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Notes on Statistical inference

Populations and parameters

Population: A group of entities of interest.
We are usually interested in knowing the value of a parameter that measures an aspect of the population.
Example: Mean earnings of all women that recently graduated from college. Here the population is all

women that recently graduated from college and the parameter is mean earnings.
Suppose we wish to estimate its unknown population mean �X = E(X). Usually the population size is

extremely large, so it is not practical to collect information on all individuals of the population. So how can
we estimate this parameter?

Sampling and estimators

We obtain a sample of n independent observations (X1; :::; Xn) drawn from the population at random (known
as random sample). Each member of the population has equal chance of being included in the sample.
Prior to the actual drawings from the populations, the Xi are random quantities. We know that they

will be generated randomly from the distribution for X, but we do not know their values in advance.
Once we have taken the sample we will have a set of numbers (x1; :::; xn). This is called a realization.

The lower case is to emphasize that these are numbers, not variables.
Having obtained a sample of n observations (X1; :::; Xn), we plan to use them with a mathematical

formula to estimate the unknown population mean �X . This formula is known as an estimator. We are
going to use the analogy principle to propose an estimator for �X :
Analogy principle: As a population parameter is a feature of the population, to estimate it, use the

corresponding feature of the sample.
Thus as �X is the mean of the population, a natural estimator for �X is the sample mean

X =
1

n

Xn

i=1
Xi:

An estimator is a random variable because it depends on the random quantities (X1; :::; Xn).
The actual number that we obtain, given the realization (x1; :::; xn), is known as our estimate:

x =
1

n

Xn

i=1
xi:

Example: City Unemployment Rates: Suppose that we obtain the following sample of unemployment rates
for 10 cities in the United States.

City 1 2 3 4 5 6 7 8 9 10
Unemployment 5:1 6:4 9:2 4:1 7:5 8:3 2:6 3:5 5:8 7:5

Rate
The estimate for the average city unemployment rate is

x =
1

10

X10

i=1
xi = 6:0

Properties of Estimators
The estimator suggested for the mean of the population �X was

X =
1

n

Xn

i=1
Xi:

Why should we use rather than some other estimator?
Alternative estimators:
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� X1 (the �rst observation).

� Maybe unequal weights �not simple average.

Which criteria can we use for choosing an estimator?

Criteria for an estimator

Unbiasedeness

Let us denote by � an unknown parameter that we are interested in estimating (for example the mean of the
population �X) and �̂ its estimator (for instance, X).

De�nition 1 An estimator is said to be an unbiased estimator of � if

E(�̂) = �:

If this equality does not hold, the estimator is said to be biased and the bias is E(�̂)� �:

Example: X is an unbiased estimator of �X ;

~S2 =
1

n

Xn

i=1

�
Xi �X

�2
is a biased estimator of the population variance �2X with bias ��2X=n:
To see this notice that

~S2 =
1

n

Xn

i=1
(Xi � �X)

2 �
�
X � �X

�2
Taking expectations we have

E[ ~S2] =
1

n

Xn

i=1
V ar(Xi)� V ar(X)

= �2X(1� 1=n):

E¢ ciency

De�nition 2 Let �̂1 and �̂2 be unbiased estimators of the parameter �: If

V ar(�̂1) < V ar(�̂2)

then we say that �̂1 is more e¢ cient than �̂2.

How can compare estimators that are not unbiased?
A possible solution is to compute the mean squared error (MSE)

MSE
�
�̂
�
= E[

�
�̂ � �

�2
]

It is possible to show that

MSE
�
�̂
�
= V ar

�
�̂
�

| {z }
Variance

+ [E(�̂)� �]2| {z }
Bias2

:
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Large Sample properties of estimators

In some cases an estimator does not have the desirable properties when the sample size is small, but when
the sample is large some of the desirable properties might hold. As we let the sample size go to in�nite we
call these properties asymptotic properties.
Consistency is a minimal requirement for an estimator:

�If you can�t get it right as n goes to in�nity, you shouldn�t be in this business.�
C.W.Granger, 2003, Nobel Prize Winner in Economics

Notice that there are estimators that are unbiased but are not consistent.
Example: if we have a sample (Y1; :::; Yn) and we would like to estimate the population mean � = E(Y ):

We consider the �rst observation Y1 as an estimator for the population mean. Then, E (Y1) = � (and therefore
it is an unbiased estimator). However, it can be shown that Y1 is not a consistent estimator of �:

De�nition 3 An estimator �̂ is said to be a consistent estimator of � if

lim
n!1

P(� � " < �̂ < � + ") = 1;

for all " > 0: This property is often expressed as plim �̂ = � or �̂
p! �: If �̂ is not consistent for �; we say

that it is inconsistent.

Proposition 4 If
lim
n!1

E
�
�̂
�
= �

and
lim
n!1

V ar
�
�̂
�
= 0;

then plim �̂ = �:

Properties of X:

1. E
�
X
�
= �X :

2. V ar
�
X
�
= V ar (X) =n:

3. plim X = �X : (Law of Large Numbers)

Remark: An estimator can be biased and consistent.
Example: eX = 1

n+1

Pn
i=1Xi:

Remarks on Consistency:
In practice we deal with �nite samples, not in�nite ones. So why should we be interested in whether an

estimator is consistent?

1. Sometimes it is impossible to �nd an estimator that is unbiased for small samples. If you can �nd one
that is at least consistent, that may be better than having no estimate at all.

2. Often we are unable to say anything at all about the expectation of an estimator. The expected value
can be applied in relatively simple contexts.

Convergence in distribution
If a random variable X has a normal distribution, its sample mean will also have a normal distribution.

This fact is useful to test hypothesis on the mean of the population �X : However, what happens if X is not
normally distributed?
Assume that Tn is a stochastic sequence (example: Tn = X) that has cumulative distribution function

Fn(x):
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De�nition 5 If there is a �xed cumulative distribution function G(x) such that

lim
n!1

Fn(x) = G(x)

for all x at which G(x) is continuous we say the Tn converges in distribution to G(:) and write Tn
D! G(:)

where the symbol D! reads �convergence in distribution�.

The following Theorem plays a central role in statistics.
Central Limit Theorem: If the Xi in the sample are all drawn independently from the same distribu-

tion (the distribution of X), and provided that this distribution has �nite variance �2X > 0, then distribution
of

Zn =

p
n
�
X � �X

�
�X

will converge in distribution to a standard normal distribution as n tends to in�nity and we write Zn
D!

N(0; 1).

Con�dence Intervals

A point estimate by itself does not provide enough information about how close the estimate is likely to be
to the population parameter.
Example: Suppose that a researcher would like to know the mean operating life of light bulbs and on the
basis of a random sample of 10 observations �nds that the mean operating life in the sample is 300h.

� How are we to know whether or not this is close to the mean operating life in the population of light
bulbs?

� Since we do not know the population value we cannot know how close an estimate is for a particular
sample.

� The questions are partially answered by constructing a con�dence interval.

Con�dence Intervals for Normal populations

The concept of con�dence interval will be illustrated with an example:
Suppose that the population has a N (�; 1) distribution and let (X1; :::; Xn) be a a random sample from

this population. In this case the sample average X has normal distribution with mean � and variance 1=n :
X � N (�; 1=n) : It follows that

Z =
X � �
1=
p
n
� N (0; 1)

and consequently

P
�
�1:96 < X � �

1=
p
n
< 1:96

�
= 0:95;

which is equivalent to
P
�
X � 1:96=

p
n < � < X + 1:96=

p
n
�
= 0:95:

This equation tells us that the probability that the random interval (X�1:96=
p
n;X+1:96=

p
n) contains

the population mean is 95%: This information allows us to construct a con�dence interval which can be
obtained by replacing the estimator by the estimate (x� 1:96=

p
n; x+ 1:96=

p
n):

Interpretation: If independent samples are taken repeatedly from the same population, and the con-
�dence interval is calculated for each sample in the manner described above, then 95% of the intervals will
include the true parameter �: Our con�dence interval is only one of these.
Con�dence interval when the variance is known.
Suppose now that the population has a N

�
�; �2

�
distribution and let (X1; :::; Xn) be a a random sample

from this population.
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In this case the sample average X has normal distribution with mean � and variance �2=n : X �
N
�
�; �2=n

�
: It follows that

Z =
X � �
�=
p
n
� N (0; 1) :

Consequently

P
�
�1:96 < X � �

�=
p
n
< 1:96

�
= 0:95;

which is equivalent to
P
�
X � 1:96�=

p
n < � < X + 1:96�=

p
n
�
= 0:95:

In this case the con�dence interval is given by (x� 1:96�=
p
n; x+ 1:96�=

p
n):

One can replace � by an estimator the sampling standard deviation S where :

S2 =
1

n� 1
Xn

i=1

�
Xi �X

�2
is the Sampling Variance.
However

T =
X � �
S=
p
n

has no longer the standard normal distribution.
T has the t-Student distribution with n-1 degrees of freedom, denoted as t (n� 1). Let us choose the

value c such that
P (T < c) = 0:975;

which is equivalent to choosing c such that P (�c < T < c) = 0:95 (this can be done using the Tables for the
t(n� 1) distribution in the book) which is equivalent to

P
�
X � cS=

p
n < � < X + cS=

p
n
�
= 0:95:

In this case to obtain the con�dence intervals we replace X and S by their estimates and obtain (x �
cs=
p
n; x+ cs=

p
n):

More generally the 100(1 � �)% con�dence interval is given by (x � c�=2s=
p
n; x + c�=2s=

p
n); where

c�=2 is such that
P
�
T < c�=2

�
= 1� �=2:

Con�dence Intervals for Nonnormal populations

In some applications the distribution of the population is not normal. (Example: X � Bernoulli(p)): How
can we construct a con�dence interval in this case?
If the sample size is large one can use the following result given by the Central Limit Theorem

Z =

p
n
�
X � �X

�
�X

D! N (0; 1) :

Remark: One can replace � by an estimator the sampling standard deviation S =
q

1
n�1

Xn

i=1

�
Xi �X

�2
and use statistic

T =

p
n
�
X � �X

�
S

D! N (0; 1)

Remark: If X � N
�
�; �2

�
recall that �X = � and T � t (n� 1). This is a result valid only for normal

populations and �nite n. For large n the t (n� 1) distribution is close to N (0; 1) distribution.
Thus we construct con�dence intervals in the following way:

� T has the N(0; 1) distribution for large n: Choose the value z�=2 such that

�
�
z�=2

�
= 1� �=2;

where � is the cumulative distribution function of the standard normal distribution (this can be done
using the Tables for the N(0; 1) distribution in the book).
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� For large n

P
�
�z�=2 <

X � �
S=
p
n
< z�=2

�
' 1� �;

which is equivalent to

P
�
X � z�=2S=

p
n < � < X + z�=2S=

p
n
�
' 1� �:

� In this case to obtain the con�dence intervals we replace X and S by their estimates and obtain
(x� z�=2s=

p
n; x+ z�=2s=

p
n):

Hypothesis testing

Example: Suppose that there are 2 candidates in an election, A and B. The Candidate A is reported to
have received 42% and candidate B 58% of the votes. Candidate A thinks that the election was rigged and
hires a consultancy agency to investigate it.
The consultancy agency obtains a sample of 100 voters and in the sample 53% voted for candidate A.

Should candidate A conclude that the election was a fraud? Notice that there is some uncertainty associate
with the sample estimate of 53%. How strong is the sample evidence against the o¢ cial reported percentage
of 42%?
One way to test this is to proceed is to use a hypothesis test.
Hypothesis testing consists in the following steps:

1. State the null hypothesis H0;

2. State the alternative hypothesis H1;

3. Choose the signi�cance level;

4. Select a statistical test and compute the observed test statistic;

5. Find the critical value of the test statistic. Compare the critical value with the observed test statistic
and decide to reject or not reject H0:

We can commit two types of errors:

� Type I Error - We reject the null hypothesis when it is true.

� Type II Error - We accept the null hypothesis when it is false.

Hypothesis test
Actual Situation

Decision H0 is true H0 is false
Accept H0 Correct Decision (1� �) Type II Error (�)
Reject H0 Type I Error (�) Correct Decision (1� �)

The signi�cance level (or simply the level) is the probability of Type I error. Symbolically,

P (Reject H0jH0) = �:

Once we choose � we would like to to minimize the probability of Type II error. Equivalently, de�ning
the power of a test as the probability of rejecting H0 when it is false, we would like to maximize (1� �) :
Generally power declines as the signi�cance level declines.
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Testing hypothesis about the mean in a normal population.

1- State the null hypothesis
H0 : � = �0:

2- State the alternative hypothesis
H1 : � > �0

(one sided alternative) or
H1 : � < �0

(one sided alternative) or
H1 : � 6= �0

(two sided alternative).
3- Choose the signi�cance level: Usually we choose � as 5%; 1% or 10%:
4- Select a statistical test and compute the observed test statistic: If the population is normal, we can
consider the statistic

T =
X � �0
S=
p
n
� t (n� 1) :

Compute its actual value in the sample tact = x��0
s=
p
n
:

5- Find the critical value of the test statistic. Compare the critical value with the observed test statistic and
decide to reject or not reject H0:

� If the alternative hypothesis is H1 : � > �0 a simple procedure to decide is the following: Choose the
critical value c� such that

P (T < c�) = 1� �:

Rejection rule is: reject H0 if tact > c� :

� If the alternative hypothesis is H1 : � < �0; choose the critical value c� such that

P (T < c�) = 1� �:

the rejection rule is: reject H0 if tact < �c� :

� If the alternative hypothesis is H1 : � 6= �0 we choose the critical level c1��=2 such that

P
�
T < c�=2

�
= 1� �=2

Rejection rule: reject H0 if jtactj > c�=2: :

We can use also the concept of p-value to de�ne rejection rules for hypotheses.
P-value: The p-value is the largest signi�cance level at which we could carry out a test and still fail to
reject the null hypothesis. Mathematically:

� If the alternative hypothesis is H1 : � > �0,

p� value = P
�
T > tact

�
:

� If the alternative hypothesis is H1 : � < �0,

p� value = P
�
T < tact

�
:

� If the alternative hypothesis is H1 : � 6= �0

p� value = P
�
jT j > jtactj

�
:
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Rejection rule:If p� value < � we reject the null hypothesis.
Remark: As in the case of the con�dence intervals if the population is not normal the if the sample size is
large one can invoke the Central Limit Theorem. The mechanism of hypothesis testing for population means
is similar to the one described before. To test hypothesis one can use the statistic

Z =

p
n
�
X � �X

�
�X

D! N (0; 1)

or

T =

p
n
�
X � �X

�
S

D! N (0; 1)

The critical values should be obtained using the tables of the standard normal distribution.

The Relationship between Con�dence Intervals and Hypothesis testing

Con�dence Intervals can be used for hypothesis testing for two-sided alternatives (H1 : � 6= �0).
Suppose we construct a 100 (1� �)% con�dence interval for �. Then if the hypothesized value of � under

H0 is not in the con�dence interval, then H0 : �X = �0 is rejected against H1 : � 6= �0 at �% level.
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