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Elements of Matrix Algebra

Vectors

A vector is an ordered set of numbers either organised usually in a column. Suppose a is a (n � 1) vector
(also written n� vector) with typical element ai; then we write

a =

26664
a1
a2
...
an

37775
� A scalar is de�ned as a (1� 1) vector.

� De�ne 0n as being the (n� 1) vector of zeros (every element of the vector equals zero). This is called
the null vector.

� Write a 6= 0n if a has at least one non-zero element.

� The transpose of a is denoted a0, the (1� n) vector corresponding to a row of n numbers

a0 =
�
a1 a2 ::: an

�
Thus a0 is a row vector. Sometimes a row vector is written as a0 = (a1; a2; :::; an), thus the column
vector is a = (a1; a2; :::; an)0:

� Scalar, dot or inner product: If a and b are (n� 1) vectors:

a0b = [a1 a2 � � � an]

26664
b1
b2
...
bn

37775 =
nX
i=1

aibi = b
0a

� The vectors a and b are orthogonal if a0b = 0

� For any (n� 1) vector a; except for the null vector a0a > 0

� For the (n� 1) vectors a and b, we write a > b if ai > bi for all i = 1; :::; n:

� The length or Euclidean norm of a; (n� 1) is de�ned as

kak =

vuut nX
i=1

a2i :

If b is also a (n� 1) vector the distance between a and b is

ka� bk =

vuut nX
i=1

(ai � bi)2:
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Matrices

A rectangular array of numbers is called a matrix. A matrix with n rows and m columns is referred to as an
n�m matrix. Let A be a (n�m) matrix with typical element aij in row i = 1; :::; n; column j = 1; :::;m,
then

A =

26664
a11 a12 : : : a1;m�1 a1m
a21 a22 : : : a2;m�1 a2m
...

...
. . .

...
...

an1 an2 : : : an;m�1 anm

37775 ;
For the matrix A; each of its rows can be considered as a row vector, and analogously, each of its columns

can be seen as a column vector. The matrix A can be partitioned in terms of its rows; such that A is a
vector of row vectors

A =

26664
a01�
a02�
...
a0n�

37775 ;
where a0i� =

�
ai1 ai2 : : : ai;m�1 aim

�
for i = 1; :::; n: Alternatively we could write

A =
�
a�1 a�2 : : : a�m�1 a�m

�
;

where a�1 (n� 1), j = 1; :::;m are the m columns of A, each column having n elements,

a�j=

26664
a1j
a2j
...
anj

37775 ; j = 1; :::;m:
� A matrix is a square matrix of order n if n = m:

Diagonal matrix

It is a square matrix with the elements o¤ the leading diagonal equal zero.

A =

26664
�1 0 � � � 0
0 �2 0
...

. . .
...

0 0 � � � �n

37775
Sometimes written A = diag f�1; �2; : : : ; �ng.

Basic Rules

1. Multiplication by a scalar: If A is n�m, and c is 1� 1 (a scalar),

cA = Ac

is n�m with elements
fcaijg :

2. A matrix multiplied by a matrix: If A is n�m and if B is p� q, then

C = AB

is de�ned if
m = p;
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and C is n� q, with:

cij =
mX
k=1

aikbkj , i = 1; : : : ; n; j = 1; : : : ; q.

Example: If

A =

�
a11 a12
a21 a22

�
;B =

�
b11 b12
b21 b22

�
;

then

C =

�
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

�
:

Typically AB 6= BA:

3. Let A;B and C well de�ned matrices. Then ABC = A(BC) = (AB)C

4. The (i; j)th element of matrix
C = A+B;

where A and B are both (n�m), is

cij = aij + bij ;

i = 1; :::; n

j = 1; :::;m

5. Let A;B and C well de�ned matrices. Then A(B+C) = AB+AC:

6. The (n� n) identity matrix In is de�ned as In = diag (1; 1; : : : ; 1) and satis�es AIn= InA = A.

Transpose

The transpose of the (n�m) matrix A is denoted A0 and is a (m�n) matrix. The rows which make up A0

are the columns of A; thus

A0=

26664
a0�1
a0�2
...
a0�m

37775

The �rst row becomes the �rst column, the second row the second column etc.

A =

�
1 2 3
4 5 6

�
; A0 =

24 1 4
2 5
3 6

35
Properties

1. (A+B)0 = A0+B0.

2. (A0)
0
= A.

3. (AB)0= B0A0

4. (ABC)0 = C0B0A0.

5. If A is symmetric then A0 = A, i.e. aij = aji for all i; j:
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6. If A is (n�m); then the matrix product AB is de�ned only if B is (m� p), i.e. the number of rows
in B must equal the number of columns in A: Writing

A
(n�m)

=

26664
a01
a02
...
a0n

37775 and B =
�
b1 b2 ::: bp

�

where a0i =
�
ai1 ai2 ::: aim

�
(1�m) and bj =

26664
b1j
b2j
...
bmj

37775 (m� 1); j = 1; :::; p

AB =

26664
a01b1 a01b2 : : : a01bp
a02b1 a02b2 : : : a02bp
...

...
...

a0nb1 a0nb2 : : : a0nbp

37775
Outer product

ab0 =

26664
a1
a2
...
an

37775 [b1 b2 � � � bn] =
26664
a1b1 a1b2 : : : a1bn
a2b1 a2b2 : : : a2bn
...

...
anb1 : : : : : : anbn

37775
Linear Dependence and Rank

De�nitions

� If A is a (n�m) matrix and b is a (m� 1) vector, then the (n� 1) vector

y = Ab

can be expressed as a linear combination of the columns of A =
�
a1 a2 ::: am

�
thus

y =
mX
j=1

ajbj

where bj is the j th element of the vector b:

� The set of (n� 1) vectors aj , j = 1; :::;m is linearly dependent if any of the vectors can be written
as a linear combination of the others. That is, there exists values for b1; b2; :::; bm not all zero, such
that

b1a1 + b2a2 + :::+ bmam = 0

� The set of m-vectors aj is linearly independent if the only solution to

b1a1 + b2a2 + :::+ bmam = 0

is b1 = b2 = ::: = bm = 0 ( the solution to Ab = 0 is b = 0).

� Let A be (n�m) matrix that can be viewed as a set of column vectors. The number of columns in the
matrix equals the number of vectors in the set. The collection of all the vectors b such that Ab = 0
constitutes a vector space called the null space of A or the kernel of A:

� De�nition: The rank of the matrix A; denoted �(A) ; is the maximum number of linearly independent
columns (or rows). If �(A) = m, then we say that the matrix A has full column rank, whereas if
�(A) = n the matrix A has full row rank. If A is an (n�m) matrix then � (A) is the maximum
number of linearly independent rows or columns.
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Properties:

1. Let A be (n�m) matrix; then � (A) � min (m;n).

2. � (A) = � (A0).

3. � (A0A) = �
�
AA0� = � (AA).

4. Let A be (n�m) matrix and B be a (m� p) matrix, then � (AB) � min [� (A) ; � (B)].

5. LetA be (n�m) with n � m, matrix and B be a (m�m)matrix with � (B) = m, then � (AB) = � (A).

Computing the rank of a Matrix

To compute the rank of a matrix in practice it is necessary to introduce some de�nitions.
De�nition: A row of a matrix is said to have k leading zeros if the �rst k elements of the row are all

zeros and the (k + 1)th element of the row is not zero. With this terminology, a matrix is in row echelon
form if each row has more leading zeros than the row preceding it.
Example: The following matrices are in the row echelon form.2664
1 2 3
0 0 4
0 0 0
0 0 0

3775, � 1 3 4
0 0 4

�
and

24 1 2
0 0
0 0

35 :
We can reduce any matrix to a matrix in the row echelon form using the following elementary row

operations:

1. interchange two rows of a matrix.

2. change a row by adding to it a multiple of another row. and

3. multiply each element in a row by the same number,

A simple way to compute the rank of a matrix is reduce a matrix to a row echelon form and the rank of
a matrix is the number of nonzero rows in its row echelon form.
Example: Consider the matrix

A =

�
3 �6 3
�1 2 �1

�
To �nd the rank of to write the matrices in the echelon form

( 13 )

�
3 �6 3
�1 2 �1

�
!
�
3 �6 3
0 0 0

�
Therefore � (A) = 1:

Inverse of a Matrix

If square matrix A (n� n) has full rank, that is � (A) = n; then A is said to be non-singular and there is a
unique matrix called inverse matrix and denoted as A�1 that satis�es

AA�1= A�1A = In:

If � (A) < n; A is said to be a singular matrix and the inverse A�1 does not exist.
Properties:

1. (AB)�1 = B�1A�1.

2.
�
A�1��1 = A.

3. (A0)
�1
=
�
A�1�0.

5



4. If A =diag fa11; a22; : : : ; anng then A�1=diag
�
a�111 ; a

�1
22 ; : : : ; a

�1
nn

	
.

5. If A is an upper triangular matrix, ie

A =

2666664
a11 a12 : : : a1;n�1 a1n
0 a22 : : : a2;n�1 a2n
...

...
. . .

...
...

0 0 : : : an�1;n�1 an�1;n
0 0 : : : 0 ann

3777775 ;

then A�1 is an upper triangular matrix. If A is a lower triangular matrix, then A�1 is a lower
triangular matrix.

6. If A is a lower triangular matrix, ie,

A =

2666664
a11 0 : : : 0 0
a21 a22 : : : 0 0
...

...
. . .

...
...

an�1;1 an�1;2 an�1;n�1 0
an1 an;2 : : : an;n�1 ann

3777775 ;

then A�1 is a lower triangular matrix.

Determinant of a matrix

The determinant of a matrix is a scalar that is computed from a square matrix of numbers by a rule of
combining products of the matrix entries. This number tell us something about the behaviour of a matrix.
For example, the determinant is zero if and only the matrix A is singular (no inverse exists).
If n = 2;

A =

�
a11 a12
a21 a22

�
and the determinant is jAj = a11a22 � a12a21:
The Laplace formula of the determinant is

jAj =

nX
i=1

(�1)i+jai;jMi;j (for some chosen j)

=

nX
j=1

(�1)i+jai;jMi;j (for some chosen i)

where Mi;j , is the determinant of the matrix that results from A by removing the i-th row and the j-th
column, and n is the length of the matrix. Mi;j is termed the minor for entry ai;j .
Remark: We obtain the minors inductively, working back to the 2� 2 case.
Other properties

�
��A�1�� = 1

jAj

� jA0j = jAj

� jABj = jAj jBj

Remember: the determinant can only be calculated for square matrices.

� If A =diag fa11; a22; : : : ; anng then jAj =
nY
i=1

aii.

� If A is upper triangular or lower triangular, then jAj =
nY
i=1

aii.
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Characteristic roots and vectors

Eigenvalues are a special set of scalars associated with a linear system of equations (i.e., a matrix equation)
that are sometimes also known as characteristic roots, characteristic values , proper values, or latent roots.
Let A be a (n�n) matrix. A scalar � is called an eigenvalue of A if there exist a nonzero column vector

x such that
Ax = �x; (1)

such vector is called an eigenvector or characteristic vectors belonging to �:
This means that the vector x has the property that its direction is not changed by the transformation

A, but that it is only scaled by a factor of �:
Notice that the eigenvalues and eigenvectors satisfy

(A� �In)x = 0 (2)

This is known as the eigenvalue problem.
If the matrix (A � �In) is non-singular then the solution to the set of equations is x = 0. A nontrivial

solution exists if (A� �In) is singular and hence has a zero determinant. Thus

jA� �Inj = 0

which is known as the characteristic equation of A.

� The rank of A equals the number of non-zero eigenvalues.

� An idempotent matrix is a matrix that satis�es the conditionA2 = A: The eigenvalues of an idempotent
matrix are equal to 0 or 1.

Example: Suppose that

A =

�
4 2
2 1

�
;

then the characteristic equation of A is

jA� �Inj =
���� 4� � 2

2 1� �

���� = 0
or (4� �)(1� �)� 4 = 0 or �2 � 5� = 0 and thus � = 0 or � = 5:

� The eigenvalues of a symmetric real matrix are real numbers.

To each eigenvalue � it corresponds a (2� 1) eigenvector (characteristic vector). Now the characteristic

vectors x1 and x2 with xi =
�
x1;i
x2;i

�
; i = 1; 2 can be derived from (2) :

When � = 0;
�
4 2
2 1

� �
x1;1
x2;1

�
=

�
0
0

�
) x2;1 = �2x1;1

When � = 5;
�
�1 2
2 �4

� �
x1;2
x2;2

�
=

�
0
0

�
) x1;2 = 2x2;2:

Mathematicians love to normalize eigenvectors in terms of their Euclidean Distance , so all vectors are
unit length, so we impose the normalising condition x21;i + x

2
2;i = 1 that will allow us to achieve uniqueness.

Thus the corresponding eigenvector are

for � = 0; x1 =

�
1=
p
5

�2=
p
5

�
for � = 5; x2 =

�
2=
p
5

1=
p
5

�
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Eigen Decomposition of a symmetric matrix

Let A be a symmetric matrix of order n:

� The n eigenvectors of a symmetric matrix are orthogonal, i.e. x0ixj = 0 for i 6= j; i; j = 1; :::; n

� We can collect the n eigenvectors in a matrixC =
�
x1 x2 ::: xn

�
and the eigenvalues in a diagonal

matrix � = diag f�1; �2; : : : ; �ng : Since by construction x0ixi = 1 and x0ixj = 0, C has the property
that C0C = CC0 = In; and hence C0= C

�1: A matrix with this property is called an orthogonal matrix
or orthonormal matrix.

� The set of equations in (1) can be written as

AC = C�:

Therefore solving for A we obtain
A = C�C�1 = C�C

0
:

and jAj = jCj j�j
��C�1�� = j�j = �1 � :::� �n (as ��C�1�� = 1= jCj).

Trace

� De�ned for square matrices as:

tr (A) =
nX
i=1

aii

� Provided AB and BA are both square matrices (e.g., A is m� n and B is n�m):

tr (AB) = tr (BA)

� For any matrix A; its Euclidean norm is de�ned as

kAk =
q
tr(AA0) =

p
tr(A0A) =

vuut nX
i=1

nX
j=1

a2ij

� The sum of eigenvalues of a square matrix A is the trace of the matrix

tr(A) = tr(C�C�1)

= tr(�C�1C)

= tr(�)

=

nX
i=1

�i:

� If A2 = A; then tr(A) = �(A):(A matrix that satis�es A2 = A is called an idempotent matrix).

Quadratic forms

A quadratic form is de�ned as z0Az for an (n� n) symmetric matrix A
Classi�cation of Quadratic Forms:

� A (n� n) symmetric matrix A is positive de�nite if z0Az > 0 for all non-zero vectors z.

� A (n� n) symmetric matrix A is negative de�nite if z0Az < 0 for all non-zero vectors z.

� A (n� n) symmetric matrix A is positive semide�nite if z0Az � 0 for all vectors z and z0Az = 0 for
some z 6= 0.

� A (n� n) symmetric matrix A is negative semide�nite if z0Az � 0 for all vectors z and z0Az = 0 for
some z 6= 0.

� A (n� n) symmetric matrix A is inde�nite if z0Az > 0 for some z and z0Az < 0 for other z.
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Classi�cation using eigenvalues

Denote �1; :::; �n the ordered (from the larger to the smaller) eigenvalues of the symmetric matrix A

� A (n� n) symmetric matrix A is positive de�nite if and only if all its eigenvalues are positive

� A (n� n) symmetric matrix A is negative de�nite if and only if all its eigenvalues are negative.

� A (n� n) symmetric matrix A is positive semide�nite if

�i > 0; i = 1; :::; �(A)

�i = 0; i = �(A) + 1; :::; n

� A (n� n) symmetric matrix A is negative semide�nite if

�i = 0; i = 1; :::; n� �(A)
�i < 0; i = n� �(A) + 1; :::; n

� A (n�n) symmetric matrix A is inde�nite if there are at least two eigenvalues with the opposite signs

Remarks:

� If A is positive de�nite so is A�1.

� Any symmetric positive de�nite matrix can be written as A = Q0Q:

Proof: Notice that A = C�C
0
, and since all the eigenvalues are positive we can de�ne �1=2 =

diag
�p
�1;
p
�2; : : : ;

p
�n
	
: Thus A = C�C

0
= C�1=2�1=2C

0
: The result follows from denoting Q =

�1=2C
0
:

� If B is a m� n matrix, the symmetric n� n matrix B0B is

� positive semi-de�nite

� positive de�nite if and only if �(B) = n

� If A;B and A�B are all positive de�nite, then B�1 �A�1 is positive de�nite.

Calculus and Matrix Algebra

Let s(�) : <p ! < be a real valued function of the p-vector �: Then @s(�)
@� is organized as a p-vector,

@s(�)

@�
=

266664
@s(�)
@�1
@s(�)
@�2
...

@s(�)
@�p

377775
Following this convention, its transpose @s(�)

@�0 is a 1� p vector; and
@2s(�)
@�@�0 is a p� p matrix. Also, the second

derivatives matrix or Hessean is

H (�) =
@2s(�)

@�@�0
=
@

@�

�
@s(�)

@�0

�
=

@

@�0

�
@s(�)

@�

�

=

2666664
@2s(�)
@�1@�1

@2s(�)
@�1@�2

::: @2s(�)
@�1@�p

@2s(�)
@�2@�1

@2s(�)
@�2@�2

::: @2s(�)
@�2@�p

...
...

...
...

@2s(�)
@�p@�1

@2s(�)
@�p@�2

::: @2s(�)
@�p@�p

3777775 :
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Exercise 1 For a and x both p-vectors, show that @a
0x

@x = a.

Let f(�):<p ! <n be a n-vector valued function of the p-vector �. Let f(�)0 be the 1�n valued transpose
of f . Then

�
@
@�f(�)

0�0 = @
@�0 f(�) [notice that

@
@�f(�)

0 is a p� n matrix, thus @
@�0 f(�) is a n� p matrix].

� Product rule: Let f(�):<p ! <n and h(�):<p ! <n be n-vector valued functions of the p-vector �.
Then

@

@�0
h(�)0f(�) = h(�)0

�
@

@�0
f(�)

�
+ f(�)0

�
@

@�0
h(�)

�
has dimension 1� p: Applying the transposition rule we get

@

@�
h(�)0f(�) =

�
@

@�
f(�)0

�
h(�) +

�
@

@�
h(�)0

�
f(�);

which has dimension p� 1:

Exercise 2 For A a p� p matrix and x a p� 1 vector, show that @x0Ax@x = A+A0.

� Chain rule: Let f(�):<p ! <n a n-vector valued function of a p-vector argument, and let g():<r ! <p
be a p-vector valued function of an r-vector valued argument �. Then

@

@�0
f [g (�)] =

@

@�0
f(�)

����
�=g(�)

@

@�0
g(�)

has dimension n� r:

Exercise 3 For x and � both p� 1 vectors, show that @ exp(x
0�)

@� = exp(x0�)x.

1. Consider a0x =
nX
i=1

aixi; then
@ (a0x)

@x
= a.

2. Consider x0Ax =
nX
i=1

nX
j=1

aijxixj ; then
@ (x0Ax)

@x
= Ax+A0x.

3.
@ (Ax)

@x0
= A.

� Taylor Theorem: Let s(�) : <p ! < be a real valued function of the p-vector �; if s(�) is once
continuously di¤erentiable on � and �0 2 �

s(�) = s(�0) +
@s(��)

@�0
(� � �0)

for some �� = ��0 + (1� �)� where 0 � � � 1:

� If s is twice continuously di¤erentiable

s(�) = s(�0) +
@s(��)

@�0
(� � �0) +

1

2
(� � �0)0H

�
��
�
(� � �0)

� Let f(�):<p ! <n be a n-vector valued function of the p-vector � if s(�) is once continuously di¤eren-
tiable on �

f(�) = f(�0) +
@f(��)

@�0
(� � �0)

10



Optimization

For maximizing or minimizing a function os several variables, say s(�) the �rst order conditions are

@s(�)

@�
= 0:

Let �� be the solution of this system of equations.
The second order conditions for an optimum are:

� H (�) is positive de�nite for a minimum

� H (�) is negative de�nite for a maximum

Constrained Optimization

For maximizing or minimizing a function os several variables, say s(�) subjects to the constraints c(�) = 0;
where c(�) is a vector function. One can use the Lagrangean approach. First we have to construct the
Lagrangean:

L(�; �) = s(�) + c(�)0�:

the second step is to �nd the stationary points, i.e. the points at which the derivatives of the Lagrangean
are zero

@L(�; �)

@�
=

@s(�)

@�
+

�
@c(�)0

@�

�
� = 0

@L(�; �)

@�
= c(�) = 0

Remarks:

1. The constrained solution must be inferior to the unconstrained solution because we are restricting the
parameter set.

2. If the Lagrangean multipliers are zero, the constrained solution is equal to the unconstrained solution.

3. The above second order conditions for unconstrained optimization do not apply here. The second
order conditions for the constrained case will not be stated but can be seen in page 136 of Magnus and
Neudecker (1999), Matrix di¤erential calculus with applications in statistics and econometrics, New
York: John Wiley & Sons.
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