greater success. LearnSmart 
assesses a student’s knowledge of course content through a series of adaptive questions. It pinpoints concepts 
the student does not understand and maps out a personalized study plan for success. Tis innovative study 
tool also has features that allow instructors to see exactly what students have accomplished.  
www.mhlearnsmart.com

Powered by the intelligent and adaptive LearnSmart engine, 
SmartBook™ is the frst and only continuously adaptive reading experience available today. Distinguishing 
what students know from what they don’t, and honing in on concepts they are most likely to forget, SmartBook 
personalizes content for each student.  Reading is no longer a passive and linear experience but an engaging 
and dynamic one, where students are more likely to master and retain important concepts, coming to class 
better prepared. 
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 Glossaries - 1 

Glossary for Chapter 1 

Algorithm   A systematic solution procedure for solving a particular type of problem. 

(Section 1.5) 

Analytics   Closely related to operations research, analytics is the scientific process of 

transforming data into insight for making better decisions. (Section 1.3) 

Business analytics   An alternative name for analytics when it is being applied in a 

business context. (Section 1.3) 

Descriptive analytics   A category of analytics that involves locating the relevant data 

and identifying the interesting patterns in order to better describe and understand what is 

going on now. (Section 1.3) 

Prescriptive analytics   A category of analytics that involves using the data to prescribe 

what should be done in the future. (Section 1.3) 

Predictive analytics   A category of analytics that involves using the data to predict what 

will happen in the future. (Section 1.3) 

OR Courseware   The overall name of the set of software packages that are shrink-

wrapped with the book. (Section 1.5) 

 

Glossary for Chapter 2 

Algorithm   A systematic solution procedure for solving a particular type of problem. 

(Section 2.3) 

Constraint   An inequality or equation in a mathematical model that expresses some 

restrictions on the values that can be assigned to the decision variables. (Section 2.2) 



 Glossaries - 2 

Data mining   A technique for searching large databases for interesting patterns that may 

lead to useful decisions. (Section 2.1) 

Decision support system   An interactive computer-based system that helps managers 

use data and models to support their decisions. (Section 2.5) 

Decision variable   An algebraic variable that represents a quantifiable decision to be 

made. (Section 2.2) 

Heuristic procedure   An intuitively designed procedure for seeking a good (but not 

necessarily optimal) solution for the problem at hand. (Section 2.3) 

Linear programming model   A mathematical model where the mathematical functions 

appearing in both the objective function and the constraints are all linear functions. 

(Section 2.2) 

Metaheuristic   A general kind of solution method that provides both a general structure 

and strategy guidelines for designing a specific heuristic procedure to fit a particular kind 

of problem. (Section 2.3) 

Model   An idealized representation of something. (Section 2.2) 

Model validation   The process of testing and improving a model to increase its validity. 

(Section 2.4) 

Objective function   A mathematical expression in a model that gives the overall 

measure of performance for a problem in terms of the decision variables. (Section 2.2) 

Optimal solution   A best solution for a particular problem. (Section 2.3) 

Overall measure of performance   A composite measure of how well the decision 

maker’s ultimate objectives are being achieved. (Section 2.2) 

Parameter   One of the constants in a mathematical model. (Section 2.2) 



 Glossaries - 3 

Retrospective test   A test that involves using historical data to reconstruct the past and 

then determining how well the model and the resulting solution would have performed if 

they had been used. (Section 2.4) 

Satisficing   Finding a solution that is good enough (but not necessarily optimal) for the 

problem at hand. (Section 2.3) 

Sensitive parameter   A model’s parameter whose value cannot be changed without 

changing the optimal solution. (Section 2.3) 

Sensitivity analysis   Analysis of how the recommendations of a model might change if 

any of the estimates providing the numbers in the model eventually need to be corrected. 

(Sections 2.2 and 2.3) 

Suboptimal solution   A solution that may be a very good solution, but falls short of 

being optimal, for a particular problem. (Section 2.3) 

 

Glossary for Chapter 3 

Additivity   The additivity assumption of linear programming holds if every function in 

the model is the sum of the individual contributions of the respective activities. (Section 

3.3) 

Blending problem   A type of linear programming problem where the objective is to find 

the best way of blending ingredients into final products to meet certain specifications. 

(Section 3.4) 

Certainty   The certainty assumption of linear programming holds if the value assigned 

to each parameter of the model is assumed to be a known constant. (Section 3.3) 



 Glossaries - 4 

Changing cells   The cells in a spreadsheet model that show the values of the decision 

variables. (Section 3.5) 

Constraint   A restriction on the feasible values of the decision variables. (Section 3.2) 

Corner-point feasible (CPF) solution   A solution that lies at the corner of the feasible 

region. (Section 3.2) 

Data cells   The cells in a spreadsheet that show the data of the problem. (Section 3.5) 

Decision variable   An algebraic variable that represents a quantifiable decision, such as 

the level of a particular activity. (Section 3.2) 

Divisibility   The divisibility assumption of linear programming holds if all the activities 

can be run at fractional levels. (Section 3.3) 

Feasible region   The geometric region that consists of all the feasible solutions. 

(Sections 3.1 and 3.2) 

Feasible solution   A solution for which all the constraints are satisfied. (Section 3.2) 

Functional constraint   A constraint with a function of the decision variables on the left-

hand side. All constraints in a linear programming model that are not nonnegativity 

constraints are called functional constraints. (Section 3.2) 

Graphical method   A method for solving linear programming problems with two 

decision variables on a two-dimensional graph. (Section 3.1) 

Infeasible solution   A solution for which at least one constraint is violated. (Section 3.2) 

Mathematical modeling language   Software that has been specifically designed for 

efficiently formulating large mathematical models, including linear programming models. 

(Section 3.6) 



 Glossaries - 5 

Nonnegativity constraint   A constraint that expresses the restriction that a particular 

decision variable must be nonnegative (greater than or equal to zero). (Section 3.2) 

Objective cell   The output cell in a spreadsheet model that shows the overall measure of 

performance of the decisions. (Section 3.5) 

Objective function   The part of a mathematical model such as a linear programming 

model that expresses what needs to be maximized or minimized, depending on the 

objective for the problem. (Section 3.2) 

Optimal solution   A best feasible solution according to the objective function. (Section 

3.1) 

Output cells   The cells in a spreadsheet that provide output that depends on the changing 

cells. (Section 3.5) 

Parameter   One of the constants in a mathematical model, such as the coefficients in the 

objective function or the coefficients and right-hand sides of the functional constraints. 

(Section 3.2) 

Product-mix problem   A type of linear programming problem where the objective is to 

find the most profitable mix of production levels for the products under consideration. 

(Section 3.1) 

Proportionality   The proportionality assumption of linear programming holds if the 

contribution of each activity to the value of each function in the model is proportional to 

the level of the activity. (Section 3.3) 

Range name   A descriptive name given to a block of cells in a spreadsheet that 

immediately identifies what is there. (Section 3.5) 



 Glossaries - 6 

Sensitivity analysis   Analysis of how sensitive the optimal solution is to the value of 

each parameter of the model. (Section 3.3) 

Simplex method   A remarkably efficient solution procedure for solving linear 

programming problems. (Introduction) 

Slope-intercept form   For the geometric representation of a linear programming 

problem with two decision variables, the slope-intercept form of a line algebraically 

displays both the slope of the line and the intercept of this line with the vertical axis. 

(Section 3.1) 

Solution   Any single assignment of values to the decision variables, regardless of 

whether the assignment is a good one or even a feasible one. (Section 3.2) 

Solver The spreadsheet tool that is used to specify the model in a spreadsheet and then to 

obtain an optimal solution for that model. (Section 3.5) 

Unbounded Z (or unbounded objective)   The constraints do not prevent improving the 

value of the objective function (Z) indefinitely in the favorable direction. (Section 3.2) 

 

Glossary for Chapter 4 

Adjacent BF solutions   Two BF solutions are adjacent if all but one of their nonbasic 

variables are the same. (Section 4.2) 

Adjacent CPF solutions   Two CPF solutions of an n-variable linear programming 

problem are adjacent to each other if they share n-1 constraint boundaries. (Section 4.1) 

Allowable range for a right-hand side   The range of values for this right-hand side bi 

over which the current optimal BF solution (with adjusted values for the basic variables) 

remains feasible, assuming no change in the other right-hand sides. (Section 4.7) 
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Allowable range for a coefficient in the objective function   The range of values for a 

coefficient in the objective function over which the current optimal solution remains 

optimal, assuming no change in the other coefficients. (Section 4.7) 

Artificial variable   A supplementary variable that is introduced into a functional 

constraint in = or ≥ form for the purpose of being the initial basic variable for the 

resulting equation. (Section 4.6) 

Artificial-variable technique   A technique that constructs a more convenient artificial 

problem for initiating the simplex method by introducing an artificial variable into each 

constraint that needs one because the model is not in our standard form. (Section 4.6) 

Augmented form of the model   The form of a linear programming model after its 

original form has been augmented by the supplementary variables needed to apply the 

simplex method. (Section 4.2) 

Augmented solution   A solution for the decision variables that has been augmented by 

the corresponding values of the supplementary variables that are needed to apply the 

simplex method. (Section 4.2) 

Barrier algorithm (or barrier method)   An alternate name for interior-point algorithm 

(defined below) that is motivated by the fact that each constraint boundary is treated as a 

barrier for the trial solutions generated by the algorithm. (Section 4.9) 

Basic feasible (BF) solution   An augmented CPF solution. (Section 4.2) 

Basic solution   An augmented corner-point solution. (Section 4.2) 

Basic variables   The variables in a basic solution whose values are obtained as the 

simultaneous solution of the system of equations that comprise the functional constraints 

in augmented form. (Section 4.2) 
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Basis   The set of basic variables in the current basic solution. (Section 4.2) 

BF solution   See basic feasible solution. 

Big M method   A method that enables the simplex method to drive artificial variables to 

zero by assigning a huge penalty (symbolically represented by M) to each unit by which 

an artificial variable exceeds zero. (Section 4.6) 

Binding constraint   A constraint that holds with equality at the optimal solution. 

(Section 4.7) 

Constraint boundary   A geometric boundary of the solutions that are permitted by the 

corresponding constraint. (Section 4.1) 

Convex combination of solutions   A weighted average of two or more solutions 

(vectors) where the weights are nonnegative and sum to 1. (Section 4.5) 

Corner-point feasible (CPF) solution   A solution that lies at a corner of the feasible 

region, so it is a corner-point solution that also satisfies all the constraints. (Section 4.1) 

Corner-point solution   A solution of an n-variable linear programming problem that 

lies at the intersection of n constraint boundaries. (Section 4.1) 

CPF solution   See corner-point feasible solution. 

Degenerate basic variable   A basic variable whose value is zero. (Section 4.4) 

Degenerate BF solution   A BF solution where at least one of the basic variables has a 

value of zero. (Section 4.4) 

Edge of the feasible region   A line segment that connects two adjacent CPF solutions. 

(Section 4.1) 

Elementary algebraic operations   Basic algebraic operations (multiply or divide an 

equation by a nonzero constant; add or subtract a multiple of one equation to another) 
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that are used to reduce the current set of equations to proper form from Gaussian 

elimination. (Section 4.3) 

Elementary row operations   Basic algebraic operations (multiply or divide a row by a 

nonzero constant; add or subtract a multiple of one row to another) that are used to reduce 

the current simplex tableau to proper form from Gaussian elimination. (Section 4.4) 

Entering basic variable   The nonbasic variable that is converted to a basic variable 

during the current iteration of the simplex method. (Section 4.3) 

Exponential time algorithm   An algorithm for some type of problem where the time 

required to solve any problem of that type can be bounded above only by an exponential 

function of the problem size. (Section 4.9) 

Gaussian elimination   A standard procedure for obtaining the simultaneous solution of 

a system of linear equations. (Section 4.3) 

Initial BF solution   The BF solution that is used to initiate the simplex method. (Section 

4.3) 

Initialization   The process of setting up an iterative algorithm to start iterations. 

(Sections 4.1 and 4.3) 

Interior point   A point inside the boundary of the feasible region. (Section 4.9) 

Interior-point algorithm   An algorithm that generates trial solutions inside the 

boundary of the feasible region that lead toward an optimal solution. (Section 4.9) 

Iteration   Each execution of a fixed series of steps that keep being repeated by an 

iterative algorithm. (Sections 4.1 and 4.3) 

Iterative algorithm   A systematic solution procedure that keeps repeating a series of 

steps, called an iteration. (Section 4.1) 
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Leaving basic variable   The basic variable that is converted to a nonbasic variable 

during the current iteration of the simplex method. (Section 4.3) 

Minimum ratio test   The set of calculations that is used to determine the leaving basic 

variable during an iteration of the simplex method. (Section 4.3) 

Nonbasic variables   The variables that are set equal to zero in a basic solution. (Section 

4.2) 

Optimality test   A test of whether the solution obtained by the current iteration of an 

iterative algorithm is an optimal solution. (Sections 4.1 and 4.3) 

Parametric linear programming   The systematic study of how the optimal solution 

changes as many of the parameters continuously change simultaneously over some 

intervals. (Section 4.7) 

Pivot column   The column of numbers below row 0 in a simplex tableau that is in the 

column for the current entering basic variable. (Section 4.4) 

Pivot number   The number in a simplex tableau that currently is at the intersection of 

the pivot column and the pivot row. (Section 4.4) 

Pivot row   The row of a simplex tableau that is for the current leaving basic variable. 

(Section 4.4) 

Polynomial time algorithm   An algorithm for some type of problem where the time 

required to solve any problem of that type can be bounded above by a polynomial 

function of the size of the problem. (Section 4.9) 

Postoptimality analysis   Analysis done after an optimal solution is obtained for the 

initial version of the model. (Section 4.7) 
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Proper form from Gaussian elimination   The form of the current set of equations 

where each equation has just one basic variable, which has a coefficient of 1, and this 

basic variable does not appear in any other equation. (Section 4.3) 

Reduced cost   The reduced cost for a nonbasic variable measures how much its 

coefficient in the objective function can be increased (when maximizing) or decreased 

(when minimizing) before the optimal solution would change and this nonbasic variable 

would become a basic variable. The reduced cost for a basic variable automatically is 0. 

(Appendix 4.1) 

Reoptimization technique   A technique for efficiently solving a revised version of the 

original model by starting from a revised version of the final simplex tableau that yielded 

the original optimal solution. (Section 4.7) 

Row of a simplex tableau   A row of numbers to the right of the Z column in the simplex 

tableau. (Section 4.4) 

Sensitive parameter   A model’s parameter is considered sensitive if even a small 

change in its value can change the optimal solution. (Section 4.7) 

Sensitivity analysis   Analysis of how sensitive the optimal solution is to the value of 

each parameter of the model. (Section 4.7) 

Shadow price   When the right-hand side of a constraint in ≤ form gives the amount 

available of a certain resource, the shadow price for that resource is the rate at which the 

optimal value of the objective function could be increased by slightly increasing the 

amount of this resource being made available. (Section 4.7) 

Simplex tableau   A table that the tabular form of the simplex method uses to compactly 

display the system of equations yielding the current BF solution. (Section 4.4) 
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Slack variable   A supplementary variable that gives the slack between the two sides of a 

functional constraint in ≤ form. (Section 4.2) 

Surplus variable   A supplementary variable that equals the surplus of the left-hand side 

over the right-hand side of a functional constraint in ≥ form. (Section 4.6) 

Two-phase method   A method that the simplex method can use to solve a linear 

programming problem that is not in our standard form by using phase 1 to find a BF 

solution for the problem and then proceeding as usual in phase 2. (Section 4.6) 

 

Glossary for Chapter 5 

Adjacent CPF solutions   Two CPF solutions are adjacent if the line segment connecting 

them is an edge of the feasible region (defined below). (Section 5.1) 

Basic feasible (BF) solution   A CPF solution that has been augmented by the slack, 

artificial, and surplus variables that are needed by the simplex method. (Section 5.1) 

Basic solution   A corner-point solution that has been augmented by the slack, artificial, 

and surplus variables that are needed by the simplex method. (Section 5.1) 

Basic variables   The variables in a basic solution whose values are obtained as the 

simultaneous solution of the system of equations that comprise the functional constraints 

in augmented form. (Section 5.1) 

Basis matrix   The matrix whose columns are the columns of constraint coefficients of 

the basic variables in order. (Section 5.2) 

BF solution   See basic feasible solution. 

Constraint boundary   A geometric boundary of the solutions that are permitted by the 

constraint. (Section 5.1) 
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Constraint boundary equation   The equation obtained from a constraint by replacing 

its ≤, =, or ≥ sign by an = sign. (Section 5.1) 

Corner-point feasible (CPF) solution   A feasible solution that does not lie on any line 

segment connecting two other feasible solutions. (Section 5.1) 

Corner-point solution   A solution of an n-variable linear programming problem that 

lies at the intersection of n constraint boundaries. (Section 4.1) 

CPF solution   See corner-point feasible solution. 

Defining equations   The constraint boundary equations that yield (define) the indicated 

CPF solution. (Section 5.1) 

Degenerate BF solution   A BF solution where at least one of the basic variables has a 

value of zero. (Section 5.1) 

Edge of the feasible region   For an n-variable linear programming problem, an edge of 

the feasible region is a feasible line segment that lies at the intersection of n-1 constraint 

boundaries. (Section 5.1) 

Hyperplane   A “flat” geometric shape in n-dimensional space for n > 3 that is defined 

by an equation. (Section 5.1) 

Indicating variable   Each constraint has an indicating variable that completely indicates 

(by whether its value is zero) whether that constraint’s boundary equation is satisfied by 

the current solution. (Section 5.1) 

Nonbasic variables   The variables that are set equal to zero in a basic solution. (Section 

5.1) 
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Glossary for Chapter 6 

 

Complementary slackness   A relationship involving each pair of associated variables in 

a primal basic solution and the complementary dual basic solution whereby one of the 

variables is a basic variable and the other is a nonbasic variable. (Section 6.3) 

Complementary solution   Each corner-point or basic solution for the primal problem 

has a complementary corner-point or basic solution for the dual problem that is defined 

by the complementary solutions property or complementary basic solutions property. 

(Section 6.3) 

Dual feasible   A primal basic solution is said to be dual feasible if the complementary 

dual basic solution is feasible for the dual problem. (Section 6.3) 

Dual problem   The linear programming problem that has a dual relationship with the 

original (primal) linear programming problem of interest according to duality theory. 

(Section 6.1) 

Primal-dual table   A table that highlights the correspondence between the primal and 

dual problems. (Section 6.1) 

Primal feasible   A primal basic solution is said to be primal feasible if it is feasible for 

the primal problem. (Section 6.3) 

Primal problem   The original linear programming problem of interest when using 

duality theory to define an associated dual problem. (Section 6.1) 

Sensible-odd-bizarre method   A mnemonic device to remember what the forms of the 

dual constraints should be. (Section 6.4) 
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Shadow price   The shadow price for a functional constraint is the rate at which the 

optimal value of the objective function can be increased by slightly increasing the right-

hand side of the constraint. (Section 6.2) 

SOB method   See sensible-odd-bizarre method. 

 

                                                    Glossary for Chapter 7 

Allowable range for a right-hand side   The range of values for this right-hand side bi  

over which the current optimal BF solution (with adjusted values for the basic variables) 

remains feasible, assuming no change in the other right-hand sides. (Section 7.2) 

Allowable range for a coefficient in the objective function   The range of values for 

this coefficient in the objective function cj  over which the current optimal solution 

remains optimal, assuming no change in the other coefficients. (Section 7.2) 

Chance constraint   When an original constraint includes one or more parameters that 

actually are random variables, the corresponding chance constraint specifies that the 

original constraint is required to hold with at least a certain minimum acceptable 

probability. (Section 7.5) 

Deterministic equivalent of a chance constraint   A reformulation of the chance 

constraint that no longer includes random variables. (Section 7.5) 

Hard constraint   A constraint that must be satisfied. (Section 7.4) 

Range of uncertainty   The range of possible values for a parameter. (Section 7.4) 

Recourse   The opportunity to set the values of some of the decision variables at a later 

time to adjust to what transpired earlier when other decision variables were executed. 

(Section 7.6) 
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Reduced cost   The reduced cost for a nonbasic variable measures how much its 

coefficient in the objective function can be increased (when maximizing) or decreased 

(when minimizing) before the optimal solution would change and this nonbasic variable 

would become a basic variable. The reduced cost for a basic variable automatically is 0. 

(Section 7.2) 

Robust optimization   A type of optimization that seeks to find a solution for the model 

that is virtually guaranteed to remain feasible and near optimal for all plausible 

combinations of the actual values for the parameters. (Section 7.4) 

Sensitive parameter   A model’s parameter is considered sensitive if even a small 

change in its value can change the optimal solution. (Section 7.1) 

Sensitivity analysis   Analysis of how sensitive the optimal solution is to the value of 

each parameter of the model. (Section 7.1) 

Soft constraint   A constraint that actually can be violated a little bit without very serious 

consequences. (Section 7.4) 

Stochastic programming model   A model that includes one or more random variables 

among its parameters and then seeks a solution that will perform well on the average. 

(Section 7.6) 

 

Glossary for Chapter 8 

Dual simplex method   An algorithm that deals with a linear programming problem as if 

the simplex method were being applied simultaneously to its dual problem. (Section 8.1) 
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Gradient   The gradient of the objective function is the vector whose components are the 

coefficients in the objective function. Moving in the direction specified by this vector 

increases the value of the objective function at the fastest possible rate. (Section 8.4) 

Interior-point algorithm   An algorithm that generates trial solutions inside the 

boundary of the feasible region that lead toward an optimal solution. (Section 8.4) 

Parametric linear programming   The systematic study of how the optimal solution 

changes as several of the model’s parameters continuously change simultaneously over 

some intervals. (Section 8.2) 

Projected gradient   The projected gradient of the objective function is the projection of 

the gradient of the objective function onto the feasible region. (Section 8.4) 

Upper bound constraint   A constraint that specifies a maximum feasible value of an 

individual decision variable. (Section 8.3) 

Upper bound technique   A technique that enables the simplex method (and its variants) 

to deal efficiently with upper-bound constraints in a linear programming model. (Section 

8.3) 

 

Glossary for Chapter 9 

Assignees   The entities (people, machines, vehicles, plants, etc.) that are to perform the 

tasks when formulating a problem as an assignment problem. (Section 9.3) 

Cost table   A table that displays all the alternative costs of assigning assignees to tasks 

in an assignment problem, so the table provides a complete formulation of the problem. 

(Section 9.3) 
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Demand at a destination   The number of units that need to be received by this 

destination from the sources. (Section 9.1) 

Destinations   The receiving centers for a transportation problem. (Section 9.1) 

Donor cells   Cells in a transportation simplex tableau that reduce their allocations during 

an iteration of the transportation simplex method. (Section 9.2) 

Dummy destination   An imaginary destination that is introduced into the formulation of 

a transportation problem to enable the sum of the supplies from the sources to equal the 

sum of the demands at the destinations (including this dummy destination). (Section 9.1) 

Dummy source   An imaginary source that is introduced into the formulation of a 

transportation problem to enable the sum of the supplies from the sources (including this 

dummy source) to equal the sum of the demands at the destinations. (Section 9.1) 

Hungarian algorithm   An algorithm that is designed specifically to solve assignment 

problems very efficiently. (Section 9.4) 

Parameter table   A table that displays all the parameters of a transportation problem, so 

the table provides a complete formulation of the problem. (Section 9.2) 

Recipient cells   Cells in a transportation simplex tableau that receive additional 

allocations during an iteration of the transportation simplex method. (Section 9.2) 

Sources   The supply center for a transportation problem. (Section 9.1) 

Supply from a source   The number of units to be distributed from this source to the 

destinations. (Section 9.1) 

Tasks   The jobs to be performed by the assignees when formulating a problem as an 

assignment problem. (Section 9.3) 



 Glossaries - 19 

Transportation simplex method   A streamlined version of the simplex method for 

solving transportation problems very efficiently. (Section 9.2) 

Transportation simplex tableau   A table that is used by the transportation simplex 

method to record the relevant information at each iteration. (Section 9.2) 

 

Glossary for Chapter 10 

Activity   A distinct task that needs to be performed as part of a project. (Section 10.8) 

Activity-on-arc (AOA) project network   A project network where each activity is 

represented by an arc. (Section 10.8) 

Activity-on-node (AON) project network   A project network where each activity is 

represented by a node and the arcs show the precedence relationships between the 

activities. (Section 10.8) 

Arc   A channel through which flow may occur from one node to another. (Section 10.2) 

Arc capacity   The maximum amount of flow that can be carried on a directed arc. 

(Section 10.2) 

Augmenting path   A directed path from the source to the sink in the residual network of 

a maximum flow problem such that every arc on this path has strictly positive residual 

capacity. (Section 10.5) 

Augmenting path algorithm   An algorithm that is designed specifically to solve 

maximum flow problems very efficiently. (Section 10.5) 

Basic arc   An arc that corresponds to a basic variable in a basic solution at the current 

iteration of the network simplex method. (Section 10.7) 
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Connected   Two nodes are said to be connected if the network contains at least one 

undirected path between them. (Section 10.2) 

Connected network   A network where every pair of nodes is connected. (Section 10.2) 

Conservation of flow   The condition at a node where the amount of flow out of the node 

equals the amount of flow into that node. (Section 10.2) 

CPM   An acronym for critical path method, a technique for assisting project managers 

with carrying out their responsibilities. (Section 10.8) 

CPM method of time-cost trade-offs   A method of investigating the trade-off between 

the total cost of a project and its duration when various levels of crashing are used to 

reduce the duration. (Section 10.8) 

Crash point   The point on the time-cost graph for an activity that shows the time 

(duration) and cost when the activity is fully crashed; that is, the activity is fully 

expedited with no cost spared to reduce its duration as much as possible. (Section 10.8) 

Crashing an activity   Taking special costly measures to reduce the duration of an 

activity below its normal value. (Section 10.8) 

Crashing the project   Crashing a number of activities to reduce the duration of the 

project below its normal value. (Section 10.8) 

Critical path   The longest path through a project network, so the activities on this path 

are the critical bottleneck activities where any delays in their completion must be avoided 

to prevent delaying project completion. (Section 10.8) 

Cut   Any set of directed arcs containing at least one arc from every directed path from 

the source to the sink of a maximum flow problem. (Section 10.5) 
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Cut value   The sum of the arc capacities of the arcs (in the specified direction) of the 

cut. (Section 10.5) 

Cycle   A path that begins and ends at the same node. (Section 10.2) 

Demand node   A node where the net amount of flow generated (outflow minus inflow) 

is a fixed negative amount, so flow is absorbed there. (Section 10.2) 

Destination   The node at which travel through the network is assumed to end for a 

shortest-path problem. (Section 10.3) 

Directed arc   An arc where flow through the arc is allowed in only one direction. 

(Section 10.2) 

Directed network   A network whose arcs are all directed arcs. (Section 10.2) 

Directed path   A directed path from node i to node j is a sequence of connecting arcs 

whose direction (if any) is toward node j. (Section 10.2) 

Feasible spanning tree   A spanning tree whose solution from the node constraints also 

satisfies all the nonnegativity constraints and arc capacity constraints for the flows 

through the arcs. (Section 10.7) 

Length of a link or an arc   The number (typically a distance, a cost, or a time) 

associated with a link or arc for either a shortest-path problem or a minimum spanning 

tree problem. (Sections 10.3 and 10.4) 

Length of a path through a project network   The sum of the (estimated) durations of 

the activities on the path. (Section 10.8) 

Link   An alternative name for undirected arc, defined below. (Section 10.2) 
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Marginal cost analysis   A method of using the marginal cost of crashing individual 

activities on the current critical path to determine the least expensive way of reducing 

project duration to a desired level. (Section 10.8) 

Minimum spanning tree   One among all spanning trees that minimizes the total length 

of all the links in the tree. (Section 10.4) 

Network simplex method   A streamlined version of the simplex method for solving 

minimum cost flow problems very efficiently. (Section 10.7) 

Node   A junction point of a network, shown as a labeled circle. (Section 10.2) 

Nonbasic arc   An arc that corresponds to a nonbasic variable in a basic solution at the 

current iteration of the network simplex method. (Section 10.7) 

Normal point   The point on the time-cost graph for an activity that shows the time 

(duration) and cost of the activity when it is performed in the normal way. (Section 10.8) 

Origin   The node at which travel through the network is assumed to start for a shortest-

path problem. (Section 10.3) 

Path   A path between two nodes is a sequence of distinct arcs connecting these nodes 

when the direction (if any) of the arcs is ignored. (Section 10.2) 

Path through a project network   One of the routes following the arcs from the start 

node to the finish node. (Section 10.8) 

PERT   An acronym for program evaluation and review technique, a technique for 

assisting project managers with carrying out their responsibilities. (Section 10.8) 

PERT/CPM   The merger of the two techniques originally know as PERT and CPM. 

(Section 10.8) 

Project duration   The total time required for the project. (Section 10.8) 
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Project network   A network used to visually display a project. (Section 10.8) 

Residual capacity   The remaining arc capacities for assigning additional flows after 

some flows have been assigned to the arcs by the augmenting path algorithm for a 

maximum flow problem. (Section 10.5) 

Residual network   The network that shows the remaining arc capacities for assigning 

additional flows after some flows have been assigned to the arcs by the augmenting path 

algorithm for a maximum flow problem. (Section 10.5) 

Reverse arc   An imaginary arc that the network simplex method might introduce to 

replace a real arc and allow flow in the opposite direction temporarily. (Section 10.7) 

Sink   The node for a maximum flow problem at which all flow through the network 

terminates. (Section 10.5) 

Source   The node for a maximum flow problem at which all flow through the network 

originates. (Section 10.5) 

Spanning tree   A connected network for all n nodes of the original network that 

contains no undirected cycles. (Section 10.2) 

Spanning tree solution   A basic solution for a minimum cost flow problem where the 

basic arcs form a spanning tree and the values of the corresponding basic variables are 

obtained by solving the node constraints. (Section 10.7) 

Supply node   A node where the amount of flow generated (outflow minus inflow) is a 

fixed positive amount. (Section 10.2) 

Transshipment node   A node where the amount of flow out equals the amount of flow 

in. (Section 10.2) 
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Transshipment problem   A special type of minimum cost flow problem where there are 

no capacity constraints on the arcs. (Section 10.6) 

Tree   A connected network (for some subset of the n nodes of the original network) that 

contains no undirected cycles. (Section 10.2) 

Undirected arc   An arc where flow through the arc is allowed to be in either direction. 

(Section 10.2) 

Undirected network   A network whose arcs are all undirected arcs. (Section 10.2) 

Undirected path   An undirected path from node i to node j is a sequence of connecting 

arcs whose direction (if any) can be either toward or away from node j. (Section 10.2) 

 

Glossary for Chapter 11 

 

Decision tree   A graphical display of all the possible states and decisions at all the stages 

of a dynamic programming problem. (Section 11.4) 

Distribution of effort problem   A type of dynamic programming problem where there 

is just one kind of resource that is to be allocated to a number of activities. (Section 11.3) 

Optimal policy   The optimal specification of the policy decisions at the respective 

stages of a dynamic programming problem. (Section 11.2) 

Policy decision   A policy regarding what decision should be made at a particular stage 

of a dynamic programming problem, where this policy specifies the decision as a 

function of the possible states that the system can be in at that stage. (Section 11.2) 
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Principle of optimality   A basic property that the optimal immediate decision at each 

stage of a dynamic programming problem depends on only the current state of the system 

and not on the history of how the system reached that state. (Section 11.2) 

Recursive relationship   An equation that enables solving for the optimal policy for each 

stage of a dynamic programming problem in terms of the optimal policy for the following 

stage. (Section 11.2) 

Stages   A dynamic programming problem is divided into stages, where each stage 

involves making one decision from the sequence of interrelated decisions that comprise 

the overall problem. (Section 11.2) 

State variable   A variable that gives the state of the system at a particular stage of a 

dynamic programming problem. (Section 11.3) 

States   The various possible conditions of the system at a particular stage of a dynamic 

programming problem. (Section 11.2) 

 

Glossary for Chapter 12 

All-different constraint   A global constraint that constraint programming uses to 

specify that all the variables in a given set must have different values. (Section 12.9) 

Auxiliary binary variable   A binary variable that is introduced into the model, not to 

represent a yes-or-no decision, but simply to help formulate the model as a (pure or 

mixed) BIP problem. (Section 12.3) 

Binary integer programming   The type of integer programming where all the integer-

restricted variables are further restricted to be binary variables. (Section 12.2) 
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Binary representation   A representation of a bounded integer variable as a linear 

function of some binary variables. (Section 12.3) 

Binary variable   A variable that is restricted to the values of 0 and 1. (Introduction) 

BIP   An abbreviation for binary integer programming, defined above. 

Bounding   A basic step in a branch-and-bound algorithm that bounds how good the best 

solution in a subset of feasible solutions can be. (Section 12.6) 

Branch-and-cut algorithm   A type of algorithm for integer programming that combines 

automatic problem preprocessing, the generation of cutting planes, and clever branch-

and-bound techniques. (Section 12.8) 

Branching   A basic step in a branch-and-bound algorithm that partitions a set of feasible 

solutions into subsets, perhaps by setting a variable at different values. (Section 12.6) 

Branching tree  A tree (as defined in Sec. 10.2) that records the progress of a branch-

and-bound algorithm in partitioning an integer programming problem into smaller and 

smaller subproblems.  (Section 12.6) 

Branching variable   A variable that the current iteration of a branch-and-bound 

algorithm uses to divide a subproblem into smaller subproblems by assigning alternative 

values to the variable. (Section 12.6) 

Constraint programming   A technique for formulating complicated kinds of 

constraints on integer variables and then efficiently finding feasible solutions that satisfy 

all these constraints. (Section 12.9) 

Constraint propagation   The process used by constraint programming for using current 

constraints to imply new constraints. (Section 12.9) 
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Contingent decision   A yes-or-no decision is a contingent decision if it can be yes only 

if a certain other yes-or-no decision is yes. (Section 12.1) 

Cut   An alternative name for cutting plane, defined below. (Section 12.8) 

Cutting plane   A cutting plane for any integer programming problem is a new 

functional constraint that reduces the feasible region for the LP relaxation without 

eliminating any feasible solutions for the integer programming problem. (Section 12.8) 

Descendant   A descendant of a subproblem is a new smaller subproblem that is created 

by branching on this subproblem and then perhaps branching further through subsequent 

“generations.” (Section 12.6) 

Domain reduction   The process used by constraint programming for eliminating 

possible values for individual variables. (Section 12.9) 

Either-or constraints   A pair of constraints such that one of them (either one) must be 

satisfied but the other one can be violated. (Section 12.3) 

Element constraint   A global constraint that constraint programming uses to look up a 

cost or profit associated with an integer variable. (Section 12.9) 

Enumeration tree   An alternative name for solution tree, defined below. (Section 12.6) 

Exponential growth   An exponential growth in the difficulty of a problem refers to an 

unusually rapid growth in the difficulty as the size of the problem increases. (Section 

12.5) 

Fathoming   A basic step in a branch-and-bound algorithm that uses fathoming tests to 

determine if a subproblem can be dismissed from further consideration. (Section 12.6) 

Fixed-charge problem   A problem where a fixed charge or setup cost is incurred when 

undertaking an activity. (Section 12.3) 
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General integer variable   A variable that is restricted only to have any nonnegative 

integer value that also is permitted by the functional constraints. (Section 12.7) 

Global constraint   A constraint that succinctly expresses a global pattern in the 

allowable relationship between multiple variables. (Section 12.9) 

Incumbent   The best feasible solution found so far by a branch-and-bound algorithm. 

(Section 12.6) 

IP  An abbreviation for integer programming. (Introduction) 

Lagrangian relaxation   A relaxation of an integer programming problem that is 

obtained by deleting the entire set of functional constraints and then modifying the 

objective function in a certain way. (Section 12.6) 

LP relaxation   The linear programming problem obtained by deleting from the current 

integer programming problem the constraints that require variables to have integer 

values. (Section 12.5) 

Minimum cover   A minimum cover of a constraint refers to a group of binary variables 

that satisfy certain conditions with respect to the constraint during a procedure for 

generating cutting planes. (Section 12.8) 

MIP   An abbreviation for mixed integer programming, defined below. (Introduction) 

Mixed integer programming   The type of integer programming where only some of the 

variables are required to have integer values. (Section 12.7) 

Mutually exclusive alternatives   A group of alternatives where choosing any one 

alternative excludes choosing any of the others. (Section 12.1) 

Problem preprocessing   The process of reformulating a problem to make it easier to 

solve without eliminating any feasible solutions. (Section 12.8) 
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Recurring branching variable   A variable that becomes a branching variable more than 

once during the course of a branch-and-bound algorithm. (Section 12.7) 

Redundant constraint   A constraint that automatically is satisfied by solutions that 

satisfy all the other constraints. (Section 12.8) 

Relaxation   A relaxation of a problem is obtained by deleting a set of constraints from 

the problem. (Section 12.6) 

Set covering problem   A type of pure BIP problem where the objective is to determine 

the least costly combination of activities that collectively possess each of a number of 

characteristics at least once. (Section 12.4) 

Set partitioning problem   A variation of a set covering problem where the selected 

activities must collectively possess each of a number of characteristics exactly once. 

(Section 12.4) 

Subproblem   A portion of another problem that is obtained by eliminating a portion of 

the feasible region, perhaps by fixing the value of one of the variables. (Section 12.6) 

Yes-or-no decision   A decision whose only possible choices are (1) yes, go ahead with a 

certain option, or (2) no, decline this option. (Section 12.2) 

 

Glossary for Chapter 13 

Bisection method   One type of search procedure for solving one-variable unconstrained 

optimization problems where the objective function (assuming maximization) is a 

concave function, or at least a unimodal function. (Section 13.4) 
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Complementarity constraint   A special type of constraint in the complementarity 

problem (and elsewhere) that requires at least one variable in each pair of associated 

variables to have a value of 0. (Sections 13.3 and 13.7) 

Complementarity problem   A special type of problem where the objective is to find a 

feasible solution for a certain set of constraints. (Section 13.3) 

Complementary variables   A pair of variables such that only one of the variables 

(either one) can be nonzero. (Section 13.7) 

Concave function   A function that is always “curving downward” (or not curving at all), 

as defined further in Appendix 2. (Section 13.2) 

Convex function   A function that is always “curving upward” (or not curving at all), as 

defined further in Appendix 2. (Section 13.2) 

Convex programming problems   Nonlinear programming problems where the 

objective function (assuming maximization) is a concave function and the constraint 

functions (assuming a ≤ form) are convex functions. (Sections 13.3 and 13.9) 

Convex set   A set of points such that, for each pair of points in the collection, the entire 

line segment joining these two points is also in the collection. (Section 13.2) 

Fractional programming problems   A special type of nonlinear programming problem 

where the objective function is in the form of a fraction that gives the ratio of two 

functions. (Section 13.3) 

Frank-Wolfe algorithm   An important example of sequential-approximation algorithms 

for convex programming. (Section 13.9) 

Genetic algorithm   A type of algorithm for nonconvex programming that is based on 

the concepts of genetics, evolution, and survival of the fittest. (Sections 13.10 and 13.4) 
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Geometric programming problems   A special type of nonlinear programming problem 

that fits many engineering design problems, among others. (Section 13.3) 

Global maximum (or minimum)   A feasible solution that maximizes (or minimizes) 

the value of the objective function over the entire feasible region. (Section 13.2) 

Global optimizer   A type of software package that implements an algorithm that is 

designed to find a globally optimal solution for various kinds of nonconvex programming 

problems. (Section 13.10) 

Gradient algorithms   Convex programming algorithms that modify the gradient search 

procedure to keep the search procedure from penetrating any constraint boundary. 

(Section 13.9) 

Gradient search procedure   A type of search procedure that uses the gradient of the 

objective function to solve multivariable unconstrained optimization problems where the 

objective function (assuming maximization) is a concave function. (Section 13.5) 

Karush-Kuhn-Tucker conditions   For a nonlinear programming problem with 

differentiable functions that satisfy certain regularity conditions, the Karush-Kuhn-

Tucker conditions provide the necessary conditions for a solution to be optimal. These 

necessary conditions also are sufficient in the case of a convex programming problem. 

(Section 13.6) 

KKT conditions   An abbreviation for Karush-Kuhn-Tucker conditions, defined above. 

(Section 13.6) 

Linear complementarity problem   A linear form of the complementarity problem. 

(Section 13.3) 
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Linearly constrained optimization problems   Nonlinear programming problems where 

all the constraint functions (but not the objective function) are linear. (Section 13.3) 

Local maximum (or minimum)   A feasible solution that maximizes (or minimizes) the 

value of the objective function within a local neighborhood of that solution. (Section 

13.2) 

Modified simplex method   An algorithm that adapts the simplex method so it can be 

applied to quadratic programming problems. (Section 13.7) 

Newton’s method   A traditional type of search procedure that uses a quadratic 

approximation of the objective function to solve unconstrained optimization problems 

where the objective function (assuming maximization) is a concave function. (Sections 

13.4 and 13.5) 

Nonconvex programming problems   Nonlinear programming problems that do not 

satisfy the assumptions of convex programming. (Sections 13.3 and 13.10) 

Quadratic programming problems   Nonlinear programming problems where all the 

constraint functions are linear and the objective function is quadratic. This quadratic 

function also is normally assumed to be a concave function (when maximizing) or a 

convex function (when minimizing). (Sections 13.3 and 13.7) 

Quasi-Newton methods   Convex programming algorithms that extend an approximation 

of Newton’s method for unconstrained optimization to deal instead with constrained 

optimization problems. (Section 13.5) 

Restricted-entry rule   A rule used by the modified simplex method when choosing an 

entering basic variable that prevents two complementary variables from both being basic 

variables. (Section 13.7) 
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Separable function   A function where each term involves just a single variable, so that 

the function is separable into a sum of functions of individual variables. (Sections 13.3 

and 13.8) 

Sequential-approximation algorithms   Convex programming algorithms that replace 

the nonlinear objective function by a succession of linear or quadratic approximations. 

(Section 13.9) 

Sequential unconstrained algorithms   Convex programming algorithms that convert 

the original constrained optimization problem into a sequence of unconstrained 

optimization problems whose optimal solutions converge to an optimal solution for the 

original problem. (Section 13.9) 

Sequential unconstrained minimization technique   A classic algorithm within the 

category of sequential-approximation algorithms. (Section 13.9) 

SUMT   An acronym for sequential unconstrained minimization technique, defined 

above. (Section 13.9) 

Unconstrained optimization problems   Optimization problems that have no constraints 

on the values of the variables. (Sections 13.3-13.5) 

 

 

Glossary for Chapter 14 

Children   The new trial solutions generated by each pair of parents during an iteration of 

a genetic algorithm. (Section 14.4) 

Gene   One of the binary digits that defines a trial solution in base 2 for a genetic 

algorithm. (Section 14.4) 
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Genetic algorithm   A type of metaheuristic that is based on the concepts of genetics, 

evolution, and survival of the fittest. (Section 14.4) 

Heuristic method   A procedure that is likely to discover a very good feasible solution, 

but not necessarily an optimal solution, for the specific problem being considered. 

(Introduction) 

Local improvement procedure   A procedure that searches in the neighborhood of the 

current trial solution to find a better trial solution. (Section 14.1) 

Local search procedure   A procedure that operates like a local improvement procedure 

except that it may not require that each new trial solution must be better than the 

preceding trial solution. (Section 14.2) 

Metaheuristic   A general solution method that provides both a general structure and 

strategy guidelines for developing a specific heuristic method to fit a particular kind of 

problem. (Introduction and Section 14.1) 

Mutation   A random event that enables a child to acquire a feature that is not possessed 

by either parent during an iteration of a genetic algorithm. (Section 14.4) 

Parents   A pair of trial solutions used by a genetic algorithm to generate new trial 

solutions. (Section 14.4) 

Population   The set of trial solutions under consideration during an iteration of a genetic 

algorithm. (Section 14.4) 

Random number   A random observation from a uniform distribution between 0 and 1. 

(Section 14.3) 

Simulated annealing   A type of metaheuristic that is based on the analogy to a physical 

annealing process. (Section 14.3) 
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Steepest ascent/mildest descent approach   An algorithmic approach that seeks the 

greatest possible improvement at each iteration but also accepts the best available non-

improving move when an improving move is not available. (Section 14.2) 

Sub-tour reversal   A method for adjusting the sequence of cities visited in the current 

trial solution for a traveling salesman problem by selecting a subsequence of the cities 

and reversing the order in which that subsequence of cities is visited. (Section 14.1) 

Sub-tour reversal algorithm   An algorithm for the traveling salesman problem that is 

based on performing a series of sub-tour reversals that improve the current trial solution 

each time. (Section 14.1) 

Tabu list   A record of the moves that currently are forbidden by a tabu search algorithm. 

(Section 14.2) 

Tabu search   A type of metaheuristic that allows non-improving moves but also 

incorporates short-term memory of the past search by using a tabu list to discourage 

cycling back to previously considered solutions. (Section 14.2) 

Temperature schedule   The schedule used by a simulated annealing algorithm to adjust 

the tendency to accept the current candidate to be the next trial solution if this candidate 

is not an improvement on the current trial solution. (Section 14.3) 

Traveling salesman problem   A classic type of combinatorial optimization problem 

that can be described in terms of a salesman seeking the shortest route for visiting a 

number of cities exactly once each. (Section 14.1) 
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Glossary for Chapter 15 

Cooperative game   A nonzero-sum game where preplay discussions and binding 

agreements are permitted. (Section 15.6) 

Dominated strategy   A strategy is dominated by a second strategy if the second strategy 

is always at least as good (and sometimes better) regardless of what the opponent does. 

(Section 15.2) 

Fair Game   A game that has a value of 0. (Section 15.2) 

Graphical solution procedure   A graphical method of solving a two-person, zero-sum 

game with mixed strategies such that, after dominated strategies are eliminated, one of 

the two players has only two pure strategies. (Section 15.4) 

Infinite game   A game where the players have an infinite number of pure strategies 

available to them. (Section 15.6) 

Minimax criterion   The criterion that says to select a strategy that minimizes a player’s 

maximum expected loss. (Sections 15.2 and 15.3) 

Mixed strategy   A plan for using a probability distribution to determine which of the 

original strategies will be used. (Section 15.3) 

Non-cooperative game   A nonzero-sum game where there is no preplay communication 

between the players. (Section 15.6) 

Nonzero-sum game   A game where the sum of the payoffs to the players need not be 0 

(or any other fixed constant). (Section 15.6) 

n-person game   A game where more than two players may participate. (Section 15.6) 
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Payoff table   A table that shows the gain (positive or negative) for player 1 that would 

result from each combination of strategies for the two players in a two-person, zero-sum 

game. (Section 15.1) 

Pure strategy   One of the original strategies (as opposed to a mixed strategy) in the 

formulation of a two-person, zero-sum game. (Section 15.3) 

Saddle point   An entry in a payoff table that is both the minimum in its row and the 

maximum of its column. (Section 15.2) 

Stable solution   A solution for a two-person, zero-sum game where neither player has 

any motive to consider changing strategies, either to take advantage of his opponent or to 

prevent the opponent of taking advantage of him. (Section 15.2) 

Strategy   A predetermined rule that specifies completely how one intends to respond to 

each possible circumstance at each stage of a game. (Section 15.1) 

Two-person, constant-sum game   A game with two players where the sum of the 

payoffs to the two players is a fixed constant (positive or negative) regardless of which 

combination of strategies is selected. (Section 15.6) 

Two-person zero-sum game   A game with two players where one player wins whatever 

the other one loses, so that the sum of their net winnings is zero. (Introduction and 

Section 15.1) 

Unstable solution   A solution for a two-person, zero-sum game where each player has a 

motive to consider changing his strategy once he deduces his opponent’s strategy. 

(Section 15.2) 

Value of the game   The expected payoff to player 1 when both players play optimally in 

a two-person, zero-sum game. (Sections 15.2 and 15.3) 
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Glossary for Chapter 16 

Alternatives   The options available to the decision maker for the decision under 

consideration. (Section 16.2) 

Backward induction procedure   A procedure for solving a decision analysis problem 

by working backward through its decision tree. (Section 16.4) 

Bayes’ decision rule   A popular criterion for decision making that uses probabilities to 

calculate the expected payoff for each decision alternative and then chooses the one with 

the largest expected payoff. (Section 16.2) 

Bayes’ theorem   A formula for calculating a posterior probability of a state of nature. 

(Section 16.3)    

Branch   A line emanating from a node in a decision tree. (Section 16.4) 

Crossover point   When plotting the lines giving the expected payoffs of two decision 

alternatives versus the prior probability of a particular state of nature, the crossover point 

is the point where the two lines intersect so that the decision is shifting from one 

alternative to the other. (Section 16.2) 

Decision conferencing   A process used for group decision making. (Section 16.7) 

Decision maker   The individual or group responsible for making the decision under 

consideration. (Section 16.2) 

Decision node   A point in a decision tree where a decision needs to be made. (Section 

16.4) 

Decision tree   A graphical display of the progression of decisions and random events to 

be considered. (Section 16.4) 
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Decreasing marginal utility for money   The situation where the slope of the utility 

function decreases as the amount of money increases. (Section 16.6) 

Equivalent lottery method  A procedure for finding the decision maker’s utility for a 

specific amount of money by comparing two hypothetical alternatives where one 

involves a gamble.  (Section 16.6) 

Event node   A point in a decision tree where a random event will occur. (Section 16.4) 

Expected value of experimentation (EVE)   The maximum increase in the expected 

payoff that could be obtained from performing experimentation (excluding the cost of the 

experimentation). (Section 16.3) 

Expected value of perfect information (EVPI)   The increase in the expected payoff 

that could be obtained if it were possible to learn the true state of nature. (Section 16.3) 

Exponential utility function   A utility function that is designed to fit a risk-averse 

individual. (Section 16.6) 

Increasing marginal utility for money   The situation where the slope of the utility 

function increases as the amount of money increases. (Section 16.6) 

Influence diagram   A diagram that complements the decision tree for representing and 

analyzing decision analysis problems. (Section 16.7) 

Maximum likelihood criterion   A criterion for decision making with probabilities that 

focuses on the most likely state of nature. (Section 16.2) 

Maximum payoff criterion   A very pessimistic decision criterion that does not use prior 

probabilities and simply chooses the decision criterion that provides the best guarantee 

for its minimum possible payoff. (Section 16.2) 

Node   A junction point in a decision tree. (Section 16.4) 
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Payoff   A quantitative measure of the outcome from a decision alternative and a state of 

nature. (Section 16.2) 

Payoff table   A table giving the payoff for each combination of a decision alternative 

and a state of nature. (Section 16.2) 

Posterior probabilities   Revised probabilities of the states of nature after doing a test or 

survey to improve the prior probabilities. (Section 16.3) 

Prior distribution   The probability distribution consisting of the prior probabilities of 

the states of nature. (Section 16.2) 

Prior probabilities   The estimated probabilities of the states of nature prior to obtaining 

additional information through a test or survey. (Section 16.2) 

Probability tree diagram   A diagram that is helpful for calculating the posterior 

probabilities of the states of nature. (Section 16.3) 

Risk-averse individual   An individual who has a decreasing marginal utility for money. 

(Section 16.6) 

Risk-neutral individual   An individual whose utility function for money is proportional 

to the amount of money involved. (Section 16.6) 

Risk-seeking individual   An individual who has an increasing marginal utility for 

money. (Section 16.6) 

Sensitivity analysis   The study of how other plausible values for the probabilities of the 

states of nature (or for the payoffs) would affect the recommended decision alternative. 

(Section 16.5) 

States of nature   The possible outcomes of the random factors that affect the payoff that 

would be obtained from a decision alternative. (Section 16.2) 
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Glossary for Chapter 17 

Balance equation   An equation for a particular state of a birth-and-death process that 

expresses the principle that the mean entering rate for that state must equal its mean 

leaving rate. (Section 17.5) 

Balking   An arriving customer who refuses to enter a queueing system because the 

queue is too long is said to be balking. (Section 17.2) 

Birth   An increase of 1 in the state of a birth-and-death process. (Section 17.5) 

Birth-and-death process   A special type of continuous time Markov chain where the 

only possible changes in the current state of the system are an increase of 1 (a birth) or a 

decrease of 1 (a death). (Section 17.5) 

Calling population   The population of potential customers that might need to come to a 

queueing system. (Section 17.2) 

Commercial service system   A queueing system where a commercial organization 

provides a service to customers from outside the organization. (Section 17.3) 

Customers   A generic term that refers to whichever kind of entity (people, vehicles, 

machines, items, etc.) is coming to the queueing system to receive service. (Section 17.2) 

Death   A decrease of 1 in the state of a birth-and-death process. (Section 17.5) 

Erlang distribution   A common service-time distribution whose shape parameter k 

specifies the amount of variability in the service times. (Sections 17.2 and 17.7) 

Exponential distribution   The most popular choice for the probability distribution of 

both interarrival times and service times for a queueing system. (Sections 17.4 and 17.6) 
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Finite calling population   A calling population whose size is so limited that the mean 

arrival rate to the queueing system is significantly affected by the number of customers 

that are already in the queueing system. (Sections 17.2 and 17.6) 

Finite queue   A queue that can hold only a limited number of customers. (Sections 17.2 

and 17.6) 

Hyperexponential distribution   A distribution occasionally used for either interarrival 

times or service times. Its key characteristic is that even though only nonnegative values 

are allowed, its standard deviation actually is larger than its mean. (Section 17.7) 

Infinite queue   A queue that can hold an essentially unlimited number of customers. 

(Section 17.2) 

Input source   The stochastic process that generates the customers arriving at a queueing 

system. (Section 17.2) 

Interarrival time   The elapsed time between consecutive arrivals to a queueing system. 

(Section 17.2) 

Internal service system   A queueing system where the customers receiving service are 

internal to the organization providing the service. (Section 17.3) 

Jackson network   One special type of queueing network that has a product form 

solution. (Section 17.9) 

Lack of memory property   When referring to arrivals, this property is that the 

remaining time until the next arrival is completely uninfluenced by when the last arrival 

occurred. Also called the Markovian property. (Section 17.4) 

Little’s formula   The formula L = λW, or Lq = λWq. (Section 17.2) 
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Mean arrival rate   The expected number of arrivals to a queueing system per unit time. 

(Section 17.2) 

Mean service rate   The mean service rate for a server is the expected number of 

customers that it can serve per unit time when working continuously. The term also can 

be applied to a group of servers collectively. (Section 17.2) 

Nonpreemptive priorities   Priorities for selecting the next customer to begin service 

when a server becomes free, without affecting customers who already have begun 

service. (Section 17.8) 

Number of customers in the queue   The number of customers who are waiting for 

service to begin. Also referred to as the queue length. (Section 17.2) 

Number of customers in the system   The total number of customers in the queueing 

system, either waiting for service to begin or currently being served. (Section 17.2) 

Phase-type distributions   A family of distributions obtained by breaking down the total 

time into a number of phases having exponential distributions. Occasionally used for 

either interarrival times or service times. (Section 17.7) 

Poisson input process   A stochastic process for counting the number of customers 

arriving to a queueing system that is a Poisson process. (Section 17.4) 

Poisson process   A process where the number of events (e.g., arrivals) that have 

occurred has a Poisson distribution with a mean that is proportional to the elapsed time. 

(Section 17.4) 

Pollaczek-Khintchine formula   The equation for Lq (or Wq) for the M/G/1 model. 

(Section 17.7) 
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Preemptive priorities   Priorities for serving customers that include ejecting the lowest 

priority customer being served back into the queue in order to serve a higher priority 

customer that has just entered the queueing system. (Section 17.8) 

Priority classes   Categories of customers that are given different priorities for receiving 

service. (Section 17.8) 

Product form solution   A solution for the joint probability of the number of customers 

at the respective facilities of a queueing network that is just the product of the 

probabilities of the number at each facility considered independently of the others. 

(Section 17.9) 

Queue   The waiting line in a queueing system. The queue does not include customers 

who are already being served. (Section 17.2) 

Queue discipline   The rule for determining the order in which members of the queue are 

selected to begin service. (Section 17.2) 

Queue length   See number of customers in the queue. (Section 17.2) 

Queueing network   A network of service facilities where each customer must receive 

service at some or all of these facilities. (Section 17.9) 

Queueing system   A place where customers receive some kind of service from a server, 

perhaps after waiting in a queue. (Section 17.2) 

Reneging   A customer in the queueing system who becomes impatient and leaves before 

being served is said to be reneging. (Section 17.5) 

Server   An entity that is serving the customers coming to a queueing system. (Section 

17.2) 
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Service cost   The cost associated with providing the servers in a queueing system. 

(Section 17.10) 

Service mechanism   The service facility or facilities where service is provided to 

customers in a queueing system. (Section 17.2) 

Service time   The elapsed time from the beginning to the end of a customer’s service. 

(Section 17.2) 

Social service system   A queueing system which is providing a social service. (Section 

17.3) 

Steady-state condition   The condition where the  probability distribution of the number 

of customers in the queueing system is staying the same over time. (Section 17.2) 

Transient condition   The condition where the probability distribution of the number of 

customers in the queueing system currently is shifting as time goes on. (Section 17.2) 

Transportation service system   A queueing system involving transportation, so that 

either the customers or the server(s) are vehicles. (Section 17.3) 

Utilization factor   The average fraction of time that the servers are being utilized 

serving customers. (Section 17.2) 

Waiting cost   The cost associated with making customers wait in a queueing system. 

(Section 17.10) 

Waiting time in the queue   The elapsed time that an individual customer spends in the 

queue waiting for service to begin. (Section 17.2) 

Waiting time in the system   The elapsed time that an individual customer spends in the 

queueing system both before service begins and during service. (Section 17.2) 
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Glossary for Chapter 18 

Assembly system   A multiechelon inventory system where some installations have 

multiple immediate predecessors in the preceding echelon. (Section 18.5) 

Backlogging   The situation where excess demand is not lost but instead is held until it 

can be satisfied when the next normal delivery replenishes the inventory. (Section 18.2) 

Bumping a customer  Denying a service to a customer (e.g., a seat on an airline flight) 

when the customer had previously been given a reservation for that service.  (Section 

18.8) 

Capacity-controlled discount fares  Lower-than-normal prices for some service (e.g., 

seats on an airline fight) that are limited to some fraction of the capacity for providing 

that service.  (Section 18.8) 

Computerized inventory system   A system where each addition to inventory and each 

sale causing a withdrawal are recorded electronically, so that the current inventory level 

always is in the computer. (Section 18.6) 

Continuous review   A continuous monitoring of the current inventory level. (Section 

18.2) 

Demand   The demand for a product in inventory is the number of units that will need to 

be withdrawn from inventory for some use (e.g., sales) during a specific period. 

(Introduction) 

Denied-boarding cost  The cost incurred by a company each time one of its customers 

with a reservation for receiving some service (e.g., a seat on an airline flight) is then 

denied that service.  (Section 18.8) 
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Dependent demand   Demand for a product that depends on the demand for other 

products. (Section 18.3) 

Discount factor   The amount by which a cash flow 1 year hence should be multiplied to 

calculate its net present value. (Section 18.2) 

Discount rate   The rate at which future income over time loses its current value because 

of the time value of money. (Section 18.2) 

Distribution system   A multiechelon inventory system where an installation might have 

multiple immediate successors in the next echelon. (Section 18.5) 

Echelon   A stage at which inventory is held in the progression of units through a 

multistage inventory system. (Section 18.5) 

Echelon stock   The stock of an item that is physically on hand at an installation plus the 

stock of the same item that already is downstream at subsequent echelons of the system. 

(Section 18.5) 

Economic order quantity model   A standard deterministic continuous-review inventory 

model with a constant demand rate so that an economic quantity is ordered periodically to 

replenish inventory. (Section 18.3) 

EOQ model   An abbreviation of economic order quantity model. (Section 18.3) 

Holding cost   The total cost associated with the storage of inventory, including the cost 

of capital tied up, space, insurance, protection, and taxes attributed to storage. (Sections 

18.1 and 18.2) 

Independent demand   Demand for a product that does not depend on the demand for 

any of the company’s other products. (Section 18.3) 
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Installation stock   The stock of an item that is physically on hand at an installation. 

(Section 18.5) 

Inventory   A stock of goods being held for future use or sale. (Introduction) 

Inventory policy   A policy for when to replenish inventory and by how much. 

(Introduction) 

Just-in-time (JIT) inventory system   An inventory system that places great emphasis 

on reducing inventory levels to a bare minimum, so the items are provided just in time as 

they are needed. (Section 18.3)    

Lead time   The amount of time between the placement of an order and its receipt. 

(Section 18.3) 

Marginal analysis  Analysis of the incremental effect of increasing a decision variable 

by a small amount.  (Section 18.8) 

Material requirements planning (MRP)   A computer-based system for planning, 

scheduling, and controlling the production of all the components of a final product. 

(Section 18.3) 

Multiechelon inventory system   An inventory system with multiple stages at which 

inventory is held. (Section 18.5) 

Newsvendor problem   A standard stochastic single-period model for perishable 

products. (Section 18.7) 

No backlogging   The situation where excess demand either must be met through a 

priority replenishment of inventory or it will be lost. (Section 18.2) 

Ordering cost   The total cost of ordering (either through purchasing or producing) some 

amount to replenish inventory. (Sections 18.1 and 18.2) 
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Overbooking  Providing more reservations for receiving some service (e.g., seats on an 

airline flight) than the available inventory for providing that service.  (Section 18.8) 

Periodic review   The inventory level is checked only at discrete intervals and 

replenishment decisions are made only at those times. (Section 18.2) 

Perishable product   A product that can be carried in inventory for only a very limited 

period before it can no longer be sold. (Section 18.7) 

Quantity discounts   Discounts that are provided when sufficiently large orders are 

placed. (Section 18.3) 

(R, Q) policy   An abbreviation for reorder-point, order-quantity policy, where R is the 

reorder point and Q is the order quantity. (Section 18.6) 

Reorder point   The inventory level at which an order is placed to replenish inventory in 

a continuous-review inventory system. (Section 18.3) 

Reorder-point, order-quantity policy   A policy for a stochastic continuous-review 

inventory system that calls for placing an order for a certain quantity each time that the 

inventory level drops to the reorder point. (Section 18.6) 

Revenue management  Managing the demand for a company’s product with the goal of 

maximizing expected revenue when dealing with a perishable product whose entire 

inventory must be made available to customers at a designated point in time or be lost 

forever.  (Section 18.8) 

Safety stock   The expected inventory level just before an order quantity is received. 

(Section 18.6) 

Salvage value   The value of an item if it is left over when no further inventory is 

desired. (Section 18.2) 
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Scientific inventory management   The process of formulating a mathematical model to 

seek and apply an optimal inventory policy while using a computerized information 

processing system. (Introduction) 

Serial multiechelon system   A multiechelon inventory system where there is only a 

single installation at each echelon. (Section 18.5) 

Set-up cost   The fixed cost (independent of order size) associated with placing an order 

to replenish inventory. When purchasing, this is the administrative cost of ordering. 

When producing, this is the cost incurred in setting up to start a production run. (Sections 

18.1 and 18.2) 

Shortage cost   The cost incurred when the demand for a product in inventory exceeds 

the amount available there. (Sections 18.1, 18.2, and 18.8) 

Stable product   A product which will remain sellable indefinitely so there is no deadline 

for disposing of its inventory. (Section 18.7) 

Supply chain   A network of facilities that procure raw materials, transform them into 

intermediate goods and then final products, and finally deliver the products to customers 

through a distribution system that usually includes a multiechelon inventory system. 

(Section 18.5) 

Two-bin system   A type of continuous-review inventory system where all the units of a 

product are held in two bins and a replenishment order is placed when the first bin is 

depleted, so the second bin then is drawn on during the lead time for the delivery. 

(Section 18.6) 
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Glossary for Chapter 19 

 

Average cost criterion   A criterion for measuring the performance of a Markov decision 

process by using its expected average cost per unit time. (Sections 19.1 and 19.2) 

Deterministic policy   A policy that always remains the same over time. (Section 19.2) 

Discounted cost criterion   A criterion for measuring the performance of a Markov 

decision process by using its expected total discounted cost based on the time value of 

money. (Supplement 2) 

Method of successive approximations   A method for quickly finding at least an 

approximation to an optimal policy for a Markov decision process under the discounted 

cost criterion by solving for the optimal policy with n stages to go for n = 1, then n = 2, 

and so forth up to some small value of n. (Supplement 2) 

Policy   A specification of the decisions for the respective states of a Markov decision 

process. (Section 19.2) 

Policy improvement algorithm   An algorithm that solves a Markov decision process by 

iteratively improving the current policy until no further improvement can be made 

because the current policy is optimal. (Supplements 1 and 2) 

Randomized policy   A policy where a probability distribution is used for the decision to 

be made for each of the respective states of a Markov decision process. (Section 19.3) 

Stationary policy   A policy that always remains the same over time. (Section 19.2) 
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Glossary for Chapter 20 

Acceptance-rejection method   A method for generating random observations from a 

continuous probability distribution. (Section 20.4) 

Animation   A computer display with icons that shows what is happening in a 

simulation. (Section 20.5) 

Applications-oriented simulator   A software package designed for simulating a fairly 

specific type of stochastic system. (Section 20.5) 

Congruential methods   A popular class of methods for generating a sequence of 

random numbers over some range. (Section 20.3) 

Continuous simulation   The type of simulation where changes in the state of the system 

occur continuously over time. (Section 20.1) 

Cycle length   The number of consecutive pseudo-random numbers in a sequence before 

it begins repeating itself. (Section 20.3) 

Discrete-event simulation   The type of simulation where changes in the state of the 

system occur instantaneously at random points in time as a result of the occurrence of 

discrete events. (Section 20.1) 

Distributions menu   A menu on the ASPE ribbon that includes 46 probability 

distributions from which one is chosen to enter into any uncertain variable cell. (Section 

20.6) 

Fixed-time incrementing   A time advance method that always advances the simulation 

clock by a fixed amount. (Section 20.1) 

General-purpose simulation language   A general-purpose computer language for 

programming almost any kind of simulation model. (Section 20.5) 
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Inverse transformation method   A method for generating random observations from a 

probability distribution. (Section 20.4) 

Next-event incrementing   A time advance method that advances the time on the 

simulation clock by repeatedly moving from the current event to the next event that will 

occur in the simulated system. (Section 20.1) 

Parameter analysis report   An ASPE module that systematically applies simulation 

over a range of values of one or two decision variables and then displays the results in a 

table. (Section 20.6) 

Pseudo-random numbers   A term sometimes applied to random numbers generated by 

a computer because such numbers are predictable and reproducible. (Section 20.3) 

Random integer number   A random observation from a discretized uniform 

distribution over some range. (Section 20.3) 

Random number   A random observation from some form of a uniform distribution. 

(Section 20.3) 

Random number generator   An algorithm that produces sequences of numbers that 

follow a specified probability distribution and possess the appearance of randomness. 

(Section 20.3) 

Results cell   An output cell that is used by simulation to calculate a measure of 

performance. (Section 20.6) 

Seed   An initial random number that is used by a congruential method to initiate the 

generation of a sequence of random numbers. (Section 20.3) 

Simulation clock   A variable in the computer program that records how much simulated 

time has elapsed so far. (Section 20.1) 
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Simulation model   A representation of the system to be simulated that also describes 

how the simulation will be performed. (Section 20.1) 

Simulator   A shorthand name for applications-oriented simulator (defined above). 

(Section 20.5) 

Solver   A component of ASPE that automatically searches for an optimal solution for a 

simulation model with any number of decision variables. (Section 20.6) 

State of the system   The key information that defines the current status of the system. 

(Section 20.1) 

Statistic cell   A cell that shows a measure of performance that summarizes the results of 

an entire simulation run. (Section 20.6) 

Time advance methods   Methods for advancing the simulation clock and recording the 

operation of the system. (Section 20.1) 

Trend chart   A chart that shows the trend of the values in a results cell as a decision 

variable increases. (Section 20.6) 

Trial   A single application of the process of generating a random observation from each 

probability distribution entered into a spreadsheet simulation and then calculating the 

output cells in the usual way and recording the results of interest. (Section 20.6) 

Uncertain variable cell   An input cell that has a random value so that a probability 

distribution must be entered into the cell instead of permanently entering a single number. 

(Section 20.6) 

Uniform random number   A random observation from a (continuous) uniform 

distribution over some interval [a, b], commonly where a = 0 and b = 1. (Section 20.3) 
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Warm-up period   The initial period waiting to essentially reach a steady-state condition 

before collecting data during a simulation run. (Section 20.1) 
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21C H A P T E R

The Art of Modeling
with Spreadsheets

A key step in nearly any OR study is to formulate a mathematical model to represent
the problem of interest. You have seen numerous examples of mathematical models

throughout this book. These mathematical models generally have been formulated in an
algebraic format.

However, the emergence of powerful spreadsheet technology in recent years now pro-
vides an alternative way of displaying a mathematical model for a problem that is small
enough to fit comfortably into a spreadsheet. This often provides a convenient and intu-
itive way of representing the problem. The algebra of the model is still there, but it is hid-
den away in the formulas entered into certain cells of the spreadsheet. This can greatly
aid communications between an OR team and a decision maker who may be uncomfort-
able with algebra. Spreadsheet software (such as the Excel add-in called Solver) includes
basic OR algorithms, so various types of spreadsheet models can be solved as soon as
they have been formulated. This also makes it easy to do basic sensitivity analysis by sim-
ply re-solving the model after changing some of its parameters that are entered into the
corresponding cells of the spreadsheet.

Section 3.5 introduced spreadsheet modeling in the context of linear programming
problems. Spreadsheet models also were formulated in several other chapters. However,
those presentations focused mostly on the characteristics of spreadsheet models that fit
the specific types of applications being considered in those chapters. We devote this chap-
ter instead to the general art of formulating spreadsheet models to fit any application. (The
discussion assumes that Microsoft Excel is being used, but the same principles also will
apply when using other commercially available spreadsheet packages.)

Modeling in spreadsheets is more an art than a science. There is no systematic pro-
cedure that invariably will lead to a single correct spreadsheet model. For example, if two
OR teams were to be given exactly the same problem to analyze with a spreadsheet, their
spreadsheet models will likely look quite different. There is no one right way of model-
ing any given problem. However, some models will be better than others.

Although no completely systematic procedure is available for modeling in spread-
sheets, there is a general process that should be followed. This process has four major
steps: (1) plan the spreadsheet model, (2) build the model, (3) test the model, and (4)
analyze the model and its results. (This process is a streamlined version of both the OR
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21-2 CHAPTER 21 THE ART OF MODELING WITH SPREADSHEETS

modeling approach described in Chap. 2 and the outline of a major simulation study pre-
sented in Sec. 20.5.) After introducing a case study in Sec. 21.1, the next section will
describe this plan-build-test-analyze process in some detail and illustrate the process in
the context of the case study. Section 21.2 also will discuss some ways of overcoming
common stumbling blocks in the modeling process.

Unfortunately, despite its helpful logical approach, there is no guarantee that the plan-
build-test-analyze process will lead to a “good” spreadsheet model. Section 21.3 presents some
guidelines for building such models. This section also uses the case study in Sec. 21.1 to
illustrate the difference between appropriate formulations and poor formulations of a model.

Even with an appropriate formulation, the initial versions of large spreadsheet mod-
els commonly will include some small but troublesome errors, such as inaccurate refer-
ences to cell addresses or typographical errors when entering equations into cells. These
errors often can be difficult to track down. Section 21.4 presents some helpful ways to
debug a spreadsheet model and to root out such errors.

The goal of this chapter is to provide a solid foundation for becoming a successful
spreadsheet modeler. 

21.1 A CASE STUDY: THE EVERGLADE GOLDEN YEARS 
COMPANY CASH FLOW PROBLEM

This case study involves a problem in cash flow management that the Everglade Golden
Years Company faced in late 2009.

The Everglade Golden Years Company operates upscale retirement communities in cer-
tain parts of southern Florida. The company was founded in 1946 by Alfred Lee, who was
in the right place at the right time to enjoy many successful years during the boom in the
Florida economy when many wealthy retirees moved into the region. Today, the company
continues to be run by the Lee family, with Alfred’s grandson, Sheldon Lee, as the CEO.

The past few years have been difficult ones for Everglade. The demand for retirement
community housing has been light, and Everglade has been unable to maintain full occu-
pancy. However, this market has picked up recently, and the future is looking brighter.
Everglade has recently broken ground for the construction of a new retirement commu-
nity and has more new construction planned over the next 10 years.

Julie Lee is the chief financial officer (CFO) at Everglade. She has spent the last week
in front of her computer trying to come to grips with the company’s imminent cash flow
problem. Julie has projected Everglade’s net cash flows over the next 10 years as shown
in Table 21.1. With less money currently coming in than would be provided by full occu-
pancy and with all the construction costs for the new retirement community, Everglade will
have negative cash flow for the next few years. With only $1 million in cash reserves, it
appears that Everglade will need to take out loans in order to meet its financial obligations.
Also, to protect against uncertainty, company policy dictates maintaining a balance of at
least $500,000 in cash reserves at all times.

The company’s bank has offered two types of loans to Everglade. The first is a 10-year
loan with interest-only payments made annually and then the entire principal repaid in a sin-
gle balloon payment after 10 years. The fixed interest rate on this long-term loan is a fa-
vorable 5 percent per year. The disadvantage is that the interest must be paid on the full loan
throughout the 10 years even during those years when some or all of the loan money is not
needed. The second option is a series of 1-year loans. These loans can be taken out each
year as needed, but each must be repaid (with interest) the following year. Each new loan
can be used to help repay the loan for the preceding year if needed. The interest rate for
these short-term loans currently is projected to be 7 percent per year. Because of the
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uncertainty about how interest rates will evolve in the future, planning will be done on the
basis of this projection of 10 percent per year. The third option is to use some combination
of a 10-year loan and a series of 1-year loans.

Armed with her cash flow projections and the loan options from the bank, Julie meets
with the CEO, Sheldon Lee, to further define the problem. While discussing the three types
of loan options, Julia asks two questions. What are the constraints on what can be done?
When evaluating the various alternative plans, what should be the measure of performance
for choosing the best plan? Sheldon indicates that any of the loan options would be ac-
ceptable as long as they observe the company policy of maintaining a balance of at least
$500,000 in cash reserves at all times. He also says that the objective should be to have as
large a cash balance as possible at the end of the 10 years after paying off all the loans.

Given these guidelines, you’ll see in the next two sections how Julie carefully de-
velops her spreadsheet model for this cash flow problem.

21.2 OVERVIEW OF THE PROCESS OF MODELING WITH SPREADSHEETS 21-3

TABLE 21.1 Projected net cash flows for the 
Everglade Golden Years Company 
over the next 10 years

Projected Net Cash Flow
)srallod fo snoillim(Year

2014 8
2015 2
2016 4

32017
62018
32019

2020 4
72021

2022 2
012023

21.2 OVERVIEW OF THE PROCESS OF MODELING WITH SPREADSHEETS

When presented with a problem like Everglade’s cash flow problem, the temptation is to
jump right in, launch Excel, and start entering a model. Resist this urge. Developing a
spreadsheet model without proper planning inevitably leads to a model that is poorly or-
ganized and difficult to interpret. To provide you with some structure as you begin learn-
ing the art of modeling with spreadsheets, we suggest that you follow the modeling process
depicted in Fig. 21.1.

As suggested by this figure, the four major steps in this process are to (1) plan,
(2) build, (3) test, and (4) analyze the spreadsheet model. The process mainly flows in this
order. However, the two-headed arrows between Build and Test indicate a recursive process
where testing frequently results in returning to the Build step to fix some problems dis-
covered during the Test step. This back and forth movement between Build and Test may
occur several times until the modeler is satisfied with the model. At the same time that this
back and forth movement is occurring, the modeler may be involved with further building
of the model. One strategy is to begin with a small version of the model to establish its ba-
sic logic and then, after testing verifies its accuracy, to expand to a full-scale model. Even
after completing the testing and then analyzing the model, the process may return to the
Build step or even the Plan step if the Analysis step reveals inadequacies in the model.
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Plan

Build

Test

Analyze

Define the problem and gather the data 

Visualize where you want to finish 

Do some calculations by hand 

Sketch out a spreadsheet

Start with a 
small-scale model

Try different trial solutions to check the logic

Evaluate proposed solutions and/or
optimize with Solver

Expand the model 
to full scale

If the solution reveals inadequacies 
in the model, return to Plan or Build

■ FIGURE 21.1
A flow diagram for the
general plan-build-test-
analyze process for modeling
with spreadsheets.

Each of these four major steps may also include some detailed steps. For example,
Fig. 21.1 lists four detailed steps within the Plan step. Initially, when dealing with a fairly
complicated problem, it is helpful to take some time to perform each of these detailed
steps manually one at a time. However, as you become more experienced with modeling
in spreadsheets, you may find yourself merging some of the detailed steps and quickly
performing them mentally. An experienced modeler often is able to do some of these steps
mentally, without working them out explicitly on paper. However, if you find yourself get-
ting stuck, it is likely that you are missing a key element from one of the previous detailed
steps. You then should go back a step or two and make sure that you have thoroughly
completed those preceding steps.

We now describe the various components of the modeling process in the context of
the Everglade cash flow problem. At the same time, we also point out some common
stumbling blocks encountered while building a spreadsheet model and how these can be
overcome.

Plan: Define the Problem and Gather the Data

Before sitting down to start planning how to organize the spreadsheet model, it is neces-
sary to thoroughly understand what the problem is. Therefore, the first order of business
is to develop a well-defined statement of the problem being considered. What are the de-
cisions to be made? What are the constraints on these decisions? What is the overall
measure of performance for these decisions? These are the kinds of questions that need
to be addressed by the members of management who are responsible for making the de-
cisions. This input enables an OR analyst (or team) to identify the “right” problem from
management’s viewpoint. After defining this problem, the analyst can then undertake the
sometimes lengthy process of gathering the relevant data for analyzing the problem. (See
Sec. 2.1 for a more detailed discussion of this process of defining the problem and gath-
ering the data.)

As a member of Everglade’s top management, Julie Lee was able to undertake a major
part of this process of defining the company’s cash flow problem by herself. She identi-
fied the nature of the problem (projected cash deficits in some future years), the alternative
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courses of action (the different types of loan options), and the decisions to be made (the
size of the long-term 10-year loan and the sizes of the short-term 1-year loans in the re-
spective years). She also gathered the relevant data for analyzing the problem. However,
because the ultimate responsibility for making the decisions rests with Everglade’s CEO,
Sheldon Lee, Julie was careful to consult with Sheldon before proceeding further. Sheldon
imposed a constraint on the decisions by reaffirming that the company would need to con-
tinue to observe the policy of maintaining a balance of at least $500,000 in cash reserves
at all times. Sheldon also identified the objective as maximizing the cash balance at the
end of the 10 years after paying off all the loans.

Plan: Visualize Where You Want to Finish

Having defined the problem clearly and gathered the relevant data, you now are ready to
begin the process of formulating the spreadsheet model. One common stumbling block in
the modeling process occurs right at the very beginning. Given a complicated situation like
the one facing Julie at Everglade, it sometimes can be difficult to decide how to even get
started. At this point, it can be helpful to think about where you want to end up. For ex-
ample, what information should Julie provide in her report to Sheldon? What should the
“answer” look like when presenting the recommended approach to the problem? What kinds
of numbers need to be included in the recommendation? The answers to these questions
can quickly lead you to the heart of the problem and help get the modeling process started.

The question that Julie is addressing is which loan, or combination of loans, to use
and in what amounts. The long-term loan is taken in a single lump sum. Therefore, the
“answer” should include a single number indicating how much money to borrow now at
the long-term rate. The short-term loan can be taken in any or all of the 10 years, so the
“answer” should include 10 numbers indicating how much to borrow at the short-term
rate in each given year. These will be the changing cells (the cells containing the values
of the decision variables) in the spreadsheet model.

What other numbers should Julie include in her report to Sheldon? The key numbers
would be the projected cash balance at the end of each year, the amount of the interest
payments, and when loan payments are due. These will be output cells (the cells that
show quantities that are calculated from the changing cells) in the spreadsheet model.

It is important to distinguish between the numbers that represent decisions (changing
cells) and those that represent results (output cells). For instance, it may be tempting to
include the cash balances as changing cells. These cells clearly change depending on the
decisions made. However, the cash balances are a result of how much is borrowed, how
much is paid, and all of the other cash flows. They cannot be chosen independently, but
instead are a function of the other numbers in the spreadsheet. The distinguishing char-
acteristic of changing cells (the loan amounts) is that they do not depend on anything else.
They represent the independent decisions being made. They impact the other numbers,
but not vice versa.

At this stage in the process, you should have a clear idea of what the answer will
look like, including what and how many changing cells are needed, and what kind of re-
sults (output cells) should be obtained. 

Plan: Do Some Calculations by Hand

When building a model, another common stumbling block can arise when trying to enter
a formula in one of the output cells. For example, just how does Julie keep track of the
cash balances in the Everglade cash flow problem? What formulas need to be entered?
There are a lot of factors that enter into this calculation, so it is easy to get overwhelmed. 
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If you are getting stuck at this point, it can be a very useful exercise to do some cal-
culations by hand. Just pick some numbers for the changing cells and determine with a
calculator or pencil and paper what the results should be. For example, pick some loan
amounts for Everglade, and then calculate the company’s resulting cash balance at the end
of the first couple years. Let’s say Everglade takes a long-term loan of $6 million, and
then adds short-term loans of $2 million in 2014  and $5 million in 2015. How much cash
would the company have left at the end of 2014  and at the end of 2015?

These two quantities can be calculated by hand as follows. In 2014 , Everglade has
some initial money in the bank ($1 million), a negative cash flow from its business oper-
ations ( $8 million), and a cash inflow from the long-term and short-term loans ($6 mil-
lion and $2 million, respectively). Thus, the ending balance for 2014   would be:

Ending Balance (2014 ) Starting Balance $1 million
Cash Flow (2014 )   8 million
LT Loan (2014 )   6 million
ST Loan (2014 )   2 million

$1 million

The calculations for the year 2015 are a little more complicated. In addition to the
starting balance left over from 2014   ($1 million), negative cash flow from business oper-
ations for 2015 ( $2 million), and a new short-term loan for 2015 ($5 million), the com-
pany will need to make interest payments on its 2014   loans as well as pay back the short-
term loan from 201 4  . The ending balance for 2015 is therefore:

Ending Balance (2015) Starting Balance (from 2014  ) $1 million
Cash Flow (2015) $2 million
ST Loan (2015) $5 million
LT Interest Payment (5%)($6 million)
ST Interest Payment (7%)($2 million)
ST Loan Payback (2014  ) $2 million

$1.38 million

Doing calculations by hand can help in a couple of ways. First, it can help clarify
what formula should be entered for an output cell. For instance, looking at the by-hand
calculations above, it appears that the formula for the ending balance for a particular year
should be

Ending balance starting balance cash flow loans interest payments
loan paybacks.

It now will be a simple exercise to enter the proper cell references in the formula for the
ending balance in the spreadsheet model. Second, hand calculations can help to verify the
spreadsheet model. By plugging in a long-term loan of $6 million, along with short-term
loans of $2 million in 2014  and $5 million in 2015, into a completed spreadsheet, the
ending balances should be the same as calculated above. If they’re not, this suggests an
error in the spreadsheet model (assuming the hand calculations are correct).

Plan: Sketch Out a Spreadsheet

Any model typically has a large number of different elements that need to be included on
the spreadsheet. For the Everglade problem, these would include some data cells (interest
rates, starting balance, minimum balances, and cash flows), some changing cells (loan
amounts), and a number of output cells (interest payments, loan paybacks, and ending bal-
ances). Therefore, a potential stumbling block can arise when trying to organize and lay
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out the spreadsheet model. Where should all the pieces fit on the spreadsheet? How do
you begin putting together the spreadsheet?

Before firing up Excel and blindly entering the various elements, it can be helpful to
sketch a layout of the spreadsheet. Is there a logical way to arrange the elements? A little
planning at this stage can go a long way toward building a spreadsheet that is well orga-
nized. Don’t bother with numbers at this point. Simply sketch out blocks on a piece of pa-
per for the various data cells, changing cells, and output cells, and label them. (The data
cells are the cells that show the data for the problem.) Concentrate on the layout. Should
a block of numbers be laid out in a row or a column, or as a two-dimensional table? Are
there common row or column headings for different blocks of cells? If so, try to arrange
the blocks in consistent rows or columns so they can utilize a single set of headings. Try
to arrange the spreadsheet so that it starts with the data at the top and progresses logically
toward the (the output cell that contains the value of the objective function) at
the bottom. This will be easier to understand and follow than if the data cells, changing
cells, output cells, and objective cell are all scattered throughout the spreadsheet.

A sketch of a potential spreadsheet layout for the Everglade problem is shown in
Fig. 21.2. The data cells for the interest rates, starting balance, and minimum cash bal-
ance are at the top of the spreadsheet. All of the remaining elements in the spreadsheet
then follow the same structure. The rows represent the different years (from 2014  through
2024  ). All the various cash inflows and outflows are then broken out in the columns, starting
with the projected cash flow from the business operations (with data for each of the 10 years),
continuing with the loan inflows, interest payments, and loan paybacks, and culminating with
the ending balance (calculated for each year). The long-term loan is a one-time loan (in 2014  ),
so it is sketched as a single cell. The short-term loan can occur in any of the 10 years (2014
through 2023  ), so it is sketched as a block of cells. The interest payments start one year after
the loans. The long-term loan is paid back 10 years later (2024  ).

Organizing the elements with a consistent structure, like in Fig. 21.2, not only saves
having to retype the year labels for each element, but also makes the model easier to un-
derstand. Everything that happens in a given year is arranged together in a single row.

It is generally easiest to start sketching the layout with the data. The structure of the
rest of the model should then follow the structure of the data cells. For example, once the
projected cash flows data are sketched as a vertical column (with each year in a row), then
it follows that the other cash flows should be structured the same way.

There is also a logical progression to the spreadsheet. The data for the problem are
located at the top and left of the spreadsheet. Then, since the cash flow, loan amounts,

FIGURE 21.2
Sketch of the spreadsheet for
Everglade’s cash flow
problem.
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interest payments, and loan paybacks are all part of the calculation for the ending balance,
the columns are arranged this way, with the ending balance directly to the right of all these
other elements. Since Sheldon has indicated that the objective is to maximize the ending
balance in 2024 , this cell is designated to be the objective cell.

Each year, the balance must be greater than the minimum required balance ($500,000).
Since this will be a constraint in the model, it is logical to arrange the balance and min-
imum balance blocks of numbers adjacent to each other in the spreadsheet. You can put
the signs on the sketch to remind yourself that these will be constraints.

Build: Start with a Small Version of the Spreadsheet

Once you’ve thought about a logical layout for the spreadsheet, it is finally time to open
a new worksheet in Excel and start building the model. If it is a complicated model, you
may want to start by building a small, readily manageable version of the model. The idea
is to first make sure that you’ve got the logic of the model worked out correctly for the
small version before expanding the model to full scale.

For example, in the Everglade problem, we could get started by building a model for
just the first two years (2014 and 2015), like the spreadsheet shown in Fig. 21.3. This
spreadsheet is set up to follow the layout suggested in the sketch of Fig. 21.2. The loan
amounts are in columns D and E. Since the interest payments are not due until the follow-
ing year, the formulas in columns F and G refer to the loan amounts from the preceding
year (LTLoan, or D11, for the long-term loan, and E11 for the short-term loan). The loan
payments are calculated in columns H and I. Column H is blank because the long-term loan
does not need to be repaid until 2024 . The short-term loan is repaid one year later, so the

FIGURE 21.3
A small version (years 2014            and 2015           only) of the spreadsheet for the Everglade cash flow management problem.
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1
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3
4
5
6
7
8
9

10
11
12

A B C D E F G H I J K L
Everglade Cash Flow Management Problem (Years 2014 and 2015)

LT Rate 5%
ST Rate 7%

Start Balance 1 (all cash figures in millions of dollars)
MinimumCash 0.5

Cash LT ST LT ST LT ST Ending Minimum
Year Flow Loan Loan Interest Interest Payback Payback Balance Balance

05.0=>00.1268-2014
05.0=>1.5600.2--0.14-0.3052-2015

Range Name Cell
LTLoan D11
LTRate C3
MinimumCash C7
StartBalance C6
STRate C4     

9
10
11
12

F G H I J K L
LT ST LT ST Ending Minimum

Interest Interest Payback Payback Balance Balance
=StartBalance+SUM(C11:I11) >= =MinimumCash

=-LTRate*LTLoan =-STRate*E11 =-E11 =J11+SUM(C12:I12) >= =MinimumCash



21.2 OVERVIEW OF THE PROCESS OF MODELING WITH SPREADSHEETS 21-9

formula in cell I12 refers to the short-term loan taken the preceding year (cell E11). The
ending balance in 2014 is the starting balance plus the sum of all the various cash flows that
occur in 2014 (cells C11:I11). The ending balance in 2015 is the ending balance in 2014
(cell J11) plus the sum of all the various cash flows that occur in 2015 (cells C12:I12). All
these formulas are summarized below the spreadsheet in Fig. 21.3.

The bottom of Fig. 21.3 shows the “range names” given to certain cells. A range name
is a descriptive name given to a cell or a block of cells that immediately identifies what is
there. As illustrated by certain formulas (especially the one in cell F12) below the spreadsheet,
writing a formula in terms of range names instead of cell addresses makes the formula much
easier to interpret. (We will discuss range names and their usefulness further in Sec. 21.3.)

Building a small version of the spreadsheet works very well for spreadsheets that have
a time dimension. For example, instead of jumping right into a 10-year planning prob-
lem, you can start with the simpler problem of just looking at a couple of years. Once
this smaller model is working correctly, you then can expand the model to 10 years.

Even if a spreadsheet model does not have a time dimension, the same concept of start-
ing small can be applied. For example, if certain constraints considerably complicate a prob-
lem, start by working on a simpler problem without the difficult constraints. Get the simple
model working, and then move on to tackle the difficult constraints. If a model has many
sets of output cells, you can build up a model piece by piece by working on one set of out-
put cells at a time, making sure each set works correctly before moving on to the next.

Test: Test the Small Version of the Model

If you do start with a small version of the model first, be sure to test this version thor-
oughly to make sure that all the logic is correct. It is far easier to fix a problem early,
while the spreadsheet is still a manageable size, rather than later after an error has been
propagated throughout a much larger spreadsheet.

To test the spreadsheet, try entering values in the changing cells for which you know
what the values of the output cells should be, and then see if the spreadsheet gives the re-
sults that you expect. For example, in Fig. 21.3, if zeroes are entered for the loan amounts,
then the interest payments and loan payback quantities should also be zero. If $1 million
is borrowed for both the long-term loan and the short-term loan, then the interest pay-
ments the following year should be $50,000 and $70,000, respectively. (Recall that the
interest rates are 5 percent and 7 percent, respectively.) If Everglade takes out a $6 million
long-term loan and a $2 million short-term loan in 2014, plus a $5 million short-term loan
in 2015, then the ending balances should be $1 million for 2014 and $1.56 million for
2015 (based on the calculations done earlier by hand). All these tests work correctly for
the spreadsheet in Fig. 21.3, so we can be fairly certain that it is correct.

If the output cells are not giving the results that you expect, then carefully look through
the formulas to see if you can determine and fix the problem. Section 21.4 will give fur-
ther guidance on some ways to debug a spreadsheet model.

Build: Expand the Model to Full-Scale Size

Once a small version of the spreadsheet has been tested to make sure all the formulas are cor-
rect and everything is working properly, the model can be expanded to full-scale size. Excel’s
fill commands often can be used to quickly copy the formulas into the remainder of the model.
For Fig. 21.3, the formulas in columns F, G, I, J, and L can be copied using the Fill Down
command in the Editing Group of the Home tab 

cells G12:G21 and choosing Fill Down will take the formula in cell G12 and copy it (after
For example, selecting

adjusting the cell address in Column E for the formula) into cells G13 through G21.
When using the fill commands, it is important to understand the difference between

relative and absolute references. Consider the formula in cell G12 ( STRate*E11).
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to obtain all the formulas shown in Fig. 21.4.
cells G12:G21 and choosing Fill Down will take the formula in
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FIGURE 21.4
A complete spreadsheet model for the Everglade cash flow management problem, including the equations entered into
the objective cell EndBalance (J21) and all the other output cells, before calling on Solver. The entries in the changing
cells, LTLoan (D11) and STLoan (E11:E20), are only a trial solution at this stage.

hil61217_ch21.qxd  4/29/04  03:41 PM  Page 21-10

Range Name Cells
CashFlow C11:C20
EndBalance J21
Ending Balance J11:J21
LTLoan D11
LTRate C3
MinimumBalance L11:L21
MinimumCash C7
StartBalance C6
STLoan E11:E20
STRate C4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

A B C D E F G H I J K L
Everglade Cash Flow Management Problem

LT Rate 5%
ST Rate 7%

Start Balance 1 (all cash figures in millions of dollars)
Minimum Cash 0.5

Cash LT ST LT ST LT ST Ending Minimum
Year Flow Loan Loan Interest Interest Payback Payback Balance Balance

5.0=>00.1268-2014
5.0=>1.562--0.14-0.3052-2015
5.0=>-8.095--0.35-0.3004-2016
5.0=>-5.3900-0.30032017
5.0=>-0.3100-0.30062018
5.0=>3.0100-0.30032019
5.0=> 1.2900-0.3004-2020
5.0=>5.4100-0.30072021
5.0=>3.1100-0.3002-2022
5.0=>12.8100-0.300012023
5.0=>6.5106-0-0.302024

9
10
11
12
13
14
15
16
17
18
19
20
21

F G H I J K L
LT ST LT ST Ending Minimum

Interest Interest Payback Payback Balance Balance
=StartBalance+SUM(C11:I11) >= =MinimumCash

=-LTRate*LTLoan =-STRate*E11 =-E11 =J11+SUM(C12:I12) >= =MinimumCash
=-LTRate*LTLoan =-STRate*E12 =-E12 =J12+SUM(C13:I13) >= =MinimumCash
=-LTRate*LTLoan =-STRate*E13 =-E13 =J13+SUM(C14:I14) >= =MinimumCash
=-LTRate*LTLoan =-STRate*E14 =-E14 =J14+SUM(C15:I15) >= =MinimumCash
=-LTRate*LTLoan =-STRate*E15 =-E15 =J15+SUM(C16:I16) >= =MinimumCash
=-LTRate*LTLoan =-STRate*E16 =-E16 =J16+SUM(C17:I17) >= =MinimumCash
=-LTRate*LTLoan =-STRate*E17 =-E17 =J17+SUM(C18:I18) >= =MinimumCash
=-LTRate*LTLoan =-STRate*E18 =-E18 =J18+SUM(C19:I19) >= =MinimumCash
=-LTRate*LTLoan =-STRate*E19 =-E19 =J19+SUM(C20:I20) >= =MinimumCash
=-LTRate*LTLoan =-STRate*E20 =-LTLoan =-E20 =J20+SUM(C21:I21) >= =MinimumCash
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solution, including quickly determining what

(D11) and STLoan (E11:E20) in Fig. 21.4 show
unacceptable because Ending Balance (J11:J21)

Everglade management wants to

at least $500,000 at the end of
(J11:J21) MinimumBalance
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References to cells or ranges within a formula (like E11) are usually based upon their po-
sition relative to the cell containing the formula. Thus, E11 is two cells to the left and one
cell up. This is known as a relative reference. When this formula is copied to a new cell,
the reference is automatically adjusted to refer to the new cell that is at the same relative
location (two cells to the left and one cell up). For example, the formula copied to G13
refers to cell E12, the one in G14 refers to cell E13, and so on. This is exactly what we
want, since we always want the interest payment to be based on the short-term loan that
was taken one year ago (two cells to the left and one cell up).

In contrast, the reference to STRate (C4) in the formula for cell G12 is called an
absolute reference. These references do not change when they are filled into other cells.
That is, wherever this formula is copied, the formula will still refer to the cell STRate (C4).

To make a relative reference, simply enter the cell address (e.g., E11). To make an
absolute reference, either use a range name for the cell (e.g., STRate) or put $ signs in
front of the letter and number of the cell reference (e.g., $E$11). Similarly, you can make
the column absolute and the row relative (or vice versa) by putting a $ sign in front of
only the letter (or number) of the cell reference. For example, if a reference to $E11 in a
formula is copied to a new location, the $E will remain constant, but the row number will
adjust. In the case of the formula for cell G12 in Fig. 21.4, $E11 could have been used
for the cell reference since column E will remain constant, but the $ sign is not necessary
(and so was not used) when copying down column G since the relative location of col-
umn E (two columns to the left) always remains the same.

After using the Fill Down command to copy the formulas in columns F, G, I, J, and
L, and entering the LT loan payback into cell H21, the complete model appears as shown
in Fig. 21.4.

Test: Test the Full-Scale Version of the Model

Just as it was important to test the small version of the model, it needs to be tested again
after it is expanded to full-scale size. The procedure is the same one followed for testing
the small version, including the ideas that will be presented in Sec. 21.4 for debugging a
spreadsheet model.

Analyze: Analyze the Model

Before using Solver, the spreadsheet in Fig. 21.4 is merely an evaluative model for Everglade.
It can be used to evaluate any proposed
interest and loan payments will be required and what the resulting balances will be at
the end of each year. For example, LTLoan
one possible plan, which turns out to be
indicates that a negative ending balance would result in four of the years.

To optimize the model, Solver is used as shown in Fig. 21.5 to specify the objective
cell, the changing cells, and the constraints. (Even when constraints already are displayed
in the spreadsheet, as in columns J, K, and L of this figure, Excel allows these contraints 
to be violated unless they also are specified by Solver.) 
find a combination of loans that will keep the company solvent throughout the next
10 years (2014–2023) and then will leave as large a cash balance as possible in 2024
after paying off all the loans. Therefore, the objective cell to be maximized is EndBalance
(J21), and the changing cells are the loan amounts LTLoan (D11) and STLoan (E11:E20).
To ensure that Everglade maintains a minimum balance of
each year, the constraints for the model are EndingBalance 
(L11:L21).
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FIGURE 21.5
A complete spreadsheet model for the Everglade cash flow management problem after calling on Solver to obtain the 
optimal solution shown in the changing cells LTLoan (D11) and STLoan (E11:E20). The obej ctive cell EndBalance (J21)
indicates that the resulting cash balance in 202 4   will be $ 5  . 3  9 million if all the data cells prove to be accurate.
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Range Name Cells
CashFlow C11:C20
EndBalance J21
Ending Balance J11:J21
LTLoan D11
LTRate C3
MinimumBalance L11:L21
MinimumCash C7
StartBalance C6
STLoan E11:E20
STRate C4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

A B C D E F G H I J K L
Everglade Cash Flow Management Problem

LT Rate 5%
ST Rate 7%

Start Balance 1 (all cash figures in millions of dollars)
Minimum Cash 0.5

Cash LT ST LT ST LT ST Ending Minimum
Year Flow Loan Loan Interest Interest Payback Payback Balance Balance

05.0=>05.02.854.658-2014
2015 -2 5.28 -0.23 -0.20 -2.85 0.50 >= 0.50
2016 -4 9.88 -0.23 -0.37 -5.28 0.50 >= 0.50
2017 3 7.81 -0.23 -0.69 -9.88 0.50 >= 0.50
2018 6 2.59 -0.23 -0.55 -7.81 0.50 >= 0.50

05.0=>0.50-2.59-0.18-0.23032019
2020 -4 4.23 -0.23 0 0 0.50 >= 0.50

05.0=>2.74-4.23-0.30-0.23072021
05.0=>0.5100-0.2302-2022
05.0=>10.2700-0.230012023
05.0=>5.390-4.650-0.232024

9
10
11
12
13
14
15
16
17
18
19
20
21

F G H I J K L
LT ST LT ST Ending Minimum

Interest Interest Payback Payback Balance Balance
=StartBalance+SUM(C11:I11) >= =MinimumCash

=-LTRate*LTLoan =-STRate*E11 =-E11 =J11+SUM(C12:I12) >= =MinimumCash
=-LTRate*LTLoan =-STRate*E12 =-E12 =J12+SUM(C13:I13) >= =MinimumCash
=-LTRate*LTLoan =-STRate*E13 =-E13 =J13+SUM(C14:I14) >= =MinimumCash
=-LTRate*LTLoan =-STRate*E14 =-E14 =J14+SUM(C15:I15) >= =MinimumCash
=-LTRate*LTLoan =-STRate*E15 =-E15 =J15+SUM(C16:I16) >= =MinimumCash
=-LTRate*LTLoan =-STRate*E16 =-E16 =J16+SUM(C17:I17) >= =MinimumCash
=-LTRate*LTLoan =-STRate*E17 =-E17 =J17+SUM(C18:I18) >= =MinimumCash
=-LTRate*LTLoan =-STRate*E18 =-E18 =J18+SUM(C19:I19) >= =MinimumCash
=-LTRate*LTLoan =-STRate*E19 =-E19 =J19+SUM(C20:I20) >= =MinimumCash
=-LTRate*LTLoan =-STRate*E20 =-LTLoan =-E20 =J20+SUM(C21:I21) >= =MinimumCash

 
Solver Parameters 
Set Objective Cell: EndBalance 
To: Max 
By Changing Variable Cells: 
 LTLoan, STLoan 
Subject to the Constraints: 
 EndingBalance >= MinimumBalance 
Solver Options: 
 Make Variables Nonnegative 
 Solving Method: Simplex LP 
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After running Solver, the optimal solution is shown in Fig. 21.5. The changing cells,
LTLoan (D11) and STLoan (E11:E20) give the loan amounts in the various years. The 
objective cell EndBalance (J21) indicates that the ending balance in 202 4   will be $5.39 million.

Conclusion of the Case Study

The spreadsheet model developed by Everglade’s CFO, Julie Lee, is the one shown in Fig.
21.5. Her next step is to submit to her CEO, Sheldon Lee, a report that recommends the
plan obtained by this model.

Soon thereafter, Sheldon and Julie meet to discuss her report. The one concern that
Sheldon raises is that the cash flows in the coming years shown in column C of Fig. 21.5
are only estimates. When there is a shift in the economy, or when other unexpected de-
velopments occur that impact on the company, those cash flows can change substantially.
Would the recommended plan still be a good one if those kinds of changes were to occur?
Julie and Sheldon agree that some sensitivity analysis should be done to check on the ef-
fect of such changes. Fortunately, Julie had set up the spreadsheet properly (providing a
data cell for the cash flow in each of the next 10 years) to enable performing sensitivity
analysis immediately by simply trying different numbers in some of these data cells. Af-
ter spending half an hour trying different numbers, Sheldon and Julie conclude that the
plan in Fig. 21.5 will be a sound initial financial plan for the next 10 years even if future
cash flows deviate somewhat from current forecasts. If deviations do occur, adjustments
will of course need to be made in the short-term loan amounts. At any point, Julie also will
have the option of returning to the company’s bank to try to arrange another long-term loan
for the remainder of the 10 years at a lower interest rate than for short-term loans. If so,
essentially the same spreadsheet model as in Fig. 21.5 can be used, along with Solver,
to find the optimal adjusted financial plan for the remainder of the 10 years.

21.3 SOME GUIDELINES FOR BUILDING “GOOD” SPREADSHEET MODELS

There are many ways to set up a model on a spreadsheet. While one of the benefits of
spreadsheets is the flexibility they offer, this flexibility also can be dangerous. Although
Excel provides many features (such as range names, shading, borders, etc.) that allow you
to create “good” spreadsheet models that are easy to understand, easy to debug, and easy
to modify, it is also easy to create “bad” spreadsheet models that are difficult to under-
stand, difficult to debug, and difficult to modify. The goal of this section is to provide
some guidelines that will help you create “good” spreadsheet models.

Enter the Data First

Any spreadsheet model is driven by the data in the spreadsheet. The form of the entire
model is built around the structure of the data. Therefore, it is always a good idea to en-
ter and carefully lay out all the data before you begin to set up the rest of the model. The
model structure then can conform to the layout of the data as closely as possible.

Often, it is easier to set up the rest of the model when the data are already on the
spreadsheet. In the Everglade problem (see Fig. 21.5), the data for the cash flows have
been laid out in the first columns of the spreadsheet (B and C), with the year labels in
column B and the data in cells C11:C20. Once the data are in place, the layout for the
rest of the model quickly falls into place around the structure of the data. It is only logi-
cal to lay out the changing cells and output cells using the same structure, with each of
the various cash flows in columns that utilize the same row labels from column B.

Now reconsider the spreadsheet model developed in Sec. 3.5 for the Wyndor Glass
Co. problem. This spreadsheet model is repeated here as Fig. 21.6. The data for the Hours
Used Per Batch Produced have been laid out in the center of the spreadsheet in cells C7:D9.
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The output cells, HoursUsed (E7:E9), then have been placed immediately to the right of
these data and to the left of the data on HoursAvailable (G7:G9), where the row labels for
these output cells are the same as for all these data. This makes it easy to interpret the three
constraints being laid out in rows 7–9 of the spreadsheet model. Next, the changing cells
and objective cell have been placed together in row 12 below the data, where the column la-
bels for the changing cells are the same as for the columns of data above.

The locations of the data occasionally will need to be shifted somewhat to better ac-
commodate the overall model. However, with this caveat, the model structure generally
should conform to the data as closely as possible.

FIGURE 21.6
The spreadsheet model for the Wyndor Glass Co. product-mix problem introduced in Sec. 3.1.
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1
2
3
4
5
6
7
8
9

10
11
12

A B C D E F G
Wyndor Glass Co. Product-Mix Problem

Doors Windows
Profit Per Batch $3,000 $5,000

Hours Hours
Used Available

Plant 1 1 0 2 <= 4
Plant 2 0 2 12 <= 12
Plant 3 3 2 18 <= 18

tiforP latoTswodniWsrooD
000,63$62decudorP sehctaB

Hours Used Per Batch Produced

5
6
7
8
9

E
Hours
Used

=SUMPRODUCT(C7:D7,BatchesProduced)
=SUMPRODUCT(C8:D8,BatchesProduced)
=SUMPRODUCT(C9:D9,BatchesProduced)

11
12

G
Total Profit

=SUMPRODUCT(ProfitPerBatch,BatchesProduced)

Range Name Cells
BatchesProduced C12:D12
HoursAvailable G7:G9
HoursUsed E7:E9
HoursUsedPerBatchProduced C7:D9
ProfitPerBatch C4:D4
TotalProfit G12

 
  

Solver Parameters 
Set Objective Cell: TotalProfit 
To: Max 
By Changing Variable Cells: 
 BatchedProduced 
Subject to the Constraints: 
 HoursUsed <= HoursAvailable 
Solver Options: 
 Make Variables Nonnegative 
 Solving Method: Simplex LP 
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Organize and Clearly Identify the Data

Related data should be grouped together in a convenient format and entered into the spread-
sheet with labels that clearly identify the data. For data laid out in tabular form, the table
should have a heading that provides a general description of the data, and then each row
and column should have a label that will identify each entry in the table. The units of the
data also should be identified. Different types of data should be well separated in the spread-
sheet. However, if two tables need to use the same labels for either their rows or columns,
then be consistent in making them either rows in both tables or columns in both tables.

In the Wyndor Glass Co. problem (Fig. 21.6), the three sets of data have been grouped
into tables and clearly labeled Profit Per Batch, Hours Used Per Batch Produced, and
Hours Available. The units of the data are identified (dollar signs are included in the unit
profit data, and hours are indicated in the labels of the time data). Finally, all three data
tables make consistent use of rows and columns. Since the Profit Per Batch data have their
product labels (Doors and Windows) in columns C and D, the Hours Used Per Batch
Produced data use this same structure. This structure also is carried through to the chang-
ing cells (Batches Produced). Similarly, the data for each plant are in the rows (row 7–9)
for both the Hours Used Per Batch Produced data and the Hours Available data. Keeping
the data oriented the same way is not only less confusing, but also makes it possible to
use the SUMPRODUCT function. The SUMPRODUCT function introduced in Sec. 3.5
assumes that the two ranges are exactly the same shape (i.e., the same number of rows
and columns). If the Profit Per Batch data and the Batches Produced data had not been
oriented the same way (e.g., one in a column and the other in a row), it would not have
been possible to use the SUMPRODUCT function to sum the product of each of the in-
dividual terms in the two ranges of cells in the Total Profit calculation.

Similarly, for the Everglade problem (Fig. 21.5), the five sets of data have been
grouped into cells and tables and clearly labeled ST Rate, LT Rate, Start Balance, Cash
Flow, and Minimum Cash. The units of the data are identified (cells F6:H6 specify that
all cash figures are in millions of dollars), and all the tables make consistent use of rows
and columns (years in the rows).

Enter Each Piece of Data into One Cell Only 

If a piece of data is needed in more than one formula, then refer to the original data cell
rather than repeating the data in additional places. This makes the model much easier to
modify. If the value of that piece of data changes, it only needs to be changed in one
place. You do not need to search through the entire model to find all the places where the
data value appears.

For example, in the Everglade problem (Fig. 21.5), there is a company policy of main-
taining a cash balance of at least $500,000 at all times. This translates into a constraint
for the minimum balance of $500,000 at the end of each year. Rather than entering the
minimum cash position of 0.5 (in millions of dollars) into all the cells in column L, it is
entered once in MinimumCash (C7) and then referred to by the cells in MinimumBalance
(L11:L21). Then, if this policy were to change to, say, a minimum of $200,000 cash, the
number would need to be changed in only one place.

Separate Data from Formulas

Avoid using numbers directly in formulas. Instead, enter any needed numbers into data
cells, and then refer to the data cells as needed. For example, in the Everglade problem
(Fig. 21.5), all the data (the interest rates, starting balance, minimum cash, and pro-
jected cash flows) are entered into separate data cells on the spreadsheet. When these
numbers are needed to calculate the interest charges (in columns F and G), loan payments
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(in column H and I), ending balances (column J), and minimum balances (column L),
the data cells are referred to rather than entering these numbers directly in the formulas.

Separating the data from the formulas has a couple advantages. First, all the data are vis-
ible on the spreadsheet rather than buried in formulas. Seeing all the data makes the model
easier to interpret. Second, the model is easier to modify since changing data only requires
modifying the corresponding data cells. You don’t need to modify any formulas. This proves
to be very important when it comes time to perform sensitivity analysis to see what the effect
would be if some of the estimates in the data cells were to take on other plausible values.

Keep it Simple

Avoid the use of powerful Excel functions when simpler functions are available that are eas-
ier to interpret. As much as possible, stick to SUMPRODUCT or SUM functions. This makes
the model easier to understand and also helps to ensure that the model will be linear. (Linear
models are considerably easier to solve than others.) Try to keep formulas short and simple.
If a complicated formula is required, break it out into intermediate calculations with subto-
tals. For example, in the Everglade spreadsheet, each element of the loan payments is broken
out explicitly: LT Interest, ST Interest, LT Payback, and ST Payback. Some of these columns
could have been combined (e.g., into two columns with LT Payments and ST Payments, or
even into one column for all Loan Payments). However, this makes the formulas more com-
plicated, and also makes the model harder to test and debug. As laid out, the individual for-
mulas for the loan payments are so simple that their values can be predicted easily without
even looking at the formula. This simplifies the testing and debugging of the model.

Use Range Names

One way to refer to a block of related cells (or even a single cell) in a spreadsheet for-
mula is to use its cell address (e.g., L11:L21 or C3). However, when reading the formula,
this requires looking at that part of the spreadsheet to see what kind of information is
given there. As mentioned in Sec. 21.2, a better alternative often is to assign a descriptive
range name to the block of cells that immediately identifies what is there. (This is done
by selecting the block of cells, clicking on the name box on the left of the formula bar
above the spreadsheet, and then typing a name.) This is especially helpful when writing 
a formula for an output cell. Writing the formula in terms of range names instead of 
cell addresses makes the formula much easier to interpret. Range names also make the 
description of the model in Solver much easier to understand.

Figure 21.5 illustrates the use of range names for the Everglade spreadsheet model, where
these range names are listed in the upper right-hand corner of the figure. (Spaces are not al-
lowed in range names, so we have used capital letters to distinguish the start of each new
word in a range name.) For example, consider the formula for long-term interest in cell F12.
Since the long-term rate is given in cell C3 and the long-term loan amount is in cell D11,
the formula for the long-term interest could have been written as C3*D11. However, by
using the range name LTRate for cell C3 and the range name LTLoan for cell D11, the for-
mula instead becomes LTRate*LTLoan, which is much easier to interpret at a glance.

On the other hand, be aware that it is easy to get carried away with defining range
names. Defining too many range names can be more trouble than it is worth. For example,
when related data are grouped together in a table, we recommend giving a range name only
for the entire table rather than for the individual rows and columns. In general, we suggest
defining range names only for each group of data cells, the changing cells, the objective cell,
and both sides of each group of constraints (the left-hand side and the right-hand side).

Care also should be taken to ensure that it is easy to quickly identify which cells are
referred to by a particular range name. Use a name that corresponds exactly to the label
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on the spreadsheet. For example, in Fig. 21.5, columns J and L are labeled Ending Balance
and Minimum Balance on the spreadsheet, so we use the range names EndingBalance and
MinimumBalance. Using exactly the same name as the label on the spreadsheet makes it
quick and easy to find the cells that are referred to by a range name.

When desired, a list of all the range names and their corresponding cell addresses can
be pasted directly into the spreadsheet by choosing Paste from the Use in Formula menu
on the Formulas tab  and then clicking Paste List. Such a list (after reformatting) is included 

When modifying an existing model that utilizes range names, care should be taken to
 below many of the spreadsheets displayed in this chapter.

ensure that the range names continue to refer to the correct range of cells. When inserting
a row or column into a spreadsheet model, it is helpful to insert the row or column into the
middle of a range rather than at the end. For example, to add another product to a product-
mix model with four products, add a column between products 2 and 3 rather than after
product 4. This will automatically extend the relevant range names to span across all five
columns since these range names will continue to refer to everything between product 1 and
product 4, including the newly inserted column for the fifth product. Similarly, deleting a
row or column from the middle of a range will contract the span of the relevant range names
appropriately. You can double-check the cells that are referred to by a range name by choos-
ing that range name from the name box (on the left of the formula bar above the spreadsheet).
This will highlight the cells that are referred to by the chosen range name.

Use Relative and Absolute Referencing to Simplify Copying Formulas

Whenever multiple related formulas will be needed, try to enter the formula just once and
then use Excel’s fill commands to replicate the formula. Not only is this quicker than re-
typing the formula, but it is also less prone to error.

We saw a good example of this when discussing the expansion of the model to full-
scale size in the preceding section. Starting with the 2-year spreadsheet in Fig. 21.3, fill
commands were used to copy the formulas in columns F, G, I, J, and L for the remain-
ing years to create the full-scale, 10-year spreadsheet in Fig. 21.4.

Use Borders, Shading, and Colors to Distinguish between Cell Types

It is important to be able to easily distinguish between the data cells, changing cells, out-
put cells, and objective cell in a spreadsheet. One way to do this is to use different borders
and cell shading for each of these different types of cells. For example, data cells could
appear lightly shaded with a light border, changing cells darkly shaded with a heavy bor-
der, output cells with no shading, and the objective cell darkly shaded with a double border.

Another option would be to use different colors for the different types of cells. For
example, data cells could appear blue, changing cells yellow, output cells white, and the
objective cell green. 

Obviously, you may use any scheme that you like. The important thing is to be con-
sistent, so that you can quickly recognize the types of cells. Then, when you want to ex-
amine the cells of a certain type, the shading or color will immediately guide you there.

Show the Entire Model on the Spreadsheet

Solver uses a combination of the spreadsheet and the Solver dialog box (or the model pane
in ASPE) to specify the model to be solved. Therefore, it is possible to include certain

(such as the signs and/or the right-hand sides of the
constraints) in Solver without displaying them in the spreadsheet. However, we strongly 
recommend that every element of the model be displayed on the spreadsheet. Every person
using or adapting the model, or referring back to it later, needs to be able to interpret the
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model. This is much easier to do by viewing the model on the spreadsheet than by trying
to decipher it from Solver. Furthermore, a printout of the spreadsheet does not include
information from Solver.

In particular, all the elements of a constraint should be displayed on the spreadsheet,
even though the constraint will be enforced only after it is listed by Solver. For each 
constraint, three adjacent cells should be used for the total of the left-hand side, the

, or sign in the middle, and the right-hand side. (Note in Fig. 21.5 that this was
done in columns J, K, and L of the spreadsheet for the Everglade problem.). As mentioned
earlier, the changing cells and objective cell should be highlighted in some manner (e.gg.,
with borders and/or cell shading and coloring). A good test is that you should not need
to go to Solver to determine any element of the model. You should be able to identify
the changing cells, the objective cell, and all the constraints in the model just by looking
at the spreadsheet.

A Poor Spreadsheet Model

It is certainly possible to set up a linear programming spreadsheet model without utilizing any
of these ideas. Figure 21.7 shows an alternative spreadsheet formulation for the Everglade
problem that violates nearly every one of these guidelines. This formulation can still be solved
using Solver, which in fact yields the same optimal solution as in Fig. 21.5. However, the for-
mulation has many problems. It is not clear which cells yield the solution (borders, shading,

FIGURE 21.7
A poor formulation of the
spreadsheet model for the
Everglade cash flow
management problem.
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

A B C D E F
A Poor Formulation of the Everglade Cash Flow Problem

LT ST Ending
Year Loan Loan Balance
2014 4.65 2.85 0.50

05.05.282015
05.09.882016
05.07.812017
05.02.592018

0.5002019
05.04.232020

2.7402021
0.5102022

10.2702023
5.392024

3
4
5
6
7
8
9

10
11
12
13
14
15

E
Ending
Balance

=1-8+C5+D5
=E5-2+D6-$C$5*(0.05)-D5*(1.07)
=E6-4+D7-$C$5*(0.05)-D6*(1.07)
=E7+3+D8-$C$5*(0.05)-D7*(1.07)
=E8+6+D9-$C$5*(0.05)-D8*(1.07)
=E9+3+D10-$C$5*(0.05)-D9*(1.07)
=E10-4+D11-$C$5*(0.05)-D10*(1.07)
=E11+7+D12-$C$5*(0.05)-D11*(1.07)
=E12-2+D13-$C$5*(0.05)-D12*(1.07)
=E13+10+D14-$C$5*(0.05)-D13*(1.07)
=E14+D15-$C$5*(1.05)-D14*(1.07)

 
 

 
Solver Parameters 
Set Objective Cell: E15 
To: Max 
By Changing Variable Cells: 
 C5, D5:D14 
Subject to the Constraints: 
 E5:E15 >= 0.5 
Solver Options: 
 Make Variables Nonnegative 
 Solving Method: Simplex LP 
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21.4 DEBUGGING A SPREADSHEET MODEL

No matter how carefully it is planned and built, even a moderately complicated model
usually will not be error-free the first time it is run. Often the mistakes are immediately
obvious and quickly corrected. However, sometimes an error is harder to root out.
Following the guidelines in Sec. 21.3 for developing a good spreadsheet model can make
the model much easier to debug. Even so, much like debugging a computer program,
debugging a spreadsheet model can be a difficult task. This section presents some tips and
a variety of Excel features that can make debugging easier.

As a first step in debugging a spreadsheet model, test the model using the principles
discussed in the first subsection on testing in Sec. 21.2. In particular, try different values
for the changing cells for which you can predict the correct result in the output cells and
see if they calculate as expected. Values of 0 are good ones to try initially because usu-
ally it is then obvious what should be in the output cells. Try other simple values, such
as all 1s, where the correct results in the output cells are reasonably obvious. For more
complicated values, break out a calculator and do some manual calculations to check the
various output cells. Include some very large values for the changing cells to ensure that
the calculations are behaving reasonably for these extreme cases.

If you have defined range names, be sure that they still refer to the correct cells. Some-
times they can become disjointed when you add rows or columns to the spreadsheet. To
test the range names, you can either select the various range names in the name box, which
will highlight the selected range in the spreadsheet, or paste the entire list of range names
and their references into the spreadsheet.

Carefully study each formula to be sure it is entered correctly. A very useful feature in
Excel for checking formulas is the toggle to switch back and forth between viewing the for-
mulas in the worksheet and viewing the resulting values in the output cells. By default, Excel
shows the values that are calculated by the various output cells in the model. Typing control-~
switches the current worksheet to instead display the formulas in the output cells, as shown
in Fig. 21.8. Typing control-~ again switches back to the standard view of displaying the
values in the output cells (like Fig. 21.5).

Another useful set of features built into Excel are the auditing tools. The auditing
tools are available in the Formula Auditing group of the Formulas Tab. 

The auditing tools can be used to graphically display which cells make direct links
to
Dependents generates the arrows on the spreadsheet shown in Fig. 21.9.

a given cell. For example, selecting LTLoan (D11) in Fig. 21.5 and then Trace

or coloring are not used to highlight the changing cells and objective cell). Without going to
Solver, the constraints in the model cannot be identified (the spreadsheet does not show
the entire model). The spreadsheet also does not show most of the data. For example, to
determine the data used for the projected cash flows, the interest rates, or the starting balance,
you need to dig into the formulas in column E (the data are not separate from the formuoas).
If any of these data change, the actual formulas need to be modified rather than simply
changing a number on the spreadsheet. Furthermore, the formulas and the model in Solver
are difficult to interpret (range names are not utilized).

Compare Figs. 21.5 and 21.7. Applying the guidelines for good spreadsheet models
(as is done for Fig. 21.5) results in a model that is easier to understand, easier to debug,
and easier to modify. This is especially important for models that will have a long life
span. If this model is going to be reused months later, the “good” model of Fig. 21.5 im-
mediately can be understood, modified, and reapplied as needed, whereas deciphering the
spreadsheet model of Fig. 21.7 again would be a great challenge.
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You now can immediately see that LTLoan (D11) is used in the calculation of LT
Interest for every year in column  F, in the calculation of LTPayback (H21), and in the
calculation of the ending balance in 2014 (J11). This can be very illuminating. Think about what
output cells LTLoan should impact directly. There should be an arrow to each of these
cells. If, for example, LTLoan is missing from any of the formulas in column F, the error
will be immediately revealed by the missing arrow. Similarly, if LTLoan is mistakenly en-
tered in any of the short-term loan output cells, this will show up as extra arrows.

You also can trace backward to see which cells provide the data for any given cell.
These can be displayed graphically by choosing Trace Precedents.
For example, choosing Trace Precedents for the ST Interest cell for 2015   (G12) displays
the arrows shown in Fig. 21.10. These arrows indicate that the ST Interest cell for 2015
(G12) refers to the ST Loan in 2014 (E11) and to STRate (C4).

When you are done, choose Remove Arrows.

FIGURE 21.8
The spreadsheet obtained by toggling the spreadsheet in Fig. 21.5 once to replace the values in the output cells by the
formulas entered into these cells. Using the toggle feature in Excel once more will restore the view of the spreadsheet
shown in Fig. 21.5.
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

A B C D E F G H I J K

LT Rate 0.05
ST Rate 0.07

Start Balance 1 (all cash figures in millions  of dollars)
Minimum Cash 0.5

Cash LT ST LT ST LT ST Ending M
Flow Loan Loan Interest Interest Payback Payback Balance

2014 -8 4.65124  2.84759 =StartBalance+SUM(C11:I11) >= =Min
2015 -2 5.28073 =-LTRate*LTLoan =-STRate*E11 =-E11 =J11+SUM(C12:I12) >= =Min
2016 -4 9.88295 =-LTRate*LTLoan =-STRate*E12 =-E12 =J12+SUM(C13:I13) >= =Min
2017 3 7.80732 =-LTRate*LTLoan =-STRate*E13 =-E13 =J13+SUM(C14:I14) >= =Min
2018 6 2.58639 =-LTRate*LTLoan =-STRate*E14 =-E14 =J14+SUM(C15:I15) >= =Min
2019 3 0 =-LTRate*LTLoan =-STRate*E15 =-E15 =J15+SUM(C16:I16) >= =Min
2020 -4 4.23256 =-LTRate*LTLoan =-STRate*E16 =-E16 =J16+SUM(C17:I17) >= =Min
2021 7 0 =-LTRate*LTLoan =-STRate*E17 =-E17 =J17+SUM(C18:I18) >= =Min
2022 -2 0 =-LTRate*LTLoan =-STRate*E18 =-E18 =J18+SUM(C19:I19) >= =Min
2023 10 0 =-LTRate*LTLoan =-STRate*E19 =-E19 =J19+SUM(C20:I20) >= =Min

iM==>)12I:12C(MUS+02J=02E-=naoLTL-=02E*etaRTS-=naoLTL*etaRTL-=2024 n

Cash Flow Management Problem
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There is considerable art to modeling well with spreadsheets. This chapter focuses on pro-
viding a foundation for learning this art.

The general process of modeling in spreadsheets has four major steps: (1) plan the
spreadsheet model, (2) build the model, (3) test the model, and (4) analyze the model and

FIGURE 21.9
The spreadsheet obtained by using the Excel auditing tools to trace the dependents of the LT Loan value in cell D11 of
the spreadsheet in Fig. 21.5.

FIGURE 21.10
The spreadsheet obtained by using the Excel auditing tools to trace the precedents of the ST Interest (2004) calculation
in cell G12 of the spreadsheet in Fig. 21.5.

21.5 CONCLUSIONS
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its results. During the planning step, after defining the problem clearly and gathering the
relevant data, it is helpful to begin by visualizing where you want to finish and then do-
ing some calculations by hand to clarify the needed computations before starting to sketch
out a logical layout for the spreadsheet. Then, when you are ready to undertake the build-
ing step, it is a good idea to start by building a small, readily manageable version of the
model before expanding the model to full-scale size. This enables you to test the small
version first to get all the logic straightened out correctly before expanding to a full-scale
model and undertaking a final test. After completing all of this, you are ready for the
analysis step, which involves applying the model to evaluate proposed solutions and per-
haps using Solver to optimize the model.

Using this plan-build-test-analyze process should yield a spreadsheet model, but it
doesn’t guarantee that you will obtain a good one. Section 21.3 describes in detail the fol-
lowing guidelines for building “good” spreadsheet models.

• Enter the data first.
• Organize and clearly identify the data.
• Enter each piece of data into one cell only.
• Separate data from formulas.
• Keep it simple.
• Use range names.
• Use relative and absolute references to simplify copying formulas.
• Use borders, shading, and colors to distinguish between cell types.
• Show the entire model on the spreadsheet.

Even if all these guidelines are followed, a thorough debugging process may be needed
to eliminate the errors that lurk within the initial version of the model. It is important to
check whether the output cells are giving correct results for various values of the chang-
ing cells. Other items to check include whether range names refer to the appropriate cells
and whether formulas have been entered into output cells correctly. Excel provides a num-
ber of useful features to aid in the debugging process. One is the ability to toggle the work-
sheet between viewing the results in the output cells and the formulas entered into those
output cells. Several other helpful features are available from Excel’s auditing tools.

Chapter 21 Excel Files:

Everglade Case Study

hil61217_ch21.qxd  4/29/04  03:41 PM  Page 21-22



PROBLEMS 21-23

Wyndor Example
Everglade Problem 21-9
Everglade Problem 21-10

An Excel Add-in:

Analytic Solver Platform for Education (ASPE)

■ PROBLEMS

We have inserted the symbol E* (for Excel) to the left of each prob-
lem or part where Excel should be used. You may use either the 

E* 21-1. Consider the Everglade cash flow problem discussed in
this chapter. Suppose that extra cash is kept in an interest-bearing
savings account. Assume that any cash left at the end of a year
earns 3 percent interest the following year. Make any necessary
modifications to the spreadsheet and re-solve. The original spread- 

21-2. The Pine Furniture Company makes fine country furniture.
The company’s current product lines consist of end tables, coffee
tables, and dining room tables. The production of each of these ta-
bles requires 8, 15, and 80 pounds of pine wood, respectively. The
tables are handmade, and require one hour, two hours, and four
hours, respectively. Each table sold generates $50, $100, and $220
profit, respectively. The company has 3,000 pounds of pine wood
and 200 hours of labor available for the coming week’s produc-
tion. The chief operating officer (COO) has asked you to do some
spreadsheet modeling with these data to analyze what the product
mix should be for the coming week and make a recommendation.
(a) Visualize where you want to finish. What numbers will the

COO need? What are the decisions that need to be made? What
should the objective be?

(b) Suppose that Pine Furniture were to produce three end tables
and three dining room tables. Calculate by hand the amount of
pine wood and labor that would be required, as well as the
profit generated from sales.

(c) Make a rough sketch of a spreadsheet model, with blocks laid
out for the data cells, changing cells, output cells, and objective cell.

E* (d) Build a spreadsheet model and then solve it.

21-3. Reboot, Inc. is a manufacturer of hiking boots. Demand for
boots is highly seasonal. In particular, the demand in the next year
is expected to be 3,000, 4,000, 8,000, and 7,000 pairs of boots in
quarters 1, 2, 3, and 4, respectively. With its current production fa-
cility, the company can produce at most 6,000 pairs of boots in any
quarter. Reboot would like to meet all the expected demand, so it
will need to carry inventory to meet demand in the later quarters.
Each pair of boots sold generates a profit of $20 per pair. Each pair
of boots in inventory at the end of a quarter incurs $8 in storage
and capital recovery costs. Reboot has 1,000 pairs of boots in in-
ventory at the start of quarter 1. Reboot’s top management has
given you the assignment of doing some spreadsheet modeling to
analyze what the production schedule should be for the next four
quarters and make a recommendation.

(a) Visualize where you want to finish. What numbers will top
management need? What are the decisions that need to be
made? What should the objective be?

(b) Suppose that Reboot were to produce 5,000 pairs of boots in each
of the first two quarters. Calculate by hand the ending inventory,
profit from sales, and inventory costs for quarters 1 and 2.

(c) Make a rough sketch of a spreadsheet model, with blocks laid
out for the data cells, changing cells, output cells, and objective cell.

E* (d) Build a spreadsheet model for quarters 1 and 2, and then
thoroughly test the model.

E* (e) Expand the model to full scale and then solve it.

E* 21-4. The Fairwinds Development Corporation is considering
taking part in one or more of three different development projects—
A, B, and C—that are about to be launched. Each project requires
a significant investment over the next few years, and then would
be sold upon completion. The projected cash flows (in millions of
dollars) associated with each project are shown in the table below.

Fairwinds has $10 million available now and expects to receive $6
million from other projects by the end of each year (1 through 6)
that would be available for the ongoing investments the following
year in projects A, B, and C. By acting now, the company may par-
ticipate in each project either fully, fractionally (with other devel-
opment partners), or not at all. If Fairwinds participates at less than
100 percent, then all the cash flows associated with that project are
reduced proportionally. Company policy requires ending each year
with a cash balance of at least $1 million. Your assignment is to
formulate a spreadsheet model to analyze the problem.
(a) Visualize where you want to finish. What numbers are needed?

What are the decisions that need to be made? What should the
objective be?

(b) Suppose that Fairwinds were to participate in Project A fully
and in Project C at 50 percent. Calculate by hand what the end-
ing cash position would be after year 1 and year 2.

Year Project A Project B Project C

1 �4 �8 �10
2 �6 �8 �7
3 �6 �4 �7
4 24 �4 �5
5 0 30 �3
6 0 0 44
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standard Solver or ASPE and its Solver. 

sheet for this problem is included in the Excel file for this chapter. 
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(c) Make a rough sketch of a spreadsheet model, with blocks laid
out for the data cells, changing cells, output cells, and objective      cell.

E* (d) Build a spreadsheet model for years 1 and 2, and then thor-
oughly test the model

E* (e) Expand the model to full scale, and then solve it.

21-5. Refer to the scenario described in Prob. 3.4-9  (Chap. 3), but
ignore the instructions given there. Focus instead on using spread-
sheet modeling to address Web Mercantile’s problem by doing the
following.
(a) Visualize where you want to finish. What numbers will Web

Mercantile require? What are the decisions that need to be
made? What should the objective be?

(b) Suppose that Web Mercantile were to lease 30,000 square feet
for all five months and then 20,000 additional square feet for
the last three months. Calculate the total costs by hand.

(c) Make a rough sketch of a spreadsheet model, with blocks laid
out for the data cells, changing cells, output cells, and objective  cell.

E* (d) Build a spreadsheet model for months 1 and 2, and then
thoroughly test the model.

E* (e) Expand the model to full scale, and then solve it.

21-6. Refer to the scenario described in Prob. 3.4-10 (Chap. 3), but
ignore the instructions given there. Focus instead on using spread-
sheet modeling to address Larry Edison’s problem by doing the
following.
(a) Visualize where you want to finish. What numbers will Larry

require? What are the decisions that need to be made? What
should the objective be?

(b) Suppose that Larry were to hire three full-time workers for the
morning shift, two for the afternoon shift, and four for the

evening shift, as well as hire three part-time workers for each
of the four shifts. Calculate by hand how many workers would
be working at each time of the day and what the total cost
would be for the entire day.

(c) Make a rough sketch of a spreadsheet model, with blocks laid
out for the data cells, changing cells, output cells, and objective   cell.

E* (d) Build a spreadsheet model and then solve it.

21-7. Refer to the scenario described in Prob. 3.4-12 (Chap.3), but
ignore the instructions given there. Focus instead on using spread-
sheet modeling to address Al Ferris’s problem by doing the following.
(a) Visualize where you want to finish. What numbers will Al re-

quire? What are the decisions that need to be made? What
should the objective be?

(b) Suppose that Al were to invest $20,000 each in investment A
(year 1), investment B (year 2), and investment C (year 2). Cal-
culate by hand what the ending cash position would be after
each year.

(c) Make a rough sketch of a spreadsheet model, with blocks laid
out for the data cells, changing cells, output cells, and objective cell.

E* (d) Build a spreadsheet model for years 1 through 3, and then
thoroughly test the model.

E* (e) Expand the model to full scale, and then solve it.

21-8. In contrast to the spreadsheet model for the Wyndor Glass
Co. product-mix problem shown in Fig. 21.6, the spreadsheet given
next is an example of a poorly formulated spreadsheet model for
this same problem. Identify each of the guidelines in Sec. 21.3 that
is violated by this poor model. In each case, explain how it vio-
lates the guideline and why the model in Fig. 21.6 does a much
better job of following the guideline.
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1
2
3
4
5
6
7
8

A B C D
Wyndor Glass Co. (Poor Formulation)

Batches of Doors Produced 2
Batches of Windows Produced 6
Hours Used (Plant 1) 2
Hours Used (Plant 2) 12
Hours Used (Plant 3) 18
Total Profit $36,000

5
6
7
8

CB
Hours Used (Plant 1) =1*C3+0*C4
Hours Used (Plant 2) =0*C3+2*C4
Hours Used (Plant 3) =3*C3+2*C4
Total Profit =3000*C3+5000*C4

 
 
Solver Parameters 
Set Objective Cell: C8 
To: Max 
By Changing Variable Cells: 
 C3:C4 
Subject to the Constraints: 
 C5 <= 4 
 C6 <= 12 
 C7 <= 18 
Solver Options: 
 Make Variables Nonnegative 
 Solving Method: Simplex LP 
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CASES

CASE 21.1 Prudent Provisions
for Pensions
Among its many financial products, the Prudent Financial
Services Corporation (normally referred to as PFS) manages
a well-regarded pension fund that is used by a number of
companies to provide pensions for their employees. PFS’s
management takes pride in the rigorous professional stan-
dards used in operating the fund. Since the near collapse
of the financial markets during the protracted Great Recession
that began in late 2007, PFS has redoubled its efforts to
provide prudent management of the fund. It is now Dec-
ember 2013. The total pension payments that will need
to be made by the fund over the next 10 years are shown
in the table below.

By using interest as well, PFS currently has enough liquid
assets to meet all these pension payments. Therefore, to safe-
guard the pension fund, PFS would like to make a number
of investments whose payouts would match the pension pay-
ments over the next 10 years. The only investments that PFS
trusts for the pension fund are a money market fund and
bonds. The money market fund pays an annual interest rate
of 2 percent. The characteristics of each unit of the four
bonds under consideration are shown in the next table.

All of these bonds will be available for purchase on January 1,
2014, in as many units as desired. The coupon rate is the per-
centage of the face value that will be paid in interest on
January 1 of each year, starting one year after purchase and
continuing until (and including) the maturity date. Thus, these
interest payments on January 1 of each year are in time to be
used toward the pension payments for that year. Any excess
interest payments will be deposited into the money market
fund. To be conservative in its financial planning, PFS as-
sumes that all the pension payments for the year occur at the
beginning of the year immediately after these interest pay-
ments (including a year’s interest from the money market
fund) are received. The entire face value of a bond also will
be received on its maturity date. Since the current price of
each bond is less than its face value, the actual yield of the
bond exceeds its coupon rate. Bond 3 is a zero-coupon bond,
so it pays no interest but instead pays a face value on the ma-
turity date that greatly exceeds the purchase price.

PFS would like to make the smallest possible invest-
ment (including any deposit into the money market fund) on
January 1, 2014, to cover all its required pension payments
through 2023. Some spreadsheet modeling needs to be done
to see how to do this.

(a) Visualize where you want to finish. What numbers are needed
by PFS management? What are the decisions that need to be
made? What should the objective be?

(b) Suppose that PFS were to invest $28 million in the money mar-
ket fund and purchase 10,000 units each of bond 1 and bond 2

)snoillim$(stnemyaPnoisnePraeY
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E* 21-9. Refer to the spreadsheet file named “Everglade Problem
21-9” contained in the Excel files for this chapter on the book’s
website. This file contains a formulation of the Everglade problem
considered in this chapter. However, there are three errors in this
formulation. Use the ideas presented in Sec. 21.4 for debugging
a spreadsheet model to find the errors. In particular, try different trial
values for which you can predict the correct results, use the tog-
gle to examine all the formulas, and use the auditing toolbar to
check precedence and dependence relationships among the various
changing cells, data cells, and output cells. Describe the errors
found and how you found them.

E* 21-10. Refer to the spreadsheet file named “Everglade Problem
21-10” contained in the Excel files for this chapter on the book’s
website. This file contains a formulation of the Everglade problem
considered in this chapter. However, there are three errors in this
formulation. Use the ideas presented in Sec. 21.4 for debugging a
spreadsheet model to find the errors. In particular, try different trial
values for which you can predict the correct results, use the tog-
gle to examine all the formulas, and use the auditing toolbar to
check precedence and dependence relationships among the various
changing cells, data cells, and output cells. Describe the errors
found and how you found them.

Current Coupon Maturity Face
Price Rate Date Value

Bond 1 $980 4% Jan. 1, 2015 $1,000
Bond 2 920 2 Jan. 1, 2017 1,000
Bond 3 750 0 Jan. 1, 2019 1,000
Bond 4 800 3 Jan. 1, 2022 1,000

hil61217_ch21.qxd 4/29/04 03:41 PM Page 21-25



21-26 CHAPTER 21 THE ART OF MODELING WITH SPREADSHEETS

on January 1, 2014. Calculate by hand the payments received
from bonds 1 and 2 on January 1 of 201 5   and 2016  . Also cal-
culate the resulting balance in the money market fund on Jan-
uary 1 of 2014, 2015  , and 2016   after receiving these payments,
making the pension payments for the year, and depositing any
excess into the money market fund.

(c) Make a rough sketch of a spreadsheet model, with blocks laid
out for the data cells, changing cells, output cells, and objective cell.

(d) Build a spreadsheet model for years 2014 through 2016  , and
then thoroughly test the model.

(e) Expand the model to consider all years through 2023, and then
solve it.
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22C H A P T E R

Project Management 
with PERT/CPM

One of the most challenging jobs that any manager can take on is the management of
a large-scale project that requires coordinating numerous activities throughout the

organization. A myriad of details must be considered in planning how to coordinate all
these activities, in developing a realistic schedule, and then in monitoring the progress of
the project.

Fortunately, two closely related operations research techniques, PERT (program eval-
uation and review technique) and CPM (critical path method), are available to assist the
project manager in carrying out these responsibilities. These techniques make heavy use
of networks (as introduced in the preceding chapter) to help plan and display the coordi-
nation of all the activities. They also normally use a software package to deal with all the
data needed to develop schedule information and then to monitor the progress of the pro-
ject. Project management software now is widely available for these purposes.

PERT and CPM have been used for a variety of projects, including the following types:

1. Construction of a new plant
2. Research and development of a new product
3. NASA space exploration projects
4. Movie productions
5. Building a ship
6. Government-sponsored projects for developing a new weapons system
7. Relocation of a major facility
8. Maintenance of a nuclear reactor
9. Installation of a management information system

10. Conducting an advertising campaign

PERT and CPM were independently developed in the late 1950s. Ever since, they
have been among the most widely used OR techniques.

The original versions of PERT and CPM had some important differences, as we will
point out later in the chapter. However, they also had a great deal in common, and the two
techniques have gradually merged further over the years. In fact, today’s software pack-
ages often include all the important options from both original versions.
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Consequently, practitioners now commonly use the two names interchangeably, or com-
bine them into the single acronym PERT/CPM, as we often will do. We will make the dis-
tinction between them only when we are describing an option that was unique to one of
the original versions.

Section 10.8 has presented one of the key techniques of PERT/CPM, namely, a net-
work model for optimizing a project’s time-cost trade-off. For the sake of having a com-
plete, self-contained chapter on project management with PERT/CPM, we will present
this technique again in Sec. 22.5.

The next section introduces a prototype example that will carry through the chapter
to illustrate the various options for analyzing projects provided by PERT/CPM.

22-2 CHAPTER 22 PROJECT MANAGEMENT WITH PERT/CPM

■ 22.1 A PROTOTYPE EXAMPLE—THE RELIABLE 
CONSTRUCTION CO. PROJECT

The RELIABLE CONSTRUCTION COMPANY has just made the winning bid of 
$5.4 million to construct a new plant for a major manufacturer. The manufacturer needs
the plant to go into operation within a year. Therefore, the contract incudes the following
provisions:

• A penalty of $300,000 if Reliable has not completed construction by the deadline 47 weeks
from now.

• To provide additional incentive for speedy construction, a bonus of $150,000 will be
paid to Reliable if the plant is completed within 40 weeks.

Reliable is assigning its best construction manager, David Perty, to this project to help
ensure that it stays on schedule. He looks forward to the challenge of bringing the proj-
ect in on schedule, and perhaps even finishing early. However, since he is doubtful that it
will be feasible to finish within 40 weeks without incurring excessive costs, he has de-
cided to focus his initial planning on meeting the deadline of 47 weeks.

Mr. Perty will need to arrange for a number of crews to perform the various construction
activities at different times. Table 22.1 shows his list of the various activities. The third col-
umn provides important additional information for coordinating the scheduling of the crews.

■ TABLE 22.1 Activity list for the Reliable Construction Co. project

Immediate Estimated
   Activity Activity Description Predecessors Duration

A Excavate — 2 weeks
B Lay the foundation A 4 weeks
C Put up the rough wall B 10 weeks
D Put up the roof C 6 weeks
E Install the exterior plumbing C 4 weeks
F Install the interior plumbing E 5 weeks
G Put up the exterior siding D 7 weeks
H Do the exterior painting E, G 9 weeks
I Do the electrical work C 7 weeks
J Put up the wallboard F, I 8 weeks
K Install the flooring J 4 weeks
L Do the interior painting J 5 weeks
M Install the exterior fixtures H 2 weeks
N Install the interior fixtures K, L 6 weeks
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For any given activity, its immediate predecessors (as given in the third column of 
Table 22.1) are those activities that must be completed by no later than the starting time
of the given activity. (Similarly, the given activity is called an immediate successor of
each of its immediate predecessors.)

For example, the top entries in this column indicate that

1. Excavation does not need to wait for any other activities.
2. Excavation must be completed before starting to lay the foundation.
3. The foundation must be completely laid before starting to put up the rough wall, etc.

When a given activity has more than one immediate predecessor, all must be finished be-
fore the activity can begin.

In order to schedule the activities, Mr. Perty consults with each of the crew supervi-
sors to develop an estimate of how long each activity should take when it is done in the
normal way. These estimates are given in the rightmost column of Table 22.1.

Adding up these times gives a grand total of 79 weeks, which is far beyond the dead-
line for the project. Fortunately, some of the activities can be done in parallel, which sub-
stantially reduces the project completion time.

Given all the information in Table 22.1, Mr. Perty now wants to develop answers to
the following questions.

1. How can the project be displayed graphically to better visualize the flow of the activ-
ities? (Section 22.2)

2. What is the total time required to complete the project if no delays occur? (Section 22.3)
3. When do the individual activities need to start and finish (at the latest) to meet this

project completion time? (Section 22.3)
4. When can the individual activities start and finish (at the earliest) if no delays occur?

(Section 22.3)
5. Which are the critical bottleneck activities where any delays must be avoided to pre-

vent delaying project completion? (Section 22.3)
6. For the other activities, how much delay can be tolerated without delaying project com-

pletion? (Section 22.3)
7. Given the uncertainties in accurately estimating activity durations, what is the proba-

bility of completing the project by the deadline? (Section 22.4)
8. If extra money is spent to expedite the project, what is the least expensive way of at-

tempting to meet the target completion time (40 weeks)? (Section 22.5)
9. How should ongoing costs be monitored to try to keep the project within budget? (Sec-

tion 22.6)

Being a regular user of PERT/CPM, Mr. Perty knows that this technique will provide in-
valuable help in answering these questions (as you will see in the sections indicated in
parentheses above).

22.2 USING A NETWORK TO VISUALLY DISPLAY A PROJECT 22-3

■ 22.2 USING A NETWORK TO VISUALLY DISPLAY A PROJECT

Chapter 10 describes how valuable networks can be to represent and help analyze many
kinds of problems. In much the same way, networks play a key role in dealing with pro-
jects. They enable showing the relationships between the activities and succinctly dis-
playing the overall plan for the project. They then are used to help analyze the project and
answer the kinds of questions raised at the end of the preceding section.
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Project Networks

A network used to represent a project is called a project network. A project network con-
sists of a number of nodes (typically shown as small circles or rectangles) and a number
of arcs (shown as arrows) that connect two different nodes. (If you have not previously
studied Chap. 10, where nodes and arcs are discussed extensively, just think of them as the
names given to the small circles or rectangles and to the arrows in the network.)

As Table 22.1 indicates, three types of information are needed to describe a project:

1. Activity information: Break down the project into its individual activities (at the de-
sired level of detail).

2. Precedence relationships: Identify the immediate predecessor(s) for each activity.
3. Time information: Estimate the duration of each activity.

The project network should convey all this information. Two alternative types of project
networks are available for doing this.

One type is the activity-on-arc (AOA) project network, where each activity is rep-
resented by an arc. A node is used to separate an activity (an outgoing arc) from each of
its immediate predecessors (an incoming arc). The sequencing of the arcs thereby shows
the precedence relationships between the activities.

The second type is the activity-on-node (AON) project network, where each activ-
ity is represented by a node. Then the arcs are used just to show the precedence relation-
ships that exist between the activities. In particular, the node for each activity with im-
mediate predecessors has an arc coming in from each of these predecessors.

The original versions of PERT and CPM used AOA project networks, so this was the
conventional type for some years. However, AON project networks have some important
advantages over AOA project networks for conveying the same information.

1. AON project networks are considerably easier to construct than AOA project networks.
2. AON project networks are easier to understand than AOA project networks for inex-

perienced users, including many managers.
3. AON project networks are easier to revise than AOA project networks when there are

changes in the project.

For these reasons, AON project networks have become increasingly popular with practi-
tioners. It appears that they may become the standard format for project networks. There-
fore, we now will focus solely on AON project networks and will drop the adjective AON.

Figure 22.1 shows the project network for Reliable’s project.1 Referring also to the
third column of Table 22.1, note how there is an arc leading to each activity from each
of its immediate predecessors. Because activity A has no immediate predecessors, there
is an arc leading from the start node to this activity. Similarly, since activities M and N
have no immediate successors, arcs lead from these activities to the finish node. There-
fore, the project network nicely displays at a glance all the precedence relationships be-
tween all the activities (plus the start and finish of the project). Based on the rightmost
column of Table 22.1, the number next to the node for each activity then records the es-
timated duration (in weeks) of that activity.

In real applications, software commonly is used to construct the project network, etc.
For example, Microsoft Project is widely used for this purpose. Several dozen other com-
mercially available software packages also are available for dealing with the various 
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1Although project networks often are drawn from left to right, we go from top to bottom to better fit on the
printed page.
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■ FIGURE 22.1
The project network for the
Reliable Construction Co.
project.

At the end of Sec. 22.1, we mentioned that Mr. Perty, the project manager for the Reli-
able Construction Co. project, wants to use PERT/CPM to develop answers to a series of
questions. His first question has been answered in the preceding section. Here are the five
questions that will be answered in this section.

Question 2: What is the total time required to complete the project if no delays occur?
Question 3: When do the individual activities need to start and finish (at the latest) to

meet this project completion time?
Question 4: When can the individual activities start and finish (at the earliest) if no de-

lays occur?
Question 5: Which are the critical bottleneck activities where any delays must be avoided

to prevent delaying project completion?
Question 6: For the other activities, how much delay can be tolerated without delaying

project completion?

The project network in Fig. 22.1 enables answering all these questions by providing
two crucial pieces of information, namely, the order in which certain activities must be
performed and the (estimated) duration of each activity. We begin by focusing on Ques-
tions 2 and 5.

■ 22.3 SCHEDULING A PROJECT WITH PERT/CPM

hil61217_ch22.qxd  4/29/04  05:58 PM  Page 22-5



The Critical Path

How long should the project take? We noted earlier that summing the durations of all the
activities gives a grand total of 79 weeks. However, this isn’t the answer to the question
because some of the activities can be performed (roughly) simultaneously.

What is relevant instead is the length of each path through the network.

A path through a project network is one of the routes following the arcs from the START
node to the FINISH node. The length of a path is the sum of the (estimated) durations of
the activities on the path.

The six paths through the project network in Fig. 22.1 are given in Table 22.2, along with
the calculations of the lengths of these paths. The path lengths range from 31 weeks up
to 44 weeks for the longest path (the fourth one in the table).

So given these path lengths, what should be the (estimated) project duration (the to-
tal time required for the project)? Let us reason it out.

Since the activities on any given path must be done in sequence with no overlap, the
project duration cannot be shorter than the path length. However, the project duration can
be longer because some activity on the path with multiple immediate predecessors might
have to wait longer for an immediate predecessor not on the path to finish than for the one
on the path. For example, consider the second path in Table 22.2 and focus on activity H.
This activity has two immediate predecessors, one (activity G) not on the path and one 
(activity E) that is. After activity C finishes, only 4 more weeks are required for activity E
but 13 weeks will be needed for activity D and then activity G to finish. Therefore, the
project duration must be considerably longer than the length of the second path in the table.

However, the project duration will not be longer than one particular path. This is the
longest path through the project network. The activities on this path can be performed se-
quentially without interruption. (Otherwise, this would not be the longest path.) There-
fore, the time required to reach the FINISH node equals the length of this path. Further-
more, all the shorter paths will reach the FINISH node no later than this.

Here is the key conclusion.

The (estimated) project duration equals the length of the longest path through the project
network. This longest path is called the critical path. (If more than one path tie for the
longest, they all are critical paths.)

Thus, for the Reliable Construction Co. project, we have

Critical path: START �A�B�C�E�F�J�L�N� FINISH
(Estimated) project duration � 44 weeks.

We now have answered Mr. Perty’s Questions 2 and 5 given at the beginning of the
section. If no delays occur, the total time required to complete the project should be about
44 weeks. Furthermore, the activities on this critical path are the critical bottleneck 
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■ TABLE 22.2 The paths and path lengths through Reliable’s project network

Path Length

START �A�B�C�D�G�H�M� FINISH 2 � 4 � 10 � 6 � 7 � 9 � 2 � 6 � 40 weeks
START �A�B�C�E�H�M� FINISH 2 � 4 � 10 � 4 � 9 � 2 � 2 � 6 � 31 weeks
START �A�B�C�E�F�J�K�N� FINISH 2 � 4 � 10 � 4 � 5 � 8 � 4 � 6 � 43 weeks
START �A�B�C�E�F�J�L�N� FINISH 2 � 4 � 10 � 4 � 5 � 8 � 5 � 6 � 44 weeks
START �A�B�C�I�J�K�N� FINISH 2 � 4 � 10 � 7 � 8 � 4 � 6 � 6 � 41 weeks
START �A�B�C�I�J�L�N� FINISH 2 � 4 � 10 � 7 � 8 � 5 � 6 � 6 � 42 weeks
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activities where any delays in their completion must be avoided to prevent delaying pro-
ject completion. This is valuable information for Mr. Perty, since he now knows that he
should focus most of his attention on keeping these particular activities on schedule in
striving to keep the overall project on schedule. Furthermore, if he decides to reduce the
duration of the project (remember that bonus for completion within 40 weeks), these are
the main activities where changes should be made to reduce their durations.

For small project networks like Fig. 22.1, finding all the paths and determining the
longest path is a convenient way to identify the critical path. However, this is not an ef-
ficient procedure for larger projects. PERT/CPM uses a considerably more efficient pro-
cedure instead.

Not only is this PERT/CPM procedure very efficient for larger projects, it also pro-
vides much more information than is available from finding all the paths. In particular, it
answers all five of Mr. Perty’s questions listed at the beginning of the section rather than
just two. These answers provide the key information needed to schedule all the activities
and then to evaluate the consequences should any activities slip behind schedule.

The components of this procedure are described in the remainder of this section.

Scheduling Individual Activities

The PERT/CPM scheduling procedure begins by addressing Question 4: When can the
individual activities start and finish (at the earliest) if no delays occur? Having no delays
means that (1) the actual duration of each activity turns out to be the same as its esti-
mated duration and (2) each activity begins as soon as all its immediate predecessors are
finished. The starting and finishing times of each activity if no delays occur anywhere in
the project are called the earliest start time and the earliest finish time of the activity.
These times are represented by the symbols

ES � earliest start time for a particular activity,
EF � earliest finish time for a particular activity,

where

EF � ES � (estimated) duration of the activity.

Rather than assigning calendar dates to these times, it is conventional instead to count the
number of time periods (weeks for Reliable’s project) from when the project started. Thus,

Starting time for project � 0.

Since activity A starts Reliable’s project, we have

Activity A: ES � 0,
EF � 0 � duration (2 weeks)

� 2,

where the duration (in weeks) of activity A is given in Fig. 22.1 as the boldfaced number
next to this activity. Activity B can start as soon as activity A finishes, so

Activity B: ES � EF for activity A
� 2,

EF � 2 � duration (4 weeks)
� 6.

This calculation of ES for activity B illustrates our first rule for obtaining ES.

If an activity has only a single immediate predecessor, then

ES for the activity � EF for the immediate predecessor.

22.3 SCHEDULING A PROJECT WITH PERT/CPM 22-7
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This rule (plus the calculation of each EF) immediately gives ES and EF for activity C,
then for activities D, E, I, and then for activities G, F as well. Figure 22.2 shows ES and
EF for each of these activities to the right of its node. For example,

Activity G: ES � EF for activity D
� 22,

EF � 22 � duration (7 weeks)
� 29,

which means that this activity (putting up the exterior siding) should start 22 weeks and
finish 29 weeks after the start of the project.

Now consider activity H, which has two immediate predecessors, activities G and E.
Activity H must wait to start until both activities G and E are finished, which gives the
following calculation.

Immediate predecessors of activity H:

Activity G has EF � 29.
Activity E has EF � 20.

Larger EF � 29.

Therefore,

ES for activity H � larger EF above
� 29.
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■ FIGURE 22.2
Earliest start time (ES) and
earliest finish time (EF) values
for the initial activities in 
Fig. 22.1 that have only a
single immediate predecessor.
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This calculation illustrates the general rule for obtaining the earliest start time for any
activity.

When the activity has only a single immediate predecessor, this rule becomes the same
as the first rule given earlier. However, it also allows any larger number of immediate
predecessors as well. Applying this rule to the rest of the activities in Fig. 22.2 (and
calculating each EF from ES) yields the complete set of ES and EF values given in
Fig. 22.3.

Note that Fig. 22.3 also includes ES and EF values for the START and FINISH
nodes. The reason is that these nodes are conventionally treated as dummy activities
that require no time. For the START node, ES�0�EF automatically. For the FINISH

22.3 SCHEDULING A PROJECT WITH PERT/CPM 22-9

Earliest Start Time Rule

The earliest start time of an activity is equal to the largest of the earliest finish times of its im-
mediate predecessors. In symbols,

ES � largest EF of the immediate predecessors.
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■ FIGURE 22.3
Earliest start time (ES) and
earliest finish time (EF) values
for all the activities (plus the
START and FINISH nodes) of
the Reliable Construction Co.
project.

hil61217_ch22.qxd  4/29/04  05:58 PM  Page 22-9



node, the earliest start time rule is used to calculate ES in the usual way, as illustrated
below.

Immediate predecessors of the FINISH node:

Activity M has EF � 40.
Activity N has EF � 44.

Larger EF � 44.

Therefore,

ES for the FINISH node � larger EF above
� 44.

EF for the FINISH node � 44 � 0 � 44.

This last calculation indicates that the project should be completed in 44 weeks if
everything stays on schedule according to the start and finish times for each activity given
in Fig. 22.3. (This answers Question 2.) Mr. Perty now can use this schedule to inform
the crew responsible for each activity as to when it should plan to start and finish its work.

This process of starting with the initial activities and working forward in time to-
ward the final activities to calculate all the ES and EF values is referred to as making a
forward pass through the network.

Keep in mind that the schedule obtained from this procedure assumes that the actual
duration of each activity will turn out to be the same as its estimated duration. What hap-
pens if some activity takes longer than expected? Would this delay project completion?
Perhaps, but not necessarily. It depends on which activity and the length of the delay.

The next part of the procedure focuses on determining how much later than indicated
in Fig. 22.3 can an activity start or finish without delaying project completion.

The latest start time for an activity is the latest possible time that it can start
without delaying the completion of the project (so the FINISH node still is
reached at its earliest finish time), assuming no subsequent delays in the pro-
ject. The latest finish time has the corresponding definition with respect to fin-
ishing the activity.

In symbols,

LS � latest start time for a particular activity,
LF � latest finish time for a particular activity,

where

LS � LF � (estimated) duration of the activity.

To find LF, we have the following rule.

Since an activity’s immediate successors cannot start until the activity finishes, this rule
is saying that the activity must finish in time to enable all its immediate successors to be-
gin by their latest start times.

22-10 CHAPTER 22 PROJECT MANAGEMENT WITH PERT/CPM

Latest Finish Time Rule

The latest finish time of an activity is equal to the smallest of the latest start times of its imme-
diate successors. In symbols,

LF � smallest LS of the immediate successors.
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For example, consider activity M in Fig. 22.1. Its only immediate successor is the
FINISH node. This node must be reached by time 44 in order to complete the project
within 44 weeks, so we begin by assigning values to this node as follows.

FINISH node: LF � its EF � 44,
LS � 44 � 0 � 44.

Now we can apply the latest finish time rule to activity M.

Activity M: LF � LS for the FINISH node
� 44,

LS � 44 � duration (2 weeks)
� 42.

(Since activity M is one of the activities that together complete the project, we also could
have automatically set its LF equal to the earliest finish time of the FINISH node with-
out applying the latest finish time rule.)

Since activity M is the only immediate successor of activity H, we now can apply the
latest finish time rule to the latter activity.

Activity H: LF � LS for activity M
� 42,

LS � 42 � duration (9 weeks)
� 33.

Note that the procedure being illustrated above is to start with the final activities and
work backward in time toward the initial activities to calculate all the LF and LS values.
Thus, in contrast to the forward pass used to find earliest start and finish times, we now
are making a backward pass through the network.

Figure 22.4 shows the results of making a backward pass to its completion. For ex-
ample, consider activity C, which has three immediate successors.

Immediate successors of activity C:

Activity D has LS � 20.
Activity E has LS � 16.
Activity I has LS � 18.

Smallest LS � 16.

Therefore,

LF for activity C � smallest LS above
� 16.

Mr. Perty now knows that the schedule given in Fig. 22.4 represents his “last chance
schedule.” Even if an activity starts and finishes as late as indicated in the figure, he still
will be able to avoid delaying project completion beyond 44 weeks as long as there is no
subsequent slippage in the schedule. However, to allow for unexpected delays, he would
prefer to stick instead to the earliest time schedule given in Fig. 22.3 whenever possible
in order to provide some slack in parts of the schedule.

If the start and finish times in Fig. 22.4 for a particular activity are later than the cor-
responding earliest times in Fig. 22.3, then this activity has some slack in the schedule.
The last part of the PERT/CPM procedure for scheduling a project is to identify this slack,
and then to use this information to find the critical path. (This will answer both Ques-
tions 5 and 6.)

22.3 SCHEDULING A PROJECT WITH PERT/CPM 22-11
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Identifying Slack in the Schedule

To identify slack, it is convenient to combine the latest times in Fig. 22.4 and the earliest
times in Fig. 22.3 into a single figure. Using activity M as an example, this is done by
displaying the information for each activity as follows:

(Note that the S or F in front of each parentheses will remind you of whether these are
Start times or Finish times.) Figure 22.5 displays this information for the entire project.
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LS = 0
LF = 2

LS = 0
LF = 0

LS = 2
LF = 6

LS = 6
LF = 16

LS = 16
LF = 20

LS = 18
LF = 25

LS = 20
LF = 25

LS = 33
LF = 42

LS = 42
LF = 44

LS = 44
LF = 44

LS = 38
LF = 44

LS = 25
LF = 33

LS = 33
LF = 38

LS = 34
LF = 38

A

B

C

ED

G

H

M

K

N

L

J

F

I

START 0

FINISH

2

4

10

74

5

8

5

6

4

0

2

9

7

6 LS = 20
LF = 26

LS = 26
LF = 33

■ FIGURE 22.4
Latest start time (LS) and
latest finish time (LF) for all
the activities (plus the START
and FINISH nodes) of the
Reliable Construction Co.
project.

(Estimated)
duration

Earliest
start time

Latest
start time

S (38, 42)

F (40, 44)

Earliest
finish time

Latest
finish time

M 2
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This figure makes it easy to see how much slack each activity has.

The slack for an activity is the difference between its latest finish time and its earliest fin-
ish time. In symbols,

Slack � LF � EF.

(Since LF � EF � LS � ES, either difference actually can be used to calculate slack.)

For example,

Slack for activity M � 44 � 40 � 4.

This indicates that activity M can be delayed up to 4 weeks beyond the earliest time sched-
ule without delaying the completion of the project at 44 weeks. This makes sense, since
the project is finished as soon as both activities M and N are completed and the earliest
finish time for activity N (44) is 4 weeks later than for activity M (40). As long as activ-
ity N stays on schedule, the project still will finish at 44 weeks if any delays in starting
activity M (perhaps due to preceding activities taking longer than expected) and in per-
forming activity M do not cumulate more than 4 weeks.

Table 22.3 shows the slack for each of the activities. Note that some of the activities
have zero slack, indicating that any delays in these activities will delay project comple-
tion. This is how PERT/CPM identifies the critical path(s).
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S = (0, 0)
F = (2, 2)

S = (0, 0)
F = (0, 0)

S = (2, 2)
F = (6, 6)

S = (6, 6)
F = (16, 16)

S = (16, 18)
F = (23, 25)

S = (29, 33)
F = (38, 42)

S = (38, 42)
F = (40, 44)

S = (44, 44)
F = (44, 44)

S = (38, 38)
F = (44, 44)

S = (25, 25)
F = (33, 33)

S = (33, 33)
F = (38, 38)

S = (33, 34)
F = (37, 38)

A

B

C

ED

G

H

M

K

N

L

J

F

I

START 0

FINISH

2

4

10

74

5

8

5

6

4

0

2

9

7

6 S = (16, 20)
F = (22, 26)

S = (16, 16)
F = (20, 20)

S = (20, 20)
F = (25, 25)

S = (22, 26)
F = (29, 33)

■ FIGURE 22.5
The complete project
network showing ES and LS
(in parentheses above the
node) and EF and LF (in
parentheses below the node)
for each activity of the
Reliable Construction Co.
project. The darker arrows
show the critical path
through the project network.
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Each activity with zero slack is on a critical path through the project network such that
any delay along this path will delay project completion.

Thus, the critical path is

START �A�B�C�E�F�J�L�N� FINISH,

just as we found by a different method at the beginning of the section. This path is high-
lighted in Fig. 22.5 by the darker arrows. It is the activities on this path that Mr. Perty
must monitor with special care to keep the project on schedule.

Review

Now let us review Mr. Perty’s questions at the beginning of the section and see how all
of them have been answered by the PERT/CPM scheduling procedure.

Question 2: What is the total time required to complete the project if no delays occur?
This is the earliest finish time at the FINISH node (EF � 44 weeks), as given
at the bottom of Figs. 22.3 and 22.5.

Question 3: When do the individual activities need to start and finish (at the latest) to
meet this project completion time? These times are the latest start times (LS)
and latest finish times (LF) given in Figs. 22.4 and 22.5. These times pro-
vide a “last chance schedule” to complete the project in 44 weeks if no fur-
ther delays occur.

Question 4: When can the individual activities start and finish (at the earliest) if no de-
lays occur? These times are the earliest start times (ES) and earliest finish
times (EF) given in Figs. 22.3 and 22.5. These times usually are used to es-
tablish the initial schedule for the project. (Subsequent delays may force later
adjustments in the schedule.)

Question 5: Which are the critical bottleneck activities where any delays must be avoided
to prevent delaying project completion? These are the activities on the critical
path shown by the darker arrows in Fig. 22.5. Mr. Perty needs to focus most of
his attention on keeping these particular activities on schedule in striving to keep
the overall project on schedule.
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■ TABLE 22.3 Slack for Reliable’s activities

On
Slack Critical

Activity (LF � EF) Path?

A 0 Yes
B 0 Yes
C 0 Yes
D 4 No
E 0 Yes
F 0 Yes
G 4 No
H 4 No
I 2 No
J 0 Yes
K 1 No
L 0 Yes
M 4 No
N 0 Yes
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Question 6: For the other activities, how much delay can be tolerated without delaying
project completion? These tolerable delays are the positive slacks given in
the middle column of Table 22.3.

22.4 DEALING WITH UNCERTAIN ACTIVITY DURATIONS 22-15

■ 22.4 DEALING WITH UNCERTAIN ACTIVITY DURATIONS

Now we come to the next of Mr. Perty’s questions posed at the end of Sec. 22.1.

Question 7: Given the uncertainties in accurately estimating activity durations, what is
the probability of completing the project by the deadline (47 weeks)?

Recall that Reliable will incur a large penalty ($300,000) if this deadline is missed. There-
fore, Mr. Perty needs to know the probability of meeting the deadline. If this probability
is not very high, he will need to consider taking costly measures (using overtime, etc.) to
shorten the duration of some of the activities.

It is somewhat reassuring that the PERT/CPM scheduling procedure in the preceding
section obtained an estimate of 44 weeks for the project duration. However, Mr. Perty un-
derstands very well that this estimate is based on the assumption that the actual duration
of each activity will turn out to be the same as its estimated duration for at least the ac-
tivities on the critical path. Since the company does not have much prior experience with
this kind of project, there is considerable uncertainty about how much time actually will
be needed for each activity. In reality, the duration of each activity is a random variable
having some probability distribution.

The original version of PERT took this uncertainty into account by using three dif-
ferent types of estimates of the duration of an activity to obtain basic information about
its probability distribution, as described below.

The PERT Three-Estimate Approach

The three estimates to be obtained for each activity are

Most likely estimate (m) � estimate of the most likely value of the duration,

Optimistic estimate (o) � estimate of the duration under the most favorable conditions,

Pessimistic estimate (p) � estimate of the duration under the most unfavorable 
conditions.

The intended location of these three estimates with respect to the probability distribution
is shown in Fig. 22.6.

Thus, the optimistic and pessimistic estimates are meant to lie at the extremes of what
is possible, whereas the most likely estimate provides the highest point of the probability

Beta distribution

Elasped time

0 o m p

■ FIGURE 22.6
Model of the probability
distribution of the duration
of an activity for the PERT
three-estimate approach: 
m � most likely estimate, 
o � optimistic estimate, and
p � pessimistic estimate.
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distribution. PERT also assumes that the form of the probability distribution is a beta 
distribution (which has a shape like that in the figure) in order to calculate the mean (�)
and variance (�2) of the probability distribution. For most probability distributions such
as the beta distribution, essentially the entire distribution lies inside the interval between 
(� � 3�) and (� � 3�). (For example, for a normal distribution, 99.73 percent of the dis-
tribution lies inside this interval.) Thus, the spread between the smallest and largest elapsed
times in Fig. 22.8 is roughly 6�. Therefore, an approximate formula for �2 is

�2 � � �
2

.

Similarly, an approximate formula for � is

� � .

Intuitively, this formula is placing most of the weight on the most likely estimate and then
small equal weights on the other two estimates.1

Mr. Perty now has contacted the supervisor of each crew that will be responsible for
one of the activities to request that these three estimates be made of the duration of the
activity. The responses are shown in the first four columns of Table 22.4.

o � 4m � p
��

6

p � o
�

6
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■ TABLE 22.4 Expected value and variance of the duration of each activity for
Reliable’s project

Optimistic Most Likely Pessimistic Mean Variance
Estimate Estimate Estimate

Activity o m p � � �
o � 4

6
m � p
� �2 � ��p �

6
o

��
2

A 1 2�
1
2

� 3 2 �
1
9

�

B 2 3�
1
2

� 8 4 1�
1
2

�

C 6 9�
1
2

� 18 10 4�
1
2

�

D 4 5�
1
2

� 10 6 1�
1
2

�

E 1 4�
1
2

� 5 4 �
4
9

�

F 4 4�
1
2

� 10 5 1�
1
2

�

G 5 6�
1
2

� 11 7 1�
1
2

�

H 5 8�
1
2

� 17 9 4�
1
2

�

I 3 7�
1
2

� 9 7 1�
1
2

�

J 3 9�
1
2

� 9 8 1�
1
2

�

K 4 4�
1
2

� 4 4 0�
1
2

�

L 1 5�
1
2

� 7 5 1�
1
2

�

M 1 2�
1
2

� 3 2 �
1
9

�

N 5 5�
1
2

� 9 6 �
4
9

�

1For a justification of this formula, see R. H. Pleguezuelo, J. G. Pérez, and S. C. Rambaud, “A Note on the Rea-
sonableness of PERT Hypotheses,” Operations Research Letters, 31: 60–62, 2003.
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The last two columns show the approximate mean and variance of the duration of
each activity, as calculated from the formulas on p. 22–16. In this example, all the means
happen to be the same as the estimated duration obtained in Table 22.1 of Sec. 22.1. There-
fore, if all the activity durations were to equal their means, the duration of the project still
would be 44 weeks, so 3 weeks before the deadline. (See Fig. 22.5 for the critical path
requiring 44 weeks.)

However, this piece of information is not very reassuring to Mr. Perty. He knows that
the durations fluctuate around their means. Consequently, it is inevitable that the duration
of some activities will be larger than the mean, perhaps even nearly as large as the pes-
simistic estimate, which could greatly delay the project.

To check the worst case scenario, Mr. Perty reexamines the project network with the
duration of each activity set equal to the pessimistic estimate (as given in the fourth col-
umn of Table 22.4). Table 22.5 shows the six paths through this network (as given previ-
ously in Table 22.2) and the length of each path using the pessimistic estimates. The fourth
path, which was the critical path in Fig. 22.3, now has increased its length from 44 weeks
to 69 weeks. However, the length of the first path, which originally was 40 weeks (as
given in Table 22.2), now has increased all the way up to 70 weeks. Since this is the
longest path, it is the critical path with pessimistic estimates, which would give a project
duration of 70 weeks.

Given this dire (albeit unlikely) worst case scenario, Mr. Perty realizes that it is far from
certain that the deadline of 47 weeks will be met. But what is the probability of doing so?

PERT/CPM makes three simplifying approximations to help calculate this probability.

Three Simplifying Approximations

To calculate the probability that project duration will be no more than 47 weeks, it is
necessary to obtain the following information about the probability distribution of proj-
ect duration.

Probability Distribution of Project Duration.

1. What is the mean (denoted by �p) of this distribution?
2. What is the variance (denoted by �p

2) of this distribution?
3. What is the form of this distribution?

Recall that project duration equals the length (total elapsed time) of the longest path
through the project network. However, just about any of the six paths listed in Table 22.5
can turn out to be the longest path (and so the critical path), depending upon what the du-
ration of each activity turns out to be between its optimistic and pessimistic estimates.

22.4 DEALING WITH UNCERTAIN ACTIVITY DURATIONS 22-17

■ TABLE 22.5 The paths and path lengths through Reliable’s project network
when the duration of each activity equals its pessimistic estimate

Path Length

START�A�B�C�D�G�H�M�FINISH 3 � 8 � 18 � 10 � 11 � 17 � 3 � 70 weeks
START�A�B�C�E�H�M�FINISH 3 � 8 � 18 � 5 � 17 � 3 � 54 weeks
START�A�B�C�E�F�J�K�N�FINISH 3 � 8 � 18 � 5 � 10 � 9 � 4 � 9 � 66 weeks
START�A�B�C�E�F�J�L�N�FINISH 3 � 8 � 18 � 5 � 10 � 9 � 7 � 9 � 69 weeks
START�A�B�C�I�J�K�N�FINISH 3 � 8 � 18 � 9 � 9 � 4 � 9 � 60 weeks
START�A�B�C�I�J�L�N�FINISH 3 � 8 � 18 � 9 � 9 � 7 � 9 � 63 weeks
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Since dealing with all these paths would be complicated, PERT/CPM focuses on just the
following path.

The mean critical path is the path through the project network that would be
the critical path if the duration of each activity equals its mean.

Reliable’s mean critical path is

START�A�B�C�E�F�J�L�N�FINISH,

as highlighted in Fig. 22.5.

Simplifying Approximation 1: Assume that the mean critical path will turn out
to be the longest path through the project network. This is only a rough approx-
imation, since the assumption occasionally does not hold in the usual case where
some of the activity durations do not equal their means. Fortunately, when the
assumption does not hold, the true longest path commonly is not much longer
than the mean critical path (as illustrated in Table 22.5).

Although this approximation will enable us to calculate �p, we need one more ap-
proximation to obtain �p

2 .

Simplifying Approximation 2: Assume that the durations of the activities on the
mean critical path are statistically independent. This assumption should hold if
the activities are performed truly independently of each other. However, the as-
sumption becomes only a rough approximation if the circumstances that cause
the duration of one activity to deviate from its mean also tend to cause similar
deviations for some other activities.

We now have a simple method for computing �p and �p
2 .

Calculation of �p and �p
2 : Because of simplifying approximation 1, the mean

of the probability distribution of project duration is approximately

�p � sum of the means of the durations for the activities on the mean critical
path.

Because of both simplifying approximations 1 and 2, the variance of the proba-
bility distribution of project duration is approximately

� p
2 � sum of the variances of the durations for the activities on the mean

critical path.

Since the means and variances of the durations for all the activities of Reliable’s project
already are given in Table 22.4, we only need to record these values for the activities on
the mean critical path as shown in Table 22.6. Summing the second column and then sum-
ming the third column give

�p � 44, � p
2 � 9.

Now we just need an approximation for the form of the probability distribution of
project duration.

Simplifying Approximation 3: Assume that the form of the probability distri-
bution of project duration is a normal distribution, as shown in Fig. 22.7. By
using simplifying approximations 1 and 2, one version of the central limit the-
orem justifies this assumption as being a reasonable approximation if the num-
ber of activities on the mean critical path is not too small (say, at least 5). The
approximation becomes better as this number of activities increases.
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Now we are ready to determine (approximately) the probability of completing Reli-
able’s project within 47 weeks.

Approximating the Probability of Meeting the Deadline

Let

T � project duration (in weeks), which has (approximately) a normal distribution
with mean �p � 44 and variance � p

2 � 9,
d � deadline for the project � 47 weeks.

Since the standard deviation of T is �p � 3, the number of standard deviations by which
d exceeds �p is

K� � �
d �

�p

�p
� � �

47 �
3

44
� � 1.

Therefore, using Table A5.1 in Appendix 5 for a standard normal distribution (a normal
distribution with mean 0 and variance 1), the probability of meeting the deadline (given
the three simplifying approximations) is

P(T � d ) � P(standard normal � K�)
� 1 � P(standard normal � K�) � 1 � 0.1587 � 0.84.
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■ TABLE 22.6 Calculation of �p and �p
2 for Reliable’s project

Activities on Mean Critical Path Mean Variance

A 2 �
1
9

�

B 4 1�
1
2

�

C 10 4�
1
2

�

E 4 �
4
9

�

F 5 1�
1
2

�

J 8 1�
1
2

�

L 5 1�
1
2

�

N 6 �
4
9

�

Project duration �p � 44 �p
2 � 9

44
(Mean)

47
(Deadline)

Project duration
(in weeks)

d � �p
	p

p
2 � 9	

47 � 44
3

� � 1	
�

■ FIGURE 22.7
The three simplifying
approximations lead to the
probability distribution of the
duration of Reliable’s project
being approximated by the
normal distribution shown
here. The shaded area is the
portion of the distribution
that meets the deadline of
47 weeks.
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Warning: This P(T d ) is only a rough approximation of the true probability
of meeting the project deadline. Furthermore, because of simplifying approxi-
mation 1, it usually overstates the true probability somewhat. Therefore, the proj-
ect manager should view P(T d ) as only providing rough guidance on the best
odds of meeting the deadline without taking new costly measures to try to re-
duce the duration of some activities. (Section 22.7 will discuss other alternatives,
including the use of the technique of simulation described in Chap. 20, for ob-
taining a better approximation of the probability of meeting the project deadline.)

To assist you in carrying out this procedure for calculating P(T d ), we have pro-
vided an Excel template (labeled PERT) in this chapter’s Excel files in your OR Course-
ware. Figure 22.8 illustrates the use of this template for Reliable’s project. The data for
the problem is entered in the light sections of the spreadsheet. After entering data, the re-
sults immediately appear in the dark sections. In particular, by entering the three time es-
timates for each activity, the spreadsheet will automatically calculate the corresponding
estimates for the mean and variance. Next, by specifying the mean critical path (by en-
tering * in column G for each activity on the mean critical path) and the deadline (in cell
L10), the spreadsheet automatically calculates the mean and variance of the length of the
mean critical path along with the probability that the project will be completed by the
deadline. (If you are not sure which path is the mean critical path, the mean length of any
path can be checked by entering a * for each activity on that path in column G. The path
with the longest mean length then is the mean critical path.)
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FIGURE 22.8
This PERT template in your OR Courseware enables efficient application of the PERT three-estimate approach, as
illustrated here for Reliable’s project.
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

A B C D E F G H I J K
Template for PERT Three-Estimate Approach

Time Estimates On Mean
Activity o m p Critical Path μ

2

A 1 2 3 * 2 0.1111 Mean Critical
B 2 3.5 8 * 4 1 Path
C 6 9 18 * 10 4 μ = 44
D 4 5.5 10 6 1

2 = 9
E 1 4.5 5 * 4 0.4444
F 4 4 10 * 5 1 P(T<=d) = 0.8413
G 5 6.5 11 7 1 where
H 5 8 17 9 4 d = 47
I 3 7.5 9 7 1
J 3 9 9 * 8 1
K 4 4 4 4 0
L 1 5.5 7 * 5 1
M 1 2 3 2 0.1111
N 5 5.5 9 * 6 0.4444

Range Name Cells
Activity B5:B18
ActivityMean G5:G18
ActivityVariance H5:H18
CompletionProbability K10
CriticalPathMean K7
CriticalPathVariance K8
d K12
m D5:D18
o C5:C18
OnMeanCriticalPath F5:F18
p E5:E18  

5
6
7
8
9
10
11
12

J K
Mean Critical

Path
μ = =SUMIF(OnMeanCriticalPath,"*",ActivityMean)

2 = =SUMIF(OnMeanCriticalPath,"*",ActivityVariance)

P(T<=d) = =NORMDIST(d,CriticalPathMean,SQRT(CriticalPathVariance),1)
where
d = 47

4
5
6
7
8
9

10

G H
μ

2

=IF(o="","",(o+4*m+p)/6) =IF(o="","",((p-o)/6)^2)
=IF(o="","",(o+4*m+p)/6) =IF(o="","",((p-o)/6)^2)
=IF(o="","",(o+4*m+p)/6) =IF(o="","",((p-o)/6)^2)
=IF(o="","",(o+4*m+p)/6) =IF(o="","",((p-o)/6)^2)

: :
: :



22.5 CONSIDERING TIME-COST TRADE-OFFS 22-21

Realizing that P(T � d ) � 0.84 is probably an optimistic approximation, Mr. Perty
is somewhat concerned that he may have perhaps only a 70 to 80 percent chance of meet-
ing the deadline with the current plan.1 Therefore, rather than taking the significant chance
of the company incurring the late penalty of $300,000, he decides to investigate what it
would cost to reduce the project duration to about 40 weeks. If the time-cost trade-off for
doing this is favorable, the company might then be able to earn the bonus of $150,000 for
finishing within 40 weeks.

You will see this story unfold in the next section.

■ 22.5 CONSIDERING TIME-COST TRADE-OFFS2

Mr. Perty now wants to investigate how much extra it would cost to reduce the expected
project duration down to 40 weeks (the deadline for the company earning a bonus of
$150,000 for early completion). Therefore, he is ready to address the next of his ques-
tions posed at the end of Sec. 22.1.

Question 8: If extra money is spent to expedite the project, what is the least expensive
way of attempting to meet the target completion time (40 weeks)?

Mr. Perty remembers that CPM provides an excellent procedure for using linear pro-
gramming to investigate such time-cost trade-offs, so he will use this approach again to
address this question.

We begin with some background.

Time-Cost Trade-Offs for Individual Activities

The first key concept for this approach is that of crashing.

Crashing an activity refers to taking special costly measures to reduce the duration of
an activity below its normal value. These special measures might include using overtime,
hiring additional temporary help, using special time-saving materials, obtaining special
equipment, etc. Crashing the project refers to crashing a number of activities in order
to reduce the duration of the project below its normal value.

The CPM method of time-cost trade-offs is concerned with determining how much (if
any) to crash each of the activities in order to reduce the anticipated duration of the proj-
ect to a desired value.

The data necessary for determining how much to crash a particular activity are given
by the time-cost graph for the activity. Figure 22.9 shows a typical time-cost graph. Note
the two key points on this graph labeled Normal and Crash.

The normal point on the time-cost graph for an activity shows the time (duration) and
cost of the activity when it is performed in the normal way. The crash point shows the
time and cost when the activity is fully crashed, i.e., it is fully expedited with no cost
spared to reduce its duration as much as possible. As an approximation, CPM assumes
that these times and costs can be reliably predicted without significant uncertainty.

For most applications, it is assumed that partially crashing the activity at any level will
give a combination of time and cost that will lie somewhere on the line segment between
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these two points.1 (For example, this assumption says that half of a full crash will give a
point on this line segment that is midway between the normal and crash points.) This sim-
plifying approximation reduces the necessary data gathering to estimating the time and
cost for just two situations: normal conditions (to obtain the normal point) and a full crash
(to obtain the crash point).

Using this approach, Mr. Perty has his staff and crew supervisors working on devel-
oping these data for each of the activities of Reliable’s project. For example, the super-
visor of the crew responsible for putting up the wallboard indicates that adding two tem-
porary employees and using overtime would enable him to reduce the duration of this
activity from 8 weeks to 6 weeks, which is the minimum possible. Mr. Perty’s staff then
estimates the cost of fully crashing the activity in this way as compared to following the
normal 8-week schedule, as shown below:

Activity J (put up the wallboard):

Normal point: time � 8 weeks, cost � $430,000.
Crash point: time � 6 weeks, cost � $490,000.
Maximum reduction in time � 8 � 6 � 2 weeks.

Crash cost per week saved �

� $30,000.

After investigating the time-cost trade-off for each of the other activities in the same way,
Table 22.7 gives the corresponding data obtained for all the activities.

Which Activities Should Be Crashed?

Summing the normal cost and crash cost columns of Table 22.7 gives

Sum of normal costs � $4.55 million,
Sum of crash costs � $6.15 million.

$490,000 � $430,000
���

2
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Crash  

Normal

Crash cost

Normal cost

Activity
cost   

Crash time Normal time Activity duration

■ FIGURE 22.9
A typical time-cost graph for
an activity.

1This is a convenient assumption, but it often is only a rough approximation since the underlying assumptions
of proportionality and divisibility may not hold completely. If, in fact, the true time-cost graph is nonlinear, but
also is convex, linear programming can still be employed by using a piecewise linear approximation and then
applying the separable programming technique described in Sec. 13.8.
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Recall that the company will be paid $5.4 million for doing this project. (This figure ex-
cludes the $150,000 bonus for finishing within 40 weeks and the $300,000 penalty for
not finishing within 47 weeks.) This payment needs to cover some overhead costs in ad-
dition to the costs of the activities listed in the table, as well as provide a reasonable profit
to the company. When developing the winning bid of $5.4 million, Reliable’s manage-
ment felt that this amount would provide a reasonable profit as long as the total cost of the
activities could be held fairly close to the normal level of about $4.55 million. Mr. Perty
understands very well that it is his responsibility to keep the project as close to both bud-
get and schedule as possible.

As found previously in Fig. 22.5, if all the activities are performed in the normal way,
the anticipated duration of the project would be 44 weeks (if delays can be avoided). If all
the activities were to be fully crashed instead, then a similar calculation would find that this
duration would be reduced to only 28 weeks. But look at the prohibitive cost ($6.15 million)
of doing this! Fully crashing all activities clearly is not a viable option.

However, Mr. Perty still wants to investigate the possibility of partially or fully crash-
ing just a few activities to reduce the anticipated duration of the project to 40 weeks.

The problem: What is the least expensive way of crashing some activities to re-
duce the (estimated) project duration to the specified level (40 weeks)?

One way of solving this problem is marginal cost analysis, which uses the last col-
umn of Table 22.7 (along with Fig. 22.5 in Sec. 22.3) to determine the least expensive
way to reduce project duration 1 week at a time. The easiest way to conduct this kind of
analysis is to set up a table like Table 22.8 that lists all the paths through the project net-
work and the current length of each of these paths. To get started, this information can be
copied directly from Table 22.2.

Since the fourth path listed in Table 22.8 has the longest length (44 weeks), the only
way to reduce project duration by a week is to reduce the duration of the activities on this
particular path by a week. Comparing the crash cost per week saved given in the last col-
umn of Table 22.7 for these activities, the smallest cost is $30,000 for activity J. (Note
that activity I with this same cost is not on this path.) Therefore, the first change is to
crash activity J enough to reduce its duration by a week.
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■ TABLE 22.7 Time-cost trade-off data for the activities of Reliable’s project

Time Cost Maximum Crash Cost
Reduction per Week

Activity Normal Crash Normal Crash in Time Saved

A 2 weeks 1 weeks $180,000 $1,280,000 1 weeks $100,000
B 4 weeks 2 weeks $320,000 $1,420,000 2 weeks $ 50,000
C 10 weeks 7 weeks $620,000 $1,860,000 3 weeks $ 80,000
D 6 weeks 4 weeks $260,000 $1,340,000 2 weeks $ 40,000
E 4 weeks 3 weeks $410,000 $1,570,000 1 weeks $160,000
F 5 weeks 3 weeks $180,000 $1,260,000 2 weeks $ 40,000
G 7 weeks 4 weeks $900,000 $1,020,000 3 weeks $ 40,000
H 9 weeks 6 weeks $200,000 $1,380,000 3 weeks $ 60,000
I 7 weeks 5 weeks $210,000 $1,270,000 2 weeks $ 30,000
J 8 weeks 6 weeks $430,000 $1,490,000 2 weeks $ 30,000
K 4 weeks 3 weeks $160,000 $1,200,000 1 weeks $ 40,000
L 5 weeks 3 weeks $250,000 $1,350,000 2 weeks $ 50,000
M 2 weeks 1 weeks $100,000 $1,200,000 1 weeks $100,000
N 6 weeks 3 weeks $330,000 $1,510,000 3 weeks $ 60,000
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This change results in reducing the length of each path that includes activity J (the
third, fourth, fifth, and sixth paths in Table 22.8) by a week, as shown in the second row
of Table 22.9. Because the fourth path still is the longest (43 weeks), the same process is
repeated to find the least expensive activity to shorten on this path. This again is activity J,
since the next-to-last column in Table 22.7 indicates that a maximum reduction of 2 weeks
is allowed for this activity. This second reduction of a week for activity J leads to the third
row of Table 22.9.

At this point, the fourth path still is the longest (42 weeks), but activity J cannot be
shortened any further. Among the other activities on this path, activity F now is the least
expensive to shorten ($40,000 per week) according to the last column of Table 22.7. There-
fore, this activity is shortened by a week to obtain the fourth row of Table 22.9, and then
(because a maximum reduction of 2 weeks is allowed) is shortened by another week to
obtain the last row of this table.

The longest path (a tie between the first, fourth, and sixth paths) now has the desired
length of 40 weeks, so we don’t need to do any more crashing. (If we did need to go fur-
ther, the next step would require looking at the activities on all three paths to find the least
expensive way of shortening all three paths by a week.) The total cost of crashing activ-
ities J and F to get down to this project duration of 40 weeks is calculated by adding the
costs in the second column of Table 22.9—a total of $140,000. Figure 22.10 shows the
resulting project network, where the darker arrows show the critical paths.

Since $140,000 is slightly less than the bonus of $150,000 for finishing within 40 weeks,
it might appear that Mr. Perty should proceed with this solution. However, because of un-
certainties about activity durations, he concludes that he probably should not crash the
project at all. (We will discuss this further at the end of the section.)

Figure 22.10 shows that reducing the durations of activities F and J to their crash
times has led to now having three critical paths through the network. The reason is that,
as we found earlier from the last row of Table 22.9, the three paths tie for being the longest,
each with a length of 40 weeks.

With larger networks, marginal cost analysis can become quite unwieldy. A more ef-
ficient procedure would be desirable for large projects. For this reason, the standard CPM
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■ TABLE 22.9 The final table for performing marginal cost analysis on 
Reliable’s project

Length of Path
Activity to Crash

Crash Cost ABCDGHM ABCEHM ABCEFJKN ABCEFJLN ABCIJKN ABCIJLN

40 31 43 44 41 42
J $30,000 40 31 42 43 40 41
J $30,000 40 31 41 42 39 40
F $40,000 40 31 40 41 39 40
F $40,000 40 31 39 40 39 40

■ TABLE 22.8 The initial table for starting marginal cost analysis of Reliable’s project

Length of Path
Activity to Crash

Crash Cost ABCDGHM ABCEHM ABCEFJKN ABCEFJLN ABCIJKN ABCIJLN

40 31 43 44 41 42
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procedure is to apply linear programming instead (commonly with a customized software
package that exploits the special structure of this network optimization model).

Using Linear Programming to Make Crashing Decisions

The problem of finding the least expensive way of crashing activities can be rephrased in
a form more familiar to linear programming as follows.

Restatement of the problem: Let Z be the total cost of crashing activities. The
problem then is to minimize Z, subject to the constraint that project duration must
be less than or equal to the time desired by the project manager.

The natural decision variables are

xj � reduction in the duration of activity j due to crashing this activity,
for j � A, B . . . , N.

By using the last column of Table 22.7, the objective function to be minimized then is

Z � 100,000xA � 50,000xB � … � 60,000xN.

Each of the 14 decision variables on the right-hand side needs to be restricted to nonnega-
tive values that do not exceed the maximum given in the next-to-last column of Table 22.7.
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■ FIGURE 22.10
The project network if
activities J and F are fully
crashed (with all other
activities normal) for
Reliable’s project. The darker
arrows show the various
critical paths through the
project network.

hil61217_ch22.qxd  4/29/04  05:58 PM  Page 22-25



To impose the constraint that project duration must be less than or equal to the de-
sired value (40 weeks), let

yFINISH � project duration, i.e., the time at which the FINISH node in the project
network is reached.

The constraint then is

yFINISH � 40.

To help the linear programming model assign the appropriate value to yFINISH, given
the values of xA, xB, . . . , xN, it is convenient to introduce into the model the following
additional variables.

yj � start time of activity j (for j � B, C, . . . , N), given the values of xA, xB, . . . , xN.

(No such variable is needed for activity A, since an activity that begins the project is au-
tomatically assigned a value of 0.) By treating the FINISH node as another activity (albeit
one with zero duration), as we now will do, this definition of yj for activity FINISH also
fits the definition of yFINISH given in the preceding paragraph.

The start time of each activity (including FINISH) is directly related to the start time
and duration of each of its immediate predecessors as summarized below.

For each activity (B, C, . . . , N, FINISH) and each of its immediate predecessors,
Start time of this activity 
 (start time � duration) for this immediate predecessor.

Furthermore, by using the normal times from Table 22.7, the duration of each activity is
given by the following formula:

Duration of activity j � its normal time � xj,

To illustrate these relationships, consider activity F in the project network (Fig. 22.5
or 22.10).

Immediate predecessor of activity F:
Activity E, which has duration � 4 � xE.

Relationship between these activities:

yF 
 yE � 4 � xE.

Thus, activity F cannot start until activity E starts and then completes its duration of 4 � xE.
Now consider activity J, which has two immediate predecessors.

Immediate predecessors of activity J:
Activity F, which has duration � 5 � xF.
Activity I, which has duration � 7 � xI.

Relationships between these activities:

yJ 
 yF � 5 � xF,
yJ 
 yI � 7 � xI.

These inequalities together say that activity j cannot start until both of its predecessors
finish.

By including these relationships for all the activities as constraints, we obtain the
complete linear programming model given below.

Minimize Z � 100,000xA � 50,000xB � … � 60,000xN,
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subject to the following constraints:

1. Maximum reduction constraints:
Using the next-to-last column of Table 22.7,

xA � 1, xB � 2, . . . , xN � 3.

2. Nonnegativity constraints:

xA 
 0, xB 
 0, . . . , xN 
 0
yB 
 0, yC 
 0, . . . , yN 
 0, yFINISH 
 0.

3. Start-time constraints:
As described above the objective function, except for activity A (which starts the proj-
ect), there is one such constraint for each activity with a single immediate predecessor
(activities B, C, D, E, F, G, I, K, L, M) and two constraints for each activity with two
immediate predecessors (activities H, J, N, FINISH), as listed below.
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 0 � 2 � xA yH 
 yG � 7 � xG

yC 
 yB � 4 � xB yH 
 yE � 4 � xE

yD 
 yC � 10 � xC �

� yFINISH 
 yM � 2 � xM

yM 
 yH � 9 � xH yFINISH 
 yN � 6 � xN

(In general, the number of start-time constraints for an activity equals its number of imme-
diate predecessors since each immediate predecessor contributes one start-time constraint.)

4. Project duration constraint:

yFINISH � 40.

Figure 22.11 shows how this problem can be formulated as a linear programming model
on a spreadsheet. The decisions to be made are shown in the changing cells, StartTime (I6:I19),
TimeReduction (J6:J19), and ProjectFinishTime (I22). Columns B to H correspond to the
columns in Table 22.8. As the equations in the bottom half of the figure indicate, columns G
and H are calculated in a straightforward way. The equations for column K express the fact
that the finish time for each activity is its start time plus its normal time minus its time re-
duction due to crashing. The equation entered into the target cell TotalCost (I24) adds all the
normal costs plus the extra costs due to crashing to obtain the total cost.

The last set of constraints in the Solver dialogue box, TimeReduction (J6:J19)
� MaxTimeReduction (G6:G19), specifies that the time reduction for each activity can-
not exceed its maximum time reduction given in column G. The two preceding constraints,
ProjectFinishTime (I22) 
 Mfinish (K18) and ProjectFinishTime (I22) 
 Nfinish (K19),
indicate that the project cannot finish until each of the two immediate predecessors 
(activities M and N ) finish. The constraint that ProjectFinishTime (I22) � MaxTime (K22)
is a key one that specifies that the project must finish within 40 weeks.

The constraints involving StartTime (I6:I19) all are start-time constraints that spec-
ify that an activity cannot start until each of its immediate predecessors has finished. For
example, the first constraint shown, BStart (I7) 
 AFinish (K6), says that activity B can-
not start until activity A (its immediate predecessor) finishes. When an activity has more
than one immediate predecessor, there is one such constraint for each of them. To illus-
trate, activity H has both activities E and G as immediate predecessors. Consequently, ac-
tivity H has two start-time constraints, HStart (I13) 
 EFinish (K10) and HStart (I13) 

GFinish (K12).
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2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

A B C D E F G H I J K

Reliable Construction Co. Project Scheduling Problem with Time-Cost Trade-offs

Maximum Crash Cost

Time Cost Time per Week Start Time Finish

Activity Normal Crash Normal Crash Reduction saved Time Reduction Time

A 2 1 $180,000 $280,000 1 $100,000 0 0 2

B 4 2 $320,000 $420,000 2 $50,000 2 0 6

C 10 7 $620,000 $860,000 3 $80,000 6 0 16

D 6 4 $260,000 $340,000 2 $40,000 16 0 22

E 4 3 $410,000 $570,000 1 $160,000 16 0 20

F 5 3 $180,000 $260,000 2 $40,000 20 2 23

G 7 4 $900,000 $1,020,000 3 $40,000 22 0 29

H 9 6 $200,000 $380,000 3 $60,000 29 0 38

I 7 5 $210,000 $270,000 2 $30,000 16 0 23

J 8 6 $430,000 $490,000 2 $30,000 23 2 29

K 4 3 $160,000 $200,000 1 $40,000 30 0 34

L 5 3 $250,000 $350,000 2 $50,000 29 0 34

M 2 1 $100,000 $200,000 1 $100,000 38 0 40

N 6 3 $330,000 $510,000 3 $60,000 34 0 40

Max Time

Project Finish Time 40 <= 40

Total Cost $4,690,000  
 
 Range Name Cells

AFinish K6

AStart I6

BFinish K7

BStart I7

CFinish K8

CrashCost F6:F19

CrashCostPerWeekSaved H6:H19

CrashTime D6:D19

CStart I8

DFinish K9

DStart I9

EFinish K10

EStart I10

FFinish K11

FinishTime K6:K19

FStart I11

GFinish K12

GStart I12

HFinish K13

HStart I13

IFinish K14

IStart I14

JFinish K15

JStart I15

KFinish K16

KStart I16

LFinish K17

LStart I17

MaxTime K22

MaxTimeReduction G6:G19

MFinish K18

MStart I18

NFinish K19

NormalCost E6:E19

NormalTime C6:C19

NStart I19

ProjectFinishTime I22

StartTime I6:I19

TimeReduction J6:J19

TotalCost I24

3
4
5
6
7
8
9

10
11

G H
Maximum Crash Cost

Time per Week

Reduction saved

=NormalTime-CrashTime =(CrashCost-NormalCost)/MaxTimeReduction

=NormalTime-CrashTime =(CrashCost-NormalCost)/MaxTimeReduction

=NormalTime-CrashTime =(CrashCost-NormalCost)/MaxTimeReduction

=NormalTime-CrashTime =(CrashCost-NormalCost)/MaxTimeReduction

: :

: :

4
5
6
7
8
9
10
11

K
Finish

Time

=StartTime+NormalTime-TimeReduction

=StartTime+NormalTime-TimeReduction

=StartTime+NormalTime-TimeReduction

=StartTime+NormalTime-TimeReduction

:

:

24
H I

Total Cost =SUM(NormalCost)+SUMPRODUCT(CrashCostPerWeekSaved,TimeReduction)  

�

Solver Parameters 
Set Objective Cell: TotalCost 
To: Min 
By Changing Variable Cells: 
 StartTime, TimeReduction, ProjectFinishTime 
Subject to the Constraints: 
 BStart >= AFinish CStart >= BFinish 
 DStart >= CFinish EStart >= CFinish 
 FStart >= EFinish GStart >=DFinish 
 HStart >= EFinish HStart >= GFinish 
 IStart >= CFinish JStart >= FFinish 
 JStart >= IFinish KStart >= JFinish 
 LStart >= JFinish MStart >= HFinish 
 NStart >= KFinish NStart >= LFinish 
 ProjectFinishTime <= MaxTime 
 ProjectFinishTime >= MFinish 
 ProjectFinishTime >= NFinish 
 TimeReduction <= MaxTimeReduction 
Solver Options: 
 Make Variables Nonnegative 
 Solving Method: Simplex LP 
 



You may have noticed that the form of the start-time constraints allows a delay in
starting an activity after all its immediate predecessors have finished. Although such a de-
lay is feasible in the model, it cannot be optimal for any activity on a critical path, since
this needless delay would increase the total cost (by necessitating additional crashing to
meet the project duration constraint). Therefore, an optimal solution for the model will
not have any such delays, except possibly for activities not on a critical path.

Columns I and J in Fig. 22.11 show the optimal solution obtained after having clicked
on the Solve button. (Note that this solution involves one delay—activity K starts at 30
even though its only immediate predecessor, activity J, finishes at 29—but this doesn’t
matter since activity K is not on a critical path.) This solution corresponds to the one dis-
played in Fig. 22.10 that was obtained by marginal cost analysis.

sis approach and the linear programming approach to applying the CPM method of time-

Mr. Perty’s Conclusions

Mr. Perty always keeps a sharp eye on the bottom line. Therefore, when his staff brings him
the above plan for crashing the project to try to reduce its duration from about 44 weeks to
about 40 weeks, he first looks at the estimated total cost of $4.69 million. Since the esti-
mated total cost without any crashing is $4.55 million, the additional cost from the crash-
ing would be about $140,000. This is $10,000 less than the bonus of $150,000 that the
company would earn by finishing within 40 weeks.

However, Mr. Perty knows from long experience what we discussed in the preceding
section, namely, that there is considerable uncertainty about how much time actually will
be needed for each activity and so for the overall project. Recall that the PERT three-
estimate approach led to having a probability distribution for project duration. Without
crashing, this probability distribution has a mean of 44 weeks but such a large variance that
there is even a substantial probability (roughly 0.2) of not even finishing within 47 weeks
(which would trigger a penalty of $300,000). With the new crashing plan reducing the
mean to 40 weeks, there is as much chance that the actual project duration will turn out
to exceed 40 weeks as being within 40 weeks. Why spend an extra $140,000 to obtain a
50 percent chance of earning the bonus of $150,000?

Conclusion 1: The plan for crashing the project only provides a probability of
0.5 of actually finishing the project within 40 weeks, so the extra cost of the plan
($140,000) is not justified. Therefore, Mr. Perty rejects any crashing at this stage.

Mr. Perty does note that the two activities that had been proposed for crashing (F and J)
come about halfway through the project. Therefore, if the project is well ahead of schedule
before reaching activity F, then implementing the crashing plan almost certainly would en-
able finishing the project within 40 weeks. Furthermore, Mr. Perty knows that it would be
good for the company’s reputation (as well as a feather in his own cap) to finish this early.

Conclusion 2: The extra cost of the crashing plan can be justified if it almost cer-
tainly would earn the bonus of $150,000 for finishing the project within 40 weeks.
Therefore, Mr. Perty will hold the plan in reserve to be implemented if the pro-
ject is running well ahead of schedule before reaching activity F.

Mr. Perty is more concerned about the possibility that the project will run so far behind
schedule that the penalty of $300,000 will be incurred for not finishing within 47 weeks. If
this becomes likely without crashing, Mr. Perty sees that it probably can be avoided by
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If you would like to see another example that illustrates both the marginal cost analy-

cost trade-offs, the Chapter 10 portion of the Solved Examples section of the book’s
website provides one.



crashing activity J (at a cost of $30,000 per week saved) and, if necessary, crashing ac-
tivity F as well (at a cost of $40,000 per week saved). This will hold true as long as these
activities remain on the critical path (as is likely) after the delays occurred.

Conclusion 3: The extra cost of part or all of the crashing plan can be easily jus-
tified if it likely would make the difference in avoiding the penalty of $300,000
for not finishing the project within 47 weeks. Therefore, Mr. Perty will hold the
crashing plan in reserve to be partially or wholly implemented if the project is
running far behind schedule before reaching activity F or activity J.

In addition to carefully monitoring the schedule as the project evolves (and making
a later decision about any crashing), Mr. Perty will be closely watching the costs to try
to keep the project within budget. The next section describes how he plans to do this.
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■ 22.6 SCHEDULING AND CONTROLLING PROJECT COSTS

Any good project manager like Mr. Perty carefully plans and monitors both the time and
cost aspects of the project. Both schedule and budget are important.

Sections 22.3 and 22.4 have described how PERT/CPM deals with the time aspect in
developing a schedule and taking uncertainties in activity or project durations into ac-
count. Section 22.5 then placed an equal emphasis on time and cost by describing the
CPM method of time-cost trade-offs.

Mr. Perty now is ready to turn his focus to costs by addressing the last of his ques-
tions posed at the end of Sec. 22.1.

Question 9: How should ongoing costs be monitored to try to keep the project within 
budget?

Mr. Perty recalls that the PERT/CPM technique known as PERT/Cost is specifically
designed for this purpose.

PERT/Cost is a systematic procedure (normally computerized) to help the pro-
ject manager plan, schedule, and control project costs.

The PERT/Cost procedure begins with the hard work of developing an estimate of
the cost of each activity when it is performed in the planned way (including any crash-
ing). At this stage, Mr. Perty does not plan on any crashing, so the estimated costs of
the activities in Reliable’s project are given in the normal cost column of Table 22.7 in
the preceding section. These costs then are displayed in the project budget shown in
Table 22.10. This table also includes the estimated duration of each activity (as already
given in Table 22.1 or in Figs. 22.1 to 22.5 or in the normal time column of Table 22.7).
Dividing the cost of each activity by its duration gives the amount in the rightmost col-
umn of Table 22.10.

Assumption: A common assumption when using PERT/Cost is that the costs
of performing an activity are incurred at a constant rate throughout its duration.
Mr. Perty is making this assumption, so the estimated cost during each week of
an activity’s duration is given by the rightmost column of Table 22.10.

When applying PERT/Cost to larger projects with numerous activities, it is common
to combine each group of related activities into a “work package.” Both the project bud-
get and the schedule of project costs (described next) then are developed in terms of these
work packages rather than the individual activities. Mr. Perty has chosen not to do this,
since his project has only 14 activities.
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Scheduling Project Costs

Mr. Perty needs to know how much money is required to cover project expenses week by
week. PERT/Cost provides this information by using the rightmost column of Table 22.10
to develop a weekly schedule of expenses when the individual activities begin at their ear-
liest start times. Then, to indicate how much flexibility is available for delaying expenses,
PERT/Cost does the same thing when the individual activities begin at their latest start
times instead.

To do this, this chapter’s Excel files in your OR Courseware includes an Excel tem-
plate (labeled PERT Cost) for generating a project’s schedule of costs for up to 45 time
periods. Figure 22.12 shows this Excel template (including the equations entered into its
output cells) for the beginning of Reliable’s project, based on earliest start times (column E)
as first obtained in Fig. 22.3, where columns B, C, and D come directly from Table 22.10.
Figure 22.13 jumps ahead to show this same template for weeks 17 to 25. Since activities D,
E, and I all have earliest start times of 16 (16 weeks after the commencement of the project),
they all start in week 17, while activities F and G commence later during the period shown.
Columns W through AE give the weekly cost (in dollars) of each of these activities, as ob-
tained from column F (see Fig. 22.12), for the duration of the activity (given by column C).
Row 21 shows the sum of the weekly activity costs for each week.

Row 22 of this template gives the total project cost from week 1 on up to the indicated
week. For example, consider week 17. Prior to week 17, activities A, B, and C all have been
completed but no other activities have begun, so the total cost for the first 16 weeks (from
the third column of Table 22.10) is $180,000 � $320,000 � $620,000 � $1,120,000. 
Adding the weekly project cost for week 17 then gives $1,120,000 � $175,833 � $1,295,833.

Thus, Fig. 22.13 (and its extension to earlier and later weeks) shows Mr. Perty just
how much money he will need to cover each week’s expenses, as well as the cumulative
amount, assuming the project can stick to the earliest start time schedule.

Next, PERT/Cost uses the same procedure to develop the corresponding information
when each activity begins at its latest start times instead. These latest start times were first
obtained in Fig. 22.4 and are repeated here in column E of Fig. 22.14. The rest of this
figure then is generated in the same way as for Fig. 22.13. For example, since activity D
has a latest start time of 20 (versus an earliest start time of 16), its weekly cost of $43,333
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■ TABLE 22.10 The project budget for Reliable’s project

Estimated Estimated Cost per Week
Activity Duration Cost of Its Duration

A 2 weeks $180,000 $190,000
B 4 weeks                                320,000                                      80,000
C 10 weeks                                620,000                                      62,000
D 6 weeks                                260,000                                      43,333
E 4 weeks                                410,000                                    102,500
F 5 weeks                                180,000                                      36,000
G 7 weeks                                900,000                                    128,571
H 9 weeks                                200,000                                      22,222
I 7 weeks                                210,000                                      30,000
J 8 weeks                                430,000                                      53,750
K 4 weeks                                160,000                                      40,000
L 5 weeks                                250,00                                        50,000
M 2 weeks                                100,000                                    150,000
N 6 weeks                                330,000                                    155,000
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

A B C D E F G H I J
Template for PERT/Cost

Estimated
Duration Estimated Start Cost Per Week Week Week Week Week

Activity (weeks) Cost Time of Its Duration 1 2 3 4
A 2 $180,000 0 $90,000 $90,000 $90,000 $0 $0
B 4 $320,000 2 $80,000 $0 $0 $80,000 $80,000
C 10 $620,000 6 $62,000 $0 $0 $0 $0
D 6 $260,000 16 $43,333 $0 $0 $0 $0
E 4 $410,000 16 $102,500 $0 $0 $0 $0
F 5 $180,000 20 $36,000 $0 $0 $0 $0
G 7 $900,000 22 $128,571 $0 $0 $0 $0
H 9 $200,000 29 $22,222 $0 $0 $0 $0
I 7 $210,000 16 $30,000 $0 $0 $0 $0
J 8 $430,000 25 $53,750 $0 $0 $0 $0
K 4 $160,000 33 $40,000 $0 $0 $0 $0
L 5 $250,000 33 $50,000 $0 $0 $0 $0
M 2 $100,000 38 $50,000 $0 $0 $0 $0
N 6 $330,000 38 $55,000 $0 $0 $0 $0

Weekly Project Cost $90,000 $90,000 $80,000 $80,000
Cumulative Project Cost $90,000 $180,000 $260,000 $340,000

Range Name Cells
Activity B6:B19
CostPerWeek F6:F19
CumulativeProjectCost G22:AY22
EstimatedCost D6:D19
EstimatedDuration C6:C19
StartTime E6:E19
Week G5:AY5
WeeklyProjectCost G21:AY21

4
5
6
7
8
9

10

F G H
Cost Per Week Week Week
of Its Duration 1 2

=EstimatedCost/EstimatedDuration =IF(AND(Week>StartTime,Week<=StartTime+EstimatedDuration),CostPerWeek,0) …
=EstimatedCost/EstimatedDuration =IF(AND(Week>StartTime,Week<=StartTime+EstimatedDuration),CostPerWeek,0) …
=EstimatedCost/EstimatedDuration =IF(AND(Week>StartTime,Week<=StartTime+EstimatedDuration),CostPerWeek,0) …
=EstimatedCost/EstimatedDuration :
=EstimatedCost/EstimatedDuration :

21
22

F G H I J
Weekly Project Cost =SUM(G6:G19) =SUM(H6:H19) =SUM(I6:I19) …

Cumulative Project Cost =G21 =G22+H21 =H22+I21 …

 



FIGURE 22.13
This spreadsheet extends the template in Fig. 22.12 to weeks 17 to 25.
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A B E W X Y Z AA AB AC AD AE
Template for PERT/Cost

Start Week Week Week Week Week Week Week Week Week
Activity Time 17 18 19 20 21 22 23 24 25

A 0 $0 $0 $0 $0 $0 $0 $0 $0 $0
B 2 $0 $0 $0 $0 $0 $0 $0 $0 $0
C 6 $0 $0 $0 $0 $0 $0 $0 $0 $0
D 16 $43,333 $43,333 $43,333 $43,333 $43,333 $43,333 $0 $0 $0
E 16 $102,500 $102,500 $102,500 $102,500 $0 $0 $0 $0 $0
F 20 $0 $0 $0 $0 $36,000 $36,000 $36,000 $36,000 $36,000
G 22 $0 $0 $0 $0 $0 $0 $128,571 $128,571 $128,571
H 29 $0 $0 $0 $0 $0 $0 $0 $0 $0
I 16 $30,000 $30,000 $30,000 $30,000 $30,000 $30,000 $30,000 $0 $0
J 25 $0 $0 $0 $0 $0 $0 $0 $0 $0
K 33 $0 $0 $0 $0 $0 $0 $0 $0 $0
L 33 $0 $0 $0 $0 $0 $0 $0 $0 $0
M 38 $0 $0 $0 $0 $0 $0 $0 $0 $0
N 38 $0 $0 $0 $0 $0 $0 $0 $0 $0

$175,833 $175,833 $175,833 $175,833 $109,333 $109,333 $194,571 $164,571 $164,571
$1,295,833 $1,471,667 $1,647,500 $1,823,333 $1,932,667 $2,042,000 $2,236,571 $2,401,143 $2,565,714  

 



FIGURE 22.14
The application of the PERT/Cost procedure to weeks 17 to 25 of Reliable’s project when using latest start times.
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A B C W X Y Z AA AB AC AD AE
Reliable's Late Start Schedule of Costs

Estimated
Duration Week Week Week Week Week Week Week Week Week

Activity (weeks) 17 18 19 20 21 22 23 24 25
A 2 $0 $0 $0 $0 $0 $0 $0 $0 $0
B 4 $0 $0 $0 $0 $0 $0 $0 $0 $0
C 10 $0 $0 $0 $0 $0 $0 $0 $0 $0
D 6 $0 $0 $0 $0 $43,333 $43,333 $43,333 $43,333 $43,333
E 4 $102,500 $102,500 $102,500 $102,500 $0 $0 $0 $0 $0
F 5 $0 $0 $0 $0 $36,000 $36,000 $36,000 $36,000 $36,000
G 7 $0 $0 $0 $0 $0 $0 $0 $0 $0
H 9 $0 $0 $0 $0 $0 $0 $0 $0 $0
I 7 $0 $0 $30,000 $30,000 $30,000 $30,000 $30,000 $30,000 $30,000
J 8 $0 $0 $0 $0 $0 $0 $0 $0 $0
K 4 $0 $0 $0 $0 $0 $0 $0 $0 $0
L 5 $0 $0 $0 $0 $0 $0 $0 $0 $0
M 2 $0 $0 $0 $0 $0 $0 $0 $0 $0
N 6 $0 $0 $0 $0 $0 $0 $0 $0 $0

$102,500 $102,500 $132,500 $132,500 $109,333 $109,333 $109,333 $109,333 $109,333
$1,222,500 $1,325,000 $1,457,500 $1,590,000 $1,699,333 $1,808,667 $1,918,000 $2,027,333 $2,136,667  

 
 



now begins in week 21 rather than week 17. Similarly, activity G has a latest start time
of 26, so it has no entries for the weeks considered in this figure.

Figure 22.14 (and its extension to earlier and later weeks) tells Mr. Perty what his
weekly and cumulative expenses would be if he postpones each activity as long as possi-
ble without delaying project completion (assuming no unexpected delays occur). Com-
paring row 22 of Figs. 22.13 and 22.14 indicates that fairly substantial temporary savings
can be achieved by such postponements, which is very helpful if the company is incur-
ring cash shortages. (However, such postponements would only be used reluctantly since
they would remove any latitude for avoiding a delay in the completion of the project if
any activities incur unexpected delays.)

To better visualize the comparison between row 22 of Figs. 22.13 and 22.14, it is help-
ful to graph these two rows together over all 44 weeks of the project as shown in Fig. 22.15.
Since the earliest start times and latest start times are the same for the first three activi-
ties (A, B, C), which encompass the first 16 weeks, the cumulative project cost is the same
for the two kinds of start times over this period. After week 16, we obtain two distinct
cost curves by plotting the values in row 22 of Figs. 22.13 and 22.14 (and their exten-
sions to later weeks). Since sticking to either earliest start times or latest start times leads
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■ FIGURE 22.15
The schedule of cumulative
project costs when all
activities begin at their
earliest start times (the top
cost curve) or at their latest
start times (the bottom cost
curve).
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to project completion at the end of 44 weeks, the two cost curves come together again at
that point with a total project cost of $4.55 million. The dots on either curve are the points
at which the weekly project costs change.

Naturally, the start times and activity costs that lead to Fig. 22.15 are only estimates
of what actually will transpire. However, the figure provides a best forecast of cumula-
tive project costs week by week when following a work schedule based on either earliest
or latest start times. If either of these work schedules is selected, this best forecast then
becomes a budget to be followed as closely as possible. A budget in the shaded area be-
tween the two cost curves also can be obtained by selecting a work schedule that calls for
beginning each activity somewhere between its earliest and latest start times. The only
feasible budgets for scheduling project completion at the end of week 44 (without any
crashing) lie in this shaded area or on one of the two cost curves.

Reliable Construction Co. has adequate funds to cover expenses until payments are
received. Therefore, Mr. Perty has selected a work schedule based on earliest start times
to provide the best chance for prompt completion. (He is still nervous about the signifi-
cant probability of incurring the penalty of $300,000 for not finishing within 47 weeks.)
Consequently, his budget is provided by the top cost curve in Fig. 22.15.

Controlling Project Costs

Once the project is under way, Mr. Perty will need to carefully monitor actual costs and
take corrective action as needed to avoid serious cost overruns. One important way of
monitoring costs is to compare actual costs to date with his budget provided by the top
curve in Fig. 22.15.

However, since deviations from the planned work schedule may occur, this method of
monitoring costs is not adequate by itself. For example, suppose that individual activities
have been costing more than budgeted, but delays have prevented some activities from be-
ginning when scheduled. These delays might cause the total cost to date to be less than the
budgeted cumulative project cost, thereby giving the illusion that project costs are well un-
der control. Furthermore, regardless of whether the cost performance of the project as a
whole seems satisfactory, Mr. Perty needs information about the cost performance of in-
dividual activities in order to identify trouble spots where corrective action is needed.

Therefore, PERT/Cost periodically generates a report that focuses on the cost perfor-
mance of the individual activities. To illustrate, Table 22.11 shows the report that Mr. Perty
received after the completion of week 22 (halfway through the project schedule). The first
column lists the activities that have at least begun by this time. The next column gives the
budgeted total cost of each activity (as given previously in the third column of Table 22.10).
The third column indicates what percentage of the activity now has been completed.
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■ TABLE 22.11 PERT/Cost report after week 22 of Reliable’s project

Budgeted Percent Value Actual Cost Cost Overrun
Activity Cost Completed Completed to Date to Date

A $1,180,000 100% $1,180,000 $1,200,000 $20,000
B $1,320,000 100% $1,320,000 $1,330,000 $10,000
C $1,620,000 100% $1,620,000 $1,600,000 �$20,000
D $1,260,000 75% $1,195,000 $1,200,000 $15,000
E $1,410,000 100% $1,410,000 $1,400,000 �$10,000
F $1,180,000 25% $1,045,000 $1,060,000 $15,000
I $1,210,000 50% $1,105,000 $1,130,000 $25,000

Total $2,180,000 $1,875,000 $1,920,000 $45,000
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Multiplying the second and third columns then gives the fourth column, which thereby rep-
resents the budgeted value of the work completed on the activity.

The fourth column is the one that Mr. Perty wants to compare to the actual cost to
date given in the fifth column. Subtracting the fourth column from the fifth gives the cost
overrun to date of each activity, as shown in the rightmost column. (A negative number
in the cost overrun column indicates a cost underrun.)

Mr. Perty pays special attention in the report to the activities that are not yet com-
pleted, since these are the ones that he can still affect. (He used earlier reports to moni-
tor activities A, B, C, and E while they were under way, which led to meeting the total
budget for these four activities.) Activity D is barely over budget (less than 3 percent), but
Mr. Perty is very concerned about the large cost overruns to date for activities F and I.
Therefore, he next will investigate these two activities and work with the supervisors in-
volved to improve their cost performances.

Note in the bottom row of Table 22.11 that the cumulative project cost after week 22
is $1.92 million. This is considerably less than Mr. Perty’s budgeted cumulative project
cost of $2.042 million given in cell AB22 of Fig. 22.13. Without any further information,
this comparison would suggest an excellent cost performance for the project so far. How-
ever, the real reason for being under budget is that the current activities all are behind
schedule and so have not yet incurred some expenses that had been scheduled to occur
earlier. Fortunately, the PERT/Cost report provides valuable additional information that
paints a truer picture of cost performance to date. By focusing on individual activities
rather than the overall project, the report identifies the current trouble spots (activities F
and I ) that require Mr. Perty’s immediate attention. Thus, the report enables him to take
corrective action while there is still time to reverse these cost overruns.
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■ 22.7 AN EVALUATION OF PERT/CPM

The Value of PERT/CPM

Much of the value of PERT/CPM derives from the basic framework it provides for plan-
ning a project. Recall its planning steps: (1) Identify the activities that are needed to carry
out the project. (2) Estimate how much time will be needed for each activity. (3) Deter-
mine the activities that must immediately precede each activity. (4) Develop the project
network that visually displays the relationships between the activities. The discipline of
going through these steps forces the needed planning to be done.

The scheduling information generated by PERT/CPM also is vital to the project man-
ager. When can each activity begin if there are no delays? How much delay in an activ-
ity can be tolerated without delaying project completion? What is the critical path of ac-
tivities where no delay can be tolerated? What is the effect of uncertainty in activity times?
What is the probability of meeting the project deadline under the current plan? PERT/CPM
provides the answers.

PERT/CPM also assists the project manager in other ways. Schedule and budget are
key concerns. The CPM method of time-cost trade-offs enables investigating ways of re-
ducing the duration of the project at an additional cost. PERT/Cost provides a systematic
procedure for planning, scheduling, and controlling project costs.

In many ways, PERT/CPM exemplifies the application of OR at its finest. Its mod-
eling approach focuses on the key features of the problem (activities, precedence
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relationships, time, and cost) without getting mired down in unimportant details. The re-
sulting model (a project network and an optional linear programming formulation) are
easy to understand and apply. It addresses the issues that are important to management
(planning, scheduling, dealing with uncertainty, time-cost trade-offs, and controlling
costs). It assists the project manager in dealing with these issues in useful ways and in
a timely manner.

Using the Computer

PERT/CPM continues to evolve to meet new needs. At its inception in the late 1950s, it
was largely executed manually. The project network sometimes was spread out over the
walls of the project manager. Recording changes in the plan became a major task. Com-
municating changes to crew supervisors and subcontractors was cumbersome. The com-
puter has changed all of that.

For many years now, PERT/CPM has become highly computerized. There has been
a remarkable growth in the number and power of software packages for PERT/CPM that
run on personal computers or workstations. Project management software (for example,

even thousands of activities. Possible revisions in the project plan now can be investigated

recorded virtually effortlessly. Communications to all parties involved through computer
networks and telecommunication systems also have become quick and easy.

Nevertheless, PERT/CPM still is not a panacea. It has certain major deficiencies for
some applications. We briefly describe each of these deficiencies below along with how
it is being addressed through research on improvements or extensions to PERT/CPM.

Approximating the Means and Variances of Activity Durations

The PERT three-estimate approach described in Sec. 22.4 provides a straightforward pro-
cedure for approximating the mean and variance of the probability distribution of the du-
ration of each activity. Recall that this approach involved obtaining a most likely estimate,
an optimistic estimate, and a pessimistic estimate of the duration. Given these three esti-
mates, simple formulas were given for approximating the mean and variance. The means
and variances for the various activities then were used to estimate the probability of com-
pleting the project by a specified time.

Unfortunately, considerable subsequent research has shown that this approach tends
to provide a pretty rough approximation of the mean and variance. Part of the difficulty
lies in aiming the optimistic and pessimistic estimates at the endpoints of the probability
distribution. These endpoints correspond to very rare events (the best and worst that could
ever occur) that typically are outside the estimator’s realm of experience. The accuracy
and reliability of such estimates are not as good as for points that are not at the extremes
of the probability distribution. For example, research has demonstrated that much better
estimates can be obtained by aiming them at the 10 and 90 percent points of the proba-
bility distribution. The optimistic and pessimistic estimates then would be described in
terms of having 1 chance in 10 of doing better or 1 chance in 10 of doing worse. The
middle estimate also can be improved by aiming it at the 50 percent point (the median
value) of the probability distribution.

Revising the definitions of the three estimates along these lines leads to considerably
more complicated formulas for the mean and variance of the duration of an activity. How-
ever, this is no problem since the analysis is computerized anyway. The important 
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consideration is that much better approximations of the mean and variance are obtained
in this way.1

Approximating the Probability of Meeting the Deadline

Of all the assumptions and simplifying approximations made by PERT/CPM, one is par-
ticularly controversial. This is Simplifying Approximation 1 in Sec. 22.4, which assumes
that the mean critical path will turn out to be the longest path through the project net-
work. This approximation greatly simplifies the calculation of the approximate probabil-
ity of completing the project by a specified deadline. Unfortunately, in reality, there usu-
ally is a significant chance, and sometimes a very substantial chance, that some other path
or paths will turn out to be longer than the mean critical path. Consequently, the calcu-
lated probability of meeting the deadline usually overstates the true probability somewhat.
PERT/CPM provides no information on the likely size of the error. (Research has found
that the error often is modest, but can be very large.) Thus, the project manager who re-
lies on the calculated probability can be badly misled.

Considerable research has been conducted to develop more accurate (albeit more com-
plicated) analytical approximations of this probability. Of special interest are methods that
provide both upper and lower bounds on the probability.2

Another alternative is to use the technique of simulation described in Chap. 20 to ap-
proximate this probability. This appears to be the most commonly used method in prac-
tice (when any is used) to improve upon the PERT/CPM approximation. We describe in
Sec. 28.2 how this would be done for the Reliable Construction Co. project.

Dealing with Overlapping Activities

Another key assumption of PERT/CPM is that an activity cannot begin until all its im-
mediate predecessors are completely finished. Although this may appear to be a perfectly
reasonable assumption, it too is sometimes only a rough approximation of reality.

For example, in the Reliable Construction Co. project, consider activity H (do the ex-
terior painting) and its immediate predecessor, activity G (put up the exterior siding). Nat-
urally, this painting cannot begin until the exterior siding is there on which to paint. How-
ever, it certainly is possible to begin painting on one wall while the exterior siding still is
being put up to form the other walls. Thus, activity H actually can begin before activity G
is completely finished. Although careful coordination is needed, this possibility to over-
lap activities can significantly reduce project duration below that predicted by PERT/CPM.

The precedence diagramming method (PDM) has been developed as an extension
of PERT/CPM to deal with such overlapping activities.3 PDM provides four options for
the relationship between an activity and any one of its immediate predecessors:

Option 1: The activity cannot begin until the immediate predecessor has been in progress
a certain amount of time.

Option 2: The activity cannot finish until a certain amount of time after the immediate
predecessor has finished.
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1For further information, see, for example, D. L. Keefer and W. A. Verdini, “Better Estimation of PERT Activity
Time Parameters,” Management Science, 39: 1086–1091, Sept. 1993. Also see A. H.-L. Lau, H.-S. Lau, andY. Zhang,
“A
R. H. Pleguezuelo, J. G. Pérez, and S. C. Ramband, “Note on the Reasonableness of PERT Hypotheses,” Opera-
tions Research Letters, 31: 60–62, Jan. 2003, and S. Koltz and J. R. van Dorp, “A Novel Method for Fitting Uni-
modal Continouous Distributions on a Bounded Domain Utilizing Expert Judgment Estimates, IIE Transactions,
38: 421–436, May 2006.

Simple and Logical Alternative for Making PERT Time Estimates,” IIE Transactions, 28: 183–192, March 1996,

2See, for example, J. Kamburowski, “Bounding the Distribution of Project Duration in PERT Networks,” Op-
erations Research Letters, 12: 17–22, July 1992. Also see T. Iida, “Computing Bounds on Project Duration Dis-
tributions for Stochastic PERT Networks,” Naval Research Logistics, 47: 559–580, Oct. 2000.
3See Selected Reference 1 for further information about PDM.
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Option 3: The activity cannot finish until a certain amount of time after the immediate
predecessor has started.

Option 4: The activity cannot begin until a certain amount of time after the immediate
predecessor has finished. (Rather than overlapping the activities, note that this
option creates a lag between them such as, for example, waiting for the paint
to dry before beginning the activity that follows painting.)

Alternatively, the certain amount of time mentioned in each option also can be expressed
as a certain percentage of the work content of the immediate predecessor.

After incorporating these options, PDM can be used much like PERT/CPM to deter-
mine earliest start times, latest start times, and the critical path and to investigate time-
cost trade-offs, etc.

Although it adds considerable flexibility to PERT/CPM, PDM is neither as well known
nor as widely used as PERT/CPM. This should gradually change.

Incorporating the Allocation of Resources to Activities

PERT/CPM assumes that each activity has available all the resources (money, personnel,
equipment, etc.) needed to perform the activity in the normal way (or on a crashed basis).
In actuality, many projects have only limited resources for which the activities must com-
pete. A major challenge in planning the project then is to determine how the resources
should be allocated to the activities.

Once the resources have been allocated, PERT/CPM can be applied in the usual way.
However, it would be far better to combine the allocation of the resources with the kind
of planning and scheduling done by PERT/CPM so as to strive simultaneously toward a
desired objective. For example, a common objective is to allocate the resources so as to
minimize the duration of the project.

Much research has been conducted (and is continuing) to develop the methodology
for simultaneously allocating resources and scheduling the activities of a project. This sub-
ject is beyond the scope of this book, but considerable reading is available elsewhere.1

The Future

Despite its deficiencies, PERT/CPM undoubtedly will continue to be widely used for the
foreseeable future. It provides the project manager with most of what he or she wants:
structure, scheduling information, tools for controlling schedule (latest start times, slacks,
the critical path, etc.) and controlling costs (PERT/Cost), as well as the flexibility to in-
vestigate time-cost trade-offs.

Even though some of the approximations involved with the PERT three-estimate ap-
proach are questionable, these inaccurances ultimately may not be too important. Just the
process of developing estimates of the duration of activities encourages effective interac-
tion between the project manager and subordinates that leads to setting mutual goals for
start times, activity durations, project duration, etc. Striving together toward these goals
may make them self-fulfilling prophecies despite inaccuracies in the underlying mathe-
matics that led to these goals.

Similarly, possibilities for a modest amount of overlapping of activities need not in-
validate a schedule by PERT/CPM, despite its assumption that no overlapping can occur.
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1See, for example, Selected Reference 1. Also see L. Özdamar and G. Ulusay, “A Survey on the Resource-

Constrained Project Scheduling Problem,
and G. Yu, “A Branch-and-Cut Procedure for the Multimode Resource-Constrained Project Scheduling Problem,”
INFORMS Journal on Computing, 18: 377–390, Summer 2006, as well as Selected References 2, 3, 4, and 5.

” IIE Transactions, 27: 574–586, Oct. 1995 and G. Zhu, J. F. Bard,
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Actually having a small amount of overlapping may just provide the slack needed to com-
pensate for the “unexpected” delays that inevitably seem to slip into a schedule.

Even when needing to allocate resources to activities, just using common sense in this
allocation and then applying PERT/CPM should be quite satisfactory for some projects.

Nevertheless, it is unfortunate that the kinds of improvements and extensions to
PERT/CPM described in this section have not been incorporated much into practice to
date. Old comfortable methods that have proved their value are not readily discarded, and
it takes awhile to learn about and gain confidence in new, better methods. However, we
anticipate that these improvements and extensions gradually will come into more wide-
spread use as they prove their value as well. We also expect that the recent and current
extensive research on techniques for project management and scheduling (much of it in
Europe) will continue and will lead to further improvements in the future.

22.8 CONCLUSIONS 22-41

■ 22.8 CONCLUSIONS

Ever since their inception in the late 1950s, PERT and CPM have been used extensively
to assist project managers in planning, scheduling, and controlling their projects. Over
time, these two techniques gradually have merged.

The application of PERT/CPM begins by breaking the project down into its individ-
ual activities, identifying the immediate predecessors of each activity, and estimating the
duration of each activity. A project network then is constructed to visually display all this
information. The type of network that is becoming increasingly popular for this purpose is
the activity-on-node (AON) project network, where each activity is represented by a node.

PERT/CPM generates a great deal of useful scheduling information for the project man-
ager, including the earliest start time, the latest start time, and the slack for each activity. It
also identifies the critical path of activities such that any delay along this path will delay
project completion. Since the critical path is the longest path through the project network,
its length determines the duration of the project, assuming all activities remain on schedule.

However, it is difficult for all activities to remain on schedule because there frequently
is considerable uncertainty about what the duration of an activity will turn out to be. The
PERT three-estimate approach addresses this situation by obtaining three different kinds
of estimates (most likely, optimistic, and pessimistic) for the duration of each activity.
This information is used to approximate the mean and variance of the probability distri-
bution of this duration. It then is possible to approximate the probability that the project
will be completed by the deadline.

The CPM method of time-cost trade-offs enables the project manager to investigate the
effect on total cost of changing the estimated duration of the project to various alternative
values. The data needed for this activity are the time and cost for each activity when it is
done in the normal way and then when it is fully crashed (expedited). Either marginal cost
analysis or linear programming can be used to determine how much (if any) to crash each
activity in order to minimize the total cost of meeting any specified deadline for the project.

The PERT/CPM technique called PERT/Cost provides the project manager with a
systematic procedure for planning, scheduling, and controlling project costs. It generates
a complete schedule for what the project costs should be in each time period when ac-
tivities begin at either their earliest start times or latest start times. It also generates 
periodic reports that evaluate the cost performance of the individual activities, including
identifying those where cost overruns are occurring.

PERT/CPM does have some important deficiencies. These include questionable ap-
proximations made when estimating the mean and variance of activity durations as well
as when estimating the probability that the project will be completed by the deadline. 
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Another deficiency is that it does not allow an activity to begin until all its immediate pre-
decessors are completely finished, even though some overlap is sometimes possible. In
addition, PERT/CPM does not address the important issue of how to allocate limited re-
sources to the various activities.

Nevertheless, PERT/CPM has stood the test of time in providing project managers
with most of the help they want. Furthermore, much progress is being made in develop-
ing improvements and extensions to PERT/CPM (such as the precedence diagramming
method for dealing with overlapping activities) that addresses these deficiencies.
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22.2-1. Christine Phillips is in charge of planning and coordinating
next spring’s sales management training program for her company.
Christine has listed the following activity information for this project:
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Construct the project network for this project.

22.2-2. Reconsider Prob. 22.2-1. Christine has done more detailed
planning for this project and so now has the following expanded
activity list:

Construct the new project network.

22.2-3. Construct the project network for a project with the fol-
lowing activity list.

22.3-1. You and several friends are about to prepare a lasagna din-
ner. The tasks to be performed, their immediate predecessors, and
their estimated durations are as follows:

(a) Construct the project network for preparing this dinner.
(b) Find all the paths and path lengths through this project net-

work. Which of these paths is a critical path?
(c) Find the earliest start time and earliest finish time for each 

activity.
(d) Find the latest start time and latest finish time for each activity.
(e) Find the slack for each activity. Which of the paths is a criti-

cal path?
(f) Because of a phone call, you were interrupted for 6 minutes

when you should have been cutting the onions and mushrooms.
By how much will the dinner be delayed? If you use your food
processor, which reduces the cutting time from 7 to 2 minutes,
will the dinner still be delayed?

22.3-2. Consider Christine Phillip’s project involving planning and
coordinating next spring’s sales management training program for
her company as described in Prob. 22.2-1. After constructing the
project network, she now is ready for the following steps.
(a) Find all the paths and path lengths through this project net-

work. Which of these paths is a critical path?
(b) Find the earliest times, latest times, and slack for each activ-

ity. Use this information to determine which of the paths is a
critical path.

(c) It is now one week later, and Christine is ahead of schedule.
She has already selected a location for the sales meeting, and
all the other activities are right on schedule. Will this shorten
the length of the project? Why or why not?

22.3-3. Refer to the activity list given in Prob. 22.2-2 as Christine
Phillips does more detailed planning for next spring’s sales man-
agement training program for her company. After constructing the
project network, she now is ready for the following steps.
(a) Find all the paths and path lengths through this project net-

work. Which of these paths is a critical path?
(b) Find the earliest times, latest times, and slack for each activ-

ity. Use this information to determine which of the paths is a
critical path.

(c) It is now one week later, and Christine is ahead of schedule.
She has already selected a location for the sales meeting, and

PROBLEMS 22-43

Immediate Estimated
Activity Activity Description Predecessors Duration

A Select location — 2 weeks
B Obtain keynote speaker — 1 weeks
C Obtain other speakers B 2 weeks
D Make travel plans for A, B 2 weeks

keynote speaker
E Make travel plans for A, C 3 weeks

other speakers
F Make food arrangements A 2 weeks
G Negotiate hotel rates A 1 weeks
H Prepare brochure C, G 1 weeks
I Mail brochure H 1 weeks
J Take reservations I 3 weeks
K Prepare handouts C, F 4 weeks

Immediate Estimated
Activity Predecessors Duration

A — 1 months
B A 2 months
C B 4 months
D B 3 months
E B 2 months
F C 3 months
G D, E 5 months
H F 1 months
I G, H 4 months
J I 2 months
K I 3 months
L J 3 months
M K 5 months
N L 4 months

Tasks that
Task Task Description Must Precede Time

A Buy the mozzarella cheese* 30 minutes
B Slice the mozzarella A 5 minutes
C Beat 2 eggs 2 minutes
D Mix eggs and ricotta cheese C 3 minutes
E Cut up onions and mushrooms 7 minutes
F Cook the tomato sauce E 25 minutes
G Boil large quantity of water 15 minutes
H Boil the lasagna noodles G 10 minutes
I Drain the lasagna noodles H 2 minutes
J Assemble all the ingredients I, F, D, B 10 minutes
K Preheat the oven 15 minutes
L Bake the lasagna J, K 30 minutes

*There is none in the refrigerator.

Immediate Estimated
Activity Activity Description Predecessors Duration

A Select location — 2 weeks
B Obtain speakers — 3 weeks
C Make speaker travel plans A, B 2 weeks
D Prepare and mail brochure A, B 2 weeks
E Take reservations D 3 weeks
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all the other activities are right on schedule. Will this shorten
the length of the project? Why or why not?

22.3-4. Ken Johnston, the data processing manager for Stanley
Morgan Bank, is planning a project to install a new management

information system. He now is ready to start the project, and wishes
to finish in 20 weeks. After identifying the 14 separate activities
needed to carry out this project, as well as their precedence rela-
tionships and estimated durations (in weeks), Ken has constructed
the following project network:
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(a) Find all the paths and path lengths through this project net-
work. Which of these paths is a critical path?

(b) Find the earliest times, latest times, and slack for each activ-
ity. Will Ken be able to meet his deadline if no delays occur?

(c) Use the information from part (b) to determine which of the
paths is a critical path. What does this tell Ken about which
activities he should focus most of his attention on for staying
on schedule?

(d) Use the information from part (b) to determine what the 
duration of the project would be if the only delay is that ac-
tivity I takes 2 extra weeks. What if the only delay is that 
activity H takes 2 extra weeks? What if the only delay is that
activity J takes 2 extra weeks?

22.3-5. You are given the following information about a project
consisting of six activities:

(a) Construct the project network for this project.
(b) Find the earliest times, latest times, and slack for each activ-

ity. Which of the paths is a critical path?

(c) If all other activities take the estimated amount of time, what
is the maximum duration of activity D without delaying the
completion of the project?

22.3-6. Reconsider the Reliable Construction Co. project intro-
duced in Sec. 22.1, including the complete project network ob-
tained in Fig. 22.5 at the end of Sec. 22.3. Note that the estimated
durations of the activities in this figure turn out to be the same as
the mean durations given in Table 22.4 (Sec. 22.4) when using the
PERT three-estimate approach.

Now suppose that the pessimistic estimates in Table 22.4 are
used instead to provide the estimated durations in Fig. 22.5. Find
the new earliest times, latest times, and slacks for all the activities
in this project network. Also identify the critical path and the total
estimated duration of the project. (Table 22.5 provides some clues.)

22.3-7. Follow the instructions for Prob. 22.3-6 except use the op-
timistic estimates in Table 22.4 instead.

22.3-8. Follow the instructions for Prob. 22.3-6 except use the
crash times given in Table 22.7 (Sec. 22.5) instead.

22.4-1. Using the PERT three-estimate approach, the three estimates
for one of the activities are as follows: optimistic estimate � 30 days,
most likely estimate � 36 days, pessimistic estimate � 48 days.
What are the resulting estimates of the mean and variance of the
duration of the activity?

22.4-2. Alfred Lowenstein is the president of the research division
for Better Health, Inc., a major pharmaceutical company. His most
important project coming up is the development of a new drug to

Immediate Estimated
Activity Predecessors Duration

A — 5 months
B — 1 months
C B 2 months
D A, C 4 months
E A 6 months
F D, E 3 months
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combat AIDS. He has identified 10 groups in his division which
will need to carry out different phases of this research and devel-
opment project. Referring to the work to be done by the respective

groups as activities A, B, . . . , J, the precedence relationships for
when these groups need to do their work are shown in the follow-
ing project network.

PROBLEMS 22-45

START FINISH
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To beat the competition, Better Health’s CEO has infor-
med Alfred that he wants the drug ready within 22 months if
possible.

Alfred knows very well that there is considerable uncertainty
about how long each group will need to do its work. Using the
PERT three-estimate approach, the manager of each group has pro-
vided a most likely estimate, an optimistic estimate, and a pes-
simistic estimate of the duration of that group’s activity. Using
PERT formulas, these estimates now have been converted into es-
timates of the mean and variance of the probability distribution of
the duration of each group’s activity, as given in the following table
(after rounding to the nearest integer).

T (a) Find the mean critical path for this project.
T (b) Use this mean critical path to find the approximate proba-

bility that the project will be completed within 22 months.
T (c) Now consider the other three paths through this project net-

work. For each of these paths, find the approximate proba-
bility that the path will be completed within 22 months.

(d) What should Alfred tell his CEO about the likelihood that the
drug will be ready within 22 months?

T 22.4-3. Reconsider Prob. 22.4-2. For each of the 10 activities,
here are the three estimates that led to the estimates of the mean
and variance of the duration of the activity (rounded to the near-
est integer) given in the table for Prob. 22.4-2.

(Note how the great uncertainty in the duration of these research
activities causes each pessimistic estimate to be several times larger
than either the optimistic estimate or the most likely estimate.)

Now use the Excel template in your OR Courseware (as 
depicted in Fig. 22.8) to help you carry out the instructions for
Prob. 22.4-2. In particular, enter the three estimates for each activity,
and the template immediately will display the estimates of the
means and variances of the activity durations. After indicating each
path of interest, the template also will display the approximate
probability that the path will be completed within 22 months.

22.4-4. Bill Fredlund, president of Lincoln Log Construction, is
considering placing a bid on a building project. Bill has determined
that five tasks would need to be performed to carry out the proj-
ect. Using the PERT three-estimate approach, Bill has obtained the
estimates in the next table for how long these tasks will take. Also
shown are the precedence relationships for these tasks.

Duration

Activity Estimated Mean Estimated Variance

A 4 months 5 months
B 6 months 10 months
C 4 months 8 months
D 3 months 6 months
E 8 months 12 months
F 4 months 6 months
G 3 months 5 months
H 7 months 14 months
I 5 months 8 months
J 5 months 7 months

Optimistic Most Likely Pessimistic
Activity Estimate Estimate Estimate

A 1.5 months 1.2 months 15 months
B 1.2 months 3.5 months 21 months
C 1.1 month 1.5 months 18 months
D 0.5 month 1.1 months 15 months
E 1.3 months 1.5 months 24 months
F 1.1 month 1.2 months 16 months
G 0.5 month 1.1 months 14 months
H 2.5 months 3.5 months 25 months
I 1.1 month 1.3 months 18 months
J 1.2 months 1.3 months 18 months
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Using the PERT three-estimate approach, Sharon has obtained
the following estimates of the duration of each activity.

T (a) Find the estimate of the mean and variance of the duration
of each activity.

(b) Find the mean critical path.
T (c) Use the mean critical path to find the approximate proba-

bility that the advertising campaign will be ready to launch
within 57 days.

T (d) Now consider the other path through the project network.
Find the approximate probability that this path will be com-
pleted within 57 days.

(e) Since these paths do not overlap, a better estimate of the prob-
ability that the project will finish within 57 days can be ob-
tained as follows. The project will finish within 57 days if both
paths are completed within 57 days. Therefore, the approxi-
mate probability that the project will finish within 57 days is
the product of the probabilities found in parts (c) and (d). Per-
form this calculation. What does this answer say about the ac-
curacy of the standard procedure used in part (c)?

22.4-6. The Lockhead Aircraft Co. is ready to begin a project
to develop a new fighter airplane for the U.S. Air Force. The
company’s contract with the Department of Defense calls for
project completion within 100 weeks, with penalties imposed for
late delivery.

The project involves 10 activities (labeled A, B, . . . , J ), where
their precedence relationships are shown in the following project
network.

There is a penalty of $500,000 if the project is not completed
in 11 weeks. Therefore, Bill is very interested in how likely it is
that his company could finish the project in time.
(a) Construct the project network for this project.
T (b) Find the estimate of the mean and variance of the duration

of each activity.
(c) Find the mean critical path.
T (d) Find the approximate probability of completing the project

within 11 weeks.

(e) Bill has concluded that the bid he would need to make to
have a realistic chance of winning the contract would earn
Lincoln Log Construction a profit of about $250,000 if the
project is completed within 11 weeks. However, because of
the penalty for missing this deadline, his company would lose
about $250,000 if the project takes more than 11 weeks.
Therefore, he wants to place the bid only if he has at least a
50 percent chance of meeting the deadline. How would you
advise him?

22.4-5. Sharon Lowe, vice president for marketing for the Elec-
tronic Toys Company, is about to begin a project to design an ad-
vertising campaign for a new line of toys. She wants the project
completed within 57 days in time to launch the advertising cam-
paign at the beginning of the Christmas season.

Sharon has identified the six activities (labeled A, B, . . . , F )
needed to execute this project. Considering the order in which these
activities need to occur, she also has constructed the following pro-
ject network.
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Optimistic Most Likely Pessimistic 
Activity Estimate Estimate Estimate

A 12 days 12 days 12 days
B 15 days 21 days 39 days
C 12 days 15 days 18 days
D 18 days 27 days 36 days
E 12 days 18 days 24 days
F 2 days 5 days 14 days

Time Required

Optimistic Most Likely Pessimistic Immediate
Task Estimate Estimate Estimate Predecessors

A 3 weeks 4 weeks 5 weeks —
B 2 weeks 2 weeks 2 weeks A
C 3 weeks 5 weeks 6 weeks B
D 1 weeks 3 weeks 5 weeks A
E 2 weeks 3 weeks 5 weeks B, D

START FINISH

A

B

C

D

E F
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PROBLEMS 22-47

START FINISH
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Using the PERT three-estimate approach, the usual three estimates
of the duration of each activity have been obtained as given below.

T (a) Find the estimate of the mean and variance of the duration
of each activity.

(b) Find the mean critical path.

T (c) Find the approximate probability that the project will finish
within 100 weeks.

(d) Is the approximate probability obtained in part (c) likely to be
higher or lower than the true value?

22.4-7. Label each of the following statements about the PERT
three-estimate approach as true or false, and then justify your an-
swer by referring to specific statements (with page citations) in the
chapter.
(a) Activity durations are assumed to be no larger than the opti-

mistic estimate and no smaller than the pessimistic estimate.
(b) Activity durations are assumed to have a normal distribution.
(c) The mean critical path is assumed to always require the min-

imum elapsed time of any path through the project network.

22.5-1. Do Prob. 10.8-1.

Optimistic Most Likely Pessimistic 
Activity Estimate Estimate Estimate

A 28 weeks 32 weeks 36 weeks
B 22 weeks 28 weeks 32 weeks
C 26 weeks 36 weeks 46 weeks
D 14 weeks 16 weeks 18 weeks
E 32 weeks 32 weeks 32 weeks
F 40 weeks 52 weeks 74 weeks
G 12 weeks 16 weeks 24 weeks
H 16 weeks 20 weeks 26 weeks
I 26 weeks 34 weeks 42 weeks
J 12 weeks 16 weeks 30 weeks

FINISH

D

C

22.5-2. Do Prob. 10.8-2.
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22.5-3. Reconsider the Electronic Toys Co. problem presented in Prob.
22.4-5. Sharon Lowe is concerned that there is a significant chance
that the vitally important deadline of 57 days will not be met. There-
fore, to make it virtually certain that the deadline will be met, she has
decided to crash the project, using the CPM method of time-cost trade-
offs to determine how to do this in the most economical way.

Sharon now has gathered the data needed to apply this method,
as given below.

The normal times are the estimates of the means obtained from
the original data in Prob. 22.4-5. The mean critical path gives an
estimate that the project will finish in 51 days. However, Sharon
knows from the earlier analysis that some of the pessimistic es-
timates are far larger than the means, so the project duration
might be considerably longer than 51 days. Therefore, to better
ensure that the project will finish within 57 days, she has de-
cided to require that the estimated project duration based on
means (as used throughout the CPM analysis) must not exceed
47 days.
(a) Consider the lower path through the project network. Use mar-

ginal cost analysis to determine the most economical way of
reducing the length of this path to 47 days.

(b) Repeat part (a) for the upper path through the project network.
What is the total crashing cost for the optimal way of de-
creasing estimated project duration of 47 days?

C (c) Use Excel to solve the problem.
C (d) Use another software option to solve the problem.

22.5-4. Consider the scenario described in Prob. 10.8-3.
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Normal Crash Normal Crash
Activity Time Time Cost Cost

A 12 days 9 days $210,000 $270,000
B 23 days 18 days $410,000 $460,000
C 15 days 12 days $290,000 $320,000
D 27 days 21 days $440,000 $500,000
E 18 days 14 days $350,000 $410,000
F 6 days 4 days $160,000 $210,000

(a) To prepare for analyzing the effect of crashing, find the earli-
est times, latest times, and slack for each activity when they
are done in the normal way. Also identify the corresponding
critical path(s) and project duration.

(b) Use marginal cost analysis to determine which activities should
be crashed and by how much to minimize the overall cost of the
project. Under this plan, what is the duration and cost of each
activity? How much money is saved by doing this crashing?

(c) Now use the linear programming approach to do part (b) by
shortening the deadline 1 week at a time from the project
duration found in part (a).

22.5-5. Do Prob. 10.8-4.
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22.5-6. Do Prob 10.8-5. 22.6-1         Reconsider Prob. 22.5-4 involving the Good Homes Con-
struction Co. project to construct a large new home. Michael Dean
now has generated the plan for how to crash this project. Since this
plan causes all three paths through the project network to be crit-
ical paths, the earliest start time for each activity also is its latest
start time.



Michael has decided to use PERT/Cost to schedule and con-
trol project costs.
(a) Find the earliest start time for each activity and the earliest fin-

ish time for the completion of the project.
(b) Construct a table like Table 22.10 to show the budget for this

project.
(c) Construct a table like Fig. 22.13 (by hand) to show the sched-

ule of costs based on earliest times for each of the 8 weeks of
the project.

T (d) Now use the corresponding Excel template in your OR
Courseware to do parts (b) and (c) on a single spreadsheet.

(e) After 4 weeks, activity A has been completed (with an actual
cost of $65,000), and activity B has just now been completed
(with an actual cost of $55,000), but activity C is just 33 per-
cent completed (with an actual cost to date of $44,000). Con-
struct a PERT/Cost report after week 4. Where should Michael
concentrate his efforts to improve cost performances?

22.6-2. The P-H Microchip Co. needs to undertake a major main-
tenance and renovation program to overhaul and modernize its fa-
cilities for wafer fabrication. This project involves six activities (la-
beled A, B, . . . , F ) with the precedence relationships shown in
the following network.
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START FINISH

A C E

B D F

The estimated durations and costs of these activities are shown
below in the left column.

(a) Find the earliest times, latest times, and slack for each activ-
ity. What is the earliest finish time for the completion of the
project?

T (b) Use the Excel template for PERT/Cost in your OR Course-
ware to display the budget and schedule of costs based on
earliest start times for this project on a single spreadsheet.

T (c) Repeat part (b) except based on latest start times.
(d) Use these spreadsheets to draw a figure like Fig. 22.15 to show

the schedule of cumulative project costs when all activities be-
gin at their earliest start times or at their latest start times.

(e) After 4 weeks, activity B has been completed (with an actual
cost of $200,000), activity A is 50 percent completed (with an
actual cost to date of $200,000), and activity D is 50 percent
completed (with an actual cost to date of $210,000). Construct
a PERT/Cost report after week 4. Where should the project
manager focus her attention to improve cost performances?

22.6-3. Reconsider Prob. 22.3-4 involving a project at Stanley
Morgan Bank to install a new management information system.
Ken Johnston already has obtained the earliest times, latest times,

and slack for each activity. He now is getting ready to use PERT/Cost
to schedule and control the costs for this project. The estimated
durations and costs of the various activities are given in the table
on the right.

T (a) Use the Excel template for PERT/Cost in your OR Course-
ware to display the budget and schedule of costs based on
earliest start times for this project on a single spreadsheet.

T (b) Repeat part (a) except based on latest start times.
(c) Use these spreadsheets to draw a figure like Fig. 22.15 to

show the schedule of cumulative project costs when all 
activities begin at their earliest start times or at their latest
start times.

(d) After 8 weeks, activities A, B, and C have been completed with
actual costs of $190,000, $70,000, and $150,000, respectively.

Activity Estimated Duration Estimated Cost

A 6 weeks $420,000
B 2 weeks $180,000
C 4 weeks $540,000
D 5 weeks $360,000
E 7 weeks $590,000
F 9 weeks $630,000

Activity Estimated Duration Estimated Cost

A 6 weeks $180,000
B 3 weeks $ 75,000
C 4 weeks $120,000
D 4 weeks $140,000
E 7 weeks $175,000
F 4 weeks $ 80,000
G 6 weeks $210,000
H 3 weeks $ 45,000
I 5 weeks $125,000
J 4 weeks $100,000
K 3 weeks $ 60,000
L 5 weeks $ 50,000
M 6 weeks $ 90,000
N 5 weeks $150,000
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Activities D, E, F, G, and I are under way, with the percent
completed being 40, 50, 60, 25, and 20 percent, respectively.
Their actual costs to date are $70,000, $100,000, $45,000,

$50,000, and $35,000, respectively. Construct a PERT/Cost re-
port after week 8. Which activities should Ken Johnston in-
vestigate to try to improve their cost performances?

CASE 22-50

■ CASE

CASE 22.1 ”School’s Out Forever . . .”
Alice Cooper
Brent Bonnin begins his senior year of college filled with
excitement and a twinge of fear. The excitement stems from
his anticipation of being done with it all—professors, exams,
problem sets, grades, group meetings, all-nighters. . . . The
list could go on and on. The fear stems from the fact that
he is graduating in December and has only 4 months to find
a job.

Brent is a little unsure about how he should approach
the job search. During his sophomore and junior years, he
had certainly heard seniors talking about their strategies for
finding the perfect job, and he knows that he should first visit
the Campus Career Planning Center to devise a search plan.

On Sept. 1, the fist day of school, he walks through the
doors of the Campus Career Planning Center and meets
Elizabeth Merryweather, a recent graduate overflowing with 

energy and comforting smiles. Brent explains to Elizabeth
that since he is graduating in December and plans to begin
work in January, he wants to leave all of November and
December open for interviews. Such a plan means that he
has to have all his preliminary materials, such as cover let-
ters and résumés, submitted to the companies where he
wants to work by Oct. 31.

Elizabeth recognizes that Brent has to follow a very tight
schedule, if he wants to meet his goal within the next 60 days.
She suggests that the two of them sit down together and de-
cide the major milestones that need to be completed in the
job search process. Elizabeth and Brent list the 19 major
milestones. For each of the 19 milestones, they identify the
other milestones that must be accomplished directly before
Brent can begin this next milestone. They also estimate the
time needed to complete each milestone. The list is shown
below.

Milestones Directly Time to Complete
Milestone Preceding Each Milestone Each Milestone

A. Complete and submit an None. 2 days
on-line registration form to (This figure includes the time
the career center. needed for the career center

to process the registration
form.)

B. Attend the career center None. 5 days
orientation to learn about the (This figure includes the time
resources available at the Brent must wait before the
center and the campus career center hosts an
recruiting process. orientation.)

C. Write an initial résumé None. 7 days
that includes all academic
and career experiences.

D. Search the Internet to None. 10 days
find job opportunities
available outside of campus
recruiting.

E. Attend the company None. 25 days
presentations hosted during
the fall to understand the
cultures of companies and
to meet with company
representatives.
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(Continued ) 

Milestones Directly Time to Complete
Milestone Preceding Each Milestone Each Milestone

F. Review the industry Complete and submit an on-line 7 days
resources available at the registration form to the career
career center to understand center.
the career and growth Attend the career center
opportunities available in orientation.
each industry. Take career
test to understand the career 
that provides the best fit with 
your skills and interests. 
Contact alumni listed in the 
career center directories to 
discuss the nature of a 
variety of jobs.

G. Attend a mock interview Complete and submit an on-line 4 days
hosted by the career center registration form to the career
to practice interviewing and center. (This figure includes the time
to learn effective Attend the career center that elapses between the day
interviewing styles. orientation. that Brent signs up for the

Write the initial résumé. interview and the day that
the interview takes place.)

H. Submit the initial résumé Complete and submit an on-line 2 days
to the career center for registration form to the career (This figure includes the time
review. center. the career center needs to

Attend the career center review the résumé.)

orientation.

Write the initial résumé.

I. Meet with a résumé Submit the initial résumé to the 1 day
expert to discuss career center for review.
improvements to the initial
résumé.

J. Revise the initial résumé. Meet with a résumé expert to 4 days
discuss improvements.

K. Attend the career fair to Revise the initial résumé. 1 day
gather company literature,
speak to company
representatives, and submit
résumés.

L. Search campus job Review the industry resources, 5 days
listings to identify the take the career test, and contact
potential jobs that fit your alumni.
qualifications and interests.

M. Decide which jobs you Search the Internet. 3 days
will pursue given the job Search the campus job listings.
opportunities you found on Attend the career fair.
the Internet, at the career
fair, and through the
campus job listings.
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Milestones Directly Time to Complete
Milestone Preceding Each Milestone Each Milestone

N. Bid to obtain job Decide which jobs you will 3 days
interviews with companies pursue.
that recruit through the 
campus career center and
have open interview
schedules.*

O. Write cover letters to Decide which jobs you will 10 days
seek jobs with companies pursue. Attend company
that either do not recruit presentations.
through the campus career
center or recruit through the
campus career center but
have closed interview
schedules.† Tailor each
cover letter to the culture of
each company.

P. Submit the cover letters Write the cover letters. 4 days
to the career center for (This figure includes the 
review. time the career center needs 

to review the cover letters.)

Q. Revise the cover letters. Submit the cover letters to the 4 days
career center for review.

R. For the companies that Revise the cover letters. 6 days
are not recruiting through (This figure includes the time
the campus career center, needed to print and package
mail the cover letter and the application materials and
résumé to the company’s the time needed for the
recruiting department. materials to reach the

companies.)

S. For the companies that Revise the cover letters 2 days
recruit through the campus (This figure includes the time
career center but that hold needed to print and package
closed interview schedules, the application materials).
drop the cover letter and
résumé at the career center.

*An open interview schedule occurs when the company does not select the candidates that it wants to interview.
Any candidate may interview, but since the company has only a limited number of interview slots, interested can-
didates must bid points (out of their total allocation of points) for the interviews. The candidates with the high-
est bids win the interview slots.

†Closed interview schedules occur when a company requires candidates to submit their cover letters, résumés,
and test scores so that the company is able to select the candidates it wants to interview.

In the evening after his meeting with Elizabeth, Brent
meets with his buddies at the college coffeehouse to chat
about their summer endeavors. Brent also tells his friends
about the meeting he had earlier with Elizabeth. He describes
the long to-do list he and Elizabeth developed and says that
he is really worried about keeping track of all the major
milestones and getting his job search organized. One of his
friends reminds him of the cool OR class they all took

together in the first semester of Brent’s junior year, and how
they had learned about some techniques to organize large
projects. Brent remembers this class fondly, since he was
able to use a number of the methods he studied in that class
in his last summer job.

(a) Draw the project network for completing all milestones before
the interview process. If everything stays on schedule, how
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Milestone Optimistic Estimate Pessimistic Estimate

A syad 4yad 1

B syad 01syad 3

C syad 41syad 5

D syad 21syad 7

E syad 03syad 02

F syad 21syad 5

G syad 8syad 3

H syad 6yad 1

I yad 1yad 1

J syad 6syad 3

K yad 1yad 1

L syad 01syad 3

M syad 4syad 2

N syad 8syad 2

O syad 21syad 3

P syad 7syad 2

Q syad 9syad 3

R syad 01syad 4

S syad 3yad 1

long will it take Brent until he can start with the interviews?
What are the critical steps in the process?

(b) Brent realizes that there is a lot of uncertainty in the times
it will take him to complete some of the milestones. He ex-
pects to get really busy during his senior year, in particular
since he is taking a demanding course load. Also, students

sometimes have to wait quite a while before they get ap-
pointments with the counselors at the career center. In
addition to the list estimating the most likely times that he
and Elizabeth wrote down, he makes a list of optimistic and
pessimistic estimates of how long the various milestones
might take.

How long will it take Brent to get done under the worst-case
scenario? How long will it take if all his optimistic estimates
are correct?

(c) Determine the mean critical path for Brent’s job search process.
What is the variance of the project duration?

(d) Give a rough estimate of the probability that Brent will be done
within 60 days.

(e) Brent realizes that he has made a serious mistake in his cal-
culations so far. He cannot schedule the career fair to fit his

schedule. Brent read in the campus newspaper that the fair
has been set 24 days from today on Sept. 25. Draw a revised
project network that takes into account this complicating
fact.

(f) What is the mean critical path for the new network? What is the
probability that Brent will complete his project within 60 days?

(Note: A data file for this case is provided on the book’s website
for your convenience.)
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23-1

23C H A P T E R

Additional Special Types of Linear
Programming Problems

Chapter 3 emphasized the wide applicability of linear programming. Chapters 9 and 10
then described some of the special types of linear programming problems that often

arise, including the transportation problem (Sec. 9.1), the assignment problem (Sec. 9.3),
the shortest-path problem (Sec. 10.3), the maximum flow problem (Sec. 10.5), and the min-
imum cost flow problem (Sec. 10.6). These latter chapters also presented streamlined ver-
sions of the simplex method for solving these problems very efficiently.

We continue to broaden our horizons in this chapter by discussing some additional
special types of linear programming problems. These additional types often share several
key characteristics in common with the special types presented in Chapters 9 and 10. The
first is that they all arise frequently in a variety of contexts. They also tend to require a
very large number of constraints and variables, so a straightforward computer application
of the simplex method may require an exorbitant computational effort. Fortunately, another
characteristic is that most of the aij coefficients in the constraints are zeroes, and the rela-
tively few nonzero coefficients appear in a distinctive pattern. As a result, it has been pos-
sible to develop special streamlined versions of the simplex method that achieve dramatic
computational savings by exploiting this special structure of the problem. Therefore, it is
important to become sufficiently familiar with these special types of problems so that you
can recognize them when they arise and apply the proper computational procedure.

To describe special structures, we shall again use the table (matrix) of constraint
coefficients, first shown in Table 9.1 and repeated here in Table 23.1, where aij is the co-
efficient of the jth variable in the ith functional constraint. Later, portions of the table
containing only coefficients equal to zero will be indicated by leaving them blank, whereas
blocks containing nonzero coefficients will be shaded darker.

The first section presents the transshipment problem, which is both an extension of
the transportation problem and a special case of the minimum cost flow problem.

Sections 23.2 to 23.5 discuss some special types of linear programming problems that
can be characterized by where the blocks of nonzero coefficients appear in the table of con-
straint coefficients. One type frequently arises in multidivisional organizations. A second
arises in multitime period problems. A third combines the first two types. Section 23.3 de-
scribes the decomposition principle for streamlining the simplex method to efficiently solve
either the first type or the dual of the second type.
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■ 23.1 THE TRANSSHIPMENT PROBLEM

One requirement of the transportation problem presented in Sec. 9.1 is advance knowl-
edge of the method of distribution of units from each source i to each destination j, so
that the corresponding cost per unit (cij) can be determined. Sometimes, however, the best
method of distribution is not clear because of the possibility of transshipments, whereby
shipments would go through intermediate transfer points (which might be other sources
or destinations). For example, rather than shipping a special cargo directly from port 1 to
port 3, it may be cheaper to include it with regular cargoes from port 1 to port 2 and then
from port 2 to port 3.

Such possibilities for transshipments could be investigated in advance to determine
the cheapest route from each source to each destination. However, this might be a very
complicated and time-consuming task if there are many possible intermediate transfer
points. Therefore, it may be much more convenient to let a computer algorithm solve
simultaneously for the amount to ship from each source to each destination and the route
to follow for each shipment so as to minimize the total shipping cost.

This extension of the transportation problem to include the routing decisions is referred
to as the transshipment problem. This problem is the special case of the minimum cost flow
problem presented in Sec. 10.6 where there are no restrictions on the amount that can be shipped
through each shipping lane (unlimited arc capacities). The network representation of such a
problem is displayed in Fig. 23.1, where each two-sided arrow indicates that a shipment can
be sent in either direction between the corresponding pair of locations. To avoid undue clut-
ter, this network shows only the first two sources, destinations, and junctions (intermediate
transfer points that are neither sources nor destinations), and the unit shipping cost associated
with each arrow has been deleted. (As in Figs. 9.2 and 9.3, the quantity in square brackets next
to each location is the net number of units to be shipped out of that location). Even when
showing only these few locations, note that there now are many possible routes for a shipment
from any particular source to any particular destination, including through other sources or
destinations en route. With a large network, finding the cheapest such route is not an easy task.

Fortunately, there is a simple way to reformulate the transshipment problem to fit it
back into the format of the transportation problem. Thus, the transportation simplex method
presented in Sec. 9.2 can be used to solve the transshipment problem. (As a special case
of the minimum cost flow problem, the transshipment problem also can be solved by the
network simplex method described in Sec. 10.7.)

■ TABLE 23.1 Table of constraint
coefficients for linear 
programming

A �







a1n

a2n

amn

…
…

…

a12

a22

am2

a11

a21

am1







………………………
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To clarify the structure of the transshipment problem and the nature of this reformu-
lation, we shall now extend the prototype example for the transportation problem to include
transshipments.

Prototype Example

After further investigation, the P & T COMPANY (see Sec. .1) has found that it can cut
costs by discontinuing its own trucking operation and using common carriers instead to
truck its canned peas. Since no single trucking company serves the entire area containing
all the canneries and warehouses, many of the shipments will need to be transferred to
another truck at least once along the way. These transfers can be made at intermediate
canneries or warehouses, or at five other locations (Butte, Montana; Boise, Idaho;
Cheyenne, Wyoming; Denver, Colorado; and Omaha, Nebraska) referred to as junctions,
as shown in Fig. 23.2. The shipping cost per truckload between each of these points is
given in Table 23.2, where a dash indicates that a direct shipment is not possible. (Some
of these costs reflect small recent adjustments in the costs shown in Table .2.)

For example, a truckload of peas can still be sent from cannery 1 to warehouse 4 by
direct shipment at a cost of $871. However, another possibility, shown below, is to ship the
truckload from cannery 1 to junction 2, transfer it to a truck going to warehouse 2, and then
transfer it again to go to warehouse 4, at a cost of only ($286 $207 $341) $834.

S1

S2

J1

J2 D2

D1

snoitanitseDsnoitcnuJSources

[0]

[0]

[s1]

[s2]

[−d1]

[−d2]

FIGURE 23.1
The network representation
of the transshipment
problem.

4.W2.JC.1 W.2
286 207 341

871
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JUNCTION 1
Butte

WAREHOUSE 3
Rapid City

JUNCTION 3
Cheyenne

JUNCTION 4
Denver

WAREHOUSE 4
Albuquerque

WAREHOUSE 2
Salt Lake City

JUNCTION 2
Boise

CANNERY 2
Eugene

WAREHOUSE 1
Sacramento

CANNERY 1
Bellingham

CANNERY 3
Albert Lea

JUNCTION 5
Omaha

■ FIGURE 23.2
Location of canneries, warehouses, and junctions for the P & T Co.

■ TABLE 23.2 Independent trucking data for P & T Co.

Shipping Cost per Truckload

To Cannery Junction Warehouse
From 1 2 3 1 2 3 4 5 1 2 3 4 Output

1 $146 — $324 $286 — — — $452 $505 — $871 75
Cannery 2 $146 — $373 $212 $570 $609 — $335 $407 $688 $784 125

3 — — $658 — $405 $419 $158 — $685 $359 $673 100

1 $322 $371 $656 $262 $398 $430 — $503 $234 $329 —
2 $284 $210 — $262 $406 $421 $644 $305 $207 $464 $558

Junction 3 — $569 $403 $398 $406 $ 81 $272 $597 $253 $171 $282
4 — $608 $418 $431 $422 $ 81 $287 $613 $280 $236 $229
5 — — $158 — $647 $274 $288 $831 $501 $293 $482

1 $453 $336 — $505 $307 $599 $615 $831 $359 $706 $587
Warehouse 2 $505 $407 $683 $235 $208 $254 $281 $500 $357 $362 $341

3 — $687 $357 $329 $464 $171 $236 $290 $705 $362 $457
4 $868 $781 $670 — $558 $282 $229 $480 $587 $340 $457

Allocation 80 65 70 85
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This possibility is only one of many indirect ways of shipping a truckload from can-
nery 1 to warehouse 4 that needs to be considered, if indeed this cannery should send any-
thing to this warehouse. The overall problem is to determine how the output from all the
canneries should be shipped to meet the warehouse allocations and minimize the total
shipping cost.

Now let us see how this transshipment problem can be reformulated as a transporta-
tion problem. The basic idea is to interpret the individual truck trips (as opposed to
complete journeys for truckloads) as being the shipment from a source to a destination,
and so label all 12 locations (canneries, junctions, and warehouses) as being both poten-
tial destinations and potential sources for these shipments. To illustrate this interpretation,
consider the above example where a truckload of peas is shipped from cannery 1 to ware-
house 4 by being transshipped through junction 2 and then warehouse 2. The first truck
trip for this shipment has cannery 1 as its source and junction 2 as its destination, but then
junction 2 becomes the source for the second truck trip with warehouse 2 as its destina-
tion. Finally, warehouse 2 becomes the source for the third trip with this same shipment,
where warehouse 4 then is the destination. In a similar fashion, any of the 12 locations
can become a source, a destination, or both, for truck trips.

Thus, for the reformulation as a transportation problem, we have 12 sources and 12
destinations. The cij unit costs for the resulting parameter table shown in Table 23.3 are
just the shipping costs per truckload already given in Table 23.2. The impossible ship-
ments indicated by dashes in Table 23.2 are assigned a huge unit cost of M. Because each
location is both a source and a destination, the diagonal elements in the parameter table
represent the unit cost of a shipment from a given location to itself. The costs of these fic-
tional shipments going nowhere are zero.

To complete the reformulation of this transshipment problem as a transportation prob-
lem, we now need to explain how to obtain the demand and supply quantities in Table 23.3.
The number of truckloads transshipped through a location should be included in both the
demand for that location as a destination and the supply for that location as a source. Since
we do not know this number in advance, we instead add a safe upper bound on this num-
ber to both the original demand and supply for that location (shown as allocation and output

■ TABLE 23.3 Parameter table for the P & T Co. transshipment problem formulated as a transportation problem

Destination

(Canneries) (Junctions) (Warehouses)
1 2 3 4 5 6 7 8 9 10 11 12 Supply

1 0 146 M 324 286 M M M 452 505 M 871 375
(Canneries) 2 146 0 M 373 212 570 609 M 335 407 688 784 425

3 M M 0 658 M 405 419 158 M 685 359 673 400

4 322 371 656 0 262 398 430 M 503 234 329 M 300
5 284 210 M 262 0 406 421 644 305 207 464 558 300

Source (Junctions) 6 M 569 403 398 406 0 81 272 597 253 171 282 300
7 M 608 418 431 422 81 0 287 613 280 236 229 300
8 M M 158 M 647 274 288 0 831 501 293 482 300

9 453 336 M 505 307 599 615 831 0 359 706 587 300
10 505 407 683 235 208 254 281 500 357 0 362 341 300

(Warehouses) 11 M 687 357 329 464 171 236 290 705 362 0 457 300
12 868 781 670 M 558 282 229 480 587 340 457 0 300

Demand 300 300 300 300 300 300 300 300 380 365 370 385
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in Table 23.2) and then introduce the same slack variable into its demand and supply con-
straints. This single slack variable thereby serves the role of both a dummy source and a
dummy destination.) Since it would never pay to return a truckload to be transshipped
through the same location more than once, a safe upper bound on this number for any lo-
cation is the total number of truckloads (300), so we shall use 300 as the upper bound.
The slack variable for both constraints for location i would be xii, the (fictional) number
of truckloads shipped from this location to itself. Thus, (300 � xii) is the real number of
truckloads transshipped through location i.

Adding 300 to each of the allocation and demand quantities in Table 23.2 (where
blanks are zeros) now gives us the complete parameter table shown in Table 23.3 for the
transportation problem formulation of our transshipment problem. Therefore, using the
transportation simplex method to obtain an optimal solution for this transportation prob-
lem provides an optimal shipping plan (ignoring the xii) for the P & T Company.

General Features

Our prototype example illustrates all the general features of the transshipment problem and
its relationship to the transportation problem. Thus, the transshipment problem can be de-
scribed in general terms as being concerned with how to allocate and route units (truck-
loads of canned peas in the example) from supply centers (canneries) to receiving centers
(warehouses) via intermediate transshipment points (junctions, other supply centers, and
other receiving centers). (The network representation in Fig. 23.1 ignores the geographical
layout of these locations by lining up all the supply centers in the first column, all the junc-
tions in the second column, and all the receiving centers in the third column.) In addition
to transshipping units, each supply center generates a given net surplus of units to be dis-
tributed, and each receiving center absorbs a given net deficit, whereas each junction nei-
ther generates nor absorbs any units. (The net number of units generated at each location
is shown in square brackets next to that location in Fig. 23.1.) The problem has feasible
solutions only if the total net surplus generated at the supply centers equals the total net
deficit to be absorbed at the receiving centers.

A direct shipment may be impossible (cij � M) for certain pairs of locations. In ad-
dition, certain supply centers and receiving centers may not be able to serve as trans-
shipment points at all. In the reformulation of the transshipment problem as a transporta-
tion problem, the easiest way to deal with any such center is to delete its column (for a
supply center) or its row (for a receiving center) in the parameter table, and then add noth-
ing to its original supply or demand quantity.

A positive cost cij is incurred for each unit sent directly from location i (a supply cen-
ter, junction, or receiving center) to another location j. The objective is to determine the
plan for allocating and routing the units that minimizes the total cost.

The resulting mathematical model for the transshipment problem (see Prob. 23.1-4)
has a special structure slightly different from that for the transportation problem. As in
the latter case, it has been found that some applications that have nothing to do with trans-
portation can be fitted to this special structure. However, regardless of the physical context
of the application, this model always can be reformulated as an equivalent transportation
problem in the manner illustrated by the prototype example.

This reformulation is not necessary to solve a transshipment problem. Another al-
ternative is to apply the network simplex method (see Sec. 10.7) to the problem directly
without any reformulation. Even though the transportation simplex method (see Sec. 9.2)
is a little more efficient than the network simplex method for solving transportation prob-
lems, the great efficiency of the network simplex method in general makes this a rea-
sonable alternative.
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23.2 MULTIDIVISIONAL PROBLEMS 23-7

Another important class of linear programming problems having an exploitable special
structure consists of multidivisional problems. Their special feature is that they involve
coordinating the decisions of the separate divisions of a large organization. Because the
divisions operate with considerable autonomy, the problem is almost decomposable into
separate problems, where each division is concerned only with optimizing its own oper-
ation. However, some overall coordination is required in order to best divide certain or-
ganizational resources among the divisions.

As a result of this special feature, the table of constraint coefficients for multidivisional
problems has the block angular structure shown in Table 23.4. (Recall that shaded blocks
represent the only portions of the table that have any nonzero aij coefficients.) Thus, each
smaller block contains the coefficients of the constraints for one subproblem, namely, the
problem of optimizing the operation of a division considered by itself. The long block at
the top gives the coefficients of the linking constraints for the master problem, namely,
the problem of coordinating the activities of the divisions by dividing organizational re-
sources among them so as to obtain an overall optimal solution for the entire organization.

Because of their nature, multidivisional problems frequently are very large, contain-
ing many thousands of constraints and variables. Therefore, it may be necessary to ex-
ploit the special structure in order to be able to solve such a problem with a reasonable
expenditure of computer time, or even to solve it at all! The decomposition principle
(described in Sec. 23.3) provides an effective way of exploiting the special structure.

Conceptually, this streamlined version of the simplex method can be thought of as
having each division solve its subproblem and sending this solution as its proposal to
“headquarters” (the master problem), where negotiators then coordinate the proposals from
all the divisions to find an optimal solution for the overall organization. If the subprob-
lems are of manageable size and the master problem is not too large (not more than 50
to 100 constraints), this approach is successful in solving some extremely large multidi-
visional problems. It is particularly worthwhile when the total number of constraints is
quite large (at least tens of thousands) and there are more than a few subproblems.

Prototype Example

The GOOD FOODS CORPORATION is a very large producer and distributor of food prod-
ucts. It has three main divisions: the Processed Foods Division, the Canned Foods Divi-
sion, and the Frozen Foods Division. Because costs and market prices change frequently

23.2 MULTIDIVISIONAL PROBLEMS

A

TABLE 23.4 Constraint coefficients for multidivisional problems

Coefficients of Decision Variables for:

1st Division 2d Division . . . Last Division

…

Constraints on organizational
resources needed by divisions

Constraints on resources
available only to 1st division

Constraints on resources
available only to 2d division

Constraints on resources
available only to last division
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23-8 CHAPTER 23 ADDITIONAL SPECIAL TYPES OF LINEAR PROGRAMMING PROBLEMS

in the food industry, Good Foods periodically uses a corporate linear programming model
to revise the production rates for its various products in order to use its available pro-
duction capacities in the most profitable way. This model is similar to that for the Wyndor
Glass Co. problem (see Sec. 3.1), but on a much larger scale, having thousands of con-
straints and variables. (Since our space is limited, we shall describe a simplified version
of this model that combines the products or resources by types.)

The corporation grows its own high-quality corn and potatoes, and these basic food
materials are the only ones currently in short supply that are used by all the divisions.
Except for these organizational resources, each division uses only its own resources and
thus could determine its optimal production rates autonomously. The data for each divi-
sion and the corresponding subproblem involving just its products and resources are given
in Table 23.5 (where Z represents profit in millions of dollars per month), along with the
data for the organizational resources.

The resulting linear programming problem for the corporation is

Maximize Z � 8x1 � 5x2 � 6x3 � 9x4 � 7x5 � 9x6 � 6x7 � 5x8,

subject to

5x1 � 3x2 � 2x4 � 3x6 � 4x7 � 6x8 � 30
2x1 � 4x3 � 3x4 � 7x5 � x7 � 20
2x1 � 4x2 � 3x3 � 10
7x1 � 3x2 � 6x3 � 15
5x1 � 3x3 � 12

3x4 � x5 � 2x6 � 7
2x4 � 4x5 � 3x6 � 9

8x7 � 5x8 � 25
7x7 � 9x8 � 30
6x7 � 4x8 � 20

and

xj � 0, for j � 1, 2, . . . , 8.

Note how the corresponding table of constraint coefficients shown in Table 23.6 fits
the special structure for multidivisional problems given in Table 23.4. Therefore, the Good
Foods Corp. can indeed solve this problem (or a more detailed version of it) by the stream-
lined version of the simplex method provided by the decomposition principle.

Important Special Cases

Some even simpler forms of the special structure exhibited in Table 23.4 arise quite fre-
quently. Two particularly common forms are shown in Table 23.7.

The first form occurs when some or all of the variables can be divided into groups
such that the sum of the variables in each group must not exceed a specified upper bound
for that group (or perhaps must equal a specified constant). Constraints of this form,

xj1 � xj2 � . . . � xjk � bi

(or xj1 � xj2 � . . . � xjk � bi),

usually are called either generalized upper-bound constraints (GUB constraints for short)
or group constraints. Although Table 23.7 shows each GUB constraint as involving con-
secutive variables, this is not necessary. For example,

x1 � x5 � x9 � 1

is a GUB constraint, as is

x8 � x3 � x6 � 20.
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The second form shown in Table 23.7 occurs when some or all of the individual vari-
ables must not exceed a specified upper bound for that variable. These constraints,

xj � bi,

normally are referred to as upper-bound constraints. For example, both

x1 � 1 and x2 � 5

are upper-bound constraints. A special technique for dealing efficiently with such constraints
has been described in Sec. 8.3.

■ TABLE 23.5 Data for the Good Foods Corp. multidivisional problem

Divisional Data Subproblem

Processed Foods Division

Product Resource
Usage/Unit Amount

Resource 1 2 3 Available

1 2 4 3 10
2 7 3 6 15
3 5 0 3 12

�Z/unit 8 5 6
Level x1 x2 x3

Frozen Foods Division

Product Resource
Usage/Unit Amount

Resource 7 8 Available

6 8 5 25
7 7 9 30
8 6 4 20

�Z/unit 6 5
Level x7 x8

Canned Foods Division

Product Resource
Usage/Unit Amount

Resource 4 5 6 Available

4 3 1 2 7
5 2 4 3 9

�Z/unit 9 7 9
Level x4 x5 x6

Data for Organizational Resources

Product
Resource Usage/Unit Amount

Resource 1 2 3 4 5 6 7 8 Available

Corn 5 3 0 2 0 3 4 6 30
Potatoes 2 0 4 3 7 0 1 0 20

Maximize Z1 � 8x1 � 5x2 � 6x3,

subject to 2x1 � 4x2 � 3x3 � 10
7x1 � 3x2 � 6x3 � 15
5x1 � 3x3 � 12

and x1 � 0, x2 � 0, x3 � 0.

Maximize Z3 � 6x7 � 5x8,

subject to 8x7 � 5x8 � 25
7x7 � 9x8 � 30
6x7 � 4x8 � 20

and x7 � 0, x8 � 0.

Maximize Z2 � 9x4 � 7x5 � 9x6,

subject to 3x4 � x5 � 2x6 � 7
2x4 � 4x5 � 3x6 � 9

and x4 � 0, x5 � 0, x6 � 0.
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A � � � A � � �
■ TABLE 23.7 Constraint coefficients for important special cases of the structure

for multidivisional problems given in Table 23.4

Generalized Upper Bounds Upper Bounds

. . .

Either GUB or upper-bound constraints may occur because of the multidivisional na-
ture of the problem. However, we should emphasize that they often arise in many other
contexts as well. In fact, you already have seen several examples containing such con-
straints as summarized below.

Note in Table 9.6 that all supply constraints in the transportation problem actually are
GUB constraints. (Table 9.6 fits the form in Table 23.7 by placing the supply constraints
below the demand constraints.) In addition, the demand constraints also are GUB con-
straints, but ones not involving consecutive variables.

In the Southern Confederation of Kibbutzim regional planning problem (see Sec. 3.4),
the constraints involving usable land for each kibbutz and total acreage for each crop all
are GUB constraints.

The technological limit constraints in the Nori & Leets Co. air pollution problem (see
Sec. 3.4) are upper-bound constraints, as are two of the three functional constraints in the
Wyndor Glass Co. product mix problem (see Sec. 3.1).

Because of the prevalence of GUB and upper-bound constraints, it is very helpful to have
special techniques for streamlining the way in which the simplex method deals with them.

A � � �
■ TABLE 23.6 Constraint coefficients

for the Good Foods Corp.
multidivisional problem

. . .
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(The technique for GUB constraints1 is quite similar to the one for upper-bound constraints
described in Sec. 8.3.) If there are many such constraints, these techniques can drastically re-
duce the computation time for a problem.

■ 23.3 THE DECOMPOSITION PRINCIPLE FOR 
MULTIDIVISIONAL PROBLEMS

In Sec. 23.2, we discussed the special class of linear programming problems called
multidivisional problems and their special block angular structure (see Table 23.4). We also
mentioned that the streamlined version of the simplex method called the decomposition
principle provides an effective way of exploiting this special structure to solve very large
problems. (This approach also is applicable to the dual of the class of multitime period
problems presented in Sec. 23.4.) We shall describe and illustrate this procedure after re-
formulating (decomposing) the problem in a way that enables the algorithm to exploit its
special structure.

A Useful Reformulation (Decomposition) of the Problem

The basic approach is to reformulate the problem in a way that greatly reduces the num-
ber of functional constraints and then to apply the revised simplex method (see Sec. 5.4).
Therefore, we need to begin by giving the matrix form of multidivisional problems:

Maximize Z � cx,

subject to

Ax � b† and x � 0,

where the A matrix has the block angular structure

A � � �
where the Ai (i � 1, 2, . . . , 2N) are matrices, and the 0 are null matrices. Expanding,
this can be rewritten as

Maximize Z � �
N

j � 1
cjxj,

subject to

[A1, A2, . . . , AN, I]� � � b0, � � � 0,

AN�jxj � bj and xj � 0, for j � 1, 2, . . . , N,

x
xs

x
xs

A1 A2 � � � AN

AN�1 0 � � � 0
0 AN�2 � � � 0

0 0 � � � A2N

1G. B. Dantzig, and R. M. Van Slyke, “Generalized Upper Bounded Techniques for Linear Programming,”
Journal of Computer and Systems Sciences, 1: 213–226, 1967.

†The following discussion would not be changed substantially if Ax � b.

. 
. 

.

. 
. 

.

. 
. 

.

hil61217_ch23.qxd  5/14/04  16:00  Page 23-11
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where cj, xj, b0, and bj are vectors such that c � [c1, c2, . . . , cN],

x � � �, b � � �,

and where xs is the vector of slack variables for the first set of constraints.
This structure suggests that it may be possible to solve the overall problem by doing

little more than solving the N subproblems of the form

Maximize Zj � cjxj,

subject to

AN�jxj � bj and xj � 0,

thereby greatly reducing computational effort. After some reformulation, this approach
can indeed be used.

Assume that the set of feasible solutions for each subproblem is a bounded set (i.e.,
none of the variables can approach infinity). Although a more complicated version of the
approach can still be used otherwise, this assumption will simplify the discussion.

The set of points xj such that xj � 0 and AN�jxj � bj constitutes a convex set with a
finite number of extreme points (the CPF solutions for the subproblem having these con-
straints.)1 Therefore, under the assumption that the set is bounded, any point in the set can
be represented as a convex combination of the extreme points. To express this mathemat-
ically, let nj be the number of extreme points, and denote these points by x*

jk for k � 1,
2, . . . , nj. Then any solution xj to subproblem j that satisfies the constraints AN�jxj � bj

and xj � 0 also satisfies the equation

xj � �
nj

k�1
�jkx

*
jk

for some combination of �jk such that

�
nj

k�1
�jk � 1

and �jk � 0 (k � 1, 2, . . . , nj). Furthermore, this is not true for any xj that is not a fea-
sible solution for subproblem j. 

Therefore, this equation for xj and the constraints on the �jk provide a method for rep-
resenting the feasible solutions to subproblem j without using any of the original constraints.
Hence, the overall problem can now be reformulated with far fewer constraints as

Maximize Z � �
N

j�1
�
nj

k�1
(cjx

*
jk)�jk,

subject to

�
N

j�1
�
nj

k�1
(Ajx

*
jk)�jk � xs � b0, xs � 0, �

nj

k�1
�jk � 1, for j � 1, 2, . . . , N,

b0

b1

bN

x1

x2

xN

�
� 

�

�
� 

�

1See Appendix 2 for a definition and discussion of convex sets and extreme points.
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and

�jk � 0, for j � 1, 2, . . . , N and k � 1, 2, . . . , nj.

This formulation is completely equivalent to the one given earlier. However, since it has
far fewer constraints, it should be solvable with much less computational effort. The fact
that the number of variables (which are now the �jk and the elements of xs) is much larger
does not matter much computationally if the revised simplex method is used. The one ap-
parent flaw is that it would be tedious to identify all the x*

jk. Fortunately, it is not neces-
sary to do this when using the revised simplex method. The procedure is outlined below.

The Algorithm Based on This Decomposition

Let A′ be the matrix of constraint coefficients for this reformulation of the problem, and let
c′ be the vector of objective function coefficients. (The individual elements of A′ and c′ are
determined only when they are needed.) As usual, let B be the current basis matrix, and let
cB be the corresponding vector of basic variable coefficients in the objective function.

For a portion of the work required for the optimality test and step 1 of an iteration,
the revised simplex method needs to find the minimum element of (cBB�1A′ � c′), the
vector of coefficients of the original variables (the �jk in this case) in the current Eq. (0).
Let (zjk � cjk) denote the element in this vector corresponding to �jk. Let m0 denote the
number of elements of b0. Let (B�1)1;m0

be the matrix consisting of the first m0 columns
of B�1, and let (B�1)i be the vector consisting of the ith column of B�1. Then (zjk � cjk)
reduces to

zjk � cjk � cB(B�1)1;m0
Ajx

*
jk � cB(B�1)m0�j�cjx

*
jk

� (cB(B�1)1;m0
Aj � cj)x

*
jk � cB(B–1)m0�j.

Since cB(B�1)m0�j is independent of k, the minimum value of (zjk � cjk) over k � 1,
2, . . . , nj can be found as follows. The x*

jk are just the CPF solutions for the set of con-
straints, xj � 0 and AN�jxj � bj, and the simplex method identifies the CPF solution that
minimizes (or maximizes) a given objective function. Therefore, solve the linear pro-
gramming problem

Minimize Wj � (cB(B�1)1;m0
Aj � cj)xj � cB(B�1)m0�j,

subject to

AN�j xj � bj and xj � 0.

The optimal value of Wj (denoted by Wj
*) is the desired minimum value of (zjk � cjk) over k.

Furthermore, the optimal solution for xj is the corresponding x*
jk.

Therefore, the first step at each iteration requires solving N linear programming prob-
lems of the above type to find Wj

* for j � 1, 2, . . . , N. In addition, the current Eq. (0)
coefficients of the elements of xs that are nonbasic variables would be found in the usual
way as the elements of cB(B�1)1;m0

. If all these coefficients [the Wj
* and the elements of

cB(B�1)1;m0
] are nonnegative, the current solution is optimal by the optimality test.

Otherwise, the minimum of these coefficients is found, and the corresponding variable is
selected as the new entering basic variable. If that variable is �jk, then the solution to the
linear programming problem involving Wj has identified x*

jk, so that the original constraint
coefficients of �jk are now identified. Hence, the revised simplex method can complete
the iteration in the usual way.

Assuming that x � 0 is feasible for the original problem, the initialization step would
use the corresponding solution in the reformulated problem as the initial BF solution. This
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involves selecting the initial set of basic variables (the elements of xB) to be the elements of
xs and the one variable �jk for each subproblem j ( j � 1, 2, . . . , N) such that x*

jk � 0. Fol-
lowing the initialization step, the above procedure is repeated for a succession of iterations
until an optimal solution is reached. The optimal values of the �jk are then substituted into the
equations for the xj for the optimal solution to conform to the original form of the problem.

Example. To illustrate this procedure, consider the problem

Maximize Z � 4x1 � 6x2 � 8x3 � 5x4,

subject to

x1 � 3x2 � 2x3 � 4x4 � 20
2x1 � 3x2 � 6x3 � 4x4 � 25

x1 � x2 � 5
x1 � 2x2 � 8

4x3 � 3x4 � 12

and

xj � 0, for j � 1, 2, 3, 4.

Thus, the A matrix is

A � � �,
so that N � 2 and

A1 � � �, A2 � � �, A3 � � �, A4 � [4, 3].

In addition,

c1 � [4, 6], c2 � [8, 5],

x1 � � �, x2 � � �, b0 � � �, b1 � � �, b2 � [12].

To prepare for demonstrating how this problem would be solved, we shall first ex-
amine its two subproblems individually and then construct the reformulation of the over-
all problem. Thus, subproblem 1 is

Maximize Z1 � [4, 6]� �,

subject to

� � � � � � � and � � � � �,

so that its set of feasible solutions is as shown in Fig. 23.3.
It can be seen that this subproblem has four extreme points (n1 � 4), namely, the four

CPF solutions shown by dots in Fig. 23.3. One of these is the origin, considered the “first”
of these extreme points, so

x*
11 � � �, x*

12 � � �, x*
13 � � �, x*

14 � � �,0
4

2
3

5
0

0
0

0
0

x1

x2

5
8

x1

x2

1 1
1 2

x1

x2

5
8

20
25

x3

x4

x1

x2

1 1
1 2

2 4
6 4

1 3
2 3

1 3 2 4
2 3 6 4
1 1 0 0
1 2 0 0
0 0 4 3
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where �11, �12, �13, �14 are the respective weights on these points.
Similarly, subproblem 2 is

Maximize Z2 � [8, 5] � �,

subject to

[4, 3] � � � [12] and � � � � �,

and its set of feasible solutions is shown in Fig. 23.4. Thus, its three extreme points are

x*
21 � � �, x*

22 � � �, x*
23 � � �,

where �21, �22, �23 are the respective weights on these points.
By performing the cjx

*
jk vector multiplications and the Ajx

*
jk matrix multiplications,

the following reformulated version of the overall problem can be obtained:

Maximize Z � 20�12 � 26�13 � 24�14 � 24�22 � 20�23,

0
4

3
0

0
0

0
0

x3

x4

x3

x4

x3

x4

x2

x10 2 4 5 6

2

4

(2, 3)

Feasible region

■ FIGURE 23.3
Subproblem 1 for the
example illustrating the
decomposition principle.

x4

x30 2 3 4 5

2

4

Feasible region
■ FIGURE 23.4
Subproblem 2 for the
example illustrating the
decomposition principle.

hil61217_ch23.qxd  5/14/04  16:00  Page 23-15



23-16 CHAPTER 23 ADDITIONAL SPECIAL TYPES OF LINEAR PROGRAMMING PROBLEMS

subject to

5�12 � 11�13 � 12�14 � 6�22 � 16�23 � xs1 � 20
10�12 � 13�13 � 12�14 � 18�22 � 16�23 � xs2 � 25

�11 � �12 � �13 � �14 � 1
�21 � �22 � �23 � 1

and

�1k � 0, for k � 1, 2, 3, 4,
�2k � 0, for k � 1, 2, 3,
xsi � 0, for i � 1, 2.

However, we should emphasize that the complete reformulation normally is not constructed
explicitly; rather, just parts of it are generated as needed during the progress of the re-
vised simplex method.

To begin solving this problem, the initialization step selects xs1, xs2, �11, and �21 to
be the initial basic variables, so that

xB � � �.
Therefore, since A1x*

11 � 0, A2x*
21 � 0, c1x*

11 � 0, and c2x*
21 � 0, then

B � � � � B�1, xB � b′ � � �, cB � [0, 0, 0, 0]

for the initial BF solution.
To begin testing for optimality, let j � 1, and solve the linear programming problem

Minimize W1 � (0 � c1)x1 � 0 � �4x1 � 6x2,

subject to

A3x1 � b1 and x1 � 0,

so the feasible region is that shown in Fig. 23.3. Using Fig. 23.3 to solve graphically, the
solution is

x1 � � � � x*
13,

so that W*
1 � �26.

Next let j � 2, and solve the problem

Minimize W2 � (0 � c2)x2 � 0 � �8x3 � 5x4,

subject to

A4x2 � b2 and x2 � 0,

so Fig. 23.4 shows this feasible region. Using Fig. 23.4, the solution is

x2 � � � � x*
22,

3
0

2
3

20
25
1
1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

xs1

xs2

�11

�21
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so W*
2 � �24. Finally, since none of the slack variables are nonbasic, no more coefficients

in the current Eq. (0) need to be calculated. It can now be concluded that because both W*
1

	 0 and W*
2 	 0, the current BF solution is not optimal. Furthermore, since W*

1 is the
smaller of these, �13 is the new entering basic variable.

For the revised simplex method to now determine the leaving basic variable, it is first
necessary to calculate the column of A′ giving the original coefficients of �13. This col-
umn is

A′k� � � � � �.
Proceeding in the usual way to calculate the current coefficients of �13 and the right-side
column,

B�1A′k � � �, B�1b′ � � �.
Considering just the strictly positive coefficients, the minimum ratio of the right side to
the coefficient is the 1/1 in the third row, so that r � 3; that is, �11 is the new leaving ba-
sic variable. Thus, the new values of xB and cB are

xB � � �, cB � [0, 0, 26, 0].

To find the new value of B�1, set

E � � �,
so

B�1
new � EBold

�1 � � �.
The stage is now set for again testing whether the current BF solution is optimal. In

this case

W1 � (0 � c1)x1 � 26 � �4x1 � 6x2 � 26,

so the minimum feasible solution from Fig. 23.3 is again

x1 � � � � x*
13,

with W*
1 � 0. Similarly,

W2 � (0 � c2)x2 � 0 � �8x3 � 5x4,

2
3

1 0 �11 0
0 1 �13 0
0 0 1 0
0 0 0 1

1 0 �11 0
0 1 �13 0
0 0 1 0
0 0 0 1

xs1

xs2

�13

�21

20
25
1
1

11
13
1
0

11
13
1
0

A1x*
13

1
0
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so the minimizing solution from Fig. 23.4 is again

x2 � � � � x*
22,

with W*
2 � �24. Finally, there are no nonbasic slack variables to be considered. Since

W*
2 	 0, the current solution is not optimal, and �22 is the new entering basic variable.

Proceeding with the revised simplex method,

A′k � � � � � �,
so

B�1A′k � � �, B�1b′ � � �.
Therefore, the minimum positive ratio is 


1
1
2
8

 from the second row, so r � 2; that is, xs2

is
the new leaving basic variable. Thus

E � � �,

B�1
new � EBold

�1 � � �, xB � � �,
and cB � [0, 24, 26, 0].

Now test whether the new BF solution is optimal. Since

W1 � �[0, 24, 26, 0] � �� � � [4, 6]�� � � [0, 24, 26, 0] � �
� �[0, 


4
3


] � � � [4, 6]�� � � 

2
3
6



� �

4
3


x1 � 2x2 � 

2
3
6

.

Fig. 23.3 indicates that the minimum feasible solution is again

x1 � � � � x*
13,2
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so W*
1 � 


2
3


. Similarly,

W2 � �[0, 

4
3


]� � � [8, 5]� � � � 0

� 0x3 � 

1
3


x4,

so the minimizing solution from Fig. 23.4 now is

x2 � � � � x*
21,

and W*
2 � 0. Finally, cB(B�1)1;m0

� [�, 

4
3


]. Therefore, since W*
1 � 0, W*

2 � 0, and
cB(B�1)1;m0

� 0, the current BF solution is optimal. To identify this solution, set

xB � � � � B�1b′ � � � � � � � �,
so

x1 � � � � �
4

k�1
�1kx

*
1k � x*

12 � � �,

x2 � � � � �
3

k�1
�2kx

*
2k � 


1
3


� � � 

2
3


� � � � �.

Thus, an optimal solution for this problem is x1 � 2, x2 � 3, x3 � 2, x4 � 0, with Z � 42.
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1
1
3
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�21

0
0

x3

x4

2 4
6 4

■ 23.4 MULTITIME PERIOD PROBLEMS

Any successful organization must plan ahead and take into account probable changes in its
operating environment. For example, predicted future changes in sales because of seasonal
variations or long-run trends in demand might affect how the firm should operate currently.
Such situations frequently lead to the formulation of multitime period linear programming
problems for planning several time periods (e.g., days, months, or years) into the future.
Just as for multidivisional problems, multitime period problems are almost decomposable
into separate subproblems, where each subproblem in this case is concerned with opti-
mizing the operation of the organization during one of the time periods. However, some
overall planning is required to coordinate the activities in the different time periods.

The resulting special structure for multitime period problems is shown in Table 23.8.
Each approximately square block gives the coefficients of the constraints for one sub-
problem concerned with optimizing the operation of the organization during a particular
time period considered by itself. Each oblong block then contains the coefficients of the
linking variables for those activities that affect two or more time periods. For example,
the linking variables may describe inventories that are retained at the end of one time pe-
riod for use in some later time period, as we shall illustrate in the prototype example.

As with multidivisional problems, the multiplicity of subproblems often causes mul-
titime period problems to have a very large number of constraints and variables, so again
a method for exploiting the almost decomposable special structure of these problems is
needed. Fortunately, the same method can be used for both types of problems! The idea
is to reorder the variables in the multitime period problem to first list all the linking vari-
ables, as shown in Table 23.9, and then to construct its dual problem. This dual problem

hil61217_ch23.qxd  5/14/04  16:00  Page 23-19



23-20 CHAPTER 23 ADDITIONAL SPECIAL TYPES OF LINEAR PROGRAMMING PROBLEMS

exactly fits the block angular structure shown in Table 23.4. (For this reason the special
structure in Table 23.9 is referred to as the dual angular structure.) Therefore, the
decomposition principle presented in the preceding section for multidivisional problems
can be used to solve this dual problem. Since directly applying even this streamlined
version of the simplex method to the dual problem automatically identifies an optimal
solution for the primal problem as a by-product, this provides an efficient way of solving
many large multitime period problems.

A �� �
■ TABLE 23.8 Constraint coefficients for multitime period problems

Coefficients of Activity Variables for:

First Time Second Time Last Time
Period Period

. . .
Period

�
Constraints
on resources
available
during first
time period

�
Constraints
on resources
available
during second
time period

�
Constraints
on resources
available
during last
time period

Li
n

k
in

g

Li
n

k
in

g

Li
n

k
in

g

� �

.
. 

.

. . .

�

A �� �

■ TABLE 23.9 Table of constraint coefficients for multitime period problems after
reordering the variables

Coefficients of Activity Variables for:

First Time Second Time Last Time
Period Period

. . .
Period

�
Constraints on resources
available during first time
period

�
Constraints on resources
available during second
time period

�
Constraints on resources
available during last time
period

Li
n

k
in

g

� �

.
. 

.. . .

�
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Prototype Example

The WOODSTOCK COMPANY operates a large warehouse that buys and sells lumber.
Since the price of lumber changes during the different seasons of the year, the company
sometimes builds up a large stock when prices are low and then stores the lumber for sale
later at a higher price. The manager feels that there is considerable room for increasing
profits by improving the scheduling of purchases and sales, so he has hired a team of op-
erations research consultants to develop the most profitable schedule.

Since the company buys lumber in large quantities, its purchase price is slightly less
than its selling price in each season. These prices are shown in Table 23.10, along with
the maximum amount that can be sold during each season. The lumber would be pur-
chased at the beginning of a season and sold throughout the season. If the lumber pur-
chased is to be stored for sale in a later season, a handling cost of $7 per 1,000 board feet
is incurred, as well as a storage cost (including interest on capital tied up) of $10 per 1,000
board feet for each season stored. A maximum of 2 million board feet can be stored in
the warehouse at any one time. (This includes lumber purchased for sale in the same pe-
riod.) Since lumber should not age too long before sale, the manager wants it all sold by
the end of autumn (before the low winter prices go into effect).

The team of OR consultants concluded that this problem should be formulated as a
linear programming problem of the multitime period type. Numbering the seasons (1 �
winter, 2 � spring, 3 � summer, 4 � autumn) and letting xi be the number of 1,000 board
feet purchased in season i, yi be the number sold in season i, and zij be the number stored
in season i for sale in season j, this formulation is

Maximize Z � �410x1 � 425y1 � 17z12 � 27z13 � 37z14 � 430x2 � 440y2

�17z23 � 27z24 � 460x3 � 465y3 � 17z34 � 450x4 � 455y4,

subject to

x1 �y1 � z12 � z13 � z14 � 0
x1 � 2000

y1 � 1000
z12 � x2 � y2 � z23 � z24 � 0
z12 � y2 � 0
z12 � z13 � z14 � x2 � 2000

y2 � 1400
z13 � z23 � x3 � y3 � z34 � 0
z13 � z23 � y3 � 0
z13 � z14 � z23 � z24 � x3 � 2000

y3 � 2000
z14 � z24 � z34 � x4 � y4 � 0

y4 � 1600

■ TABLE 23.10 Price data for the Woodstock Company

Purchase Selling Maximum
Season Price* Price* Sales†

Winter 410 425 1,000
Spring 430 440 1,400
Summer 460 465 2,000
Autumn 450 455 1,600

*Prices are in dollars per thousand board feet.

†Sales are in thousand board feet.

hil61217_ch23.qxd  5/14/04  16:00  Page 23-21



23-22 CHAPTER 23 ADDITIONAL SPECIAL TYPES OF LINEAR PROGRAMMING PROBLEMS

and

xi � 0, yi � 0, zij � 0, for i � 1, 2, 3, 4, and j � 2, 3, 4.

Thus, this formulation contains four subproblems, where the subproblem for season i is
obtained by deleting all variables except xi and yi from the overall problem. The storage
variables (the zij) then provide the linking variables that interrelate these four time peri-
ods. Therefore, after reordering the variables to first list these linking variables, the cor-
responding table of constraint coefficients has the form shown in Table 23.11, where all
blanks are zeros. Since this form fits the dual angular structure given in Table 23.9, the
streamlined solution procedure for this kind of special structure can be used to solve the
problem (or much larger versions of it).

� �
■ TABLE 23.11 Table of constraint coefficients for the Woodstock Company

multitime period problem after reordering the variables

Coefficient of:

z12 z13 z14 z23 z24 z34 x1 y1 x2 y2 x3 y3 x4 y4

■ 23.5 MULTIDIVISIONAL MULTITIME PERIOD PROBLEMS

You saw in the preceding two sections how decentralized decision making can lead to mul-
tidivisional problems and how a changing operating environment can lead to multitime pe-
riod problems. We discussed these two situations separately to focus on their individual
special structure. However, we should now emphasize that it is fairly common for prob-
lems to possess both characteristics simultaneously. For example, because costs and mar-
ket prices change frequently in the food industry, the Good Foods Corp. might want to ex-
pand their multidivisional problem to consider the effect of such predicted changes several
time periods into the future. This would allow the model to indicate how to most profitably
stock up on materials when costs are low and store portions of the food products until
prices are more favorable. Similarly, if the Woodstock Co. also owns several other ware-
houses, it might be advisable to expand their model to include and coordinate the activi-
ties of these divisions of their organization. (Also see Prob. 23.5-2 for another way in which
the Woodstock Co. problem might expand to include the multidivisional structure.)

The combined special structure for such multidivisional multitime period problems is
shown in Table 23.12. It contains many subproblems (the approximately square blocks),
each of which is concerned with optimizing the operation of one division during one of
the time periods considered in isolation. However, it also includes both linking constraints
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and linking variables (the oblong blocks). The linking constraints coordinate the divisions
by making them share the organizational resources available during one or more time pe-
riods. The linking variables coordinate the time periods by representing activities that af-
fect the operation of a particular division (or possibly different divisions) during two or
more time periods.

One way of exploiting the combined special structure of these problems is to apply an
extended version of the decomposition principle for multidivisional problems. This involves
treating everything but the linking constraints as one large subproblem and then using this
decomposition principle to coordinate the solution for this subproblem with the master
problem defined by the linking constraints. Since this large subproblem has the dual an-
gular structure shown in Table 23.9, it would be solved by the special solution procedure
for multitime period problems, which again involves using this decomposition principle.

Other procedures for exploiting this combined special structure also have been de-
veloped.1 More experimentation is still needed to test the relative efficiency of the avail-
able procedures.

A

TABLE 23.12 Constraint coefficients for multidivisional multitime period
problems

Linking
Variables

Linking
Constraints

. . .

1For further information, see Chap. 5 of Selected Reference  4  at the end of this chapter.
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23.6 CONCLUSIONS

The linear programming model encompasses a wide variety of specific types of problems.
The general simplex method is a powerful algorithm that can solve surprisingly large ver-
sions of any of these problems. However, some of these problem types have such simple
formulations that they can be solved much more efficiently by streamlined versions of the
simplex method that exploit their special structure. These streamlined versions can cut
down tremendously on the computer time required for large problems, and they some-
times make it computationally feasible to solve huge problems. Of the problems consid-
ered in this chapter, this is particularly true for transshipment problems and problems with
many upper-bound or GUB constraints. For general multidivisional problems, multitime
period problems, or combinations of the two, the setup times are sufficiently large for
their streamlined procedures that they should be used selectively only on large problems.
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Much research continues to be devoted to developing streamlined solution procedures
for special types of linear programming problems, including some not discussed here. At
the same time there is widespread interest in applying linear programming to optimize the
operation of complicated large-scale systems, including social systems. The resulting for-
mulations usually have special structures that can be exploited. Recognizing and exploit-
ing special structures has become a very important factor in the successful application of
linear programming.

PROBLEMS

To the left of each of the following problems (or their parts), we
have inserted a C whenever you should use the computer with any
of the software options available to you (or as instructed by your
instructor) to solve the problem.

23.1-1. Suppose that the air freight charge per ton between seven
particular locations is given by the following table (except where
no direct air freight service is available):

A certain corporation must ship a certain perishable com-
modity from locations 1–3 to locations 4–7. A total of 70, 80, and
50 tons of this commodity is to be sent from locations 1, 2, and 3,
respectively. A total of 30, 60, 50, and 60 tons is to be sent to lo-
cations 4, 5, 6, and 7, respectively. Shipments can be sent through
intermediate locations at a cost equal to the sum of the costs for
each of the legs of the journey. The problem is to determine the
shipping plan that minimizes the total freight cost.
(a) Describe how this problem fits into the format of the general

transshipment problem.

(b) Reformulate this problem as an equivalent transportation prob-
lem by constructing the appropriate parameter table.

(c) Use the northwest corner rule to obtain an initial BF solution
for the problem formulated in part (b). Describe the corre-
sponding shipping pattern.

C (d) Use the computer to obtain an optimal solution for the prob-
lem formulated in part (b). Describe the corresponding op-
timal shipping pattern.

Location 1 2 3 4 5 6 7

1 — 21 50 62 93 77 —
2 21 — 17 54 67 — 48
3 50 17 — 60 98 67 25
4 62 54 60 — 27 — 38
5 93 67 98 27 — 47 42
6 77 — 67 — 47 — 5
7 — 48 25 38 42 35 —

23.1-2. Consider the airline company problem presented in
Prob. 10.3-3.
(a) Describe how this problem can be fitted into the format of the

transshipment problem.
(b) Reformulate this problem as an equivalent transportation prob-

lem by constructing the appropriate parameter table.
(c) Use Vogel’s approximation method to obtain an initial BF so-

lution for the problem formulated in part (b).
(d) Use the transportation simplex method by hand to obtain an

optimal solution for the problem formulated in part (b).

23.1-3. A student about to enter college away from home has de-
cided that she will need an automobile during the next four years.
Since funds are going to be very limited, she wants to do this in
the cheapest possible way. However, considering both the initial
purchase price and the operating maintenance costs, it is not clear
whether she should purchase a very old car or just a moderately
old car. Furthermore, it is not clear whether she should plan to trade
in her car at least once during the four years, before the costs be-
come to high.



PROBLEMS 23-25

hil61217_ch23.qxd  5/14/04  16:00  Page 23-33

Operating and Maintenance Trade-in Value at End
Costs for Ownership Year of Ownership Year

Purchase
Price 1 2 3 4 1 2 3 4

Very old car $1,200 $1,900 $2,200 $2,500 $2,800 $ 700 $  500 $ 400 $ 300
Moderately old car $4,500 $1,000 $1,300 $1,700 $2,300 $2,500 $1,800 $1,300 $1,000

If the student trades in a car during the next four years, she would
do it at the end of a year (during the summer) on another car of
one of these two kinds. She definitely plans to trade in her car at
the end of the four years on a much newer model. However, she
needs to determine which plan for purchasing and (perhaps) trad-
ing in cars during the four years would minimize the total net cost
for the four years.

(a) Describe how this problem can be fitted into the format of the
transshipment problem.

(b) Reformulate this problem as an equivalent transportation prob-
lem by constructing the appropriate parameter table.

C (c) Use the computer to obtain an optimal solution for the prob-
lem formulated in part (b).

23.1-4. Without using xii variables to introduce fictional shipments
from a location to itself, formulate the linear programming model
for the general transshipment problem described at the end of Sec.
23.1. Identify the special structure of this model by constructing
its table of constraint coefficients (similar to Table 23.1) that shows
the location and values of the nonzero coefficients.

23.2-1. Consider the following linear programming problem.

Maximize Z 2x1 4x2 3x3 2x4 5x5 3x6,

subject to

3x1 2x2 3x3 30
2x5 x6 20

5x1 2x2 3x3 4x4 2x5 x6 20
3 x4 15

2x5 3x6 40
5x1 x3 30

2x1 4x2 2x4 3x6 60
x1 2x2 x3 20

and

xj 0, for j 1, 2, . . . , 6.

(a) Rewrite this problem in a form that demonstrates that it pos-
sesses the special structure for multidivisional problems. Iden-
tify the variables and constraints for the master problem and
each subproblem.

only nonzero coefficients, and draw a box around each block
of these coefficients to emphasize this structure.)

23.2-2. Consider the following table of constraint coefficients for
a linear programming problem:

(a) Show how this table can be converted into the block angular
structure for multidivisional linear programming as shown in
Table 23.4 (with three subproblems in this case) by reordering
the variables and constraints appropriately.

Coefficient of:

Constraint x1 x2 x3 x4 x5 x6 x7

1 1 1 1
12

3 4 3 2 2 4 1
424

5 1 1
6 5 3 1 2 4

17
8 2 1 3
9 2 4

The relevant data each time she purchases a car are as follows:

(b) Identify the upper-bound constraints and GUB constraints for
this problem.

23.2-3. A corporation has two divisions (the Eastern Division and the
Western Division) that operate semiautonomously, with each devel-
oping and marketing its own products. However, to coordinate their
product lines and to promote efficiency, the divisions compete at the
corporate level for investment funds for new product development pro-
jects. In particular, each division submits its proposals to corporate
headquarters in September for new major projects to be undertaken
the following year, and available funds are then allocated in such a
way as to maximize the estimated total net discounted profits that will
eventually result from the projects.

For the upcoming year, each division is proposing three new
major projects. Each project can be undertaken at any level, where

(b) Construct the corresponding table of constraint coefficients hav-
ing the block angular structure shown in Table 23.4. (Include
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Eastern Division Western Division
Project Project

1 2 3 1 2 3

Level x1 x2 x3 x4 x5 x6

Required investment (in millions of dollars) 16x1 7x2 13x3 8x4 20x5 10x6

Net profitability 7x1 3x2 5x3 4x4 7x5 5x6

Facility restriction 10x1 � 3x2 � 7x3 � 50 6x4 � 13x5 � 9x6 � 45
Labor restriction 4x1 � 2x2 � 5x3 � 30 3x4 � 8x5 � 2x6 � 25

A total of $150,000,000 is budgeted for investment in these
projects.

(a) Formulate this problem as a multidivisional linear program-
ming problem.

(b) Construct the corresponding table of constraint coefficients
having the block angular structure shown in Table 23.4.

23.3-1. Use the decomposition principle to solve the Wyndor Glass
Co. problem presented in Sec. 3.1.

23.3-2. Consider the following multidivisional problem:

Maximize Z � 10x1 � 5x2 � 8x3 � 7x4,

subject to

6x1 � 5x2 � 4x3 � 6x4 � 40
3x1 � x2 � 15
x1 � x2 � 10

x3 � 2x4 � 10
2x3 � x4 � 10

and

xj � 0, for j � 1, 2, 3, 4.

(a) Explicitly construct the complete reformulated version of
this problem in terms of the �jk decision variables that would
be generated (as needed) and used by the decomposition
principle.

(b) Use the decomposition principle to solve this problem.

23.3-3. Using the decomposition principle, begin solving the Good
Foods Corp. multidivisional problem presented in Sec. 23.2 by ex-
ecuting the first two iterations.

23.4-1. Consider the following table of constraint coefficients for
a linear programming problem:

Constraint x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 3 1
2 1 2 �1
3 1 5
4 1 2 �1 �1 �1
5 1
6 1 1 1 1 3 2
7 2 �1 1

� �

Show how this table can be converted into the dual angular struc-
ture for multitime period linear programming shown in Table 23.9
(with three time periods in this case) by reordering the variables
and constraints appropriately.

23.4-2. Consider the Wyndor Glass Co. problem described in
Sec. 3.1 (see Table 3.1). Suppose that decisions have been made
to discontinue additional products in the future and to initiate
other new products. Therefore, for the two products being ana-
lyzed, the number of hours of production time available per week
in each of the three plants will be different than shown in Table
3.1 after the first year. Furthermore, the profit per batch (exclusive
of storage costs) that can be realized from the sale of these two
products will vary from year to year as market conditions change.
Therefore, it may be worthwhile to store some of the units pro-
duced in 1 year for sale in a later year. The storage costs involved
would be approximately $2,000 per batch for either product.

The relevant data for the next three years are summarized
next.

The production time per batch used by each product remains the
same for each year as shown in Table 3.1. The objective is to de-
termine how much of each product to produce in each year and
what portion to store for sale in each subsequent year to maximize
the total profit over the three years.
(a) Formulate this problem as a multitime period linear program-

ming problem.
(b) Construct the corresponding table of constraint coefficients

having the dual angular structure shown in Table 23.9.

Hours/Week Available
in Year

1 2 3

1 4 6 3
Plant 2 12 12 10

3 18 24 15

Profit per batch, Product 1 $3,000 $4,000 $5,000
Profit per batch, Product 2 $5,000 $4,000 $8,000

the estimated net discounted profit would be proportional to the
level. The relevant data on the projects are summarized as follows:
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Show how this table can be converted into the form for multidivi-
sional multitime period problems shown in Table 23.12 (with two
linking constraints, two linking variables, and four subproblems in
this case) by reordering the variables and constraints appropriately.

23.5-2. Consider the Woodstock Company multitime period prob-
lem described in Sec. 23.4 (see Table 23.10). Suppose that the com-
pany has decided to expand its operation to also buy, store, and
sell plywood in this warehouse. For the upcoming year, the rele-

vant data for raw lumber are still as given in Sec. 23.4. The cor-
responding price data for plywood are as follows:

Constraint x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 2 3 1
2 1 1 2 2
3 5 �1 2 �1 �1 �3 4
4 1 �1
5 �1 2 �2 5 3
6 1 1
7 2 1 3 2 1 �1
8 �1 2 1 �1
9 1 2 1

10 �1 4 1 5

� �
Purchase Selling Maximum

Season Price* Price* Sales†

Winter 680 705 800
Spring 715 730 1,200
Summer 760 770 1,500
Autumn 740 750 100

*Prices are in dollars per 1,000 board feet.

†Sales are in 1,000 board feet.

For plywood stored for sale in a later season, the handling cost is
$6 per 1,000 board feet, and the storage cost is $18 per 1,000 board
feet. The storage capacity of 2 million board feet now applies to
the total for raw lumber and plywood. Everything should still be
sold by the end of autumn.

The objective now is to determine the most profitable sched-
ule for buying and selling raw lumber and plywood.
(a) Formulate this problem as a multidivisional multitime period

linear programming problem.
(b) Construct the corresponding table of constraint coefficients

having the form shown in Table 23.12.

23.5-1. Consider the following table of constraint coefficients for
a linear programming problem.
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Probability Theory

In decision-making problems, one is often faced with making decisions based upon phe-
nomena that have uncertainty associated with them. This uncertainty is caused by in-

herent variation due to sources of variation that elude control or the inconsistency of nat-
ural phenomena. Rather than treat this variability qualitatively, one can incorporate it into
the mathematical model and thus handle it quantitatively. This generally can be accom-
plished if the natural phenomena exhibit some degree of regularity, so that their variation
can be described by a probability model. The ensuing sections are concerned with meth-
ods for characterizing these probability models.

■ 24.1 SAMPLE SPACE

Suppose the demand for a product over a period of time, say a month, is of interest. From
a realistic point of view, demand is not generally constant but exhibits the type of varia-
tion alluded to in the introduction. Suppose an experiment that will result in observing the
demand for the product during the month is run. Whereas the outcome of the experiment
cannot be predicted exactly, each possible outcome can be described. The demand during
the period can be any one of the values 0, 1, 2, . . . , that is, the entire set of nonnegative
integers. The set of all possible outcomes of the experiment is called the sample space and
will be denoted by �. Each outcome in the sample space is called a point and will be de-
noted by �. Actually, in the experiment just described, the possible demands may be
bounded from above by N, where N would represent the size of the population that has
any use for the product. Hence, the sample space would then consist of the set of the in-
tegers 0, 1, 2, . . . , N. Strictly speaking, the sample space is much more complex than
just described. In fact, it may be extremely difficult to characterize precisely. Associated
with this experiment are such factors as the dates and times that the demands occur, the
prevailing weather, the disposition of the personnel meeting the demand, and so on. Many
more factors could be listed, most of which are irrelevant. Fortunately, as noted in the
next section, it is not necessary to describe completely the sample space, but only to record
those factors that appear to be necessary for the purpose of the experiment.

Another experiment may be concerned with the time until the first customer arrives at
a store. Since the first customer may arrive at any time until the store closes (assuming an
8-hour day), for the purpose of this experiment, the sample space can be considered to be all

hil61217_ch24.qxd  5/14/04  16:46  Page 24-1



points on the real line between zero and 8 hours. Thus, � consists of all points � such that

0 � � � 8.†

Now consider a third example. Suppose that a modification of the first experiment is
made by observing the demands during the first 2 months. The sample space � consists
of all points (x1,x2), where x1 represents the demand during the first month, x1 � 0, 1, 2,
. . . , and x2 represents the demand during the second month, x2 � 0, 1, 2, . . . . Thus, �
consists of the set of all possible points �, where � represents a pair of nonnegative in-
teger values (x1,x2). The point � � (3,6) represents a possible outcome of the experiment
where the demand in the first month is 3 units and the demand in the second month is 6 units.
In a similar manner, the experiment can be extended to observing the demands during the
first n months. In this situation � consists of all possible points � � (x1, x2, . . . , xn), where
xi represents the demand during the ith month.

The experiment that is concerned with the time until the first arrival appears can also
be modified. Suppose an experiment that measures the times of the arrival of the first cus-
tomer on each of 2 days is performed. The set of all possible outcomes of the experiment
� consists of all points (x1,x2), 0 � x1, x2 � 8, where x1 represents the time the first cus-
tomer arrives on the first day, and x2 represents the time the first customer arrives on the
second day. Thus, � consists of the set of all possible points �, where � represents a point
in two space lying in the square shown in Fig. 24.1.

This experiment can also be extended to observing the times of the arrival of the first
customer on each of n days. The sample space � consists of all points � � (x1, x2, . . . , xn),
such that 0 � xi � 8 (i � 1, 2, . . . , n), where xi represents the time the first customer ar-
rives on the ith day.

An event is defined as a set of outcomes of the experiment. Thus, there are many
events that can be of interest. For example, in the experiment concerned with observing
the demand for a product in a given month, the set {� � 0, � � 1, � � 2, . . . , � � 10}
is the event that the demand for the product does not exceed 10 units. Similarly, the set
{� � 0} denotes the event of no demand for the product during the month. In the exper-
iment which measures the times of the arrival of the first customer on each of 2 days, the
set {� � (x1, x2); x1 � 1, x2 � 1} is the event that the first arrival on each day occurs be-
fore the first hour. It is evident that any subset of the sample space, e.g., any point, col-
lection of points, or the entire sample space, is an event.

Events may be combined, thereby resulting in the formation of new events. For any
two events E1 and E2, the new event E1 � E2, referred to as the union of E1 and E2, is

24-2 CHAPTER 24 PROBABILITY THEORY

†It is assumed that at least one customer arrives each day.

■ FIGURE 24.1
The sample space of the
arrival time experiment over
two days.
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defined to contain all points in the sample space that are in either E1 or E2, or in both E1

and E2. Thus, the event E1 � E2 will occur if either E1 or E2 occurs. For example, in the
demand experiment, let E1 be the event of a demand in a single month of zero or 1 unit,
and let E2 be the event of a demand in a single month of 1 or 2 units. The event E1 � E2

is just {� � 0, � � 1, � � 2}, which is just the event of a demand of 0, 1, or 2 units.
The intersection of two events E1 and E2 is denoted by E1 � E2 (or equivalently by

E1E2). This new event E1 � E2 is defined to contain all points in the sample space that
are in both E1 and E2. Thus, the event E1 � E2 will occur only if both E1 and E2 occur.
In the aforementioned example, the event E1 � E2 is {� � 1}, which is just the event of
a demand of 1 unit.

Finally, the events E1 and E2 are said to be mutually exclusive (or disjoint) if their in-
tersection does not contain any points. In the example, E1 and E2 are not disjoint. How-
ever, if the event E3 is defined to be the event of a demand of 2 or 3 units, then E1 � E3

is disjoint. Events that do not contain any points, and therefore cannot occur, are called
null events. (Or course, all these definitions can be extended to any finite number of events.)

24.2 RANDOM VARIABLES 24-3

■ 24.2 RANDOM VARIABLES

It may occur frequently that in performing an experiment one is not interested directly in
the entire sample space or in events defined over the sample space. For example, suppose
that the experiment which measures the times of the first arrival on 2 days was performed
to determine at what time to open the store. Prior to performing the experiment, the store
owner decides that if the average of the arrival times is greater than an hour, thereafter he
will not open his store until 10 A.M. (9 A.M. being the previous opening time). The aver-
age of x1 and x2 (the two arrival times) is not a point in the sample space, and hence he
cannot make his decision by looking directly at the outcome of his experiment. Instead, he
makes his decision according to the results of a rule that assigns the average of x1 and x2

to each point (x1,x2) in �. This resultant set is then partitioned into two parts: those points
below 1 and those above 1. If the observed result of this rule (average of the two arrival
times) lies in the partition with points greater than 1, the store will be opened at 10 A.M.;
otherwise, the store will continue to open at 9 A.M. The rule that assigns the average of
x1 and x2 to each point in the sample space is called a random variable. Thus, a random
variable is a numerically valued function defined over the sample space. Note that a func-
tion is, in a mathematical sense, just a rule that assigns a number to each value in the do-
main of definition, in this context the sample space.

Random variables play an extremely important role in probability theory. Experiments
are usually very complex and contain information that may or may not be superfluous.
For example, in measuring the arrival time of the first customer, the color of his shoes
may be pertinent. Although this is unlikely, the prevailing weather may certainly be rele-
vant. Hence, the choice of the random variable enables the experimenter to describe the
factors of importance to him and permits him to discard the superfluous characteristics
that may be extremely difficult to characterize.

There is a multitude of random variables associated with each experiment. In the ex-
periment concerning the arrival of the first customer on each of 2 days, it has been pointed
out already that the average of the arrival times X� is a random variable. Notationally, ran-
dom variables will be characterized by capital letters, and the values the random variable
takes on will be denoted by lowercase letters. Actually, to be precise, X� should be writ-
ten as X�(�), where � is any point shown in the square in Fig. 24.1 because X� is a func-
tion. Thus, X�(1,2) � (1 � 2)�2 � 1.5, X�(1.6,1.8) � (1.6 � 1.8)�2 � 1.7, X�(1.5,1.5) �
(1.5 � 1.5)�2 � 1.5, X�(8,8) � (8 � 8)�2 � 8. The values that the random variable X� takes
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on are the set of values x� such that 0 � x� � 8. Another random variable, X1, can be de-
scribed as follows: For each � in �, the random variable (numerically valued function)
disregards the x2 coordinate and transforms the x1 coordinate into itself. This random vari-
able, then, represents the arrival time of the first customer on the first day. Hence, X1(1,2)
� 1, X1(1.6,1.8) � 1.6, X1(1.5,1.5) � 1.5, X1(8,8) � 8. The values the random variable
X1 takes on are the set of values x1 such that 0 � x1 � 8. In a similar manner, the random
variable X2 can be described as representing the arrival time of the first customer on the
second day. A third random variable, S2, can be described as follows: For each � in �,
the random variable computes the sum of squares of the deviations of the coordinates
about their average; that is, S2(�) � S2(x1, x2) � (x1 � x�)2 � (x2 � x�)2. Hence, S2(1,2) �
(1 � 1.5)2 � (2 � 1.5)2 � 0.5, S2(1.6,1.8) � (1.6 � 1.7)2 � (1.8 � 1.7)2 � 0.02,
S2(1.5,1.5) � (1.5 � 1.5)2 � (1.5 � 1.5)2 � 0, S2(8,8) � (8 � 8)2 � (8 � 8)2 � 0. It is
evident that the values the random variable S2 takes on are the set of values s2 such that
0 � s2 � 32.

All the random variables just described are called continuous random variables be-
cause they take on a continuum of values. Discrete random variables are those that take
on a finite or countably infinite set of values.1 An example of a discrete random variable
can be obtained by referring to the experiment dealing with the measurement of demand.
Let the discrete random variable X be defined as the demand during the month. (The 
experiment consists of measuring the demand for 1 month). Thus, X(0) � 0, X(1) � 1,
X(2) � 2, . . . , so that the random variable takes on the set of values consisting of the
integers. Note that � and the set of values the random variable takes on are identical, so
that this random variable is just the identity function.

From the above paragraphs it is evident that any function of a random variable is it-
self a random variable because a function of a function is also a function. Thus, in the pre-
vious examples X� � (X1 � X2)�2 and S2 � (X1 � X�)2 � (X2 � X�)2 can also be recognized
as random variables by noting that they are functions of the random variables X1 and X2.

This text is concerned with random variables that are real-valued functions defined
over the real line or a subset of the real line.

24-4 CHAPTER 24 PROBABILITY THEORY

1A countably infinite set of values is a set whose elements can be put into one-to-one correspondence with the
set of positive integers. The set of odd integers is countably infinite. The 1 can be paired with 1, 3 with 2, 5
with 3, . . . , 2n � 1 with n. The set of all real numbers between 0 and 1�2 is not countably infinite because there
are too many numbers in the interval to pair with the integers.

■ 24.3 PROBABILITY AND PROBABILITY DISTRIBUTIONS

Returning to the example of the demand for a product during a month, note that the ac-
tual demand is not a constant; instead, it can be expected to exhibit some “variation.” In
particular, this variation can be described by introducing the concept of probability 
defined over events in the sample space. For example, let E be the event {� � 0, � � 1,
� � 2, . . . , � � 10}. Then intuitively one can speak of P{E}, where P{E} is referred
to as the probability of having a demand of 10 or less units. Note that P{E} can be thought
of as a numerical value associated with the event E. If P{E} is known for all events E in
the sample space, then some “information” is available about the demand that can be ex-
pected to occur. Usually these numerical values are difficult to obtain, but nevertheless
their existence can be postulated. To define the concept of probability rigorously is be-
yond the scope of this text. However, for most purposes it is sufficient to postulate the ex-
istence of numerical values P{E} associated with events E in the sample space. The value
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P{E} is called the probability of the occurrence of the event E. Furthermore, it will be
assumed that P{E} satisfies the following reasonable properties:

1. 0 � P{E} � 1. This implies that the probability of an event is always nonnegative and
can never exceed 1.

2. If E0 is an event that cannot occur (a null event) in the sample space, then P{E0} � 0.
Let E0 denote the event of obtaining a demand of �7 units. Then P{E0} � 0.

3. P{�} � 1. If the event consists of obtaining a demand between 0 and N, that is, the en-
tire sample space, the probability of having some demand between 0 and N is certain.

4. If E1 and E2 are disjoint(mutually exclusive) events in �, then P{E1 � E2} � P{E1}
� P{E2}. Thus, if E1 is the event of 0 or 1, and E2 is the event of a demand of 4 or 5,
then the probability of having a demand of 0, 1, 4, or 5, that is, {E1 � E2}, is given
by P{E1} � P{E2}.

Although these properties are rather formal, they do conform to one’s intuitive notion
about probability. Nevertheless, these properties cannot be used to obtain values for P{E}.
Occasionally the determination of exact values, or at least approximate values, is desirable.
Approximate values, together with an interpretation of probability, can be obtained through
a frequency interpretation of probability. This may be stated precisely as follows. Denote
by n the number of times an experiment is performed and by m the number of successful
occurrences of the event E in the n trials. Then P{E} can be interpreted as

P{E} � lim
n → 	



m
n


,

assuming the limit exists for such a phenomenon. The ratio m�n can be used to approxi-
mate P{E}. Furthermore, m�n satisfies the properties required of probabilities; that is,

1. 0 � m�n � 1.
2. 0/n � 0. (If the event E cannot occur, then m � 0.)
3. n/n � 1. (If the event E must occur every time the experiment is performed, then m � n.)
4. (m1 � m2)/n � m1/n � m2/n if E1 and E2 are disjoint events. (If the event E1 occurs

m1 times in the n trials and the event E2 occurs m2 times in the n trials, and E1 and
E2 are disjoint, then the total number of successful occurrences of the event E1 or E2

is just m1 � m2.)

Since these properties are true for a finite n, it is reasonable to expect them to be
true for

P{E} � lim
n → 	



m
n


.

The trouble with the frequency interpretation as a definition of probability is that it is not
possible to actually determine the probability of an event E because the question “How
large must n be?” cannot be answered. Furthermore, such a definition does not permit a
logical development of the theory of probability. However, a rigorous definition of prob-
ability, or finding methods for determining exact probabilities of events, is not of prime
importance here.

The existence of probabilities, defined over events E in the sample space, has been
described, and the concept of a random variable has been introduced. Finding the relation
between probabilities associated with events in the sample space and “probabilities” as-
sociated with random variables is a topic of considerable interest.

Associated with every random variable is a cumulative distribution function (CDF).
To define a CDF it is necessary to introduce some additional notation. Define the symbol
Eb

X � {�|X(�) � b} (or equivalently, {X � b}) as the set of outcomes � in the sample
space forming the event Eb

X such that the random variable X takes on values less than or
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equal to b.† Then P{Eb
X} is just the probability of this event. Note that this probability is well

defined because Eb
X is an event in the sample space, and this event depends upon both the

random variable that is of interest and the value of b chosen. For example, suppose the ex-
periment that measures the demand for a product during a month is performed. Let N � 99,
and assume that the events {0}, {1}, {2}, . . . , {99} each has probability equal to 1�100;
that is, P{0} � P{1} � P{2} � . . . � P{99} � 1�100. Let the random variable X be the
square of the demand, and choose b equal to 150. Then

EX
150 � {�X(�) � 150} � {X � 150}

is the set EX
150 � {0,1,2,3,4,5,6,7,8,9,10,11,12} (since the square of each of these num-

bers is less than 150). Furthermore,

P{EX
150} � 


1
1
00

 � 


1
1
00

 � 


1
1
00

 � 


1
1
00

 � 


1
1
00

 � 


1
1
00

 � 


1
1
00

 � 


1
1
00

 � 


1
1
00



� 

1
1
00

 � 


1
1
00

 � 


1
1
00

 � 


1
1
00

 � 


1
1
0
3
0


.

Thus, P{EX
150} � P{X � 150} � 13�100.

For a given random variable X, P{X � b}, denoted by FX(b), is called the CDF of the
random variable X and is defined for all real values of b. Where there is no ambiguity,
the CDF will be denoted by F(b); that is,

F(b) � FX(b) � P{Eb
X} � P{�X(�) � b} � P{X � b}.

Although P{X � b} is defined through the event Eb
X in the sample space, it will often be

read as the “probability” that the random variable X takes on a value less than or equal
to b. The reader should interpret this statement properly, i.e., in terms of the event Eb

X.
As mentioned, each random variable has a cumulative distribution function associ-

ated with it. This is not an arbitrary function but is induced by the probabilities associ-
ated with events of the form Eb

X defined over the sample space �. Furthermore, the CDF
of a random variable is a numerically valued function defined for all b, � 	 � b � 	,
having the following properties:

1. FX(b) is a nondecreasing function of b,
2. lim

b→�	
FX(b) � FX(�	) � 0,

3. lim
b→�	

FX(b) � FX(�	) � 1.

The CDF is a versatile function. Events of the form

{�a � X(�) � b},

that is, the set of outcomes � in the sample space such that the random variable X takes
on values greater than a but not exceeding b, can be expressed in terms of events of the
form Eb

X. In particular, Eb
X can be expressed as the union of two disjoint sets; that is,

Eb
X � Ea

X � {�a � X(�) � b}.

Thus, P{�a � X(�) � b} � P{a � X � b} can easily be seen to be

FX(b) � FX(a).

As another example, consider the experiment that measures the times of the arrival of the
first customer on each of 2 days. � consists of all points (x1, x2) such that 0 � x1, x2 � 8,
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†The notation {X � b} suppresses the fact that this is really an event in the sample space. However, it is sim-
pler to write, and the reader is cautioned to interpret it properly, i.e., as the set of outcomes � in the sample
space, {�X(�) � b}.
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where x1 represents the time the first customer arrives on the first day, and x2 represents the
time the first customer arrives on the second day. Consider all events associated with this
experiment, and assume that the probabilities of such events can be obtained. Suppose X�,
the average of the two arrival times, is chosen as the random variable of interest and that
Eb

X� is the set of outcomes � in the sample space forming the event Eb
X� such that X� � b.

Hence, FX� (b) � P{Eb
X�} � P{X� � b}. To illustrate how this can be evaluated, suppose that

b � 4 hours. All the values of x1, x2 are sought such that (x1 � x2)/2 � 4 or x1 � x2 � 8.
This is shown by the shaded area in Fig. 24.2. Hence, FX�(b) is just the probability of a suc-
cessful occurrence of the event given by the shaded area in Fig. 24.2. Presumably FX�(b) can
be evaluated if probabilities of such events in the sample space are known.

Another random variable associated with this experiment is X1, the time of the arrival
of the first customer on the first day. Thus, FX1

(b) � P{X1 � b}, which can be obtained
simply if probabilities of events over the sample space are given.

There is a simple frequency interpretation for the cumulative distribution function of
a random variable. Suppose an experiment is repeated n times, and the random variable
X is observed each time. Denote by x1, x2, . . . , xn the outcomes of these n trials. Order
these outcomes, letting x(1) be the smallest observation, x(2) the second smallest, . . . , x(n)

the largest. Plot the following step function Fn(x):

For x � x(1), let Fn(x) � 0.

For x(1) � x � x(2), let Fn(x) � 

1
n


.

For x(2) � x � x(3), let Fn(x) � 

2
n


.

For x(n � 1) � x � x(n), let Fn(x) � 

n �

n
1


.

For x � x(n), let Fn(x) � 

n
n


 � 1.

Such a plot is given in Fig. 24.3 and is seen to “jump” at the values that the random vari-
able takes on.

Fn(x) can be interpreted as the fraction of outcomes of the experiment less than or equal
to x and is called the sample CDF. It can be shown that as the number of repetitions n of
the experiment gets large, the sample CDF approaches the CDF of the random variable X.
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■ FIGURE 24.2
The shaded area represents
the event Eb

X� � {X� � 4}.
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In most problems encountered in practice, one is not concerned with events in the sam-
ple space and their associated probabilities. Instead, interest is focused on random vari-
ables and their associated cumulative distribution functions. Generally, a random variable
(or random variables) is chosen, and some assumption is made about the form of the CDF
or about the random variable. For example, the random variable X1, the time of the first
arrival on the first day, may be of interest, and an assumption may be made that the form
of its CDF is exponential. Similarly, the same assumption about X2, the time of the first
arrival on the second day, may also be made. If these assumptions are valid, then the CDF
of the random variable X� � (X1 � X2)/2 can be derived. Of course, these assumptions
about the form of the CDF are not arbitrary and really imply assumptions about proba-
bilities associated with events in the sample space. Hopefully, they can be substantiated
by either empirical evidence or theoretical considerations.
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■ FIGURE 24.3
A sample cumulative
distribution function.
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■ 24.4 CONDITIONAL PROBABILITY AND INDEPENDENT EVENTS

Often experiments are performed so that some results are obtained early in time and some
later in time. This is the case, for example, when the experiment consists of measuring
the demand for a product during each of 2 months; the demand during the first month is
observed at the end of the first month. Similarly, the arrival times of the first two cus-
tomers on each of 2 days are observed sequentially in time. This early information can
be useful in making predictions about the subsequent results of the experiment. Such in-
formation need not necessarily be associated with time. If the demand for two products
during a month is investigated, knowing the demand of one may be useful in assessing
the demand for the other. To utilize this information the concept of “conditional proba-
bility,” defined over events occurring in the sample space, is introduced.

Consider two events in the sample space E1 and E2, where E1 represents the event
that has occurred, and E2 represents the event whose occurrence or nonoccurrence is of
interest. Furthermore, assume that P{E1} � 0. The conditional probability of the occur-
rence of the event E2, given that the event E1 has occurred, P{E2E1}, is defined to be

P{E2E1} � ,

where {E1 � E2} represents the event consisting of all points � in the sample space com-
mon to both E1 and E2. For example, consider the experiment that consists of observing

P{E1 � E2}




P{E1}
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the demand for a product over each of 2 months. Suppose the sample space consists
of all points (x1,x2), where x1 represents the demand during the first month, and x2

represents the demand during the second month, x1, x2 0, 1, 2, . . . , 99. Furthermore,
it is known that the demand during the first month has been 10. Hence, the event E1, which
consists of the points (10,0), (10,1), (10,2), . . . , (10,99), has occurred. Consider the event
E2, which represents a demand for the product in the second month that does not exceed
1 unit. This event consists of the points (0,0), (1,0), (2,0), . . . , (10,0), . . . , (99,0), (0,1),
(1,1), (2,1), . . . , (10,1), . . . , (99,1). The event {E1 E2} consists of the points (10,0)
and (10,1). Hence, the probability of a demand which does not exceed 1 unit in the sec-
ond month, given that a demand of 10 units occurred during the first month, that is,
P{E2⏐E1}, is given by

P{E2⏐E1}

.

The definition of conditional probability can be given a frequency interpretation. De-
note by n the number of times an experiment is performed, and let n1 be the number of
times the event E1 has occurred. Let n12 be the number of times that the event {E1 E2}
has occurred in the n trials, The ratio n12/n1 is the proportion of times that the event E2

occurs when E1 has also occurred; that is, n12/n1 is the conditional relative frequency of
E2, given that E1 has occurred. This relative frequency n12/n1 is then equivalent to
(n12/n)/(n1/n). Using the frequency interpretation of probability for large n, n12/n is ap-
proximately P{E1 E2}, and n1/n is approximately P{E1}, so that the conditional rela-
tive frequency of E2, given E1, is approximately P{E1 E2}/P{E1}.

In essence, if one is interested in conditional probability, he is working with a re-
duced sample space, i.e., from to E1, modifying other events accordingly. Also note
that conditional probability has the four properties described in Sec. 24.3; that is,

1. 0 P{E2⏐E1} 1.
2. If E2 is an event that cannot occur, then P{E2

E2

⏐E1} 0.
3. If the event E2 is the entire sample space , then P{ ⏐E1} 1.
4. If E2 and E3 are disjoint events in , then

P{(E2 E3)⏐E1} P{E2⏐E1} P{E3⏐E1}.

In a similar manner, the conditional probability of the occurrence of the event E1, given
that the event E2 has occurred, can be defined. If P{E2} 0, then

P{E1⏐E2} P{E1 E2}/P{E2}.

The concept of conditional probability was introduced so that advantage could be
taken of information about the occurrence or nonoccurrence of events. It is conceivable
that information about the occurrence of the event E1 yields no information about the oc-
currence or nonoccurrence of the event E2. If P{E2⏐E1} P{E2}, or P{E1⏐E2} P{E1},
then E1 and E2 are said to be independent events. It then follows that if E1 and E2 are
independent and P{E1} 0, then P{E2⏐E1} P{E1 E2}/P{E1} P{E2}, so that P{E1

E2} P{E1} P{E2}. This can be taken as an alternative definition of independence of
the events E1 and E2. It is usually difficult to show that events are independent by using
the definition of independence. Instead, it is generally simpler to use the information avail-
able about the experiment to postulate whether events are independent. This is usually
based upon physical considerations. For example, if the demand for a product during a

P{ (10,0), (10,1)}
P{ (10,0), (10,1), . . . , (10,99)}

P{E1 E2}
P{E1}

24.4 CONDITIONAL PROBABILITY AND INDEPENDENT EVENTS 24-9
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month is “known” not to affect the demand in subsequent months, then the events E1 and
E2 defined previously can be said to be independent, in which case

P{E2E1} �

� ,

� � P{E2}

� P{� � (0,0), � � (1,0), . . . , � � (99,0), � � (0,1),

� � (1,1), . . . , � � (99,1)}.

The definition of independence can be extended to any number of events. E1, E2, . . . ,
En are said to be independent events if for every subset of these events E*

1, E*
2, . . . , Ek

*,

P{E*
1 � E*

2 � . . . � Ek
*} � P{E*

1}P{E*
2}. . .P{Ek

*}.

Intuitively, this implies that knowledge of the occurrence of any of these events has no
effect on the probability of occurrence of any other event.

P{E1}P{E2}




P{E1}

P(� � (10,0), � � (10,1)}






P{� � (10,0), � � (10,1), . . . , � � (10,99)}

P{E1 � E2}




P{E1}
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■ 24.5 DISCRETE PROBABILITY DISTRIBUTIONS

It was pointed out in Sec. 24.2 that one is usually concerned with random variables and
their associated probability distributions, and discrete random variables are those which
take on a finite or countably infinite set of values. Furthermore, Sec. 24.3 indicates that
the CDF for a random variable is given by

FX(b) � P{�X(�) � b}.

For a discrete random variable X, the event {�X(�) � b} can be expressed as the union
of disjoint sets; that is,

{�X(�) � b} � {�X(�) � x1} � {�X(�) � x2} � . . . � {�X(�) � x[b]},

where x[b] denotes the largest integer value of the x’s less than or equal to b. It then fol-
lows that for the discrete random variable X, the CDF can be expressed as

FX(b) � P{�X(�) � x1} � P{�X(�) � x2} � . . . � P{�X(�) � x[b]}
� P{X � x1} � P{X � x2} � . . . � P{X � x[b]}.

This last expression can also be expressed as

FX(b) � �
all k � b

P{X � k},

where k is an index that ranges over all the possible x values which the random variable
X can take on.

Let PX(k) for a specific value of k denote the probability P{X � k}, so that

FX(b) � �
all k � b

PX(k).

This PX(k) for all possible values of k are called the probability distribution of the dis-
crete random variable X. When no ambiguity exists, PX(k) may be denoted by P(k).

As an example, consider the discrete random variable that represents the demand for
a product in a given month. Let N � 99. If it is assumed that PX(k) � P{X � k} � 1�100

hil61217_ch24.qxd  5/14/04  16:46  Page 24-10



for all k � 0, 1, . . . , 99, then the CDF for this discrete random variable is given in Fig. 24.4.
The probability distribution of this discrete random variable is shown in Fig. 24.5. Of
course, the heights of the vertical lines in Fig. 24.5 are all equal because PX(0) � PX(1)
� Px(2) � . . . � PX(99) in this case. For other random variables X, the PX(k) need not
be equal, and hence the vertical lines will not be constant. In fact, all that is required for
the PX(k) to form a probability distribution is that PX(k) for each k be nonnegative and

�
all k 

PX(k) � 1.

There are several important discrete probability distributions used in operations re-
search work. The remainder of this section is devoted to a study of these distributions.

Binomial Distribution

A random variable X is said to have a binomial distribution if its probability distribution
can be written as

P{X � k} � PX(k) � 

k!(n

n
�

!
k)!


 pk(1 � p)n � k,

where p is a constant lying between zero and 1, n is any positive integer, and k is also an
integer such that 0 � k � n. It is evident that Px(k) is always nonnegative, and it is eas-
ily proven that

�
n

k�0
PX(k) � 1.
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■ FIGURE 24.4
CDF of the discrete random
variable for the example.
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■ FIGURE 24.5
Probability distribution of the
discrete random variable for
the example.
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Note that this distribution is a function of the two parameters n and p. The probability
distribution of this random variable is shown in Fig. 24.6. An interesting interpretation of
the binomial distribution is obtained when n � 1:

P{X � 0} � PX(0) � 1 � p,

and

P{X � 1} � PX(1) � p.

Such a random variable is said to have a Bernoulli distribution. Thus, if a random vari-
able takes on two values, say, 0 or 1, with probability 1 � p or p, respectively, a Bernoulli
random variable is obtained. The upturned face of a flipped coin is such an example: If a
head is denoted by assigning it the number 0 and a tail by assigning it a 1, and if the coin
is “fair” (the probability that a head will appear is 1�2), the upturned face is a Bernoulli
random variable with parameter p � 1�2. Another example of a Bernoulli random variable
is the quality of an item. If a defective item is denoted by 1 and a nondefective item by 0,
and if p represents the probability of an item being defective, and 1 � p represents the
probability of an item being nondefective, then the “quality” of an item (defective or non-
defective) is a Bernoulli random variable.

If X1, X2, . . . , Xn are independent1 Bernoulli random variables, each with parameter
p, then it can be shown that the random variable

X � X1 � X2 � . . . � Xn

is a binomial random variable with parameters n and p. Thus, if a fair coin is flipped 10
times, with the random variable X denoting the total number of tails (which is equivalent
to X1 � X2 � . . . � X10), then X has a binomial distribution with parameters 10 and 1�2;
that is,

P{X � k} � 

k!(1

1
0
0
�

!
k)!


 �

1
2


�
k

�

1
2


�
10 � k

.

Similarly, if the quality characteristics (defective or nondefective) of 50 items are inde-
pendent Bernoulli random variables with parameter p, the total number of defective items
in the 50 sampled, that is, X � X1 � X2 � . . . � X50, has a binomial distribution with
parameters 50 and p, so that

P{X � k} � 

k!(5

5
0
0
�

!
k)!


 pk(1 � p)50 � k.

24-12 CHAPTER 24 PROBABILITY THEORY

1The concept of independent random variables is introduced in Sec. 24.12. For the present purpose, random vari-
ables can be considered independent if their outcomes do not affect the outcomes of the other random variables.

■ FIGURE 24.6
Binomial distribution with
parameters n and p.

P
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 =
 k

}
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Poisson Distribution

A random variable X is said to have a Poisson distribution if its probability distribution
can be written as

P{X � k} � PX(k) � 

�k

k
e
!

��


,

where � is a positive constant (the parameter of this distribution), and k is any nonnega-
tive integer. It is evident that PX(k) is nonnegative, and it is easily shown that

�
	

k�0


�k

k
e
!

��


 � 1.

An example of a probability distribution of a Poisson random variable is shown in Fig. 24.7.
The Poisson distribution is often used in operations research. Heuristically speaking,

this distribution is appropriate in many situations where an “event” occurs over a period
of time when it is as likely that this “event” will occur in one interval as in any other and
the occurrence of an event has no effect on whether or not another occurs. As discussed
in Sec. 17.4, the number of customer arrivals in a fixed time is often assumed to have a
Poisson distribution. Similarly, the demand for a given product is also often assumed to
have this distribution.

Geometric Distribution

A random variable X is said to have a geometric distribution if its probability distribution
can be written as

P{X � k} � PX(k) � p(1 � p)k�1,

where the parameter p is a constant lying between 0 and 1, and k takes on the values 
1, 2, 3, . . . . It is clear that PX(k) is nonnegative, and it is easy to show that

�
	

k�1
p(1 � p)k�1 � 1.

The geometric distribution is useful in the following situation. Suppose an experi-
ment is performed that leads to a sequence of independent1 Bernoulli random variables,
each with parameter p; that is, P{X1 � 1} � p and P(X1 � 0) � 1 � p, for all i. The ran-
dom variable X, which is the number of trials occurring until the first Bernoulli random
variable takes on the value 1, has a geometric distribution with parameter p.

24.5 DISCRETE PROBABILITY DISTRIBUTIONS 24-13

1The concept of independent random variables is introduced in Sec. 24.12. For now, random variables can be
considered independent if their outcomes do not affect the outcomes of the other random variables.

■ FIGURE 24.7
Poisson distribution.
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Section 24.2 defined continuous random variables as those random variables that take on
a continuum of values. The CDF for a continuous random variable FX(b) can usually be
written as

FX(b) � P{X(�) � b} � �b

�	
fX(y)dy,

where fX(y) is known as the density function of the random variable X. From a notational
standpoint, the subscript X is used to indicate the random variable that is under consider-
ation. When there is no ambiguity, this subscript may be deleted, and fX(y) will be de-
noted by f(y). It is evident that the CDF can be obtained if the density function is known.
Furthermore, a knowledge of the density function enables one to calculate all sorts of
probabilities, for example,

P{a � X � b} � F(b) � F(a) � �b

a
fX(y) dy.

Note that strictly speaking the symbol P{a � X � b} relates to the probability that the
outcome � of the experiment belongs to a particular event in the sample space, namely,
that event such that X(�) is between a and b whenever � belongs to the event. However,
the reference to the event will be suppressed, and the symbol P will be used to refer to
the probability that X falls between a and b. It becomes evident from the previous ex-
pression for P{a � X � b} that this probability can be evaluated by obtaining the area
under the density function between a and b, as illustrated by the shaded area under the
density function shown in Fig. 24.8. Finally, if the density function is known, it will be
said that the probability distribution of the random variable is determined.

Naturally, the density function can be obtained from the CDF by using the relation



dF

d
X

y
(y)

 � 


d
d
y

 �y

�	
fX(t) dt � fX(y).

For a given value c, P{X � c} has not been defined in terms of the density function.
However, because probability has been interpreted as an area under the density function,
P{X � c} will be taken to be zero for all values of c. Having P{X � c} � 0 does not mean
that the appropriate event E in the sample space (E contains those � such that X(�) � c)
is an impossible event. Rather, the event E can occur, but it occurs with probability zero.
Since X is a continuous random variable, it takes on a continuum of possible values, so
that selecting correctly the actual outcome before experimentation would be rather star-
tling. Nevertheless, some outcome is obtained, so that it is not unreasonable to assume that
the preselected outcome has probability zero of occurring. It then follows from P{X � c}
being equal to zero for all values c that for continuous random variables, and any a and b,

P{a � X � b} � P{a � X � b} � P{a � X � b} � P{a � X � b}.

Of course, this is not true for discrete random variables.

24-14 CHAPTER 24 PROBABILITY THEORY

■ 24.6 CONTINUOUS PROBABILITY DISTRIBUTIONS

■ FIGURE 24.8
An example of a density
function of a random
variable.

a b
y

fX(y)
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In defining the CDF for continuous random variables, it was implied that fX(y) was
defined for values of y from minus infinity to plus infinity because

FX(b)
b

fX(y) dy.

This causes no difficulty, even for random variables that cannot take on negative values
(e.g., the arrival time of the first customer) or are restricted to other regions, because fX(y)
can be defined to be zero over the inadmissible segment of the real line. In fact, the only
requirements of a density function are that

1. fX(y) be nonnegative,

2. fX(y) dy 1.

It has already been pointed out that fX(y) cannot be interpreted as P{X y} because
this probability is always zero. However, fX(y) dy can be interpreted as the probability that
the random variable X lies in the infinitesimal interval (y, y dy), so that, loosely speak-
ing, fX(y) is a measure of the frequency with which the random variable will fall into a
“small” interval near y.

There are several important continuous probability distributions that are used in opera-
tions research work. The remainder of this section is devoted to a study of these distributions.

The Exponential Distribution

As was discussed in Sec. 17.4, a continuous random variable whose density is given by

fX(y)

is known as an exponentially distributed random variable. The exponential distribution is
a function of the single parameter
used α = 1/   as the parameter instead, but it will be convenient to use    as the parameter in

, where is any positive constant. (In Sec. 17.4, we 

fX(ythis chapter.) ) is a density function because it is nonnegative and integrates to 1; that is,

fX(y) dy
0

1
e y/ dy e y/ ?0 1.

The exponential density function is shown in Fig. 24.9.
The CDF of an exponentially distributed random variable fX(b) is given by

FX(b)
b

fX(y) dy

and is shown in Fig. 24.10.

for b 0

for b 0,

0,
b

0

1
e y/ dy 1 e b/ ,

for y 0

for y 0

1
e y/ ,

0,
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FIGURE 24.9
Density function of the
exponential distribution.
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The exponential distribution has had widespread use in operations research. The
time between customer arrivals, the length of time of telephone conversations, and the
life of electronic components are often assumed to have an exponential distribution.
Such an assumption has the important implication that the random variable does not
“age.” For example, suppose that the life of a vacuum tube is assumed to have an ex-
ponential distribution. If the tube has lasted 1,000 hours, the probability of lasting an
additional 50 hours is the same as the probability of lasting an additional 50 hours, given
that the tube has lasted 2,000 hours. In other words, a brand new tube is no “better”
than one that has lasted 1,000 hours. This implication of the exponential distribution is
quite important and is often overlooked in practice.

The Gamma Distribution

A continuous random variable whose density is given by

fX(y) � �
is known as a gamma-distributed random variable. This density is a function of the two
parameters � and �, both of which are positive constants. (�) is defined as

(�) � �	

0
t��1e�t dt, for all � � 0.

If � is an integer, then repeated integration by parts yields

(�) � (� � 1)! � (� � 1)(� � 2)(� � 3) . . . 3 � 2 � 1.

With � an integer, the gamma distribution is known in queueing theory as the Erlang dis-
tribution (as discussed in Sec. 17.7), in which case � is referred to as the shape parameter.

A graph of a typical gamma density function is given in Fig. 24.11.

for y � 0

for y � 0



(�

1
)��
y(��1)e�y��,

0,
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■ FIGURE 24.10
CDF of the exponential
distribution.
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■ FIGURE 24.11
Gamma density function.

f X
(y

)

0
y

+ ∞

hil61217_ch24.qxd  5/14/04  16:46  Page 24-16



A random variable having a gamma density is useful in its own right as a mathe-
matical representation of physical phenomena, or it may arise as follows: Suppose a cus-
tomer’s service time has an exponential distribution with parameter �. The random vari-
able T, the total time to service n (independent) customers, has a gamma distribution with
parameters n and � (replacing � and �, respectively); that is,

P{T � t} ��t

0


(n

1
)�n
 y(n�1)e�y/� dy.

Note that when n � 1 (or � � 1) the gamma density becomes the density function of an
exponential random variable. Thus, sums of independent, exponentially distributed ran-
dom variables have a gamma distribution.

Another important distribution, the chi square, is related to the gamma distribution.
If X is a random variable having a gamma distribution with parameters � � 1 and � �
v/2 (v is a positive integer), then a new random variable Z � 2X is said to have a chi-
square distribution with v degrees of freedom. The expression for the density function is
given in Table 24.1 at the end of Sec. 24.8.

The Beta Distribution

A continuous random variable whose density function is given by

fX(y) � �
is known as a beta-distributed random variable. This density is a function of the two pa-
rameters � and �, both of which are positive constants. A graph of a typical beta density
function is given in Fig. 24.12.

Beta distributions form a useful class of distributions when a random variable is re-
stricted to the unit interval. In particular, when � � � � 1, the beta distribution is called
the uniform distribution over the unit interval. Its density function is shown in Fig. 24.13,
and it can be interpreted as having all the values between zero and 1 equally likely to oc-
cur. The CDF for this random variable is given by

FX(b) � � for b � 0
for 0 � b � 1
for b � 1.

0,
b,
1,

for 0 � y � 1

elsewhere







(
(
�

�)
�

(�
�

)
)


 y(��1)(1 � y)(��1),

0,
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■ FIGURE 24.12
Beta density function.
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If the density function is to be constant over some other interval, such as the interval
[c, d], a uniform distribution over this interval can also be obtained.1 The density func-
tion is given by

fX(y) � �
Although such a random variable is said to have a uniform distribution over the interval
[c, d], it is no longer a special case of the beta distribution.

Another important distribution, Students t, is related to the beta distribution. If X is a
random variable having a beta distribution with parameters � � 1/2 and � � v/2 (v is a
positive integer), then a new random variable Z � �vX�(1�� X)� is said to have a Students
t (or t) distribution with v degrees of freedom. The percentage points of the t distribution
are given in Table 27.6. (Percentage points of the distribution of a random variable Z are
the values z� such that

P{Z � z�}� �,

where z� is said to be the 100� percentage point of the distribution of the random variable Z.)
A final distribution related to the beta distribution is the F distribution. If X is a ran-

dom variable having a beta distribution with parameters � � v1/2 and � � v2/2 (v1 and
v2 are positive integers), then a new random variable Z � v2 X/v1(1 � X) is said to have
an F distribution with v1 and v2 degrees of freedom.

The Normal Distribution

One of the most important distributions in operations research is the normal distribution.
A continuous random variable whose density function is given by

fX(y) � e�(y��)2/2	2

, for �	 � y � 	

is known as a normally distributed random variable. The density is a function of the two pa-
rameters � and 	, where � is any constant, and 	 is positive. A graph of a typical normal
density function is given in Fig. 24.14. This density function is a bell-shaped curve that is

1


�2
�	

for c � y � d

otherwise.



d �

1
c


,

0,

■ FIGURE 24.13
Uniform distribution over the
unit interval.
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1The beta distribution can also be generalized by defining the density function over some fixed interval other
than the unit interval.
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symmetric around �. The CDF for a normally distributed random variable is given by

FX(b) � �b

�	
e�(y��)2�2	2

dy.

By making the transformation z � (y � �)�	, the CDF can be written as

FX(b) � �(b��)�	

�	


�

1
2
�

 e�z2�2 dz.

Hence, although this function is not integrable, it is easily tabulated. Table A5.1 presented
in Appendix 5 is a tabulation of

� � �	

K�



�

1
2
�

 e�z2�2 dz

as a function of K�. Hence, to find FX(b) (and any probability derived from it), Table A5.1
is entered with K� � (b � �)/	, and

� � �	

K�



�

1
2
�

 e�z2�2 dz

is read from it. FX(b) is then just 1 � �. Thus, if P{14 � X � 18} � FX(18) � FX(14) is
desired, where X has a normal distribution with � � 10 and 	 � 4, Table A5.1 is entered
with (18 � 10)/4 � 2, and 1 � FX(18) � 0.0228 is obtained. The table is then entered
with (14 � 10)/4 � 1, and 1 � FX(14) � 0.1587 is read. From these figures, FX(18) �
FX(14) � 0.1359 is found. If K� is negative, use can be made of the symmetry of the nor-
mal distribution because

FX(b) � �(b��)�	

�	
e�z2�2 dz � �	

�(b��)�	
e�z2�2 dz.

In this case �(b � �)/	 is positive, and FX(b) � � is thereby read from the table by en-
tering it with �(b � �)/	. Thus, suppose it is desired to evaluate the expression

P{2 � X � 18} � FX(18) � FX(2).

FX(18) has already been shown to be equal to 1 � 0.0228 � 0.9772. To find FX(2) it is
first noted that (2 � 10)/4 � �2 is negative. Hence, Table A5.1 is entered with K� � �2,
and FX(2) � 0.0228 is obtained. Thus,

FX(18) � FX(2) � 0.9772 � 0.0228 � 0.9544.

As indicated previously, the normal distribution is a very important one. In particu-
lar, it can be shown that if X1, X2, . . . , Xn are independent,1 normally distributed random

1


�2
�

1


�2
�

1


�2
�	

1The concept of independent random variables is introduced in Sec. 24.12. For now, random variables can be
considered independent if their outcomes do not affect the outcomes of the other random variables.

■ FIGURE 24.14
Normal density function.
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variables with parameters (�1, 	1), (�2, 	2), . . . , (�n, 	n), respectively, then X � X1 �
X2 � . . . � Xn is also a normally distributed random variable with parameters

�
n

i�1
�i

and

	�
n

i�1
	i

2
.

In fact, even if X1, X2, . . . , Xn are not normal, then under very weak conditions

X � �
n

i�1
Xi

tends to be normally distributed as n gets large. This is discussed further in Sec. 24.14.
Finally, if C is any constant and X is normal with parameters � and 	, then the ran-

dom variable CX is also normal with parameters C� and C	. Hence, it follows that if X1,
X2, . . . , Xn are independent, normally distributed random variables, each with parame-
ters � and 	, the random variable

X� � �
n

i�1


X
n

i


is also normally distributed with parameters � and 	/�n�.
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■ 24.7 EXPECTATION

Although knowledge of the probability distribution of a random variable enables one to
make all sorts of probability statements, a single value that may characterize the random
variable and its probability distribution is often desirable. Such a quantity is the expected
value of the random variable. One may speak of the expected value of the demand for a
product or the expected value of the time of the first customer arrival. In the experiment
where the arrival time of the first customer on two successive days was measured, the
expected value of the average arrival time of the first customers on two successive days
may be of interest.

Formally, the expected value of a random variable X is denoted by E(X) and is given by

E(X) � �
For a discrete random variable it is seen that E(X) is just the sum of the products of

the possible values the random variable X takes on and their respective associated prob-
abilities. In the example of the demand for a product, where k � 0, 1, 2, . . . , 98, 99 and
PX(k) � 1�100 for all k, the expected value of the demand is

E(X) � �
99

k�0
kPX(k) � �

99

k�0
k 


1
1
00

 � 49.5.

Note that E(X) need not be a value that the random variable can take on.

if X is a discrete random variable

if X is a continuous random variable.

�
all k

kP{X � k} � �
all k

kPX(k),

�	

�	
y fX(y) dy,
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If X is a binomial random variable with parameters n and p, the expected value of X
is given by

E(X) � �
n

k�0
k


k!(n
n
�

!
k)!


pk(1 � p)n�k

and can be shown to equal np.
If the random variable X has a Poisson distribution with parameter �,

E(X) � �
	

k�0
k 


�k

k
e
!

��




and can be shown to equal �.
Finally, if the random variable X has a geometric distribution with parameter p,

E(X) � �
	

k�1
kp(1 � p)k�1

and can be shown to equal 1/p.
For continuous random variables, the expected value can also be obtained easily. If

X has an exponential distribution with parameter �, the expected value is given by

E(X) � �	

�	
yfX(y) dy � �	

0
y 


1
�


 e�y�� dy.

This integral is easily evaluated to be

E(X) � �.

If the random variable X has a gamma distribution with parameter � and � the ex-
pected value of X is given by

�	

�	
yfX(y) dy � �	

0
y 


(�
1
)��
 y(��1)e�y�� dy � ��.

If the random variable X has a beta distribution with parameters � and �, the expected
value of X is given by

�	

�	
yfX(y) dy � �1

0
y y(��1)(1 � y)(��1) dy � 


� �

�

�

.

Finally, if the random variable X has a normal distribution with parameters � and 	,
the expected value of X is given by

�	

�	
yfX(y) dy � �	

�	
y e�(y��)2�2	2

dy � �.

The expectation of a random variable is quite useful in that it not only provides some
characterization of the distribution, but it also has meaning in terms of the average of a
sample. In particular, if a random variable is observed again and again and the arithmetic
mean X� is computed, then X� tends to the expectation of the random variable X as the num-
ber of trials becomes large. A precise statement of this property is given in Sec. 24.13.
Thus, if the demand for a product takes on the values k � 0, 1, 2, . . . , 98, 99, each with
PX(k) � 1�100 for all k, and if demands of x1, x2, . . . , xn are observed on successive days,
then the average of these values, (x1 � x2 � . . . � xn)/n, should be close to E(X) � 49.5
if n is sufficiently large.

It is not necessary to confine the discussion of expectation to discussion of the ex-
pectation of a random variable X. If Z is some function of X, say, Z � g(X), then g(X) is
also a random variable. The expectation of g(X) can be defined as

1


�2
�	

(� � �)



(�)(�)
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An interesting theorem, known as the “theorem of the unconscious statistician,”1 states
that if X is a continuous random variable having density fX(y) and Z � g(X) is a function
of X having density hZ(y), then

E(Z) � �	

�	
yhZ(y) dy � �	

�	
g(y)fX(y) dy.

Thus, the expectation of Z can be found by using its definition in terms of the density of
Z or, alternatively, by using its definition as the expectation of a function of X with respect
to the density function of X. The identical theorem is true for discrete random variables.

24-22 CHAPTER 24 PROBABILITY THEORY

1The name for this theorem is motivated by the fact that a statistician often uses its conclusions without con-
sciously worrying about whether the theorem is true.

■ 24.8 MOMENTS

If the function g described in the preceding section is given by

Z � g(X) � Xj,

where j is a positive integer, then the expectation of Xj is called the jth moment about the
origin of the random variable X and is given by

E(Xj) � �
Note that when j � 1 the first moment coincides with the expectation of X. This is usu-
ally denoted by the symbol � and is often called the mean or average of the distribution.

Using the theorem of the unconscious statistician, the expectation of Z � g(X) � CX
can easily be found, where C is a constant. If X is a continuous random variable, then

E(CX) � �	

�	
CyfX(y) dy � C �	

�	
yfX(y) dy � CE(X).

Thus, the expectation of a constant times a random variable is just the constant times the
expectation of the random variable. This is also true for discrete random variables.

If the function g described in the preceding section is given by Z � g(X) � (X � E(X))j

� (X � �) j, where j is a positive integer, then the expectation of (X � �)j is called the jth
moment about the mean of the random variable X and is given by

E(X�E(X)) j � E(X � �) j � �
Note that if j � 1, then E(X � �) � 0. If j � 2, then E(X � �)2 is called the variance
of the random variable X and is often denoted by 	2. The square root of the variance 	

�
all k

(k � �) jPX(k),

�	

�	
(y � �) jfX(y) dy,

if X is a discrete random variable

if X is a continuous random variable.

�
all k

k jPX(k),

�	

�	
y jfX(y) dy,

if X is a discrete random variable

if X is a continuous random variable.

E[g(X)] � � if X is a discrete random variable

if X is a continuous random variable.

�
all k

g(k)P{X � k} ��
all k

g(k)PX(k),

�	

�	
g(y) fX(y) dy,
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is called the standard deviation of the random variable X. It is easily shown, in terms of
definitions, that

2 E(X )2 E(X2) 2;

that is, the variance can be written as the second moment about the origin minus the square
of the mean.

It has already been shown that if Z g(X) CX, then E(CX) CE(X) C , where
C is any constant and is E(X). The variance of the random variable Z g(X) CX is
also easily obtained. By definition, if X is a continuous random variable, the variance of
Z is given by

E(Z E(Z))2 E(CX CE(X))2
(Cy C )

2fX(y) dy

C2
(y )

2fX(y) dy C2 2.

Thus, the variance of a constant times a random variable is just the square of the constant
times the variance of the random variable. This is also true for discrete random variables.
Finally, the variance of a constant is easily seen to be zero.

It has already been shown that if the demand for a product takes on the values 0, 1,
2, . . . , 99, each with probability 1

100, then E(X) 49.5. Similarly,

2
99

k 0
(k )2PX(k)

99

k 0
k2PX(k) 2

99

k 0 1
k
0

2

0
(49.5)2 833.25.

Table 24.1 gives the means and variances of the random variables that are often use-
ful in operations research. Note that for some random variables a single moment, the mean,
provides a complete characterization of the distribution, e.g., the Poisson random variable.
For some random variables the mean and variance provide a complete characterization of
the distribution, e.g., the normal. In fact, if all the moments of a probability distribution
are known, this is usually equivalent to specifying the entire distribution.

It was seen that the mean and variance may be sufficient to completely characterize
a distribution, e.g., the normal. However, what can be said, in general, about a random
variable whose mean and variance 2 are known, but nothing else about the form of
the distribution is specified? This can be expressed in terms of Chebyshev’s inequality,
which states that for any positive number C,

P{ C X C } 1
C
1

2 ,

where X is any random variable having mean and variance 2. For example, if C 3,
if follows that P{ 3 X 3 } 1 1/9 0.8889. However, if X is known
to have a normal distribution, then P{ 3 X 3 } 0.9973. Note that the
Chebyshev inequality only gives a lower bound on the probability (usually a very con-
servative one), so there is no contradiction here.

24.9 BIVARIATE PROBABILITY DISTRIBUTION

Thus far the discussion has been concerned with the probability distribution of a single
random variable, e.g., the demand for a product during the first month or the demand for
a product during the second month. In an experiment that measures the demand during
the first 2 months, it may well be important to look at the probability distribution of the
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vector random variable (X1, X2), the demand during the first month, and the demand dur-
ing the second month, respectively,

Define the symbol

Eb1, b2

X
1
, X

2 � {�|X1(�) � b1, X2(�) � b2},

or equivalently,

Eb1, b2

X
1
, X

2 � {X1 � b1, X2 � b2},

as the set of outcomes � in the sample space forming the event Eb1, b2

X
1
, X

2, such that the ran-
dom variable X1 taken on values less than or equal to b1, and X2 takes on values less than
or equal to b2. Then P{Eb1, b2

X
1
, X

2} denotes the probability of this event. In the above exam-
ple of the demand for a product during the first 2 months, suppose that the sample space
� consists of the set of all possible points �, where � represents a pair of nonnegative
integer values (x1,x2). Assume that x1 and x2 are bounded by 99. Thus, there are (100)2�
points in �. Suppose further that each point � has associated with it a probability equal
to 1/(100)2, except for the points � � (0,0) and � � (99,99). The probability associated
with the event {0,0} will be 1.5/(100)2, that is, P{0,0} � 1.5/(100)2, and the probability
associated with the event {99,99} will be 0.5/(100)2; that is, P{99,99} � 0.5/(100)2. Thus,
if there is interest in the “bivariate” random variable (X1, X2), the demand during the first
and second months, respectively, then the event

{X1 � 1, X2 � 3}

is the set

E1,3
X1, X2 � {(0,0), (0,1), (0,2), (0,3), (1,0), (1,1), (1,2), (1,3)}.

Furthermore,

P{E1,3
X1, X2} � 


(1
1
0
.
0
5
)2
 � 


(10
1
0)2
 � 


(10
1
0)2
 � 


(10
1
0)2
 � 


(10
1
0)2
 � 


(10
1
0)2
� 


(10
1
0)2


� 

(10

1
0)2


� 

(1

8
0
.
0
5
)2
,

so that

P{X1 � 1, X2 � 3} � P{E1,3
X1, X2} � 


(1
8
0
.
0
5
)2
.

A similar calculation can be made for any value of b1 and b2.
For any given bivariate random variable (X1, X2), P{X1 � b1, X2 � b2} is denoted by

FX1X2
(b1,b2) and is called the joint cumulative distribution function (CDF) of the bi-

variate random variable (X1, X2) and is defined for all real values of b1 and b2. Where
there is no ambiguity the joint CDF may be denoted by F(b1, b2). Thus, attached to every
bivariate random variable is a joint CDF. This is not an arbitrary function but is induced
by the probabilities associated with events defined over the sample space � such that
{�X1(�) � b1, X2 (�) � b2}.

The joint CDF of a random variable is a numerically valued function, defined for all
b1, b2 such that �	 � b1, b2 � 	, having the following properties:

1. FX1X2
(b1,	) � P{X1 � b1, X2 � 	} � P{X1 � b1} � FX1

(b1), where FX1
(b1) is just

the CDF of the univariate random variable X1.
2. FX1X2

(	,b2) � P{X1 � 	, X2 � b2} � P{X2 � b2} � FX2
(b2), where FX2

(b2) is just
the CDF of the univariate random variable X2.
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■ TABLE 24.1 Table of common distributions

Distribution of Range of 
random Para- Expected random 

variable X Form meters value Variance variable

Binomial PX(k) � pk(1 � p)n�k n, p np np(1 � p) 0, 1, 2, . . . , n

Poisson PX(k) � 

�k

k
e
!

��


 � � � 0, 1, 2, . . . .

Geometric PX(k) � p(1 � p)k�1 p 1, 2, . . . .

Exponential fX(y) � e�y/� � � �2 (0,	)

Gamma fX(y) � y(��1)e�y/� �, � �� ��2 (0,	)

Beta fX(y) � y(��1)(1 � y)(��1)

�, � 

��

�

�

 (0,1)

Normal fX(y) � e�(y��)2/2	2

�, 	 � 	2 (�	,	)

Students t fX(y) � (1 � y2/�)�(��1)/2
� 0(for � � 1) �/(� � 2)(for � > 2) (�	,	)

Chi square fX(y) � y(��2)/2e�y/2 � � 2� (0,	)

F
fX(y) �

�1,�2 (0,	)

for �2 � 2. for �2 � 4

�2
2(2�2 � 2�1 � 4)





�1(�2 � 2)2(�2 � 4)

�2

�2 � 2

(y)(�1/2)�1





(�2 � �1y)(�1��2)/2

�
�1 �

2
�2
� �1

�1/2�2
�2/2





�


�
2
1
��


�
2
2
�

1



2�/2(�/2)

([� � 1]/2)




(�/2)
1



�2
��

1


�2
�	

��




(� � �)2(� � � � 1)

(���)




(�)(�)

1


(�)��

1


�

1 � p



p2
1


p

n!



k!(n � k)!

2
4
-2

5

h
i
l
6
1
2
1
7
_
c
h
2
4
.
q
x
d
 
 
5
/
1
4
/
0
4
 
 
1
6
:
4
6
 
 
P
a
g
e
 
2
4
-
2
5



3. FX1X2
(b1,�	) � P{X1 � b1, X2 � �	} � 0,

FX1X2
(�	, b2) � P{X1 � �	, X2 � b2} � 0.

4. FX1X2
(b1 � �1, b2 � �2) � FX1X2

(b1 � �1, b2) � FX1X2
(b1, b2 � �2) � FX1X2

(b1, b2) � 0,
for every �1, �2 � 0, and b1, b2.

Using the definition of the event Eb1, b2

X
1
, X

2, events of the form

{a1 � X1 � b1, a2 � X2 � b2}

can be described as the set of outcomes � in the sample space such that the bivariate 
random variable (X1, X2) takes on values such that X1 is greater than a1 but does not ex-
ceed b1 and X2 is greater than a2 but does not exceed b2. P{a1 � X1 � b1, a2 � X2 � b2}
can easily be seen to be

FX1X2
(b1, b2) � FX1X2

(b1, a2) � FX1X2
(a1, b2) � FX1X2

(a1, a2).

It was noted that single random variables are generally characterized as discrete or
continuous random variables. A bivariate random variable can be characterized in a sim-
ilar manner. A bivariate random variable (X1, X2) is called a discrete bivariate random vari-
able if both X1 and X2 are discrete random variables. Similarly, a bivariate random vari-
able (X1, X2) is called a continuous bivariate random variable if both X1 and X2 are
continuous random variables. Of course, bivariate random variables that are neither dis-
crete nor continuous can exist, but these will not be important in this book.

The joint CDF for a discrete random variable FX1X2
(b1, b2) is given by

FX1X2
(b1, b2) � P{�X1(�) � b1, X2 (�) � b2}

�   �
all k � b1

�
all l � b2

P{�X1(�) � k, X2 (�) � l}

�   �
all k � b1

�
all l � b2

PX1X2
(k, l),

where {�X1(�) � k, X2(�) � l) is the set of outcomes � in the sample space such that
the random variable X1 taken on the value k and the variable X2 takes on the value l; and
P{�X1(�) � k, X2(�) � l} � PX1X2

(k, l) denotes the probability of this event. The
PX1X2

(k, l) are called the joint probability distribution of the discrete bivariate random
variable (X1, X2). Thus, in the example considered at the beginning of this section,

PX1X2
(k, 1) � 1/(100)2 for all k, l that are integers between 0 and 99,

except for PX1X2
(0, 0) � 1.5/(100)2 and PX1X2

(99,99) � 0.5/(100)2.
For a continuous random variable, the joint CDF FX1X2

(b1, b2) can usually be written as

FX1X2
(b1,b2) � P{�X1(�) � b1, X2(�) � b2} � �b1

�	
�b2

�	
fX1X2

(s, t) ds dt,

where fX1X2
(s, t) is known as the joint density function of the bivariate random variable

(X1, X2). A knowledge of the joint density function enables one to calculate all sorts of
probabilities, for example.

P{a1 � X1 � b1, a2 � X2 � b2} � �b1

a1

�b2

a2

fX1X2
(s, t) ds dt.

Finally, if the density function is known, it is said that the probability distribution of the
random variable is determined.

The joint density function can be viewed as a surface in three dimensions, where the
volume under this surface over regions in the s, t plane correspond to probabilities. Nat-
urally, the density function can be obtained from the CDF by using the relation
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� 

∂s

∂2

∂t

 �s

�	
�t

�	
fX1X2

(u, v) du dv � fX1X2
(s, t).

In defining the joint CDF for a bivariate random variable, it was implied that fX1X2
(s, t)

was defined over the entire plane because

FX1X2
(b1, b2) � �b1

�	
�b2

�	 
fX1X2

(s, t) ds dt

(which is analogous to what was done for a univariate random variable). This causes no
difficulty, even for bivariate random variables having one or more components that can-
not take on negative values or are restricted to other regions. In this case, fX1X2

(s, t) can
be defined to be zero over the inadmissible part of the plane. In fact, the only require-
ments for a function to be a bivariate density function are that

1. fX1X2
(s, t) be nonnegative, and

2. �	

�	
�	

�	 
fX1X2

(s, t) ds dt � 1.

∂2FX1X2
(s, t)




∂s ∂t
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■ 24.10 MARGINAL AND CONDITIONAL PROBABILITY DISTRIBUTIONS

In Sec. 24.9 the discussion was concerned with the joint probability distribution of a bi-
variate random variable (X1,X2). However, there may also be interest in the probability
distribution of the random variables X1 and X2 considered separately. It was shown that
if FX1X2

(b1, b2) represents the joint CDF of (X1,X2), then FX1
(b1) � FX1X2

(b1, 	) � P{X1 � b1,
X2 � 	} � P{X1 � b1} is the CDF for the univariate random variable X1, and FX2

(b2) �
FX1X2

(	, b2) � P{X1 � 	, X2 � b2} � P{X2 � b2} is the CDF for the univariate random
variable X2.

If the bivariate random variable (X1, X2) is discrete, it was noted that the

PX1X2
(k, l) � P{X1 � k, X2 � l}

describe its joint probability distribution. The probability distribution of X1 individually,
PX1

(k), now called the marginal probability distribution of the discrete random variable
X1, can be obtained from the PX1X2

(k, l). In particular,

FX1
(b1) � FX1X2

(b1,	) � �
all k � b1

�
all l

PX1X2
(k, l) � �

all k � b1

PX1
(k),

so that

PX1
(k) � P{X1 � k} � �

all l
PX1X2

(k, l).

Similarly, the marginal probability distribution of the discrete random variable X2 is given by

PX2
(l) � P{X2 � l} � �

all k
PX1X2

(k, l).

Consider the experiment described in Sec. 24.1 which measures the demand for a
product during the first 2 months, but where the probabilities are those given at the be-
ginning of Sec. 24.9. The marginal distribution of X1 is given by

PX1(0) � �
all l

PX1X2
(0, l)

� PX1X2
(0,0) � PX1X2

(0,1) � . . . � PX1X2
(0,99)

� 

(1

1
0
.
0
5
)2
 � 


(10
1
0)2
 � . . . � 


(10
1
0)2
 � 


(
1
1
0
0
0
0
.
)
5
2
,
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PX1
(1) PX1

(2) . . . PX1
(98)

all l

PX1X2
(k, l)

(1
1
0
0
0
0
)2 , for k 1, 2, . . . , 98.

PX1
(99)

all l

PX1X2
(99, l)

PX1X2
(99,0) PX1X2

(99,1) . . . PX1X2
(99,99)

(10
1
0)2 (10

1
0)2

. . .
(1

0
0
.
0
5
)2 (1

9
0
9
0
.5
)2 .

Note that this is indeed a probability distribution in that

PX1
(0) PX1

(1) . . . PX1
(99)

(
1
1
0
0
0
0
.
)
5
2 (1

1
0
0
0
0
)2

. . .
(1
9
0
9
0
.5
)2 1.

Similarly, the marginal distribution of X2 is given by

PX2
(0)

all k

PX1X2
(k, 0)

PX1X2
(0,0) PX1X2

(1,0) . . . PX1X2
(99,0)

(1
1
0
.
0
5
)2 (10

1
0)2

. . .
(10

1
0)2 (

1
1
0
0
0
0
.
)
5
2 ,

PX2
(1) PX2

(2) . . . PX2
(98)

all k

PX1X2
(k, l)

(1
1
0
0
0
0
)2 , l 1, 2, . . . , 98,

PX2
(99)

all k

PX1X2
(k, 99)

PX1X2
(0,99) PX1X2

(1,99) . . . PX1X2
(99,99)

(10
1
0)2 (10

1
0)2

. . .
(1

0
0
.
0
5
)2 (1

9
0
9
0
.5
)2 .

If the bivariate random variable (X1, X2) is continuous, then fX1X2
(s, t) represents the

joint density. The density function of X1 individually, fX1
(s), now called the marginal

density function of the continuous random variable X1, can be obtained from the fX1X2
(s, t).

In particular,

FX1
(b1) FX1X2

(b1, )
b1

fX1X2
(s, t) dt ds

b1

fX1
(s) ds,

so that

fX1
(s) fX1X2

(s, t) dt.

Similarly, the marginal density function of the continuous random variable X2 is given by

fX2
(t) fX1X2

(s, t) ds.

As indicated in Section 24.4, experiments are often performed where some results are
obtained early in time and further results later in time. For example, in the previously de-
scribed experiment that measures the demand for a product during the first two months,
the demand for the product during the first month is observed at the end of the first month.
This information can be utilized in making probability statements about the demand dur-
ing the second month.

In particular, if the bivariate random variable (X1, X2) is discrete, the conditional prob-
ability distribution of X2, given X1, can be defined as
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PX2�X1�k(l) � P{X2 � lX1 � k} � , if PX1
(k) � 0,

and the conditional probability distribution of X1, given X2, as

PX1�X2�l(k) � P{X1 � kX2 � l} � , if PX2
(l) � 0.

Note that for a given X2 � l, PX1�X2�l(k) satisfies all the conditions for a probability dis-
tribution for a discrete random variable. PX1�X2�l(k) is nonnegative, and furthermore,

�
all k

PX1�X2 � l(k) � �
all k

� � 1.

Again, returning to the demand for a product during the first 2 months, if it were known
that there was no demand during the first month, then

PX2|X1�0(l) � P{X2 � lX1 � 0} � � .

Hence,

PX2|X1� 0(0) � � 

1
1
0
.
0
5
.5


,

and

PX2|X1� 0(l) � 

10

1
0.5

 l � 1, 2, . . . , 99.

If the bivariate random variable (X1, X2) is continuous with joint density function
fX1X2

(s, t), and the marginal density function of X1 is given by fX1
(s), then the conditional

density function of X2, given X1 � s, is defined as

fX2|X1�s(t) � , if fX1
(s) � 0.

Similarly, if the marginal density function of X2 is given by fX2
(t), then the conditional

density function of X1, given X2 � t, is defined as

fX1|X2�t(s) � , if fX2
(t) � 0.

Note that, given X1 � s and X2 � t, the conditional density functions, fX2|X1�s(t) and
fX1|X2�t(s), respectively, satisfy all the conditions for a density function. They are non-
negative, and furthermore,

�	

�	
fX2|X1�s(t) dt � �	

�	

� 

fX1

1
(s)

 �	

�	
fX1X2

(s, t) dt � � 1,
and

�	

�	
fX1|X2 � l(s) ds � �	

�	

�

fX

1

2
(t)

 �	

�	
fX1X2

(s, t) ds � � 1.

As an example of the use of these concepts for a continuous bivariate random variable,
consider an experiment that measures the time of the first arrivals at a store on each of two

fX2
(t)



fX2

(t)

fX1X2
(s, t) ds




fX2

(t)

fX1
(s)



fX1

(s)

fX1X2
(s, t) dt




fX1

(s)

fX1X2
(s, t)



fX2

(t)

fX1X2
(s, t)



fX1

(s)

PX1X2
(0,0)




(100.5)�(100)2

PX1X2
(0, l)




100.5�(100)2

PX1X2
(0, l)




PX1

(0)

PX2
(l)



PX2

(l)
PX1X2

(k, l)




PX2
(l)

PX1X2
(k, l)




PX2

(l)

PX1X2
(k, l)




PX1

(k)
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successive days. Suppose that the joint density function for the random variable (X1, X2),
which represents the arrival time on the first and second days, respectively, is given by

fX1X2
(s, t) � �

The marginal density function of X1 is given by

fX1
(s) � �

and the marginal density function of X2 is given by

fX2
(t) � �

If it is announced that the arrival time of the first customer on the first day occurred
at time s, the conditional density of X2, given X1 � s, is given by

fX2|X1�s(t) � � � 

1
�


 e�t/�.

It is interesting to note at this point that the conditional density of X2, given X1 � s,
is independent of s and, furthermore, is the same as the marginal density of X2.

(1��2)e�(s�t)��




(1��)e�s��

fX1X2
(s, t)



fX1

(s)

for t � 0

otherwise.

�	

0


�

1
2
 e�(s�t)�� ds � 


1
�


e�t��,

0,

for s � 0

otherwise.

�	

0


�

1
2
 e�(s�t)��dt � 


1
�


e�s��,

0,

for s, t � 0

otherwise.



�

1
2
 e�(s�t)��,

0,
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■ 24.11 EXPECTATIONS FOR BIVARIATE DISTRIBUTIONS

Section 24.7 defined the expectation of a function of a univariate random variable. The
expectation of a function of a bivariate random variable (X1, X2) may be defined in a sim-
ilar manner. Let g(X1, X2) be a function of the bivariate random variable (X1, X2). Let

PX1X2
(k, l) � P{X1 � k, X2 � l}

denote the joint probability distribution if (X1, X2) is a discrete random variable, and let
fX1X2

(s, t) denote the joint density function if (X1, X2) is a continuous random variable.
The expectation of g(X1, X2) is now defined as

An alternate definition can be obtained by recognizing that Z � g(X1, X2) is itself a uni-
variate random variable and hence has a density function if Z is continuous and a proba-
bility distribution if Z is discrete. The expectation of Z for these cases has already been
defined in Sec. 24.7. Of particular interest here is the extension of the theorem of the un-
conscious statistician, which states that if (X1, X2) is a continuous random variable and if
Z has a density function hZ(y), then

E[g(X1, X2)] � � if X1, X2 is a discrete random variable

if X1, X2 is a continuous random variable.

�
all k,l

g(k, l)PX1X2(k, l),

�	

�	 

�	

�	
g(s, t)fX1X2(s, t) ds dt,
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E(Z) � �	

�	

yhz(y) dy � �	

�	 

�	

�	

g(s, t)fX1X2
(s, t) ds dt.

Thus, the expectation of Z can be found by using its definition in terms of the density of
the univariate random variable Z or, alternatively, by use of its definition as the expecta-
tion of a function of the bivariate random variable (X1, X2) with respect to its joint den-
sity function. The identical theorem is true for a discrete bivariate random variable, and,
of course, both results are easily extended to n-variate random variables.

There are several important functions g that should be considered. All the results will
be stated for continuous random variables, but equivalent results also hold for discrete
random variables.

If g(X1, X2) � X1, it is easily seen that

E(X1) � �	

�	 

�	

�	

s fX1X2
(s, t) ds dt � �	

�	

s fX1
(s) ds.

Note that this is just the expectation of the univariate random variable X1 with respect to
its marginal density.

In a similar manner, if g(X1, X2) � [X1 � E(X1)]2, then

E[X1 � E(X1)]2 � �	

�	 

�	

�	

[s � E(X1)]2fX1X2
(s, t) ds dt

� �	

�	

[s � E(X1)]2fX1
(s) ds,

which is just the variance of the univariate random variable X1 with respect to its mar-
ginal density.

If g(X1, X2) � [X1 � E(X1)] [X2 � E(X2)], then E[g(X1, X2)] is called the covariance
of the random variable (X1, X2); that is,

E[X1 � E(X1)][X2 � E(X2)] � �	

�	 

�	

�	

[s � E(X1)][t � E(X2)] fX1X2
(s, t) ds dt.

An easy computational formula is provided by the identity

E[X1 � E(X1)][X2 � E(X2)] � E(X1X2) � E(X1)E(X2).

The correlation coefficient between X1 and X2 is defined to be

� � .

It is easily shown that � 1 � � � � 1.
The final results pertain to a linear combination of random variables. Let g(X1, X2) �

C1X1 � C2X2, where C1 and C2 are constants. Then

E[g(X1, X2)] � �	

�	 

�	

�	

(C1s � C2 t) fX1X2
(s, t) ds dt,

� C1 �	

�	 

s fX1
(s) ds � C2 �	

�	 

t fX2
(t) dt,

� C1E(X1) � C2E(X2).

Thus, the expectation of a linear combination of univariate random variables is just

E[C1X1 � C2X2 � . . . � CnXn] � C1E(X1) � C2E(X2) � . . . � CnE(Xn).

If

g(X1, X2) � [C1X1 � C2X2 � {C1E(X1) � C2E(X2)}]2,

E[X1 � E(X1)][X2 � E(X2)]





�E[X1 �� E(X1)�]2E[X2� � E(X�2)]2�
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then

E[g(X1, X2)] � variance (C1X1 � C2 X2)

� C2
1E[X1 � E(X1)]2 � C2

2E[X2 � E(X2)]2

� 2C1C2E[X1 � E(X1)][X2 � E(X2)]

� C2
1 variance (X1) � C2

2 variance (X2)

� 2C1C2 covariance (X1X2).

For n univariate random variables, the variance of a linear combination C1X1 � C2

X2 � . . . � CnXn is given by

�
n

i�1
Ci

2 variance (Xi) � 2�
n

j�2
�
j�1

i�1
CiCj covariance (XiXj).
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■ 24.12 INDEPENDENT RANDOM VARIABLES AND RANDOM SAMPLES

The concept of independent events has already been defined; that is, E1 and E2 are inde-
pendent events if, and only if,

P{E1 � E2} � P{E1}P{E2}.

From this definition the very important concept of independent random variables can be
introduced. For a bivariate random variable (X1,X2) and constants b1 and b2, denote by E1

the event containing those � such that X1(�) � b1, X2(�) is anything; that is,

E1 � {�X1(�) � b1, X2(�) � 	}.

Similarly, denote by E2 the event containing those � such that X1(�) is anything and
X2(�) � b2; that is,

E2 � {�X1(�) � 	, X2(�) � b2}.

Furthermore, the event E1 � E2 is given by

E1 � E2 � {�X1(�) � b1, X2(�) � b2}.

The random variables X1 and X2 are said to be independent if events of the form given by
E1 and E2 are independent events for all b1 and b2. Using the definition of independent
events, then, the random variables X1 and X2 are called independent random variables if

P{X1 � b1, X2 � b2} � P{X1 � b1}P{X2 � b2}

for all b1 and b2. Therefore, X1 and X2 are independent if

FX1X2
(b1, b2) � P{X1 � b1, X2 � b2} � P{X1 � b1}P{X2 � b2}

� FX1
(b1)FX2

(b2).

Thus, the independence of the random variables X1 and X2 implies that the joint CDF fac-
tors into the product of the CDF’s of the individual random variables. Furthermore, it is eas-
ily shown that if (X1,X2) is a discrete bivariate random variable, then X1 and X2 are inde-
pendent random variables if, and only if, PX1X2

(k, l) � PX1
(k)PX2

(l); in other words, P{X1 �
k, X2 � l} � P{X1 � k}P{X2 � l}, for all k and l. Similarly, if (X1, X2) is a continuous bi-
variate random variable, then X1 and X2 are independent random variables if, and only if,

fX1X2
(s, t) � fX1

(s) fX2
(t),
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for all s ant t. Thus, if X1, X2 are to be independent random variables, the joint density
(or probability) function must factor into the product of the marginal density functions of
the random variables. Using this result, it is easily seen that if X1, X2 are independent 
random variables, then the covariance of X1, X2 must be zero. Hence, the results on the
variance of linear combinations of random variables given in Sec. 24.11 can be simpli-
fied when the random variables are independent; that is,

Variance ��
n

i�1
CiXi� � �

n

i�1
Ci

2 variance (Xi)

when the Xi are independent.
Another interesting property of independent random variables can be deduced from

the factorization property. If (X1, X2) is a discrete bivariate random variable, then X1 and
X2 are independent if, and only if,

PX1|X2�l(k) � PX1
(k), for all k and l.

Similarly, if (X1, X2) is a continuous bivariate random variable, then X1 and X2 are inde-
pendent if, and only if,

fX1|X2�t(s) � fX1
(s), for all s and t.

In other words, if X1 and X2 are independent, a knowledge of the outcome of one, say,
X2, gives no information about the probability distribution of the other, say, X1. It was
noted in the example in Sec. 24.10 on the time of first arrivals that the conditional den-
sity of the arrival time of the first customer on the second day, given that the first cus-
tomer on the first day arrived at time s, was equal to the marginal density of the arrival
time of the first customer on the second day. Hence, X1 and X2 were independent random
variables. In the example of the demand for a product during two consecutive months with
the probabilities given in Sec. 24.9, it was seen in Sec. 24.10 that

PX2|X1�0(0) � 

1
1
0
.
0
5
.5


 � PX2
(0) � 


(
1
1
0
0
0
0
.
)
5
2
.

Hence, the demands during each month were dependent (not independent) random variables.
The definition of independent random variables generally does not lend itself to de-

termine whether or not random variables are independent in a probabilistic sense by look-
ing at their outcomes. Instead, by analyzing the physical situation the experimenter usu-
ally is able to make a judgment about whether the random variables are independent by
ascertaining if the outcome of one will affect the probability distribution of the other.

The definition of independent random variables is easily extended to three or more
random variables. For example, if the joint CDF of the n-dimensional random variable
(X1, X2, . . . , Xn) is given by FX1X2

. . . Xn
(b1, b2, . . . , bn) and FX1

(b1), FX2
(b2), . . . ,

FXn
(bn) represents the CDF’s of the univariate random variables X1, X2, . . . , Xn, respec-

tively, then X1, X2, . . . , Xn are independent random variables if, and only if,

FX1X2
. . .

Xn
(b1, b2, . . . , bn) � FX1

(b1)FX2
(b2) . . . FXn

(bn), for all b1, b2, . . . , bn.

Having defined the concept of independent random variables, we can now introduce the
term random sample. A random sample simply means a sequence of independent and iden-
tically distributed random variables. Thus, X1, X2, . . . , Xn constitute a random sample of size
n if the Xi are independent and identically distributed random variables. For example, in 
Sec. 24.5 it was pointed out that if X1, X2, . . . , Xn are independent Bernoulli random variables,
each with parameter p (that is, if the X’s are a random sample), then the random variable

X � �
n

i�1
Xi

has a binomial distribution with parameters n and p.
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■ 24.13 LAW OF LARGE NUMBERS

Section 24.7 pointed out that the mean of a random sample tends to converge to the ex-
pectation of the random variables as the sample size increases. In particular, suppose the
random variable X, the demand for a product, may take on one of the possible values 
k � 0, 1, 2, . . . , 98, 99, each with PX(k) � 1/100 for all k. Then E(X) is easily seen to be
49.5. If a random sample of size n is taken, i.e., the demands are observed for n days,
with each day’s demand being independent and identically distributed random variables,
it was noted that the random variable X� should take on a value close to 49.5 if n is large.
This result can be stated precisely as the law of large numbers.

Law of Large Numbers

Let the random variables X1, X2, . . . , Xn be independent, identically distributed random
variables (a random sample of size n), each having mean �. Consider the random vari-
able that is the sample mean X�:

X� � .

Then for any constant ε � 0,

lim
n→	

P{X� � � � ε} � 0.

The interpretation of the law of large numbers is that as the sample size increases, the proba-
bility is “close” to 1 that X� is “close” to �. Assuming that the variance of each Xi is 	2 � 	,
this result is easily proved by using Chebyshev’s inequality (stated in Sec. 24.8). Since each
Xi has mean � and variance 	2, X� also has mean �, but its variance is 	2/n. Hence, apply-
ing Chebyshev’s inequality to the random variable X�, it is evident that

P�� � 

�
C	

n�

 � X� � � � 


�
C	

n�

� � 1�


C
1

2
.

This is equivalent to

P�X� � � � 

�
C	

n�

� � 


C
1

2
.

Let C	��n� = ε, so that C = ε�n��	. Thus,

P{X� � � � ε} � 

ε
	
2

2

n

,

so that

lim
n→	

P{X� � � � ε} � 0,

as was to be proved.

X1 � X2 � . . . � Xn



n

■ 24.14 CENTRAL LIMIT THEOREM

Section 24.6 pointed out that sums of independent normally distributed random variables
are themselves normally distributed, and that even if the random variables are not nor-
mally distributed, the distribution of their sum still tends toward normality. This latter
statement can be made precise by means of the central limit theorem.
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†Under these conditions the central limit theorem actually holds without assuming any other regularity conditions.

Central Limit Theorem

Let the random variables X1, X2, . . . , Xn be independent with means �1, �2, . . . , �n, re-
spectively, and variance 	2

1, 	2
2, . . . , 	2

n, respectively. Consider the random variable Zn,

Zn � .

Then, under certain regularity conditions, Zn is approximately normally distributed with
zero mean and unit variance in the sense that

lim
n→	

P{Zn � b} � �b

�	


�

1

2
�

 e�y2�2 dy.

Note that if the Xi form a random sample, with each Xi having mean � and variance 	2,
then Zn � (X� � �)�n�/	.† Hence, sample means from random samples tend toward nor-
mality in the sense just described by the central limit theorem even if the Xi are not nor-
mally distributed.

It is difficult to give sample sizes beyond which the central limit theorem applies and
approximate normality can be assumed for sample means. This, of course, does depend
upon the form of the underlying distribution. From a practical point of view, moderate
sample sizes, like 10, are often sufficient.

�n

i�1
Xi ��n

i�1
�i





	�n

i�1

	i

2


■ 24.15 FUNCTIONS OF RANDOM VARIABLES

Section 24.7 introduced the theorem of the unconscious statistician and pointed out that
if a function Z � g(X) of a continuous random variable is considered, its expectation can
be taken with respect to the density function fX(y) of X or the density function hZ(y) of Z.
In discussing this choice, it was implied that the density function of Z was known. In gen-
eral, then, given the cumulative distribution function FX(b) of a random variable X, there
may be interest in obtaining the cumulative distribution function HZ(b) of a random vari-
able Z � g(X). Of course, it is always possible to go back to the sample space and de-
termine HZ(b) directly from probabilities associated with the sample space. However, al-
ternate methods for doing this are desirable.

If X is a discrete random variable, the values k that the random variable X takes on
and the associated PX(k) are known. If Z � g(X) is also discrete, denote by m the values
that Z takes on. The probabilities QZ(m) � P{Z � m} for all m are required. The general
procedure is to enumerate for each m all the values of k such that

g(k) � m.

QZ(m) is then determined as

QZ(m) �   � PX(k).

To illustrate, consider again the example involving the demand for a product in a single
month. Let this random variable be noted by X, and let k � 0, 1, . . . , 99 with PX(k) �1�100,
for all k. Consider a new random variable Z that takes on the value of 0 if there is no 

all k
such that
g(k) = m
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demand and 1 if there is any demand. This random variable maybe useful for determin-
ing whether any shipping is needed. The probabilities

QZ(0) and QZ(1)

are required. If m � 0, the only value of k such that g(k) � 0 is k � 0. Hence,

QZ(0) �   � PX(k) � PX(0) � 

1

1

00

.

If m � 1, the values of k such that g(k) � 1 are k � 1, 2, 3, . . . , 98, 99. Hence,

QZ(1) �   � PX(k)

� PX(1) � PX(2) � PX(3) � . . . � PX(98) � PX(99) � 

1

9

0

9

0

.

If X is a continuous random variable, then both the CDF FX(b) and the density func-
tion fX(y) may be assumed to be known. If Z � g(X) is also a continuous random variable,
either the CDF HZ(b) or the density function hZ(y) is sought. To find HZ(b), note that

HZ(b) � P{Z � b} � P{g(X) � b} � P{A},

where A consists of all points such that g(X) � b. Thus, P{A} can be determined from
the density function of CDF of the random variable X. For example, suppose that the CDF
for the time of the first arrival in a store is given by

FX(b) = �
where � > 0. Suppose further that the random variable Z � g(X) � X + 1, which repre-
sents an hour after the first customer arrives, is of interest, and the CDF of Z, HZ(b), is
desired. To find this CDF note that

HZ(b) � P{Z � b} � P{X � 1 � b} � P{X � b � 1}

� �
Furthermore, the density can be obtained by differentiating the CDF; that is,

hZ(y) � � .

Another technique can be used to find the density function directly if g(X) is mo-
notone and differentiable; it can be shown that

hZ(y) � fX(s) �

d

d

y

s

�,

where s is expressed in terms of y. In the example, Z � g(X) � X � 1, so that y, the value
the random variable Z takes on, can be expressed in terms of s, the value the random vari-
able X takes on; that is, y � g(s) � s � 1. Thus,

s � y � 1, fX(s) � 

1

�

 e�s�� � 


1

�

 e�(y�1)��, and 


d

d

y

s

 � 1.

for y � 1

for y � 1.



1

�

e�(y�1)��,

0,

for b � 1
for b � 1.

1 � e�(b�1)��,
0,

for b � 0
for b � 0,

1 � e�b��,
0,

all k
such that
g(k) = 1

all k
such that
g(k) = 0
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Hence,

hZ(y) � 

1

�

 e�(y�1)�� 1 � 


1

�

 e�(y�1)��,

which is the result previously obtained.
All the discussion in this section concerned functions of a single random variable. If

(X1, X2) is a bivariate random variable, there may be interest in the probability distribu-
tion of such functions as X1 � X2, X1X2, X1/X2, and so on. If (X1, X2) is discrete, the tech-
nique for single random variables is easily extended. A detailed discussion of the tech-
niques available for continuous bivariate random variables is beyond the scope of this text;
however, a few notions related to independent random variables will be discussed.

If (X1, X2) is a continuous bivariate random variable, and X1 and X2 are independent,
then its joint density is given by

fX1X2
(s, t) � fX1

(s)fX2
(t).

Consider the function

Z � g(X1, X2) � X1 � X2.

The CDF for Z can be expressed as HZ(b) � P{Z � b} � P{X1 � X2 � b}. This can be
evaluated by integrating the bivariate density over the region such that s � t � b; that is

HZ(b) �  ��
s�t � b

fX1
(s)fX2

(t) ds dt

� �	

�	 
�b�t

�	
fX1

(s)fX2
(t) ds dt.

Differentiating with respect to b yields the density function

hZ(y) � �	

�	
fX2

(t)fX1
(y � t) dt.

This can be written alternately as

hZ(y) � �	

�	
fX1

(s)fX2
(y � s) ds.

Note that the integrand may be zero over part of the range of the variable, as shown in
the following example.

Suppose that the times of the first arrival on two successive days, X1 and X2, are in-
dependent, identically distributed random variables having density

fX1
(s) � �

fX2
(t) � �

To find the density of Z � X1 � X2, note that

fX1
(s) � �

and

fX2
(y � s) � � if y�s � 0 so that s � y

if y�s � 0 so that s � y.



1

�

e�(y�s)��,

0,

for s � 0

for s � 0,



1

�

e�s��,

0,

for t � 0

otherwise.



1

�

e�t��,

0,

for s � 0

otherwise.



1

�

e�s��,

0,
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Hence,

fX1
(s) fX2

(y s)

Hence,

hZ(y) fX1
(s)fX2

(y s) ds
y

0
.

1
2 e y ds

y
2 e y .

Note that this is just a gamma distribution, with parameters 2 and . Hence,
as indicated in Sec. 24.6, the sum of two independent, exponentially distributed random
variables has a gamma distribution. This example illustrates how to find the density func-
tion for finite sums of independent random variables. Combining this result with those for
univariate random variables leads to easily finding the density function of linear combi-
nations of independent random variables.

A final result on the distribution of functions of random variables concerns functions
of normally distributed random variables. The chi-square and the t and F distributions, in-
troduced in Sec. 24.6, can be generated from functions of normally distributed random
variables. These distributions are particularly useful in the study of statistics. In particu-
lar, let X1, X2, . . . , X be independent, normally distributed random variables having zero
mean and unit variance. The random variable

2 X2
1 X2

2
. . . X2

can be shown to have a chi-square distribution with degrees of freedom. A random vari-
able having a t distribution may be generated as follows. Let X be a normally distributed
random variable having zero mean and unit variance and 2 be a chi-square random vari-
able (independent of X) with degrees of freedom. The random variable

t

can be shown to have a t distribution with degrees of freedom. Finally, a random vari-
able having an F distribution can be generated from a function of two independent chi-
square random variables. Let 2

1 and 2
2 be independent chi-square random variables, with

1 and 2 degrees of freedom, respectively. The random variable

F

can be shown to have an F distribution with 1 and 2 degrees of freedom.

2
1 1
2
2 1

X
2

if 0 s y

otherwise.

1
e s 1

e (y s) 1
2 e y ,

0,
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24-1. A cube has its six sides colored red, white, blue, green, yel-
low, and violet. It is assumed that these six sides are equally likely
to show when the cube is tossed. The cube is tossed once.
(a) Describe the sample space.
(b) Consider the random variable that assigns the number 0 to red

and white, the number 1 to green and blue, and the number 2
to yellow and violet. What is the distribution of this random
variable?

(c) Let Y (X 1)2, where X is the random variable in part (b).
Find E(Y).

24-2. Suppose the sample space consists of the four points

1, 2, 3, 4,

and the associated probabilities over the events are given by

P{ 1}
1

3
, P{ 2}

1

5
, P{ 3}

1

3

0
, P{ 4}

1

6
.

Define the random variable X1 by

X1( 1) 1,
X1( 2) 1,
X1( 3) 4,
X1( 4) 5,

and the random variable X2 by

X1( 1) 1,
X2( 2) 1,
X2( 3) 1,
X2( 4) 5,

(a) Find the probability distribution of X1, that is, PX1
(i).

(b) Find E(X1).
(c) Find the probability distribution of the random variable X1 X2,

that is, PX1 X2
(i).

(d) Find E(X1 X2) and E(X2).
(e) Find FX1X2

(b1, b2).
(f) Compute the correlation coefficient between X1 and X2.
(g) Compute E[2X1 3X2].

24-3. During the course of a day a machine turns out two items,
one in the morning and one in the afternoon. The quality of each
item is measured as good (G), mediocre (M), or bad (B). The long-
run fraction of good items the machine produces is 1

2, the fraction
of mediocre items is 1

3, and the fraction of bad items is 1
6.

(a) In a column, write the sample space for the experiment that
consists of observing the day’s production.

(b) Assume a good item returns a profit of $2, a mediocre item a
profit of $1, and a bad item yields nothing. Let X be the random
variable describing the total profit for the day. In a column ad-
jacent to the column in part (a), write the value of this random
variable corresponding to each point in the sample space.

(c) Assuming that the qualities of the morning and afternoon items
are independent, in a third column associate with every point
in the sample space a probability for that point.

(d) Write the set of all possible outcomes for the random variable X.
Give the probability distribution function for the random variable.

(e) What is the expected value of the day’s profit?

24-4. The random variable X has density function f given by

fX(y)

(a) Determine K in terms of .
(b) Find FX(b), the CDF of X.
(c) Find E(X).

(d) Suppose
1

3
. Is P X

1

3
a P X

1

3
a ?

24-5. Let X be a discrete random variable, with probability 
distribution

P{X x1}
1

4

and

P{X x2}
3

4
.

(a) Determine x1 and x2, such that

E(X) 0 and variance (X) 10.

(b) Sketch the CDF of X.

24-6. The life X, in hours, of a certain kind of radio tube has a prob-
ability density function given by

fX(y)

(a) What is the probability that a tube will survive 250 hours of
operation?

(b) Find the expected value of the random variable.

for y 100

for y 100.

1

y

0
2

0
,

0,

for 0 y
for y 1
elsewhere.

,
K,
0,
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24-7. The random variable X can take on only the values 0, ±1,
±2, and

P{ 1 X 2} 0.4, P{X 0} 0.3,
P{⏐X⏐ 1} 0.6, P{X 2} P{X 1 or 1}.

(a) Find the probability distribution of X.
(b) Graph the CDF of X.
(c) Compute E(X).

24-8. Let X be a random variable with density

fX(y)

(a) What value of K will make fX(y) a true density?
(b) What is the CDF of X?
(c) Find E(2X 1).
(d) Find variance (X).
(e) Find the approximate value of P{X > 0}, where X is the sam-

ple mean from a random sample of size n 100 from the
above distribution. (Hint: Note that n is “large.”)

24-9. The distribution of X, the life of a transistor, in hours, is ap-
proximated by a triangular distribution as follows:

(a) What is the value of a?
(b) Find the expected value of the life of transistors.
(c) Find the CDF, FX(b), for this density. Note that this must be

defined for all b between plus and minus infinity.
(d) If X represents the random variable, the life of a transistor, let

Z 3X be a new random variable. Using the results of (c),
find the CDF of Z.

24-10. The number of orders per week, X, for radios can be as-
sumed to have a Poisson distribution with parameter 25.
(a) Find P{X 25} and P{X 20}.
(b) If the number of radios in the inventory is 35, what is the prob-

ability of a shortage occurring in a week?

24-11. Consider the following game. Player A flips a fair coin un-
til a head appears. She pays player B 2n dollars, where n is the
number of tosses required until a head appears. For example, if a
head appears on the first trial, player A pays player B $2. If the
game results in 4 tails followed by a head, player A pays player B
25 $32. Therefore, the payoff to player B is a random variable

that takes on the values 2n for n 1, 2, . . . and whose probabil-
ity distribution is given by (1

2)n for n 1, 2, . . . , that is, if X de-
notes the payoff to player B,

P(X 2n)
1

2

n

for n 1, 2, . . .

The usual definition of a fair game between two players is
for each player to have equal expectation for the amount to
be won.
(a) How much should player B pay to player A so that this game

will be fair?
(b) What is the variance of X?
(c) What is the probability of player B winning no more than $8

in one play of the game?

24-12. The demand D for a product in a week is a random vari-
able taking on the values of 1, 0, 1 with probabilities 1 8, 5

8, and
C 8, respectively. A demand of 1 implies that an item is returned.
(a) Find C, E(D), and variance D.
(b) Find E(eD

2

).
(c) Sketch the CDF of the random variable D, labeling all the nec-

essary values.

24-13. In a certain chemical process three bottles of a standard
fluid are emptied into a larger container. A study of the individual
bottles shows that the mean value of the contents is 15 ounces and
the standard deviation is 0.08 ounces. If three bottles form a ran-
dom sample,
(a) Find the expected value and the standard deviation of the vol-

ume of liquid emptied into the larger container.
(b) If the content of the individual bottles is normally distributed,

what is the probability that the volume of liquid emptied into
the larger container will be in excess of 45.2 ounces?

24-14. Consider the density function of a random variable X de-
fined by

fX(y)

(a) Find the CDF corresponding to this density function. (Be sure
you describe it completely.)

(b) Calculate the mean and variance.
(c) What is the probability that a random variable having this den-

sity will exceed 0.5?
(d) Consider the experiment where six independent random vari-

ables are observed, each random variable having the density
function given above. What is the expected value of the sam-
ple mean of these observations?

(e) What is the variance of the sample mean described in part (d )?

24-15. A transistor radio operates on two 11
2 volt batteries, so

that nominally it operates on 3 volts. Suppose the actual voltage
of a single new battery is normally distributed with mean 11

2volts
and variance 0.0625. The radio will not operate “properly” at the
outset if the voltage falls outside the range 23

4 to 31
4 volts.

for y 0
for 0 y 1
for 1 y.

0,
6y(1 y),
0,

for 1 y 1
otherwise

K(1 y2),
0,
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(a) What is the probability that the radio will not operate 
“properly”?

(b) Suppose that the assumption of normality is not valid. Give 
a bound on the probability that the radio will not operate 
“properly.”

24-16. The life of electric lightbulbs is known to be a normally
distributed random variable with unknown mean � and standard
deviation 200 hours. The value of a lot of 1,000 bulbs is
(1,000)(1�5,000) � dollars. A random sample of n bulbs is to be
drawn by a prospective buyer, and 1,000(1/5,000) X� dollars paid
to the manufacturer. How large should n be so that the probability
is 0.90 that the buyer does not overpay or underpay the manufac-
turer by more than $15?

24-17. A joint random variable (X1, X2) is said to have a bivariate
normal distribution if its joint density is given by

fX1, X2
(s, t) � exp ��

� �2

�2�

� � �2��
for �	 � s � 	 and �	 � t � 	.
(a) Show that E(X1) � �X1

and E(X2) � �X2
.

(b) Show that variance (X1) � 	2
X1

, variance (X2) � 	2
X2

, and the
correlation coefficient is �.

(c) Show that marginal distributions of X1 and X2 are normal.
(d) Show that the conditional distribution of X1, given X2 � x2, is

normal with mean

�X1
� � (x2 � �X2

)

and variance 	2
X1

(1 � �2).

24-18. The joint demand for a product over 2 months is a contin-
uous random variable (X1, X2) having a joint density given by

fX1, X2(s, t) � �

(a) Find c.
(b) Find FX1X2

(b1, b2), FX1
(b1), and FX2

(b2).
(c) Find fX2X1�s(t).

24-19. Two machines produce a certain item. The capacity per day
of machine 1 is 1 unit and that of machine 2 is 2 units. Let (X1, X2)
be the discrete random variable that measures the actual produc-
tion on each machine per day. Each entry in the table below rep-
resents the joint probability, for example, PX1X2

(0,0) � 1�8.

(a) Find the marginal distributions of X1 and X2.
(b) Find the conditional distribution of X1, given X2 � 1.
(c) Are X1 and X2 independent random variables?
(d) Find E(X1), E(X2), variance (X1), and variance (X2).
(e) Find the probability distribution of (X1 � X2).

24-20. Suppose that E1, E2, . . . , Em are mutually exclusive events
such that E1 � E2 � . . . � Em � �; that is, exactly one of the E
events will occur. Denote by F any event in the sample space. Note
that

F � FE1 � FE2 � . . . � FEm†

and that FE1, i � 1, 2, . . . , m, are also mutually exclusive.

(a) Show that P{F} � �
m

i�1
P{FEi} � �

m

i�1
P{FEi}P{Ei}.

(b) Show that P{EiF} � P{FEi}P{Ei}��
m

i�1
P{FEi}P{Ei}.

(This result is called Bayes’ formula and is useful when it is known
that the event F has occurred and there is interest in determining
which one of the Et also occurred.)

if 100 � s � 150, and 50 � t � 100
otherwise.

c,
0,

	X1

	X2

t � �X2

	X2

(s � �X1
)(t � �X2

)




	X1
	X2

s � �X1

	X1

1



2(1 � �2)

1




2
	X1

	X2
�1 � �2�
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X1

X2 0 1

0 0

1

2
3


8

1


8

1


8

1


4

1


8

†Recall that FE1 is the same as F � E1, that is, the intersection of the two events F and E1.
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25-1

25C H A P T E R

Reliability

The many definitions of reliability that exist depend upon the viewpoint of the user.
However, they all have a common core that contains the statement that reliability, R(t),

is the probability that a device performs adequately over the interval [0, t]. In general, it is
assumed that unless repair or replacement occurs, adequate performance at time t implies
adequate performance during the interval [0, t]. The device under consideration may be an
entire system, a subsystem, or a component.1 Although this definition is simple, the sys-
tems to which it is applied are generally very complex. In principle, it is possible to break
down the system into black boxes, with each black box being in one of two states: good
or bad. Mathematical models of the system can then be abstracted from the physical
processes and the theory of combinatorial probability used to predict the reliability of the
system. The black boxes may be independent of, or be very dependent upon, each other.
For any reasonable system, such a probability analysis generally becomes so cumbersome
that it must be considered impractical. Hence, we seek other methods that either simplify
the calculations or provide bounds on the reliability of the entire complex system.

As an example, consider an automobile. There are a large number of functional parts,
wiring, and joints. These may be broken into subsystems, with each subsystem having a
reliability associated with it. Possible subsystems are the engine, transmission, exhaust,
body, carburetor, and brakes. A mathematical model of the automobile system can be ab-
stracted and the theory of combinatorial probability used to predict the reliability of the
automobile.

■ 25.1 STRUCTURE FUNCTION OF A SYSTEM

Suppose an automobile can be divided into n components (subsystems). The performance
of each component can be denoted by a random variable, Xi, that takes on the value xi � 1
if the component performs satisfactorily for the desired time and xi � 0 if the component
fails during this time. In general, then, Xi is a binary random variable defined by

Xi � �1, if component i performs satisfactorily during time [0, t]
0, if component i fails during time [0, t].

1A subsystem can be viewed as containing one or more components.

hil61217_ch25.qxd  5/15/04  11:37  Page 25-1



The performance of the system is measured by the binary random variable1 �(X1, X2, . . . ,
Xn), where

�(X1, X2, . . . , Xn) � �
The function � is called the structure function of the system and is just a function of the
n-component random variables. Thus, the performance of the automobile is a function of
its n components and takes on the value 1 if the automobile functions properly for the de-
sired time and 0 if it does not. Because the performance of each component in the auto-
mobile takes on the value 1 or 0, the function � is defined over 2n points, with each point
resulting in a 1 if the automobile performs satisfactorily and a 0 if the automobile fails.

There are several important structure functions to consider, depending upon how the
components are assembled. Three structure functions will be discussed in detail.

Series System

The series system is the simplest and most common of all the configurations. For a series
system, the system fails if any component of the system fails; i.e., it performs satisfacto-
rily if and only if all the components perform satisfactorily. The structure function for a
series system is given by

�(X1, X2, . . . , Xn) � X1X2
. . . Xn � min{X1, X2, . . . . Xn}.

This equation holds because each Xi is either 1 or 0. Hence, the structure function takes
on the value 1 if each Xi equals 1 or, equivalently, if the minimum of the Xi equals 1. For
example, suppose the automobile is divided into only two components: the engine (X1)
and the transmission (X2). Then it is reasonable to assume that the automobile will per-
form satisfactorily for the desired time period if and only if the engine and the transmis-
sion both perform satisfactorily. Hence,

�(X1, X2) � X1X2,

and

�(1, 1) � 1, �(1, 0) � �(0, 1) � �(0, 0) � 0.

Parallel System

A parallel system of n components is defined to be a system that fails if all components
fail, or alternatively, a system that performs satisfactorily if at least one of the n compo-
nents performs satisfactorily (with all n components operating simultaneously). This prop-
erty of parallel systems is often called redundancy (i.e, there are alternative components,
existing within the system, to help the system operate successfully in case of failure of
one or more components). The structure function for a parallel system is given by

�(X1, X2, . . . , Xn) � 1 � (1 � X1)(1 � X2) . . . (1 � Xn)
� max{X1, X2, . . . , Xn}.

This equation again follows because each Xi is either 1 or 0. The structure function takes
on the value 1 if at least one of the Xi equals 1 or, equivalently, if the largest Xi equals 1. In
the automobile example, the car is equipped with front disk (X1) and rear drum (X2) brakes.

1, if system performs satisfactorily during time [0, t]
0, if system fails during time [0, t].

25-2 CHAPTER 25 RELIABILITY

1Note that Xi and � are functions of the time t, but t will be suppressed for each of notation.
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The automobile will perform successfully if either the front or rear brakes operate properly.1

If one is concerned with the structure function of the brake subsystem, then

�(X1 X2) � 1 � (1 � X1)(1 � X2) � X1 � X2 � X1X2,

and

�(1, 1) � �(1, 0) � �(0, 1) � 1, �(0, 0) � 0.

k Out of n System

Some systems are assembled such that the system operates if k out of n components func-
tion properly. Note that the series system is a k out of n system, with k � n, and the par-
allel system is a k out of n system, with k � 1. The structure function for a k out of n
system is given by

�(X1, X2, . . . , Xn) � �
In the automobile example, consider a large truck equipped with eight tires. The structure
function for the tire system is an example of a four-out-of-eight system. (Although the
system’s performance may be degraded if fewer than eight tires are operating, rearrange-
ment of the tire configuration will result in adequate performance as long as at least four
tires are usable.)

It is reasonable to expect the performance of an automobile to improve if the per-
formance of one or more components is improved. This improvement can be reflected
in the characterization of the structure function, where, for example, one would expect
�(1, 0, 0, 1) to be no less than �(1, 0, 0, 0). Hence, it will be assumed that if xi � yi,
for i � 1, 2, . . . n, then

�(y1, y2, . . . , yn) � �(x1, x2, . . . , xn).
A system possessing this property (� is an increasing function of x) is called a coherent
(or monotone) system.

1, if �
n

i�1 
Xi � k

0, if �
n

i�1 
Xi � k.

25.2 SYSTEM RELIABILITY 25-3

1It is evident that the loss of the front or rear brakes will affect the braking capability of the automobile, but the
definition of “perform successfully” may allow for either set working.
2The time t is now suppressed in the notation. Recall that the time is implicitly included in determining whether
or not the ith component performs satisfactorily.

■ 25.2 SYSTEM RELIABILITY

The structure function of a system containing n components is a binary random variable that
takes on the value 1 or 0. Furthermore, the reliability of this system can be expressed as2

R � P{�(X1, X2, . . . , Xn) � 1}.

Thus, for a series system, the reliability is given by

R � P{X1X2
. . . Xn � 1} � P{X1 � 1, X2 � 1, . . . , Xn � 1}.

When the usual terms for conditional probability are employed,

R � P{X1 � 1}P{X2 � 1X1 � 1}P{X3 � 1X1 � 1, X2 � 1}
. . . P{Xn � 1X1 � 1, . . . , Xn�1 � 1}.
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In general, such conditional probabilities require careful analysis. For example, P{X2 �
1X1 � 1} is the probability that component 2 will perform successfully, given that com-
ponent 1 performs successfully. Consider a system where the heat from component 1 af-
fects the temperature of component 2 and thereby its probability of success. The perfor-
mance of these components is then dependent, and the evaluation of the conditional
probability is extremely difficult. If, on the other hand, the performance characteristics of
these components do not interact, e.g., the temperature of one component does not affect
the performance of the other component, then the components can be said to be
independent. The expression for the reliability then simplifies and becomes

R � P{X1 � 1}P{X2 � 1} . . . P{Xn � 1}.

When the components of a series system are assumed to be independent, it should be
noted that the reliability is a function of the probability distribution of the Xi. This phe-
nomenon is true for any system structure.

Unless otherwise specified, it will be assumed throughout the remainder of this chap-
ter that the component performances are independent. Hence, the probability distribution
of the binary random variables Xi can be expressed as

P{Xi � 1} � pi,

and

P{Xi � 0} � 1 � pi,

Thus, for systems composed of independent components, the reliability becomes a func-
tion of the pi; that is.

R � R(p1, p2, . . . , pn).

Reliability of Series Systems

As previously indicated, for a series structure,

R(p1, p2, . . . , pn) � P{�(X1, X2, . . . , Xn) � 1}
� P{X1X2

. . . Xn � 1}
� P{X1 � 1, X2 � 1, . . . , Xn � 1}
� P{X1 � 1}P{X2 � 1} . . . P{Xn � 1}
� p1p2

. . . pn.

Thus, returning to the automobile example, if the probability that the engine performs sat-
isfactorily is 0.95 and the probability that the transmission performs satisfactorily is 0.99,
then the reliability of this automobile series subsystem is given by R � (0.95)(0.99) � 0.94.

Reliability of Parallel Systems

The structure function for a parallel system is

�(X1, X2, . . . , Xn) � max(X1, X2, . . . , Xn),

and the reliability is given by

R(p1, p2, . . . , pn) � P{max(X1, X2, . . . , Xn) � 1}
� 1 � P{all Xi � 0}
� 1 � P{X1 � 0, X2 � 0, . . . , Xn � 0}
� 1 � (1 � p1)(1 � p2) . . . (1 � pn).

25-4 CHAPTER 25 RELIABILITY
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■ 25.3 CALCULATION OF EXACT SYSTEM RELIABILITY

Thus, if the probability that the front disk brakes and the rear drum brakes perform sat-
isfactorily is 0.99 for each, the subsystem reliability is given by

R � 1 � (0.01)(0.01) � 0.9999.

Reliability of k Out of n Systems

The structure function for a k out of n system is

�(X1, X2, . . . , Xn) � �
and the reliability is given by

R(p1, p2, . . . , pn) � P��
n

i�1 
Xi � k�.

The evaluation of this expression is, in general, quite difficult except for the case of
p1 � p2 � . . . � pn � p. Under this assumption, �n

i � 1 Xi has a binomial distribution with
parameters n and p, so that

R(p, p, . . . , p) � �
n

i�k 
� � � pi(1 � p)n�i.

For the truck tire example, if each tire has a probability of 0.95 of performing satisfacto-
rily, then the reliability of a four-out-of-eight system is given by

R � �
8

i�4 
� � (0.95)i(0.05)8�i � 0.9999.

For general structures, the system reliability calculations can become quite tedious.
A technique for computing reliabilities for this general case will be presented in the next
section. However, the final result of this section is to indicate that the reliability function
of a system of independent components can be shown to be an increasing function of the
pi; that is, if pi � qi for i � 1, 2, . . . . , n, then

R(q1, q2, . . . , qn) � R (p1, p2, . . . , pn).

This result is analogous to, and dependent upon, the assumption that the structure function
of the system is coherent. The implication of this intuitive result is that the reliability of
the automobile will improve if the reliability of one or more components is improved.

8
i

n
i

1, if �
n

i�1 
Xi � k

0, if �
n

i�1 
Xi � k,

A representation of the structure of a system can be expressed in terms of a network, and
some of the material presented in Chap. 10 is relevant. For example, consider the system that
can be represented by the network in Fig. 25.1. This system consists of five components, con-
nected in a somewhat complex manner. According to the network diagram, the system will
operate successfully if there exists a flow from A (the source) to D (the sink) through the di-
rected graph, i.e., if components 1 and 4 operate successfully, or components 2 and 5 operate
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successfully, or components 1, 3, and 5 operate successfully. In fact, each arc can be viewed
as having capacity 1 or 0, depending upon whether or not the component is operating. If an
arc has a 0 attached to it (the component fails), then the network would lose that arc, and the
system would operate successfully if and only if there is a path from the source to the sink
in the resultant network. This situation is illustrated in Fig. 25.2, where the system still op-
erates if components 3 and 4 fail but becomes inoperable if components 2, 3, and 4 fail. This
suggests a possible method for computing the exact system reliability. Again, denote the per-
formance of the ith component by the binary random variable Xi. Then Xi takes on the value
1 with probability pi and 0 with probability (1 � pi). For each realization, X1 � x1, X2 � x2,
X3 � x3, X4 � x4 and X5 � x5 (there are 25 such realizations), it is determined whether or not
the system will operate, i.e., whether or not the structure function equals 1. The network con-
sisting of those arcs with Xi equal to 1 contains at least one path if and only if the corre-
sponding structure function equals 1. If a path is formed, the probability of obtaining this
configuration is obtained. For the realization in Fig. 21.2a. a path is formed, and

P{X1 � 1, X2 � 1, X3 � 0, X4 � 0, X5 � 1} � p1p2(1 � p3)(1 � p4)p5.

Because each realization is disjoint, the system reliability is just the sum of the probabil-
ities of those realizations that contain a path. Unfortunately, even for this simple system,
32 different realizations must be evaluated, and other techniques are desirable.

Another possible procedure for finding the exact reliability is to note that the relia-
bility R(p1, p2, . . . , pn) can be expressed as

R(p1, p2, . . . , pn) � P{maximum flow from source to sink � 1}.

This identity allows the concept of paths and cuts presented in Chap. 10 to be used. In re-
liability theory, the terminology of minimal paths and minimal cuts is introduced. A
minimal path is a minimal set of components that, by functioning, ensures the success-
ful operation of the system. For the example in Fig. 25.1. components 2 and 5 are a min-
imal path. A minimal cut is a minimal set of components that, by failing, ensures the fail-
ure of the system. In Fig. 25.1, components 1 and 2 are a minimal cut. For the system
given in Fig. 25.1, the minimal paths and cuts are

1

2 5

A

B

C

D

1

5

A

B

C

D

(a) (b)

■ FIGURE 25.2
(a) System with components
3 and 4 failed; (b) system
with components 2, 3, and 4
failed.

B

DA

C

41

2 5

3

■ FIGURE 25.1
A five-component system.
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Minimal Paths Minimal Cuts

X1X4 X1X2

X1X3X5 X4X5

X2X5 X2X3X4

X1X5

If we use all the minimal paths, there are two ways to obtain the exact system relia-
bility. Because the system will operate if all the components in at least one of the mini-
mal paths operate, the system reliability can be expressed as

R(p1, p2, p3, p4, p5) � P{�(X1, X2, X3, X4, X5) � 1}
� P{(X1X4 � 1) � (X1X3X5 � 1) � (X2X5 � 1)}.

Using the algebra of sets,

R(p1, p2, p3, p4, p5) � P{X1X4 � 1} � P{X1X3X5 � 1}
� P{X2X5 � 1} � P{X1X3X4X5 � 1}
� P{X1X2X4X5 � 1} � P{X1X2X3X5 � 1}
� P{X1X2X3X4X5 � 1)

� p1p4 � p1p3p5 � p2p5 � p1p3p4p5

� p1p2p4p5 � p1p2p3p5 � p1p2p3p4p5

� 2p2 � p3 � 3p4 � p5, when pi � p.

Notice that there are 23 � 1 � 7 terms in the expansion of the reliability function (in gen-
eral, if there are r paths, then there are 2r � 1 terms in the expansion), so that this calcu-
lation is not simple.

The second method of determining the system reliability from paths is as follows:
For the minimal path containing components 1 and 4, X1X4 � 1 if and only if both com-
ponents function. This fact is similarly true for the other two minimal paths. However, the
system will operate if all the components in at least one of the minimal paths operate.
Hence, paths operate as a parallel system, so that

�(X1, X2, X3, X4, X5) � max[X1X4, X1X3X5, X2X5]
� 1 � (1 � X1X4)(1 � X1X3X5)(1 � X2X5).

Because Xi
2 � Xi, then

�(X1, X2, X3, X4, X5) � X1X4 � X1X3X5 � X2X5 � X1X3X4X5 � X1X2X4X5

� X1X2X3X5 � X1X2X3X4X5.

Noting that � is a binary random variable taking on the value 1 and 0,

E[�(X1, X2, X3, X4, X5)] � P{�(X1, X2, X3, X4, X5) � 1}
� R(p1, p2, p3, p4, p5).

Therefore,

R(p1, p2, p3, p4, p5)
� E[X1X4 � X1X3X5 � X2X5 � X1X3X4X5 � X1X2X4X5

� X1X2X3X5 � X1X2X3X4X5]

� p1p4 � p1p3p5 � p2p5 � p1p3p4p5 � p1p2p4p5 � p1p2p3p5

� p1p2p3p4p5.

This result is the same as the one obtained earlier and requires essentially the same amount
of calculation.

25.3 CALCULATION OF EXACT SYSTEM RELIABILITY 25-7
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If we use all the minimal cuts, there are also two ways to obtain the exact system re-
liability. Because the system will fail if and only if all the components in at least one of
the minimal cuts fail, the system reliability can be expressed as

R(p1, p2, p3, p4, p5) � 1 � P{�(X1, X2, X3, X4, X5) � 0}

� 1 � P{X1 � 0, X2 � 0) � (X4 � 0, X5 � 0)
�(X2 � 0, X3 � 0, X4 � 0) � (X1 � 0, X5 � 0)

� 1 � P{X1 � 0, X2 � 0} � P{X4 � 0, X5 � 0}
� P{X2 � 0, X3 � 0, X4 � 0} � P{X1 � 0, X5 � 0}
� P{X1 � 0, X2 � 0, X4 � 0, X5 � 0}
� P{X1 � 0, X2 � 0, X3 � 0, X4 � 0}
� P{X1 � 0, X2 � 0, X5 � 0}
� P{X2 � 0, X3 � 0, X4 � 0, X5 � 0}
� P{X1 � 0, X4 � 0, X5 � 0}
� P{X1 � 0, X2 � 0, X3 � 0, X4 � 0, X5 � 0}
� P{X1 � 0, X2 � 0, X3 � 0, X4 � 0, X5 � 0}
� P{X1 � 0, X2 � 0, X4 � 0, X5 � 0}
� P{X1 � 0, X2 � 0, X3 � 0, X4 � 0, X5 � 0}
� P{X1 � 0, X2 � 0, X3 � 0, X4 � 0, X5 � 0}
� P{X1 � 0, X2 � 0, X3 � 0, X4 � 0, X5 � 0}

� 1 � q1q2 � q4q5 � q2q3q4 � q1q5 � q1q2q3q4

� q1q2q5 � q2q3q4q5 � q1q4q5 � q1q2q3q4q5,

where

qi � 1 � pi.

This result is, of course, algebraically equivalent to the one obtained previously, and it in-
volves 24 � 1 � 15 terms in the expansion of the reliability function. In general, if there
are s cuts, there are 2s � 1 terms in the expansion.

The second method of determining the system reliability from cuts is: For the mini-
mal cut containing components 1 and 2, 1 � (1 � X1)(1 � X2) � 0 if and only if both
components fail. This fact is similarly true for the other three cuts. However, the system
will operate if at least one of the components in each cut operates. Hence, cuts operate
as a series system, so that

�(X1, X2, X3, X4, X5)
� min[1 � (1 � X1)(1 � X2), 1 � (1 � X4)(1 � X5),

1 � (1 � X2)(1 � X3)(1 � X4), 1 � (1 � X1)(1 � X5)]

� ([1 � (1 � X1)(1 � X2)][1 � (1 � X4)(1 � X5)]
[1 � (1 � X2)(1 � X3)(1 � X4)][1 � (1 � X1)(1 � X5)])

� 1 � (1 � X1)(1 � X2) � (1 � X4)(1 � X5)
� (1 � X2)(1 � X3)(1 � X4) � (1 � X1)(1 � X5)
� (1 � X1)(1 � X2)(1 � X3)(1 � X4)
� (1 � X1)(1 � X2)(1 � X5)
� (1 � X2)(1 � X3)(1 � X4)(1 � X5)
� (1 � X1)(1 � X4)(1 � X5)
� (1 � X1)(1 � X2)(1 � X3)(1 � X4)(1 � X5).

Taking expectations on both sides leads to the desired expression for the reliability.
Again, this method requires essentially the same amount of calculation as required for the
first procedure using cuts.

25-8 CHAPTER 25 RELIABILITY
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Although the results presented in this section were based upon the example, an ex-
tension to any system can be easily obtained. All minimal paths and/or cuts must be found
and one of the four methods presented chosen.

As previously mentioned, if there are r paths and s cuts in the network, then calculat-
ing the exact reliability using paths will involve summing 2r � 1 terms, and using cuts will
involve 2s � 1 terms. Hence, the method using paths should be used if and only if r � s.
Generally, however, it is simpler to find minimal paths rather than minimal cuts, so that
the method using paths may have to be used because finding all cuts may be computa-
tionally infeasible. It is evident that finding the exact reliability of a system is quite diffi-
cult and that bounds are desirable, provided that the calculations are substantially reduced.

25.4 BOUNDS ON SYSTEM RELIABILITY 25-9

■ 25.4 BOUNDS ON SYSTEM RELIABILITY

It is evident that the calculations required to compute exact system reliability are numer-
ous, and that other methods, such as obtaining upper and lower bounds, are desirable.

To obtain bounds, the following result concerning binary random variables is very
useful.

If X1, X2, . . . , Xn are independent binary random variables that take on the value 1 or 0,
and Yi � 	j�Ji

Xj, where the product ranges over all j that are elements in the set Ji,
i � 1, 2, . . . , r, then

P{Y1 � 0, Y2 � 0, . . . , Yi � 0} � P{Y1 � 0}P{Y2 � 0} . . . P{Yi � 0}.

Returning to the example of Sec. 25.3, it was pointed out that the system will operate if
all the components in at least one of the minimal paths operate, so that

R(p1, p2, p3, p4, p5) � P{�(X1, X2, X3, X4, X5) � 1}

� 1 � P{all paths fail}

� 1 � P{X1X4 � 0, X1X3X5 � 0, X2X5 � 0}.

From the result on binary random variables,

R(p1, p2, p3, p4, p5) � 1 � P{X1X4 � 0}P{X1X3X5 � 0}P{X2X5 � 0}

� 1 � (1 � p1p4)(1 � p1p3p5)(1 � p2p5)

� 1 � (1 � p2)2(1 � p3).

when

pi � p,

so that an upper bound is obtained.
Similarly, in Sec. 25.3, it was pointed out that the system will operate if at least one

of the components in each cut operates, so that

R(p1, p2, p3, p4, p5)
� P{�(X1, X2, X3, X4, X5) � 1} � P{at least one of X1, X2 operates; at least one

of X4, X5 operates; at least one of X2, X3, X4 operates; at least one of X1, X5

operates}

� P{[1 � (1 � X1)(1 � X2)] � 1, [1 � (1 � X4)(1 � X5)] � 1,
[1 � (1 � X2)(1 � X3)(1 � X4)] � 1, [1 � (1 � X1)(1 � X5)] � 1}

� P{[1 � X1)(1 � X2) � 0, (1 � X4)(1 � X5) � 0,
(1 � X2)(1 � X3)(1 � X4) � 0, (1 � X1)(1 � X5) � 0}.
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■ 25.5 BOUNDS ON RELIABILITY BASED UPON FAILURE TIMES

Now (1 � Xi) are independent binary random variables that take on the values 1 and 0,
so that the result on binary random variables is again applicable; that is.

R(p1, p2, p3, p4, p5)
� (P{(1 � X1)(1 � X2) � 0}P{(1 � X4)(1 � X5) � 0}

P{(1 � X2)(1 � X3)(1 � X4) � 0}P(1 � X1)(1 � X5) � 0})

� ([1 � (1 � p1)(1 � p2)][1 � (1 � p4)(1 � p5)]
[1 � (1 � p2)(1 � p3)(1 � p4)][1 � (1 � p1)(1 � p5)])

� [1 � (1 � p)2]3[1 � (1 � p)3],

when

pi � p,

so that a lower bound is obtained.
Thus, we obtain an upper bound on the reliability based upon paths and a lower bound

based upon cuts. For example, if pi � p � 0.9, then

0.9693 � [1 � (0.1)2]3[1 � (0.1)3] � R(0.9, 0.9, 0.9, 0.9, 0.9)
� 1 � [1 � (0.9)2]2[1 � (0.9)3] � 0.9902.

Furthermore, the exact reliability obtained from the expressions in Sec. 25.3 is given by

R(0.9, 0.9, 0.9, 0.9, 0.9) � (0.9)2 � (0.9)3 � 3(0.9)4 � (0.9)5 � 0.9712.

In general, this technique provides useful results in that the bounds are frequently quite
narrow.

The previous sections considered systems that performed successfully during a designated
period or failed during this same period. An alternative way of viewing systems is to view
their performance as a function of time.

Consider a component (or system) and its associated random variable, the time to
failure, T. Denote the cumulative distribution function of the time to failure of the com-
ponent by F and its density function by f. In terms of the previous discussion, the random
variables X and T are related in that X takes on the values

1, if T � t
0, if T � t.

Then

R(t) � P{X � 1} � 1 � F(t) � �x

t
f(y) dy.

An appealing intuitive property in reliability is the failure rate. For those values of t
for which F(t) � 1, the failure rate r(t) is defined by

r(t) � 

R
f(
(
t
t
)
)


.

This function has a useful probabilistic interpretation, namely, r(t) dt represents the con-
ditional probability that an object surviving to age t will fail in the interval [t, t � dt]. This
function is sometimes called the hazard rate.

In many applications, there is every reason to believe that the failure rate tends to in-
crease because of the inevitable deterioration that occurs. Such a failure rate that remains
constant or increases with age is said to have an increasing failure rate (IFR).
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In some applications, the failure rate tends to decrease. It would be expected to de-
crease initially, for instance, for materials that exhibit the phenomenon of work harden-
ing. Certain solid-state electronic devices are also believed to have a decreasing failure
rate. Thus, a failure rate that remains constant or decreases with age is said to have a 
decreasing failure rate (DFR).

The failure rate possesses some interesting properties. The time to failure distribution
is completely determined by the failure rate. In particular, it is easily shown that

R(t) � 1 � F(t) � exp ���t

0
r(�) d�)	.

Thus, an assumption made about the failure rate has direct implications on the time to
failure distribution. As an example, consider a component whose failure distribution is
given by the exponential distribution, i.e.,

F(t) � P{T � t} � 1 � e�t/�.

Thus, R(t) is given by e�t/�, and the failure rate is given by

r(t) � 

(1/

e
�
�

)e
t/

�

�

t/�


 � 

1
�


.

Note that the exponential distribution has a constant failure rate and hence has both IFR
and DFR. In fact, using the expression relating the time to failure distribution and the fail-
ure rate, it is evident that a component having a constant failure rate must have a time to
failure distribution that is exponential.

Bounds for IFR Distributions

Under either the IFR or DFR assumption, it is possible to obtain sharp bounds on the re-
liability in terms of moments and percentiles: In particular, such bounds can be derived
from statements based upon the mean time to failure. This fact is particularly important
because many design engineers present specifications in terms of mean time to failure.

Because the exponential distribution with constant failure rate is the boundary distri-
bution between IFR and DFR distributions, it provides natural bounds on the survival
probability of IFR and DFR distributions. In particular, it can be shown that if all that is
known about the failure distribution is that it is IFR and has mean �, then the greatest
lower bound on the reliability that can be given is

R(t)� �
and the inequality is sharp; i.e., the exponential distribution with mean � attains the lower
bound for t � �, and the degenerate distribution concentrating at � attains the lower bound
for t � �. This situation can be represented graphically as shown in Fig. 25.3.

e�t/�, for t � �
0, for t � �,

25.5 BOUNDS ON RELIABILITY BASED UPON FAILURE TIMES 25-11

m
t

R(t )

e−t/m

■ FIGURE 25.3
A lower bound on reliability
for IFR distributions.
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The least upper bound on R(t) that can be obtained if we know only that F is IFR
with mean � is given by

R(t) � �
where � depends on t and satisfies 1 � �� � e��t. It is important to note that the � in the
term e��t is a function of t, so that a different � must be found for each t. For fixed t and
�, this � is obtained by finding the intersection of the linear function (1 � ��) and the ex-
ponential function e��t. It can be shown that for t � �, such an intersection always exists.

Thus, R(t) for an IFR distribution with mean � can be bounded above and below, as
shown in Fig. 25.4. Note that the lower bound is the only one of consequence for t � �,
and that the upper bound is the only one of consequence for t � �.

Increasing Failure Rate Average

Now that bounds on the reliability of a component have been obtained, what can be said
about the preservation of monotone failure rate; i.e., what structures have the IFR prop-
erty when their individual components have this property? Series structures of indepen-
dent IFR (DFR) components are also IFR (DFR), k out of n structures consisting of n
identical independent components, each having an IFR failure distribution, are also IFR;
however, parallel structures of independent IFR components are not IFR unless they are
composed of identical components. Thus, it is evident that, even for some simple systems,
there may not be a preservation of the monotone failure rate.

Instead of using the failure rate as a means for characterizing the reliability,

R(t) � exp ���t

0
r(�) d�	,

a somewhat less appealing characterization can be obtained from the failure-rate average
function,

�t

0


r(�)

t
d�


 � � 

log

t
R(t)

.

A time-to-failure distribution such that F (0) � 0 is called increasing failure rate aver-
age (IFRA) if and only if

�t

0


r(�)

t
d�




1, for t � �
e��t, for t � �,
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m
t

R
(t

)

e−t/m e−wt

1

Upper
bound

Lower
bound

0

■ FIGURE 25.4
Upper and lower bounds on
reliability for IFR distributions.
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In recent decades, the delivery of systems that perform adequately for a specified period of
time in a given environment has become an important goal for both industry and govern-
ment. In the space program, higher system reliability means the difference between life
and death. In general, the cost of maintaining and/or repairing electronic equipment dur-
ing the first year of operation often exceeds the purchase cost, giving impetus to the study
and development of reliability techniques.

This chapter has been concerned with determining system reliability (or bounds) from
a knowledge of component reliability or characteristics of components, such as failure
rate or mean time to failure. Even the desirable state of knowing these values may lead
to cumbersome and sometimes crude results. However, it must be emphasized that these
values, e.g., component reliability or mean time to failure, may not be known and are of-
ten just the design engineers’ educated guesses. Furthermore, except in the case of the ex-
ponential distribution, knowledge of the mean time to failure leads to nothing but bounds.
Also, it is evident that the reliability of components or systems depends heavily upon the
failure rate, and the assumption of constant failure rate, which appears to be used fre-
quently in practice, should not be made without careful analysis.

The contents of the chapter have not been concerned with the statistical aspects of
reliability, i.e., estimating reliability from test data. This subject was omitted because the
book’s emphasis is on probability models, but this is not a reflection on its importance.
The statistical aspects of reliability may very well be the important problem. Statistical
estimation of component reliability is well in hand, but estimation of system reliability
from component data is virtually an unsolved problem.
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PROBLEMS

25.1-1. Show that the structure function for a three-component sys-
tem that functions if and only if component 1 functions and at least
one of components 2 or 3 functions is given by

(X1X2X3) X1 max(X2, X3)
X1 [1 (1 X2)(1 X3)].

25.1-2. Show that the structure function for a four-component sys-
tem that functions if and only if components 1 and 2 function and
at least one of components 3 or 4 functions is given by

(X1, X2, X3, X4) X1X2 max(X3, X4).

25.2-1. Find the reliability of the structure function given in
Prob. 25.1-1 when each component has probability pi of per-
forming successfully and the components are independent.

25.2-2. Find the reliability of the structure function given in
Prob. 25.1-2 when each component has probability pi of per-
forming successfully and the components are independent.

25.3-1. Consider a system consisting of three components (labeled
1, 2, 3) that operate simultaneously. The system is able to function
satisfactorily as long as any two of the three components are still
functioning satisfactorily. The goal is for the system to function
satisfactorily for a length of time t, so the system’s reliability, R(t),
is the probability that this will occur. The times until failure of the
individual components are independently (but not identically) dis-
tributed, where pi is the probability that the time until failure of
component i exceeds t, for i 1, 2, 3.
(a) Is this a k out of n system? If so, what are k and n?
(b) Draw a network representation of this system.

(c) Develop an explicit expression for the structure function of this
system.

(d) Find R(t) as a function of the pi’s.

25.3-2. Consider a system consisting of five components, labeled
1, 2, 3, 4, 5. The system is able to function satisfactorily as long as
at least one of the following three combinations of components has
every component in that combination functioning satisfactorily:
(1) Components 1 and 4;
(2) Components 2 and 5;
(3) Components 2, 3, and 4.

For a given amount of time t, let Ri(t) be the known reliability of
component i (i 1, 2, 3, 4, 5), that is, the probability that this com-
ponent will function satisfactorily for this length of time. Assume
that the times until failure of the individual components are inde-
pendently distributed. Let R(t) be the unknown reliability of the
overall system.
(a) Draw a network representation of this system.
(b) Develop an explicit expression for the structure function of this

system.
(c) Find R(t) as a function of the Ri(t).

25.3-3. Suppose that there exist three different types of compo-
nents, with two units of each type. Each unit operates indepen-
dently, and each type has probability pi of performing successfully.
Either one or two systems can be built. One system can be as-
sembled as follows: The two units of each type of component are
put together in parallel, and the three types are then assembled to
operate in series. Alternatively, two subsystems are assembled, each
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consisting of the three different types of components assembled in
series. The final system is obtained by putting the two subsystems
together in parallel. Which system has higher reliability?

25.4-1. Consider the following network.

Assume that each component is independent with probability pi of
performing satisfactorily.
(a) Find all the minimal paths and cuts.
(b) Compute the exact system reliability, and evaluate it when pi

p 0.90.
(c) Find upper and lower bounds on the reliability, and evaluate

them when pi p 0.90.

25.4-2. Follow the instructions of Prob. 25.4-1 when using the 
following network.

Note that component 3 flows in both directions.

25.4-3. Follow the instructions of Prob. 25.4-1 when using the 
following network.

25.4-4. Follow the instructions of Prob. 25.4-1 when using the 
following network.

25.5-1. Suppose F is IFR, with 0.5. Find upper and lower
bounds on R(t) for (a)t 1

4 and (b) t 1.

25.5-2. A time-to-failure distribution is said to have a Weibull dis-
tribution if the cumulative distribution function is given by

F(t) 1 e t / , where , 0.

Find the failure rate, and show that the Weibull distribution is IFR
when 1 and DFR when 0 1.

25.5-3. Suppose that a system consists of two different, but inde-
pendent, components, arranged into a series system. Further as-
sume that the time to failure for each component has an exponen-
tial distribution with parameter i, i 1, 2. Show that the
distribution of the time to failure of the system is IFR.

25.5-4. Consider a parallel system consisting of two independent
components whose time to failure distributions are exponential
with parameters 1 and 2, respectively ( 1 2). Show that the
time to failure distribution of the system is not IFR.

R(t) P{T1 t or T2 t} 1 P{T1 t and T2 t}
1 (1 e t/ 1)(1 e t/ 2).

25.5-5. For Prob. 25.5-4, show that the time to failure distribution
is IFRA.

PROBLEMS 25-15
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26C H A P T E R

The Application of Queueing Theory

A s described in Chap. 17, queueing theory has enjoyed a prominent place among the
modern analytical techniques of OR. However, the emphasis has been on develop-

ing a descriptive mathematical theory. Thus, queueing theory is not directly concerned
with achieving the goal of OR: optimal decision making. Rather, it develops information
on the behavior of queueing systems. This theory provides part of the information needed
to conduct an OR study attempting to find the best design for a queueing system.

Section 17.10 discusses the application of queueing theory in the broader context of an
overall OR study. This chapter expands considerably further on this same topic. It begins by
introducing three examples that will be used for illustration throughout the chapter. Section
26.2 discusses the basic considerations for decision making in this context. The following
two sections then develop decision models for the optimal design of queueing systems. The
last model requires the incorporation of travel-time models, which are presented in Sec. 26.5.

■ 26.1 EXAMPLES

Example 1—How Many Repairers?

SIMULATION, INC., a small company that makes gidgets for analog computers, has
10 gidget-making machines. However, because these machines break down and require
repair frequently, the company has only enough operators to operate eight machines at
a time, so two machines are available on a standby basis for use while other machines
are down. Thus, eight machines are always operating whenever no more than two ma-
chines are waiting to be repaired, but the number of operating machines is reduced by 1
for each additional machine waiting to be repaired.

The time until any given operating machine breaks down has an exponential distribu-
tion, with a mean of 20 days. (A machine that is idle on a standby basis cannot break down.)
The time required to repair a machine also has an exponential distribution, with a mean of
2 days. Until now the company has had just one repairer to repair these machines, which
has frequently resulted in reduced productivity because fewer than eight machines are op-
erating. Therefore, the company is considering hiring a second repairer, so that two ma-
chines can be repaired simultaneously.

Thus, the queueing system to be studied has the repairers as its servers and the ma-
chines requiring repair as its customers, where the problem is to choose between having
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26-2 CHAPTER 26 THE APPLICATION OF QUEUEING THEORY

one or two servers. (Notice the analogy between this problem and the County Hospital
emergency room problem described in Sec. 17.1.) With one slight exception, this system
fits the finite calling population variation of the M/M/s model presented in Sec. 17.6,
where N � 10 machines, � � �

2
1
0
� customer per day (for each operating machine), and 

� � �
1
2

� customer per day. The exception is that the �0 and �1 parameters of the birth-and-
death process are changed from �0 � 10� and �1 � 9� to �0 � 8� and �1 � 8�. (All the
other parameters are the same as those given in Sec. 17.6.) Therefore, the Cn factors for
calculating the Pn probabilities change accordingly (see Sec. 17.5).

Each repairer costs the company approximately $280 per day. However, the estimated
lost profit from having fewer than eight machines operating to produce gidgets is $400
per day for each machine down. (The company can sell the full output from eight oper-
ating machines, but not much more.)

The analysis of this problem will be pursued in Secs. 26.3 and 26.4.

Example 2—Which Computer?

EMERALD UNIVERSITY is making plans to lease a supercomputer to be used for sci-
entific research by the faculty and students. Two models are being considered: one from
the MBI Corporation and the other from the CRAB Company. The MBI computer costs
more but is somewhat faster than the CRAB computer. In particular, if a sequence of typ-
ical jobs were run continuously for one 24-hour day, the number completed would have
a Poisson distribution with a mean of 30 and 25 for the MBI and the CRAB computers,
respectively. It is estimated that an average of 20 jobs will be submitted per day and that
the time from one submission to the next will have an exponential distribution with a mean
of 0.05 day. The leasing cost per day would be $5,000 for the MBI computer and $3,750
for the CRAB computer.

Thus, the queueing system of concern has the computer as its (single) server and the
jobs to be run as its customers. Furthermore, this system fits the M/M/1 model presented
at the beginning of Sec. 17.6. With 1 day as the unit of time, � � 20 customers per day,
and � � 30 and 25 customers per day with the MBI and the CRAB computers, respec-
tively. You will see in Secs. 26.3 and 26.4 how the decision was made between the two
computers.

Example 3—How Many Tool Cribs?

The MECHANICAL COMPANY is designing a new plant. This plant will need to include
one or more tool cribs in the factory area to store tools required by the shop mechanics.
The tools will be handed out by clerks as the mechanics arrive and request them and will
be returned to the clerks when they are no longer needed. In existing plants, there have
been frequent complaints from supervisors that their mechanics have had to waste too much
time traveling to tool cribs and waiting to be served, so it appears that there should be more
tool cribs and more clerks in the new plant. On the other hand, management is exerting
pressure to reduce overhead in the new plant, and this reduction would lead to fewer tool
cribs and fewer clerks. To resolve these conflicting pressures, an OR study is to be con-
ducted to determine just how many tool cribs and clerks the new plant should have.

Each tool crib constitutes a queueing system, with the clerks as its servers and the
mechanics as its customers. Based on previous experience, it is estimated that the time
required by a tool crib clerk to service a mechanic has an exponential distribution, with
a mean of �

1
2

� minute. Judging from the anticipated number of mechanics in the entire factory
area, it is also predicted that they would require this service randomly but at a mean rate
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of 2 mechanics per minute. Therefore, it was decided to use the M/M/s model of Sec. 17.6
to represent each queueing system. With 1 hour as the unit of time, 120. If only one
tool crib were to be provided, also would be 120. With more than one tool crib, this
mean arrival rate would be divided among the different queueing systems.

The total cost to the company of each tool crib clerk is about $20 per hour. The cap-
ital recovery costs, upkeep costs, and so forth associated with each tool crib provided are
estimated to be $16 per working hour. While a mechanic is busy, the value to the com-
pany of his or her output averages about $48 per hour.

Sections 26.3 and 26.4 include discussions of how this (and additional) information
was used to make the required decisions.

26.2 DECISION MAKING 26-3

26.2 DECISION MAKING

Queueing-type situations that require decision making arise in a wide variety of contexts.
For this reason, it is not possible to present a meaningful decision-making procedure that
is applicable to all these situations. Instead, this section attempts to give a broad concep-
tual picture of a typical approach.

Designing a queueing system typically involves making one or a combination of the
following decisions:

1. Number of servers at a service facility.
2. Efficiency of the servers.
3. Number of service facilities.

When such problems are formulated in terms of a queueing model, the corresponding de-
cision variables usually are s (number of servers at each facility), (mean service rate per
busy server), and (mean arrival rate at each facility). The number of service facilities is
directly related to because, assuming a uniform workload among the facilities, equals
the total mean arrival rate to all facilities divided by the number of facilities. (Section 17.10
also mentions two other possible decisions when designing a queueing system, namely, the
amount of waiting space in the queue and any priorities for different categories of cus-
tomers, but we will focus in this chapter on the three types of decisions listed above.)

Refer to Sec. 26.1 and note how the three examples there respectively illustrate situ-
ations involving these three decisions. In particular, the decision facing Simulation, Inc.,
in Example 1 is how many repairers (servers) to provide. The problem for Emerald 
University  in Example 2 is how fast a computer (server) is needed. The problem facing  
Mechanical Company  in Example 3 is how many tool cribs (service facilities) to install as  
well as how many clerks (servers) to provide at each facility.

The first kind of decision is particularly common in practice. However, the other two
also arise frequently, particularly for the internal service systems described in Sec. 17.3.
One example illustrating a decision on the efficiency of the servers is the selection of the
type of materials-handling equipment (the servers) to purchase to transport certain kinds
of loads (the customers). Another such example is the determination of the size of a main-
tenance crew (where the entire crew is one server). Other decisions concern the number
of service facilities, such as copy centers, computer facilities, tool cribs, storage areas,
and so on, to distribute throughout an area.

All the specific decisions discussed here involve the general question of the appropriate
level of service to provide in a queueing system. As mentioned at the beginning of Chap. 17
and in Sec. 17.10, decisions regarding the amount of service capacity to provide usually are
based primarily on two considerations: (1) the cost incurred by providing the service, as
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shown in Fig. 26.1, and (2) the amount of waiting time for that service, as suggested in Fig. 26.2.
Figure 26.2 can be obtained by using the appropriate waiting-time equation from queueing
theory. (For better conceptualization, we have drawn these figures and the subsequent two
figures as smooth curves even though the level of service may be a discrete variable.)

These two considerations create conflicting pressures on the decision maker. The ob-
jective of reducing service costs recommends a minimal level of service. On the other
hand, long waiting times are undesirable, which recommends a high level of service. There-
fore, it is necessary to strive for some type of compromise. To assist in finding this com-
promise, Figs. 26.1 and 26.2 may be combined, as shown in Fig. 26.3. The problem is
thereby reduced to selecting the point on the curve of Fig. 26.3 that gives the best bal-
ance between the average delay in being serviced and the cost of providing that service.
Reference to Figs. 26.1 and 26.2 indicates the corresponding level of service.

26-4 CHAPTER 26 THE APPLICATION OF QUEUEING THEORY

C
os

t o
f 

se
rv

ic
e 

pe
r 

ar
ri

va
l

Level of service

E
xp

ec
te

d 
w

ai
tin

g 
tim

e

Level of service

■ FIGURE 26.1
Service cost as a function of
service level.
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Relationship between
average delay and service
cost.
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Obtaining the proper balance between delays and service costs requires answers to
such questions as, How much expenditure on service is equivalent (in its detrimental im-
pact) to a customer’s being delayed 1 unit of time? Thus, to compare service costs and
waiting times, it is necessary to adopt (explicitly or implicitly) a common measure of their
impact. The natural choice for this common measure is cost, which then requires estima-
tion of the cost of waiting.

Because of the diversity of waiting-line situations, no single process for estimating
the cost of waiting is generally applicable. However, we shall discuss the basic consider-
ations involved for several types of situations.

One broad category is where the customers are external to the organization provid-
ing the service; i.e., they are outsiders bringing their business to the organization. Con-
sider first the case of profit-making organizations (typified by the commercial service sys-
tems described in Sec. 17.3). From the viewpoint of the decision maker, the cost of waiting
probably consists primarily of the lost profit from lost business. This loss of business may
occur immediately (because the customer grows impatient and leaves) or in the future (be-
cause the customer is sufficiently irritated that he or she does not come again). This kind
of cost is quite difficult to estimate, and it may be necessary to revert to other criteria,
such as a tolerable probability distribution of waiting times. When the customer is not a
human being, but a job being performed on order, there may be more readily identifiable
costs incurred, such as those caused by idle in-process inventories or increased expedit-
ing and administrative effort.

Now consider the type of situation where service is provided on a nonprofit basis to
customers external to the organization (typical of social service systems and some trans-
portation service systems described in Sec. 17.3). In this case, the cost of waiting usually
is a social cost of some kind. Thus, it is necessary to evaluate the consequences of the
waiting for the individuals involved and/or for society as a whole and to try to impute a
monetary value to avoiding these consequences. Once again, this kind of cost is quite dif-
ficult to estimate, and it may be necessary to revert to other criteria.

A situation may be more amenable to estimating waiting costs if the customers are
internal to the organization providing the service (as for the internal service systems dis-
cussed in Sec. 17.3). For example, the customers may be machines (as in Example 1) or
employees (as in Example 3) of a firm. Therefore, it may be possible to identify directly
some of or all the costs associated with the idleness of these customers. Typically, what
is being wasted by this idleness is productive output, in which case the waiting cost be-
comes the lost profit from all lost productivity.

Given that the cost of waiting has been evaluated explicitly, the remainder of the analysis
is conceptually straightforward. The objective is to determine the level of service that mini-
mizes the total of the expected cost of service and the expected cost of waiting for that ser-
vice. This concept is depicted in Fig. 26.4, where WC denotes waiting cost, SC denotes ser-
vice cost, and TC denotes total cost. Thus, the mathematical statement of the objective is to

Minimize E(TC) � E(SC) � E(WC).

The next three sections are concerned with the application of this concept to various
types of problems. Thus, Sec. 26.3 describes how E(WC) can be expressed mathemati-
cally. Section 26.4 then focuses on E(SC) to formulate the overall objective function E(TC)
for several basic design problems (including some with multiple decision variables, so
that the level-of-service axis in Fig. 26.4 then requires more than one dimension). This
section also introduces the fact that when a decision on the number of service facilities is
required, time spent in traveling to and from a facility should be included in the analysis
(as part of the total time waiting for service). Section 26.5 discusses how to determine the
expected value of this travel time.

26.2 DECISION MAKING 26-5
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To express E(WC) mathematically, we must first formulate a waiting-cost function that de-
scribes how the actual waiting cost being incurred varies with the current behavior of the queue-
ing system. The form of this function depends on the context of the individual problem.
However, most situations can be represented by one of the two basic forms described next.

The g(N) Form

Consider first the situation discussed in the preceding section where the queueing system
customers are internal to the organization providing the service, and so the primary cost of
waiting may be the lost profit from lost productivity. The rate at which productive output is
lost sometimes is essentially proportional to the number of customers in the queueing sys-
tem. However, in many cases there is not enough productive work available to keep all the
members of the calling population continuously busy. Therefore, little productive output may
be lost by having just a few members idle, waiting for service in the queueing system,
whereas the loss may increase greatly if a few more members are made idle because they
require service. Consequently, the primary property of the queueing system that determines
the current rate at which waiting costs are being incurred is N, the number of customers in
the system. Thus, the form of the waiting-cost function for this kind of situation is that il-
lustrated in Fig. 26.5, namely, a function of N. We shall denote this form by g(N).

The g(N ) function is constructed for a particular situation by estimating g(n), the
waiting-cost rate incurred when N � n, for n � 1, 2, . . . , where g(0) � 0. After com-
puting the Pn probabilities for a given design of the queueing system, we can calculate

E(WC) � E(g(N)).

Because N is a random variable, this calculation is made by using the expression for the
expected value of a function of a discrete random variable

E(WC) � �
�

n�0
g(n)Pn.

The Linear Case. For the special case where g(N ) is a linear function (i.e., when the
waiting cost is proportional to N ), then

g(N ) � CwN,
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■ FIGURE 26.4
Conceptual solution
procedure for many waiting-
line problems.

■ 26.3 FORMULATION OF WAITING-COST FUNCTIONS
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where Cw is the cost of waiting per unit time for each customer. In this case, E(WC) re-
duces to

E(WC) � Cw�
�

n�0
nPn � CwL.

Example 1—How Many Repairers? For Example 1 of Sec. 26.1, Simulation, Inc.,
has two standby widget-making machines, so there is no lost productivity as long as the
number of customers (machines requiring repair) in the system does not exceed 2. How-
ever, for each additional customer (up to the maximum of 10 total), the estimated lost
profit is $400 per day. Therefore,

g(n) � �
as shown in Table 26.1. Consequently, after calculating the Pn probabilities as described in
Sec. 26.1, E(WC) is calculated by summing the rightmost column of Table 26.1 for each
of the two cases of interest, namely, having one repairer (s � 1) or two repairers (s � 2).

for n � 0, 1, 2
for n � 3, 4, . . . , 10,

0
400(n � 2)
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■ FIGURE 26.5
The waiting-cost function as
a function of N.

■ TABLE 26.1 Calculation of E(WC) for Example 1

s � 1 s � 2

N � n g(n) Pn g(n)Pn Pn g(n)Pn

0 0 0.271 0 0.433 0
1 0 0.217 0 0.346 0
2 0 0.173 0 0.139 0
3 400 0.139 56 0.055 24
4 800 0.097 78 0.019 16
5 1,200 0.058 70 0.006 8
6 1,600 0.029 46 0.001 0
7 2,000 0.012 24 3 � 10�4 0
8 2,400 0.003 7 4 � 10�5 0
9 2,800 7 � 10�4 0 4 � 10�6 0

10 3,200 7 � 10�5 0 2 � 10�7 0

E(WC) $281 per day $48 per day
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The h(�) Form

Now consider the cases discussed in Sec. 26.2 where the queueing system customers are
external to the organization providing the service. Three major types of queueing systems
described in Sec. 17.3—commercial service systems, transportation service systems, and
social service systems—typically fall into this category. In the case of commercial ser-
vice systems, the primary cost of waiting may be the lost profit from lost future busi-
ness. For transportation service systems and social systems, the primary cost of waiting
may be in the form of a social cost. However, for either type of cost, its magnitude tends
to be affected greatly by the size of the waiting times experienced by the customers.
Thus, the primary property of the queueing system that determines the waiting cost cur-
rently being incurred is �, the waiting time in the system for the individual customers.
Consequently, the form of the waiting-cost function for this kind of situation is that il-
lustrated in Fig. 26.6, namely, a function of �. We shall denote this form by h(�).

Note that the example of a h(�) function shown in Fig. 26.6 is a nonlinear function
where the slope keeps increasing as � increases. Although h(�) sometimes is a simple
linear function instead, it is fairly common to have this kind of nonlinear function. An in-
creasing slope reflects a situation where the marginal cost of extending the waiting time
keeps increasing. A customer may not mind a “normal” wait of reasonable length, in which
case there may be virtually no negative consequences for the organization providing the
service in terms of lost profit from lost future business, a social cost, etc. However, if the
wait extends even further, the customer may become increasingly exasperated, perhaps
even missing deadlines. In such a situation, the negative consequences to the organization
may rapidly become relatively severe.

One way of constructing the h(�) function is to estimate h(w) (the waiting cost in-
curred when a customer’s waiting time � � w) for several values of w and then to fit a
polynomial to these points. The expectation of this function of a continuous random vari-
able is then defined as

E(h(�)) � ��

0
h(w) f�(w) dw,

where f�(w) is the probability density function of �. However, because E(h(�)) is the
expected waiting cost per customer and E(WC) is the expected waiting cost per unit time,
these two quantities are not equal in this case. To relate them, it is necessary to multiply
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■ FIGURE 26.6
The waiting-cost function as
a function of �.
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E(h(�)) by the expected number of customers per unit time entering the queueing sys-
tem. In particular, if the mean arrival rate is a constant �, then

E(WC) � �E(h(�)) � � ��

0
h(w) f�(w) dw.

Example 2—Which Computer? Because the faculty and students of Emerald Uni-
versity would experience different turnaround times with the two computers under con-
sideration (see Sec. 26.1), the choice between the computers required an evaluation of the
consequences of making them wait for their jobs to be run. Therefore, several leading sci-
entists on the faculty were asked to evaluate these consequences.

The scientists agreed that one major consequence is a delay in getting research done.
Little effective progress can be made while one is awaiting the results from a computer
run. The scientists estimated that it would be worth $500 to reduce this delay by a day.
Therefore, this component of waiting cost was estimated to be $500 per day, that is, 500�,
where � is expressed in days.

The scientists also pointed out that a second major consequence of waiting is a break
in the continuity of the research. Although a short delay (a fraction of a day) causes lit-
tle problem in this regard, a longer delay causes significant wasted time in having to gear
up to resume the research. The scientists estimated that this wasted time would be roughly
proportional to the square of the delay time. Dollar figures of $100 and $400 were then
imputed to the value of being able to avoid this consequence entirely rather than having
a wait of �

1
2

� day and 1 day, respectively. Therefore, this component of the waiting cost was
estimated to be 400�2.

This analysis yields

h(�) � 500� � 400�2.

Because

f�(w) � �(1 � �)e��(1��)w

for the M/M/1 model (see Sec. 17.6) fitting this single-server queueing system,

E(h(�)) � ��

0
(500w � 400w2)�(1 � �)e��(1��)w dw,

where � � �/� for a single-server system. Since �(1 � �) � (� � �), the values of � and
� presented in Sec. 26.1 give

�(1 � �) � �
Evaluating the integral for these two cases yields

E(h(�)) � �
The result represents the expected waiting cost (in dollars) for each person arriving with
a job to be run. Because � � 20, the total expected waiting cost per day becomes

E(WC) � �
The Linear Case. Before turning to the next example, consider now the special case
where h(�) is a linear function,

h(�) � Cw�,

for MBI computer
for CRAB computer.

$1,160 per day
$2,640 per day

for MBI computer
for CRAB computer.

58
132

for MBI computer
for CRAB computer.

10
5
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where Cw is the cost of waiting per unit time for each customer. In this case, E(WC) re-
duces to

E(WC) E(Cw ) Cw( W ) CwL.

Note that this result is identical to the result when g(N ) is a linear function. Consequently,
when the total waiting cost incurred by the queueing system is simply proportional to the
total waiting time, it does not matter whether the g(N ) or the h( ) form is used for the
waiting-cost function.

Example 3—How Many Tool Cribs? As indicated in Sec. 26.1, the value to the 
Mechanical Company of a busy mechanic’s output averages about $48 per hour. Thus,
Cw 48. Consequently, for each tool crib the expected waiting cost per hour is

E(WC) 48L,

where L represents the expected number of mechanics waiting (or being served) at the
tool crib.
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26.4 DECISION MODELS

We mentioned in Sec. 26.2 that three common decision variables in designing queueing
systems are s (number of servers), (mean service rate for each server), and (mean ar-
rival rate at each service facility). We shall now formulate models for making some of
these decisions.

Model 1—Unknown s

Model 1 is designed for the case where both and are fixed at a particular service fa-
cility, but where a decision must be made on the number of servers to have on duty at the
facility.

Formulation of Model 1.

Definition: Cs marginal cost of a server per unit time.
Given: , , Cs.
To find: s.
Objective: Minimize E(TC) Css E(WC).

Because only a few alternative values of s normally need to be considered, the usual
way of solving this model is to calculate E(TC) for these values of s and select the min-
imizing one. Section 17.10 describes and illustrates this approach for the linear case where
E(WC) CwL. The example presented there uses an Excel template that has been provided
in your OR Courseware for performing these calculations when the queueing system fits
the M/M/s queueing model. However, as long as the queueing model is tractable, it often
is not very difficult to perform these calculations yourself for other cases, as illustrated
by the following example.

Example 1—How Many Repairers? For Example 1 of Sec. 26.1, each repairer
(server) costs SIMULATION, INC. approximately $280 per day. Thus, with 1 day as the 
unit of time, Cs = 280. Using the values of E(WC) calculated in Table 26.1 then yields the
results shown in Table 26.2,which indicate that the company should continue having just
one repairer.
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Model 2—Unknown and s

Model 2 is designed for the case where both the efficiency of service, measured by ,
and the number of servers s at a service facility need to be selected.

Alternative values of may be available because there is a choice on the quality of
the servers. For example, when the servers will be materials-handling units, the quality of
the units to be purchased affects their service rate for moving loads.

Another possibility is that the speed of the servers can be adjusted mechanically. For
example, the speed of machines frequently can be adjusted by changing the amount of
power consumed, which also changes the cost of operation.

Still another type of example is the selection of the number of crews (the servers)
and the size of each crew (which determines ) for jointly performing a certain task. The
task might be maintenance work, or loading and unloading operations, or inspection work,
or setup of machines, and so forth.

In many cases, only a few alternative values of are available, e.g., the efficiency of
the alternative types of materials-handling equipment or the efficiency of the alternative
crew sizes.

Formulation of Model 2.

Definitions: f ( ) marginal cost of server per unit time when mean service
rate is .

A set of feasible values of .
Given: , f ( ), A.
To find: , s.
Objective: Minimize E(TC) f ( )s E(WC), subject to A.

Example 2—Which Computer? For Example 2 in Sec. 26.1,  EMERALD UNIVERSITY
30 for 

the MBI computer and 25 for the CRAB computer, where 1 day is the unit of time. 

These computers are the only two being considered by Emerald University, so

A {25, 30}.

Because the leasing cost per day is $3,750 for the CRAB computer ( 25) and $5,000
for the MBI computer ( 30),

f ( )

The supercomputer chosen will be the only one available to the faculty and students, so
the number of servers (supercomputers) for this queueing system is restricted to s 1.
Hence,

E(TC) f ( ) E(WC),

for 25
for 30.

3,750
5,000
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TABLE 26.2 Calculation of E(TC) in dollars per day for Example 1

s Css E(WC) E(TC)

1 $280 $281 $561 per day minimum
2 $560 $ 48 $608 per day
3 $840 $ 0 $840 per day
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where E(WC) is given in Sec. 26.3 for the two alternatives. Thus,

E(TC)

Consequently, the decision was made to lease the MBI supercomputer.

The Application of Model 2 to Other Situations. This example illustrates a case
where the number of feasible values of is finite but the value of s is fixed. If s were not
fixed, a two-stage approach could be used to solve such a problem. First, for each indi-
vidual value of , set Cs f ( ), and solve for the value of s that minimizes E(TC) for
model 1. Second, compare these minimum E(TC) for the alternative values of , and se-
lect the one giving the overall minimum.

When the number of feasible values of is infinite (such as when the speed of a ma-
chine or piece of equipment is set mechanically within some feasible interval), another
two-stage approach sometimes can be used to solve the problem. First, for each individ-
ual value of s, analytically solve for the value of that minimizes E(TC). [This approach
requires setting to zero the derivative of E(TC) with respect to and then solving this
equation for , which can be done only when analytical expressions are available for both
f ( ) and E(WC).] Second, compare these minimum E(TC) for the alternative values of s,
and select the one giving the overall minimum.

This analytical approach frequently is relatively straightforward for the case of s 1
(see Prob. 26.4-11). However, because far fewer and less convenient analytical results are
available for multiple-server versions of queueing models, this approach is either difficult
(requiring computer calculations with numerical methods to solve the equation for ) or
completely impossible when s 1. Therefore, a more practical approach is to consider only
a relatively small number of representative values of and to use available tabulated results
for the appropriate queueing model to obtain (or approximate) E(TC) for these values.

A Special Result with Model 2. Fortunately, under certain fairly common circum-
stances described next, s 1 (and its minimizing value of ) must yield the overall min-
imum E(TC) for model 2, so s 1 cases need not be considered at all.

Optimality of a Single Server. Under certain conditions, s 1 necessarily
is optimal for model 2.

The primary conditions1 are that

1. The value of minimizing E(TC) for s 1 is feasible.
2. Function f ( ) is either linear or concave (as defined in Appendix 2).

In effect, this optimality result indicates that it is better to concentrate service capacity
into one fast server rather than dispersing it among several slow servers. Condition 2 says
that this concentrating of a given amount of service capacity can be done without in-
creasing the cost of service. Condition 1 says that it must be possible to make suffi-
ciently large that a single server can be used to full advantage.

To understand why this result holds, consider any other solution to model 2,
(s, ) (s*, *), where s* 1. The service capacity of this system (as measured by the
mean rate of service completions when all servers are working) is s* *. We shall now
compare this solution with the corresponding single-server solution (s, ) (1, s* *)
having the same service capacity. In particular, Table 26.3 compares the mean rate at which

for CRAB computer
for MBI computer.

3,750 2,640 $6,390 per day
5,000 1,160 $6,160 per day

26-12 CHAPTER 26 THE APPLICATION OF QUEUEING THEORY

1There also are minor restrictions on the queueing model and the waiting-cost function. However, any of the
constant service-rate queueing models presented in Chap. 17 for s 1 are allowed. If the g(N ) form is used for
the waiting-cost function, it can be any increasing function. If the h( ) form is used, it can be any linear func-
tion or any convex function (as defined in Appendix 2), which fits most cases of interest.
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service completions occur for each given number of customers in the system N � n. This
table shows that the service efficiency of the (s*, �*) solution sometimes is worse but
never is better than for the (1, s*�*) solution because it can use the full service capacity
only when there are at least s* customers in the system, whereas the single-server solu-
tion uses the full capacity whenever there are any customers in the system. Because this
lower service efficiency can only increase waiting in the system, E(WC) must be larger
for (s*, �*) than for (1, s*�*). Furthermore, the expected service cost must be at least as
large because condition 2 [and f (0) � 0] implies that

f (�*)s � f (s*�*).

Therefore, E(TC) is larger for (s*, �*) than (1, s*�*). Finally, note that condition 1 im-
plies that there is a feasible solution with s � 1 that is at least as good as (1, s*�*). The
conclusion is that any s � 1 solution cannot be optimal for model 2, so s � 1 must be
optimal.1

This result is still of some use even when one or both conditions fail to hold. If �
cannot be made sufficiently large to permit a single server, it still suggests that a few fast
servers should be preferred to many slow ones. If condition 2 does not hold, we still know
that E(WC) is minimized by concentrating any given amount of service capacity into a
single server, so the best s � 1 solution must be at least nearly optimal unless it causes a
substantial increase in service cost.

Model 3—Unknown � and s

Model 3 is designed especially for the case where it is necessary to select both the num-
ber of service facilities and the number of servers s at each facility. In the typical situa-
tion, a population (such as the employees in an industrial building) must be provided with
a certain service, so a decision must be made as to what proportion of the population (and
therefore what value of �) should be assigned to each service facility. Examples of such
facilities include employee facilities (drinking fountains, vending machines, and rest-
rooms), storage facilities, and reproduction equipment facilities. It may sometimes be clear
that only a single server should be provided at each facility (e.g., one drinking fountain
or one copy machine), but s often is also a decision variable.

26.4 DECISION MODELS 26-13

■ TABLE 26.3 Comparison of service efficiency for Model 2 solutions

Mean Rate of Service Completions

N � n (s, �) � (s*, �*) versus (s, �) � (1, s*�*)

n � 0 0 � 0
n � 1, 2, . . . , s* � 1 n�* 	 s*�*
n � s* s*�* � s*�*

1For a rigorous proof of this result, see S. Stidham, Jr., “On the Optimality of Single-Server Queueing Systems,”
Operations Research, 18: 708–732, 1970. This result focuses on minimizing E(TC) when E(WC) is based on
waiting time in the system. However, if waiting costs are incurred only while waiting in the queue, markedly dif-
ferent results occur. For example, see X. Chao and C. Scott, “Several Results on the Design of Queueing Sys-
tems,” Operations Research, 48: 965–970, 2000. Furthermore, even when waiting time in the system is the rel-
evant quantity, if the concern is to avoid extremely long waiting times as much as possible rather than minimizing
E(TC), then several slow servers become superior to one fast server when the service-time distribution is so
highly variable that it possesses some infinite higher moments. For an analysis of this alternative viewpoint,
see A. Scheller-Wolf, “Necessary and Sufficient Conditions for Delay Moments in FIFO Multiserver Queues
with an Application Comparing s Slow Servers with One Fast One,” Operations Research, 51: 748–758, 2003.

hil61217_ch26.qxd  5/15/04  11:51  Page 26-13



To simplify our presentation, we shall require in model 3 that � and s be the same
for all service facilities. However, it should be recognized that a slight improvement in
the indicated solution might be achieved by permitting minor deviations in these param-
eters at individual facilities. This should be investigated as part of the detailed analysis
that generally follows the application of the mathematical model.

Formulation of Model 3.

Definitions: Cs � marginal cost of server per unit time.
Cf � fixed cost of service per service facility per unit time.
�p � mean arrival rate for entire calling population.
n � number of service facilities � �p /�.

Given: �, Cs, Cf, �p.
To find: �, s.
Objective: Minimize E(TC), subject to � � �p/n, where n � 1, 2, . . . .

Finding E(TC). It might appear at first glance that the appropriate expression for the
expected total cost per unit time of all the facilities should be

E(TC) � n[(Cf � Css) � E(WC)],

where E(WC) here represents the expected waiting cost per unit time for each facility.
However, if this expression actually were valid, it would imply that n � 1 necessarily is
optimal for model 3. The reasoning is completely analogous to that for the optimality of
a single-server result for model 2; namely, any solution (n, s) � (n*, s*) with n* � 1 has
higher service costs than the (n, s) � (1, n*s*) solution, and it also has a higher expected
waiting cost because it sometimes makes less effective use of the available service ca-
pacity. In particular, it sometimes has idle servers at one facility while customers are wait-
ing at another facility, so the mean rate of service completions would be less than if the
customers had access to all the servers at one common facility.

Because there are many situations where it obviously would not be optimal to have just
one service facility (e.g., the number of restrooms in a 50-story building), something must
be wrong with this expression. Its deficiency is that it considers only the cost of service and
the cost of waiting at the service facilities while totally ignoring the cost of the time wasted
in traveling to and from the facilities. Because travel time would be prohibitive with only
one service facility for a large population, enough separate facilities must be distributed
throughout the calling population to hold travel time down to a reasonable level.

Thus, letting the random variable T be the round-trip travel time for a customer com-
ing to and going back from one of the service facilities, we see that the total time lost by
the customer actually is � � T. (Recall from Chap. 17 that � is the waiting time in the
queueing system after the customer arrives.) Therefore, a customer’s total cost for time
lost should be based on � � T rather than just �. To simplify the analysis, let us sepa-
rate this total cost into the sum of the waiting-time cost based on � (or N ) and the travel-
time cost based on T. We shall also assume that the travel-time cost is proportional to T,
where Ct is the cost of each unit of travel time for each customer. For ease of presenta-
tion, suppose that the probability distribution of T is the same for each service facility, so
that CtE(T) is the expected travel cost for each arrival at any of the service facilities. The
resulting expression for E(TC) is

E(TC) � n[(Cf � Css) � E(WC) � �CtE(T)]

because � is the expected number of arrivals per unit time at each facility. Consequently,
by evaluating (or estimating) E(T ) for each case of interest, model 3 can be solved by cal-
culating E(TC) for various values of s for each n and then selecting the solution giving
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the overall minimum. The next section discusses how to evaluate E(T) and also solves an
example (Example 3 of Sec. 26.1) fitting model 3.

26.5 THE EVALUATION OF TRAVEL TIME 26-15

■ 26.5 THE EVALUATION OF TRAVEL TIME

As discussed in Sec. 26.4, one of the important considerations for deciding how many
service facilities to provide is the amount of time that customers must spend traveling to
and from a facility. Therefore, the expected round-trip travel time E(T ) for a customer is
one of the components of the objective function for model 3, the decision model that is
concerned with deciding on the number of service facilities. We now shall elaborate on
how to determine E(T ).

E(T ) can be interpreted as the average travel time spent by customers in coming both
to and from a given service facility. Therefore, the value of E(T ) depends very much upon
the characteristics of the individual situation. However, we shall illustrate a rather general
approach to evaluating E(T ) by developing a basic travel-time model and then calculat-
ing E(T ) for the more complicated situation involved in Example 3. In both cases it is as-
sumed that the portion of the population assigned to the service facility under considera-
tion is distributed uniformly throughout the assigned area, that each arrival returns to its
original location after receiving service, and that the average speed of travel does not de-
pend upon the distance traveled. Another basic assumption is that all travel is rectilinear,
i.e., it progresses along a system of orthogonal paths (aisles, streets, highways, and so on)
that are parallel to the main sides of the area under consideration.

A Basic Travel-Time Model

Description: Rectangular area and rectilinear travel, as shown in Fig. 26.7.

Definitions: T � travel time (round trip) for an arrival.
v � average velocity (speed) of customers in traveling to and

from facility.
a, b, c, d � respective distances from facility to boundary of area

assigned to facility, as shown in Fig. 26.7.
Given: v, a, b, c, d.
To find: Expected value of T, E(T ).

Using an orthogonal (x, y) coordinate system, Fig. 26.7 shows the coordinates (x, y)
of the location of a particular customer. The x and y coordinates of the location from
which a random arrival comes actually are random variables X and Y, where X ranges
from �a to c and Y ranges from �b to d. Because the total round-trip distance traveled
by the random arrival is

D � 2(|X | � |Y |)

(−a, −b)

(0, 0)

(c , d )

(x, y )

■ FIGURE 26.7
Graphical representation of a
basic travel-time model,
where the service facility is at
(0, 0) and a random arrival
comes from (and returns to)
some location (x, y).
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and

T � �
D
v
�,

it follows that

E(T ) � �
2
v

� (E{|X |} � E{|Y |}).

Thus, the problem is reduced to identifying the probability distributions of |X| and |Y | and
then calculating their means.

First consider |X|. Its probability distribution can be obtained directly from the dis-
tribution of X. Because the customers are assumed to be distributed uniformly through-
out the assigned area, and because the height of the rectangular area is the same for all
possible values of X � x, X must have a uniform distribution between �a and c, as shown
in Fig. 26.8a. Because |x| � |�x|, adding the probability density function values at x and
�x then yields the probability distribution of |X| shown in Fig. 26.8b.

Therefore, noting that |x| � x for x � 0,

E{|X |} � �max{a, c}

0
x f|x|(x) dx

� �min{a, c}

0
�
a

2
�

x
c

� dx � �max{a, c}

min{a, c}
�
a �

x
c

� dx

� �
1
2

� �
a �

1
c

� [(min{a, c})2 � (max{a, c})2]

� �
2
a
(

2

a
�

�

c
c

2

)
�.

The analysis for |Y | is completely analogous, where the width of the rectangular area
for possible values of Y � y now determines the probability distribution of Y.

The result is that

E{|Y |} � �
2
b
(

2

b
�

�

d
d

2

)
�.

Consequently,

E(T) � �
1
v

� ��aa
2 �

�

c
c

2

� � �
b
b

2 �

�

d
d

2

��.
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1
a + c

1
a + c

2
a + c

fx (x)

−a 0 0c x x

fx(x)

mina, c

maxa, c

(a) (b)

■ FIGURE 26.8
Probability density functions
of (a) X; (b) |X|.
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Example 3—How Many Tool Cribs? For the new plant being designed for the
MECHANICAL COMPANY (see Sec. 26.1), the layout of the portion of the factory area
where the mechanics will work is shown in Fig. 26.9. The three possible locations for tool
cribs are identified as Locations 1, 2, and 3, where access to these locations will be pro-
vided by a system of orthogonal aisles parallel to the sides of the indicated area. The co-
ordinates are given in units of feet. The mechanics will be distributed quite uniformly
throughout the area shown, and each mechanic will be assigned to the nearest tool crib.
It is estimated that the mechanics will walk to and from a tool crib at an average speed
of slightly less than 3 miles/hour, so v is set at v � 15,000 feet/hour.

The three basic alternatives being considered are

Alternative 1: Have three tool cribs—use Locations 1, 2, and 3;
Alternative 2: Have one tool crib—use Location 2;
Alternative 3: Have two tool cribs—use Locations 1 and 3.

The calculation of E(T) for each alternative is given next, followed by the use of model 3
to make the choice among them.

Alternative 1 (n � 3): If all three locations were used, each tool crib would service a 300 �
300 foot square area. Therefore, this case is just a special case of the basic travel-time model
just presented, where a � c � 150 and b � d � 150. Consequently,

E(T) � �
15,00

1
0 ft/hr
� ��11

5
5
0
0

2 �

�

1
1
5
5
0
0

2

� � �
1
1
5
5
0
0

2 �

�

1
1
5
5
0
0

2

�� ft

� �
15,00

1
0 ft/hr
� (300 ft)

� 0.02 hr.
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(0, 300) (300, 300)

(300, 600) (600, 600)

Location 3

(450, 450)

Location 2

(450, 150)

Location 1

(150, 150)

(0, 0) (600, 0)

■ FIGURE 26.9
Layout for Example 3.
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Alternative 2 (n � 1): With just one tool crib (in Location 2) to service the entire area shown
in Fig. 26.9, the derivation of E(T) is a little more complicated than it is for the basic travel-
time model. The first step is to relabel Location 2 as the original (0, 0) for an (x, y) coordi-
nate system, so that 450 would be subtracted from the first coordinates shown and 150 would
be subtracted from the second coordinates. The probability density function for X is then ob-
tained by dividing the height for each possible value of X � x by the total area (so that the
area under the probability density function curve equals 1), as given in Fig. 26.10a. Combin-
ing the values for x and �x then yields the probability distribution of |X| shown in Fig. 26.10b.

Hence,

E{|X|} � �450

0
x f|X|(x) dx

� �150

0
x ��

2
1
25
�� dx � �450

150
x ��

9
1
00
��dx

� �
1
4
5
5
0
0

2

� � �
450

1

2

,8
–
0
1
0
502

� � 150.

We suggest that you now try the same approach (using the width of the area rather
than the height) to derive E{|Y |}. You will find that the probability distribution of Y is
identical to that for |X|, so E{|Y |} � 150. As a result,

E(T) � �
15,

2
000
� (150 � 150)

� 0.04 hr.

Alternative 3 (n � 2): With tool cribs in just Locations 1 and 3, the areas assigned to them
would be divided by a line segment between (300, 300) and (600, 0) in Fig. 26.9. Notice
that the two areas and their tool cribs are located symmetrically with respect to this line
segment. Therefore, E(T) is the same for both, so we shall derive it just for the tool crib
in Location 1. (You might try it for the other tool crib for practice—see Prob. 26.5-3.)

Proceeding just as for Alternative 2, relabel Location 1 as the origin (0, 0) for an (x, y)
coordinate system, so that 150 would be subtracted from all coordinates shown in Fig. 26.9.
This relabeling leads directly to the probability density function of X, and then of |X|, shown
in Fig. 26.11. As a result,
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■ FIGURE 26.10
Probability density functions
of (a) X and (b) |X| for a tool
crib at Location 2 of 
Fig. 26.9 under Alternative 2
(no other tool cribs).
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Next, the probability density function of Y is obtained by using the width of the area
assigned to the tool crib at Location 1 for each possible value of Y � y and then dividing
by the size of the area, as given in Fig. 26.12a. This result then yields the uniform distri-
bution of |Y | shown in Fig. 26.12b. Thus,

E{|Y |} � �
1
1
50
� �150

0
y dy

� 75.
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Probability density functions
of (a) X and (b) |X| for a tool
crib at Location 1 of 
Fig. 26.9 under Alternative 3
(the only other tool crib is at
Location 3).
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Consequently,

E(T )
15,

2
000

(1331
3 75)

0.0278 hr.

Applying Model 3: Because E(T ) now has been evaluated for the three alternatives under
consideration, the stage is set for using model 3 from Sec. 26.4 to choose among these
alternatives. Most of the data required for this model are given in Sec. 26.1, namely,

120 per hour, Cf $16 per hour,
Cs $20 per hour,

p 120 per hour, Ct $48 per hour,

where the M/M/s model given in Sec. 17.6 is used to calculate L and so on. In addition,
the end of Sec. 26.3 gives E(WC) 48L in dollars per hour. Therefore,

E(TC) n (16 20s) 48L
12
n
0

48E(T ) .

The resulting calculation of E(TC) for various s values for each n is given in Table 26.4,
which indicates that the overall minimum E(TC) of $295.20 per hour is obtained by hav-
ing three tool cribs (so 40 for each), with one clerk at each tool crib.

26.6 CONCLUSIONS

TABLE 26.4 Calculation of E(TC), in dollars per hour for Example 3

n s L E(T ) Cf Css E(WC) CtE(T ) E(TC)

1 120 1 0.0400 $36 $230.40
1 120 2 1.333 0.0400 $56 $64.00 $230.40 $350.40
1 120 3 1.044 0.0400 $76 $50.11 $230.40 $356.51

2 60 1 1.000 0.0278 $36 $48.00 $ 80.00 $328.00
2 60 2 0.534 0.0278 $56 $25.63 $ 80.00 $323.26

3 40 1 0.500 0.0200 $36 $24.00 $ 38.40 $295.20
3 40 2 0.344 0.0200 $56 $16.51 $ 38.40 $332.73

This chapter has discussed the application of queueing theory for designing queueing sys-
tems. Every individual problem has its own special characteristics, so no standard proce-
dure can be prescribed to fit every situation. Therefore, the emphasis has been on introducing
fundamental considerations and approaches that can be adapted to most cases. We have fo-
cused on three particularly common decision variables (s, , and ) as a vehicle for intro-
ducing and illustrating these concepts. However, there are many other possible decision
variables (e.g., the size of a waiting room for a queueing system) and many more compli-
cated situations (e.g., designing a priority queueing system) that can also be analyzed in a
similar way.

The time required to travel to and from a service facility sometimes is an important
consideration. A rather general approach to evaluating expected travel time has been in-
troduced by applying it to some relatively simple cases. However, once again, many more
complicated situations can also be analyzed quite similarly. We have discussed the
incorporation of travel-time information into the overall analysis only in the context of
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To the left of each of the following problems (or their parts), we
have inserted a T whenever one of the templates for this chapter
(and Chap. 17) can be useful.

26.2-1. For each kind of queueing system listed in Prob. 17.3-1,
briefly describe the nature of the cost of service and the cost of
waiting that would need to be considered in designing the system.

26.3-1. Suppose that a queueing system fits the M/M/1 model de-
scribed in Sec. 17.6, with 2 and 4. Evaluate the expected
waiting cost per unit time E(WC) for this system when its waiting-
cost function has the form

(a) g(N ) 10N 2N2.
(b) h( ) 25 3.

26.3-2. Follow the instructions of Prob. 26.3-1 for the following
waiting-cost functions.

(a) g(N )

(b) h( )
for 0 1
for 1.2

for N 1, 2
for N 3, 4, 5
for N 5.

10N
6N2

N3

PROBLEMS 26-21

determining the number of service facilities to provide when customers must travel to the
nearest facility. But travel-time models also can be very useful when the servers must
travel to the customer from the service facility (e.g., fire trucks and ambulances), as well
as in other contexts.

Another useful area for the application of queueing theory is the development of poli-
cies for controlling queueing systems, e.g., for dynamically adjusting the number of servers
or the service rate to compensate for changes in the number of customers in the system.
Research is being conducted in this area.

Queueing theory has proved to be a very useful tool, and we anticipate that its use
will continue to grow as recognition of the many guises of queueing systems grows.
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26.4-1. A certain queueing system has a Poisson input, with a
mean arrival rate of 4 customers per hour. The service-time distri-
bution is exponential, with a mean of 0.2 hour. The marginal cost
of providing each server is $20 per hour, where it is estimated that
the cost that is incurred by having each customer idle (i.e., in the
queueing system) is $120 per hour for the first customer and $180
per hour for each additional customer. Determine the number of
servers that should be assigned to the system to minimize the ex-
pected total cost per hour. [Hint: Express E(WC) in terms of L, P0,
and , and then use the template for the M/M/s model in your OR

26.4-2. Reconsider Prob. 17.6-10. The total compensation for the
new employee would be $8 per hour, which is just half that for the
cashier. It is estimated that the grocery store incurs lost profit due
to lost future business of $0.08 for each minute that each customer
has to wait (including service time). The manager now wants to
determine on an expected total cost basis whether it would be
worthwhile to hire the new person.
(a) Which decision model presented in Sec. 26.4 applies to this

problem? Why?
(b) Use this model to determine whether to continue the status quo

or to adopt the proposal.

26.4-3. The Southern Railroad Company has been subcontracting
for the painting of its railroad cars as needed. However, manage-
ment has decided that the company can save money by doing this
work itself. A decision now needs to be made to choose between
two alternative ways of doing this.

Alternative 1 is to provide two paint shops, where painting is
done by hand (one car at a time in each shop), for a total hourly
cost of $70. The painting time for a car would be 6 hours. Alter-
native 2 is to provide one spray shop involving an hourly cost of
$100. In this case, the painting time for a car (again done one at a
time) would be 3 hours. For both alternatives, the cars arrive ac-
cording to a Poisson process with a mean rate of 1 every 5 hours.
The cost of idle time per car is $100 per hour.
(a) Use Fig. 17.8 to estimate L, Lq, W, and Wq for Alternative 1.
(b) Find these same measures of performance for Alternative 2.
(c) Determine and compare the expected total cost per hour for

these alternatives.

26.4-4. The production of tractors at the Jim Buck Company in-
volves producing several subassemblies and then using an assem-
bly line to assemble the subassemblies and other parts into finished
tractors. Approximately three tractors per day are produced in this
way. An in-process inspection station is used to inspect the sub-
assemblies before they enter the assembly line. At present there are
two inspectors at the station, and they work together to inspect each
subassembly. The inspection time has an exponential distribution,
with a mean of 15 minutes. The cost of providing this inspection
system is $40 per hour.

A proposal has been made to streamline the inspection proce-
dure so that it can be handled by only one inspector. This inspector
would begin by visually inspecting the exterior of the subassembly,
and she would then use new efficient equipment to complete the in-
spection.Although this process with just one inspector would slightly

increase the mean of the distribution of inspection times from
15 minutes to 16 minutes, it also would reduce the variance
of this distribution to only 40 percent of its current value.

The subassemblies arrive at the inspection station according
to a Poisson process at a mean rate of 3 per hour. The cost of hav-
ing the subassemblies wait at the inspection station (thereby in-
creasing in-process inventory and possibly disrupting subsequent
production) is estimated to be $20 per hour for each subassembly.

Management now needs to make a decision about whether to
continue the status quo or adopt the proposal.
T (a) Find the main measures of performance—L, Lq, W, Wq—for

the current queueing system.
(b) Repeat part (a) for the proposed queueing system.
(c) What conclusions can you draw about what management should

do from the results in parts (a) and (b)?
(d) Determine and compare the expected total cost per hour for the

status quo and the proposal.

26.4-5. The car rental company, Try Harder, has been subcon-
tracting for the maintenance of its cars in St. Louis. However, due
to long delays in getting its cars back, the company has decided to
open its own maintenance shop to do this work more quickly. This
shop will operate 42 hours per week.

Alternative 1 is to hire two mechanics (at a cost of $1,500 per
week each), so that two cars can be worked on at a time. The time
required by a mechanic to service a car has an Erlang distribution,
with a mean of 5 hours and a shape parameter of k 8.

Alternative 2 is to hire just one mechanic (for $1,500 per
week) but to provide some additional special equipment (at a cap-
italized cost of $1,250 per week) to speed up the work. In this case,
the maintenance work on each car is done in two stages, where the
time required for each stage has an Erlang distribution with the
shape parameter k 4, where the mean is 2 hours for the first stage
and 1 hour for the second stage.

For both alternatives, the cars arrive according to a Poisson
process at a mean rate of 0.3 car per hour (during work hours).
The company estimates that its net lost revenue due to having its
cars unavailable for rental is $150 per week per car.
(a) Use Fig. 17.10 to estimate L, Lq, W, and Wq for alternative 1.
(b) Find these same measures of performance for alternative 2.
(c) Determine and compare the expected total cost per week for

these alternatives.

26.4-6. A certain small car-wash business is currently being ana-
lyzed to see if costs can be reduced. Customers arrive according
to a Poisson process at a mean rate of 15 per hour, and only one
car can be washed at a time. At present the time required to wash
a car has an exponential distribution, with a mean of 4 minutes. It
also has been noticed that if there are already 4 cars waiting (in-
cluding the one being washed), then any additional arriving cus-
tomers leave and take their business elsewhere. The lost incre-
mental profit from each such lost customer is $6.

Two proposals have been made. Proposal 1 is to add certain
equipment, at a capitalized cost of $6 per hour, which would re-
duce the expected washing time to 3 minutes. In addition, each ar-
riving customer would be given a guarantee that if she had to wait
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longer than �
1
2

� hour (according to a time slip she receives upon ar-
rival) before her car is ready, then she receives a free car wash (at
a marginal cost of $4 for the company). This guarantee would be
well posted and advertised, so it is believed that no arriving cus-
tomers would be lost.

Proposal 2 is to obtain the most advanced equipment avail-
able, at an increased cost of $20 per hour, and each car would be
sent through two cycles of the process in succession. The time re-
quired for a cycle has an exponential distribution, with a mean of
1 minute, so total expected washing time would be 2 minutes. Be-
cause of the increased speed and effectiveness, it is believed that
essentially no arriving customers would be lost.

The owner also feels that because of the loss of customer
goodwill (and consequent lost future business) when customers
have to wait, a cost of $0.20 for each minute that a customer has
to wait before her car wash begins should be included in the analy-
sis of all alternatives.

Evaluate the expected total cost per hour E(TC) of the status
quo, proposal 1, and proposal 2 to determine which one should be
chosen.

26.4-7. The Seabuck and Roper Company has a large warehouse
in southern California to store its inventory of goods until they are
needed by the company’s many furniture stores in that area. A sin-
gle crew with four members is used to unload and/or load each
truck that arrives at the loading dock of the warehouse. Manage-
ment currently is downsizing to cut costs, so a decision needs to
be made about the future size of this crew.

Trucks arrive at the loading dock according to a Poisson
process at a mean rate of 1 per hour. The time required by a crew
to unload and/or load a truck has an exponential distribution (re-
gardless of crew size). The mean of this distribution with the four-
member crew is 15 minutes. If the size of the crew were to be
changed, it is estimated that the mean service rate of the crew (now
� � 4 customers per hour) would be proportional to its size.

The cost of providing each member of the crew is $20 per
hour. The cost that is attributable to having a truck not in use (i.e.,
a truck standing at the loading dock) is estimated to be $30 per
hour.
(a) Identify the customers and servers for this queueing system.

How many servers does it currently have?
T (b) Use the appropriate Excel template to find the various mea-

sures of performance for this queueing system with four
members on the crew. (Set t � 1 hour in the Excel template
for the waiting-time probabilities.)

T (c) Repeat (b) with three members.
T (d) Repeat part (b) with two members.
(e) Should a one-member crew also be considered? Explain.
(f) Given the previous results, which crew size do you think man-

agement should choose?
(g) Use the cost figures to determine which crew size would min-

imize the expected total cost per hour.
(h) Assume now that the mean service rate of the crew is propor-

tional to the square root of its size. What should the size be to
minimize expected total cost per hour?

26.4-8. Trucks arrive at a warehouse according to a Poisson
process with a mean rate of 4 per hour. Only one truck can be
loaded at a time. The time required to load a truck has an expo-
nential distribution with a mean of 10/n minutes, where n is the
number of loaders (n � 1, 2, 3, . . .). The costs are (i) $18 per hour
for each loader and (ii) $20 per hour for each truck being loaded
or waiting in line to be loaded. Determine the number of loaders
that minimizes the expected hourly cost.

26.4-9. A company’s machines break down according to a Pois-
son process at a mean rate of 3 per hour. Nonproductive time on
any machine costs the company $60 per hour. The company em-
ploys a maintenance person who repairs machines at a mean rate
of � machines per hour (when continuously busy) if the company
pays that person a wage of $5� per hour. The repair time has an
exponential distribution.

Determine the hourly wage that minimizes the company’s to-
tal expected cost.

26.4-10. Jake’s Machine Shop contains a grinder for sharpening
the machine cutting tools. A decision must now be made on the
speed at which to set the grinder.

The grinding time required by a machine operator to sharpen
the cutting tool has an exponential distribution, where the mean
1/� can be set at 0.5 minute, 1 minute, or 1.5 minutes, depend-
ing upon the speed of the grinder. The running and maintenance
costs go up rapidly with the speed of the grinder, so the esti-
mated cost per minute is $1.60 for providing a mean of 0.5
minute, $0.40 for a mean of 1.0 minute, and $0.20 for a mean
of 1.5 minutes.

The machine operators arrive randomly to sharpen their tools
at a mean rate of 1 every 2 minutes. The estimated cost of an op-
erator being away from his or her machine to the grinder is $0.80
per minute.
T (a) Obtain the various measures of performance for this queue-

ing system for each of the three alternative speeds for the
grinder. (Set t � 5 minutes in the Excel template for the wait-
ing time probabilities.)

(b) Use the cost figures to determine which grinder speed mini-
mizes the expected total cost per minute.

26.4-11. Consider the special case of model 2 where (1) any 
� � � /s is feasible and (2) both f (�) and the waiting-cost func-
tion are linear functions, so that

E(TC) � Crs� � CwL,

where Cr is the marginal cost per unit time for each unit of a server’s
mean service rate and Cw is the cost of waiting per unit time for
each customer. The optimal solution is s � 1 (by the optimality of
a single-server result), and

� � � � 	

for any queueing system fitting the M/M/1 model presented in 
Sec. 17.6.

Show that this � is indeed optimal for the M/M/1 model.

�Cw�
Cr
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26.4-12. Consider a harbor with a single dock for unloading ships.
The ships arrive according to a Poisson process at a mean rate of

ships per week, and the service-time distribution is exponential
with a mean rate of unloadings per week. Assume that harbor
facilities are owned by the shipping company, so that the objective
is to balance the cost associated with idle ships with the cost of
running the dock. The shipping company has no control over the
arrival rate (that is, is fixed); however, by changing the size of
the unloading crew, and so on, the shipping company can adjust
the value of as desired.

Suppose that the expected cost per unit time of running the
unloading dock is D . The waiting cost for each idle ship is some
constant (C) times the square of the total waiting time (including
loading time). The shipping company wishes to adjust so that
the expected total cost (including the waiting cost for idle ships)
per unit time is minimized. Derive this optimal value of in terms
of D and C.

26.4-13. Consider a queueing system with two types of cus-
tomers. Type 1 customers arrive according to a Poisson process
with a mean rate of 5 per hour. Type 2 customers also arrive ac-
cording to a Poisson process with a mean rate of 5 per hour. The
system has two servers, and both serve both types of customers.
For types 1 and 2, service times have an exponential distribution
with a mean of 10 minutes. Service is provided on a first-come-
first-served basis.

Management now wants you to compare this system’s design
of having both servers serve both types of customers with the al-
ternative design of having one server serve just type 1 customers
and the other server serve just type 2 customers. Assume that this
alternative design would not change the probability distribution of
service times.
(a) Without doing any calculations, indicate which design would

give a smaller expected total number of customers in the sys-
tem. What result are you using to draw this conclusion?

T (b) Verify your conclusion in part (a) by finding the expected
total number of customers in the system under the original
design and then under the alternative design.

26.4-14. Reconsider Prob. 17.6-32.
(a) Formulate part (a) to fit as closely as possible a special case

of one of the decision models presented in Sec. 26.4. (Do not
solve.)

(b) Describe Alternatives 2 and 3 in queueing theory terms, in-
cluding their relationship (if any) to the decision models pre-
sented in Sec. 26.4. Briefly indicate why, in comparison with
Alternative 1, each of these other alternatives might decrease
the total number of operators (thereby increasing their utiliza-
tion) needed to achieve the required production rate. Also point
out any dangers that might prevent this decrease.

26.4-15. Consider the formulation of the County Hospital emer-
gency room problem as a preemptive priority queueing system, as
presented in Sec. 17.8. Suppose that the following inputted costs
are assigned to making patients wait (excluding treatment time):

$10 per hour for stable cases, $1,000 per hour for serious cases,
and $100,000 per hour for critical cases. The cost associated with
having an additional doctor on duty would be $40 per hour. Re-
ferring to Table 17.3, determine on an expected-total-cost basis
whether there should be one or two doctors on duty.

26.5-1. Consider a factory whose floor area is a square with 600
feet on each side. Suppose that one service facility of a certain kind
is provided in the center of the factory. The employees are dis-
tributed uniformly throughout the factory, and they walk to and
from the facility at an average speed of 3 miles per hour along a
system of orthogonal aisles.

Find the expected travel time E(T) per arrival.

26.5-2. A certain large shop doing light fabrication work uses a
single central storage facility (dispatch station) for material in in-
process storage. The typical procedure is that each employee per-
sonally delivers his finished work (by hand, tote box, or hand cart)
and receives new work and materials at the facility. Although this
procedure worked well in earlier years when the shop was smaller,
it appears that it may now be advisable to divide the shop into two
semi-independent parts, with a separate storage facility for each
one. You have been assigned the job of comparing the use of two
facilities and of one facility from a cost standpoint.

The factory has the shape of a rectangle 150 by 100 yards.
Thus, by letting 1 yard be the unit of distance, the (x, y) coordi-
nates of the corners are (0, 0), (150, 0), (150, 100), and (0, 100).
With this coordinate system, the existing facility is located at (50,
50), and the location available for the second facility is (100, 50).

Each facility would be operated by a single clerk. The time
required by a clerk to service a caller has an exponential distri-
bution, with a mean of 2 minutes. Employees arrive at the pre-
sent facility according to a Poisson input process at a mean rate
of 24 per hour. The employees are rather uniformly distributed
throughout the shop, and if the second facility were installed,
each employee would normally use the nearer of the two facili-
ties. Employees walk at an average speed of about 5,000 yards
per hour. All aisles are parallel to the outer walls of the shop. The
net cost of providing each facility is estimated to be about $20
per hour, plus $15 per hour for the clerk. The estimated total cost
of an employee being idled by traveling or waiting at the facil-
ity is $25 per hour.

Given the preceding cost factors, which alternative minimizes
the expected total cost?

26.5-3. Consider Alternative 3 (tool cribs in Locations 1 and 3)
for the example illustrated in Fig. 26.9. Derive E(T) for the tool
crib in Location 3 by using the probability density functions of X
and Y directly for this tool crib.

26.5-4. Suppose that the calling population for a particular ser-
vice facility is uniformly distributed over each area shown, where
the service facility is located at (0, 0). Making the same as-
sumptions as in Sec. 26.5, derive the expected round-trip travel
time per arrival E(T) in terms of the average velocity v and the
distance r.
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26.5-5. A job shop is being laid out in a square area with 600 feet
on a side, and one of the decisions to be made is the number of
facilities for the storage and shipping of final inventory. The cap-
italized cost associated with providing each facility would be
$10/hour. There are just four potential locations available for these
facilities, one in the middle of each of the four sides of the square
area as shown in the figure.

The loads to be moved to a storage and shipping facility would
be distributed uniformly throughout the shop area and they become
available according to a Poisson process at a mean rate of 90 per
hour. Each time a load becomes available, an appropriate materials-
handling vehicle would be sent from the nearest facility to pick it
up (with an expected loading time of 3 minutes) and bring it there,
where the cost would be $40/hour for time spent in traveling, load-
ing, and waiting to be unloaded. The vehicles would travel at a speed
of 20,000 feet per hour along a system of orthogonal aisles parallel
to the sides of the shop area.

Another decision to be made is the number of employees (m) 
to provide at each storage and shipping facility for unloading 
arriving vehicles. These m employees would work together on each  
vehicle, and the time required to unload it would have an exponential 
distribution, with a mean of 2/m minutes. The cost of providing
each employee is $15/hour.

Determine the number of facilities and the value of m at each
that will minimize expected total cost per hour.

PROBLEMS 26-25

(−r, −r)

(−r, r)

(0, 0)

(r, 2r)

(r, −2r)
(5r, −2r)

(5r, 2r)

(0, 0)

(−r, 3r)

(−3r, r)

(−3r, −r) (3r, −r)

(−r, −3r) (r, −3r)

(r, 3r)

(3r, r)

(a)

(b)

(−r, −2r)

(−r, 0)
(0, 0)

(0, r)

(r, −2r)

(r, r)

(2r, −r)

(2r, 0)

(c)

(d)

(−2r, r)

(0, 3r)

(0, r)

(0, 0)

(−4r, 3r)
(−2r, 3r)

(−4r, −r)

(0, −3r)

(0, −r)

(2r, −3r)

(2r, 3r)
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27C H A P T E R

Forecasting

How much will the economy grow over the next year? Where is the stock market
headed? What about interest rates? How will consumer tastes be changing? What

will be the hot new products?
Forecasters have answers to all these questions. Unfortunately, these answers will

more than likely be wrong. Nobody can accurately predict the future every time.
Nevertheless, the future success of any business depends heavily on how savvy its

management is in spotting trends and developing appropriate strategies. The leaders of
the best companies often seem to have a sixth sense for when to change direction to stay
a step ahead of the competition. These companies seldom get into trouble by badly mis-
estimating what the demand will be for their products. Many other companies do. The
ability to forecast well makes the difference.

Chapter 18 has presented a considerable number of models for the management
of inventories. All these models are based on a forecast of future demand for a product,
or at least a probability distribution for that demand. Therefore, the missing ingredient
for successfully implementing these inventory models is an approach for forecasting
demand.

Fortunately, when historical sales data are available, some proven statistical fore-
casting methods have been developed for using these data to forecast future demand.
Such a method assumes that historical trends will continue, so management then needs to
make any adjustments to reflect current changes in the marketplace.

Several judgmental forecasting methods that solely use expert judgment also are
available. These methods are especially valuable when little or no historical sales data are
available or when major changes in the marketplace make these data unreliable for fore-
casting purposes.

Forecasting product demand is just one important application of the various forecasting
methods. A variety of applications are surveyed in the first section. The second section out-
lines the main judgmental forecasting methods. Section 27.3 then describes time series, which
form the basis for the statistical forecasting methods presented in the subsequent five sections.
Section 27.9 turns to another important type of statistical forecasting method, regression
analysis, where the variable to be forecasted is expressed as a mathematical function of
one or more other variables whose values will be known at the time of the forecast. The
chapter then concludes by surveying forecasting practices in U.S. corporations.
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We now will discuss some main areas in which forecasting is widely used. 

Sales Forecasting

Any company engaged in selling goods needs to forecast the demand for those goods.
Manufacturers need to know how much to produce. Wholesalers and retailers need to
know how much to stock. Substantially underestimating demand is likely to lead to many
lost sales, unhappy customers, and perhaps allowing the competition to gain the upper
hand in the marketplace. On the other hand, significantly overestimating demand also is
very costly due to (1) excessive inventory costs, (2) forced price reductions, (3) unneeded
production or storage capacity, and (4) lost opportunities to market more profitable goods.
Successful marketing and production managers understand very well the importance of
obtaining good sales forecasts.

Forecasting the Need for Spare Parts

Although effective sales forecasting is a key for virtually any company, some organiza-
tions must rely on other types of forecasts as well. A prime example involves forecasts of
the need for spare parts.

Many companies need to maintain an inventory of spare parts to enable them to quickly
repair either their own equipment or their products sold or leased to customers. In some cases,
this inventory is huge. For example, IBM’s spare-parts inventory is valued in the billions
of dollars and includes many thousand different parts.

Just as for a finished-goods inventory ready for sale, effective management of a spare-
parts inventory depends upon obtaining a reliable forecast of the demand for that inven-
tory. Although the types of costs incurred by misestimating demand are somewhat differ-
ent, the consequences may be no less severe for spare parts. For example, the consequence
for an airline not having a spare part available on location when needed to continue fly-
ing an airplane probably is at least one canceled flight.

27-2 CHAPTER 27 FORECASTING

27.1 SOME APPLICATIONS OF FORECASTING
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Forecasting Production Yields

The yield of a production process refers to the percentage of the completed items that
meet quality standards (perhaps after rework) and so do not need to be discarded. Partic-
ularly with high-technology products, the yield frequently is well under 100 percent.

If the forecast for the production yield is somewhat under 100 percent, the size of the
production run probably should be somewhat larger than the order quantity to provide a
good chance of fulfilling the order with acceptable items. (The difference between the run
size and the order quantity is referred to as the reject allowance.) If an expensive setup
is required for each production run, or if there is only time for one production run, the
reject allowance may need to be quite large. However, an overly large value should be
avoided to prevent excessive production costs.

Obtaining a reliable forecast of production yield is essential for choosing an appro-
priate value of the reject allowance.



Forecasting Economic Trends

With the possible exception of sales forecasting, the most extensive forecasting effort is
devoted to forecasting economic trends on a regional, national, or even international level.
How much will the nation’s gross domestic product grow next quarter? Next year? What
is the forecast for the rate of inflation? The unemployment rate? The balance of trade?

Statistical models to forecast economic trends (commonly called econometric mod-
els) have been developed in a number of governmental agencies, university research cen-
ters, large corporations, and consulting firms, both in the United States and elsewhere.
Using historical data to project ahead, these econometric models typically consider a very
large number of factors that help drive the economy. Some models include hundreds of
variables and equations. However, except for their size and scope, these models resemble
some of the statistical forecasting methods used by businesses for sales forecasting, etc.

These econometric models can be very influential in determining governmental poli-
cies. For example, the forecasts provided by the U.S. Congressional Budget Office strongly
guide Congress in developing the federal budgets. These forecasts also help businesses in
assessing the general economic outlook.

27.1 SOME APPLICATIONS OF FORECASTING 27-3
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Forecasting Staffing Needs

One of the major trends in the American economy is a shifting emphasis from manufactur-
ing to services. More and more of our manufactured goods are being produced outside the
country (where labor is cheaper) and then imported. At the same time, an increasing num-
ber of American business firms are specializing in providing a service of some kind (e.g.,
travel, tourism, entertainment, legal aid, health services, financial, educational, design, main-
tenance, etc.). For such a company, forecasting “sales” becomes forecasting the demand for
services, which then translates into forecasting staffing needs to provide those services.

For example, one of the fastest-growing service industries in the United States today
is call centers. A call center receives telephone calls from the general public requesting a
particular type of service. Depending on the center, the service might be providing tech-
nical assistance over the phone, or making a travel reservation, or filling a telephone or-
der for goods, or booking services to be performed later, etc. There now are several hun-
dred thousand call centers in the United States.

As with any service organization, an erroneous forecast of staffing requirements for
a call center has serious consequences. Providing too few agents to answer the telephone
leads to unhappy customers, lost calls, and perhaps lost business. Too many agents cause
excessive personnel costs.

Other

All five categories of forecasting applications discussed in this section use the types
of forecasting methods presented in the subsequent sections. There also are other important
categories (including forecasting weather, the stock market, and prospects for new prod-
ucts before market testing) that use specialized techniques that are not discussed here.
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■ 27.2 JUDGMENTAL FORECASTING METHODS

Judgmental forecasting methods are, by their very nature, subjective, and they may in-
volve such qualities as intuition, expert opinion, and experience. They generally lead to
forecasts that are based upon qualitative criteria.

These methods may be used when no data are available for employing a statistical
forecasting method. However, even when good data are available, some decision makers
prefer a judgmental method instead of a formal statistical method. In many other cases,
a combination of the two may be used.

Here is a brief overview of the main judgmental forecasting methods.

1. Manager’s opinion: This is the most informal of the methods, because it simply in-
volves a single manager using his or her best judgment to make the forecast. In some
cases, some data may be available to help make this judgment. In others, the manager
may be drawing solely on experience and an intimate knowledge of the current con-
ditions that drive the forecasted quantity.

2. Jury of executive opinion: This method is similar to the first one, except now it in-
volves a small group of high-level managers who pool their best judgment to collec-
tively make the forecast. This method may be used for more critical forecasts for which
several executives share responsibility and can provide different types of expertise.

3. Sales force composite: This method is often used for sales forecasting when a com-
pany employs a sales force to help generate sales. It is a bottom-up approach whereby
each salesperson provides an estimate of what sales will be in his or her region. These
estimates then are sent up through the corporate chain of command, with managerial
review at each level, to be aggregated into a corporate sales forecast.

4. Consumer market survey: This method goes even further than the preceding one in
adopting a grass-roots approach to sales forecasting. It involves surveying customers
and potential customers regarding their future purchasing plans and how they would
respond to various new features in products. This input is particularly helpful for de-
signing new products and then in developing the initial forecasts of their sales. It also
is helpful for planning a marketing campaign.

5. Delphi method: This method employs a panel of experts in different locations who
independently fill out a series of questionnaires. However, the results from each ques-
tionnaire are provided with the next one, so each expert then can evaluate this group
information in adjusting his or her responses next time. The goal is to reach a rela-
tively narrow spread of conclusions from most of the experts. The decision makers then
assess this input from the panel of experts to develop the forecast. This involved process
normally is used only at the highest levels of a corporation or government to develop
long-range forecasts of broad trends.

The decision on whether to use one of these judgmental forecasting methods should
be based on an assessment of whether the individuals who would execute the method have
the background needed to make an informed judgment. Another factor is whether the ex-
pertise of these individuals or the availability of relevant historical data (or a combination
of both) appears to provide a better basis for obtaining a reliable forecast.

The next seven sections discuss statistical forecasting methods based on relevant his-
torical data.
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■ 27.3 TIME SERIES

Most statistical forecasting methods are based on using historical data from a time series.

A time series is a series of observations over time of some quantity of interest
(a random variable). Thus, if Xi is the random variable of interest at time i, and
if observations are taken at times1 i � 1, 2, . . . , t, then the observed values 
{X1 � x1, X2 � x2, . . . , Xt � xt} are a time series.

For example, the recent monthly sales figures for a product comprises a time series, as il-
lustrated in Fig. 27.1.
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■ FIGURE 27.1
The evolution of the monthly
sales of a product illustrates a
time series.

1These times of observation sometimes are actually time periods (months, years, etc.), so we often will refer to
the times as periods.

Time
(a)

Time
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■ FIGURE 27.2
Typical time series patterns,
with random fluctuations
around (a) a constant level,
(b) a linear trend, and (c) a
constant level plus seasonal
effects.
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Because a time series is a description of the past, a logical procedure for forecasting
the future is to make use of these historical data. If the past data are indicative of what
we can expect in the future, we can postulate an underlying mathematical model that is
representative of the process. The model can then be used to generate forecasts.

In most realistic situations, we do not have complete knowledge of the exact form of
the model that generates the time series, so an approximate model must be chosen. Fre-
quently, the choice is made by observing the pattern of the time series. Several typical
time series patterns are shown in Fig. 27.2. Figure 27.2a displays a typical time series if
the generating process were represented by a constant level superimposed with random
fluctuations. Figure 27.2b displays a typical time series if the generating process were rep-
resented by a linear trend superimposed with random fluctuations. Finally, Fig. 27.2c
shows a time series that might be observed if the generating process were represented by
a constant level superimposed with a seasonal effect together with random fluctuations.
There are many other plausible representations, but these three are particularly useful in
practice and so are considered in this chapter.

Once the form of the model is chosen, a mathematical representation of the generat-
ing process of the time series can be given. For example, suppose that the generating
process is identified as a constant-level model superimposed with random fluctuations,
as illustrated in Fig. 27.2a. Such a representation can be given by

Xi � A � ei, for i � 1, 2, . . . ,

where Xi is the random variable observed at time i, A is the constant level of the model,
and ei is the random error occurring at time i (assumed to have expected value equal to
zero and constant variance). Let

Ft�1 � forecast of the values of the time series at time t � 1, given the observed
values, X1 � x1, X2 � x2, . . . , Xt � xt.

Because of the random error et�1, it is impossible for Ft�1 to predict the value Xt�1 �
xt�1 precisely, but the goal is to have Ft�1 estimate the constant level A � E(Xt�1) as
closely as possible. It is reasonable to expect that Ft�1 will be a function of at least some
of the observed values of the time series.

■ 27.4 FORECASTING METHODS FOR A CONSTANT-LEVEL MODEL

We now present four alternative forecasting methods for the constant-level model intro-
duced in the preceding paragraph. This model, like any other, is only intended to be an
idealized representation of the actual situation. For the real time series, at least small shifts
in the value of A may be occurring occasionally. Each of the following methods reflects
a different assessment of how recently (if at all) a significant shift may have occurred.

Last-Value Forecasting Method

By interpreting t as the current time, the last-value forecasting procedure uses the value
of the time series observed at time t (xt) as the forecast at time t � 1. Therefore,

Ft�1 � xt.

For example, if xt represents the sales of a particular product in the quarter just ended,
this procedure uses these sales as the forecast of the sales for the next quarter.
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This forecasting procedure has the disadvantage of being imprecise; i.e., its variance
is large because it is based upon a sample of size 1. It is worth considering only if (1) the
underlying assumption about the constant-level model is “shaky” and the process is chang-
ing so rapidly that anything before time t is almost irrelevant or misleading or (2) the as-
sumption that the random error et has constant variance is unreasonable and the variance
at time t actually is much smaller than at previous times.

The last-value forecasting method sometimes is called the naive method, because
statisticians consider it naive to use just a sample size of one when additional relevant data
are available. However, when conditions are changing rapidly, it may be that the last value
is the only relevant data point for forecasting the next value under current conditions.
Therefore, decision makers who are anything but naive do occasionally use this method
under such circumstances.

Averaging Forecasting Method

This method goes to the other extreme. Rather than using just a sample size of one, this
method uses all the data points in the time series and simply averages these points. Thus,
the forecast of what the next data point will turn out to be is

Ft�1 � �
t

i�1
�
x
t
i�.

This estimate is an excellent one if the process is entirely stable, i.e., if the assumptions
about the underlying model are correct. However, frequently there exists skepticism about
the persistence of the underlying model over an extended time. Conditions inevitably
change eventually. Because of a natural reluctance to use very old data, this procedure
generally is limited to young processes.

Moving-Average Forecasting Method

Rather than using very old data that may no longer be relevant, this method averages the
data for only the last n periods as the forecast for the next period, i.e.,

Ft�1 � �
t

i�t�n�1
�
x
n
i�.

Note that this forecast is easily updated from period to period. All that is needed each
time is to lop off the first observation and add the last one.

The moving-average estimator combines the advantages of the last value and aver-
aging estimators in that it uses only recent history and it uses multiple observations. A
disadvantage of this method is that it places as much weight on xt�n�1 as on xt. Intuitively,
one would expect a good method to place more weight on the most recent observation
than on older observations that may be less representative of current conditions. Our next
method does just this.

Exponential Smoothing Forecasting Method

This method uses the formula

Ft�1 � �xt � (1 � �)Ft,

where � (0 � � � 1) is called the smoothing constant. (The choice of � is discussed
later.) Thus, the forecast is just a weighted sum of the last observation xt and the preceding
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forecast Ft for the period just ended. Because of this recursive relationship between
Ft�1 and Ft, alternatively Ft�1 can be expressed as

Ft�1 � �xt � �(1 � �)xt�1 � �(1 � �)2xt�2 � . . . .

In this form, it becomes evident that exponential smoothing gives the most weight to xt

and decreasing weights to earlier observations. Furthermore, the first form reveals that the
forecast is simple to calculate because the data prior to period t need not be retained; all
that is required is xt and the previous forecast Ft.

Another alternative form for the exponential smoothing technique is given by

Ft�1 � Ft � �(xt � Ft),

which gives a heuristic justification for this method. In particular, the forecast of the time
series at time t � 1 is just the preceding forecast at time t plus the product of the fore-
casting error at time t and a discount factor �. This alternative form is often simpler to use.

A measure of effectiveness of exponential smoothing can be obtained under the as-
sumption that the process is completely stable, so that X1, X2, . . . are independent, iden-
tically distributed random variables with variance �2. It then follows that (for large t)

var[Ft�1] � �
2
�
�
�2

�
� � �

(2 �
�

�

2

)/�
�,

so that the variance is statistically equivalent to a moving average with (2 � �)/� obser-
vations. For example, if � is chosen equal to 0.1, then (2 � �)/� � 19. Thus, in terms of
its variance, the exponential smoothing method with this value of � is equivalent to the
moving-average method that uses 19 observations. However, if a change in the process
does occur (e.g., if the mean starts increasing), exponential smoothing will react more
quickly with better tracking of the change than the moving-average method.

An important drawback of exponential smoothing is that it lags behind a continuing
trend; i.e., if the constant-level model is incorrect and the mean is increasing steadily, then
the forecast will be several periods behind. However, the procedure can be easily adjusted
for trend (and even seasonally adjusted).

Another disadvantage of exponential smoothing is that it is difficult to choose an ap-
propriate smoothing constant �. Exponential smoothing can be viewed as a statistical filter
that inputs raw data from a stochastic process and outputs smoothed estimates of a mean that
varies with time. If � is chosen to be small, response to change is slow, with resultant smooth
estimators. On the other hand, if � is chosen to be large, response to change is fast, with re-
sultant large variability in the output. Hence, there is a need to compromise, depending upon
the degree of stability of the process. It has been suggested that � should not exceed 0.3 and
that a reasonable choice for � is approximately 0.1. This value can be increased temporarily
if a change in the process is expected or when one is just starting the forecasting. At the start,
a reasonable approach is to choose the forecast for period 2 according to

F2 � �x1 � (1 � �)(initial estimate),

where some initial estimate of the constant level A must be obtained. If past data are avail-
able, such an estimate may be the average of these data.

The Excel files for this chapter in your OR Courseware includes a pair of Excel tem-
plates for each of the four forecasting methods presented in this section. In each use, one
template (without seasonality) applies the method just as described here. The second tem-
plate (with seasonality) also incorporates into the method the seasonal factors discussed
in the next section.
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The forecasting area of your IOR Tutorial also includes procedures for applying these
four forecasting methods (and others). You enter the data (after making any needed sea-
sonal adjustment yourself), and each procedure then shows a graph that includes both the
data points (in blue) and the resulting forecasts (in red) for each period. You then have
the opportunity to drag any of the data points to new values and immediately see how the
subsequent forecasts would change. The purpose is to allow you to play with the data and
gain a better feeling for how the forecasts perform with various configurations of data for
each of the forecasting methods.

■ 27.5 INCORPORATING SEASONAL EFFECTS INTO FORECASTING METHODS

It is fairly common for a time series to have a seasonal pattern with higher values at cer-
tain times of the year than others. For example, this occurs for the sales of a product that
is a popular choice for Christmas gifts. Such a time series violates the basic assumption
of a constant-level model, so the forecasting methods presented in the preceding section
should not be applied directly.

Fortunately, it is relatively straightforward to make seasonal adjustments in such a
time series so that these forecasting methods based on a constant-level model can still be
applied. We will illustrate the procedure with the following example.

Example. The COMPUTER CLUB WAREHOUSE (commonly referred to as CCW) sells
various computer products at bargain prices by taking telephone orders directly from cus-
tomers at its call center. Figure 27.3 shows the average number of calls received per day in
each of the four quarters of the past three years. Note how the call volume jumps up sharply
in each Quarter 4 because of Christmas sales. There also is a tendency for the call volume
to be a little higher in Quarter 3 than in Quarter 1 or 2 because of back-to-school sales.

To quantify these seasonal effects, the second column of Table 27.1 shows the average
daily call volume for each quarter over the past three years. Underneath this column, the
overall average over all four quarters is calculated to be 7,529. Dividing the average for
each quarter by this overall average gives the seasonal factor shown in the third column.

In general, the seasonal factor for any period of a year (a quarter, a month, etc.)
measures how that period compares to the overall average for an entire year.
Specifically, using historical data, the seasonal factor is calculated to be

Seasonal factor � .

Your OR Courseware includes an Excel template for calculating these seasonal factors.

The Seasonally Adjusted Time Series

It is much easier to analyze a time series and detect new trends if the data are first
adjusted to remove the effect of seasonal patterns. To remove the seasonal effects
from the time series shown in Fig. 27.3, each of these average daily call volumes

average for the period
���

overall average

needs to be divided by the corresponding seasonal factor given in Table 27.1. Thus,
the formula is

Seasonally adjusted call volume ��
ac

s
t
e
u
a
a
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a
a
l
l
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e
�.

Applying this formula to all 12 call volumes in Fig. 27.3 gives the seasonally adjusted
call volumes shown in column F of the spreadsheet in Fig. 27.4.
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In effect, these seasonally adjusted call volumes show what the call volumes would
have been if the calls that occur because of the time of the year (Christmas shopping, back-
to-school shopping, etc.) had been spread evenly throughout the year instead. Compare the
plots in Figs. 27.4 and 27.3. After considering the smaller vertical scale in Fig. 27.4, note
how much less fluctuation this figure has than Fig. 27.3 because of removing seasonal ef-
fects. However, this figure still is far from completely flat because fluctuations in call 

■ FIGURE 27.3
The average number of calls received per day at the CCW call center in each of the four quarters of the past three years.

■ TABLE 27.1 Calculation of the seasonal factors for the 
CCW problem

Three-Year Seasonal
Quarter Average Factor

1 7,019 �
7
7

,
,
0
5

1
2

9
9

� � 0.93

2 6,784 �
6
7

,
,
7
5

8
2

4
9

� � 0.90

3 7,434 �
7
7

,
,
4
5

3
2

4
9

� � 0.99

4 8,880 �
8
7

,
,
8
5

8
2

0
9

� � 1.18

Total � 30,117

Average � �
30,

4
117
� � 7,529.

volume occur for other reasons beside just seasonal effects. For example, hot new prod-
ucts attract a flurry of calls. A jump also occurs just after the mailing of a catalog. Some
random fluctuations occur without any apparent explanation. Figure 27.4 enables seeing
and analyzing these fluctuations in sales volumes that are not caused by seasonal effects.
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The General Procedure

After seasonally adjusting a time series, any of the forecasting methods presented in the
preceding section (or the next section) can then be applied. Here is an outline of the gen-
eral procedure.

1. Use the following formula to seasonally adjust each value in the time series:

Seasonally adjusted value ��
se

a
a
c
s
t
o
u
n
a
a
l
l
v
f
a
a
l
c
u
t
e
or

�.

2. Select a time series forecasting method.
3. Apply this method to the seasonally adjusted time series to obtain a forecast of the

next seasonally adjusted value (or values).
4. Multiply this forecast by the corresponding seasonal factor to obtain a forecast of the

next actual value (without seasonal adjustment).

As mentioned at the end of the preceding section, an Excel template that incorporates
seasonal effects is available in your OR Courseware for each of the forecasting methods
to assist you with combining the method with this procedure.

■ FIGURE 27.4
The seasonally adjusted time series for the CCW problem obtained by dividing each actual average daily call volume in
Fig. 27.3 by the corresponding seasonal factor obtained in Table 27.1.
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Recall that the constant-level model introduced in Sec. 27.3 assumes that the sequence of
random variables {X1, X2, . . . , Xt} generating the time series has a constant expected value
denoted by A, where the goal of the forecast Ft�1 is to estimate A as closely as possible.
However, as was illustrated in Fig. 27.2b, some time series violate this assumption by hav-
ing a continuing trend where the expected values of successive random variables keep
changing in the same direction. Therefore, a forecasting method based on the constant-
level model (perhaps after adjusting for seasonal effects) would do a poor job of forecast-
ing for such a time series because it would be continually lagging behind the trend. We
now turn to another model that is designed for this kind of time series.

Suppose that the generating process of the observed time series can be represented
by a linear trend superimposed with random fluctuations, as illustrated in Fig. 27.2b. De-
note the slope of the linear trend by B, where the slope is called the trend factor. The
model is represented by

Xi � A � Bi � ei, for i � 1, 2, . . . ,

where Xi is the random variable that is observed at time i, A is a constant, B is the trend
factor, and ei is the random error occurring at time i (assumed to have expected value
equal to zero and constant variance).

For a real time series represented by this model, the assumptions may not be com-
pletely satisfied. It is common to have at least small shifts in the values of A and B oc-
casionally. It is important to detect these shifts relatively quickly and reflect them in the
forecasts. Therefore, practitioners generally prefer a forecasting method that places sub-
stantial weight on recent observations and little if any weight on old observations. The
exponential smoothing method presented next is designed to provide this kind of approach.

Adapting Exponential Smoothing to This Model

The exponential smoothing method introduced in Sec. 27.4 can be adapted to include the
trend factor incorporated into this model. This is done by also using exponential smooth-
ing to estimate this trend factor.

Let

Tt�1 � exponential smoothing estimate of the trend factor B at time t � 1, given
the observed values, X1 � x1, X2 � x2, . . . , Xt � xt.

Given Tt�1, the forecast of the value of the time series at time t � 1 (Ft�1) is obtained
simply by adding Tt�1 to the formula for Ft�1 given in Sec. 27.4, so

Ft�1 � �xt � (1 � �)Ft � Tt�1.

To motivate the procedure for obtaining Tt�1, note that the model assumes that

B � E(Xi�1) � E(Xi), for i � 1, 2, . . . .

Thus, the standard statistical estimator of B would be the average of the observed differ-
ences, x2 � x1, x3 � x2, . . . , xt � xt�1. However, the exponential smoothing approach
recognizes that the parameters of the stochastic process generating the time series (in-
cluding A and B) may actually be gradually shifting over time so that the most recent ob-
servations are the most reliable ones for estimating the current parameters. Let

Lt�1 � latest trend at time t � 1 based on the last two values (xt and xt�1) and the
last two forecasts (Ft and Ft�1).

■ 27.6 AN EXPONENTIAL SMOOTHING METHOD FOR A LINEAR TREND MODEL
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The exponential smoothing formula used for Lt�1 is

Lt�1 � �(xt � xt�1) � (1 � �)(Ft � Ft�1).

Then Tt�1 is calculated as

Tt�1 � �Lt�1 � (1 � �)Tt,

where � is the trend smoothing constant which, like �, must be between 0 and 1. Cal-
culating Lt�1 and Tt�1 in order then permits calculating Ft�1 with the formula given in
the preceding paragraph.

Getting started with this forecasting method requires making two initial estimates about
the status of the time series just prior to beginning forecasting. These initial estimates are

x0 � initial estimate of the expected value of the time series (A) if the conditions just
prior to beginning forecasting were to remain unchanged without any trend;

T1 � initial estimate of the trend of the time series (B) just prior to beginning
forecasting.

The resulting forecasts for the first two periods are

F1 � x0 � T1,
L2 � �(x1 � x0) � (1 � �)(F1 � x0),
T2 � �L2 � (1 � �)T1,
F2 � �x1 � (1 � �)F1 � T2.

The above formulas for Lt�1, Tt�1, and Ft�1 then are used directly to obtain subsequent
forecasts.

Since the calculations involved with this method are relatively involved, a computer
commonly is used to implement the method. The Excel files for this chapter in your OR
Courseware include two Excel templates (one without seasonal adjustments and one with)
for this method. In addition, the forecasting area in your IOR Tutorial includes a proce-
dure of this method that also enables you to investigate graphically the effect of making
changes in the data.

Application of the Method to the CCW Example

Reconsider the example involving the Computer Club Warehouse (CCW) that was intro-
duced in the preceding section. Figure 27.3 shows the time series for this example (rep-
resenting the average daily call volume quarterly for 3 years) and then Fig. 27.4 gives the
seasonally adjusted time series based on the seasonal factors calculated in Table 27.1. We
now will assume that these seasonal factors were determined prior to these three years of
data and that the company then was using exponential smoothing with trend to forecast
the average daily call volume quarter by quarter over the 3 years based on these data.
CCW management has chosen the following initial estimates and smoothing constants:

x0 � 7,500, T1 � 0, � � 0.3, � � 0.3.

Working with the seasonally adjusted call volumes given in Fig. 27.4, these initial es-
timates lead to the following seasonally adjusted forecasts.

Y1, Q1: F1 � 7,500 � 0 � 7,500.
Y1, Q2: L2 � 0.3(7,322 � 7,500) � 0.7(7,500 � 7,500) � �53.4.

T2 � 0.3(�53.4) � 0.7(0) � �16.
F2 � 0.3(7,322) � 0.7(7,500) � 16 � 7,431.

Y1, Q3: L3 � 0.3(7,183 � 7,322) � 0.7(7,431 � 7,500) � �90.
T3 � 0.3(�90) � 0.7(�16) � �38.2.
F3 � 0.3(7,183) � 0.7(7,431) � 38.2 � 7,318.

�
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3
4
5
6
7
8
9
10
11
12

E F G H I J
Seasonally Seasonally
Adjusted Latest Estimated Adjusted Actual Forecasting

Value Trend Trend Forecast Forecast Error
=D6/M16 =InitialEstimateTrend =InitialEstimateAverage+InitialEstimateTrend =M16*H6 =ABS(D6-I6)
=D7/M17 =Alpha*(E6-InitialEstimateAverage)+(1-Alpha)*(H6-InitialEstimateAverage) =Beta*F7+(1-Beta)*G6 =Alpha*E6+(1-Alpha)*H6+G7 =M17*H7 =ABS(D7-I7)
=D8/M18 =Alpha*(E7-E6)+(1-Alpha)*(H7-H6) =Beta*F8+(1-Beta)*G7 =Alpha*E7+(1-Alpha)*H7+G8 =M18*H8 =ABS(D8-I8)
=D9/M19 =Alpha*(E8-E7)+(1-Alpha)*(H8-H7) =Beta*F9+(1-Beta)*G8 =Alpha*E8+(1-Alpha)*H8+G9 =M19*H9 =ABS(D9-I9)
=D10/M16 =Alpha*(E9-E8)+(1-Alpha)*(H9-H8) =Beta*F10+(1-Beta)*G9 =Alpha*E9+(1-Alpha)*H9+G10 =M16*H10 =ABS(D10-I10)
=D11/M17 =Alpha*(E10-E9)+(1-Alpha)*(H10-H9) =Beta*F11+(1-Beta)*G10 =Alpha*E10+(1-Alpha)*H10+G11 =M17*H11 =ABS(D11-I11)

: : : : : :

Range Name Cells
ActualForecast I6:I30
Alpha M5
Beta M6
ForecastingError J6:J30
InitialEstimateAverage M9
InitialEstimateTrend M10
MAD M30
MSE M33
SeasonalFactor M16:M27
SeasonallyAdjustedForecast H6:H30
SeasonallyAdjustedValue E6:E30
TrueValue D6:D30
TypeOfSeasonality M13

30

L M

MAD = =AVERAGE(ForecastingError)

33

L M

MSE = =SUMSQ(ForecastingError)/COUNT(ForecastingError)

1

2

3

4

6
7
8
9

10
11
12
13
14
15
16

17
18
19
20

22
23
24
25
26
27
28
29

30

31
32

33

34
35
36
37

A B C D E F G H I J K L M

Exponential Smoothing with Trend Forecasting Method with Seasonality for CCW

Seasonally Seasonally
 True Adjusted Latest Estimated Adjusted Actual Forecasting Smoothing Constant

Year Quarter Value Value Trend Trend Forecast Forecast Error α = 0.3
1 1 6,809 7,322 0 7,500 6,975 166 β = 0.3
1 2 6,465 7,183 -54 -16 7,430 6,687 222
1 3 6,569 6,635 -90 -38 7,318 7,245 676 Initial Estimate
1 4 8,266 7,005 -243 -100 7,013 8,276 10 Average = 7,500
2 1 7,257 7,803 -102 -100 6,910 6,427 830 Trend = 0
2 2 7,064 7,849 167 -20 7,158 6,442 622
2 3 7,784 7,863 187 42 7,407 7,333 451 Type of Seasonality
2 4 8,724 7,393 179 83 7,627 9,000 276 Quarterly
3 1 6,992 7,518 13 62 7,619 7,085 93
3 2 6,822 7,580 32 53 7,642 6,877 55 Quarter Seasonal Factor
3 3 7,949 8,029 34 47 7,670 7,594 355 1 0.93
3 4 9,650 8,178 155 80 7,858 9,272 378 2 0.90
4 1 #N/A 176 108 8,062 7,498 3 0.99
4 2 #N/A #N/A 4 1.18

#N/A #N/A
4 4 #N/A #N/A
5 1 #N/A #N/A
5 2 #N/A #N/A
5 3 #N/A #N/A
5 4 #N/A #N/A
6 1 #N/A #N/A
6 2 #N/A #N/A
6 3 #N/A #N/A
6 4 #N/A #N/A Mean Absolute Deviation
7 1 #N/A #N/A MAD = 345

#N/A #N/A
#N/A #N/A Mean Square Error
#N/A #N/A MSE = 180,796
#N/A #N/A
#N/A #N/A
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■ FIGURE 27.5
The Excel template in your OR Courseware for the exponential smoothing with trend
method with seasonal adjustments is applied here to the CCW problem.
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The Excel template in Fig. 27.5 shows the results from these calculations for all 12 quar-
ters over the 3 years, as well as for the upcoming quarter. The middle of the figure shows
the plots of all the seasonally adjusted call volumes and seasonally adjusted forecasts.
Note how each trend up or down in the call volumes causes the forecasts to gradually
trend in the same direction, but then the trend in the forecasts takes a couple of quarters
to turn around when the trend in call volumes suddenly reverses direction. Each number
in column I is calculated by multiplying the seasonally adjusted forecast in column H by
the corresponding seasonal factor in column M to obtain the forecast of the actual value
(not seasonally adjusted) for the average daily call volume. Column J then shows the re-
sulting forecasting errors (the absolute value of the difference between columns D and I).

Forecasting More Than One Time Period Ahead

We have focused thus far on forecasting what will happen in the next time period (the
next quarter in the case of CCW). However, decision makers sometimes need to forecast
further into the future. How can the various forecasting methods be adapted to do this?

In the case of the methods for a constant-level model presented in Sec. 27.4, the fore-
cast for the next period Ft 1 also is the best available forecast for subsequent periods as
well. However, when there is a trend in the data, as we are assuming in this section, it is
important to take this trend into account for long-range forecasts. Exponential smoothing
with trend provides a straightforward way of doing this. In particular, after determining
the estimated trend Tt 1, this method’s forecast for n time periods into the future is

Ft n xt (1 )Ft nTt 1.

■ 27.7 FORECASTING ERRORS

Several forecasting methods now have been presented. How does one choose the appro-
priate method for any particular application? Identifying the underlying model that best
fits the time series (constant-level, linear trend, etc., perhaps in combination with seasonal
effects) is an important first step. Assessing how stable the parameters of the model are,
and so how much reliance can be placed on older data for forecasting, also helps to nar-
row down the selection of the method. However, the final choice between two or three
methods may still not be clear. Some measure of performance is needed.

The goal is to generate forecasts that are as accurate as possible, so it is natural to
base a measure of performance on the forecasting errors.

The forecasting error (also called the residual) for any period t is the absolute value of
the deviation of the forecast for period t (Ft) from what then turns out to be the observed
value of the time series for period t (xt). Thus, letting Et denote this error,

Et � xt � Ft.

For example, column J of the spreadsheet in Fig. 27.5 gives the forecasting errors when
applying exponential smoothing with trend to the CCW example.
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Given the forecasting errors for n time periods (t � 1, 2, . . . , n), two popular mea-
sures of performance are available. One, called the mean absolute deviation (MAD) is
simply the average of the errors, so

MAD � .

This is the measure shown by MAD(M30) in Fig. 27.5. The other measure, called the
mean square error (MSE), instead averages the square of the forecasting errors, so

MSE � .

This measure is provided by MSE (M33) in Fig. 27.5.
The advantages of MAD are its ease of calculation and its straightforward interpre-

tation. However, the advantage of MSE is that it imposes a relatively large penalty for a
large forecasting error that can have serious consequences for the organization while al-
most ignoring inconsequentially small forecasting errors. In practice, managers often pre-
fer to use MAD, whereas statisticians generally prefer MSE.

Either measure of performance might be used in two different ways. One is to
compare alternative forecasting methods in order to choose one with which to begin
forecasting. This is done by applying the methods retrospectively to the time series in
the past (assuming such data exist). This is a very useful approach as long as the fu-
ture behavior of the time series is expected to resemble its past behavior. Similarly,
this retrospective testing can be used to help select the parameters for a particular fore-
casting method, e.g., the smoothing constant(s) for exponential smoothing. Second, af-
ter the real forecasting begins with some method, one of the measures of performance
(or possibly both) normally would be calculated periodically to monitor how well the
method is performing. If the performance is disappointing, the same measure of per-
formance can be calculated for alternative forecasting methods to see if any of them
would have performed better.

�
n

t�1
Et

2

�
n

�
n

t�1
Et

�
n

■ 27.8 BOX-JENKINS METHOD

In practice, a forecasting method often is chosen without adequately checking whether the
underlying model is an appropriate one for the application. The beauty of the Box-Jenkins
method is that it carefully coordinates the model and the procedure. (Practitioners often
use this name for the method because it was developed by G.E.P. Box and G.M. Jenkins.
An alternative name is the ARIMA method, which is an acronym for autoregressive inte-
grated moving average.) This method employs a systematic approach to identifying an ap-
propriate model, chosen from a rich class of models. The historical data are used to test
the validity of the model. The model also generates an appropriate forecasting procedure.

To accomplish all this, the Box-Jenkins method requires a great amount of past data
(a minimum of 50 time periods), so it is used only for major applications. It also is a so-
phisticated and complex technique, so we will provide only a conceptual overview of the
method. (See Selected References 2 and 8 for further details.)

The Box-Jenkins method is iterative in nature. First, a model is chosen. To choose this
model, we must compute autocorrelations and partial autocorrelations and examine their pat-
terns. An autocorrelation measures the correlation between time series values separated by
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a fixed number of periods. This fixed number of periods is called the lag. Therefore, the
autocorrelation for a lag of two periods measures the correlation between every other ob-
servation; i.e., it is the correlation between the original time series and the same series
moved forward two periods. The partial autocorrelation is a conditional autocorrelation
between the original time series and the same series moved forward a fixed number of
periods, holding the effect of the other lagged times fixed. Good estimates of both the au-
tocorrelations and the partial autocorrelations for all lags can be obtained by using a com-
puter to calculate the sample autocorrelations and the sample partial autocorrelations.
(These are “good” estimates because we are assuming large amounts of data.)

From the autocorrelations and the partial autocorrelations, we can identify the functional
form of one or more possible models because a rich class of models is characterized by these
quantities. Next we must estimate the parameters associated with the model by using the his-
torical data. Then we can compute the residuals (the forecasting errors when the forecasting
is done retrospectively with the historical data) and examine their behavior. Similarly, we can
examine the behavior of the estimated parameters. If both the residuals and the estimated pa-
rameters behave as expected under the presumed model, the model appears to be validated.
If they do not, then the model should be modified and the procedure repeated until a model
is validated. At this point, we can obtain an actual forecast for the next period.

For example, suppose that the sample autocorrelations and the sample partial auto-
correlations have the patterns shown in Fig. 27.6. The sample autocorrelations appear to
decrease exponentially as a function of the time lags, while the same partial autocorrela-
tions have spikes at the first and second time lags followed by values that seem to be of
negligible magnitude. This behavior is characteristic of the functional form

Xt � B0 � B1Xt�1 � B2Xt�2 � et.

Assuming this functional form, we use the time series data to estimate B0, B1, and B2.
Denote these estimates by b0, b1, and b2, respectively. Together with the time series data,
we then obtain the residuals

xt � (b0 � b1xt�1 � b2xt�2).

If the assumed functional form is adequate, the residuals and the estimated parameters
should behave in a predictable manner. In particular, the sample residuals should behave
approximately as independent, normally distributed random variables, each having mean
0 and variance �2 (assuming that et, the random error at time period t, has mean 0 and
variance �2). The estimated parameters should be uncorrelated and significantly different
from zero. Statistical tests are available for this diagnostic checking.
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■ FIGURE 27.6
Plot of sample autocorrelation 
and partial autocorrelation
versus time lags.

27.8 BOX-JENKINS METHOD
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The Box-Jenkins procedure appears to be a complex one, and it is. Fortunately, com-
puter software is available. The programs calculate the sample autocorrelations and the
sample partial autocorrelations necessary for identifying the form of the model. They also
estimate the parameters of the model and do the diagnostic checking. These programs, how-
ever, cannot accurately identify one or more models that are compatible with the autocor-
relations and the partial autocorrelations. Expert human judgment is required. This exper-
tise can be acquired, but it is beyond the scope of this text. Although the Box-Jenkins
method is complicated, the resulting forecasts are extremely accurate and, when the time
horizon is short, better than most other forecasting methods. Furthermore, the procedure
produces a measure of the forecasting error.

■ 27.9 CAUSAL FORECASTING WITH LINEAR REGRESSION

In the preceding six sections, we have focused on time series forecasting methods, i.e.,
methods that forecast the next value in a time series based on its previous values. We now
turn to another type of approach to forecasting.

Causal Forecasting

In some cases, the variable to be forecasted has a rather direct relationship with one or
more other variables whose values will be known at the time of the forecast. If so, it would
make sense to base the forecast on this relationship. This kind of approach is called causal
forecasting.

Causal forecasting obtains a forecast of the quantity of interest (the dependent variable)
by relating it directly to one or more other quantities (the independent variables) that drive
the quantity of interest.

Table 27.2 shows some examples of the kinds of situations where causal forecasting
sometimes is used. In each of the first three cases, the indicated dependent variable can
be expected to go up or down rather directly with the independent variable(s) listed in the
rightmost column. The last case also applies when some quantity of interest (e.g., sales
of a product) tends to follow a steady trend upward (or downward) with the passage of
time (the independent variable that drives the quantity of interest).

■ TABLE 27.2 Possible examples of causal forecasting

Possible Dependent Possible Independent
Type of Forecasting Variable Variables

Sales Sales of a product Amount of advertising
Spare parts Demand for spare parts Usage of equipment
Economic trends Gross domestic product Various economic factors
Any quantity This same quantity Time 

Linear Regression

We will focus on the type of causal forecasting where the mathematical relationship between
the dependent variable and the independent variable(s) is assumed to be a linear one (plus
some random fluctuations). The analysis in this case is referred to as linear regression.
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To illustrate the linear regression approach, suppose that a publisher of textbooks is
concerned about the initial press run for her books. She sells books both through book-
stores and through mail orders. This latter method uses an extensive advertising campaign
on line, as well as through publishing media and direct mail. The advertising campaign
is conducted prior to the publication of the book. The sales manager has noted that there
is a rather interesting linear relationship between the number of mail orders and the num-
ber sold through bookstores during the first year. He suggests that this relationship be ex-
ploited to determine the initial press run for subsequent books.

Thus, if the number of mail order sales for a book is denoted by X and the number
of bookstore sales by Y, then the random variables X and Y exhibit a degree of associa-
tion. However there is no functional relationship between these two random variables;
i.e., given the number of mail order sales, one does not expect to determine exactly the
number of bookstore sales. For any given number of mail order sales, there is a range of
possible bookstore sales, and vice versa.

What, then, is meant by the statement, “The sales manager has noted that there is a rather
interesting linear relationship between the number of mail orders and the number sold through
bookstores during the first year”? Such a statement implies that the expected value of the
number of bookstore sales is linear with respect to the number of mail order sales, i.e.,

E[YX � x] � A � Bx.

Thus, if the number of mail order sales is x for many different books, the average num-
ber of corresponding bookstore sales would tend to be approximately A � Bx. This rela-
tionship between X and Y is referred to as a degree of association model.

As already suggested in Table 27.2, other examples of this degree of association model
can easily be found. A college admissions officer may be interested in the relationship be-
tween a student’s performance on the college entrance examination and subsequent per-
formance in college. An engineer may be interested in the relationship between tensile
strength and hardness of a material. An economist may wish to predict a measure of in-
flation as a function of the cost of living index, and so on.

The degree of association model is not the only model of interest. In some cases, there
exists a functional relationship between two variables that may be linked linearly. In a fore-
casting context, one of the two variables is time, while the other is the variable of interest.
In Sec. 27.6, such an example was mentioned in the context of the generating process of the
time series being represented by a linear trend superimposed with random fluctuations, i.e.,

Xt � A � Bt � et,

where A is a constant, B is the slope, and et is the random error, assumed to have expected
value equal to zero and constant variance. (The symbol Xt can also be read as X given t or
as Xt.) It follows that

E(Xt) � A � Bt.

Note that both the degree of association model and the exact functional relationship
model lead to the same linear relationship, and their subsequent treatment is almost iden-
tical. Hence, the publishing example will be explored further to illustrate how to treat both
kinds of models, although the special structure of the model

E(Xt) � A � Bt,

27.9 CAUSAL FORECASTING WITH LINEAR REGRESSION
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with t taking on integer values starting with 1, leads to certain simplified expressions. In
the standard notation of regression analysis, X represents the independent variable and
Y represents the dependent variable of interest. Consequently, the notational expression
for this special time series model now becomes

Yt � A � Bt � et.

Method of Least Squares

Suppose that bookstore sales and mail order sales are given for 15 books. These data ap-
pear in Table 27.3, and the resulting plot is given in Fig. 27.7.

It is evident that the points in Fig. 27.7 do not lie on a straight line. Hence, it is not
clear where the line should be drawn to show the linear relationship. Suppose that an ar-
bitrary line, given by the expression y~ � a � bx, is drawn through the data. A measure of
how well this line fits the data can be obtained by computing the sum of squares of the
vertical deviations of the actual points from the fitted line. Thus, let yi represent the book-
store sales of the ith book and xi the corresponding mail order sales. Denote by y~i the
point on the fitted line corresponding to the mail order sales of xi. The proposed measure
of fit is then given by

Q � (y1 � y~1)2 � (y2 � y~2)2 � ��� � (y15 � y~15)2 � �
15

i�1
(yi � y~i)

2.

The usual method for identifying the “best” fitted line is the method of least squares.
This method chooses that line a � bx that makes Q a minimum. Thus, a and b are ob-
tained simply by setting the partial derivatives of Q with respect to a and b equal to zero
and solving the resulting equations. This method yields the solution

b � �

�
n

i�1
xiyi � ��

n

i�1
xi �

n

i�1
yi��n

���

�
n

i�1
xi

2 � ��
n

i�1
xi�

2

�n

�
n

i�1
(xi � x�)(yi � y�)

��

�
n

i�1
(xi � x�)2

■ TABLE 27.3 Data for the mail-order and 
bookstore sales example

Mail-Order Sales Bookstore Sales

1,310 4,360
1,313 4,590
1,320 4,520
1,322 4,770
1,338 4,760
1,340 5,070
1,347 5,230
1,355 5,080
1,360 5,550
1,364 5,390
1,373 5,670
1,376 5,490
1,384 5,810
1,395 6,060
1,400 5,940 
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and

a � y� � bx�,

where

x� � �
n

i�1
�
x
n
i�

and

y� � �
n

i�1
�
y
n
i�.

(Note that y� is not the same as y~ � a � bx discussed in the preceding paragraph.)
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■ FIGURE 27.7
Plot of mail order sales 
versus bookstore sales from
Table 27.3.

27.9 CAUSAL FORECASTING WITH LINEAR REGRESSION
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For the publishing example, the data in Table 27.3 and Fig. 27.7 yield

x� � 1,353.1,

y� � 5,219.3,

�
15

i�1
(xi � x�)(yi � y�) � 214,543.9,

�
15

i�1
(xi � x�)2 � 11,966,

a � �19,041.9,
b � 17.930.

Hence, the least-squares estimate of bookstore sales y~ with mail order sales x is given by

y~ � �19,041.9 � 17.930x,

and this is the line drawn in Fig. 27.7. Such a line is referred to as a regression line.
An Excel template called Linear Regression is available in your OR Courseware for

calculating a regression line in this way. A procedure in the forecasting area of your IOR
Tutorial also will perform this calculation for you, as well as enable you to graphically
investigate the effect of making changes in the data.

This regression line is useful for forecasting purposes. For a given value of x, the cor-
responding value of y represents the forecast.

The decision maker may be interested in some measure of uncertainty that is as-
sociated with this forecast. This measure is easily obtained provided that certain as-
sumptions can be made. Therefore, for the remainder of this section, it is assumed 
that

1. A random sample of n pairs (x1, Y1), (x2, Y2), . . . , (xn, Yn) is to be taken.
2. The Yi are normally distributed with mean A � Bxi and variance �2 (independent of i).

The assumption that Yi is normally distributed is not a critical assumption in deter-
mining the uncertainty in the forecast, but the assumption of constant variance is crucial.
Furthermore, an estimate of this variance is required.

An unbiased estimate of �2 is given by sy
2
x, where

sy
2
x � �

n

i�1
�
(y

n
i �

�
y~

2
i)

2

�.

Confidence Interval Estimation of E(Yx � x*)

A very important reason for obtaining the linear relationship between two variables is to
use the line for future decision making. From the regression line, it is possible to estimate
E(Yx) by a point estimate (the forecast) and a confidence interval estimate (a measure
of forecast uncertainty).

For example, the publisher might want to use this approach to estimate the expected
number of bookstore sales corresponding to mail order sales of, say, 1,400, by both a point
estimate and a confidence interval estimate for forecasting purposes.

A point estimate of E(Yx � x*) is given by

y~* � a � bx*,

where x* denotes the given value of the independent variable and y~* is the corresponding
point estimate.
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The endpoints of a (100)(1 � �) percent confidence interval for E(Yx � x*) are
given by

a � bx* � t�/2;n�2syx��
1
n

� �		
and

a � bx* � t�/2;n�2syx ��
1
n

� �		,

where sy
2
x is the estimate of �2, and t�/2;n�2 is the 100�/2 percentage point of the t dis-

tribution with n � 2 degrees of freedom as given in Table 27.4. Note that the interval is
narrowest where x* � x�, and it becomes wider as x* departs from the mean.

In the publishing example with x* � 1,400, sy
2
x is computed from the data in Table 27.3

to be 17,030, so syx � 130.5. If a 95 percent confidence interval is required, Table 27.4 gives
t0.025;13 � 2.160. The earlier calculation of a and b yields

a � bx* � �19,041.9 � 17.930(1,400) � 6,060

as the point estimate of E(Y1,400), that is, the forecast. Consequentially, the confidence
limits corresponding to mail order sales of 1,400 are

Lower confidence limit � 6,060 � 2.160(130.5)��
1
1
5
� �	�

1
4
1
6
,9
.9
6

2

6
�	

� 5,919,

Upper confidence limit � 6,060 � 2.160(130.5)��
1
1
5
� �	�

1
4
1
6
,9
.9
6

2

6
�	

� 6,201.

The fact that the confidence interval was obtained at a data point (x � 1,400) is purely
coincidental.

The Excel template for linear regression in your OR Courseware does most of the
computational work involved in calculating these confidence limits. In addition to com-

puting a and b (the regression line), it calculates sy
2
x, x�, and �

n

i�1
(xi � x�)2.

Predictions

The confidence interval statement for the expected number of bookstore sales correspond-
ing to mail order sales of 1,400 may be useful for budgeting purposes, but it is not too use-
ful for making decisions about the actual press run. Instead of obtaining bounds on the ex-
pected number of bookstore sales, this kind of decision requires bounds on what the actual
bookstore sales will be, i.e., a prediction interval on the value that the random variable
(bookstore sales) takes on. This measure is a different measure of forecast uncertainty.

The two endpoints of a prediction interval are given by the expressions

a � bx� � t�/2;n�2syx�1 � �
1

n
�	 �		(x� � x�)2

��

�
n

i�1
(xi � x�)2

(x* � x�)2

��

�
n

i�1
(xi � x�)2

(x* � x�)2

��

�
n

i�1
(xi � x�)2

27.9 CAUSAL FORECASTING WITH LINEAR REGRESSION
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■ TABLE 27.4 100 � percentage points of Student’s t distribution

P{Student’s t with v Degrees of Freedom � Tabled Value} � �

v 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005

1 0.325 1.000 3.078 6.314 12.706 31.821 63.657 127.32 318.31 636.62
2 0.289 0.816 1.886 2.920 4.303 6.965 9.925 14.089 22.327 31.598
3 0.277 0.765 1.638 2.353 3.182 4.541 5.841 7.453 10.214 12.924
4 0.271 0.741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610

5 0.267 0.727 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869
6 0.265 0.718 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959
7 0.263 0.711 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408
8 0.262 0.706 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041
9 0.261 0.703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781

10 0.260 0.700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587
11 0.260 0.697 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437
12 0.259 0.695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318
13 0.259 0.694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221
14 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140

15 0.258 0.691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073
16 0.258 0.690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015
17 0.257 0.689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965
18 0.257 0.688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922
19 0.257 0.688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883

20 0.257 0.687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850
21 0.257 0.686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819
22 0.256 0.686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792
23 0.256 0.685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767
24 0.256 0.685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745

25 0.256 0.684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725
26 0.256 0.684 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707
27 0.256 0.684 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690
28 0.256 0.683 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674
29 0.256 0.683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659

30 0.256 0.683 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646
40 0.255 0.681 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551
60 0.254 0.679 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460
120 0.254 0.677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373
	 0.253 0.674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291

Source: Table 12 of Biometrika Tables for Statisticians, vol. I, 3d ed., 1966, by permission of the Biometrika Trustees.

and

a � bx� � t�/2;n�2syx�1 � �
1

n
�	 �		

For any given value of x (denoted here by x�), the probability is 1 � � that the value of
the future Y� associated with x� will fall in this interval.

Thus, in the publishing example, if x� is 1,400, then the corresponding 95 percent
prediction interval for the number of bookstore sales is given by 6,060 ± 315, which is
naturally wider than the confidence interval for the expected number of bookstore sales,
6,060 ± 141.

(x� � x�)2

��

�
n

i�1
(xi � x�)2

�
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This method of finding a prediction interval works fine if it is only being done once.
However, it is not feasible to use the same data to find multiple prediction intervals with
various values of x� in this way and then specify a probability that all these predictions will
be correct. For example, suppose that the publisher wants prediction intervals for several
different books. For each individual book, she still is able to use these expressions to find
the prediction interval and then make the prediction that the bookstore sales will be within
this interval, where the probability is 1 � � that the prediction will be correct. However,
what she cannot do is specify a probability that all these predictions will be correct. The
reason is that these predictions are all based upon the same statistical data, so the predic-
tions are not statistically independent. If the predictions were independent and if k future
bookstore sales were being predicted, with each prediction being made with probability 
1 � �, then the probability would be (1 � �)k that all k predictions of future bookstore sales
will be correct. Unfortunately, the predictions are not independent, so the actual probability
cannot be calculated, and (1 � �)k does not even provide a reasonable approximation.

This difficulty can be overcome by using simultaneous tolerance intervals. Using
this technique, the publisher can take the mail order sales of any book, find an interval
(based on the previously determined linear regression line) that will contain the actual
bookstore sales with probability at least 1 � �, and repeat this for any number of books
having the same or different mail order sales. Furthermore, the probability is P that all
these predictions will be correct. An alternative interpretation is as follows. If every pub-
lisher followed this procedure, each using his or her own linear regression line, then 100P
percent of the publishers (on average) would find that at least 100(1 � �) percent of their
bookstore sales fell into the predicted intervals. The expression for the endpoints of each
such tolerance interval is given by

a � bx� � c**syx ��
1
n� �		

and

a � bx� � c**syx��
1
n� �		,

where c** is given in Table 27.5.
Thus, the publisher can predict that the bookstore sales corresponding to known mail or-

der sales will fall in these tolerance intervals. Such statements can be made for as many books
as the publisher desires. Furthermore, the probability is P that at least 100(1 � �) percent of
bookstore sales corresponding to mail order sales will fall in these intervals. If P is chosen as
0.90 and � � 0.05, the appropriate value of c** is 11.625. Hence, the number of bookstore
sales corresponding to mail order sales of 1,400 books is predicted to fall in the interval 6,060

 759. If another book had mail order sales of 1,353, the bookstore sales are predicted to fall
in the interval 5,258 
 390, and so on. At least 95 percent of the bookstore sales will fall into
their predicted intervals, and these statements are made with confidence 0.90.

To summarize, we now have described three measures of forecast uncertainty. The first
(in the preceding subsection) is a confidence interval on the expected value of the random
variable Y (for example, bookstore sales) given the observed value x of the independent
variable X (for example, mail order sales). The second is a prediction interval on the ac-
tual value that Y will take on, given x. The third is simultaneous tolerance intervals on a
succession of actual values that Y will take on given a succession of observed values of X.

(x� � x�)2

��

�
n

i�1
(xi � x�)2

(x� � x�)2

��

�
n

i�1
(xi � x�)2

27.9 CAUSAL FORECASTING WITH LINEAR REGRESSION
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You now have seen the major forecasting methods used in practice. We conclude with a
brief look at how widely the various methods are used.

Every company needs to do at least some forecasting, but their methods often are not
as sophisticated as with these major projects. Some insight into their general approach

■ TABLE 27.5 Values of c**

n � � 0.50 � � 0.25 � � 0.10 � � 0.05 � � 0.01 � � 0.001

P � 0.90

4 7.471 10.160 13.069 14.953 18.663 23.003
6 5.380 7.453 9.698 11.150 14.014 17.363
8 5.037 7.082 9.292 10.722 13.543 16.837

10 4.983 7.093 9.366 10.836 13.733 17.118
12 5.023 7.221 9.586 11.112 14.121 17.634
14 5.101 7.394 9.857 11.447 14.577 18.232
16 5.197 7.586 10.150 11.803 15.057 18.856
18 5.300 7.786 10.449 12.165 15.542 19.484
20 5.408 7.987 10.747 12.526 16.023 20.140

P � 0.95

4 10.756 14.597 18.751 21.445 26.760 32.982
6 6.652 9.166 11.899 13.669 17.167 21.266
8 5.933 8.281 10.831 12.484 15.750 19.568

10 5.728 8.080 10.632 12.286 15.553 19.369
12 5.684 8.093 10.701 12.391 15.724 19.619
14 5.711 8.194 10.880 12.617 16.045 20.050
16 5.771 8.337 11.107 12.898 16.431 20.559
18 5.848 8.499 11.357 13.204 16.845 21.097
20 5.937 8.672 11.619 13.521 17.272 21.652

P � 0.99

4 24.466 33.019 42.398 48.620 60.500 74.642
6 10.444 14.285 18.483 21.215 26.606 32.920
8 8.290 11.453 14.918 17.166 21.652 26.860

10 7.567 10.539 13.796 15.911 20.097 24.997
12 7.258 10.182 13.383 15.479 19.579 24.403
14 7.127 10.063 13.267 15.355 19.485 24.316
16 7.079 10.055 13.306 15.410 19.582 24.467
18 7.074 10.111 13.404 15.552 19.794 24.746
20 7.108 10.198 13.566 15.745 20.065 25.122

Source: Reprinted by permission from G. J. Lieberman and R. G. Miller, “Simultaneous Tolerance In-
tervals in Regression,” Biometrika, 50(1 and 2): 164, 1963.

■ 27.10 FORECASTING IN PRACTICE

was provided by a survey conducted some years ago2 of sales forecasting practices at 500
U.S. corporations. Although this survey published in 1994 now is somewhat out of date,
we believe that its results are still somewhat reflective of current forecasting practices.

 
                                                  2See Selected Reference 9 
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This survey indicates that at that time, judgmental forecasting methods were some-
what more widely used than statistical methods. The main reasons given for using judg-
mental methods were accuracy and difficulty in obtaining the data required for statistical
methods. Comments also were made that upper management is not familiar with quanti-
tative techniques, that judgmental methods create a sense of ownership, and that these
methods add a commonsense element to the forecast.

Among the judgmental methods, the most popular was a jury of executive opinion.
This was especially true for companywide or industry sales forecasts but also holds true
by a small margin over manager’s opinion when forecasting sales of individual products
or families of products.

Statistical forecasting methods also are fairly widely used, especially in companies
with high sales. Compared to earlier surveys, familiarity with such methods is increasing.
(Given that statistical forecasting methods now have been regularly taught in business
schools and management seminars for many years, we anticipate that this trend of in-
creasing familiarity with such methods has continued since the time of the survey.) How-
ever, many survey respondents cited better data availability as the improvement they most
wanted to see in their organizations. The availability of good data is crucial for the use of
these methods. (Fortunately, the rapid advances in information technology since the sur-
vey was conducted has led to much better data availability in many companies.)

The survey indicates that the moving-average method and linear regression were the
most widely used statistical forecasting methods. The moving-average method was more
popular for short- and medium-range forecasts (less than a year), as well as for forecast-
ing sales of individual products and families of products. Linear regression was more pop-
ular for longer-range forecasts and for forecasting either companywide or industry sales.
Both exponential smoothing and the last-value method also received considerable use.
However, the highest dissatisfaction is with the last-value method, and its popularity was
decreasing compared to earlier surveys.

When statistical forecasting methods were used, it was fairly common to also use judg-
mental methods to adjust the forecasts. (This continues to be fairly common practice.)

As managers have continued to become more familiar with statistical methods, and
more used to using the computer to compile data and implement OR techniques, we an-
ticipate that the usage of statistical forecasting methods is continuing to grow. However,

2See Selected Reference 9.

there always will be an important role for judgmental methods, both alone and in combi-
nation with statistical methods.

Another important trend in recent years has been an increasing availability and usage
of sophisticated software packages for applying statistical forecasting methods. (See Selected
Reference 11 for a survey of these packages.) Selected Reference 10 also provides a survey
of the use, satisfaction, and performance of forecasting software in practice. Most of
the U.S. corporations responding to the latter survey reported using software for their forecasts,
although this sometimes involved using only spreadsheets or internally developed forecast-
ing software. Those using commercially available software packages reported both the best
forecasting performance and the greatest satisfaction with the features of the software.

27.10 FORECASTING IN PRACTICE
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27.11 CONCLUSIONS

The future success of any business depends heavily on the ability of its management
to forecast well. Judgmental forecasting methods often play an important role in this
process. However, the ability to forecast well is greatly enhanced if historical data are
available to help guide the development of a statistical forecasting method. By study-
ing these data, an appropriate model can be structured. A forecasting method that be-
haves well under the model should be selected. This method may require choosing one
or more parameters—e.g., the smoothing constant in exponential smoothing—and
the historical data may prove useful in making this choice. After forecasting begins,
the performance should be monitored carefully to assess whether modifications should
be made in the method.
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To the left of each of the following problems (or their parts), we have
inserted a T whenever the corresponding template listed above can
be helpful. (Some of the above procedures in your IOR Tutorial
should be used for certain problems, but this will be specified in
the statement of the problem whenever needed.)

27.4-1. The Hammaker Company’s newest product has had the
following sales during its first five months: 5 17 29 41 39. The
sales manager now wants a forecast of sales in the next month.
(Use hand calculations rather than an Excel template.)
(a) Use the last-value method.
(b) Use the averaging method.
(c) Use the moving-average method with the 3 most recent months.
(d) Given the sales pattern so far, do any of these methods seem

inappropriate for obtaining the forecast? Why?

(c) The moving-average method with 3 months.
(d) If you feel that the conditions affecting sales next month will

be the same as in the last five months, which of these meth-
ods do you prefer for obtaining the forecast? Why?

27.4-3. You are using the moving-average forecasting method based
upon the last four observations. When making the forecast for the
last period, the oldest of the four observations was 1,945 and the
forecast was 2,083. The true value for the last period then turned out
to be 1,977. What is your new forecast for the next period?

27.4-4. You are using the moving-average forecasting method
based upon sales in the last three months to forecast sales for the
next month. When making the forecast for last month, sales for the
third month before were 805. The forecast for last month was 782
and then the actual sales turned out to be 793. What is your new
forecast for next month?

27.4-5. After graduating from college with a degree in mathemat-
ical statistics, Ann Preston has been hired by the Monty Ward 

“Ch. 27—Forecasting” Excel Files:

Template for Seasonal Factors
Templates for Last-Value Method (with and without Seasonality)
Templates for Averaging Method (with and without Seasonality)
Templates for Moving-Average Method (with and without Seasonality)
Templates for Exponential Smoothing Method (with and without Seasonality)
Templates for Exponential Smoothing with Trend (with and without Seasonality)
Template for Linear Regression

Procedures in IOR Tutorial:

Last Value Method
Averaging Method
Moving Average Method
Exponential Smoothing
Exponential Smoothing with Trend
Linear Regression

“Ch. 27—Forecasting” LINGO File for Selected Examples

See Appendix 1 for documentation of the software.

LEARNING AIDS FOR THIS CHAPTER ON THIS WEBSITE

PROBLEMS

27.4-2. Sales of stoves have been going well for the Good-Value De-
partment Store. These sales for the past five months have been 15 18
12 17 13. Use the following methods to obtain a forecast of sales for
the next month. (Use hand calculations rather than an Excel template.)
(a) The last-value method.
(b) The averaging method.

Company to apply statistical methods for forecasting the company's

PROBLEMS
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sales. For one of the company’s products, the moving-average
method based upon sales in the 10 most recent months already is
being used. Ann’s first task is to update last month’s forecast to ob-
tain the forecast for next month. She learns that the forecast for last
month was 1,551 and that the actual sales then turned out to be
1,532. She also learns that the sales for the tenth month before last
month was 1,632. What is Ann’s forecast for next month?

27.4-6. The J.J. Bone Company uses exponential smoothing to
forecast the average daily call volume at its call center. The fore-
cast for last month was 782, and then the actual value turned out
to be 792. Obtain the forecast for next month for each of the fol-
lowing values of the smoothing constant: � � 0.1, 0.3, 0.5.

27.4-7. You are using exponential smoothing to obtain monthly
forecasts of the sales of a certain product. The forecast for last
month was 2,083, and then the actual sales turned out to be 1,973.
Obtain the forecast for next month for each of the following val-
ues of the smoothing constant: � � 0.1, 0.3, 0.5.

27.4-8. If � is set equal to 0 or 1 in the exponential smoothing ex-
pression, what happens to the forecast?

27.4-9. A company uses exponential smoothing with � � �
1
2

� to fore-
cast demand for a product. For each month, the company keeps a
record of the forecast demand (made at the end of the preceding
month) and the actual demand. Some of the records have been lost;
the remaining data appear in the table below.

(a) Using only data in the table for March, April, May, and June,
determine the actual demands in April and May.

(b) Suppose now that a clerical error is discovered; the actual de-
mand in January was 432, not 400, as shown in the table. Us-
ing only the actual demands going back to January (even
though the February actual demand is unknown), give the cor-
rected forecast for June.

27.5-1. Figure 27.3 shows CCW’s average daily call volume for
each quarter of the past three years, and column F of Fig. 27.4
gives the seasonally adjusted call volumes. Management now won-
ders what these seasonally adjusted call volumes would have been
if the company had started using seasonal factors two years ago
rather than applying them retrospectively now. (Use hand calcula-
tions rather than an Excel template.)
(a) Use only the call volumes in Year 1 to determine the seasonal

factors for Year 2 (so that the “average” call volume for each
quarter is just the actual call volume for that quarter in Year 1).

(b) Use these seasonal factors to determine the seasonally adjusted
call volumes for Year 2.

(c) Use the call volumes in Year 1 and 2 to determine the seasonal
factors for Year 3.

(d) Use the seasonal factors obtained in part (c) to determine the
seasonally adjusted call volumes for Year 3.

27.5-2. Even when the economy is holding steady, the unemploy-
ment rate tends to fluctuate because of seasonal effects. For ex-
ample, unemployment generally goes up in Quarter 3 (summer) as
students (including new graduates) enter the labor market. The un-
employment rate then tends to go down in Quarter 4 (fall) as stu-
dents return to school and temporary help is hired for the Christ-
mas season. Therefore, using seasonal factors to obtain a seasonally
adjusted unemployment rate is helpful for painting a truer picture
of economic trends.

Over the past 10 years, one state’s average unemployment
rates (not seasonally adjusted) in Quarters 1, 2, 3, and 4 have been
6.2 percent, 6.0 percent, 7.5 percent, and 5.5 percent, respectively.
The overall average has been 6.3 percent. (Use hand calculations
below rather than an Excel template.)
(a) Determine the seasonal factors for the four quarters.
(b) Over the next year, the unemployment rates (not seasonally ad-

justed) for the four quarters turn out to be 7.8 percent, 7.4 per-
cent, 8.7 percent, and 6.1 percent. Determine the seasonally
adjusted unemployment rates for the four quarters. What does
this progression of rates suggest about whether the state’s econ-
omy is improving?

27.5-3. Ralph Billett is the manager of a real estate agency. He
now wishes to develop a forecast of the number of houses that will
be sold by the agency over the next year.

The agency’s quarter-by-quarter sales figures over the last
three years are shown below.

(Use hand calculations below rather than an Excel template.)
(a) Determine the seasonal factors for the four quarters.
(b) After considering seasonal effects, use the last-value method

to forecast sales in Quarter 1 of next year.
(c) Assuming that each of the quarterly forecasts is correct, what

would the last-value method forecast as the sales in each of
the four quarters next year?

(d) Based on his assessment of the current state of the housing
market, Ralph’s best judgment is that the agency will sell
100 houses next year. Given this forecast for the year, what
is the quarter-by-quarter forecast according to the seasonal
factors?

27.5-4. A manufacturer sells a certain product in batches of 100
to wholesalers. The following table shows the quarterly sales fig-
ure for this product over the last several years.

January February March April May June

Forecast 400 380 390 380
Actual 400 360 — —

Quarter Year 1 Year 2 Year 3

1 23 19 21
2 22 21 26
3 31 27 32
4 26 24 28
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The company incorporates seasonal effects into its forecasting of
future sales. It then uses exponential smoothing (with seasonality)
with a smoothing constant of � � 0.1 to make these forecasts.
When starting the forecasting, it uses the average sales over the
past four quarters to make the initial estimate of the seasonally ad-
justed constant level A for the underlying constant-level model.
T (a) Suppose that the forecasting started at the beginning of 2011.

Use the data for 2010 to determine the seasonal factors and
then determine the forecast of sales for each quarter of 2011.

T (b) Suppose that the forecasting started at the beginning of 2012.
Use the data for both 2010 and 2011 to determine the sea-
sonal factors and then determine the forecast of sales for
each quarter of 2012.

T (c) Suppose that the forecasting started at the beginning of 2014.
Use the data for 2010 through 2013 to determine the sea-
sonal factors and then determine the forecast of sales for
each quarter of 2014.

(d) Under the assumptions of the constant-level model, the fore-
cast obtained for any period of one year also provides the best
available forecast at that time for the same period in any sub-
sequent year. Use the results from parts (a), (b), and (c) to
record the forecast of sales for Quarter 4 of 2014 when enter-
ing Quarter 4 of 2011, 2012, and 2014, respectively.

(e) Evaluate whether it is important to incorporate seasonal effects
into the forecasting procedure for this particular product.

(f) Evaluate how well the constant-level assumption of the con-
stant-level model (after incorporating seasonal effects) appears
to hold for this particular product.

27.6-1. Look ahead at the scenario described in Prob. 27.7-3. No-
tice the steady trend upward in the number of applications over the
past three years—from 4,600 to 5,300 to 6,000. Suppose now that
the admissions office of Ivy College had been able to foresee this
kind of trend and so had decided to use exponential smoothing with
trend to do the forecasting. Suppose also that the initial estimates
just over three years ago had been expected value � 3,900 and
trend � 700. Then, with any values of the smoothing constants, the
forecasts obtained by this forecasting method would have been ex-
actly correct for all three years.

Illustrate this fact by doing the calculations to obtain these
forecasts when the smoothing constant is � � 0.25 and the trend
smoothing constant is � � 0.25. (Use hand calculations rather than
an Excel template.)

27.6-2. Exponential smoothing with trend, with a smoothing
constant of � � 0.2 and a trend smoothing constant of � � 0.3,
is being used to forecast values in a time series. At this point,

the last two values have been 535 and then 550. The last two
forecasts have been 530 and then 540. The last estimate of the
trend factor has been 10. Use this information to forecast the
next value in the time series. (Use hand calculations rather than
an Excel template.)

27.6-3. The Healthwise Company produces a variety of exercise
equipment. Healthwise management is very pleased with the in-
creasing sales of its newest model of exercise bicycle. The sales
during the last two months have been 4,655 and then 4,935.

Management has been using exponential smoothing with
trend, with a smoothing constant of � � 0.1 and a trend smooth-
ing constant of � � 0.2, to forecast sales for the next month each
time. The forecasts for the last two months were 4,720 and then
4,975. The last estimate of the trend factor was 240.

Calculate the forecast of sales for next month. (Use hand cal-
culations rather than an Excel template.)

T 27.6-4. The Pentel Microchip Company has started production
of its new microchip. The first phase in this production is the
wafer fabrication process. Because of the great difficulty in fab-
ricating acceptable wafers, many of these tiny wafers must be re-
jected because they are defective. Therefore, management places
great emphasis on continually improving the wafer fabrication
process to increase its production yield (the percentage of wafers
fabricated in the current lot that are of acceptable quality for pro-
ducing microchips).

So far, the production yields of the respective lots have been
15, 21, 24, 32, 37, 41, 40, 47, 51, 53 percent. Use exponential
smoothing with trend to forecast the production yield of the next
lot. Begin with initial estimates of 10 percent for the expected value
and 5 percent for the trend. Use smoothing constants of � � 0.2
and � � 0.2.

Quarter Quarter Quarter Quarter Quarter
of 2010 Sales of 2011 Sales of 2012 Sales of 2013 Sales of 2014 Sales

1 6,900 1 8,200 1 9,400 1 11,400 1 8,800
2 6,700 2 7,000 2 9,200 2 10,000 2 7,600
3 7,900 3 7,300 3 9,800 3 9,400 3 7,500
4 7,100 4 7,500 4 9,900 4 8,400 4 —

27.7-1. You have been forecasting sales the last four quarters.
These forecasts and the true values that subsequently were obtained
are shown below.

(a) Calculate MAD.
(b) Calculate MSE.

Quarter Forecast True Value

1 327 345
2 332 317
3 328 336
4 330 311

PROBLEMS
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27.7-2. Sharon Johnson, sales manager for the Alvarez-Baines
Company, is trying to choose between two methods for forecast-
ing sales that she has been using during the past five months. Dur-
ing these months, the two methods obtained the forecasts shown
below for the company’s most important product, where the sub-
sequent actual sales are shown on the right.

(a) Calculate and compare MAD for these two forecasting methods.
(b) Calculate and compare MSE for these two forecasting methods.
(c) Sharon is uncomfortable with choosing between these two meth-

ods based on such limited data, but she also does not want to
delay further before making her choice. She does have similar
sales data for the three years prior to using these forecasting
methods the past five months. How can these older data be used
to further help her evaluate the two methods and choose one?

27.7-3. Three years ago, the admissions office for Ivy College be-
gan using exponential smoothing with a smoothing constant of 0.25
to forecast the number of applications for admission each year.
Based on previous experience, this process was begun with an ini-
tial estimate of 5,000 applications. The actual number of applica-
tions then turned out to be 4,600 in the first year. Thanks to new
favorable ratings in national surveys, this number grew to 5,300 in
the second year and 6,000 last year. (Use hand calculations below
rather than an Excel template.)
(a) Determine the forecasts that were made for each of the past

three years.
(b) Calculate MAD for these three years.

(a) Considering that the sales level is relatively stable, which of the
most basic forecasting methods—the last-value method or the
averaging method or the moving-average method—do you feel
would be most appropriate for forecasting future sales? Why?

T (b) Use the last-value method retrospectively to determine what
the forecasts would have been for the last 11 months of last
year. What is MAD?

T (c) Use the averaging method retrospectively to determine what
the forecasts would have been for the last 11 months of last
year. What is MAD?

T (d) Use the moving-average method with n � 3 retrospectively
to determine what the forecasts would have been for the last
9 months of last year. What is MAD?

(e) Use their MAD values to compare the three methods.
(f) Use their MSE values to compare the three methods.
(g) Do you feel comfortable in drawing a definitive conclusion

about which of the three forecasting methods should be the
most accurate in the future based on these 12 months of data?

T 27.7-5. Reconsider Prob. 27.7-4. Ben Swanson now has decided
to use the exponential smoothing method to forecast future sales
of washing machines, but he needs to decide on which smoothing
constant to use. Using an initial estimate of 24, apply this method
retrospectively to the 12 months of last year with � � 0.1, 0.2, 0.3,
0.4, and 0.5.
(a) Compare MAD for these five values of the smoothing con-

stant �.
(b) Calculate and compare MSE for these five values of �.

27.7-6. Reconsider Prob. 27.7-4. For each of the forecasting meth-
ods specified in parts (b), (c), and (d), use the corresponding pro-
cedure in the forecasting area of your IOR Tutorial to obtain the
requested forecasts. Then use the accompanying graph that plots
both the sales data and forecasts to answer the following questions
for these forecasting methods.
(a) Based on your examination of the graphs for the three fore-

casting methods, which method do you feel is doing the best
job of forecasting with the given data? Why?

Forecast

Month Method 1 Method 2 Actual Sales

1 5,324 5,208 5,582
2 5,405 5,377 4,906
3 5,195 5,462 5,755
4 5,511 5,414 6,320
5 5,762 5,549 5,153

(c) Calculate MSE for these three years.
(d) Determine the forecast for next year.

27.7-4. Ben Swanson, owner and manager of Swanson’s Department
Store, has decided to use statistical forecasting to get a better handle
on the demand for his major products. However, Ben now needs to
decide which forecasting method is most appropriate for each cate-
gory of product. One category is major household appliances, such
as washing machines, which have a relatively stable sales level.
Monthly sales of washing machines last year are shown below.

Month Sales Month Sales Month Sales

January 23 May 22 September 21
February 24 June 27 October 29
March 22 July 20 November 23
April 28 August 26 December 28

(b) Ben Swanson now has found that an error was made in deter-
mining the sales for April, but he has not yet obtained the cor-
rected sales figure. For each of the three forecasting methods,
Ben wants to know which of the original monthly forecasts
would change now because of changing the sales figure for
April. Answer this question by dragging vertically the blue dot
that corresponds to April sales and observing which of the red
dots (corresponding to monthly forecasts) move.

(c) Repeat part (b) if the sales for April change from 28 to 16.
(d) Repeat part (b) if the sales for April change from 28 to 40.

27.7-7. Management of the Jackson Manufacturing Corporation
wishes to choose a statistical forecasting method for forecasting
total sales for the corporation. Total sales (in millions of dollars)
for each month of last year are shown below.
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(a) Note how the sales level is shifting significantly from month
to month—first trending upward and then dipping down be-
fore resuming an upward trend. Assuming that similar patterns
would continue in the future, evaluate how well you feel each
of the five forecasting methods introduced in Secs. 27.4 and
27.6 would perform in forecasting future sales.

T (b) Apply the last-value method, the averaging method, and the
moving-average method (with n � 3) retrospectively to last
year’s sales and compare their MAD values. Then compare
their MSE values.

T (c) Using an initial estimate of 120, apply the exponential
smoothing method retrospectively to last year’s sales with 
� � 0.1, 0.2, 0.3, 0.4, and 0.5. Compare both MAD and MSE
for these five values of the smoothing constant �.

T (d) Using initial estimates of 120 for the expected value and 10
for the trend, apply exponential smoothing with trend ret-
rospectively to last year’s sales. Use all combinations of the
smoothing constants where � � 0.1 or 0.3 or 0.5 and 
� � 0.1 or 0.3 or 0.5. Compare both MAD and MSE for
these nine combinations.

(e) Which one of the above forecasting methods would you rec-
ommend that management use? Using this method, what is the
forecast of total sales for January of the new year?

27.7-8. Reconsider Prob. 27.7-7. For each of the forecasting
methods specified in parts (b), (c), and (d) (with smoothing con-
stants � � 0.5 and � � 0.5 as needed), use the corresponding pro-
cedure in the forecasting area of your IOR Tutorial to obtain the
requested forecasts. Then use the accompanying graph that plots
both the sales data and forecasts to answer the following questions
for these forecasting methods.
(a) Based on your examination of the graphs for the five fore-

casting methods, which method do you feel is doing the best
job of forecasting with the given data? Why?

T 27.7-9. Choosing an appropriate value of the smoothing constant
� is a key decision when applying the exponential smoothing method.
When relevant historical data exist, one approach to making this de-
cision is to apply the method retrospectively to these data with dif-
ferent values of � and then choose the value of � that gives the small-
est MAD. Use this approach for choosing � with each of the following
time series representing monthly sales. In each case, use an initial 
estimate of 50 and compare � � 0.1, 0.2, 0.3, 0.4, and 0.5.
(a) 51 48 52 49 53 49 48 51 50 49
(b) 52 50 53 51 52 48 52 53 49 52
(c) 50 52 51 55 53 56 52 55 54 53

T 27.7-10. The choice of the smoothing constants � and � has a
considerable effect on the accuracy of the forecasts obtained by 
using exponential smoothing with trend. For each of the following
time series, set � � 0.2 and then compare MAD obtained with 
� � 0.1, 0.2, 0.3, 0.4, and 0.5. Begin with initial estimates of 50
for the expected value and 2 for the trend.
(a) 52 55 55 58 59 63 64 66 67 72 73 74
(b) 52 55 59 61 66 69 71 72 73 74 73 74
(c) 52 53 51 50 48 47 49 52 57 62 69 74

27.7-11. The Andes Mining Company mines and ships copper ore.
The company’s sales manager, Juanita Valdes, has been using the
moving-average method based on the last three years of sales to fore-
cast the demand for the next year. However, she has become dissat-
isfied with the inaccurate forecasts being provided by this method.

Here are the annual demands (in tons of copper ore) over the
past 10 years: 382 405 398 421 426 415 443 451 446 464
(a) Explain why this pattern of demands inevitably led to signifi-

cant inaccuracies in the moving-average forecasts.
T (b) Determine the moving-average forecasts for the past 7 years.

What is MAD? What is the forecast for next year?
T (c) Determine what the forecasts would have been for the past

10 years if the exponential smoothing method had been used
instead with an initial estimate of 380 and a smoothing con-
stant of � � 0.5. What is MAD? What is the forecast for
next year?

T (d) Determine what the forecasts would have been for the past
10 years if exponential smoothing with trend had been used
instead. Use initial estimates of 370 for the expected value
and 10 for the trend, with smoothing constants � � 0.25 and
� � 0.25.

(e) Based on the MAD values, which of these three methods do
you recommend using hereafter?

Month Sales Month Sales Month Sales

January 126 May 153 September 147
February 137 June 154 October 151
March 142 July 148 November 159
April 150 August 145 December 166

(b) Management now has been informed that an error was made
in calculating the sales for April, but a corrected sales figure
has not yet been obtained. Therefore, for each of the five fore-
casting methods, management wants to know which of the
original monthly forecasts would change now because of
changing the sales figure for April. Answer this question by
dragging vertically the blue dot that corresponds to April sales
and observing which of the red dots (corresponding to monthly
forecasts) move.

(c) Repeat part (b) if the sales for April change from 150 to 125.
(d) Repeat part (b) if the sales for April change from 150 to 175.

27.7-12. Reconsider Prob. 27.7-11. For each of the forecasting
methods specified in parts (b), (c), and (d), use the corresponding
procedure in the forecasting area of your IOR Tutorial to obtain
the requested forecasts. After examining the accompanying graph
that plots both the demand data and forecasts, write a one-sentence
description for each method of whether its plot of forecasts tends
to lie below or above or at about the same level as the demands
being forecasted. Then use these conclusions to select one of the
methods to recommend using hereafter.

PROBLEMS
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27.7-13. The Centerville Water Department provides water for the
entire town and outlying areas. The number of acre-feet of water
consumed in each of the four seasons of the three preceding years
is shown below.

T (a) Determine the seasonal factors for the four seasons.
T (b) After considering seasonal effects, use the last-value method

to forecast water consumption next winter.
(c) Assuming that each of the forecasts for the next three seasons

is correct, what would the last-value method forecast as the
water consumption in each of the four seasons next year?

T (d) After considering seasonal effects, use the averaging method
to forecast water consumption next winter.

T (e) After considering seasonal effects, use the moving-average
method based on four seasons to forecast water consump-
tion next winter.

T (f) After considering seasonal effects, use the exponential smooth-
ing method with an initial estimate of 46 and a smoothing con-
stant of � � 0.1 to forecast water consumption next winter.

T (g) Compare the MAD values of these four forecasting methods
when they are applied retrospectively to the last three years.

T (h) Compare the MSE values of these four forecasting methods
when they are applied retrospectively to the last three years.

27.7-14. Reconsider Prob. 27.5-3. Ralph Billett realizes that the last-
value method is considered to be the naive forecasting method, so he
wonders whether he should be using another method. Therefore, he
has decided to use the available Excel templates that consider seasonal
effects to apply various statistical forecasting methods retrospectively
to the past three years of data and compare their MAD values.
T (a) Determine the seasonal factors for the four quarters.
T (b) Apply the last-value method.
T (c) Apply the averaging method.
T (d) Apply the moving-average method based on the four most

recent quarters of data.
T (e) Apply the exponential smoothing method with an initial es-

timate of 25 and a smoothing constant of � � 0.25.
T (f) Apply exponential smoothing with trend with smoothing

constants of � � 0.25 and � � 0.25. Use initial estimates of
25 for the expected value and 0 for the trend.

T 27.7-15. Transcontinental Airlines maintains a computerized
forecasting system to forecast the number of customers in each fare
class who will fly on each flight in order to allocate the available
reservations to fare classes properly. For example, consider econ-
omy-class customers flying in midweek on the noon flight from
New York to Los Angeles. The following table shows the average
number of such passengers during each month of the year just com-
pleted. The table also shows the seasonal factor that has been as-
signed to each month based on historical data.

(a) After considering seasonal effects, compare both the MAD and
MSE values for the last-value method, the averaging method,
the moving-average method (based on the most recent three
months), and the exponential smoothing method (with an ini-
tial estimate of 80 and a smoothing constant of � � 0.2) when
they are applied retrospectively to the past year.

(b) Use the forecasting method with the smallest MAD value 
to forecast the average number of these passengers flying in
January of the new year.

27.7-16. Reconsider Prob. 27.7-15. The economy is beginning to
boom so the management of Transcontinental Airlines is predict-
ing that the number of people flying will steadily increase this year
over the relatively flat (seasonally adjusted) level of last year. Since
the forecasting methods considered in Prob. 27.7-15 are relatively
slow in adjusting to such a trend, consideration is being given to
switching to exponential smoothing with trend.

Subsequently, as the year goes on, management’s prediction
proves to be true. The following table shows the average number of
the passengers under consideration in each month of the new year.

T (a) Repeat part (a) of Prob. 27.7-15 for the two years of data.

Season Year 1 Year 2 Year 3

Winter 25 27 24
Spring 47 46 49
Summer 68 72 70
Fall 42 39 44

Average Seasonal Average Seasonal
Month Number Factor Month Number Factor

January 68 0.90 July 94 1.17
February 71 0.88 August 96 1.15
March 66 0.91 September 80 0.97
April 72 0.93 October 73 0.91
May 77 0.96 November 84 1.05
June 85 1.09 December 89 1.08

Average Average Average
Month Number Month Number Month Number

January 75 May 185 September 194
February 76 June 199 October 190
March 81 July 107 November 106
April 84 August 108 December 110T (g) Compare the MAD values for these methods. Use the one with

the smallest MAD to forecast sales in Quarter 1 of next year.
(h) Use the forecast in part (g) and the seasonal factors to make

long-range forecasts now of the sales in the remaining quar-
ters of next year.
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T (b) After considering seasonal effects, apply exponential smooth-
ing with trend to just the new year. Use initial estimates of
80 for the expected value and 2 for the trend, along with
smoothing constants of � � 0.2 and � � 0.2. Compare MAD
for this method to the MAD values obtained in part (a). Then
do the same with MSE.

T (c) Repeat part (b) when exponential smoothing with trend is
begun at the beginning of the first year and then applied to
both years, just like the other forecasting methods in part
(a). Use the same initial estimates and smoothing constants
except change the initial estimate of trend to 0.

(d) Based on these results, which forecasting method would you
recommend that Transcontinental Airlines use hereafter?

27.7-17. Quality Bikes is a wholesale firm that specializes in the
distribution of bicycles. In the past, the company has maintained
ample inventories of bicycles to enable filling orders immediately,
so informal rough forecasts of demand were sufficient to make the
decisions on when to replenish inventory. However, the company’s
new president, Marcia Salgo, intends to run a tighter ship. Scien-
tific inventory management is to be used to reduce inventory lev-
els and minimize total variable inventory costs. At the same time,
Marcia has ordered the development of a computerized forecast-
ing system based on statistical forecasting that considers seasonal
effects. The system is to generate three sets of forecasts—one based
on the moving-average method, a second based on the exponential
smoothing method, and a third based on exponential smoothing
with trend. The average of these three forecasts for each month is
to be used for inventory management purposes.

The following table gives the available data on monthly sales
of 10-speed bicycles over the past three years. The last column also
shows monthly sales this year, which is the first year of operation
of the new forecasting system.

T (a) Determine the seasonal factors for the 12 months based on
past sales.

T (b) After considering seasonal effects, apply the moving-aver-
age method based on the most recent three months to fore-
cast monthly sales this year.

T (c) After considering seasonal effects, apply the exponential
smoothing method to forecast monthly sales this year. Use an
initial estimate of 420 and a smoothing constant of � � 0.2.

T (d) After considering seasonal effects, apply exponential smooth-
ing with trend to forecast monthly sales this year. Use initial
estimates of 420 for the expected value and 0 for the trend,
along with smoothing constants of � � 0.2 and � � 0.2.

(e) Compare both the MAD and MSE values obtained in parts (b),
(c), and (d).

(f) Calculate the combined forecast for each month by averaging
the forecasts for that month obtained in parts (b), (c), and (d ).
Then calculate the MAD for these combined forecasts.

(g) Based on these results, what is your recommendation for how
to do the forecasts next year?

27.7-18. Reconsider the sales data for a certain product given in
Prob. 27.5-4. The company’s management now has decided to dis-
continue incorporating seasonal effects into its forecasting procedure
for this product because there does not appear to be a substantial
seasonal pattern. Management also is concerned that exponential
smoothing may not be the best forecasting method for this product
and so has decided to test and compare several forecasting methods.
Each method is to be applied retrospectively to the given data and
then its MSE is to be calculated. The method with the smallest value
of MSE will be chosen to begin forecasting.

Apply this retrospective test and calculate MSE for each of
the following methods. (Also obtain the forecast for the upcoming
quarter with each method.)
T (a) The moving-average method based on the last four quarters,

so start with a forecast for the fifth quarter.
T (b) The exponential smoothing method with � � 0.1. Start with

a forecast for the third quarter by using the sales for the sec-
ond quarter as the latest observation and the sales for the
first quarter as the initial estimate.

T (c) The exponential smoothing method with � � 0.3. Start as
described in part (b).

T (d) The exponential smoothing with trend method with � �
0.3 and � � 0.3. Start with a forecast for the third quar-
ter by using the sales for the second quarter as the initial
estimate of the expected value of the time series (A) and
the difference (sales for second quarter minus sales for
first quarter) as the initial estimate of the trend of the time
series (B).

Past Sales
Current Sales

Month Year 1 Year 2 Year 3 This Year

January 352 317 338 364
February 329 331 346 343
March 365 344 383 391
April 358 386 404 437
May 412 423 431 458
June 446 472 459 494
July 420 415 433 468
August 471 492 518 555
September 355 340 309 387
October 312 301 335 364
November 567 629 594 662
December 533 505 527 581 (e) Compare MSE for these methods. Which one has the smallest

value of MSE?
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27.7-19. Follow the instructions of Prob. 27.7-18 for a product
with the following sales history.

27.9-1. Long a market leader in the production of heavy ma-
chinery, the Spellman Corporation recently has been enjoying a
steady increase in the sales of its new lathe. The sales over the past
10 months are shown below.

Because of this steady increase, management has decided to
use causal forecasting, with the month as the independent variable
and sales as the dependent variable, to forecast sales in the com-
ing months.
(a) Plot these data on a two-dimensional graph with the month on

the horizontal axis and sales on the vertical axis.
T (b) Find the formula for the linear regression line that fits these

data.
(c) Plot this line on the graph constructed in part (a).
(d) Use this line to forecast sales in month 11.
(e) Use this line to forecast sales in month 20.
(f) What does the formula for the linear regression line indicate

is roughly the average growth in sales per month?

27.9-2. Reconsider Probs. 27.7-3 and 27.6-1. Since the number of
applications for admission submitted to Ivy College has been increas-
ing at a steady rate, causal forecasting can be used to forecast the num-
ber of applications in future years by letting the year be the indepen-
dent variable and the number of applications be the dependent variable.
(a) Plot the data for Years 1, 2, and 3 on a two-dimensional graph

with the year on the horizontal axis and the number of appli-
cations on the vertical axis.

(b) Since the three points in this graph line up in a straight line,
this straight line is the linear regression line. Draw this line.

T (c) Find the formula for this linear regression line.
(d) Use this line to forecast the number of applications for each

of the next five years (Years 4 through 8).
(e) As these next years go on, conditions change for the worse at

Ivy College. The favorable ratings in the national surveys that
had propelled the growth in applications turn unfavorable.

T (f ) Plot the data for all seven years. Find the formula for the
linear regression line based on all these data and plot this
line. Use this formula to forecast the number of applica-
tions for Year 8. Does the linear regression line provide a
close fit to the data? Given this answer, do you have much
confidence in the forecast it provides for Year 8? Does it
make sense to continue to use a linear regression line when
changing conditions cause a large shift in the underlying
trend in the data?

T (g) Apply exponential smoothing with trend to all seven years
of data to forecast the number of applications in Year 8.
Use initial estimates of 3,900 for the expected value and
700 for the trend, along with smoothing constants of � �
0.5 and � � 0.5. When the underlying trend in the data
stays the same, causal forecasting provides the best possi-
ble linear regression line (according to the method of least
squares) for making forecasts. However, when changing
conditions cause a shift in the underlying trend, what ad-
vantage does exponential smoothing with trend have over
causal forecasting?

27.9-3. Reconsider Prob. 27.7-11. Despite some fluctuations
from year to year, note that there has been a basic trend upward in
the annual demand for copper ore over the past 10 years. There-
fore, by projecting this trend forward, causal forecasting can be
used to forecast demands in future years by letting the year be the
independent variable and the demand be the dependent variable.
(a) Plot the data for the past 10 years (Years 1 through 10) on a

two-dimensional graph with the year on the horizontal axis and
the demand on the vertical axis.

T (b) Find the formula for the linear regression line that fits these
data.

(c) Plot this line on the graph constructed in part (a).
(d) Use this line to forecast demand next year (Year 11).
(e) Use this line to forecast demand in Year 15.
(f) What does the formula for the linear regression line indicate

is roughly the average growth in demand per year?
(g) Use the linear regression procedure in the forecasting area of

your IOR Tutorial to generate a graph of the data and the lin-
ear regression line. Then experiment with the data to see how
the linear regression line shifts as you drag any of the data
points up or down.

27.9-4. Luxury Cruise Lines has a fleet of ships that travel to
Alaska repeatedly every summer (and elsewhere during other times
of the year). A considerable amount of advertising is done each
winter to help generate enough passenger business for that sum-
mer. With the coming of a new winter, a decision needs to be made
about how much advertising to do this year.

The following table shows the amount of advertising (in thou-
sands of dollars) and the resulting sales (in thousands of passen-
gers booked for a cruise) for each of the past five years.

Quarter Sales Quarter Sales Quarter Sales

1 546 5 647 9 736
2 528 6 594 10 724
3 530 7 665 11 813
4 508 8 630 12 —

Month Sales Month Sales

1 430 6 514
2 446 7 532
3 464 8 548
4 480 9 570
5 498 10 591

5,600 in Year 6 and 5,200 in Year 7. Does it still make sense
to use the forecast for Year 8 obtained in part (d )? Explain.

Consequently, the number of applications turn out to be 6,300
in Year 4 and 6,200 in Year 5, followed by sizable drops to
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(a) To use causal forecasting to forecast sales for a given amount
of advertising, what needs to be the dependent variable and the
independent variable?

(b) Plot the data on a graph.
T (c) Find the formula for the linear regression line that fits these

data. Then plot this line on the graph constructed in part (b).
(d) Forecast the sales that would be attained by expending

$300,000 on advertising.
(e) Estimate the amount of advertising that would need to be done

to attain a booking of 22,000 passengers.
(f) According to the linear regression line, about how much in-

crease in sales can be attained on the average per $1,000 in-
crease in the amount of advertising?

27.9-5. Reconsider Prob. 27.9-4. Use the linear regression pro-
cedure in the forecasting area of your IOR Tutorial to generate the
linear regression line. On the resulting graph that shows this line
and the five data points (as blue dots), note that the leftmost data
point, the middle data point, and the rightmost data point all lie very
close to the line. You can see how the linear regression line shifts
as any one of these data points moves up or down by moving your
mouse onto the blue dot at this point and dragging it vertically.

For each of these three data points, determine whether the 
linear regression line shifts above this point or shifts below it or
still passes essentially through it when the following change is
made in one of these data points (but none of the others).
(a) Change the sales from 16 to 19 when the amount of advertis-

ing is 225.
(b) Change the sales from 23 to 26 when the amount of advertis-

ing is 450.
(c) Change the sales from 20 to 23 when the amount of advertis-

ing is 350.

27.9-6. To support its large fleet, North American Airlines main-
tains an extensive inventory of spare parts, including wing flaps.
The number of wing flaps needed in inventory to replace damaged
wing flaps each month depends partially on the number of flying
hours for the fleet that month, since increased usage increases the
chances of damage.

The following table shows both the number of replacement
wing flaps needed and the number of thousands of flying hours for
the entire fleet for each of several recent months.

(a) Identify the dependent variable and the independent variable
for doing causal forecasting of the number of wing flaps needed
for a given number of flying hours.

(b) Plot the data on a graph.

T (c) Find the formula for the linear regression line.
(d) Plot this line on the graph constructed in part (b).
(e) Forecast the average number of wing flaps needed in a month

in which 150,000 flying hours are planned.
(f) Repeat part (e) for 200,000 flying hours.
(g) Use the linear regression procedure in the forecasting area of

your IOR Tutorial to generate a graph of the data and the lin-
ear regression line. Then experiment with the data to see how
the linear regression line shifts as you drag any of the data
points up or down.

T 27.9-7. Joe Barnes is the owner of Standing Tall, one of the
major roofing companies in town. Much of the company’s busi-
ness comes from building roofs on new houses. Joe has learned
that general contractors constructing new houses typically will sub-
contract the roofing work about 2 months after construction be-
gins. Therefore, to help him develop long-range schedules for his
work crews, Joe has decided to use county records on the number
of housing construction permits issued each month to forecast the
number of roofing jobs on new houses he will have 2 months later.

Joe has now gathered the following data for each month over
the past year, where the second column gives the number of hous-
ing construction permits issued in that month and the third column
shows the number of roofing jobs on new houses that were sub-
contracted out to Standing Tall in that month.

Use a causal forecasting approach to develop a forecasting
procedure for Joe to use hereafter.

27.9-8. The following data relate road width x and accident fre-
quency y. Road width (in feet) was treated as the independent vari-
able, and values y of the random variable Y, in accidents per 108

vehicle miles, were observed.

Assume that Y is normally distributed with mean A � Bx and con-
stant variance for all x and that the sample is random. Interpolate
if necessary.

Month Permits Jobs Month Permits Jobs

January 323 19 July 446 34
February 359 17 August 407 37
March 396 24 September 374 33
April 421 23 October 343 30
May 457 28 November 311 27
June 472 32 December 277 22

Number of Observations � 7 x y

�
7

i�1
xi � 354 �

7

i�1
yi � 481

44 78

�
7

i�1
xi

2 � 19,956 �
7

i�1
yi

2 � 35,451

�
7

i�1
xiyi � 22,200

51
40

68
74

81
54

50
62

92
85

26
30

Thousands of flying hours 162 149 185 171 138 154

Number of wing flaps needed 12 9 13 14 10 11

Amount of advertising ($1,000s) 225 400 350 275 450

Sales (thousands of passengers) 16 21 20 17 23
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(a) Fit a least-squares line to the data, and forecast the accident
frequency when the road width is 55 feet.

(b) Construct a 95 percent prediction interval for Y�, a future ob-
servation of Y, corresponding to x� � 55 feet.

(c) Suppose that two future observations on Y, both correspond-
ing to x� � 55 feet, are to be made. Construct prediction in-
tervals for both of these observations so that the probability is
at least 95 percent that both future values of Y will fall into
them simultaneously. [Hint: If k predictions are to be made,
such as given in part (d), each with probability 1 � �, then the
probability is at least 1 � k� that all k future observations will
fall into their respective intervals.]

(d) Construct a simultaneous tolerance interval for the future 
value of Y corresponding to x� � 55 feet with P � 0.90 and
1 � � � 0.95.

T 27.9-9. The following data are observations y ion a dependent
random variable Y taken at various levels of an independent vari-
able x. [It is assumed that E(Yixi) � A � Bxi, and the Yi are in-
dependent normal random variables with mean 0 and variance �2.]

(a) Estimate the linear relationship by the method of least squares,
and forecast the value of Y when x � 10.

(b) Find a 95 percent confidence interval for the expected value
of Y at x* � 10.

(c) Find a 95 percent prediction interval for a future observation
to be taken at x� � 10.

(d) For x� � 10, P � 0.90, and 1 � � � 0.95, find a simultane-
ous tolerance interval for the future value of Y�. Interpolate if
necessary.

T 27.9-10. If a particle is dropped at time t � 0, physical theory
indicates that the relationship between the distance traveled r and
the time elapsed t is r � gtk for some positive constants g and k.
A transformation to linearity can be obtained by taking logarithms:

log r � log g � k log t.

By letting y � log r, A � log g, and x � log t, this relation be-
comes y � A � kx. Due to random error in measurement, however,
it can be stated only that E(Yx) � A � kx. Assume that Y is nor-
mally distributed with mean A � kx and variance �2.

A physicist who wishes to estimate k and g performs the fol-
lowing experiment: At time 0 the particle is dropped. At time t the
distance r is measured. He performs this experiment five times, ob-
taining the following data (where all logarithms are to base 10).

(a) Obtain least-squares estimates for k and log g, and forecast the
distance traveled when log t � �3.0.

(b) Starting with a forecast for log r when log t � 0, use the ex-
ponential smoothing method with an initial estimate of log 
r � �3.95 and � � 0.1, that is,

Forecast of log r (when log t � 0) � 0.1(�2.12)
� 0.9(�3.95),

to forecast each log r for all integer log t through log t � �3.0.
(c) Repeat part (b), except adjust the exponential smoothing

method to incorporate a trend factor into the underlying model
as described in Sec. 27.6. Use an initial estimate of trend equal
to the slope found in part (a). Let � � 0.1.

27.9-11. Suppose that the relation between Y and x is given by

E(Yx) � Bx,

where Y is assumed to be normally distributed with mean Bx and
known variance �2. Also n independent pairs of observations are
taken and are denoted by x1, y1; x2, y2; . . . ; xn, yn. Find the least-
squares estimate of B.

xi 0 2 4 6 8

yi 0 4 7 13 16

y � log r x � log t

�3.95 �2.0
�2.12 �1.0

0.08 0.0
2.20 �1.0
3.87 �2.0

■ CASE

CASE 27.1 Finagling the Forecasts
Mark Lawrence—the man with two first names—has been
pursuing a vision for more than two years. This pursuit began
when he became frustrated in his role as director of human re-
sources at Cutting Edge, a large company manufacturing com-
puters and computer peripherals. At that time, the human re-
sources department under his direction provided records and
benefits administration to the 60,000 Cutting Edge employees
throughout the United States, and 35 separate records and ben-
efits administration centers existed across the country. Em-
ployees contacted these records and benefits centers to obtain

information about dental plans and stock options, to change
tax forms and personal information, and to process leaves of
absence and retirements. The decentralization of these admin-
istration centers caused numerous headaches for Mark. He had
to deal with employee complaints often since each center in-
terpreted company policies differently—communicating in-
consistent and sometimes inaccurate answers to employees.
His department also suffered high operating costs, since oper-
ating 35 separate centers created inefficiency.

His vision? To centralize records and benefits adminis-
tration by establishing one administration center. This central-
ized records and benefits administration center would perform
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two distinct functions: data management and customer service.
The data management function would include updating em-
ployee records after performance reviews and maintaining the
human resource management system. The customer service
function would include establishing a call center to answer em-
ployee questions concerning records and benefits and to
process records and benefits changes over the phone.

One year after proposing his vision to management,
Mark received the go-ahead from Cutting Edge corporate
headquarters. He prepared his “to do” list—specifying com-
puter and phone systems requirements, installing hardware
and software, integrating data from the 35 separate admin-
istration centers, standardizing record-keeping and response
procedures, and staffing the administration center. Mark del-
egated the systems requirements, installation, and integra-
tion jobs to a competent group of technology specialists. He
took on the responsibility of standardizing procedures and
staffing the administration center.

Mark had spent many years in human resources and
therefore had little problem with standardizing record-
keeping and response procedures. He encountered trouble
in determining the number of representatives needed to
staff the center, however. He was particularly worried about
staffing the call center since the representatives answering
phones interact directly with customers—the 60,000 Cut-
ting Edge employees. The customer service representatives
would receive extensive training so that they would know
the records and benefits policies backward and forward—
enabling them to answer questions accurately and process
changes efficiently. Overstaffing would cause Mark to suf-
fer the high costs of training unneeded representatives and
paying the surplus representatives the high salaries that go
along with such an intense job. Understaffing would cause
Mark to continue to suffer the headaches from customer
complaints—something he definitely wanted to avoid.

The number of customer service representatives Mark
needed to hire depends on the number of calls that the records

and benefits call center would receive. Mark therefore needed
to forecast the number of calls that the new centralized cen-
ter would receive. He approached the forecasting problem by
using judgmental forecasting. He studied data from one of
the 35 decentralized administration centers and learned that
the decentralized center had serviced 15,000 customers and
had received 2,000 calls per month. He concluded that since
the new centralized center would service four times the num-
ber of customers—60,000 customers—it would receive four
times the number of calls—8,000 calls per month.

Mark slowly checked off the items on his “to do” list,
and the centralized records and benefits administration cen-
ter opened one year after Mark had received the go-ahead
from corporate headquarters.

Now, after operating the new center for 13 weeks,
Mark’s call center forecasts are proving to be terribly inac-
curate. The number of calls the center receives is roughly
three times as large as the 8,000 calls per month that Mark
had forecasted. Because of demand overload, the call cen-
ter is slowly going to hell in a handbasket. Customers call-
ing the center must wait an average of 5 minutes before
speaking to a representative, and Mark is receiving numer-
ous complaints. At the same time, the customer service rep-
resentatives are unhappy and on the verge of quitting be-
cause of the stress created by the demand overload. Even
corporate headquarters has become aware of the staff and
service inadequacies, and executives have been breathing
down Mark’s neck demanding improvements.

Mark needs help, and he approaches you to forecast de-
mand for the call center more accurately.

Luckily, when Mark first established the call center, he
realized the importance of keeping operational data, and he
provides you with the number of calls received on each day
of the week over the last 13 weeks. The data (shown below)
begins in week 44 of the last year and continues to week 5
of the current year. Mark indicates that the days where no
calls were received were holidays.

Monday Tuesday Wednesday Thursday Friday

Week 44 1,130 851 859 828 726
Week 45 1,085 1,042 892 840 799
Week 46 1,303 1,121 1,003 1,113 1,005
Week 47 2,652 2,825 1,841 0 0
Week 48 1,949 1,507 989 990 1,084
Week 49 1,260 1,134 941 847 714
Week 50 1,002 847 922 842 784
Week 51 823 0 0 401 429
Week 52/1 1,209 830 0 1,082 841
Week 2 1,362 1,174 967 930 853
Week 3 924 954 1,346 904 758
Week 4 886 878 802 945 610
Week 5 910 754 705 729 772
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(a) Mark first asks you to forecast daily demand for the next week
using the data from the past 13 weeks. You should make the
forecasts for all the days of the next week now (at the end of
Week 5), but you should provide a different forecast for each
day of the week by treating the forecast for a single day as be-
ing the actual call volume on that day.
(1) From working at the records and benefits administration cen-

ter, you know that demand follows “seasonal” patterns within
the week. For example, more employees call at the beginning
of the week when they are fresh and productive than at the
end of the week when they are planning for the weekend. You
therefore realize that you must account for the seasonal pat-
terns and adjust the data that Mark gave you accordingly. What
is the seasonally adjusted call volume for the past 13 weeks?

(2) Using the seasonally adjusted call volume, forecast the
daily demand for the next week using the last-value fore-
casting method.

(3) Using the seasonally adjusted call volume, forecast the daily
demand for the next week using the averaging forecasting
method.

(4) Using the seasonally adjusted call volume, forecast the
daily demand for the next week using the moving-average
forecasting method. You decide to use the five most recent
days in this analysis.

(5) Using the seasonally adjusted call volume, forecast the daily
demand for the next week using the exponential smoothing
forecasting method. You decide to use a smoothing constant
of 0.1 because you believe that demand without seasonal ef-
fects remains relatively stable. Use the daily call volume av-
erage over the past 13 weeks for the initial estimate.

(b) After 1 week, the period you have forecasted passes. You real-
ize that you are able to determine the accuracy of your forecasts
because you now have the actual call volumes from the week
you had forecasted. The actual call volumes are shown next.

Monday Tuesday Wednesday Thursday Friday

Week 6 723 677 521 571 498

Decentralized Case Volume Centralized Case Volume

Week 44 612 2,052
Week 45 721 2,170
Week 46 693 2,779
Week 47 540 2,334
Week 48 1,386 2,514

For each of the forecasting methods, calculate the mean absolute
deviation for the method and evaluate the performance of the
method. When calculating the mean absolute deviation, you
should use the actual forecasts you found in part (a) above. You
should not recalculate the forecasts based on the actual values. In
your evaluation, provide an explanation for the effectiveness or
ineffectiveness of the method.

(c) You realize that the forecasting methods that you have investigated
do not provide a great degree of accuracy, and you decide to use
a creative approach to forecasting that combines the statistical and
judgmental approaches. You know that Mark had used data from
one of the 35 decentralized records and benefits administration
centers to perform his original forecasting. You therefore suspect
that call volume data exist for this decentralized center. Because
the decentralized centers performed the same functions as the new
centralized center currently performs, you decide that the call vol-
umes from the decentralized center will help you forecast the call
volumes for the new centralized center. You simply need to un-
derstand how the decentralized volumes relate to the new central-
ized volumes. Once you understand this relationship, you can use
the call volumes from the decentralized center to forecast the call
volumes for the centralized center.

You approach Mark and ask him whether call center data ex-
ist for the decentralized center. He tells you that data exist, but
they do not exist in the format that you need. Case volume
data—not call volume data—exist. You do not understand the

distinction, so Mark continues his explanation. There are two
types of demand data—case volume data and call volume data.
Case volume data count the actions taken by the representatives
at the call center. Call volume data count the number of calls
answered by the representatives at the call center. A case may
require one call or multiple calls to resolve it. Thus, the num-
ber of cases is always less than or equal to the number of calls.

You know you only have case volume data for the decentral-
ized center, and you certainly do not want to compare apples
and oranges. You therefore ask if case volume data exist for the
new centralized center. Mark gives you a wicked grin and nods
his head. He sees where you are going with your forecasts, and
he tells you that he will have the data for you within the hour.

At the end of the hour, Mark arrives at your desk with two
data sets: weekly case volumes for the decentralized center and
weekly case volumes for the centralized center. You ask Mark
if he has data for daily case volumes, and he tells you that he
does not. You therefore first have to forecast the weekly de-
mand for the next week and then break this weekly demand
into daily demand.

The decentralized center was shut down last year when the
new centralized center opened, so you have the decentralized
case data spanning from week 44 of two years ago to week 5
of last year. You compare this decentralized data to the central-
ized data spanning from week 44 of last year to week 5 of this
year. The weekly case volumes are shown in the table below.
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(1) Find a mathematical relationship between the decentralized
case volume data and the centralized case volume data.

(2) Now that you have a relationship between the weekly de-
centralized case volume and the weekly centralized case vol-
ume, you are able to forecast the weekly case volume for
the new center. Unfortunately, you do not need the weekly
case volume; you need the daily call volume. To calculate
call volume from case volume, you perform further analy-
sis and determine that each case generates an average of 1.5
calls. To calculate daily call volume from weekly call vol-
ume, you decide to use the seasonal factors as conversion
factors. Given the following case volume data from the de-
centralized center for Week 6 of last year, forecast the daily
call volume for the new center for Week 6 of this year.

(3) Using the actual call volumes given in part (b), calculate
the mean absolute deviation and evaluate the effectiveness
of this forecasting method.

(d) Which forecasting method would you recommend Mark use
and why? As the call center continues its operation, how would
you recommend improving the forecasting procedure?

(Note: Data files for this case are provided on the book’s
website for your convenience.)

Decentralized Case Volume Centralized Case Volume

317,177594 keeW
729,150405 keeW
761,114415 keeW
945,15561/25 keeW
621,22752 keeW
733,25743 keeW
619,10354 keeW
890,25955 keeW

Week 6

Decentralized case volume 613
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28C H A P T E R

Examples of Performing Simulations on
Spreadsheets with Analytic Solver

Platform

Section 20.6 introduced the subject of how to perform simulations on a spreadsheet
while using the powerful Excel add-in, Analytic Solver Platform, developed by Front-

line Systems, Inc. This chapter elaborates considerably on the same subject.
Section 20.6 included a complete example in the area of inventory management (Fred-

die the newsboy’s problem). Sections 28.1–28.5 present five additional examples that fur-
ther illustrate how to formulate simulation models on a spreadsheet for a variety of
important applications while applying Analytic Solver Platform for Education (ASPE).
Section 28.6 focuses on how to choose the right probability distribution as inputs for a
simulation. Section 28.7 then describes how parameter analysis reports and trend charts
can be constructed and applied to make a decision about the problem being formulated.

■ 28.1 BIDDING FOR A CONSTRUCTION PROJECT
Managers frequently must make decisions whose outcomes will be greatly affected by the
corresponding decisions being made by the management of competitor firms. For example,
marketing decisions often fall into this category. To illustrate, consider the case in which a
manager must determine the price for a new product being brought to market. How well
this decision works out will depend greatly on the pricing decisions being made nearly
simultaneously by other firms marketing competitive new products. Similarly, the success
of a decision on how soon to market a product under development will be determined
largely by whether this product reaches the market before competitive products are
released by other firms.

When a decision must be made before learning the corresponding decisions being
made by competitors, the analysis needs to take into account the uncertainty surrounding
what competitors’ decisions will be. Simulation provides a natural way of doing this by
using uncertain variable cells to represent competitors’ decisions.

The following example illustrates this process by considering a situation where the
decision being made is the bid to submit on a construction project while three other com-
panies are simultaneously preparing their own bids.
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2 CHAPTER 28 EXAMPLES OF PERFORMING SIMULATIONS ON SPREADSHEETS

The Reliable Construction Co. Bidding Problem
The prototype example carried throughout Chap. 22 involves the Reliable Construction
Co. and its project to construct a new plant for a major manufacturer. That chapter
describes how the project manager (David Perty) made extensive use of PERT/CPM mod-
els to help guide his management of the project.

As the opening sentence of Sec. 22.1 indicates, the example in that chapter begins as
the company has just made the winning bid of $5.4 million to do this project. We now will
back up in time to describe how the company’s management used simulation with ASPE to
guide its choice of $5.4 million as its bid for the project. You will not need to review the
presentation in Chap. 22 to follow the current example.

Reliable’s first step in this process was to estimate what the company’s total cost
would be if it were to undertake the project. This was determined to be $4.55 million. (This
amount excludes a penalty for missing the deadline for completion of the project, as well
as a bonus for completion well before the deadline, since management considers either
event to be relatively unlikely.) There also is an additional cost of approximately $50,000
for preparing the bid, including estimating the project cost and analyzing the bidding
strategies of the competition.

Three other construction companies also were invited to submit bids for this project.
All three have been long-standing competitors of the Reliable Construction Co., so the
company has had a great deal of experience in observing their bidding strategies. A veteran
analyst in the bid preparation office has taken on the task of estimating what bid each of
these competitors will submit. Since there is so much uncertainty in this process, the ana-
lyst has determined that each of these estimates needs to be in the form of a probability dis-
tribution. Competitor 1 is known to use a 30 percent profit margin above the total (direct)
cost of a project in setting its bid. However, competitor 1 also is a particularly unpre-
dictable bidder because of an inability to estimate the true costs of a project with much
accuracy. Its actual profit margin on past bids has ranged from as low as minus 5 percent to
as high as 60 percent. Competitor 2 uses a 25 percent profit margin and is somewhat more
accurate than competitor 1 in estimating project costs, but it still has set bids in the past that
have missed this profit margin by as much as 15 percent in either direction. On the other
hand, competitor 3 is unusually accurate in estimating project costs (as is the Reliable
Construction Co.). Competitor 3 also is adept at adjusting its bidding strategy, so it is
equally likely to set its profit margin anywhere between 20 and 30 percent, depending on
its assessment of the competition, its current backlog of work, and various other factors.

This information about the competitors is invaluable, but the analyst who developed it
knew that her work wasn’t quite done yet. Based on these numbers, she still needed to
develop an estimate of the probability distribution of what the bid will be for each of the
competitors.

This task is relatively straightforward in the case of competitor 3. Because the analyst
estimates that this competitor is equally likely to set its profit margin anywhere between 20
and 30 percent, its bid then is equally likely to be anywhere between 120 and 130 percent
of the total project cost. The probability distribution that fits this is the uniform distribution
between 120 and 130 percent.

However, this task is not as easy when considering competitors 1 and 2. Fortunately, the
analyst has been able to estimate three key numbers for each competitor—a minimum value,
a most likely value, and a maximum value—for the profit margin and so (by adding 100 per-
cent) for the bid as a percentage of the total project cost. For example, the analyst has esti-
mated that the bid of competitor 1 (expressed as a percentage of total project cost) has a
minimum value of 95 percent, a most likely value of 130 percent, and a maximum value of
160 percent. (The corresponding numbers for competitor 2 are 110 percent, 125 percent, and
140 percent, respectively.) There is a particularly convenient type of probability distribution
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called the triangular distribution that is based on these same three kinds of numbers. 
Figure 28.1 shows the shape of a triangular distribution. Its three parameters are min (the
minimum value), likely (the most likely value), and max (the maximum value). (Figure
28.1 shows likely as being much closer to min than to max, but it actually can be anywhere
between min and max.) These three parameters are a perfect fit for the distributions of the
bids from competitors 1 and 2, so the analyst has chosen a triangular distribution as her
best estimate of these distributions. (This is not surprising since triangular distributions are
a particularly popular choice for performing simulations.)

In summary, the estimated probability distributions of the bids that the three competi-
tors will submit, expressed as a percentage of Reliable’s assessment of the total project
cost ($4.55 million), are as follows.

Competitor 1: A triangular distribution with a minimum value of 95 percent, a most
likely value of 130 percent, and a maximum value of 160 percent.
Competitor 2: A triangular distribution with a minimum value of 110 percent, a most
likely value of 125 percent, and a maximum value of 140 percent.
Competitor 3: A uniform distribution between 120 percent and 130 percent.

A Spreadsheet Model for Applying Simulation
Figure 28.2 shows the spreadsheet model that has been formulated to evaluate any possible
bid that Reliable might submit. Since there is uncertainty about what the competitors’ bids
will be, this model needs CompetitorBids (C8:E8) to be uncertain variable cells, so the
above probability distributions are entered into these cells. As described in Sec. 20.6, this is
done by selecting each cell in turn, choosing the appropriate distribution from the Distribu-
tions menu on the ASPE ribbon (in this case under the Common submenu), which brings up
the dialog box for that distribution. Figure 28.3 shows the Triangular Distribution dialog
box that has been used to set the parameter values (min, likely, and max) for competitor 1,
and competitor 2 would be handled similarly. These parameter values for competitor 1 come
from cells C18:C20, where the parameters in percentage terms (cells C13:C15) have been
converted to dollars by multiplying them by OurProjectCost (C4). The Uniform Distribu-
tion dialog box is used instead to set the parameter values for competitor 3 in cell E8.

MinimumCompetitorBid (C23) records the smallest of the competitors’ bids for each
trial of the simulation. The company wins the bid on a given trial only if the quantity
entered into OurBid (C25) is less than the smallest of the competitors’ bids. The IF func-
tion entered into WinBid? (C27) then returns a 1 if this occurs and a 0 otherwise.

■ FIGURE 28.1
The shape of a triangular
distribution and the location
of its three parameters: (1)
min (the minimum possible
value), (2) likely (the most
likely value), and (3) max (the
maximum possible value). min likely max

Triangular distribution
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4 CHAPTER 28 EXAMPLES OF PERFORMING SIMULATIONS ON SPREADSHEETS

1

2

3

4

5

6

7

8

Our Project Cost ($million)

Our Bid Cost ($million)

Bid ($million)

Distribution

Minimum

Most Likely

Maximum

Minimum

Most Likely

Maximum

Minimum Competitor
Bid ($million)

Our Bid ($million)

Win Bid?

Profit ($million)

Data

Competitor Bids

9

10

11

TriangularTriangular Uniform

12

13

14

15

16

17

Competitor Distribution Parameters (Proportion of Our Project Cost)

Competitor Distribution Parameters ($millions)

18 5.005

5.688

6.370

(1=yes, 0=no)

5.460

5.915

19

20

21

22

23

24

25

26

27

28

29

30

31

A B C D E

Reliable Construction Co. Contract Bidding

CompetitorBids

MeanProfit

MinimumCompetitorBid
OurBid

OurBidCost

OurProjectCost

Profit

WinBid?

C8:E8

C31

C23
C25

C5

C4

C29

C27

Range Name Cells

18 Minimum

Most Likely

Maximum

19

=OurProjectCost*C13

=OurProjectCost*C14

=OurProjectCost*C15

=OurProjectCost*D13

=OurProjectCost*D14

=OurProjectCost*D15

=OurProjectCost*E13

 

=OurProjectCost*E1520

B C D

Bid ($million) =PsiTriangular(C18,C19,C20)

Competitor 1 Competitor 2 Competitor 3

=PsiTriangular(D18,D19,D20) =PsiUniform(E18,E20)

E

7

8

B C

0.4872

=PsiMean(C29)

D E

22 Minimum Competitor
Bid ($million)

Our Bid ($million)

Win Bid?

Profit ($million)

23 =MIN(C8:E8)

5.4

=IF(OurBid<MinimumCompetitorBid,1,0)

=WinBid?*(OurBid-OurProjectCost)-OurBidCost + PsiOutput()

24

25

26

27

28

29

30

31

B C

4.550

0.050

Competitor 1

6.810

Competitor 2

5.931

Competitor 3

5.771

95%

130%

160%

110%

125%

140%

120%

130%

4.323

5.915

7.280

5.771

5.4

1

0.800

Competitor Bids

Mean Profit ($million)

Mean Profit ($million)

■ FIGURE 28.2
A spreadsheet model for applying simulation
to the Reliable Construction Co.’s contract
bidding problem. The uncertain variable
cells are CompetitorBids (C8:E8), the results
cell is Profit (C29), the statistic cell is
MeanProfit (C31), and the decision variable
is OurBid (C25).
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28.1 BIDDING FOR A CONSTRUCTION PROJECT 5

Since management wants to maximize the expected profit from the entire process of
determining a bid (if the bid wins) and then doing the project, the results cell in this model
is Profit (C29). The profit achieved on a given trial depends on whether the company wins
the bid. If not, the profit actually is a loss of $50,000 (the bid cost). However, if the bid
wins, the profit is the amount by which the bid exceeds the sum of the project cost and the
bid cost. The equation entered into Profit (C29) performs this calculation for whichever
case applies. Profit (C29) is defined as a results cell by clicking on the cell and then choos-
ing Output/In Cell from the Results menu on the ASPE ribbon. Finally, MeanProfit (C31)
is defined as a statistic cell by selecting the Profit cell (C29), choosing Mean from the Sta-
tistic submenu of the Results menu, and then clicking in cell C31. This will show the mean
value of the profit after the simulation is run.

Here is a summary of the key cells in this model.

Uncertain variable cells: CompetitorBids (C8:E8)
Decision variable: OurBid (C25)
Results cell: Profit (C29)
Statistic cell: MeanProfit (C31) (See Sec. 20.6 for the details

regarding how to define these kinds of cells.)

The Simulation Results
To evaluate a possible bid of $5.4 million entered into OurBid (C25), a simulation of this
model ran for 1,000 trials. Figure 28.4 shows the results in the form of a frequency chart
and a statistics table. Using units of millions of dollars, the profit on each trial has only two
possible values, namely, a loss shown as –0.050 in these figures (if the bid loses) or a profit
of 0.800 (if the bid wins). The frequency chart indicates that this loss of $50,000 occurred
on about 380 of the 1,000 trials whereas the profit of $800,000 occurred on the other 620

■ FIGURE 28.3
The Triangular Distribution dialog box. It is being used here to enter a triangular distribution with the parameters min 5
C18 (4.323), likely 5 C19 (5.915), and max 5 C20 (7.280) into the uncertain variable cell C8 in the spreadsheet model 
in Fig. 28.2.
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6 CHAPTER 28 EXAMPLES OF PERFORMING SIMULATIONS ON SPREADSHEETS

trials. This resulted in a mean profit of 0.487 ($487,000) from all 1,000 trials, as well as the
other statistics recorded in the statistics table.

By themselves, these results do not show that $5.4 million is the best bid to submit.
We still need to estimate with additional simulation runs whether a larger expected profit
could be obtained with another bid value. Section 28.7 will describe how doing this with a
parameter analysis report leads to choosing $5.4 million as the bid. This turned out to be
the winning bid for the Reliable Construction Co., which then led into the prototype exam-
ple that was analyzed in Chap. 22.

■ FIGURE 28.4
The frequency chart and statistics table that summarize the results of running the simulation model in Fig. 28.2 for the
Reliable Construction Co. contract bidding problem.

■ 28.2 PROJECT MANAGEMENT

One of the most important responsibilities of a project manager is to meet the deadline that
has been set for the project. Therefore, a skillful project manager will revise the plan for
conducting the project as needed to ensure a strong likelihood of meeting the deadline. But
how does the project manager estimate the probability of meeting the deadline with any
particular plan? Section 22.4 described one method provided by PERT/CPM. We now will
illustrate how simulation provides a better method.

This example illustrates a common role for simulation—refining the results from a
preliminary analysis conducted with approximate mathematical models. You also will get
a first look at uncertain variable cells where the values shown are times. Another interest-
ing feature of this example is its use of a special kind of ASPE chart called the sensitivity
chart. This chart will provide a key insight into how the project plan should be revised.

The Problem Being Addressed
Like the example in the preceding section, this one also revolves around the story of the Reli-
able Construction Co. that was introduced in Sec. 22.1 and continued throughout 
Chap 22. However, rather than preceding the part of the story described in Chap. 22, this
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28.2 PROJECT MANAGEMENT 7

example arises in the middle of that story. In particular, Sec. 22.4 discussed how a PERT/CPM
procedure was used to obtain a rough approximation of the probability of meeting the deadline
for the Reliable Construction Co. project. It then was pointed out that simulation could be used
to obtain a better approximation. We now are in a position to describe how this is done.

Here are the essential facts that are needed for the current example. (There is no need
for you to refer to Chap. 22 for further details.) The Reliable Construction Company has
just made the winning bid to construct a new plant for a major manufacturer. However, the
contract includes a large penalty of $300,000 if construction is not completed by the dead-
line 47 weeks from now. Therefore, a key element in evaluating alternative construction
plans is the probability of meeting this deadline under each plan. There are 14 major activ-
ities involved in carrying out this construction project, as listed on the right-hand side of
Figure 28.5 (which repeats Fig. 22.1 for your convenience). The project network in this
figure depicts the precedence relationships between the activities. Thus, there are six
sequences of activities (paths through the network), all of which must be completed to fin-
ish the project. These six sequences are listed below.

Path 1: Start S A S B S C S D S G S H S M S Finish
Path 2: StartSSS ASSS BSSS CS SS ES SS HS SS MS S  Finish
Path 3: Start S A S B S C S E S F S J S K S N S Finish
Path 4: Start S A S B S C S E S F S J S L S N S Finish
Path 5: Start S A S B S C S I S J S K S N S Finish
Path 6: Start S A S B S C S I S J S L S N S Finish

■ FIGURE 28.5
The project network for the
Reliable Construction Co.
project.

Start

Finish

A

B

C

D I

J

N

K L

E

FG

M

H

0

2

9

7

6
4

10

4

2

0

7

8

5

54

6

Activity Code

A.  Excavate
B.  Foundation
C.  Rough wall
D.  Roof
E.  Exterior plumbing
F.  Interior plumbing
G.  Exterior siding
H.  Exterior painting
I.  Electrical work
J.  Wallboard
K.  Flooring
L.  Interior painting
M. Exterior fixtures
N.  Interior fixtures
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8 CHAPTER 28 EXAMPLES OF PERFORMING SIMULATIONS ON SPREADSHEETS

The numbers next to the activities in the project network represent the estimates of the
number of weeks the activities will take if they are carried out in the normal manner with
the usual crew sizes, and so forth. Adding these times over each of the paths (as was done
in Table 22.2) reveals that path 4 is the longest path, requiring a total of 44 weeks. Since
the project is finished as soon as its longest path is completed, this indicates that the project
can be completed in 44 weeks, 3 weeks before the deadline.

Now we come to the crux of the problem. The times for the activities in Fig. 28.5 are
only estimates, and there actually is considerable uncertainty about what the duration of
each activity will be. Therefore, the duration of the entire project could well differ substan-
tially from the estimate of 44 weeks, so there is a distinct possibility of missing the deadline
of 47 weeks. What is the probability of missing this deadline? To estimate this probability,
we need to learn more about the probability distribution of the duration of the project.

This is the reason for the PERT three-estimate approach described in Sec. 22.4. This
approach involves obtaining three estimates—a most likely estimate, an optimistic estimate,
and a pessimistic estimate—of the duration of each activity. (Table 22.4 lists these estimates
for all 14 activities for the project under consideration.) These three quantities are intended
to estimate the most likely duration, the minimum duration, and the maximum duration,
respectively. Using these three quantities, PERT assumes (somewhat arbitrarily) that the
form of the probability distribution of the duration of an activity is a beta distribution. By
also making three simplifying approximations (described in Sec. 22.4), this leads to an ana-
lytical method for roughly approximating the probability of meeting the project deadline.

One key advantage of simulation is that it does not need to make most of the simplify-
ing approximations that may be required by analytical methods. Another is that there is
great flexibility about which probability distributions to use. It is not necessary to choose
an analytically convenient one.

When dealing with the duration of an activity, simulations commonly use a triangular
distribution as the distribution of this duration. The triangular distribution fits the PERT
three-estimate approach very well because it has three parameters that correspond to the
three estimates in a very natural way. Figure 28.1 shows the shape of this distribution and
its three parameters—min (the minimum possible value), likely (the most likely value), and
max (the maximun possible value). Thus, the duration of an activity is assumed to have a
triangular distribution where min 5 optimistic estimate, likely 5 most likely estimate, and
max 5 pessimistic estimate. For each uncertain variable cell containing this distribution, a
Triangular Distribution dialog box (such as the one shown in Fig. 28.3) is used to enter the
values of the three estimates by entering their respective cell references into the min, likely,
and max boxes.

A Spreadsheet Model for Applying Simulation
Figure 28.6 shows a spreadsheet model for simulating the duration of the Reliable Con-
struction Co. project. The values of o, m, and p in columns D, E, and F are obtained directly
from Table 22.4 in Chap. 22. The equations entered into the cells in columns G and I give
the start times and finish times for the respective activities. For each trial of the simulation,
the maximum of the finish times for the last two activities (M and N) gives the duration of
the project (in weeks), which goes into the results cell ProjectCompletion (I21).

Since the activity times generally are variable, the cells H6:H19 all need to be uncer-
tain variable cells. Figure 28.7 shows the Triangular Distribution dialog box after it has
been used to specify the parameters for the first uncertain variable cell, which records the
time of activity A with a range name of ATime (H6). The right side of Fig. 28.7 notes that
ASPE has automatically entered a formula (5PsiTriangular(D6,E6,F6)) into ATime (H6) to
calculate a random value from this distribution. Rather than repeating this process for all
the other uncertain variable cells, it is quicker to simply copy and paste. To copy the 
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28.2 PROJECT MANAGEMENT 9

■ FIGURE 28.6
A spreadsheet model for applying simulation to the Reliable Construction Co. project scheduling problem. The uncertain
variable cells are cells H6:H15. The results cell is ProjectCompletion (I21). The statistic cell is MeanProjectCompletion (I23).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Project Completion

Mean Project Completion

A B C D E F G H I

Start

Time

0

2.28

5.80

21.17

21.17

25.35

28.04

34.83

21.17

30.80

37.44

37.44

42.16

42.89

Finish

Time

2.28

5.80

21.17

28.04

25.35

30.80

34.83

42.16

24.72

37.44

41.44

42.89

44.63

48.67

Simulation of Reliable Construction Co. Project

Activity

A

B

C

D

E

F

G

H

I

J

K

L

M

N

Immediate

Predecessor

—

A

B

C

C

E

D

E, G

C

F, I

J

J

H

K, L

o

1

2

6

4

1

4

5

5

3

3

4

1

1

5

Time Estimates

m

2

3.5

9

5.5

4.5

4

6.5

8

7.5

9

4

5.5

2

5.5

p

3

8

18

10

5

10

11

17

9

9

4

7

3

9

Activity

Time

(triangular)

2.28

3.52

15.37

6.86

4.18

5.44

6.80

7.33

3.55

6.64

48.67

4.00

5.45

2.47

5.77

46.26

3 Activity

Time

(triangular)

4 Start

Time

Finish

Time5

6 0

=AFinish

=BFinish

=CFinish

=CFinish

=EFinish

=DFinish

=MAX(EFinish,GFinish)

=CFinish

=MAX(FFinish,IFinish)

=JFinish

=JFinish

=HFinish

=MAX(KFinish,LFinish)

=PsiTriangular(D6,E6,F6)

=PsiTriangular(D7,E7,F7)

=PsiTriangular(D8,E8,F8)

=AStart+ATime

=BStart+BTime

=CStart+CTime

=DStart+DTime

=EStart+ETime

=FStart+FTime

=GStart+GTime

=HStart+HTime

=IStart+ITime

=JStart+JTime

=KStart+KTime

=LStart+LTime

=MStart+MTime

=NStart+NTime

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Project Completion

Mean Project Completion =PsiMean(I21)

G H I

=MAX(MFinish,NFinish) + PsiOutput()

=PsiTriangular(D9,E9,F9)

=PsiTriangular(D10,E10,F10)

=PsiTriangular(D11,E11,F11)

=PsiTriangular(D12,E12,F12)

=PsiTriangular(D13,E13,F13)

=PsiTriangular(D14,E14,F14)

=PsiTriangular(D15,E15,F15)

=PsiTriangular(D16,E16,F16)

=PsiTriangular(D17,E17,F17)

=PsiTriangular(D18,E18,F18)

=PsiTriangular(D19,E19,F19)

AFinish
AStart
ATime
BFinish
BStart
BTime
CFinish
CStart
CTime
DFinish
DStart
DTime
EFinish
EStart
ETime
FFinish
FStart
FTime
GFinish
GStart
GTime
HFinish
HStart
HTime
IFinish
IStart
ITime
JFinish
JStart
JTime
KFinish
KStart
KTime
LFinish
LStart
LTime
MFinish
MeanProjectCompletion  
MStart
MTime
NFinish
NStart
NTime
ProjectCompletion

I6
G6
H6
I7
G7
H7
I8
G8
H8
I9
G9
H9
I10
G10
H10
I11
G11
H11
I12
G12
H12
I13
G13
H13
I14
G14
H14
I15
G15
H15
I16
G16
H16
I17
G17
H17
I18
I23
G18
H18
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G19
H19
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Range Name Cell
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10 CHAPTER 28 EXAMPLES OF PERFORMING SIMULATIONS ON SPREADSHEETS

formula in H6 down to H7 through H19, select cell H6 and drag the fill handle (the small
box on the lower right corner of the cell cursor) down to cell H19. This copies the formula
in H6 (5PsiTriangular(D6,E6,F6), used by ASPE to calculate a random value from the tri-
angular distribution, with parameters min 5D6, likely 5E6, and max 5F6) into cells H7
through H19. Since the parameters in cell H6 (D6, E6, and F6) are relative references, the
row numbers of the parameters will update appropriately to refer to the data in the correct
rows during the copy-and-paste process. For example, the formula in H7 will update to
5PsiTriangular(D7,E7,F7).

Here is a summary of the key cells in this model.

Uncertain variable cells: Cells H6:H15
Results cell: ProjectCompletion (I21)
Statistic cell: MeanProjectCompletion (I23)

(See Sec. 20.6 for the details regarding how to define uncertain variable cells, results cells,
and statistic cells.)

The Simulation Results
We now are ready to evaluate the simulation of the spreadsheet model in Fig. 28.6. After
running a simulation of 1,000 trials, Fig. 28.8 shows the results in the form of a frequency
chart and a statistics table. These results show a very wide range of possible project dura-
tions. Out of the 1,000 trials, the statistics table indicates that one trial had a duration as
short as 36.74 weeks while another was as long as 60.66 weeks. The frequency chart indi-
cates that the duration that occurred most frequently during the 1,000 trials is close to 47
weeks (the project deadline), but that many other durations up to a few weeks either shorter
or longer than this also occurred with considerable frequency. The mean is 46.26 weeks,
which is much too close to the deadline of 47 weeks to leave much margin for slippage in
the project schedule.

■ FIGURE 28.7
A triangular distribution with parameters D6 (51), E6 (52), and F6 (53) is being entered into the first uncertain variable
cell ATime (H6) in the spreadsheet model in Fig. 28.6.
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28.2 PROJECT MANAGEMENT 11

A statistic of special interest to Reliable’s management is the probability of meeting
the deadline of 47 weeks under the current project plan (Remember that the contract
includes a severe penalty of $300,000 for missing this deadline.). Figure 28.8 shows that
all you need to do to identify the exact percentage is to type the deadline of 47 in the Upper
Cutoff box. The Likelihood box then reveals that about 57.7 percent of the trials met the
deadline.

If the simulation run were to be repeated with another 1,000 trials, this percentage
probably would change a little. However, with such a large number of trials, the difference
in the percentages should be slight. Therefore, the probability of 0.577 provided by the
Likelihood box in Fig. 28.8 is a close estimate of the true probability of meeting the dead-
line under the assumptions of the spreadsheet model in Fig. 28.6. Note how much smaller
this relatively precise estimate is than the rough estimate of 0.84 obtained by the PERT
three-estimate approach in Sec. 22.4. Thus, the simulation estimate provides much better
guidance to management in deciding whether the project plan should be changed to
improve the chances of meeting the deadline. This illustrates how useful simulation can be
in refining the results obtained by approximate analytical results.

A Key Insight Provided by the Sensitivity Chart
Given such a low probability (0.577) of meeting the project deadline, Reliable’s project
manager (David Perty) will want to revise the project plan to improve the probability sub-
stantially. ASPE has another tool, called the sensitivity chart, that provides strong guidance
in identifying which revisions in the project plan would be most beneficial.

To view a sensitivity chart after running a simulation, click on the Sensitivity tab
above the chart for the results cell. This reveals a sensitivity chart, as shown in Fig. 28.9.
Using range names, the left side of the chart identifies various uncertain variable cells
(activity times) in column H of the spreadsheet model in Figure 28.6.

■ FIGURE 28.8
The frequency chart and statistics table that summarize the results of running the simulation model in 28.6
for the Reliable Construction Co. project scheduling problem.
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■ 28.3    CASH FLOW MANAGEMENT

12 CHAPTER 28 EXAMPLES OF PERFORMING SIMULATIONS ON SPREADSHEETS

The bars in the chart give the correlation coefficient (based on moment values)
between each uncertain variable cell and the results cell. A correlation coefficient between
two variables measures the strength of the relationship between those variables. Thus, each
correlation coefficient in Fig. 28.9 measures how strongly that activity time is influencing
the project completion time. The higher the correlation coefficient, the stronger is this
influence. Therefore, the activities with the highest correlation coefficients are those where
the greatest effort should be made to reduce their activity times.

Figure 28.9 indicates that CTime has a far higher correlation coefficient than the times
for any of the other activities. An examination of Figs. 28.5 and 28.6 suggests why. Figure
28.5 shows that activity C precedes all the other activities except activities A and B, so any
delay in completing activity C would delay the start time for all these other activities. Fur-
thermore, cells D8:F8 in Fig. 28.6 indicate that CTime is highly variable, with an unusu-
ally large spread of 9 weeks between its most likely estimate and its pessimistic estimate,
so long delays beyond the most likely estimate may well occur.

This very high correlation coefficient for CTime suggest that the best way to reduce
the project completion time (and its variability) is to focus on reducing this activity time
(and its variability). This can be accomplished by revising the project plan to assign activ-
ity C more personnel, better equipment, stronger supervision, and so forth. ASPE’s sensi-
tivity chart clearly highlights this insight into where the project plan needs to be revised.

■ FIGURE 28.9
This sensitivity chart shows how strongly various activity times in the Reliable Construction Co. project are
influencing the project completion time.

Many applications of simulation involve scenarios that evolve far into the future. Since
nobody can predict the future with certainty, simulation is needed to take future uncertain-
ties into account when making decisions. For example, businesses typically have great
uncertainty about what their future cash flows will be. An attempt often is made to predict
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28.3 CASH FLOW MANAGEMENT 13

these future cash flows as a first step toward making decisions about what should be done
(e.g., arranging for loans) to meet cash flow needs. However, effective cash management
requires going a step further to consider the effect of the uncertainty in the future cash
flows. This is where simulation comes in, with uncertain variable cells being used for the
cash flows in various future periods. This process is illustrated by the following example.

The Everglade Cash Flow Management Problem
The case study analyzed in Chap. 21 involves the Everglade Golden Years Company
(which operates upscale retirement communities) and its efforts to manage its cash flow
problems. In particular, because of both a temporary decline in business and some current
or future construction costs, the company is facing some negative cash flows in the next
few years as well as in some more distant years. As first provided in Table 21.1, Table 28.1
shows the projected net cash flows over the next 10 years (2014 to 2023). The company
has some new retirement communities opening within the 10 years, so it is anticipated (or
at least hoped) that a large positive cash flow will occur in 2023. Therefore, the problem
confronting Everglade management is how to best arrange Everglade’s financing to tide
the company over until its investments in new retirement communities can start to pay off.

Chapter 21 describes how a decision was made to combine taking a long-term (10-
year) loan now (the beginning of 2014) and a series of short-term (1-year) loans as needed
to maintain a positive cash balance of at least $500,000 (as dictated by company policy)
throughout the 10 years. Assuming no deviation from the projected cash flows shown in
Table 28.1, linear programming was used to optimize the size of both the long-term loan
and the short-term loans so as to maximize the company’s cash balance at the beginning of
2024 when all of the loans have been paid off. Figure 21.5 in Chap. 21 shows the complete
spreadsheet model after using Solver to obtain the optimal solution. For your convenience,
Figure 21.5 is repeated here as Fig. 28.10. The changing cells, LTLoan (D11) and STLoan
(E11:E20), give the sizes of the long-term loan and the short-term loans at the beginning of
the various years. The objective cell EndBalance (J21) indicates that the resulting cash bal-
ance at the end of the 10 years (the beginning of 2024) would be $5.39 million. Since this
is the cell that is being maximized, any other plan for the sizes of the loans would result in
a smaller cash balance at the end of the 10 years.

Obtaining the “optimal” financing plan presented in Fig. 28.10 is an excellent first
step in developing a final plan. However, the drawback of the spreadsheet model in Fig.
28.10 is that it makes no allowance for the inevitable deviations from the projected cash
flows shown in Table 28.1. The actual cash flow for the first year (2014) probably will turn
out to be quite close to the projection. However, it is difficult to predict the cash flows in
even the second and third years with much accuracy, let alone up to 10 years into the
future. Simulation is needed to assess the effect of these uncertainties.

Year Projected Net Cash Flow (millions of dollars)

2014 –8
2015 –2
2016 –4
2017 3
2018 6
2019 3
2020 –4
2021 7
2022 –2
2023 10

■ TABLE 28.1 Projected Net
Cash Flows for the Everglade
Golden Years Company over
the Next 10 Years
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28.3 CASH FLOW MANAGEMENT 15

A Spreadsheet Model for Applying Simulation
Figure 28.11 shows the modification of the spreadsheet model in Fig. 28.10 that is needed
to apply simulation. One key difference is that the constants in CashFlow (C11:C20) in
Fig. 28.10 have turned into random inputs in CashFlow (F12:F21) in Fig. 28.11. Thus, the
latter cells, CashFlow (F12:F21), are uncertain variable cells. (The numbers appearing in
these cells are just one possible random outcome—the last trial of the simulation run.) As
indicated in cells D9:E9, the assumption has been made that each of the cash flows has a
triangular distribution. Estimates have been made of the three parameters of this distribu-
tion (min, likely, and max) for each of the years, as presented in cells C12:E21.

The number 4.65 entered into LTLoan (G12) is the size of the long-term loan (in mil-
lions of dollars) that was obtained in Fig. 28.10. However, because of the variability in the
cash flows, it no longer makes sense to lock in the sizes of the short-term loans that were
obtained in STLoan (E11:E20) in Fig. 28.10. It is better to be flexible and adjust these sizes
based on the actual cash flows that occur in the preceding years. If the balance at the begin-
ning of a year (as calculated in BalanceBeforeSTLoan [L12:L22]) already exceeds the
required minimum balance of $0.50 million, then there is no need to take any short-term
loan at that point. However, if the balance is not this large, then a sufficiently large short-
term loan should be taken to bring the balance up to $0.50 million. This is what is done by
the equations entered into STLoan (M12:M22) that are shown at the bottom of Fig. 28.11.

The objective cell EndBalance (J21) in Fig. 28.10 becomes the results cell EndBalance
(N22) in Fig. 28.11. A statistic cell, MeanEndBalance (N24), is defined to determine the
mean value of EndBalance for the simulation run. On any trial of the simulation, if the sim-
ulated cash flows in CashFlow (F12:F21) in Fig. 28.11 are more favorable than the pro-
jected cash flows given in Table 28.1 (as is the case for the current numbers in Fig. 28.11),
then EndBalance (N22) in Fig. 28.11 would be larger than EndBalance (J21) in Fig. 28.10.
However, if the simulated cash flows are less favorable than the projections, then EndBal-
ance (N22) in Fig. 28.11 might even be a negative number. For example, if all the simulated
cash flows are close to the corresponding minimum values given in cells C12:C21, then the
required short-term loans will become so large that paying off the last one at the beginning
of 2024 (along with paying off the long-term loan then) will result in a very large negative
number in EndBalance (N22). This would spell serious trouble for the company. Simulation
will reveal the relative likelihood of this occurring versus a favorable outcome.

Here is a summary of the key cells in this model:

Uncertain variable cells: CashFlow (F12:F21)
Results cell: EndBalance (N22)
Statistic cell: MeanEndBalance (N24)

(See Sec. 20.6 for the details regarding how to define uncertain variable cells, results cells,
and statistic cells.)

The Simulation Results
Figure 28.12 shows the results from applying simulation with 1,000 trials. Because Ever-
glade management is particularly interested in learning how likely it is that the current
financing plan would result in a positive cash balance at the end of the 10 years, the num-
ber 0 has been entered into the Lower Cutoff box in the statistics table. The Likelihood box
then indicates that over 95 percent of the trials resulted in a positive cash balance at the
end. Furthermore, the frequency chart shows that many of these positive cash balances are
reasonably large, with many exceeding $10 million. The overall mean is $9.18 million.

On the other hand, it is worrisome that nearly 5 percent of the trials resulted in a neg-
ative cash balance at the end. Although huge losses were rare, some of these negative cash
balances were quite significant, ranging up to $5 million.
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28.3 CASH FLOW MANAGEMENT 17

Conclusions
Everglade management is pleased that the simulation results indicate that the proposed
financing plan is likely to lead to a favorable outcome at the end of the 10 years. At the
same time, management feels that it would be prudent to take steps to reduce the 5 percent
chance of an unfavorable outcome.

One possibility would be to increase the size of the long-term loan, since this would
reduce the sizes of the higher interest short-term loans that would be needed in the later
years if the cash flows are not as good as currently projected. This possibility is investi-
gated in Problem 28.9.

The scenarios that would lead to a negative cash balance at the end of the 10 years are
those where the company’s retirement communities fail to achieve full occupancy because
of overestimating the demand for this service. Therefore, Everglade management con-
cludes that it should take a more cautious approach in moving forward with its current
plans to build more retirement communities over the next 10 years. In each case, the final
decisions regarding the start date for construction and the size of the retirement community
should be made only after obtaining and carefully assessing a detailed forecast of the
trends in the demand for this service.

After adopting this policy, Everglade management approves the financing plan that is
incorporated into the spreadsheet model in Fig. 28.11. In particular, a 10-year loan of
$4.65 million will be taken now (the beginning of 2014). In addition, a one-year loan will
be taken at the beginning of each year from 2014 to 2023 if it is needed to bring the cash
balance for that year up to the level of $500,000 required by company policy.

■ FIGURE 28.12
The frequency chart and statistics table that summarize the results of running the simulation model in Fig. 28.11 for the
Everglade Golden Years cash flow management problem.

hil23453_ch28_001-047.qxd  1/22/1970  10:51 PM  Page 17

Confirming Pages



18 CHAPTER 28 EXAMPLES OF PERFORMING SIMULATIONS ON SPREADSHEETS

One of the earliest areas of application of simulation, dating back to the 1960s, was
financial risk analysis. This continues today to be one of the most important areas of 
application.

When assessing any financial investment (or a portfolio of investments), the key trade-
off is between the return from the investment and the risk associated with the investment.
Of these two quantities, the less difficult one to determine is the return that would be
obtained if everything evolves as currently projected. However, assessing the risk is rela-
tively difficult. Fortunately, simulation is ideally suited to perform this risk analysis by
obtaining a risk profile, namely, a frequency distribution of the return from the invest-
ment. The portion of the frequency distribution that reflects an unfavorable return clearly
describes the risk associated with the investment.

The following example illustrates this approach in the context of real estate invest-
ments. Like the Everglade example in the preceding section, you will see simulation being
used to refine prior analysis done by linear programming because this prior analysis was
unable to take the uncertainty in future cash flows into account.

The Think-Big Financial Risk Analysis Problem
The Think-Big Development Co. is a major investor in commercial real estate develop-
ment projects. It has been considering taking a share in three large construction projects—
a high-rise office building, a hotel, and a shopping center. In each case, the partners in the
project would spend three years with the construction, then retain ownership for three
years while establishing the property, and then sell the property in the seventh year. By
using estimates of expected cash flows, as well as constraints on the amounts of investment
capital available both now and over the next three years, linear programming has been
applied to obtain the following proposal for how big a share Think-Big should take in each
of these projects:

Proposal

Do not take any share of the high-rise building project.
Take a 16.50 percent share of the hotel project.
Take a 13.11 percent share of the shopping center project.

This proposal is estimated to return a net present value (NPV) of $18.11 million to Think-
Big.

However, Think-Big management understands very well that such decisions should
not be made without taking risk into account. These are very risky projects since it is
unclear how well these properties will compete in the marketplace when they go into oper-
ation in a few years. Although the construction costs during the first three years can be esti-
mated fairly roughly, the net incomes during the following three years of operation are
very uncertain. Consequently, there is an extremely wide range of possible values for each
sale price in year 7. Therefore, management wants risk analysis to be performed in the
usual way (with simulation) to obtain a risk profile of what the total NPV might actually
turn out to be with this proposal.

To perform this risk analysis, Think-Big staff now has devoted considerable time to
estimating the amount of uncertainty in the cash flows for each project over the next seven
years. These data are summarized in Table 28.2 (in units of millions of dollars) for a 100
percent share of each project. Thus, when taking a smaller percentage share of a project,
the numbers in the table should be reduced proportionally to obtain the relevant numbers

■ 28.4    FINANCIAL RISK ANALYSIS
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28.4 FINANCIAL RISK ANALYSIS 19

for Think-Big. In years 1 through 6 for each project, the probability distribution of cash
flow is assumed to be a normal distribution, where the first number shown is the estimated
mean and the second number is the estimated standard deviation of the distribution. In
year 7, the income from the sale of the property is assumed to have a uniform distribution
over the range from the first number shown to the second number shown.

To compute NPV, a cost of capital of 10 percent per annum is being used. Thus, the
cash flow in year n is divided by (1.1)n before adding these discounted cash flows to obtain
NPV.

A Spreadsheet Model for Applying Simulation
A spreadsheet model has been formulated for this problem in Fig. 28.13. There is no
uncertainty about the immediate (year 0) cash flows appearing in cells D6 and D16, so
these are data cells. However, because of the uncertainty for years 1–7, cells D7:D13 and
D17:D23 containing the simulated cash flows for these years need to be uncertain variable
cells. (The numbers in these cells in Fig. 28.13 represent one possible random outcome—
the last trial of the simulation run.) Table 28.2 specifies the probability distributions and
their parameters that have been estimated for these cash flows, so the form of the distribu-
tions has been recorded in cells E7:E13 and E17:E23 while entering the corresponding
parameters in cells F7:G13 and F17:G23. Figure 28.14 shows the Normal Distribution dia-
log box that is used to enter the parameters (mean and standard deviation) for the normal
distribution into the first uncertain variable cell D7 by referencing cells F7 and G7. The
formula in D7 is then copied and pasted into cells D8:D12 and D17:D22 to define these
uncertain variable cells. The Uniform Distribution dialog box (like the similar one dis-
played earlier in Fig. 20.9 for an integer uniform distribution) is used in a similar way to
enter the parameters (minimum and maximum) for this kind of distribution into the uncer-
tain variable cells D13 and D23.

The simulated cash flows in cells D6:D13 and D16:D23 are for 100 percent of the
hotel project and the shopping center project, respectively, so Think-Big’s share of these
cash flows needs to be reduced proportionally based on its shares in these projects. The
proposal being analyzed is to take the shares shown in cells H28:H29. The equations
entered into cells D28:D35 (see the bottom of Fig. 28.13) then gives Think-Big’s total cash
flow in the respective years for its share of the two projects.

Think-Big’s management wants to obtain a risk profile of what the total net present
value (NPV) might be with this proposal. Therefore, the results cell is NetPresent Value
(D37). To show the mean NPV over the simulation run, MeanNPV (D39) is defined as a
statistic cell.

■ TABLE 28.2 The Estimated Cash Flows for 100 Percent of the Hotel and Shopping
Center Projects

Hotel Project Shopping Center Project

Year Cash Flow ($1,000,000s) Year Cash Flow ($1,000,000s)

0 –80 0 –90
1 Normal (–80, 5) 1 Normal (–50, 5)
2 Normal (–80, 10) 2 Normal (–20, 5)
3 Normal (–70, 15) 3 Normal (–60, 10)
4 Normal (+30, 20) 4 Normal (+15, 15)
5 Normal (+40, 20) 5 Normal (+25, 15)
6 Normal (+50, 20) 6 Normal (+40, 15)
7 Uniform (+200, 844) 7 Uniform (160, 600)
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Hotel Project:

Shopping Center Project

Construction Costs:

Revenue per Share

Selling Price per Share

Construction Costs:

Revenue per Share

Selling Price per Share

1

2

3

4

5

6 Year 0

Year 1

Year 2

Year 3

Year 4

Year 5

Year 6

Year 7

Year 0

Year 1

Year 2

Year 3

Year 4

Year 5

Year 6

Year 7

Year 0

Year 1

Year 2

Year 3

Year 4

Year 5

Year 6

Year 7

7 (mean, st. dev.)

(mean, st. dev.)

(mean, st. dev.)

(mean, st. dev.)

(mean, st. dev.)

(mean, st. dev.)

(lower,upper)

(mean, st. dev.)

(mean, st. dev.)

(mean, st. dev.)

(mean, st. dev.)

(mean, st. dev.)

(mean, st. dev.)

(lower,upper)

Normal

Normal

Normal

Normal

Normal

Normal

Uniform

Normal

Normal

Normal

Normal

Normal

Normal

Uniform

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28 Hotel

Shopping Center

Cost of Capital

Share

29

30

31

32

33

34

35

36

37

38

39

Net Present Value ($millions)

MeanNPV ($millions)

A B C D E F G H

Simulation of Think-Big Development Co. Problem

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

C D

Think Big’s

Simulated Cash Flow

($millions)

Year 0

Year 1

Year 2

Year 3

Year 4

Year 5

Year 6

Year 7

Net Present Value ($millions)

=HotelShare*D6+ShoppingCenterShare*D16

=HotelShare*D7+ShoppingCenterShare*D17

=HotelShare*D8+ShoppingCenterShare*D18

=HotelShare*D9+ShoppingCenterShare*D19

=HotelShare*D10+ShoppingCenterShare*D20

=HotelShare*D11+ShoppingCenterShare*D21

=HotelShare*D12+ShoppingCenterShare*D22

=HotelShare*D13+ShoppingCenterShare*D23

=CashFlowYear0+NPV(CostOfCapital,CashFlowYear1To7) +PsiOutput()

CashFlowYear0
CashFlowYear1To7
CostOfCapital
HotelShare
MeanNPV
NetPresentValue
ShoppingCenterShare

D28
D29:D35
H31
H28
D39
D37
H29

Range Name Cells

-80

-80

-70

30

40

50

200

-50

-20

-60

15

25

40

160

5

10

15

20

20

20

844

5

5

10

15

15

15

615

Project Simulated

Cash Flow

($millions)

-80

-79.057

-80.343

-73.063

14.059

29.746

81.373

395.247

-90

-42.329

-15.124

-54.653

21.923

10.122

14.780

494.378

Think-Big's

Simulated Cash Flow

($millions)

-24.999

-18.594

-15.239

-19.221

5.194

6.235

15.364

130.029

13.879

16.50%

13.11%

10%

3

C D

Year 0 -80

-90

=PsiNormal(F7,G7)

=PsiNormal(F8,G8)

=PsiNormal(F9,G9)

=PsiNormal(F10,G10)

=PsiNormal(F11,G11)

=PsiNormal(F12,G12)

=PsiNormal(F17,G17)

=PsiNormal(F18,G18)

=PsiNormal(F19,G19)

=PsiNormal(F20,G20)

=PsiNormal(F21,G21)

=PsiNormal(F22,G22)

=PsiUniform(F13,G13)

=PsiUniform(F23,G23)

Project Simulated

Cash Flow

($millions)

Year 1

Year 2

Year 3

Year 4

Year 5

Year 6

Year 7

Year 0

Year 1

Year 2

Year 3

Year 4

Year 5

Year 6

Year 7

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

18.120

Mean NPV ($millions) =PsiMean(D37)

■ FIGURE 28.13
A spreadsheet model for
applying simulation to
the Think-Big
Development Co.
financial risk analysis
problem. The uncertain
variable cells are cells
D7:D13 and D17:D23,
the results cell is
NetPresentValue (D37),
the statistic cell is
MeanNPV (D39), and the
decision variables are
HotelShare (H28) and
ShoppingCenterShare
(H29).
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28.4 FINANCIAL RISK ANALYSIS 21

Here is a summary of the key cells in this model:

Uncertain variable cells: Cells D7:D13 and D17:D23
Decision variables: HotelShare (H28) and ShoppingCenterShare (H29)
Results cell: NetPresentValue (D37)
Statistic cell: MeanNPV (D39)

(See Sec. 20.6 for the details regarding how to define uncertain variable cells, results cells,
and statistic cells.)

The Simulation Results
Using the Simulation Options dialog box to specify 1,000 trials, Fig. 28.15 shows the
results of applying simulation to the spreadsheet model in Fig. 28.13. The frequency chart
in Fig. 28.15 provides the risk profile for the proposal since it shows the relative likelihood
of the various values of NPV, including those where NPV is negative. The mean is $18.120
million, which is very attractive. However, the 1,000 trials generated an extremely wide
range of NPV values, all the way from about –$28 million to over $62 million. Thus, there
is a significant chance of incurring a huge loss. By entering 0 into the box in the Upper
Cutoff box of the statistics table, the Likelihood box indicates that 81 percent of the trials
resulted in a profit (a positive value of NPV). This also gives the bad news that there is
roughly a 19 percent chance of incurring a loss of some size. The lightly shaded portion of
the chart to the left of 0 shows that most of the trials with losses involved losses up to about
$10 million, but that quite a few trials had losses that ranged from $10 million to nearly
$30 million.

Armed with all this information, a managerial decision now can be made about
whether the likelihood of a sizable profit justifies the significant risk of incurring a loss and
perhaps even a very substantial loss. Thus, the role of simulation is to provide the informa-
tion needed for making a sound decision, but it is management that uses its best judgment
to make the decision.

■ FIGURE 28.14
A normal distribution with parameters F7 (5280) and G7 (55) is being entered into the first uncertain variable cell D7 in the
spreadsheet model in Fig. 28.13.
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■ 28.5    REVENUE MANAGEMENT IN THE TRAVEL INDUSTRY

22 CHAPTER 28 EXAMPLES OF PERFORMING SIMULATIONS ON SPREADSHEETS

■ FIGURE 28.15
The frequency chart and statistics table that summarize the results of running the simulation model in Figure 28.13 for the
Think-Big Development Co. financial risk analysis problem. The Likelihood box in the statistics table reveals that 81 percent
of the trials resulted in a positive net present value.

As described in Sec. 18.8, one of the most prominent areas for the application of opera-
tions research in recent years has been in improving revenue management in the travel
industry. Revenue management refers to the various ways of increasing the flow of rev-
enues through such devices as setting up different fare classes for different categories of
customers. The objective is to maximize total income by setting fares that are at the upper
edge of what the different market segments are willing to pay and then allocating seats
appropriately to the various fare classes.

As the example in this section will illustrate, one key area of revenue management is
overbooking, that is, accepting a slightly larger number of reservations than the number of
seats available. There usually are a small number of no-shows, so overbooking will increase
revenue by essentially filling the available seating. However, there also are costs incurred if
the number of arriving customers exceeds the number of available seats. Therefore, the
amount of overbooking needs to be set carefully so as to achieve an appropriate trade-off
between filling seats and avoiding the need to turn away customers who have a reservation.

American Airlines was the pioneer in making extensive use of operations research for
improving its revenue management. The guiding motto was “selling the right seats to the
right customers at the right time.” This work won the 1991 Franz Edelman Award as that
year’s best application of operations research and management science anywhere through-
out the world. This application was credited with increasing annual revenues for American
Airlines by over $500 million. Nearly half of these increased revenues came from the use
of a new overbooking model.
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28.5 REVENUE MANAGEMENT IN THE TRAVEL INDUSTRY 23

Following this breakthrough at American Airlines, other airlines quickly stepped up
their use of operations research in similar ways. These applications to revenue manage-
ment then spread to other segments of the travel industry (train travel, cruise lines, rental
cars, hotels, etc.) around the world. Our example below involves overbooking by an airline
company.

The Transcontinental Airlines Overbooking Problem
Transcontinental Airlines has a daily flight (excluding weekends) from San Francisco to
Chicago that is mainly used by business travelers. There are 150 seats available in the sin-
gle cabin. The average fare per seat is $300. This is a nonrefundable fare, so no-shows for-
feit the entire fare. The fixed cost for operating the flight is $30,000, so more than 100
reservations are needed to make a profit on any particular day.

For most of these flights, the number of requests for reservations considerably exceeds
the number of seats available. The company’s OR group has been compiling data on the
number of reservation requests per flight for the past several months. The average number
has been 195, but with considerable variation from flight to flight on both sides of this
average. Plotting a frequency chart for these data suggests that they roughly follow a bell-
shaped curve. Therefore, the group estimates that the number of reservation requests per
flight has a normal distribution with a mean of 195. A calculation from the data estimates
that the standard deviation is 30.

The company’s policy is to accept 10 percent more reservations than the number of
seats available on nearly all its flights, since roughly 10 percent of all its customers mak-
ing reservations end up being no-shows. However, if its experience with a particular flight
is much different from this, then an exception is made and the OR group is called in to
analyze what the overbooking policy should be for that particular flight. This is what has
just happened regarding the daily flight from San Francisco to Chicago. Even when the
full quota of 165 reservations has been reached (which happens for most of the flights),
there usually are a significant number of empty seats. While gathering its data, the OR
group has discovered the reason why. On the average, only 80 percent of the customers
who make reservations for this flight actually show up to take the flight. The other 20 per-
cent forfeit the fare (or, in most cases, allow their company to do so) because their plans
have changed.

Now that the data have been gathered, the OR group decides to begin its analysis by
investigating the option of increasing the number of reservations to accept for this flight to
190, since 80 percent of 190 � 152, which is very close to the number of seats of available
(150). If the number of reservation requests for a particular day actually reaches this level,
then this number should be large enough to avoid many, if any, empty seats. Furthermore,
this number should be small enough that there will not be many occasions when a signifi-
cant number of customers need to be bumped from the flight because the number of
arrivals exceeds the number of seats available. Thus, 190 appears to be a good first guess
for an appropriate trade-off between avoiding many empty seats and avoiding bumping
many customers.

When a customer is bumped from this flight, Transcontinental Airlines arranges to put
the customer on the next available flight to Chicago on another airline. The company’s
average cost for doing this is $150. In addition, the company gives the customer a voucher
worth $200 for use on a future flight. The company also feels that an additional $100
should be assessed for the intangible cost of a loss of goodwill on the part of the bumped
customer. Therefore, the total cost of bumping a customer is estimated to be $450.

The OR group now wants to investigate the option of accepting 190 reservations by
using simulation to generate frequency charts for the following three measures of perfor-
mance for each day’s flight:
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24 CHAPTER 28 EXAMPLES OF PERFORMING SIMULATIONS ON SPREADSHEETS

1. The profit.
2. The number of filled seats.
3. The number of customers denied boarding.

A Spreadsheet Model for Applying Simulation
Figure 28.16 shows a spreadsheet model for this problem. Because there are three mea-
sures of interest here, the spreadsheet model needs three results cells. These results cells
are Profit (F23), NumberOfFilledSeats (C20), and NumberDeniedBoarding (C21). In
addition, three statistic cells are defined in cells C23:C25 to measure the mean value of
each of the results cells for the simulation run. The decision variable ReservationsToAc-
cept (C13) has been set at 190 for investigating this current option. Some basic data have
been entered near the top of the spreadsheet in cells C4:C7.

Each trial of the simulation will correspond to one day’s flight. There are two random
inputs associated with each flight, namely, the number of customers requesting reserva-
tions (abbreviated as Ticket Demand in cell B10) and the number of customers who actu-
ally arrive to take the flight (abbreviated as Number That Show in cell B17). Thus, the two
uncertain variable cells in this model are SimulatedTicketDemand (C10) and Num-
berThatShow (C17).

Since the OR group has estimated that the number of customers requesting reserva-
tions has a normal distribution with a mean of 195 and a standard deviation of 30, this
information has been entered into cells D10:F10. The Normal Distribution dialog box
(shown earlier in Fig. 28.14) then has been used to enter this distribution with these para-
meters into SimulatedTicketDemand (C10). Because the normal distribution is a continu-
ous distribution, whereas the number of reservations must have an integer value, Demand
(C11) uses Excel’s ROUND function to round the number in SimulatedTicketDemand
(C10) to the nearest integer.

The random input for the second uncertain variable cell NumberThatShow (C17)
depends on two key quantities. One is TicketsPurchased (E17), which is the minimum of
Demand (C11) and ReservationsToAccept (C13). The other key quantity is the probability
that an individual making a reservation actually will show up to take the flight. This prob-
ability has been set at 80 percent in ProbabilityToShowUp (F17) since this is the average
percentage of those who have shown up for the flight in recent months.

However, the actual percentage of those who show up on any particular day may vary
somewhat on either side of this average percentage. Therefore, even though NumberThat-
Show (C17) would be expected to be fairly close to the product of cells E17 and F17, there
will be some variation according to some probability distribution. What is the appropriate
distribution for this uncertain variable cell? Section 28.6 will describe the characteristics of
various distributions. The one that has the characteristics to fit this uncertain variable cell
turns out to be the binomial distribution.

As indicated in Sec. 28.6, the binomial distribution gives the distribution of the num-
ber of times a particular event occurs out of a certain number of opportunities. In this case,
the event of interest is a passenger showing up to take the flight. The opportunity for this
event to occur arises when a customer makes a reservation for the flight. These opportuni-
ties are conventionally referred to as trials (not to be confused with a trial of a simulation).
The binomial distribution assumes that the trials are statistically independent and that, on
each trial, there is a fixed probability (80 percent in this case) that the event will occur. The
parameters of the distribution are this fixed probability and the number of trials.

Figure 28.17 displays the Binomial Distribution dialog box that enters this distribution
into NumberThatShow (C17) by referencing the parameters TicketsPurchased (E17) and
ProbabilityToShowUp (F17). The actual value in Trials for the binomial distribution will
vary from simulation trial to simulation trial because it depends on the number of tickets
purchased which in turn depends on the ticket demand which is random. ASPE therefore

hil23453_ch28_001-047.qxd  1/22/1970  10:51 PM  Page 24

Confirming Pages



28.5 REVENUE MANAGEMENT IN THE TRAVEL INDUSTRY 25

■ FIGURE 28.16
A spreadsheet model for
applying simulation to the
Transcontinental Airlines
overbooking problem. The
uncertain variable cells are
SimulatedTicketDemand
(C10) and NumberThatShow
(C17). The results cells are
Profit (F23),
NumberOfFilledSeats (C20),
and NumberDeniedBoarding
(C21). The statistic cells are
MeanFilledSeats (C23),
MeanDeniedBoarding (C24),
and MeanProfit (C25). The
decision variable is
ReservationsToAccept (C13).

1

2
3
4
5
6
7
8

Available Seats
Fixed Cost

Avg. Fare / Seat
Cost of Bumping

Ticket Demand
Demand (rounded)

Reservations to Accept

Number That Show

Number of Filled Seats
Number Denied Boarding

Data

9
10
11

Normal

Binomial

12
13
14
15
16
17
18
19
20 Ticket Revenue

Bumping Cost
Fixed Cost

Profit

21
22
23
24
25

A B C D E F

Transcontinental Airlines overbooking

AvailableSeats
AverageFare
BumpingCost
CostOfBumping
Demand
FixedCost
MeanDeniedBoarding    
MeanFilled Seats
MeanProfit
NumberDeniedBoarding
NumberOfFilledSeats
NumberThatShow
ProbabilityToShowUp    
Profit
ReservationsToAccept
SimulatedTicketDemand
TicketRevenue
TicketsPurchased

C4
C6
F21
C7
C11
C5
C24
C23
C25
C21
C20
C17
F17
F23
C13
C10
F20
E17

Range Name Cell
11 Demand (rounded) =ROUND(SimulatedTicketDemand,0)

B C

20 Ticket Revenue
Bumping Cost

Fixed Cost
Profit

21
=AverageFare*NumberOfFilledSeats
=CostOfBumping*NumberDeniedBoarding
=FixedCost
=TicketRevenue - BumpingCost - FixedCost + PsiOutput()

22
23

E F

20 Number of Filled Seats
Number Denied Boarding21

22

23

24

25

=MIN(AvailableSeats,NumberThatShow) + PsiOutput()
=MAX(0,NumberThatShow - AvailableSeats) + PsiOutput()

B C

15 Tickets
Purchased16

=MIN(Demand,ReservationsToAccept)17

E

Mean
195

Tickets
Purchased

180

Standard Dev.
30

Probability
to Show Up

80%

$45,000
$1,350
$30,000
$13,650

150
$30,000

$300
$450

179.74
180

190

153

150
3

Mean Filled Seats
Mean Denied Boarding

Mean Profit

142.27
2.02

$11,775

Mean Filled Seats

Mean Denied Boarding

Mean Profit

=PsiMean(C20)

=PsiMean(C21)

=PsiMean(F23)
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26 CHAPTER 28 EXAMPLES OF PERFORMING SIMULATIONS ON SPREADSHEETS

must determine the value for TicketsPurchased (E17) before it can randomly generate
NumberThatShow (C17). Fortunately, ASPE automatically takes care of the order in which
to generate the various uncertain variable cells so that this is not a problem.

The equations entered into all the output cells, results cells, and statistic cells are given
at the bottom of Fig. 28.16.

Here is a summary of the key cells in this model:

Uncertain variable cells: SimulatedTicketDemand (C10) and NumberThatShow (C17)
Decision variable: ReservationsToAccept (C13)
Results cells: Profit (F23), NumberOfFilledSeats (C20), and 

NumberDeniedBoarding (C21)
Statistic cells: MeanFilledSeats (C23), MeanDeniedBoarding (C24), MeanProfit (C25)

(See Sec. 20.6 for the details regarding how to define uncertain variable cells, results cells,
and statistic cells.)

The Simulation Results
Figure 28.18 shows the frequency chart obtained for each of the three results cells after
applying simulation for 1,000 trials to the spreadsheet model in Fig. 28.16, with Reserva-
tionsToAccept (C13) set at 190.

The profit results estimate that the mean profit per flight would be $11,775. However,
this mean is a little less than the profits that had the highest frequencies. The reason is that
a small number of trials had profits far below the mean, including even a few that incurred
losses, which dragged the mean down somewhat. By entering 0 into the Lower Cutoff box,
the Likelihood box reports that 98.6 percent of the trials resulted in a profit for that day’s
flight.

The frequency chart for NumberOfFilledSeats (C20) indicates that almost half of the
1,000 trials resulted in all 150 seats being filled. Furthermore, most of the remaining trials
had at least 130 seats filled. The fact that the mean of 142.273 is so close to 150 shows that
a policy of accepting 190 reservations would do an excellent job of filling seats.

The price that would be paid for filling seats so well is that a few customers would
need to be bumped from some of the flights. The frequency chart for NumberDenied-
Boarding (C21) indicates that this occurred about 40 percent of the time. On nearly all of

■ FIGURE 28.17
A binomial distribution with parameters TicketsPurchased (E17) and ProbabilityToShowUp (F17) is being entered into the
uncertain variable cell NumberThatShow (C17).
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28.5 REVENUE MANAGEMENT IN THE TRAVEL INDUSTRY 27

■ FIGURE 28.18
The frequency charts and
statistics tables that
summarize the results for the
respective results cells—Profit
(F23), NumberOfFilledSeats
(C20), and
NumberDeniedBoarding
(C21)—from running the
simulation model in Fig.
28.16 for the
Transcontinental Airlines
overbooking problem. The
Likelihood box in the first
statistics table reveals that
98.6 percent of the trials
resulted in a positive profit.
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28 CHAPTER 28 EXAMPLES OF PERFORMING SIMULATIONS ON SPREADSHEETS

these trials, the number ranged between 1 and 10. Considering that no customers were
denied boarding for 60 percent of the trials, the mean number is only 2.015.

Although these results suggest that a policy of accepting 190 reservations would be an
attractive option for the most part, they do not demonstrate that this is necessarily the best
option. Additional simulation runs are needed with other numbers entered in Reservations
To Accept (C13) to pin down the optimal value of this decision variable. This can be done
fairly easily with trial-and-error. We also will demonstrate how to do this efficiently with
the help of a parameter analysis table in Sec. 28.7.

■ 28.6    CHOOSING THE RIGHT DISTRIBUTION

As mentioned in Sec. 20.6, ASPE’s Distributions menu provides a wealth of choices. Any
of 46 probability distributions can be selected as the one to be entered into any uncertain
variable cell. In the preceding sections, we have illustrated the use of five of these distrib-
utions (the integer uniform, uniform, triangular, normal, and binomial distributions). How-
ever, not much was said about why any particular distribution was chosen.

In this section, we focus on the issue of how to choose the right distribution. We begin
by surveying the characteristics of many of the 46 distributions and how these characteris-
tics help to identify the best choice. We next describe a special feature of ASPE for creat-
ing one of the 7 available custom distributions when none of the other 39 choices in the
Distributions menu will do. We then return to the example analyzed in Sec. 20.6 to illus-
trate another special feature of ASPE. When historical data are available, this feature will
identify which of the available distributions provides the best fit to these data while also
estimating the parameters of this distribution. If you do not like this choice, it will even
identify which of the distributions provides the second best fit, the third best fit, and so on.

Characteristics of the Available Distributions
The probability distribution of any random variable describes the relative likelihood of the
possible values of the random variable. A continuous distribution is used if any values are
possible, including both integer and fractional numbers, over the entire range of possible
values. A discrete distribution is used if only certain specific values (e.g., only the integer
numbers over some range) are possible. However, if the only possible values are integer
numbers over a relatively broad range, a continuous distribution may be used as an approx-
imation by rounding any fractional value to the nearest integer. (This approximation was
used in cells C10:C11 of the spreadsheet model in Fig. 28.16.) ASPE’s Distributions menu
includes both continuous and discrete distributions. We will begin by looking at the con-
tinuous distributions.

The right-hand side of Fig. 28.19 shows the dialog box for three popular continuous
distributions from the Common submenu of the Distributions menu. The dark figure in
each dialog box displays a typical probability density function for that distribution. The
height of the probability density function at the various points shows the relative likelihood
of the corresponding values along the horizontal axis. Each of these distributions has a
most likely value where the probability density function reaches a peak. Furthermore, all
the other relatively high points are near the peak. This indicates that there is a tendency for
one of the central values located near the most likely value to be the one that occurs. There-
fore, these distributions are referred as central-tendency distributions. The characteristics
of each of these distributions are listed on the left-hand side of Fig. 28.19.

The Normal Distribution
The normal distribution is widely used by both OR professionals and others because it
describes so many natural phenomena. (Because of its importance, Appendix 5 provides a
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28.6 CHOOSING THE RIGHT DISTRIBUTION 29

■ FIGURE 28.19
The characteristics and dialog boxes for three popular central-tendency distributions in ASPE’s Common submenu of the
Distributions menu: (1) the normal distribution, (2) the triangular distribution, and (3) the lognormal distribution.

Popular Central-Tendency Distributions

Normal Distribution:

• Some value most likely (the mean)

• Values close to mean more likely

• Symmetric (as likely above as below mean)

• Extreme values possible, but rare

Triangular Distribution:

• Some value most likely

• Values close to most likely value more common

• Can be asymmetric

• Fixed upper and lower bound

Lognormal Distribution:

• Some value most likely

• Positively skewed (below mean more likely)

• Values cannot fall below zero

• Extreme values (high end only) possible, but rare

table for this distribution.) One reason that it arises so frequently is that the sum of many
random variables tends to have a normal distribution (approximately) even when the indi-
vidual random variables do not. Using this distribution requires estimating the mean and
the standard deviation. The mean coincides with the most likely value because this is a
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30 CHAPTER 28 EXAMPLES OF PERFORMING SIMULATIONS ON SPREADSHEETS

symmetric distribution. Thus, the mean is a very intuitive quantity that can be readily esti-
mated, but the standard deviation is not. About two-thirds of the distribution lies within
one standard deviation of the mean. Therefore, if historical data are not available for cal-
culating an estimate of the standard deviation, a rough estimate can be elicited from a
knowledgeable individual by asking for an amount such that the random value will be
within that amount of the mean about two-thirds of the time.

One danger with using the normal distribution for some applications is that it can
give negative values even when such values actually are impossible. Fortunately, it can
give negative values with significant frequency only if the mean is less than three standard
deviations. For example, consider the situation where a normal distribution was entered
into an uncertain variable cell in Fig. 28.16 to represent the number of customers request-
ing a reservation. A negative number would make no sense in this case, but this was no
problem since the mean (195) was much larger than three standard deviations (3 3 30 5
90) so a negative value essentially could never occur. (When normal distributions were
entered into uncertain variable cells in Fig. 28.13 to represent cash flows, the means were
small or even negative, but this also was no problem since cash flows can be either nega-
tive or positive.)

The Triangular Distribution
A comparison of the shapes of the triangular and normal distributions in Fig. 28.19 reveals
some key differences. One is that the triangular distribution has a fixed minimum value and
a fixed maximum value, whereas the normal distribution allows rare extreme values far
into the tails. Another is that the triangular distribution can be asymmetric (as shown in the
figure), because the most likely value does not need to be midway between the bounds,
whereas the normal distribution always is symmetric. This asymmetry provides additional
flexibility to the triangular distribution. Another key difference is that all its parameters—
min (the minimum value), likely (the most likely value), and max (the maximum value)—
are intuitive ones, so they are relatively easy to estimate.

These advantages have made the triangular distribution a popular choice for simula-
tions. They are the reason why this distribution was used in previous examples to represent
competitors’ bids for a construction contract (in Fig. 28.2), activity times (in Fig. 28.6),
and cash flows (in Fig. 28.11).

However, the triangular distribution also has certain disadvantages. One is that, in many
situations, rare extreme values far into the tails are possible, so it is quite artificial to have
fixed minimum and maximum values. This also makes it difficult to develop meaningful
estimates of the bounds. Still another disadvantage is that a curve with a gradually changing
slope, such as the bell-shaped curve for the normal distribution, usually describes the true
distribution more accurately than the straight line segments in the triangular distribution.

The Lognormal Distribution
The lognormal distribution shown at the bottom of Fig. 28.19 combines some of the advan-
tages of the normal and triangular distributions. It has a curve with a gradually changing
slope. It also allows rare extreme values on the high side. At the same time, it does not
allow negative values, so it automatically fits situations where this is needed. This is par-
ticularly advantageous when the mean is less than three standard deviations and the normal
distribution should not be used.

This distribution always is “positively skewed,” meaning that the long tail always is to
the right. This forces the most likely value to be toward the left side (so the mean is on its
right), so this distribution is less flexible than the triangular distribution. Another disad-
vantage is that it has the same parameters as the normal distribution (the mean and the
standard deviation), so the less intuitive one (the standard deviation) is difficult to estimate
unless historical data are available.
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28.6 CHOOSING THE RIGHT DISTRIBUTION 31

When a positively skewed distribution that does not allow negative values is needed,
the lognormal distribution provides an attractive option. That is why this distribution fre-
quently is used to represent stock prices or real estate prices.

The Uniform and Integer Uniform Distributions
Although the preceding three distributions are all central-tendency distributions, the uni-
form distributions shown in Fig. 28.20 definitely are not. They have a fixed minimum
value and a fixed maximum value. Otherwise, they say that no value between these bounds
is any more likely than any other possible value. Therefore, these distributions have more
variability than the central-tendency distributions with the same range of possible values
(excluding rare extreme values).

The choice between these two distributions depends on which values between the
minimum and maximum values are possible. If any values in this range are possible,
including even fractional values, then the uniform distribution would be preferred over the
integer uniform distribution. If only integer values are possible, then the integer uniform
distribution would be the preferable one.

■ FIGURE 28.20
The characteristics and dialog boxes for the uniform distributions in ASPE’s Distributions menu.

Uniform and Integer Uniform Distribution

Uniform Distribution:

• Fixed lower and upper limit

• All values equally likely

Integer Uniform Distribution:

• Fixed lower and upper limit

• All integer values equally likely
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Either of these distributions is a particularly convenient one because it has only two
parameters (lower and upper limit) and both are very intuitive. These distributions receive
considerable use for this reason. In our examples of performing simulations on a spread-
sheet, the integer uniform distribution was used to represent the demand for a newspaper
(in Fig. 20.7 in Sec. 20.6), whereas the uniform distribution was used to generate the bid
for a construction project by one competitor (in Fig. 28.2) and the future sale price for real
estate property (in Fig. 28.13).

The disadvantage of this distribution is that it usually is only a rough approximation of
the true distribution. It is uncommon for either the minimum value or the maximum value
to be just as likely as any other value between these bounds while any value barely outside
these bounds is impossible.

The Exponential Distribution
If you have studied Chap. 17 on queueing theory, you hopefully will recall that the most
commonly used queueing models assume that the time between consecutive arrivals of
customers to receive a particular service has an exponential distribution. The reason for
this assumption is that, in most such situations, the arrivals of customers are random events
and the exponential distribution is the probability distribution of the time between random
events. Section 17.4 describes this property of the exponential distribution in some detail.

As first depicted in Fig. 17.3, this distribution has the unusual shape shown in Fig.
28.21. In particular, the peak is at 0 but there is a long tail to the right. This indicates that
the most likely times are short ones well below the mean but that very long times also are
possible. This is the nature of the time between random events.

Since the only parameter is the mean time until the next random event occurs, this dis-
tribution is a relatively easy one to use.

The Poisson Distribution
Although the exponential distribution (like most of the preceding ones) is a continuous dis-
tribution, the Poisson distribution is a discrete distribution, as shown in the bottom half of
Fig. 28.21. The only possible values are nonnegative integers: 0, 1, 2. . . . However, it is
natural to pair this distribution with the exponential distribution for the following reason. If
the time between consecutive events has an exponential distribution (i.e., the events are
occurring at random), then the number of events that occur within a certain period of time
has a Poisson distribution. (This is property 4 of the exponential distribution described in
Sec. 17.4.) The Poisson distribution has some other applications as well.

When considering the number of events that occur within a certain period of time, the
mean to be entered into the one parameter field in the dialog box should be the average
number of events that occur within that period of time.

The Bernoulli and Binomial Distribution
The Bernoulli distribution is a very simple discrete distribution with only two possible val-
ues (1 or 0) as shown in the top half of Fig. 28.22. It is used to simulate whether a particu-
lar event occurs or not. The only parameter of the distribution is the probability that the
event occurs. The Bernoulli distribution gives a value of 1 (representing yes) with this
probability; otherwise, it gives a value of 0 (representing no).

As shown in the bottom half of Fig. 28.22, the binomial distribution is an extension of
the Bernoulli distribution for when an event might occur a number of times. The binomial
distribution gives the probability distribution of the number of times a particular event
occurs, given the number of independent opportunities (called trials) for the event to occur,
where the probability of the event occurring remains the same from trial to trial. For exam-
ple, if the event of interest is getting heads on the flip of a coin, the binomial distribution
(with Prob. � 0.5) gives the distribution of the number of heads in a given number of flips
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■ FIGURE 28.21
The characteristics and dialog boxes for two distributions that involve random events. These distributions in ASPE’s
Distributions menu are (1) the exponential distribution and (2) the Poisson distribution.

Distributions for Random Events

Exponential Distribution:

• Widely used to describe time between random

 events (e.g., time between arrivals)

• Events are independent

• Mean = average time until the next event occurs

Poisson Distribution:

• Describes the number of times an event occurs

 during a given period of time or space

• Occurrences are independent

• Any number of events is possible

• Mean = average number of events during period

 of time (e.g., arrivals per hour), assumed

 constant over time

28.6 CHOOSING THE RIGHT DISTRIBUTION 33

of the coin. Each flip constitutes a trial where there is an opportunity for the event (heads)
to occur with a fixed probability (0.5). The binomial distribution is equivalent to the
Bernoulli distribution when the number of trials is equal to 1.

You have seen another example in the preceding section when the binomial distribu-
tion was entered into the uncertain variable cell NumberThatShow (C17) in Fig. 28.16. In
this airline overbooking example, the events are customers showing up for the flight and
the trials are customers making reservations, where there is a fixed probability that a cus-
tomer making a reservation actually will arrive to take the flight.

The only parameters for this distribution are the number of trials and the probability of
the event occurring on a trial.

The Geometric and Negative Binomial Distributions
These two distributions displayed in Fig. 28.23 are related to the binomial distribution
because they again involve trials where there is a fixed probability on each trial that the
event will occur. The geometric distribution gives the distribution of the number of trials
until the event occurs for the first time. After entering a positive integer into the suc field in
its dialog box, the negative binomial distribution gives the distribution of the number of tri-
als until the event occurs the number of times specified in the suc field (suc is the number
of successful events that must occur). Thus, suc is a parameter for this distribution and the
fixed probability of the event occurring on a trial is a parameter for both distributions.
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To illustrate these distributions, suppose you are again interested in the event of get-
ting heads on a flip of a coin (a trial). The geometric distribution (with Prob. � 0.5) gives
the distribution of the number of flips until the first head occurs. If you want five heads, the
negative binomial distribution (with Prob. � 0.5 and suc � 5) gives the distribution of the
number of flips until heads have occurred five times.

Similarly, consider a production process with a 50 percent yield, so each unit pro-
duced has an 0.5 probability of being acceptable. The geometric distribution (with Prob. �
0.5) gives the distribution of the number of units that need to be produced to obtain one
acceptable unit. If a customer has ordered five units, the negative binomial distribution
(with Prob. � 0.5 and suc � 5) gives the distribution of the production run size that is
needed to fulfill this order.

Other Distributions
The Distributions menu includes many other distributions as well, such as beta, gamma,
Weibull, Pert, Pareto, Erlang, and many more. These distributions are not as widely used in
simulations, so they will not be discussed further.

Distributions for Number of Times an Event Occurs

Binomial Distribution:

• Describes number of times an event

 occurs in a fixed number of trials 

 (e.g., number of heads in 10 flips

 of a coin)

• For each trial, only two outcomes

 possible

• Trials independent

• Probability remains same for

 each trial

Bernoulli Distribution:

Describes whether an event

occurs or not

Two possible outcomes: 1 (Yes)

or 0 (No)

• 

• 

■ FIGURE 28.22
The characteristics and dialog boxes for the Bernoulli and binomial distributions in ASPE’s Distributions menu.
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28.6 CHOOSING THE RIGHT DISTRIBUTION 35

There is also a Custom submenu that enables you to design your own distribution
when none of the other distributions will do. The next subsection will focus on how this is
done.

The Custom Distribution
Of the 46 probability distributions included in the Distributions menu, 39 of them are stan-
dard types that might be discussed in a course on probability and statistics. In most cases,
one of these standard distributions will be just what is needed for an uncertain variable cell.
However, unique circumstances occasionally arise where none of the standard distribu-
tions fit the situation. This is where the distributions in the Custom submenu of the Distri-
butions menu enter the picture.

The custom distributions actually are not probability distributions until you make
them one. Rather, choosing a member of the Custom submenu triggers a process that
enables you to custom-design your own probability distribution to fit almost any unique
situation you might encounter.

There are seven choices in the Custom submenu: Cumul (short for cumulative), Dis-
crete, DisUniform (short for discrete uniform), General, Histogram, Sip, and Slurp. The

■ FIGURE 28.23
The characteristics and dialog boxes for two distributions that involve the number of trials until events occur. These
distributions in ASPE’s Distributions menu are (1) the geometric distribution and (2) the negative binomial distribution.

Distributions for Number of Trials Until Event Occurs

Geometric Distribution:

• Describes number of trials until an event

 occurs (e.g., number of times to spin

 roulette wheel until you win)

• Probability same for each trial

• Continue until succeed

• Number of trials unlimited

Negative Binomial Distribution:

• Describes number of trials until an event

 occurs n times

• Same as geometric when suc = n = 1

• Probability same for each trial

• Continue until nth success

• Number of trials unlimited
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custom cumulative, custom general, and custom histogram distributions are all similar in
that they are all used to create a continuous distribution with a fixed minimum and maxi-
mum value. With the custom cumulative distribution, you enter several values in between
the minimum and maximum, along with the corresponding cumulative probability at those
values. With the custom general distribution, you also enter several values in between the
minimum and maximum, but instead of cumulative probabilities, you enter relative
weights that represent how likely it should be for outcomes near the listed values to occur
(relative to outcomes near the other values in the list). Finally, with the custom histogram
distribution, the range between the minimum and maximum is divided into a number of
equal-sized segments and weights are provided for each segment to indicate how likely 
it should be (relative to the other segments) for a random outcome to fall within that 
segment.

The custom discrete and the custom discrete uniform distributions are also similar.
With both, you enter a set of discrete values and these values are assumed to be the only
possible outcomes. With the custom discrete distribution, each value (or outcome) is
assigned its own probability, whereas the custom discrete uniform distribution assumes
that all the discrete values have the same probability.

Finally, the custom sip and custom slurp distribution are used when you have a set of
historical data and you want the uncertain variable to sample directly from the historical
data. This might be appropriate if you expect the future to behave similarly to the past.

We will show two examples that use distributions from the Custom submenu. The first
utilizes the custom discrete distribution whereas the second utilizes the custom general dis-
tribution.

In the first example, a company is developing a new product but it is unclear which of
three production processes will be needed to produce the product. The unit production cost
will be $10, $12, or $14, depending on which process is needed. The probabilities for these
individual discrete values of the cost are the following:

20 percent chance of $10
50 percent chance of $12
30 percent chance of $14

To enter this distribution, first choose Discrete from the Custom submenu under the Distri-
butions menu on the ASPE ribbon. Each discrete value and weight (expressed as a decimal
number representing the probability) is then entered in the values and weights boxes as a
list within curly brackets, as shown in Fig. 28.24.

The second example also involves a company that is developing a new product. How-
ever, the complication in this case is that our company’s management has learned that
another firm is developing a competitive product. It is unclear which company will be able
to bring its product to market first and thereby capture most of the sales. In this light, here
are the predicted thousands of sales for our company’s new product:

0–20 (with 10 the most likely) if the competitive product comes to market first.
20–30 (all equally likely) if both products reach the market at the same time.
30–50 (with 40 the most likely) if our company’s product comes to market first.

The two products are believed to have an equal chance of reaching the market first. Each of
the other two cases is considered about three times as likely as both products reaching the
market at the same time.

To enter this distribution, first choose General from the Custom submenu of the Dis-
tributions menu to bring up the dialog box shown in Fig. 28.25. The first two parameters,
min �0 and max �50, are used to specify the smallest and largest possible value for sales
(in thousands). In the values box, any number of values between the minimum and 
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maximum can be entered as a list inside of curly brackets. For each value in this list, a cor-
responding weight needs to be entered into the weights box. The weight is a relative value
used to specify the likelihood of each value relative to the other values in the list. Since
sales around 10 thousand or 40 thousand are each about three times as likely as sales
between 20 thousand and 30 thousand, the weights for the values \{10, 20, 30, 40\} are
entered as \{3, 1, 1, 3\}. The net result is what is known as a bimodal distribution, with two
distinct peaks, as shown in the chart on the left side of the dialog box.

Identifying the Continuous Distribution That Best Fits Historical Data
We now have at least mentioned most of the probability distributions in the Distributions
menu and have described the characteristics of many of them. This brings us to the ques-
tion of how to identify which distribution is best for a particular uncertain variable cell.
When historical data are available, ASPE provides a powerful feature for doing this by
using the Fit button on the ASPE ribbon. We will illustrate this feature next by returning to
the example involving Freddie the newsboy that was presented in Sec. 20.6.

Recall that one of the most popular newspapers that Freddie the newsboy sells from
his newsstand is the daily Financial Journal. Freddie purchases copies from his distributor
early each morning. Since excess copies left over at the end of the day represent a loss for
Freddie, he is trying to decide what his order quantity should be in the future. This led to
the spreadsheet model in Fig. 20.7 that was presented in Sec. 20.6. This model includes the
uncertain variable cell Demand (C12). To get started, a discrete uniform distribution
between 40 and 70 has been entered into this uncertain variable cell.

To better guide his decision on what the order quantity should be, Freddie has been
keeping a record of the demand (the number of customers requesting a copy) for this news-
paper each day. Figure 28.26 shows a portion of the data he has gathered over the last 60
days in cells F4:F63, along with part of the original spreadsheet model from Fig. 20.7.
These data indicate a lot of variation in sales from day to day—ranging from about 40
copies to 70 copies. However, it is difficult to tell from these numbers which distribution in
the Distributions menu best fits these data.

■ FIGURE 28.24
This dialog box illustrates how ASPE’s custom discrete distribution can enable you to custom-design your own
distribution by entering a set of discrete values and their weights.
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ASPE provides the following procedure for fitting the best distribution to data:

1. Gather the data needed to identify the best distribution to enter into an uncertain vari-
able cell.

2. Enter the data into the spreadsheet containing your simulation model.
3. Select the cells containing the data.
4. Click the Fit button on the ASPE ribbon, which brings up the Fit Options dialog box.
5. Make sure the Range box in this dialog box is correct for the range of the historical

data in your worksheet.
6. Specify which type of distributions are being considered for fitting (continuous or dis-

crete).
7. Indicate whether to allow shifted distributions and whether to run a sample indepen-

dence test.
8. Also use this dialog box to select which ranking method should be used to evaluate

how well a distribution fits the data.
9. Click Fit, which brings up the Fit Results chart that identifies the distribution that best

fits the data.
10. If desired, check the box to select distributions to view that are lower on the list on the

left side of the dialog box. This identifies the other types of distributions (including
their parameter values) that are next in line for fitting the data well.

11. After choosing the distribution (from steps 9 and 10) that you want to use, close the
dialog box by using the close box in the upper-right-hand corner and then click Yes to
accept the distribution.

12. Click the cell where you want the uncertain variable cell to be. This then enters the
chosen distribution into the uncertain variable cell.

Since Fig. 28.26 already includes the needed data in cells F4:F63, applying this proce-
dure to Freddie’s problem begins by selecting the data. Then clicking the Fit button brings
up the Fit Options dialog box displayed in Fig. 28.27. The range F4:F63 of the data in 
Fig. 28.26 is already entered into the Range box of this dialog box. When deciding which
type of distributions should be considered for fitting, the default option of continuous

■ FIGURE 28.25
This dialog box illustrates how ASPE’s custom general distribution can enable you to custom-design your own continuous
distribution. The minimum and maximum value are specified as 0 and 50. Values near 10 and 40 are roughly 3 times as
likely to occur as values near 20 or 30.
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28.6 CHOOSING THE RIGHT DISTRIBUTION 39

distributions has been selected here. Sales will always be integer, so discrete might seem
the more logical choice. However, when all the integer values over a wide range are possi-
ble (all 31 integer values between 40 and 70 in this case), the form of the distribution
begins to resemble a continuous distribution. Furthermore, there are many more continu-
ous distributions (31) available in ASPE than discrete distributions (8). Thus, there may a
better chance of finding a continuous distribution that is a good fit. This continuous distri-
bution can then be made to give only integer values by rounding each number in the uncer-
tain variable cell to the nearest integer (as was done in the airline overbooking example of
Sec. 28.5 with the ticket demand in cell C11 of Fig. 28.16). The chi-square test also has
been selected for the ranking method. Clicking Fit then brings up the Fit Results chart dis-
played in Fig. 28.28.

The left side of the Fit Results chart in Fig. 28.28 identifies the best-fitting distribu-
tions, ranked according to the Chi-Square test. This is a widely used test in statistics where
smaller values indicate a better fit. It appears that the uniform distribution would be a good
fit. In combination with the fact that demand actually must be integer, this confirms that
the choice made in Freddie’s original spreadsheet model in Fig. 20.7 to enter the integer

■ FIGURE 28.26
Cells F4:F63 contain the
historical demand data that
have been collected for the
example involving Freddie
the newsboy that was
introduced in Sec. 20.6.
Columns B and C come from
the simulation model for this
example in Fig. 20.7.
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uniform distribution into the uncertain variable cell Demand (C12) was reasonable. In fact,
if we had chosen Discrete instead of Continuous as the type of distribution to fit in Fig.
28.27, ASPE would have found the integer uniform distribution to be the best fit. Choosing
either Continuous or Discrete (or both) would have been reasonable in this case and would
have led to the same type of distribution (uniform).

■ FIGURE 28.27
This Fit Options dialog box
specifies (1) the range of the
data in Fig. 28.26 for
Freddie’s problem, (2) only
continuous distributions will
be considered, (3) shifted
distributions will be allowed,
(4) a sample independence
test will be run, and (5) which
ranking method will be used
(the chi-square test) to
evaluate how well each of the
distributions fit the data.

■ FIGURE 28.28
This Fit Results dialog box identifies the continuous distributions that provide the best fit, ranked top-to-bottom
from best to worst on the left side. For the distribution that provides the best fit (Uniform), the distribution is
plotted (the horizontal line at the top of the chart) so that it can be compared with the frequency distribution of
the historical demand data. The value of the Fit Statistic (chi-square) is 4.4.
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■ 28.7    DECISION MAKING WITH PARAMETER ANALYSIS REPORTS AND
TREND CHARTS

28.7 DECISION MAKING WITH PARAMETER ANALYSIS REPORTS 41

Many simulation models include at least one decision variable. For example, the model
formulated for both the bidding example in Sec. 28.1 and the overbooking example in Sec.
28.5 included a single decision variable, as listed below:

Bidding example: OurBid (C25) in Fig. 28.2
Overbooking example: ReservationsToAccept (C13) in Fig. 28.16

In both of these cases, you have seen how well simulation with ASPE can evaluate a par-
ticular value of the decision variable by providing a wealth of output for the results
cell(s). However, in contrast to many OR techniques, this approach has not identified an
optimal solution for the decision variable(s). Fortunately, ASPE provides a way to sys-
tematically perform multiple simulations by using parameter cells. This makes it easy to
identify at least an approximation of an optimal solution for problems with only one or
two decision variables. In this section, we describe this approach and illustrate it by
applying it in turn to the two decision variables listed above. (Recall that Sec. 20.6
included still another approach, using the Solver in ASPE to search for an optimal solu-
tion for simulation models.)

An intuitive approach for searching for an optimal solution is to use trial and error. Try
different values of the decision variable(s), run a simulation for each, and see which one
provides the best estimate of the chosen measure of performance. The interactive simula-
tion mode in ASPE makes this especially easy, since the results in the statistic cells are
available immediately after changing the value of a decision variable. Using parameter
cells allows you to do the same thing in a more systematic way. After defining a parameter
cell, all the desired simulations are run and the results soon are displayed nicely in the
parameter analysis report. If desired, you also can view an enlightening trend chart,
which can provide additional details about the results.

If you have previously used parameter cells with the Solver in ASPE to generate para-
meter analysis reports for performing sensitivity analysis systematically (as was done in
Chap. 7), the parameter analysis reports in simulation models work in much the same way.
Two is the maximum number of decision variables that can be varied simultaneously in a
parameter analysis report.

Let us begin by returning to the bidding example mentioned above and use a parame-
ter cell to run multiple simulations.

A Parameter Analysis Report for the Reliable Construction Co. Bidding
Problem
We turn now to generating a parameter analysis report for the Reliable Construction Co.
bidding problem presented in Sec. 28.1. Since the procedure for how to generate a para-
meter analysis report already has been presented in Sec. 20.6, our focus here is on summa-
rizing the results.

Recall that the management of the company is concerned with determining what bid it
should submit for a project that involves constructing a new plant for a major manufac-
turer. Therefore, the decision variable in the spreadsheet model in Fig.28.2 is OurBid
(C25). The parameter cell dialog box in Fig. 28.29 is used to further describe this decision
variable. Management feels that the bid should be in the range between $4.8 million and
$5.8 million, so these are the numbers (in units of millions of dollars) that are entered into
the entry boxes for Bounds in this dialog box.
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Management wants to choose the bid that would maximize its expected profit. Conse-
quently, the results cell in the spreadsheet model is Profit (C29). After choosing Parameter
Analysis from the Reports>Simulation menu on the ASPE ribbon, the corresponding dia-
log box in Fig. 28.30 is used to specify that the mean of the Profit should be shown as the

■ FIGURE 28.29
This parameter cell dialog
box specifies the
characteristics of the decision
variable OurBid (C25) in
Fig.28.2 for the Reliable
Construction Co. contract
bidding problem.

■ FIGURE 28.30
This Parameter Analysis dialog
box allows you to specify
which parameter cells to vary
and which results to show
after each simulation run.
Here the OurBid (C25)
parameter cell will be varied
over six different values and
the value of the mean will be
displayed for each of the six
simulation runs.
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parameter cell OurBid is varied over six major axis points. The six values automatically
are distributed evenly over the range specified in Fig. 28.29, so simulations will be run for
bids of 4.8, 5.0, 5.2, 5.4, 5.6, and 5.8 (in millions of dollars).

Figure 28.31 shows the resulting parameter analysis report. A bid of $5.4 million gives
the largest mean value of the profits obtained on the 1,000 trials of the simulation run. This
mean value of $482,000 in cell B5 should be a close estimate of the expected profit from
using this bid. The prototype example in Chap. 22 begins with the company having just
won the contract by submitting this bid.

Problem 28.8 asks you to refine this analysis by generating a parameter analysis report
that considers all bids between $5.2 million and $5.6 million in multiples of $0.05 million.

A Parameter Analysis Report and Trend Chart for the 
Transcontinental Airlines Overbooking Problem
As described in Sec. 28.5, Transcontinental Airlines has a popular daily flight from San
Francisco to Chicago with 150 seats available. The number of requests for reservations
usually exceeds the number of seats by a considerable amount. However, even though the
fare is nonrefundable, an average of only 80 percent of the customers who make reserva-
tions actually show up to take the flight, so it seems appropriate to accept more reserva-
tions than can be flown. At the same time, significant costs are incurred if customers with
reservations are not allowed to take the flight. Therefore, the company’s OR group is ana-
lyzing what number of reservations should be accepted to maximize the expected profit
from the flight.

In the spreadsheet model in Fig. 28.16, the decision variable is ReservationsToAccept
(C13) and the results cell is Profit (F23). The OR group wants to consider integer values of
the decision variable over the range between 150 and 200, so the parameter cell dialog box
is used in the usual way to specify these bounds on the variable. The decision is made to
test 11 values of ReservationsToAccept (C13), so simulations will be run for values in
intervals of five between 150 and 200.

The results are shown in Fig. 28.32. The parameter analysis report on the left side of
the figure reveals that the mean of the profit values obtained in the respective simulation
runs climbs rapidly as ReservationsToAccept (C13) increases until the mean reaches a
peak of $11,912 at 185 reservations, after which it starts to drop. Only the means at 180
and 190 reservations are close to this peak, so it seems clear that the most profitable num-
ber of reservations lies somewhere between 180 and 190. (Now that the range of numbers
that need to be considered has been narrowed down this far, Problem 28.10 asks you to
continue that analysis by generating a parameter analysis report that considers all integer
values over this range.)

The trend chart on the right side of Fig. 28.32 provides additional insight. The bands
in this chart trend upward until the number of reservations to accept reaches approximately

■ FIGURE 28.31
The parameter analysis report
for the Reliable Construction
Co. contract bidding problem
described in Sec. 28.1.
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185; then they start trending slowly downward. This indicates that the entire frequency dis-
tribution from the respective simulation runs keeps shifting upward until the run for 185
reservations and then starts shifting downward. Also note that the width of the entire set of
seven bands increases until about the simulation run for 180 reservations and then remains
about the same thereafter. This indicates that the amount of variability in the profit values
also increases until the simulation run for 180 reservations and then remains about the
same thereafter.

■ FIGURE 28.32
The parameter analysis report
and trend chart for the
Transcontinental Airlines
overbooking problem
described in Sec. 28.5.
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■ 28.8    SUMMARY

Increasingly, spreadsheet software is being used to perform simulations. As illustrated in
Secs. 20.1 and 20.4, the standard Excel package sometimes is sufficient to do this. In addi-
tion, some Excel add-ins now are available that greatly extend these capabilities. ASPE is
an especially powerful add-in of this kind.
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When using ASPE, each input cell that has a random value is referred to as an uncer-
tain variable cell. The procedure for defining an uncertain variable cell includes selecting
one of 46 types of probability distributions from the Distributions menu to enter into the
cell. When historical data are available, ASPE also has a procedure for identifying which
continuous distribution fits the data best.

An output cell that is used to forecast a measure of performance is called a results cell.
Each trial of a simulation run generates a value in each results cell. When the simulation
run is completed, ASPE provides the results in a variety of useful forms, including a fre-
quency distribution, a statistics table, a percentiles table, and a cumulative chart.

When a simulation model has one or two decision variables, ASPE provides a para-
meter analysis report that systematically applies simulation to identify at least an approxi-
mation of an optimal solution. A trend chart also provides additional insights to aid in
decision making.

In addition, ASPE includes a powerful optimization module called Solver. This mod-
ule efficiently uses a series of simulation runs to search for an optimal solution for a simu-
lation model with any number of decision variables.

The availability of such powerful software now enables managers to add simulation to
their personal tool kit of OR techniques for analyzing some key managerial problems. A
variety of examples in this chapter illustrate some of the many possibilities for important
applications of simulation.

■ SELECTED REFERENCES
For general references on simulation, see the Selected References given for Chap. 20. For
further information regarding Frontline Systems, Analytic Solver Platform, and ASPE, go
to www.solver.com.

■ LEARNING AIDS FOR THIS CHAPTER ON THIS WEBSITE

See the learning aids for Chap. 20. Additional learning aids are Excel files that provide the
spreadsheet models for the examples in this chapter, as well as Sales Data 1 and Sales Data
2 for two end-of-chapter problems.

■ PROBLEMS

ASPE should be used for all of the following problems.

28.1. Consider the Reliable Construction Co. project scheduling
example presented in Sec. 28.2. Recall that simulation was used
to estimate the probability of meeting the deadline and that Fig.
28.8 revealed that the deadline was met on 57.7 percent of the tri-
als from one simulation run. As discussed while interpreting this
result, the percentage of trials on which the project is completed
by the deadline will vary from simulation run to simulation run.
This problem will demonstrate this fact and investigate the
impact of the number of trials per simulation on this randomness.
The spreadsheet model is available on this website. Make sure

that the Monte Carlo sampling method is chosen in Simulation
Options.

(a) Set the trials per simulation to 100 in Simulation Options and run
the simulation of the project five times. Note the mean comple-
tion time and the percentage of trials on which the project is com-
pleted within the deadline of 47 weeks for each simulation run.

(b) Repeat part a except set the trials per simulation to 1,000 in
Simulation Options.

(c) Compare the results from part a and part b and comment on
any differences.
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28.2. Consider the historical data contained in the Excel File
“Sales Data 1” on this website. Use ASPE to fit continuous distrib-
utions to these data.
(a) Which distribution provides the closest fit to the data? What

are the parameters of the distribution?
(b) Which distribution provides the second-closest fit to the data?

What are the parameters of the distribution?

28.3. Consider the historical data contained in the Excel File
“Sales Data 2” on this website. Use ASPE to fit continuous distrib-
utions to these data.
(a) Which distribution provides the closest fit to the data? What

are the parameters of the distribution?
(b) Which distribution provides the second-closest fit to the data?

What are the parameters of the distribution?

28.4. Ivy University is planning to construct a new building for its
engineering school. This project will require completing all of the
activities in the above table. For most of these activities, a set of
predecessor activities must be completed before the activity
begins. For example, the foundation cannot be laid until the build-
ing is designed and the site prepared.

Obtaining funding likely will take approximately six months
(with a standard deviation of one month). Assume that this time has
a normal distribution. The architect has estimated that the time
required to design the building could be anywhere between 6 and
10 months. Assume that this time has a uniform distribution. The
general contractor has provided three estimates for each of the 
construction tasks—an optimistic scenario (minimum time re-
quired if the weather is good and all goes well), a most likely sce-
nario, and a pessimistic scenario (maximum time required if there
are weather and other problems). These estimates are provided in
the table that follows. Assume that each of these construction times
has a triangular distribution. Finally, the landscaper has guaranteed
that his work will be completed in five months.

Use ASPE to perform 1,000 trials of a simulation for this 
project. Use the results to answer the following questions.

(a) What is the mean project completion time?
(b) What is the probability that the project will be completed in 36

months or less?
(c) Generate a sensitivity chart. Based on this chart, which activi-

ties have the largest impact on the project completion time?

28.5. The employees of General Manufacturing Corp. receive health
insurance through a group plan issued by Wellnet. During the past
year, 40 percent of the employees did not file any health insurance
claims, 30 percent filed only a small claim, and 20 percent filed a
large claim. The small claims were spread uniformly between 0 and
$2,000, whereas the large claims were spread uniformly between
$2,000 and $20,000.

Based on this experience, Wellnet now is negotiating the cor-
poration’s premium payment per employee for the upcoming year.
To obtain a close estimate of the average cost of insurance coverage
for the corporation’s employees, use ASPE with a spreadsheet to
perform 1,000 trials of a simulation of an employee’s health insur-
ance experience. Generate a frequency chart and a statistics table.

28.6. Refer to the financial risk analysis example presented in Sec.
28.4, including its results shown in Fig. 28.15. Think-Big manage-
ment is quite concerned about the risk profile for the proposal. Two
statistics are causing particular concern. One is that there is nearly a
20 percent chance of losing money (a negative NPV). Second, there is
more than a 6 percent chance of losing more than half ($10 million) as
much as the mean gain ($18 million). Therefore, management is won-
dering whether it would be more prudent to go ahead with just one of
the two projects. Thus, in addition to option 1 (the proposal), option 2
is to take a 16.50 percent share of the hotel project only (so no partic-
ipation in the shopping center project), and option 3 is to take a 13.11
percent share of the shopping center only (so no participation in the
hotel project). Management wants to choose one of the three options.
Risk profiles now are needed to evaluate the latter two.

(a) Estimate the mean NPV and the probability that the NPV will
be greater than 0 for option 2 after performing a simulation
with 1,000 trials for this option.

(b) Repeat part a for option 3.

Activity Predecessors

A. Secure funding –
B. Design building A
C. Site preparation A
D. Foundation B, C
E. Framing D
F. Electrical D

G. Plumbing E
H. Walls and roof F, G
I. Finish construction H
J. Landscaping H

Construction Time Estimates (months)

Optimistic Most Likely Pessimistic 
Activity Scenario Scenario Scenario

C. Site preparation 1.5 2 2.5
D. Foundation 1.5 2 3
E. Framing 3 4 6
F. Electrical 2 3 5

G. Plumbing 3 4 5
H. Walls and roof 4 5 7
I. Do the finish work 5 6 7
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(c) Suppose you were the CEO of the Think-Big Development Co.
Use the results in Fig. 28.15 for option 1 along with the corre-
sponding results obtained for the other two options as the basis
for a managerial decision on which of the three options to
choose. Justify your answer.

28.7. Susan is a ticket scalper. She buys tickets for Los Angeles Lak-
ers games before the beginning of the season for $100 each. Since the
games all sell out, Susan is able to sell the tickets for $150 on game
day. Tickets that Susan is unable to sell on game day have no value.
Based on past experience, Susan has predicted the probability distri-
bution for how many tickets she will be able to sell, as shown in the
following table.

Tickets Probability

10 0.05
11 0.10
12 0.10
13 0.15
14 0.20
15 0.15
16 0.10
17 0.10
18 0.05
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28.8. Consider the Reliable Construction Co. bidding problem dis-
cussed in Sec. 28.1. The spreadsheet model is available on this web-
site. The parameter analysis report generated in Sec. 28.7 
(see Fig. 28.31) for this problem suggests that $5.4 million is the 
best bid, but this table only considered bids that were a multiple of
$0.2 million.
(a) Refine the search by generating a parameter analysis report for

this bidding problem that considers all bids between $5.2 mil-
lion and $5.6 million in multiples of $0.05 million.

(b) Use ASPE’s Solver to search for the bid that maximizes Reli-
able Construction Co.’s mean profit. Assume that the bid may
be any value between $4.8 million and $5.8 million.

28.9. Consider the Everglade cash flow problem analyzed in Sec.
28.3. The spreadsheet model is available on this website.
(a) Generate a parameter analysis report to consider five possible

long-term loan amounts between $0 million and $20 million and
forecast Everglade’s mean ending balance. Which long-term loan
amount maximizes Everglade’s mean ending balance?

(b) Generate a trend chart for the five long-term loan amounts con-
sidered in part a.

(c) Use ASPE’s Solver to search for the long-term loan amount that
maximizes Evergreen’s mean ending balance.

28.10. Consider the airline overbooking problem discussed in Sec.
28.5. The spreadsheet model is available on this website. The para-
meter analysis report generated in Sec. 28.7 (see Fig. 28.32) for this
problem suggests that 185 is the best number of reservations to
accept in order to maximize profit, but the only numbers considered
were a multiple of five.
(a) Refine the search by generating a parameter analysis report for

this overbooking problem that considers all integer values for
the number of reservations to accept between 180 and 190.

(b) Generate a trend chart for the 11 forecasts considered in part a.
(c) Use ASPE’s Solver to search for the number of reservations to

accept that maximizes the airline’s mean profit. Assume that the
number of reservations to accept may be any integer value
between 150 and 200.

(a) Suppose that Susan buys 14 tickets for each game. Use ASPE to
perform 1,000 trials of a simulation on a spreadsheet. What will be
Susan’s mean profit from selling the tickets? What is the probabil-
ity that Susan will make at least $0 profit? (Hint: Use the Custom
Discrete distribution to simulate the demand for tickets.)

(b) Generate a parameter analysis report to consider all nine possi-
ble quantities of tickets to purchase between 10 and 18. Which
purchase quantity maximizes Susan’s mean profit?

(c) Generate a trend chart for the nine purchase quantities consid-
ered in part b.

(d) Use ASPE’s Solver to search for the purchase quantity that
maximizes Susan’s mean profit.
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29C H A P T E R

Markov Chains

Chapter 16 focused on decision making in the face of uncertainty about one future
event (learning the true state of nature). However, some decisions need to take into

account uncertainty about many future events. We now begin laying the groundwork for
decision making in this broader context.

In particular, this chapter presents probability models for processes that evolve over
time in a probabilistic manner. Such processes are called stochastic processes. After briefly
introducing general stochastic processes in the first section, the remainder of the chapter
focuses on a special kind called a Markov chain. Markov chains have the special prop-
erty that probabilities involving how the process will evolve in the future depend only on
the present state of the process, and so are independent of events in the past. Many
processes fit this description, so Markov chains provide an especially important kind of
probability model.

For example, Chap. 17 mentioned that continuous-time Markov chains (described in
Sec. 29.8) are used to formulate most of the basic models of queueing theory. Markov 
chains also provided the foundation for the study of Markov decision models in Chap. 19.
There are a wide variety of other applications of Markov chains as well. A considerable
number of books and articles present some of these applications. One is Selected Refer-
ence 4, which describes applications in such diverse areas as the classification of 
customers, DNA sequencing, the analysis of genetic networks, the estimation of sales
demand over time, and credit rating. Selected Reference 6 focuses on applications in fi-
nance and Selected Reference 3 describes applications for analyzing baseball strategy.
The list goes on and on, but let us turn now to a description of stochastic processes in
general and Markov chains in particular.

■ 29.1 STOCHASTIC PROCESSES
A stochastic process is defined as an indexed collection of random variables {Xt},
where the index t runs through a given set T. Often T is taken to be the set of non-
negative integers, and Xt represents a measurable characteristic of interest at time t.
For example, Xt might represent the inventory level of a particular product at the end
of week t.
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2 CHAPTER 29 MARKOV CHAINS

Stochastic processes are of interest for describing the behavior of a system operating
over some period of time. A stochastic process often has the following structure.

The current status of the system can fall into any one of M � 1 mutually exclusive cate-
gories called states. For notational convenience, these states are labeled 0, 1, . . . , M. The
random variable Xt represents the state of the system at time t, so its only possible values
are 0, 1, . . . , M. The system is observed at particular points of time, labeled t � 0,
1, 2, . . . . Thus, the stochastic process {Xt} � {X0, X1, X2, . . .} provides a mathematical
representation of how the status of the physical system evolves over time.

This kind of process is referred to as being a discrete time stochastic process with a finite
state space. Except for Sec. 29.8, this will be the only kind of stochastic process con-
sidered in this chapter. (Section 29.8 describes a certain continuous time stochastic
process.)

A Weather Example

The weather in the town of Centerville can change rather quickly from day to day. However,
the chances of being dry (no rain) tomorrow are somewhat larger if it is dry today than if
it rains today. In particular, the probability of being dry tomorrow is 0.8 if it is dry today,
but is only 0.6 if it rains today. These probabilities do not change if information about the
weather before today is also taken into account.

The evolution of the weather from day to day in Centerville is a stochastic process.
Starting on some initial day (labeled as day 0), the weather is observed on each day t, for
t � 0, 1, 2, . . . . The state of the system on day t can be either

State 0 � Day t is dry

or

State 1 � Day t has rain.

Thus, for t � 0, 1, 2, . . . , the random variable Xt takes on the values,

Xt � �
The stochastic process {Xt} � {X0, X1, X2, . . .} provides a mathematical representation
of how the status of the weather in Centerville evolves over time.

An Inventory Example

Dave’s Photography Store has the following inventory problem. The store stocks a par-
ticular model camera that can be ordered weekly. Let D1, D2, . . . represent the demand
for this camera (the number of units that would be sold if the inventory is not depleted)
during the first week, second week, . . . , respectively, so the random variable Dt (for
t � 1, 2, . . .) is

Dt � number of cameras that would be sold in week t if the inventory is not
depleted. (This number includes lost sales when the inventory is depleted.)

It is assumed that the Dt are independent and identically distributed random variables hav-
ing a Poisson distribution with a mean of 1. Let X0 represent the number of cameras on
hand at the outset, X1 the number of cameras on hand at the end of week 1, X2 the num-
ber of cameras on hand at the end of week 2, and so on, so the random variable Xt (for
t � 0, 1, 2, . . .) is

Xt � number of cameras on hand at the end of week t.

if day t is dry
if day t has rain.

0
1
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29.2 MARKOV CHAINS 3

Assume that X0 � 3, so that week 1 begins with three cameras on hand.

{Xt} � {X0, X1, X2, . . .}

is a stochastic process where the random variable Xt represents the state of the system at
time t, namely,

State at time t � number of cameras on hand at the end of week t.

As the owner of the store, Dave would like to learn more about how the status of this sto-
chastic process evolves over time while using the current ordering policy described below.

At the end of each week t (Saturday night), the store places an order that is delivered in
time for the next opening of the store on Monday. The store uses the following order policy:

If Xt � 0, order 3 cameras.
If Xt � 0, do not order any cameras.

Thus, the inventory level fluctuates between a minimum of zero cameras and a maximum
of three cameras, so the possible states of the system at time t (the end of week t) are

Possible states � 0, 1, 2, or 3 cameras on hand.

Since each random variable Xt (t � 0, 1, 2, . . .) represents the state of the system at the end
of week t, its only possible values are 0, 1, 2, or 3. The random variables Xt are dependent
and may be evaluated iteratively by the expression

Xt�1 � �
for t � 0, 1, 2, . . . .

These examples are used for illustrative purposes throughout many of the following
sections. Section 29.2 further defines the particular type of stochastic process considered
in this chapter.

if Xt � 0
if Xt � 1,

max{3 � Dt�1, 0}
max{Xt � Dt�1, 0}

■ 29.2 MARKOV CHAINS

Assumptions regarding the joint distribution of X0, X1, . . . are necessary to obtain ana-
lytical results. One assumption that leads to analytical tractability is that the stochastic
process is a Markov chain, which has the following key property:

A stochastic process {Xt} is said to have the Markovian property if P{Xt�1 � j⏐X0 � k0,
X1 � k1, . . . , Xt�1 � kt�1, Xt � i} � P{Xt�1 � j⏐Xt � i}, for t � 0, 1, . . . and every sequence
i, j, k0, k1, . . . , kt�1.

In words, this Markovian property says that the conditional probability of any future
“event,” given any past “events” and the present state Xt � i, is independent of the past
events and depends only upon the present state.

A stochastic process {Xt} (t � 0, 1, . . .) is a Markov chain if it has the Markovian
property.

The conditional probabilities P{Xt�1 � j⏐Xt � i} for a Markov chain are called (one-
step) transition probabilities. If, for each i and j,

P{Xt�1 � j⏐Xt � i} � P{X1 � j⏐X0 � i}, for all t � 1, 2, . . . ,

then the (one-step) transition probabilities are said to be stationary. Thus, having 
stationary transition probabilities implies that the transition probabilities do not change
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4 CHAPTER 29 MARKOV CHAINS

1For n � 0, pij
(0) is just P{X0 � j⏐X0 � i} and hence is 1 when i � j and is 0 when i � j.

over time. The existence of stationary (one-step) transition probabilities also implies that,
for each i, j, and n (n � 0, 1, 2, . . .),

P{Xt�n � j⏐Xt � i} � P{Xn � j⏐X0 � i}

for all t � 0, 1, . . . . These conditional probabilities are called n-step transition probabilities.
To simplify notation with stationary transition probabilities, let

pij � P{Xt�1 � j⏐Xt � i},

pij
(n) � P{Xt�n � j⏐Xt � i}.

Thus, the n-step transition probability pij
(n) is just the conditional probability that the sys-

tem will be in state j after exactly n steps (time units), given that it starts in state i at any
time t. When n � 1, note that pij

(1) � pij
1.

Because the pij
(n) are conditional probabilities, they must be nonnegative, and since

the process must make a transition into some state, they must satisfy the properties

pij
(n) � 0, for all i and j; n � 0, 1, 2, . . . ,

and

�
M

j�0
pij

(n) � 1 for all i; n � 0, 1, 2, . . . .

A convenient way of showing all the n-step transition probabilities is the n-step
transition matrix

State 0 1 … M

P(n) �

Note that the transition probability in a particular row and column is for the transition
from the row state to the column state. When n � 1, we drop the superscript n and sim-
ply refer to this as the transition matrix.

The Markov chains to be considered in this chapter have the following properties:

1. A finite number of states.
2. Stationary transition probabilities.

We also will assume that we know the initial probabilities P{X0 � i} for all i.

Formulating the Weather Example as a Markov Chain

For the weather example introduced in the preceding section, recall that the evolution of
the weather in Centerville from day to day has been formulated as a stochastic process
{Xt} (t � 0, 1, 2, . . .) where

Xt � �0 if day t is dry
1 if day t has rain.

⎤
⎥
⎥
⎥
⎥
⎦

p(n)
0M

p(n)
1M

…
p(n)

MM

…
…
…
…

p01
(n)

p11
(n)

…
p(n)

M1

p00
(n)

p10
(n)

…
p(n)

M0

⎡
⎢
⎢
⎢
⎢
⎣

0

1

�

M
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29.3 MARKOV CHAINS 5

P{Xt�1 � 0⏐Xt � 0} � 0.8,

P{Xt�1 � 0⏐Xt � 1} � 0.6.

Furthermore, because these probabilities do not change if information about the weather
before today (day t) is also taken into account,

P{Xt�1 � 0⏐X0 � k0, X1 � k1, . . . , Xt�1 � kt�1, Xt � 0} � P{Xt�1 � 0⏐Xt � 0}
P{Xt�1 � 0⏐X0 � k0, X1 � k1, . . . , Xt�1 � kt�1, Xt � 1} � P{Xt�1 � 0⏐Xt � 1}

for t � 0, 1, . . . and every sequence k0, k1, . . . , kt�1. These equations also must hold if
Xt�1 � 0 is replaced by Xt�1 � 1. (The reason is that states 0 and 1 are mutually exclusive
and the only possible states, so the probabilities of the two states must sum to 1.) There-
fore, the stochastic process has the Markovian property, so the process is a Markov chain.

Using the notation introduced in this section, the (one-step) transition probabilities are

p00 � P{Xt�1 � 0⏐Xt � 0} � 0.8,
p10 � P{Xt�1 � 0⏐Xt � 1} � 0.6

for all t � 1, 2, . . . , so these are stationary transition probabilities. Furthermore,

p00 � p01 � 1, so p01 � 1 – 0.8 � 0.2,
p10 � p11 � 1, so p11 � 1 – 0.6 � 0.4.

Therefore, the (one-step) transition matrix is

P � � � � � �
where these transition probabilities are for the transition from the row state to the column
state. Keep in mind that state 0 means that the day is dry, whereas state 1 signifies that
the day has rain, so these transition probabilities give the probability of the state the weather
will be in tomorrow, given the state of the weather today.

The state transition diagram in Fig. 29.1 graphically depicts the same information
provided by the transition matrix. The two nodes (circle) represent the two possible states
for the weather, and the arrows show the possible transitions (including back to the same
state) from one day to the next. Each of the transition probabilities is given next to the
corresponding arrow.

The n-step transition matrices for this example will be shown in the next section.

1
0.2
0.4

0
0.8
0.6

State
0
1

1
p01

p11

0
p00

p10

State
0
1

10

0.2

0.6

0.8 0.4

■ FIGURE 29.1
The state transition diagram
for the weather example.
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6 CHAPTER 29 MARKOV CHAINS

Formulating the Inventory Example as a Markov Chain

Returning to the inventory example developed in the preceding section, recall that Xt is the
number of cameras in stock at the end of week t (before ordering any more), so Xt represents
the state of the system at time t (the end of week t). Given that the current state is Xt � i, the
expression at the end of Sec. 29.1 indicates that Xt�1 depends only on Dt�1 (the demand in
week t � 1) and Xt. Since Xt�1 is independent of any past history of the inventory system prior
to time t, the stochastic process {Xt} (t � 0, 1, . . .) has the Markovian property and so is a
Markov chain.

Now consider how to obtain the (one-step) transition probabilities, i.e., the elements
of the (one-step) transition matrix

P �

given that Dt�1 has a Poisson distribution with a mean of 1. Thus,

P{Dt�1 � n} � �
(1)

n

ne
!

�1

�, for n � 0, 1, . . . ,

so (to three significant digits)

P{Dt�1 � 0} � e�1 � 0.368,
P{Dt�1 � 1} � e�1 � 0.368,

P{Dt�1 � 2} � �
1
2

�e�1 � 0.184,

P{Dt�1 � 3} � 1 � P{Dt�1 	 2} � 1 � (0.368 � 0.368 � 0.184) � 0.080.

For the first row of P, we are dealing with a transition from state Xt � 0 to some state
Xt�1. As indicated at the end of Sec. 29.1,

Xt�1 � max{3 � Dt�1, 0} if Xt � 0.

Therefore, for the transition to Xt�1 � 3 or Xt�1 � 2 or Xt�1 � 1,

p03 � P{Dt�1 � 0} � 0.368,
p02 � P{Dt�1 � 1} � 0.368,
p01 � P{Dt�1 � 2} � 0.184.

A transition from Xt � 0 to Xt�1 � 0 implies that the demand for cameras in week t � 1 is 3
or more after 3 cameras are added to the depleted inventory at the beginning of the week, so

p00 � P{Dt�1 � 3} � 0.080.

For the other rows of P, the formula at the end of Sec. 29.1 for the next state is

Xt�1 � max {Xt � Dt�1, 0} if Xt � 1.

This implies that Xt�1 	 Xt, so p12 � 0, p13 � 0, and p23 � 0. For the other transitions,

p11 � P{Dt�1 � 0} � 0.368,

p10 � P{Dt�1 � 1) � 1 � P{Dt�1 � 0} � 0.632,

p22 � P{Dt�1 � 0} � 0.368,

p21 � P{Dt�1 � 1} � 0.368,

p20 � P{Dt�1 � 2} � 1 � P{Dt�1 	 1} � 1 � (0.368 � 0.368) � 0.264.

⎤
⎥
⎥
⎥
⎥
⎦

3

p03

p13

p23

p33

2

p02

p12

p22

p32

1

p01

p11

p21

p31

0

p00

p10

p20

p30

⎡
⎢
⎢
⎢
⎢
⎢⎣

State

0

1

2

3
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29.2 MARKOV CHAINS 7

For the last row of P, week t � 1 begins with 3 cameras in inventory, so the calculations
for the transition probabilities are exactly the same as for the first row. Consequently, the
complete transition matrix (to three significant digits) is

P �

The information given by this transition matrix can also be depicted graphically with
the state transition diagram in Fig. 29.2. The four possible states for the number of cam-
eras on hand at the end of a week are represented by the four nodes (circles) in the dia-
gram. The arrows show the possible transitions from one state to another, or sometimes
from a state back to itself, when the camera store goes from the end of one week to 
the end of the next week. The number next to each arrow gives the probability of that 
particular transition occurring next when the camera store is in the state at the base of 
the arrow.

Additional Examples of Markov Chains

A Stock Example. Consider the following model for the value of a stock. At the end of
a given day, the price is recorded. If the stock has gone up, the probability that it will go up
tomorrow is 0.7. If the stock has gone down, the probability that it will go up tomorrow is
only 0.5. (For simplicity, we will count the stock staying the same as a decrease.) This is a
Markov chain, where the possible states for each day are as follows:

State 0: The stock increased on this day.
State 1: The stock decreased on this day.

The transition matrix that shows each probability of going from a particular state today
to a particular state tomorrow is given by

⎤
⎥
⎥
⎥
⎥
⎦

3

0.368

0

0

0.368

2

0.368

0

0.368

0.368

1

0.184

0.368

0.368

0.184

0

0.080

0.632

0.264

0.080

⎡
⎢
⎢
⎢
⎢
⎣

State

0

1

2

3

0 1

2 3

0.080

0.080

0.184

0.368

0.368

0.368

0.3680.264 0.184

0.632

0.368

0.368

0.368

■ FIGURE 29.2
The state transition diagram
for the inventory example.

hil23453_ch29_001-036.qxd  1/22/1970  10:53 PM  Page 7

Confirming Pages



P � � �
The form of the state transition diagram for this example is exactly the same as for

the weather example shown in Fig. 29.1, so we will not repeat it here. The only differ-
ence is that the transition probabilities in the diagram are slightly different (0.7 replaces
0.8, 0.3 replaces 0.2, and 0.5 replaces both 0.6 and 0.4 in Fig. 29.1).

A Second Stock Example. Suppose now that the stock market model is changed so that
the stock’s going up tomorrow depends upon whether it increased today and yesterday. In
particular, if the stock has increased for the past two days, it will increase tomorrow with
probability 0.9. If the stock increased today but decreased yesterday, then it will increase
tomorrow with probability 0.6. If the stock decreased today but increased yesterday, then it
will increase tomorrow with probability 0.5. Finally, if the stock decreased for the past two
days, then it will increase tomorrow with probability 0.3. If we define the state as repre-
senting whether the stock goes up or down today, the system is no longer a Markov chain.
However, we can transform the system to a Markov chain by defining the states as follows:2

State 0: The stock increased both today and yesterday.
State 1: The stock increased today and decreased yesterday.
State 2: The stock decreased today and increased yesterday.
State 3: The stock decreased both today and yesterday.

This leads to a four-state Markov chain with the following transition matrix:

P �

Figure 29.3 shows the state transition diagram for this example. An interesting feature of
the example revealed by both this diagram and all the values of 0 in the transition matrix is
that so many of the transitions from state i to state j are impossible in one step. In other words,
pij � 0 for 8 of the 16 entries in the transition matrix. However, check out how it always is
possible to go from any state i to any state j (including j � i) in two steps. The same holds
true for three steps, four steps, and so forth. Thus, pij

(n) � 0 for n � 2, 3, . . . for all i and j.

A Gambling Example. Another example involves gambling. Suppose that a player
has $1 and with each play of the game wins $1 with probability p � 0 or loses $1 with
probability 1 � p � 0. The game ends when the player either accumulates $3 or goes
broke. This game is a Markov chain with the states representing the player’s current hold-
ing of money, that is, 0, $1, $2, or $3, and with the transition matrix given by

P �

⎤
⎥
⎥
⎥
⎥
⎦

3

0

0

p

1

2

0

p

0

0

1

0

0

1 � p

0

0

1

1 � p

0

0

⎡
⎢
⎢
⎢
⎢
⎣

State

0

1

2

3

⎤
⎥
⎥
⎥
⎥
⎦

3

0

0

0.5

0.7

2

0.1

0.4

0

0

1

0

0

0.5

0.3

0

0.9

0.6

0

0

⎡
⎢
⎢
⎢
⎢
⎣

State

0

1

2

3

1

0.3

0.5

0

0.7

0.5

State

0

1

8 CHAPTER 29 MARKOV CHAINS

2We again are counting the stock staying the same as a decrease. This example demonstrates that Markov chains
are able to incorporate arbitrary amounts of history, but at the cost of significantly increasing the number of states.

hil23453_ch29_001-036.qxd  1/22/1970  10:53 PM  Page 8

Confirming Pages



■ 29.3 CHAPMAN-KOLMOGOROV EQUATIONS

29.3 CHAPMAN-KOLMOGOROV EQUATIONS 9

The state transition diagram for this example is shown in Fig. 29.4. This diagram
demonstrates that once the process enters either state 0 or state 3, it will stay in that state
forever after, since p00 � 1 and p33 � 1. States 0 and 3 are examples of what are called
an absorbing state (a state that is never left once the process enters that state). We will
focus on analyzing absorbing states in Sec. 29.7.

Note that in both the inventory and gambling examples, the numeric labeling of the states
that the process reaches coincides with the physical expression of the system—i.e., actual in-
ventory levels and the player’s holding of money, respectively—whereas the numeric label-
ing of the states in the weather and stock examples has no physical significance.

2 3

0.5

0.4

0.5

0.30.1

0.7

0 1
0.6

0.9

2 3 1

0 1
1-r

1-r

r

r

1

■ FIGURE 29.3
The state transition diagram
for the second stock
example.

■ FIGURE 29.4
The state transition diagram
for the gambling example.

Section 29.2 introduced the n-step transition probability pij
(n). The following Chapman-

Kolmogorov equations provide a method for computing these n-step transition probabilities:

pij
(n) � �

M

k�0
pik

(m)pkj
(n�m), for all i � 0, 1, . . . , M,

j � 0, 1, . . . , M,
and any m � 1, 2, . . . , n � 1,

n � m � 1, m � 2, . . . .3

3These equations also hold in a trivial sense when m � 0 or m � n, but m � 1, 2, . . . , n � 1 are the only
interesting cases.
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10 CHAPTER 29 MARKOV CHAINS

These equations point out that in going from state i to state j in n steps, the process
will be in some state k after exactly m (less than n) steps. Thus, pik

(m) pkj
(n�m) is just the con-

ditional probability that, given a starting point of state i, the process goes to state k after
m steps and then to state j in n � m steps. Therefore, summing these conditional proba-
bilities over all possible k must yield pij

(n). The special cases of m � 1 and m � n � 1 lead
to the expressions

pij
(n) � �

M

k�0
pikpkj

(n�1)

and

pij
(n) � �

M

k�0
pik

(n�1)pkj,

for all states i and j. These expressions enable the n-step transition probabilities to be obtained
from the one-step transition probabilities recursively. This recursive relationship is best
explained in matrix notation (see Appendix 4). For n � 2, these expressions become

pij
(2) � �

M

k�0
pikpkj, for all states i and j,

where the pij
(2) are the elements of a matrix P(2). Also note that these elements are obtained

by multiplying the matrix of one-step transition probabilities by itself; i.e.,

P(2) � P � P � P2.

In the same manner, the above expressions for pij
(n) when m � 1 and m � n � 1 indicate

that the matrix of n-step transition probabilities is

P(n) � PP(n�1) � P(n�1)P
� PPn�1 � Pn�1P
� Pn.

Thus, the n-step transition probability matrix Pn can be obtained by computing the nth
power of the one-step transition matrix P.

n-Step Transition Matrices for the Weather Example

For the weather example introduced in Sec. 29.1, we now will use the above formulas to
calculate various n-step transition matrices from the (one-step) transition matrix P that
was obtained in Sec. 29.2. To start, the two-step transition matrix is

P(2) � P 
 P � � � � � � � �.

Thus, if the weather is in state 0 (dry) on a particular day, the probability of being in state 0
two days later is 0.76 and the probability of being in state 1 (rain) then is 0.24. Similarly, if
the weather is in state 1 now, the probability of being in state 0 two days later is 0.72 whereas
the probability of being in state 1 then is 0.28.

The probabilities of the state of the weather three, four, or five days into the future
also can be read in the same way from the three-step, four-step, and five-step transition
matrices calculated to three significant digits below.

0.76 0.24
0.72 0.28

0.8 0.2
0.6 0.4

0.8 0.2
0.6 0.4
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29.3 CHAPMAN-KOLMOGOROV EQUATIONS 11

P(3) � P3 � P � P2 � � � � � � � �
P(4) � P4 � P � P3 � � � � � � � �
P(5) � P5 � P � P4 � � � � � � � �
Note that the five-step transition matrix has the interesting feature that the two rows

have identical entries (after rounding to three significant digits). This reflects the fact
that the probability of the weather being in a particular state is essentially independent
of the state of the weather five days before. Thus, the probabilities in either row of this
five-step transition matrix are referred to as the steady-state probabilities of this Markov
chain.

We will expand further on the subject of the steady-state probabilities of a Markov
chain, including how to derive them more directly, at the beginning of Sec. 29.5.

n-Step Transition Matrices for the Inventory Example

Returning to the inventory example included in Sec. 29.1, we now will calculate its n-step
transition matrices to three decimal places for n = 2, 4, and 8. To start, its one-step transition
matrix P obtained in Sec. 29.2 can be used to calculate the two-step transition matrix P(2) as
follows:

P(2) � P2 �

� .

For example, given that there is one camera left in stock at the end of a week, the 
probability is 0.283 that there will be no cameras in stock 2 weeks later, that is, p10

(2) �
0.283. Similarly, given that there are two cameras left in stock at the end of a week,
the probability is 0.097 that there will be three cameras in stock 2 weeks later, that is,
p23

(2) � 0.097.
The four-step transition matrix can also be obtained as follows:

P(4) � P4 � P(2) 
 P(2)

�

� .

⎤
⎥
⎥
⎥
⎥
⎦

0.164

0.166

0.171

0.164

0.261

0.268

0.263

0.261

0.286

0.285

0.283

0.286

0.289

0.282

0.284

0.289

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

0.165

0.233

0.097

0.165

0.300

0.233

0.233

0.300

0.286

0.252

0.319

0.286

0.249

0.283

0.351

0.249

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

0.165

0.233

0.097

0.165

0.300

0.233

0.233

0.300

0.286

0.252

0.319

0.286

0.249

0.283

0.351

0.249

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

0.165

0.233

0.097

0.165

0.300

0.233

0.233

0.300

0.286

0.252

0.319

0.286

0.249

0.283

0.351

0.249

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

0.368

0

0

0.368

0.368

0

0.368

0.368

0.184

0.368

0.368

0.184

0.080

0.632

0.264

0.080

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

0.368

0

0

0.368

0.368

0

0.368

0.368

0.184

0.368

0.368

0.184

0.080

0.632

0.264

0.080

⎡
⎢
⎢
⎢
⎢
⎣

0.75 0.25
0.75 0.25

0.75 0.25
0.749 0.251

0.8 0.2
0.6 0.4

0.75 0.25
0.749 0.251

0.752 0.248
0.744 0.256

0.8 0.2
0.6 0.4

0.752 0.248
0.744 0.256

0.76 0.24
0.72 0.28

0.8 0.2
0.6 0.4
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12 CHAPTER 29 MARKOV CHAINS

For example, given that there is one camera left in stock at the end of a week, the prob-
ability is 0.282 that there will be no cameras in stock 4 weeks later, that is, p10

(4) � 0.282.
Similarly, given that there are two cameras left in stock at the end of a week, the 
probability is 0.171 that there will be three cameras in stock 4 weeks later, that is,
p23

(4) � 0.171.
The transition probabilities for the number of cameras in stock 8 weeks from now

can be read in the same way from the eight-step transition matrix calculated below.

P(8) � P8 � P(4) 
 P(4)

�

�   

Like the five-step transition matrix for the weather example, this matrix has the interesting
feature that its rows have identical entries (after rounding). The reason once again is that
probabilities in any row are the steady-state probabilities for this Markov chain, i.e., the
probabilities of the state of the system after enough time has elapsed that the initial state is
no longer relevant.

Your IOR Tutorial includes a procedure for calculating P(n) � Pn for any positive
integer n 	 99.

Unconditional State Probabilities

Recall that one- or n-step transition probabilities are conditional probabilities; for example,
P{Xn � j⏐X0 � i} � pij

(n). Assume that n is small enough that these conditional probabilities
are not yet steady-state probabilities. In this case, if the unconditional probability P{Xn � j}
is desired, it is necessary to specify the probability distribution of the initial state, namely,
P{X0 � i} for i � 0, 1, . . . , M. Then

P{Xn � j} � P{X0 � 0} p0j
(n) � P{X0 � 1}p1j

(n) � 


 � P{X0 � M}pMj
(n).

In the inventory example, it was assumed that initially there were 3 units in stock,
that is, X0 � 3. Thus, P{X0 � 0} � P{X0 � 1} � P{X0 � 2} � 0 and P{X0 � 3} � 1.
Hence, the (unconditional) probability that there will be three cameras in stock 2 weeks
after the inventory system began is P{X2 � 3} � (1)p33

(2) � 0.165.

⎤
⎥
⎥
⎥
⎥
⎦

3

0.166

0.166

0166

0.166

2

0.264

0.264

0.264

0.264

1

0.285

0.285

0.285

0.285

0

0.286

0.286

0.286

0.286

⎡
⎢
⎢
⎢
⎢
⎣

State

0

1

2

3

⎤
⎥
⎥
⎥
⎥
⎦

0.164

0.166

0.171

0.164

0.261

0.268

0.263

0.261

0.286

0.285

0.283

0.286

0.289

0.282

0.284

0.289

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

0.164

0.166

0.171

0.164

0.261

0.268

0.263

0.261

0.286

0.285

0.283

0.286

0.289

0.282

0.284

0.289

⎡
⎢
⎢
⎢
⎢
⎣

■ 29.4 CLASSIFICATION OF STATES OF A MARKOV CHAIN

We have just seen near the end of the preceding section that the n-step transition probabil-
ities for the inventory example converge to steady-state probabilities after a sufficient num-
ber of steps. However, this is not true for all Markov chains. The long-run properties of a
Markov chain depend greatly on the characteristics of its states and transition matrix. To fur-
ther describe the properties of Markov chains, it is necessary to present some concepts
and definitions concerning these states.
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29.4 CLASSIFICATION OF STATES OF A MARKOV CHAIN 13

State j is said to be accessible from state i if pij
(n) � 0 for some n � 0. (Recall that

pij
(n) is just the conditional probability of being in state j after n steps, starting in state i.)

Thus, state j being accessible from state i means that it is possible for the system to en-
ter state j eventually when it starts from state i. This is clearly true for the weather ex-
ample (see Fig. 29.1) since pij � 0 for all i and j. In the inventory example (see Fig. 29.2),
pij

(2) � 0 for all i and j, so every state is accessible from every other state. In general, a
sufficient condition for all states to be accessible is that there exists a value of n for which
pij

(n) � 0 for all i and j.
In the gambling example given at the end of Sec. 29.2 (see Fig. 29.4), state 2 is not

accessible from state 3. This can be deduced from the context of the game (once the player
reaches state 3, the player never leaves this state), which implies that p32

(n) � 0 for all n
� 0. However, even though state 2 is not accessible from state 3, state 3 is accessible from
state 2 since, for n � 1, the transition matrix given at the end of Sec. 29.2 indicates that
p23 � p � 0.

If state j is accessible from state i and state i is accessible from state j, then states i
and j are said to communicate. In both the weather and inventory examples, all states
communicate. In the gambling example, states 2 and 3 do not. (The same is true of states
1 and 3, states 1 and 0, and states 2 and 0.) In general,

1. Any state communicates with itself (because pii
(0) � P{X0 � i⏐X0 � i} � 1).

2. If state i communicates with state j, then state j communicates with state i.
3. If state i communicates with state j and state j communicates with state k, then state i

communicates with state k.

Properties 1 and 2 follow from the definition of states communicating, whereas property
3 follows from the Chapman-Kolmogorov equations.

As a result of these three properties of communication, the states may be parti-
tioned into one or more separate classes such that those states that communicate with
each other are in the same class. (A class may consist of a single state.) If there is only
one class, i.e., all the states communicate, the Markov chain is said to be irreducible.
In both the weather and inventory examples, the Markov chain is irreducible. In both
of the stock examples in Sec. 29.2, the Markov chain also is irreducible. However, the
gambling example contains three classes. Observe in Fig. 29.4 how state 0 forms a
class, state 3 forms a class, and states 1 and 2 form a class.

Recurrent States and Transient States

It is often useful to talk about whether a process entering a state will ever return to this
state. Here is one possibility.

A state is said to be a transient state if, upon entering this state, the process might never
return to this state again. Therefore, state i is transient if and only if there exists a state j
( j � i) that is accessible from state i but not vice versa, that is, state i is not accessible
from state j.

Thus, if state i is transient and the process visits this state, there is a positive probability
(perhaps even a probability of 1) that the process will later move to state j and so will
never return to state i. Consequently, a transient state will be visited only a finite number
of times. To illustrate, consider the gambling example presented at the end of Sec. 29.2.
Its state transition diagram shown in Fig. 29.4 indicates that both states 1 and 2 are tran-
sient states since the process will leave these states sooner or later to enter either state 0
or state 3 and then will remain in that state forever.

When starting in state i, another possibility is that the process definitely will return
to this state.
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14 CHAPTER 29 MARKOV CHAINS

A state is said to be a recurrent state if, upon entering this state, the process definitely
will return to this state again. Therefore, a state is recurrent if and only if it is not
transient.

Since a recurrent state definitely will be revisited after each visit, it will be visited in-
finitely often if the process continues forever. For example, all the states in the state
transition diagrams shown in Figs. 29.1, 29.2, and 29.3 are recurrent states because the
process always will return to each of these states. Even for the gambling example, states
0 and 3 are recurrent states because the process will keep returning immediately to one
of these states forever once the process enters that state. Note in Fig. 29.4 how the
process eventually will enter either state 0 or state 3 and then will never leave that state
again.

If the process enters a certain state and then stays in this state at the next step, this
is considered a return to this state. Hence, the following kind of state is a special type of
recurrent state.

A state is said to be an absorbing state if, upon entering this state, the process never will
leave this state again. Therefore, state i is an absorbing state if and only if pii � 1.

As just noted, both states 0 and 3 for the gambling example fit this definition, so they
both are absorbing states as well as a special type of recurrent state. We will discuss
absorbing states further in Sec. 29.7.

Recurrence is a class property. That is, all states in a class are either recurrent
or transient. Furthermore, in a finite-state Markov chain, not all states can be tran-
sient. Therefore, all states in an irreducible finite-state Markov chain are recurrent.
Indeed, one can identify an irreducible finite-state Markov chain (and therefore con-
clude that all states are recurrent) by showing that all states of the process commu-
nicate. It has already been pointed out that a sufficient condition for all states to be
accessible (and therefore communicate with each other) is that there exists a value of
n for which pij

(n) � 0 for all i and j. Thus, all states in the inventory example (see Fig.
29.2) are recurrent, since pij

(2) is positive for all i and j. Similarly, both the weather
example and the first stock example contain only recurrent states, since pij is pos-
itive for all i and j. By calculating pij

(2) for all i and j in the second stock example
in Sec. 29.2 (see Fig. 29.3), it follows that all states are recurrent since pij

(2) � 0 for
all i and j.

As another example, suppose that a Markov chain has the following transition matrix:

P �

Note that state 2 is an absorbing state (and hence a recurrent state) because if the process
enters state 2 (row 3 of the matrix), it will never leave. State 3 is a transient state be-
cause if the process is in state 3, there is a positive probability that it will never return.
The probability is �

1
3

� that the process will go from state 3 to state 2 on the first step. Once
the process is in state 2, it remains in state 2. State 4 also is a transient state because if
the process starts in state 4, it immediately leaves and can never return. States 0 and 1
are recurrent states. To see this, observe from P that if the process starts in either of

⎤
⎥
⎥
⎥
⎥
⎥
⎦

4

0

0

0

0

0

3

0

0

0
�
2
3

�

0

2

0

0

1
�
1
3

�

0

1
�
3
4

�

�
1
2

�

0

0

0

0
�
1
4

�

�
1
2

�

0

0

1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

State

0

1

2

3

4
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29.5 LONG-RUN PROPERTIES OF MARKOV CHAINS 15

these states, it can never leave these two states. Furthermore, whenever the process
moves from one of these states to the other one, it always will return to the original
state eventually.

Periodicity Properties

Another useful property of Markov chains is periodicities. The period of state i is defined
to be the integer t (t � 1) such that pii

(n) � 0 for all values of n other than t, 2t, 3t, . . . and
t is the smallest integer with this property. In the gambling example (end of Section 29.2),
starting in state 1, it is possible for the process to enter state 1 only at times 2, 4, . . . , so
state 1 has period 2. The reason is that the player can break even (be neither winning nor
losing) only at times 2, 4, . . . , which can be verified by calculating p11

(n) for all n and not-
ing that p11

(n) � 0 for n odd. You also can see in Fig. 29.4 that the process always takes
two steps to return to state 1 until the process gets absorbed in either state 0 or state 3.
(The same conclusion also applies to state 2.)

If there are two consecutive numbers s and s � 1 such that the process can be in state i
at times s and s � 1, the state is said to have period 1 and is called an aperiodic state.

Just as recurrence is a class property, it can be shown that periodicity is a class prop-
erty. That is, if state i in a class has period t, then all states in that class have period t. In
the gambling example, state 2 also has period 2 because it is in the same class as state 1
and we noted above that state 1 has period 2.

It is possible for a Markov chain to have both a recurrent class of states and a transient
class of states where the two classes have different periods greater than 1.

In a finite-state Markov chain, recurrent states that are aperiodic are called ergodic
states. A Markov chain is said to be ergodic if all its states are ergodic states. You will see
next that a key long-run property of a Markov chain that is both irreducible and ergodic is
that its n-step transition probabilities will converge to steady-state probabilities as n grows
large.

■ 29.5 LONG-RUN PROPERTIES OF MARKOV CHAINS

Steady-State Probabilities

While calculating the n-step transition probabilities for both the weather and inventory
examples in Sec. 29.3, we noted an interesting feature of these matrices. If n is large
enough (n � 5 for the weather example and n � 8 for the inventory example), all the rows
of the matrix have identical entries, so the probability that the system is in each state j no
longer depends on the initial state of the system. In other words, there is a limiting prob-
ability that the system will be in each state j after a large number of transitions, and this
probability is independent of the initial state. These properties of the long-run behavior
of finite-state Markov chains do, in fact, hold under relatively general conditions, as sum-
marized below.

For any irreducible ergodic Markov chain, lim
n→�

pij
(n) exists and is independent of i. 

Furthermore,

lim
n→�

pij
(n) � �j � 0,

where the �j uniquely satisfy the following steady-state equations
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�j � �
M

i�0
�ipij, for j � 0, 1, . . . , M,

�
M

j�0
�j � 1. 

If you prefer to work with a system of equations in matrix form, this system (excluding
the sum = 1 equation) also can be expressed as

� � �P,

where � = (�0, �1, . . . , �M). 
The �j are called the steady-state probabilities of the Markov chain. The term steady-

state probability means that the probability of finding the process in a certain state, say j,
after a large number of transitions tends to the value �j, independent of the probability
distribution of the initial state. It is important to note that the steady-state probability does
not imply that the process settles down into one state. On the contrary, the process con-
tinues to make transitions from state to state, and at any step n the transition probability
from state i to state j is still pij.

The �j can also be interpreted as stationary probabilities (not to be confused with
stationary transition probabilities) in the following sense. If the initial probability of
being in state j is given by �j (that is, P{X0 � j} � �j) for all j, then the probabil-
ity of finding the process in state j at time n � 1, 2, . . . is also given by �j (that is,
P{Xn � j} � �j).

Note that the steady-state equations consist of M � 2 equations in M � 1 unknowns.
Because it has a unique solution, at least one equation must be redundant and can, there-
fore, be deleted. It cannot be the equation

�
M

j�0
�j � 1,

because �j � 0 for all j will satisfy the other M � 1 equations. Furthermore, the solu-
tions to the other M � 1 steady-state equations have a unique solution up to a multi-
plicative constant, and it is the final equation that forces the solution to be a probability
distribution.

Application to the Weather Example. The weather example introduced in Sec. 29.1
and formulated in Sec. 29.2 has only two states (dry and rain), so the above steady-state
equations become

�0 � �0p00 � �1p10,
�1 � �0p01 � �1p11,

1 � �0 � �1.

The intuition behind the first equation is that, in steady state, the probability of being in
state 0 after the next transition must equal (1) the probability of being in state 0 now and
then staying in state 0 after the next transition plus (2) the probability of being in state 1
now and next making the transition to state 0. The logic for the second equation is the
same, except in terms of state 1. The third equation simply expresses the fact that the
probabilities of these mutually exclusive states must sum to 1.

Referring to the transition probabilities given in Sec. 29.2 for this example, these
equations become

16 CHAPTER 29 MARKOV CHAINS
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29.5 LONG-RUN PROPERTIES OF MARKOV CHAINS 17

�0 � 0.8�0 � 0.6�1, so 0.2�0 � 0.6�1,
�1 � 0.2�0 � 0.4�1, so 0.6�1 � 0.2�0,

1 � �0 � �1.

Note that one of the first two equations is redundant since both equations reduce to
�0 � 3�1. Combining this result with the third equation immediately yields the fol-
lowing steady-state probabilities:

�0 = 0.75, �1 = 0.25

These are the same probabilities as obtained in each row of the five-step transition matrix
calculated in Sec. 29.3 because five transitions proved enough to make the state probabil-
ities essentially independent of the initial state.

Application to the Inventory Example. The inventory example introduced in
Sec. 29.1 and formulated in Sec. 29.2 has four states. Therefore, in this case, the steady-
state equations can be expressed as

�0 � �0p00 � �1p10 � �2p20 � �3p30,
�1 � �0p01 � �1p11 � �2p21 � �3p31,
�2 � �0p02 � �1p12 � �2p22 � �3p32,
�3 � �0p03 � �1p13 � �2p23 � �3p33,

1 � �0 � �1 � �2 � �3.

Substituting values for pij (see the transition matrix in Sec. 29.2) into these equations leads
to the equations

�0 � 0.080�0 � 0.632�1 � 0.264�2 � 0.080�3,
�1 � 0.184�0 � 0.368�1 � 0.368�2 � 0.184�3,
�2 � 0.368�0 � 0.368�2 � 0.368�3,
�3 � 0.368�0 � 0.368�3,

1 � �0 � �1 � �2 � �3.

Solving the last four equations simultaneously provides the solution

�0 � 0.286, �1 � 0.285, �2 � 0.263, �3 � 0.166,

which is essentially the result that appears in matrix P(8) in Sec. 29.3. Thus, after many
weeks the probability of finding zero, one, two, and three cameras in stock at the end of
a week tends to 0.286, 0.285, 0.263, and 0.166, respectively.

More about Steady-State Probabilities. Your IOR Tutorial includes a procedure
for solving the steady-state equations to obtain the steady-state probabilities.

There are other important results concerning steady-state probabilities. In particular,
if i and j are recurrent states belonging to different classes, then

pij
(n) � 0, for all n.

This result follows from the definition of a class.
Similarly, if j is a transient state, then

lim
n→�

pij
(n) � 0, for all i.
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Thus, the probability of finding the process in a transient state after a large number of
transitions tends to zero.

Expected Average Cost per Unit Time

The preceding subsection dealt with irreducible finite-state Markov chains whose states
were ergodic (recurrent and aperiodic). If the requirement that the states be aperiodic is
relaxed, then the limit

lim
n→�

pij
(n)

may not exist. To illustrate this point, consider the two-state transition matrix

P � � �.

If the process starts in state 0 at time 0, it will be in state 0 at times 2, 4, 6, . . . and in
state 1 at times 1, 3, 5, . . . . Thus, p00

(n) � 1 if n is even and p00
(n) � 0 if n is odd, so that

lim
n→�

p00
(n)

does not exist. However, the following limit always exists for an irreducible (finite-state)
Markov chain:

lim
n→� ��

1
n

� �
n

k�1
pij

(k)� � �j,

where the �j satisfy the steady-state equations given in the preceding subsection.
This result is important in computing the long-run average cost per unit time asso-

ciated with a Markov chain. Suppose that a cost (or other penalty function) C(Xt) is in-
curred when the process is in state Xt at time t, for t � 0, 1, 2, . . . . Note that C(Xt) is a
random variable that takes on any one of the values C(0), C(1), . . . , C(M) and that the
function C(�) is independent of t. The expected average cost incurred over the first n pe-
riods is given by

E��
1
n

� �
n

t�1
C(Xt)�.

By using the result that

lim
n→���

1
n

� �
n

k�1
pij

(k)� � �j,

it can be shown that the (long-run) expected average cost per unit time is given by

lim
n→�

E��
1
n

� �
n

t�1
C(Xt)� � �

M

j�0
�jC( j).

Application to the Inventory Example. To illustrate, consider the inventory exam-
ple introduced in Sec. 29.1, where the solution for the �j was obtained in an earlier
subsection. Suppose the camera store finds that a storage charge is being allocated for
each camera remaining on the shelf at the end of the week. The cost is charged as
follows:

1

1

0

0

0

1

State

0

1

18 CHAPTER 29 MARKOV CHAINS
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29.5 LONG-RUN PROPERTIES OF MARKOV CHAINS 19

C(xt) �

Using the steady-state probabilities found earlier in this section, the long-run expected
average storage cost per week can then be obtained from the preceding equation, i.e.,

lim
n→�

E��
1
n

� �
n

t�1
C(Xt)� � 0.286(0) � 0.285(2) � 0.263(8) � 0.166(18) � 5.662.

Note that an alternative measure to the (long-run) expected average cost per unit time
is the (long-run) actual average cost per unit time. It can be shown that this latter mea-
sure also is given by

lim
n→� ��

1
n

� �
n

t�1
C(Xt)� � �

M

j�0
�jC( j)

for essentially all paths of the process. Thus, either measure leads to the same result. These
results can also be used to interpret the meaning of the �j. To do so, let

C(Xt) � �
The (long-run) expected fraction of times the system is in state j is then given by

lim
n→�

E��
1
n

� �
n

t�1
C(Xt)� � lim

n→�
E(fraction of times system is in state j) � �j.

Similarly, �j can also be interpreted as the (long-run) actual fraction of times that the sys-
tem is in state j.

Expected Average Cost per Unit Time for Complex Cost Functions

In the preceding subsection, the cost function was based solely on the state that the
process is in at time t. In many important problems encountered in practice, the cost may
also depend upon some other random variable.

For example, in the inventory example introduced in Sec. 29.1, suppose that the costs
to be considered are the ordering cost and the penalty cost for unsatisfied demand (stor-
age costs are so small they will be ignored). It is reasonable to assume that the number
of cameras ordered to arrive at the beginning of week t depends only upon the state of
the process Xt�1 (the number of cameras in stock) when the order is placed at the end of
week t � 1. However, the cost of unsatisfied demand in week t will also depend upon the
demand Dt. Therefore, the total cost (ordering cost plus cost of unsatisfied demand) for
week t is a function of Xt�1 and Dt, that is, C(Xt�1, Dt).

Under the assumptions of this example, it can be shown that the (long-run) expected
average cost per unit time is given by

lim
n→�

E��
1
n

� �
n

t�1
C(Xt�1, Dt)� � �

M

j�0
k( j) �j,

if Xt � j
if Xt � j.

1
0

xt � 0

xt � 1

xt � 2

xt � 3

if

if

if

if

0

2

8

18

⎧
⎪
⎪
⎨
⎪
⎪
⎩
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20 CHAPTER 29 MARKOV CHAINS

where

k( j ) � E[C( j, Dt)],

and where this latter (conditional) expectation is taken with respect to the probability distri-
bution of the random variable Dt, given the state j. Similarly, the (long-run) actual average
cost per unit time is given by

lim
n→� ��

1
n

� �
n

t�1
C(Xt�1, Dt)� � �

M

j�0
k( j)�j.

Now let us assign numerical values to the two components of C(Xt�1, Dt) in this
example, namely, the ordering cost and the penalty cost for unsatisfied demand. If z � 0
cameras are ordered, the cost incurred is (10 � 25z) dollars. If no cameras are ordered,
no ordering cost is incurred. For each unit of unsatisfied demand (lost sales), there is a
penalty of $50. Therefore, given the ordering policy described in Sec. 29.1, the cost in
week t is given by

C(Xt�1, Dt) � �
for t � 1, 2, . . . . Hence,

C(0, Dt) � 85 � 50 max{Dt � 3, 0},

so that

k(0) � E[C(0, Dt)] � 85 � 50E(max{Dt � 3, 0})
� 85 � 50[PD(4) � 2PD(5) � 3PD(6) � 


],

where PD(i) is the probability that the demand equals i, as given by a Poisson distribu-
tion with a mean of 1, so that PD(i) becomes negligible for i larger than about 6. Since
PD(4) � 0.015, PD(5) � 0.003, and PD(6) � 0.001, we obtain k(0) � 86.2. Also using
PD(2) � 0.184 and PD(3) � 0.061, similar calculations lead to the results

k(1) � E[C(1, Dt)] � 50E(max{Dt � 1, 0})
� 50[PD(2) � 2PD(3) � 3PD(4) � 


]
� 18.4,

k(2) � E[C(2, Dt)] � 50E(max{Dt � 2, 0})
� 50[PD(3) � 2PD(4) � 3PD(5) � 


]
� 5.2,

and

k(3) � E[C(3, Dt)] � 50E(max{Dt � 3, 0})
� 50[PD(4) � 2PD(5) � 3PD(6) � 


]
� 1.2.

Thus, the (long-run) expected average cost per week is given by

�
3

j�0
k( j)�j � 86.2(0.286) � 18.4(0.285) � 5.2(0.263) � 1.2(0.166) � $31.46.

This is the cost associated with the particular ordering policy described in Sec. 29.1.
The cost of other ordering policies can be evaluated in a similar way to identify the pol-
icy that minimizes the expected average cost per week.

if Xt�1 � 0
if Xt�1 � 1,

10 � (25)(3) � 50 max{Dt � 3, 0}
50 max {Dt � Xt�1, 0}
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29.6 FIRST PASSAGE TIMES 21

The results of this subsection were presented only in terms of the inventory example.
However, the (nonnumerical) results still hold for other problems as long as the follow-
ing conditions are satisfied:

1. {Xt} is an irreducible (finite-state) Markov chain.
2. Associated with this Markov chain is a sequence of random variables {Dt} which are

independent and identically distributed.
3. For a fixed m � 0, �1, �2, . . . , a cost C(Xt, Dt�m) is incurred at time t, for t � 0, 1,

2, . . . .
4. The sequence X0, X1, X2, . . . , Xt must be independent of Dt�m

In particular, if these conditions are satisfied, then

lim
n→�

E��
1
n

� �
n

t�1
C(Xt, Dt�m)� � �

M

j�0
k( j)�j,

where

k( j) � E[C( j, Dt�m)],

and where this latter conditional expectation is taken with respect to the probability dis-
tribution of the random variable Dt, given the state j. Furthermore,

lim
n→� ��

1
n

� �
n

t�1
C(Xt, Dt�m)� � �

M

j�0
k( j)�j

for essentially all paths of the process.

■ 29.6 FIRST PASSAGE TIMES

Section 29.3 dealt with finding n-step transition probabilities from state i to state j. It is
often desirable to also make probability statements about the number of transitions made
by the process in going from state i to state j for the first time. This length of time is called
the first passage time in going from state i to state j. When j � i, this first passage time
is just the number of transitions until the process returns to the initial state i. In this case,
the first passage time is called the recurrence time for state i.

To illustrate these definitions, reconsider the inventory example introduced in Sec. 29.1,
where Xt is the number of cameras on hand at the end of week t, where we start with X0 � 3.
Suppose that it turns out that

X0 � 3, X1 � 2, X2 � 1, X3 � 0, X4 � 3, X5 � 1.

In this case, the first passage time in going from state 3 to state 1 is 2 weeks, the first passage
time in going from state 3 to state 0 is 3 weeks, and the recurrence time for state 3 is 4 weeks.

In general, the first passage times are random variables. The probability distributions
associated with them depend upon the transition probabilities of the process. In particu-
lar, let f ij

(n) denote the probability that the first passage time from state i to j is equal to n.
For n � 1, this first passage time is n if the first transition is from state i to some state 
k (k � j) and then the first passage time from state k to state j is n � 1. Therefore, these
probabilities satisfy the following recursive relationships:

f ij
(1) � pij

(1) � pij,

f ij
(2) � �

k�j

pik f kj
(1),

f ij
(n) � �

k�j

pik f kj
(n�1).
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22 CHAPTER 29 MARKOV CHAINS

Thus, the probability of a first passage time from state i to state j in n steps can be computed
recursively from the one-step transition probabilities.

In the inventory example, the probability distribution of the first passage time in going
from state 3 to state 0 is obtained from these recursive relationships as follows:

f 30
(1) � p30 � 0.080,

f 30
(2) � p31 f 10

(1) � p32 f 20
(1) � p33 f 30

(1)

� 0.184(0.632) � 0.368(0.264) � 0.368(0.080) � 0.243,
�

where the p3k and f k0
(1) � pk0 are obtained from the (one-step) transition matrix given in

Sec. 29.2.
For fixed i and j, the f ij

(n) are nonnegative numbers such that

�
�

n�1
f ij

(n) 	 1.

Unfortunately, this sum may be strictly less than 1, which implies that a process initially
in state i may never reach state j. When the sum does equal 1, f ij

(n) (for n � 1, 2, . . .)
can be considered as a probability distribution for the random variable, the first passage
time.

Although obtaining f ij
(n) for all n may be tedious, it is relatively simple to obtain the

expected first passage time from state i to state j. Denote this expectation by �ij, which
is defined by

� if �
�

n�1
f ij

(n)  1

�ij � � �
�

n�1
nf ij

(n) if �
�

n�1
f ij

(n) � 1.

Whenever

�
�

n�1
f ij

(n) � 1,

�ij uniquely satisfies the equation

�ij � 1 � �
k�j

pik�kj.

This equation recognizes that the first transition from state i can be to either state j or
to some other state k. If it is to state j, the first passage time is 1. Given that the first
transition is to some state k (k � j) instead, which occurs with probability pik, the con-
ditional expected first passage time from state i to state j is 1 � �kj. Combining these
facts, and summing over all the possibilities for the first transition, leads directly to this
equation.

For the inventory example, these equations for the �ij can be used to compute the
expected time until the cameras are out of stock, given that the process is started when
three cameras are available. This expected time is just the expected first passage time
�30. Since all the states are recurrent, the system of equations leads to the expressions

�30 � 1 � p31�10 � p32�20 � p33�30,
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29.7 ABSORBING STATES 23

■ 29.7 ABSORBING STATES

It was pointed out in Sec. 29.4 that a state k is called an absorbing state if pkk � 1, so
that once the chain visits k it remains there forever. If k is an absorbing state, and the
process starts in state i, the probability of ever going to state k is called the probability
of absorption into state k, given that the system started in state i. This probability is de-
noted by fik.

When there are two or more absorbing states in a Markov chain, and it is evident that
the process will be absorbed into one of these states, it is desirable to find these proba-
bilities of absorption. These probabilities can be obtained by solving a system of linear
equations that considers all the possibilities for the first transition and then, given the first
transition, considers the conditional probability of absorption into state k. In particular, if
the state k is an absorbing state, then the set of absorption probabilities fik satisfies the
system of equations

fik � �
M

j�0
pij fjk, for i � 0, 1, . . . , M,

subject to the conditions

fkk � 1,
fik � 0, if state i is recurrent and i � k.

�20 � 1 � p21�10 � p22�20 � p23�30,
�10 � 1 � p11�10 � p12�20 � p13�30,

or

�30 � 1 � 0.184�10 � 0.368�20 � 0.368�30,
�20 � 1 � 0.368�10 � 0.368�20,
�10 � 1 � 0.368�10.

The simultaneous solution to this system of equations is

�10 � 1.58 weeks,
�20 � 2.51 weeks,
�30 � 3.50 weeks,

so that the expected time until the cameras are out of stock is 3.50 weeks. Thus, in mak-
ing these calculations for �30, we also obtain �20 and �10.

For the case of �ij where j � i, �ii is the expected number of transitions until the
process returns to the initial state i, and so is called the expected recurrence time for
state i. After obtaining the steady-state probabilities (�0, �1, . . . , �M) as described in the
preceding section, these expected recurrence times can be calculated immediately as

�ii � �
�
1

i
�, for i � 0, 1, . . . , M.

Thus, for the inventory example, where �0 � 0.286, �1 � 0.285, �2 � 0.263, and �3 � 0.166,
the corresponding expected recurrence times are

�00 � �
�
1

0
� � 3.50 weeks, �22 � �

�
1

2
� � 3.80 weeks,
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24 CHAPTER 29 MARKOV CHAINS

Absorption probabilities are important in random walks. A random walk is a Markov
chain with the property that if the system is in a state i, then in a single transition the sys-
tem either remains at i or moves to one of the two states immediately adjacent to i. For
example, a random walk often is used as a model for situations involving gambling.

A Second Gambling Example. To illustrate the use of absorption probabilities in a ran-
dom walk, consider a gambling example similar to that presented in Sec. 29.2. However,
suppose now that two players (A and B), each having $2, agree to keep playing the game
and betting $1 at a time until one player is broke. The probability of A winning a single bet
is �

1
3

�, so B wins the bet with probability �
2
3

�. The number of dollars that player A has before
each bet (0, 1, 2, 3, or 4) provides the states of a Markov chain with transition matrix

P � .

Starting from state 2, the probability of absorption into state 0 (A losing all her money)
can be obtained by solving for f20 from the system of equations given at the beginning of
this section,

f00 � 1 (since state 0 is an absorbing state),

f10 � �
2
3

� f00 � �
1
3

� f20,

f20 � �
2
3

� f10 � �
1
3

� f30,

f30 � �
2
3

� f20 � �
1
3

� f40,

f40 � 0 (since state 4 is an absorbing state).

This system of equations yields

f20 � �
2
3

���
2
3

� � �
1
3

� f20� � �
1
3

���
2
3

� f20� � �
4
9

� � �
4
9

� f20,

which reduces to f20 � �
4
5

� as the probability of absorption into state 0.
Similarly, the probability of A finishing with $4 (B going broke) when starting with

$2 (state 2) is obtained by solving for f24 from the system of equations,

f04 � 0 (since state 0 is an absorbing state),

f14 � �
2
3

� f04 � �
1
3

� f24,

f24 � �
2
3

� f14 � �
1
3

� f34,

f34 � �
2
3

� f24 � �
1
3

� f44,

f44 � 1 (since state 0 is an absorbing state).

This yields

f24 � �
2
3

���
1
3

� f24� � �
1
3

���
2
3

�f24 � �
1
3

�� � �
4
9

� f24 � �
1
9

�,

so f24 � �
1
5

� is the probability of absorption into state 4.

⎤
⎥
⎥
⎥
⎥
⎥
⎦

4

0

0

0
�
1
3

�

1

3

0

0
�
1
3

�

0

0

2

0
�
1
3

�

0
�
2
3

�

0

1

0

0
�
2
3

�

0

0

0

1
�
2
3

�

0

0

0

⎡
⎢
⎢
⎢
⎢
⎢
⎣

State

0

1

2

3

4
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29.7 ABSORBING STATES 25

A Credit Evaluation Example. There are many other situations where absorbing states
play an important role. Consider a department store that classifies the balance of a customer’s
bill as fully paid (state 0), 1 to 30 days in arrears (state 1), 31 to 60 days in arrears (state
2), or bad debt (state 3). The accounts are checked monthly to determine the state of each
customer. In general, credit is not extended and customers are expected to pay their bills
promptly. Occasionally, customers miss the deadline for paying their bill. If this occurs
when the balance is within 30 days in arrears, the store views the customer as being in
state 1. If this occurs when the balance is between 31 and 60 days in arrears, the store
views the customer as being in state 2. Customers that are more than 60 days in arrears
are put into the bad-debt category (state 3), and then bills are sent to a collection agency.

After examining data over the past several years on the month by month progression
of individual customers from state to state, the store has developed the following transi-
tion matrix:4

4Customers who are fully paid (in state 0) and then subsequently fall into arrears on new purchases are viewed
as “new” customers who start in state 1.

State 1: 1 to 30 Days 2: 31 to 60 Days
State 0: Fully Paid in Arrears in Arrears 3: Bad Debt

0: fully paid 1 0 0 0
1: 1 to 30 days 0.7 0.2 0.1 0
in arrears

2: 31 to 60 days 0.5 0.1 0.2 0.2
in arrears

3: bad debt 0 0 0 1

Although each customer ends up in state 0 or 3, the store is interested in determining the
probability that a customer will end up as a bad debt given that the account belongs to
the 1 to 30 days in arrears state, and similarly, given that the account belongs to the 31
to 60 days in arrears state.

To obtain this information, the set of equations presented at the beginning of this sec-
tion must be solved to obtain f13 and f23. By substituting, the following two equations are
obtained:

f13 � p10 f03 � p11 f13 � p12 f23 � p13 f33,
f23 � p20 f03 � p21 f13 � p22 f23 � p23 f33.

Noting that f03 � 0 and f33 � 1, we now have two equations in two unknowns, namely,

(1 � p11) f13 � p13 � p12 f23,
(1 � p22) f23 � p23 � p21 f13.

Substituting the values from the transition matrix leads to

0.8f13 � 0.1 f23,
0.8f23 � 0.2 � 0.1 f13,

and the solution is

f13 � 0.032,
f23 � 0.254.
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26 CHAPTER 29 MARKOV CHAINS

Thus, approximately 3 percent of the customers whose accounts are 1 to 30 days in arrears
end up as bad debts, whereas about 25 percent of the customers whose accounts are 31 to
60 days in arrears end up as bad debts.

In all the previous sections, we assumed that the time parameter t was discrete (that is,
t � 0, 1, 2, . . .). Such an assumption is suitable for many problems, but there are certain
cases (such as for some queueing models considered in Chap. 17) where a continuous time
parameter (call it t�) is required, because the evolution of the process is being observed
continuously over time. The definition of a Markov chain given in Sec. 29.2 also extends
to such continuous processes. This section focuses on describing these “continuous time
Markov chains” and their properties.

Formulation

As before, we label the possible states of the system as 0, 1, . . . , M. Starting at time 0
and letting the time parameter t� run continuously for t� � 0, we let the random variable
X(t�) be the state of the system at time t�. Thus, X(t�) will take on one of its possible 
(M � 1) values over some interval, 0 	 t�  t1, then will jump to another value over the
next interval, t1 	 t�  t2, etc., where these transit points (t1, t2, . . .) are random points
in time (not necessarily integer).

Now consider the three points in time (1) t� � r (where r � 0), (2) t� � s (where 
s � r), and (3) t� � s � t (where t � 0), interpreted as follows:

t� � r is a past time,
t� � s is the current time,
t� � s � t is t time units into the future.

Therefore, the state of the system now has been observed at times t� � s and t� � r. Label
these states as

X(s) � i and X(r) � x(r).

Given this information, it now would be natural to seek the probability distribution of the
state of the system at time t� � s � t. In other words, what is

P{X(s � t) � j⏐X(s) � i and X(r) � x(r)}, for j � 0, 1, . . . , M?

Deriving this conditional probability often is very difficult. However, this task is con-
siderably simplified if the stochastic process involved possesses the following key property.

A continuous time stochastic process {X(t�); t� � 0} has the Markovian 
property if

P{X(t � s) � j⏐X(s) � i and X(r) � x(r)} � P{X(t � s) � j⏐X(s) � i},

for all i, j � 0, 1, . . . , M and for all r � 0, s � r, and t � 0.

Note that P{X(t � s) � j⏐X(s) � i} is a transition probability, just like the transi-
tion probabilities for discrete time Markov chains considered in the preceding sections,
where the only difference is that t now need not be an integer.

If the transition probabilities are independent of s, so that

P{X(t � s) � j⏐X(s) � i} � P{X(t) � j⏐X(0) � i}

■ 29.8 CONTINUOUS TIME MARKOV CHAINS
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29.8 CONTINUOUS TIME MARKOV CHAINS 27

for all s � 0, they are called stationary transition probabilities.

To simplify notation, we shall denote these stationary transition probabilities by

pij(t) � P{X(t) � j⏐X(0) � i},

where pij(t) is referred to as the continuous time transition probability function. We
assume that

lim
t→0

pij (t) � �
Now we are ready to define the continuous time Markov chains to be considered in

this section.

A continuous time stochastic process {X(t�); t� � 0} is a continuous time Markov chain
if it has the Markovian property.

We shall restrict our consideration to continuous time Markov chains with the following
properties:

1. A finite number of states.
2. Stationary transition probabilities.

Some Key Random Variables

In the analysis of continuous time Markov chains, one key set of random variables is the
following:

Each time the process enters state i, the amount of time it spends in that state before mov-
ing to a different state is a random variable Ti, where i � 0, 1, . . . , M.

Suppose that the process enters state i at time t� � s. Then, for any fixed amount of 
time t � 0, note that Ti � t if and only if X(t�) � i for all t� over the interval s 	 t� 	
s � t. Therefore, the Markovian property (with stationary transition probabilities) implies
that

P{Ti � t � s⏐Ti � s} � P{Ti � t}.

This is a rather unusual property for a probability distribution to possess. It says that the
probability distribution of the remaining time until the process transits out of a given state
always is the same, regardless of how much time the process has already spent in that state.
In effect, the random variable is memoryless; the process forgets its history. There is only
one (continuous) probability distribution that possesses this property—the exponential
distribution. The exponential distribution has a single parameter, call it q, where the mean
is 1/q and the cumulative distribution function is

P{Ti 	 t} � 1 � e�qt, for t � 0.

(We described the properties of the exponential distribution in detail in Sec. 17.4.)
This result leads to an equivalent way of describing a continuous time Markov chain:

1. The random variable Ti has an exponential distribution with a mean of 1/qi.
2. When leaving state i, the process moves to a state j with probability pij, where the pij

satisfy the conditions

pii � 0 for all i,

and

if i � j
if i � j.

1
0
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�
M

j�0
pij � 1 for all i.

3. The next state visited after state i is independent of the time spent in state i.

Just as the one-step transition probabilities played a major role in describing discrete
time Markov chains, the analogous role for a continuous time Markov chain is played by
the transition intensities.

The transition intensities are

qi � ��
d
d
t
�pii(0) � lim

t→0
�
1 �

t
pii(t)�, for i � 0, 1, 2, . . . , M,

and

qij � �
d
d
t
�pij(0) � lim

t→0
�
pij

t
(t)
� � qipij, for all j � i,

where pij(t) is the continuous time transition probability function introduced at the beginning
of the section and pij is the probability described in property 2 of the preceding paragraph.
Furthermore, qi as defined here turns out to still be the parameter of the exponential distrib-
ution for Ti as well (see property 1 of the preceding paragraph).

The intuitive interpretation of the qi and qij is that they are transition rates. In par-
ticular, qi is the transition rate out of state i in the sense that qi is the expected number
of times that the process leaves state i per unit of time spent in state i. (Thus, qi is the
reciprocal of the expected time that the process spends in state i per visit to state i; that
is, qi � 1/E[Ti].) Similarly, qij is the transition rate from state i to state j in the sense that
qij is the expected number of times that the process transits from state i to state j per unit
of time spent in state i. Thus,

qi � �
j�i

qij.

Just as qi is the parameter of the exponential distribution for Ti, each qij is the para-
meter of an exponential distribution for a related random variable described below:

Each time the process enters state i, the amount of time it will spend in state i before a
transition to state j occurs (if a transition to some other state does not occur first) is a ran-
dom variable Tij, where i, j � 0, 1, . . . , M and j � i. The Tij are independent random vari-
ables, where each Tij has an exponential distribution with parameter qij, so E[Tij] � 1/qij.
The time spent in state i until a transition occurs (Ti) is the minimum (over j � i) of the
Tij. When the transition occurs, the probability that it is to state j is pij � qij/qi.

Steady-State Probabilities

Just as the transition probabilities for a discrete time Markov chain satisfy the Chapman-
Kolmogorov equations, the continuous time transition probability function also satisfies
these equations. Therefore, for any states i and j and nonnegative numbers t and s
(0 	 s 	 t),

pij(t) � �
M

k�0
pik(s)pkj(t � s).

28 CHAPTER 29 MARKOV CHAINS
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29.8 CONTINUOUS TIME MARKOV CHAINS 29

A pair of states i and j are said to communicate if there are times t1 and t2 such that
pij(t1) � 0 and pji(t2) � 0. All states that communicate are said to form a class. If all
states form a single class, i.e., if the Markov chain is irreducible (hereafter assumed), then

pij(t) � 0, for all t � 0 and all states i and j.

Furthermore,

lim
t→�

pij(t) � �j

always exists and is independent of the initial state of the Markov chain, for j � 0, 1, . . . , M.
These limiting probabilities are commonly referred to as the steady-state probabilities (or
stationary probabilities) of the Markov chain.

The �j satisfy the equations

�j � �
M

i�0
�ipij(t), for j � 0, 1, . . . , M and every t � 0.

However, the following steady-state equations provide a more useful system of equa-
tions for solving for the steady-state probabilities:

�jqj � �
i�j

�iqij, for j � 0, 1, . . . , M.

and

�
M

j�0
�j � 1.

The steady-state equation for state j has an intuitive interpretation. The left-hand side
(�jqj) is the rate at which the process leaves state j, since �j is the (steady-state) proba-
bility that the process is in state j and qj is the transition rate out of state j given that the
process is in state j. Similarly, each term on the right-hand side (�iqij) is the rate at which
the process enters state j from state i, since qij is the transition rate from state i to state j
given that the process is in state i. By summing over all i � j, the entire right-hand side
then gives the rate at which the process enters state j from any other state. The overall
equation thereby states that the rate at which the process leaves state j must equal the rate
at which the process enters state j. Thus, this equation is analogous to the conservation of
flow equations encountered in many engineering and science courses.

Because each of the first M � 1 steady-state equations requires that two rates be in
balance (equal), these equations sometimes are called the balance equations.

Example. A certain shop has two identical machines that are operated continuously
except when they are broken down. Because they break down fairly frequently, the top-
priority assignment for a full-time maintenance person is to repair them whenever
needed.

The time required to repair a machine has an exponential distribution with a mean of
�
1
2

� day. Once the repair of a machine is completed, the time until the next breakdown of
that machine has an exponential distribution with a mean of 1 day. These distributions are
independent.
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30 CHAPTER 29 MARKOV CHAINS

Define the random variable X(t�) as

X(t�) � number of machines broken down at time t�,

so the possible values of X(t�) are 0, 1, 2. Therefore, by letting the time parameter t� run
continuously from time 0, the continuous time stochastic process {X(t�); t� � 0} gives the
evolution of the number of machines broken down.

Because both the repair time and the time until a breakdown have exponential distri-
butions, {X(t�); t� � 0} is a continuous time Markov chain5 with states 0, 1, 2. Conse-
quently, we can use the steady-state equations given in the preceding subsection to find
the steady-state probability distribution of the number of machines broken down. To do
this, we need to determine all the transition rates, i.e., the qi and qij for i, j � 0, 1, 2.

The state (number of machines broken down) increases by 1 when a breakdown
occurs and decreases by 1 when a repair occurs. Since both breakdowns and repairs
occur one at a time, q02 � 0 and q20 � 0. The expected repair time is �

1
2

� day, so the rate
at which repairs are completed (when any machines are broken down) is 2 per day, which
implies that q21 � 2 and q10 � 2. Similarly, the expected time until a particular operational
machine breaks down is 1 day, so the rate at which it breaks down (when operational) is
1 per day, which implies that q12 � 1. During times when both machines are operational,
breakdowns occur at the rate of 1 � 1 � 2 per day, so q01 � 2.

These transition rates are summarized in the rate diagram shown in Fig. 29.5. These
rates now can be used to calculate the total transition rate out of each state.

q0 � q01 � 2
q1 � q10 � q12 � 3
q2 � q21 � 2

Plugging all the rates into the steady-state equations given in the preceding subsection
then yields

Balance equation for state 0: 2�0 � 2�1

Balance equation for state 1: 3�1 � 2�0 � 2�2

Balance equation for state 2: 2�2 � �1

Probabilities sum to 1: �0 � �1 � �2 � 1

Any one of the balance equations (say, the second) can be deleted as redundant, and the
simultaneous solution of the remaining equations gives the steady-state distribution as

(�0, �1, �2) � ��
2
5

�, �
2
5

�, �
1
5

��.

Thus, in the long run, both machines will be broken down simultaneously 20 percent of
the time, and one machine will be broken down another 40 percent of the time.

5Proving this fact requires the use of two properties of the exponential distribution discussed in Sec. 17.4 (lack
of memory and the minimum of exponentials is exponential), since these properties imply that the Tij random
variables introduced earlier do indeed have exponential distributions.
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210State:

q01 � 2 q12 � 1

q10 � 2 q21 � 2

■ FIGURE 29.5
The rate diagram for the
example of a continuous
time Markov chain.

Chapter 17 (on queueing theory) features many more examples of continuous time
Markov chains. In fact, most of the basic models of queueing theory fall into this cate-
gory. The current example actually fits one of these models (the finite calling population
variation of the M/M/s model included in Sec. 17.6).
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32 CHAPTER 29 MARKOV CHAINS

■ PROBLEMS

The symbol to the left of some of the problems (or their parts) has
the following meaning.

C: Use the computer with the corresponding automatic procedures
just listed (or other equivalent routines) to solve the problem.

29.2-1. Assume that the probability of rain tomorrow is 0.5 if it is
raining today, and assume that the probability of its being clear (no
rain) tomorrow is 0.9 if it is clear today. Also assume that these
probabilities do not change if information is also provided about
the weather before today.
(a) Explain why the stated assumptions imply that the Markovian

property holds for the evolution of the weather.
(b) Formulate the evolution of the weather as a Markov chain by

defining its states and giving its (one-step) transition matrix.

29.2-2. Consider the second version of the stock market model
presented as an example in Sec. 29.2. Whether the stock goes up
tomorrow depends upon whether it increased today and yesterday.
If the stock increased today and yesterday, it will increase tomor-
row with probability �1. If the stock increased today and decreased
yesterday, it will increase tomorrow with probability �2. If the stock
decreased today and increased yesterday, it will increase tomorrow
with probability �3. Finally, if the stock decreased today and yes-
terday, it will increase tomorrow with probability �4.
(a) Construct the (one-step) transition matrix of the Markov chain.
(b) Explain why the states used for this Markov chain cause the

mathematical definition of the Markovian property to hold even
though what happens in the future (tomorrow) depends upon
what happened in the past (yesterday) as well as the present
(today).

29.2-3. Reconsider Prob. 29.2-2. Suppose now that whether or not
the stock goes up tomorrow depends upon whether it increased to-
day, yesterday, and the day before yesterday. Can this problem be
formulated as a Markov chain? If so, what are the possible states?
Explain why these states give the process the Markovian property
whereas the states in Prob. 29.2-2 do not.

29.3-1. Reconsider Prob. 29.2-1.
C (a) Use the procedure Chapman-Kolmogorov Equations in

your IOR Tutorial to find the n-step transition matrix P(n)

for n � 2, 5, 10, 20.
(b) The probability that it will rain today is 0.5. Use the results

from part (a) to determine the probability that it will rain n
days from now, for n � 2, 5, 10, 20.

C (c) Use the procedure Steady-State Probabilities in your IOR
Tutorial to determine the steady-state probabilities of the
state of the weather. Describe how the probabilities in the

n-step transition matrices obtained in part (a) compare to
these steady-state probabilities as n grows large.

29.3-2. Suppose that a communications network transmits binary
digits, 0 or 1, where each digit is transmitted 10 times in succes-
sion. During each transmission, the probability is 0.995 that the
digit entered will be transmitted accurately. In other words, the
probability is 0.005 that the digit being transmitted will be
recorded with the opposite value at the end of the transmission.
For each transmission after the first one, the digit entered for trans-
mission is the one that was recorded at the end of the preceding
transmission. If X0 denotes the binary digit entering the system,
X1 the binary digit recorded after the first transmission, X2 the bi-
nary digit recorded after the second transmission, . . . , then {Xn}
is a Markov chain.
(a) Construct the (one-step) transition matrix.
C (b) Use your IOR Tutorial to find the 10-step transition matrix

P(10). Use this result to identify the probability that a digit
entering the network will be recorded accurately after the
last transmission.

C (c) Suppose that the network is redesigned to improve the prob-
ability that a single transmission will be accurate from 0.995
to 0.998. Repeat part (b) to find the new probability that a
digit entering the network will be recorded accurately after
the last transmission.

29.3-3. A particle moves on a circle through points that have been
marked 0, 1, 2, 3, 4 (in a clockwise order). The particle starts at
point 0. At each step it has probability 0.5 of moving one point
clockwise (0 follows 4) and 0.5 of moving one point counter-
clockwise. Let Xn (n � 0) denote its location on the circle after
step n. {Xn} is a Markov chain.
(a) Construct the (one-step) transition matrix.
C (b) Use your IOR Tutorial to determine the n-step transition

matrix P(n) for n � 5, 10, 20, 40, 80.
C (c) Use your IOR Tutorial to determine the steady-state probabil-

ities of the state of the Markov chain. Describe how the prob-
abilities in the n-step transition matrices obtained in part (b)
compare to these steady-state probabilities as n grows large.

29.4-1. Given the following (one-step) transition matrices of a
Markov chain, determine the classes of the Markov chain and
whether they are recurrent.

(a) P �

⎤⎥
⎥
⎥
⎥
⎦

3
�
2
3

�

0

0

0

2
�
1
3

�

0

0

0

1

0

0

1

1

0

0

1

0

0

⎡
⎢
⎢⎢
⎢
⎣

State

0

1

2

3
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(b) P �

29.4-2. Given each of the following (one-step) transition matrices
of a Markov chain, determine the classes of the Markov chain and
whether they are recurrent.

(a) P �

(b) P �

29.4-3. Given the following (one-step) transition matrix of a
Markov chain, determine the classes of the Markov chain and
whether they are recurrent.

P �

29.4-4. Determine the period of each of the states in the Markov
chain that has the following (one-step) transition matrix.

P �

29.4-5. Consider the Markov chain that has the following (one-
step) transition matrix.

P �

⎤
⎥
⎥
⎥
⎥
⎥
⎦

4

0

0
�
2
5

�

0

0

3
�
1
5

�

�
1
4

�

�
1
1
0
�

1
�
1
3

�

2

0
�
1
2

�

0

0
�
1
3

�

1
�
4
5

�

0
�
1
2

�

0

0

0

0
�
1
4

�

0

0
�
1
3

�

⎡
⎢
⎢
⎢
⎢
⎢
⎣

State

0

1

2

3

4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

5
�
1
3

�

0

0

0

0

0

4

0

0

0
�
3
4

�

0
�
1
2

�

3
�
2
3

�

0

0

0

0

0

2

0

1

0

0

1

0

1

0

0

0
�
1
4

�

0
�
1
2

�

0

0

0

1

0

0

0

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

State

0

1

2

3

4

5

⎤
⎥
⎥
⎥
⎥
⎥
⎦

4

0

0

0
�
1
4

�

�
3
4

�

3

0

0

0
�
3
4

�

�
1
4

�

2

0

0
�
1
3

�

0

0

1
�
3
4

�

�
1
4

�

�
1
3

�

0

0

0
�
1
4

�

�
3
4

�

�
1
3

�

0

0

⎡
⎢
⎢
⎢
⎢
⎢
⎣

State

0

1

2

3

4

⎤⎥⎥⎥⎦
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0

0

1

0
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�
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0

0
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1
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�

0

⎡⎢⎢⎢⎣
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1

2

⎤
⎥
⎥
⎥
⎥
⎦

3
�
1
3

�

�
1
3

�
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1
3

�
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�
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�
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�
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�
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3

�
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�

�
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3

�

�
1
3

�

⎡
⎢
⎢
⎢
⎢
⎣
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0
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2

3

⎤
⎥
⎥
⎥
⎥
⎦

3

0

0
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�
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State

0
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2

3

(a) Determine the classes of this Markov chain and, for each class,
determine whether it is recurrent or transient.

(b) For each of the classes identified in part (a), determine the
period of the states in that class.

29.5-1. Reconsider Prob. 29.2-1. Suppose now that the given
probabilities, 0.5 and 0.9, are replaced by arbitrary values, � and
�, respectively. Solve for the steady-state probabilities of the state
of the weather in terms of � and �.

29.5-2. A transition matrix P is said to be doubly stochastic if the
sum over each column equals 1; that is,

�
M

i�0
pij � 1, for all j.

If such a chain is irreducible, aperiodic, and consists of M � 1
states, show that

�j � �
M

1
� 1
�, for j � 0, 1, . . . , M.

29.5-3. Reconsider Prob. 29.3-3. Use the results given in 
Prob. 29.5-2 to find the steady-state probabilities for this Markov
chain. Then find what happens to these steady-state probabilities
if, at each step, the probability of moving one point clockwise
changes to 0.9 and the probability of moving one point counter-
clockwise changes to 0.1.

C 29.5-4. The leading brewery on the West Coast (labeled A) has
hired an OR analyst to analyze its market position. It is particularly
concerned about its major competitor (labeled B). The analyst believes
that brand switching can be modeled as a Markov chain using three
states, with states A and B representing customers drinking beer pro-
duced from the aforementioned breweries and state C representing
all other brands. Data are taken monthly, and the analyst has con-
structed the following (one-step) transition matrix from past data.

What are the steady-state market shares for the two major breweries?

29.5-5. Consider the following blood inventory problem facing a
hospital. There is need for a rare blood type, namely, type AB, Rh
negative blood. The demand D (in pints) over any 3-day period is
given by

P{D � 0} � 0.4, P{D � 1} � 0.3,
P{D � 2} � 0.2, P{D � 3} � 0.1.

Note that the expected demand is 1 pint, since E(D) � 0.3(1)
� 0.2(2) � 0.1(3) � 1. Suppose that there are 3 days between deliv-
eries. The hospital proposes a policy of receiving 1 pint at each
delivery and using the oldest blood first. If more blood is required
than is on hand, an expensive emergency delivery is made. Blood is

A B C

A 0.8 0.15 0.05
B 0.25 0.7 0.05
C 0.15 0.05 0.8

hil23453_ch29_001-036.qxd  1/22/1970  10:53 PM  Page 33

Confirming Pages



34 CHAPTER 29 MARKOV CHAINS

discarded if it is still on the shelf after 21 days. Denote the state
of the system as the number of pints on hand just after a deliv-
ery. Thus, because of the discarding policy, the largest possible
state is 7.
(a) Construct the (one-step) transition matrix for this Markov chain.
C (b) Find the steady-state probabilities of the state of the Markov

chain.
(c) Use the results from part (b) to find the steady-state proba-

bility that a pint of blood will need to be discarded during a
3-day period. (Hint: Because the oldest blood is used first, a
pint reaches 21 days only if the state was 7 and then D � 0.)

(d) Use the results from part (b) to find the steady-state probabil-
ity that an emergency delivery will be needed during the 3-day
period between regular deliveries.

C 29.5-6. In the last subsection of Sec. 29.5, the (long-run) expected
average cost per week (based on just ordering costs and unsatisfied
demand costs) is calculated for the inventory example of Sec. 29.1.
Suppose now that the ordering policy is changed to the following.
Whenever the number of cameras on hand at the end of the week is
0 or 1, an order is placed that will bring this number up to 3. Other-
wise, no order is placed.

Recalculate the (long-run) expected average cost per week un-
der this new inventory policy.

29.5-7. Consider the inventory example introduced in Sec. 29.1,
but with the following change in the ordering policy. If the num-
ber of cameras on hand at the end of each week is 0 or 1, two
additional cameras will be ordered. Otherwise, no ordering will
take place. Assume that the storage costs are the same as given
in the second subsection of Sec. 29.5.
C (a) Find the steady-state probabilities of the state of this Markov

chain.
(b) Find the long-run expected average storage cost per week.

29.5-8. Consider the following inventory policy for the certain prod-
uct. If the demand during a period exceeds the number of items avail-
able, this unsatisfied demand is backlogged; i.e., it is filled when the
next order is received. Let Zn (n � 0, 1, . . . ) denote the amount of
inventory on hand minus the number of units backlogged before or-
dering at the end of period n (Z0 � 0). If Zn is zero or positive, no or-
ders are backlogged. If Zn is negative, then �Zn represents the num-
ber of backlogged units and no inventory is on hand. At the end of
period n, if Zn  1, an order is placed for 2m units, where m is the
smallest integer such that Zn � 2m � 1. Orders are filled immediately.

Let D1, D2, . . . , be the demand for the product in periods 1,
2, . . . , respectively. Assume that the Dn are independent and iden-
tically distributed random variables taking on the values, 0, 1, 2,
3, 4, each with probability �

1
5

�. Let Xn denote the amount of stock on
hand after ordering at the end of period n (where X0 � 2), so that

Xn � � (n � 1, 2, . . .),

when {Xn} (n � 0, 1, . . . ) is a Markov chain. It has only two
states, 1 and 2, because the only time that ordering will take place

if Xn�1 � Dn  1
if Xn�1 � Dn � 1

Xn�1 � Dn � 2m
Xn�1 � Dn

is when Zn � 0, �1, �2, or �3, in which case 2, 2, 4, and 4 units
are ordered, respectively, leaving Xn � 2, 1, 2, 1, respectively.
(a) Construct the (one-step) transition matrix.
(b) Use the steady-state equations to solve manually for the steady-

state probabilities.
(c) Now use the result given in Prob. 29.5-2 to find the steady-

state probabilities.
(d) Suppose that the ordering cost is given by (2 � 2m) if an order

is placed and zero otherwise. The holding cost per period is Zn

if Zn � 0 and zero otherwise. The shortage cost per 
period is �4Zn if Zn  0 and zero otherwise. Find the (long-
run) expected average cost per unit time.

29.5-9. An important unit consists of two components placed in par-
allel. The unit performs satisfactorily if one of the two components
is operating. Therefore, only one component is operated at a time,
but both components are kept operational (capable of being operated)
as often as possible by repairing them as needed. An operating com-
ponent breaks down in a given period with probability 0.2. When this
occurs, the parallel component takes over, if it is operational, at the
beginning of the next period. Only one component can be repaired
at a time. The repair of a component starts at the beginning of the
first available period and is completed at the end of the next period.
Let Xt be a vector consisting of two elements U and V, where U rep-
resents the number of components that are operational at the end of
period t and V represents the number of periods of repair that have
been completed on components that are not yet operational. Thus,
V � 0 if U � 2 or if U � 1 and the repair of the nonoperational com-
ponent is just getting under way. Because a repair takes two peri-
ods, V � 1 if U � 0 (since then one nonoperational component is
waiting to begin repair while the other one is entering its second
period of repair) or if U � 1 and the nonoperational component is
entering its second period of repair. Therefore, the state space con-
sists of the four states (2, 0), (1, 0), (0, 1), and (1, 1). Denote these
four states by 0, 1, 2, 3, respectively. {Xt} (t � 0, 1, . . .) is a Markov
chain (assume that X0 � 0) with the (one-step) transition matrix

P � .

C (a) What is the probability that the unit will be inoperable
(because both components are down) after n periods, for
n � 2, 5, 10, 20?

C (b) What are the steady-state probabilities of the state of this
Markov chain?

(c) If it costs $30,000 per period when the unit is inoperable (both
components down) and zero otherwise, what is the (long-run)
expected average cost per period?

29.6-1. A computer is inspected at the end of every hour. It is found
to be either working (up) or failed (down). If the computer is found
to be up, the probability of its remaining up for the next hour is 0.95.
If it is down, the computer is repaired, which may require more than

⎤
⎥
⎥
⎥
⎥
⎦

3
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0.8

0

0

2

0

0.2

0

0

1
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0
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State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 0 0 �
1
2

� �
1
2

�

3 1 0 0 0

State Condition

0 Good as new
1 Operable—minimum deterioration
2 Operable—major deterioration
3 Inoperable and replaced by a good-as-new machine

1 hour. Whenever the computer is down (regardless of how long it has
been down), the probability of its still being down 1 hour later is 0.5.
(a) Construct the (one-step) transition matrix for this Markov chain.
(b) Use the approach described in Sec. 29.6 to find the �ij (the 

expected first passage time from state i to state j) for all i and j.

29.6-2. A manufacturer has a machine that, when operational at
the beginning of a day, has a probability of 0.1 of breaking down
sometime during the day. When this happens, the repair is done
the next day and completed at the end of that day.
(a) Formulate the evolution of the status of the machine as a Markov

chain by identifying three possible states at the end of each day,
and then constructing the (one-step) transition matrix.

(b) Use the approach described in Sec. 29.6 to find the �ij (the
expected first passage time from state i to state j) for all i and
j. Use these results to identify the expected number of full
days that the machine will remain operational before the next
breakdown after a repair is completed.

(c) Now suppose that the machine already has gone 20 full days
without a breakdown since the last repair was completed. How
does the expected number of full days hereafter that the machine
will remain operational before the next breakdown compare with
the corresponding result from part (b) when the repair had just
been completed? Explain.

29.6-3. Reconsider Prob. 29.6-2. Now suppose that the manufac-
turer keeps a spare machine that only is used when the primary
machine is being repaired. During a repair day, the spare machine
has a probability of 0.1 of breaking down, in which case it is repaired
the next day. Denote the state of the system by (x, y), where x and y,
respectively, take on the values 1 or 0 depending upon whether the
primary machine (x) and the spare machine (y) are operational (value
of 1) or not operational (value of 0) at the end of the day. [Hint:
Note that (0, 0) is not a possible state.]
(a) Construct the (one-step) transition matrix for this Markov chain.
(b) Find the expected recurrence time for the state (1, 0).

29.6-4. Consider the inventory example presented in Sec. 29.1 except
that demand now has the following probability distribution:

P{D � 0} � �
1
4

�, P{D � 2} � �
1
4

�,

P{D � 1} � �
1
2

�, P{D � 3} � 0.

The ordering policy now is changed to ordering just 2 cameras at
the end of the week if none are in stock. As before, no order is placed
if there are any cameras in stock. Assume that there is one camera
in stock at the time (the end of a week) the policy is instituted.
(a) Construct the (one-step) transition matrix.
C (b) Find the probability distribution of the state of this Markov

chain n weeks after the new inventory policy is instituted,
for n � 2, 5, 10.

(c) Find the �ij (the expected first passage time from state i to
state j) for all i and j.

C (d) Find the steady-state probabilities of the state of this Markov
chain.

(e) Assuming that the store pays a storage cost for each camera
remaining on the shelf at the end of the week according to the
function C(0) � 0, C(1) � $2, and C(2) � $8, find the long-
run expected average storage cost per week.

29.6-5. A production process contains a machine that deteriorates
rapidly in both quality and output under heavy usage, so that it is
inspected at the end of each day. Immediately after inspection, the
condition of the machine is noted and classified into one of four
possible states:

The process can be modeled as a Markov chain with its (one-step)
transition matrix P given by

C (a) Find the steady-state probabilities.
(b) If the costs of being in states 0, 1, 2, 3, are 0, $1,000, $3,000,

and $6,000, respectively, what is the long-run expected aver-
age cost per day?

(c) Find the expected recurrence time for state 0 (i.e., the ex-
pected length of time a machine can be used before it must be
replaced).

29.7-1. Consider the following gambler’s ruin problem. A gambler
bets $1 on each play of a game. Each time, he has a probability p
of winning and probability q � 1 � p of losing the dollar bet. He
will continue to play until he goes broke or nets a fortune of T dol-
lars. Let Xn denote the number of dollars possessed by the gambler
after the nth play of the game. Then

Xn�1 � �
Xn�1 � Xn,

{Xn} is a Markov chain. The gambler starts with X0 dollars, where
X0 is a positive integer less than T.
(a) Construct the (one-step) transition matrix of the Markov chain.
(b) Find the classes of the Markov chain.

for 0  Xn  T,

for Xn � 0, or T.

with probability p
with probability q � 1� p

Xn � 1
Xn � 1
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36 CHAPTER 29 MARKOV CHAINS

(c) Let T � 3 and p � 0.3. Using the notation of Sec. 29.7, find
f10, f1T, f20, f2T.

(d) Let T � 3 and p � 0.7. Find f10, f1T, f20, f2T.

29.7-2. A video cassette recorder manufacturer is so certain of its
quality control that it is offering a complete replacement warranty
if a recorder fails within 2 years. Based upon compiled data, the
company has noted that only 1 percent of its recorders fail during
the first year, whereas 5 percent of the recorders that survive the
first year will fail during the second year. The warranty does not
cover replacement recorders.
(a) Formulate the evolution of the status of a recorder as a Markov

chain whose states include two absorption states that involve
needing to honor the warranty or having the recorder survive
the warranty period. Then construct the (one-step) transition
matrix.

(b) Use the approach described in Sec. 29.7 to find the probabil-
ity that the manufacturer will have to honor the warranty.

29.8-1. Reconsider the example presented at the end of Sec. 29.8.
Suppose now that a third machine, identical to the first two, has
been added to the shop. The one maintenance person still must
maintain all the machines.
(a) Develop the rate diagram for this Markov chain.
(b) Construct the steady-state equations.
(c) Solve these equations for the steady-state probabilities.

29.8-2. The state of a particular continuous time Markov chain is de-
fined as the number of jobs currently at a certain work center, where
a maximum of two jobs are allowed. Jobs arrive individually. When-
ever fewer than two jobs are present, the time until the next arrival has
an exponential distribution with a mean of 2 days. Jobs are processed
at the work center one at a time and then leave immediately. Pro-
cessing times have an exponential distribution with a mean of 1 day.
(a) Construct the rate diagram for this Markov chain.
(b) Write the steady-state equations.
(c) Solve these equations for the steady-state probabilities.
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