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Some de�nitions

Experiment: is any procedure that can be in�nitely repeated and has a well-de�ned set of outcomes.
Example: We �ip a coin 2 times and count the number of times the coin turns up heads.
Random variable: is a variable that takes on numerical values and has an outcome that is determined by an
experiment.
Example: X =�number of Heads�.

Discrete random variable

Discrete random variable: is a random variable that takes only a discrete set of values.
Example: We �ip a balanced coin 2 times and de�ne a random variable X =�number of Heads�. We
obtain:

X Possible Outcomes Probability
0 (Tails, Tails) 1=4
1 (Tails, Heads)(Heads, Tails) 2=4
2 (Heads, Heads) 1=4

Remark: There are 4 possible outcomes and all are equally likely.
In the example X takes 3 possible values (0; 1; 2) and the associated probabilities are (1=4; 1=2; 1=4)

respectively. In general a discrete random variable takes k possible values (x1; x2; :::; xk) with associated
probabilities (p1; p2; :::; pk) respectively. The probabilities are de�ned by

pj = P (X = xj) ; j = 1; 2; :::; k;

where
0 � pj � 1

and
p1 + p2 + :::+ pk = 1:

� The probability distribution of a discrete random variable is the list of all the possible values of the
variable and the probability that each value occur.

� The cumulative probability distribution is the probability that the random variable is less than or equal
to a particular value: P (X � x) .

Example (cont):

X Probability distribution Cumulative probability distribution
0 1=4 1=4
1 2=4 3=4
2 1=4 1

1



Some well known discrete random variables

Bernoulli Random variable

We �ip a coin and de�ne a random variable

X =

�
1 if Heads
0 if Tails

Let us denote
P(Heads) = P(X = 1) = p

Then
P(Tails) = P(X = 0) = 1� p:

This can be written as
P(X = x) = px(1� p)1�x; x = 0; 1:

If the coin is balanced p = 0:5:
A random variable that is de�ned as

X =

�
1 with probability p
0 with probability 1� p

is known as a Bernoulli Random variable, named after the Swiss mathematician Jacob Bernoulli (1654-1705).
One outcome is arbitrarily labeled a �success� (denoted X = 1) and the other a �failure� (denoted

X = 0).

The Binomial random variable.

The Binomial random variable is de�ned as the number of successes in r trials, each of which has the
probability of success p:
Remark: If r = 1 the Binomial random variable corresponds to the Bernoulli random variable.
2nd case: r = 2; for instance X = number of boys in a family of 2 children.
Let us calculate the probability of 0; 1; 2 boys in 2 births and de�ne P(boy) = p
We can have 4 possible cases:

(boy; boy) ; (boy; girl) ; (girl; boy) ; (girl; girl)

Hence:

� P(X = 0) = P (girl; girl) = (1� p)2

� P(X = 1) = P((boy; girl) or (girl; boy)) = P (boy; girl) + P (girl; boy) = 2p(1� p)

� P(X = 2) = P (girl; girl) = p2:

3th case: r = 3; for instance X = number of boys in a family of 3 children.
Let us calculate the probability of 0; 1; 2; 3 boys in 3 births.
We can have 8 cases:

(boy; boy; boy) ; (boy; girl; boy) ; (girl; boy; boy) ; (girl; girl; boy) ;

(boy; boy; girl) ; (boy; girl; girl) ; (girl; boy; girl) ; (girl; girl; girl) :

Hence:

� P(X = 0) = P (girl; girl; girl) = (1� p)3:

� P(X = 1) = P((girl; girl; boy) or (boy; girl; girl) or (girl; boy; girl)) = 3(1� p)2p:

� P(X = 2) = P((boy; girl; boy) or (girl; boy; boy) or (boy; boy; girl)) = 3(1� p)p2:
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� P(X = 3) = P (boy; boy; boy) = p3:

General case: X = number of boys in a family of r children. One can show that

P(X = x) = rCx� px(1� p)r�x

where

rCx =
r!

x!(r � x)!
is the number of x combinations from a set with r elements.
and n! = n� (n� 1)� :::� 2� 1
n! is read �n factorial

The Poisson Distribution

The Poisson distribution, named after the French mathematician Simeon-Denis Poisson (1781-1840), is
applicable in many situations where rare events occur. The Poisson distribution describes the number of
occurrences within a randomly chosen unit of time or space. For example, within a minute, hour, day, square
foot, or linear mile.
Examples:

� in the inspection and quality control of manufactured goods where the proportion of defective articles
in a large lot can be expected to be small.

� number of customers arriving at a cash point in a given minute.

� number of �le server virus infections at a data center during a 24-hour period.

Famous example: Bortkiewiz in 1898 used this distribution to study the number of soldiers killed by
horse-kicks each year in each corps in the Prussian cavalry.
The Poisson model�s only parameter is � (Greek letter �lambda�): � represents the mean number of

events per unit of time or space.
The Poisson probability function is a discrete function de�ned for non-negative integers x. The Poisson

distribution with parameter � > 0, it is de�ned by

P (X = x) =
�xe��

x!

Continuous random variable:

Continuous random variable: are random variables that take a continuum of possible values. Events are
intervals and probabilities are areas underneath smooth curves. A single point has no probability
Associated with a continuous random variable there is usually a non-negative function known a probability

density function f(x) that provides information on the likely outcomes of the random variable. Associated
with a continuous random variable there is usually a non-negative function known a probability density
function f(x) (PDF) that provides information on the likely outcomes of the random variable. The entire area
under any PDF must be 1: Continuous probability functions are smooth curves. Unlike discrete distributions,
the area at any single point = 0.
This function satis�es

R +1
�1 f(x)dx = 1:

When computing probabilities for continuous random variables it is easiest to work with cumulative

distribution functions: (cdf) F (x) = P (X � x) =
Z x

�1
f (x) dx:

Example: Uniform Continuous Distribution If X is a random variable that is uniformly distributed between
a and b, its PDF has constant height:

f (x) =
1

b� a; a � x � b
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The cumulative distribution function is

F (x) =

8<:
0 x < a
x�a
b�a a � x � b
1 x > b

Mean and Variance of a distribution

Discrete random variables.

Expected Value of a random variable: The expected value of a random variable, denoted as E (X) or �X ,
also known as its population mean, is the weighted average of its possible values, the weights being the
probabilities attached to the values

�X = E (X) = x1p1 + x2p2 + :::+ xkpk =
Xk

i=1
xipi:

Expected value of a function of a random variable:

E (g (X)) = g (x1) p1 + g (x2) p2 + :::+ g (xk) pk

=
Xk

i=1
g (xi) pi:

The Population Variance: The expected value of the squared deviation from the population mean

�2X = V ar (X) = E[(X � �X)2] =
Xk

i=1
(xi � �X)

2
pi:

Standard deviation:
�X =

p
V ar (X):

Continuous random variable

Expected value

�X = E(X) =

Z +1

�1
xf(x)dx

Expected value

E (g (X)) =

Z +1

�1
g(x)f(x)dx:

The Population Variance: The expected value of the squared deviation from the population mean

�2X = V ar (X) = E[(X � �X)2] =
Z +1

�1
(x� �X)

2
f(x)dx:

Standard deviation:
�X =

p
V ar (X):

Properties of Expected values:

1. E(X � �X) = E (X)� �X = 0:

2. If c is a constant, E (c) = c:

3. If c is a constant, E (cg (X)) = cE (g (X)) :

4. Given 2 functions u (X) and v (X) ; E [u (X) + v (X)] = E [u (X)] + E [v (X)] :

Properties of the Variance:

1. �2 = V ar (X) = E
�
X2
�
� �2X :
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2. If c is a constant, V ar (c) = 0:

3. If a and b are constants, V ar (a+ bX) = b2V ar (X) :

Examples:

1. Bernoulli random variable with parameter p : E(X) = p; V ar(X) = p(1� p):

2. Binomial random variables with parameters p and r : E(X) = rp; V ar(X) = rp(1� p):

3. Poisson random variable with parameter �: E(X) = �; V ar(X) = �.

4. Uniform random variable U(a; b): E(X) = a+b
2 ; V ar(X) =

(b�a)2
12 .

Other Moments

Skewness

skewness =
E
�
(X � �X)3

�
�3X

It is a measure of asymmetry of a distribution.
Symmetric distribution:

skewness = 0
Asymmetric distribution:

skewness 6= 0

Kurtosis

kurtosis =
E
�
(X � �X)4

�
�4X

It is a measure of mass in tails
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Joint probability function:

Probability functions de�ned over a pair of random variables (X;Y ) are denoted as joint probability functions:
In the discrete case we have px;y = P (X = x; Y = y) whereX

x

X
y

px;y = 1:

In the continuous case we have the joint density function f(x; y); whereZ +1

�1

Z +1

�1
f(x; y)dxdy = 1:

Marginal distribution function:

The marginal distribution function is another name for the distribution function and it can be computed
from the joint distribution. The marginal probability can be computed in the following way. If X can take
k di¤erent values x1; :::; xk

P (Y = y) =
Xk

i=1
P (X = xi; Y = y) :

In the continuous case

fY (y) =

Z +1

�1
f(x; y)dx

Independence of random variables:

Two random variables X and Y are independent if and only if

P (X = x; Y = y) = P (X = x)P (Y = y) :

In the continuous case
f (x; y) = fX(x)fY (y):

where fX(x) and fY (y) are the density functions of X and Y respectively.

Expected values of functions of random variables

� E[g(X;Y )] =
( P

x

P
y g(x; y)px;y in the discrete caseR +1

�1
R +1
�1 g(x; y)f(x; y)dxdy in the continuous case

Remark: If X and Y are independent, E [XY ] = E (X)E (Y ) :
Covariance:

Cov (X;Y ) = �XY = E [(X � �X) (Y � �Y )]

Properties:

� Cov (X;Y ) = E(XY )� E(X)E(Y ):

� If X and Y are independent Cov (X;Y ) = 0:

� If Y = bZ, where b is constant,
Cov (X;Y ) = bCov (X;Z) :

� If Y = V +W ,
Cov (X;Y ) = Cov (X;V ) + Cov (X;W ) :

� If Y = b, where b is constant,
Cov (X;Y ) = 0:
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� If Y = V +W;
V ar (Y ) = V ar (V ) + V ar (W ) + 2Cov (V;W ) :

Correlation Coe¢ cient:

�X;Y =
Cov (X;Y )p

V ar (X)V ar (Y )
:

Properties:

� �1 � �X;Y � 1:

If Y = bX + a; where b and a are constants

� �X;Y = 1 if b > 0:

� �X;Y = �1 if b < 0:

� �X;Y = 0 if b = 0:

Conditional distribution:

A conditional distribution of a random variable Y given another variable X taking a speci�c value is denoted
as

P (Y = yjX = x) =
P (Y = y;X = x)

P (X = x)
:

in the continuous case

f(yjx) = f(y; x)

fX(x)

Conditional Expectation: The conditional expectation of a random variable Y given another variable X
taking a speci�c value is de�ned (if Y takes l possible values y1; :::; yl) as

E [Y jX = x] =

8<:
Pl

i=1 yiP (Y = yijX = x)
+1R
�1

yf(yjx)dx :

Law of iterated Expectations
E(Y ) = EX(E [Y jX])

The redconditional variance is de�ned as

V ar [Y jX = x] =

8<:
Pl

i=1(yi � E [Y jX = x])2P (Y = yijX = x)
+1R
�1

(y � E [Y jX = x])2f(yjx)dy

Review of some basic distributions

Normal distribution

A random variable X is said to have a normal distribution, i.e. X � N
�
�; �2

�
if it has a density function

given by:

p (x) =
�
2��2

�� 1
2 exp

 
� (x� �)

2

2�2

!
; (1)

where � and �2 are the mean and variance of X, respectively.
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Standard Normal Distribution

Any normal variable can be transformed to a standard normal Z de�ned as Z = X��
� , so that Z is N (0; 1)

with density function

� (z) = (2�)
� 1
2 exp

�
�1
2
z2
�
: (2)

95% of area underneath � (z) lies between -2 and 2, almost all between -3 and 3. The distribution function
for � (z) is

� (z) =

zZ
�1

� (w) dw =

zZ
�1

(2�)
� 1
2 exp

�
�1
2
w2
�
dw:

Distributions derived from the normal

The �2 distribution

If Z � N (0; 1) then Z2 is distributed as
Z2 � �2 (1) ;

i.e. a chi-squared (�2) with 1 degree of freedom (d.o.f.). More generally, consider k independent random
variables Zi; i = 1; : : : ; k with standard normal distribution, that is Zi � N (0; 1) ; i = 1; : : : ; k; then

X =
kX
i=1

Z2i � �2 (k) ;

i.e. a �2 distribution with k d.o.f.
Properties:

� Expected Value: E(X) = k

� Variance V ar(X) = 2k:

� Skewness =
p
8=k

� Kurtosis = 12=k

The Student�s t distribution

The Student�s t distribution with k degrees of freedom is obtained as the ratio between a standard normal
and the square root of a �2 (k) divided by the number of degrees of freedom k. Formally if X � N

�
�; �2

�
,

� � �2 (k) and X and � are independent then

T =
(X��)
�p
�
k

=

p
k (X � �)
�
p
�

� t (k) ;

i.e. a Student t with k d.o.f.
Properties:

� Expected Value: E(T ) = 0; if k > 1:

� Variance V ar(T ) = k(k � 2) if k > 2:

� skewness = 0; k > 3:

� kurtosis = 6
k�4 ; k > 4:
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The F distribution

The F distribution with k1 and k2 degrees of freedom (where k1 denotes the degrees of freedom of the
numerator and k2 those of the denominator) is obtained as the distribution of the ratio of two independent
random variables with �2 distribution, each divided by its number of degrees of freedom. Formally, if
�1 � �2 (k1) and �2 � �2 (k2), and �1 and �1 are independent, then

F =
�1=k1
�2=k2

� F (k1; k2) ;

i.e. an F with k1 and k2 d.o.f. Notice that:

� The F distributed random variable can only take positive values (since it�s the ratio of two random
variables that can only take positive values).

� t (k)2 = F (1; k) :

� If F � F (k1; k2), then k1F
a� �2 (k1)

� Expected Value: E(F ) = k2
k2 � 2

, provided k2 > 2:

� Variance V ar (F ) = 2k22 (k2 + k1 � 2)
k1 (k2 � 2)2 (k2 � 4)

, provided k2 > 4:
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