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Chapter 1

Introduction

1.1 Outline

The aim of this course is to develop the necessary mathematical skills in order
to understand and apply the mathematical methods of analytical, stochas-
tic and numerical type, that play an important role in �nancial stochastic
models either in discrete or continuous time. In particular, we are inter-
ested in models for the valuation of derivative securities. These skills are
also important in order to communicate with other �nancial professional-
s and to critically evaluate modern �nancial theories. These lecture notes
were prepared for the �rst part of the course "Models in Finance", of the
Msc. degree in Actuarial Science in ISEG, Technical University of Lisbon,
in the academic year 2012/2013. They cover the �rst �ve chapters of the
programme that correspond to the theory of stochastic calculus, which is the
core mathematical theory behind the models for the valuation of derivative
securities. Therefore, it is necessary that the students understand the basic
methods of stochastic calculus in order to be able to deduce the main prop-
erties of stochastic models for the valuation of derivative securities. In some
parts of the text, we follow the references [9] and [10].

1.2 What is stochastic calculus?

What is stochastic calculus? Briey, it is an integral (and di�erential) cal-
culus with respect to certain stochastic processes (for example: Brownian
motion). It allows to de�ne integrals (and "derivatives") of stochastic pro-
cesses where the "integrating function" is also a stochastic process. It allows
to de�ne and solve stochastic di�erential equations (where there is a random
factor). The most important stochastic process for stochastic calculus and �-
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CHAPTER 1. INTRODUCTION 2

nancial applications is the Brownian motion. The main �nancial applications
of stochastic calculus are the pricing and hedging of �nancial derivatives, the
study of the Black-Scholes model, interest rate models and credit risk mod-
elling.

For a very interesting and modern account of the history of stochastic
calculus, we refer to [4]. Some of the most important authors involved in
the stochastic calculus development were Louis Bachelier, Albert Einstein,
Norbert Wiener, Andrey Kolmogorov, Vincent Doeblin, Kiyosi Itô, Joseph
Doob and Paul-Andr�e Meyer.

Kiyosi Itô

Andrey Kolmogorov



Chapter 2

The Brownian motion

2.1 De�nition

Let us begin by presenting the de�nition of stochastic process.

De�nition 2.1 A stochastic process is a family of random variables fXt; t 2 Tg
de�ned on a probability space (
;F ; P ), where T is the set where the "time"
parameter t is de�ned. If T = N, we say that the process is a discrete time
process; if T = [a; b] � R or if T = R, we say it is a continuous time process.

A stochastic process depends on t 2 T and on ! 2 
, i.e.

fXt; t 2 Tg = fXt (!) ; ! 2 
, t 2 Tg ;

where Xt is the state or position of the process at time t.
The space of the states S (space where the random variables take values)

is usually R (continuous state space) or N (discrete state space).
For each �xed ! (! 2 
), the mapping t ! Xt (!) or X� (!) is called a

realization, trajectory or sample path of the process.
As an example of a trajectory, we present below some trajectories of

Brownian motion
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CHAPTER 2. THE BROWNIAN MOTION 4

A trajectory of a one-dimensional
Brownian motion.

A trajectory of a bidimensional
Brownian motion.

The name of the process was given after Robert Brown, a 19th century
botanist who �rst observed the physical motion of grains of polen suspended
in water under a microscope. In 1900, Louis Bachelier, in is thesis "Th�eorie de
la sp�eculation" used the Brownian motion to model �nancial assets evolution.
Albert Einstein, in one of his 1905 papers, used Brownian motion as a tool
to indirectly con�rm the existence of atoms and molecules.

Now, we present a rigorous de�nition of the process.
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De�nition 2.2 The standard Brownian motion (also called Wiener Process)
is a stochastic process B = fBt; t � 0g with state space S = R and satisfying
the following properties:

1. B0 = 0:

2. B has independent increments (i.e. Bt�Bs is independent of fBu; u � sg
whenever s < t).

3. B has stationary increments (i.e., the distribution of Bt � Bs depends
only on t� s).

4. B has Gaussian increments (i.e., the distribution of Bt � Bs is the
normal distribution N(0; t� s).)

5. B has continuous sample paths (i.e. for each �xed ! (! 2 
), the
mapping t! Xt (!) is continuous).

Some authors consider that the term Brownian motion refers to a process
W = fWt; t � 0g which satis�es conditions 2,3 e 5 of the previous de�nition of
standard Brownian motion and also condition 4': the distribution ofWt�Ws

isN(� (t� s) ; �2 (t� s)), where � is the drift coe�cient and � is the di�usion
coe�cient. A Brownian motion W with drift � and di�usion coe�cient �
can be constructed from a standard Brownian motion B by:

Wt = W0 + �t+ �Bt:

Exercise 2.3 Prove the previous statement, i.e., prove that if B is a stan-
dard Brownian motion, then Wt = W0+�t+�Bt is a Brownian motion with
drift � and di�usion coe�cient �.

It can be di�cult to prove that the conditions on the de�nition of standard
Brownian motion are compatible. However, using the Kolmogorov extension
theorem (see ) one can show that there exists a stochastic process which
satis�es all the conditions of the de�nition of standard Brownian motion.
Condition (4) or condition (5) can be dropped from the de�nition of standard
Brownian motion or Brownian motion, since each of these properties can be
shown to be a consequence of the other properties. The Brownian motion
is the only process with stationary independent increments and continuous
sample paths.

Let us consider a simple symmetric random walk, i. e., a discrete time
process de�ned by

Xn =
nX
i=1

Zi, where Zi =

�
+1 with probability 1

2
:

�1 with probability 1
2
:
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Figure 2.1: A random walk path

Figure 2.2: Another random walk path

If we reduce the step size progessively from 1 unit until it is in�nitesimal
(and rescale the values of X) then the simple symmetric random walk tends
to a Brownian motion.

2.2 Main properties of the Brownian motion

In order to prove some properties of the Brownian motion, we can use the
following decomposition (for s < t):

Bt = Bs + (Bt �Bs) ; (2.1)

where Bs is known at time s and Bt � Bs is a random variable independent
of the history of the process up until time s. In particular, Bt � Bs is inde-
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Figure 2.3: A Brownian motion path as a limit of a random walk path

pendent of Bs (this is a consequence of the independent increments property
of Brownian motion).

Proposition 2.4 Properties of the standard Brownian motion B:
(1) The standard Brownian motion or the Brownian motion are Gaussian

processes.
(2) cov (Bt; Bs) = min ft; sg :
(3) B is a Markov process.
(4) B is a martingale.
(5) B returns in�nitely often to 0 (or to any other level a 2 R).
(6) (scaling property of Brownian motion or self-similar property): If B1

is a stochastic process de�ned by B1 (t) :=
1p
c
Bct, with c > 0, then B1 is also

a standard Brownian motion.
(7) (time inversion property): If If B2 is a stochastic process de�ned by

B2 (t) := tB(1=t) then B2 is also a standard Brownian motion.

A Gaussian process is essentially a process where its random variables
are Gaussian random variables: this is clear for standard Brownian motion
by condition 4. of the de�nition. A Gaussian stochastic process is com-
pletely determined by its expectation and covariance function (as a normal
random variable is determined by its expectation and variance). If we know
that a stochastic process has Gaussian increments and we know the �rst two
moments of these increments, then we can determine all the statistical prop-
erties of the process. Therefore, in order to prove that a Gaussian process is
a standard Brownian motion, we only need to compute the expectation and
the covariance function of the process and prove that they are equal to zero
and equal to the coveriance function given by property (2).
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Proof. Proof of property (2): Let s < t. Then, using (2.1), we obtain

cov (Bt; Bs) = cov [Bs + (Bt �Bs) ; Bs]

= cov (Bs; Bs) + cov (Bt �Bs; Bs)

= E
�
B2
s

�
+ 0 = s:

Proof of property (3): Recall that X is a Markov process if the probability
of obtaining a state at time t depends only of the state of the process at the
previous last observed instant tk and not from the previous history, i.e., if
t1 < t2 < � � � < tk < t, then

P [a < Xt < bjXt1 = x1; Xt2 = x2; : : : ; Xtk = xk]

= P [a < Xt < bjXtk = xk] :

AMarkov process with discrete state space is a Markov chain. A Markov pro-
cess with continuous state space and continuous time is a di�usion process.
For the Brownian motion, we have

P [a < Bt < bjBt1 = x1; Bt2 = x2; : : : ; Btk = xk]

= P [a� xk < Bt �Btk < b� xkjBtk = xk] ;

by the independent increments property of standard Brownian motion (con-
dition 2. of the de�nition).

Proof of property (6): Clearly, B1 (0) =
1p
c
Bct =

1p
c
B0 = 0 and B1(t) �

B1 (s) =
1p
c
(Bct �Bcs) is independent of fBcu; u � sg by the independent

increments property of the standard Brownian motion. Therefore B1(t) �
B1 (s) is independent of fB1 (u) ; u � sg and B1 has independent increments.
The distribution of B1(t) � B1 (s) = 1p

c
(Bct �Bcs) � 1p

c
N (0; ct� cs) �

N (0; t� s) and threfore B1 has stationary increments. Moreover, B1(t) =
1p
c
Bct has continuous sample paths because Bct has continuous sample paths.

Exercise 2.5 Prove the time inversion property (property 7) by computing
the expectation and the covariance function of B2.

Another important property of Brownian motion is the following one.

Proposition 2.6 Property of non-di�erentiability of sample paths: The sam-
ple paths of a Brownian motion are not di�erentiable anywhere a.s. (with
probability 1).
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We will prove a weaker result: for any �xed time t0, the probability that
the sample path of a standard Brownian motion is di�erentiable at t0 is 0.
Proof. Let us assume t0 = 0 (the proof can be generalized to any t0). If B
has derivative a at 0 then:

a� � <
Bt �B0

t
< a+ �

for t small enough. This means that (with variable change: s = 1
t
) we have

a � � < sB(1=s) < a + � and by the time inversion property (7), sB(1=s) is
a standard Brownian motion, so if we make t ! 0 then s ! +1 and the
probability that a standard Brownian motion remains con�ned between a��
and a+ �; when s! +1; is zero.

More details about the Brownian motion and its properties can be found
in references [2], [5], [7], [9] [10], [11] and [12]. For reviews of probability
theory and stochastic processes we refer to [2], [3] and [8].

2.3 The geometric Brownian motion

The Brownian motion is not very useful for modeling market prices (at the
long run) since it can take negative values and the Brownian motion model
would imply that the sizes of price movements are independent of the level
of the prices. A more useful and realistic model is the geometric Brownian
motion:

St = eWt ;

where W is a Brownian motion Wt = W0 + �t+ �Bt:
St is lognormally distributed with mean W0 + �t and variance �2t, i.e,

the log (St) � N (W0 + �t; �2t). It is also clear that St � 0 for all t and it is
easy to prove that

E [St] = exp

�
(W0 + �t) +

1

2
�2t

�
;

var [St] = [E [St]]
2 �exp ��2t

�� 1
	
:

In the Black-Scholes model, the underlying asset price follows geometric
Brownian motion. The geometric Brownian motion properties are less helpful
than those of Brownian motion: increments of S are neither independent nor
stationary.

In order to do some analysis of geometric Brownian motion S one can
proceed as follows:
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1. Take the logarithm of the observations;

2. Use techniques for the Brownian motion.

As an example, let us consider the log-return of a time series under geo-
metric Brownian motion:

log
St
Ss

= log
eWt

eWs
= Wt �Ws:

Therefore, the log-returns (and the returns themselves) are independent over
disjoint time periods.

2.4 Martingales in discrete and in continuous

time

A martingale is essentially a stochastic process for which its "current val-
ue" is the "optimal estimator" of its expected "future value", i.e., given the
martingale fMj; j 2 Ng and the information Fn at instant n, then Mn is the
best estimator for Mn+1. A martingale has "no drift" and its expected value
remains constant in time.

Martingale theory is fundamental in modern �nancial theory. Indeed,
the modern theory of pricing and hedging of �nancial derivatives is strongly
based on martingale properties.

In order to de�ne martingales, let us present the conditional expectation
de�nition and properties. Let (
;F ; P ) be a probability space and B � F
be a �-algebra.

De�nition 2.7 The conditional expectation of the integrable random vari-
able X given B (or E(XjB)) is an integral random variable Z such that

1. Z is B-measurable
2. For each A 2 B, we have

E (Z1A) = E (X1A) (2.2)

If X is integrable (i.e., E [jXj] < +1) then Z = E(XjB) exists and is
unique (a.s.).

Proposition 2.8 (Properties of the conditional expectation). Let X, Y and
Z be integrable random variables, and a; b 2 R. Then
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1.
E(aX + bY jB) = aE(XjB) + bE(Y jB): (2.3)

2.
E (E(XjB)) = E (X) : (2.4)

3. If X and the �-algebra B are independent then:

E(XjB) = E (X) (2.5)

4. If X is B-measurable (or if � (X) � B) then:
E(XjB) = X: (2.6)

5. If Y is B-measurable (or if � (X) � B) then
E(Y XjB) = Y E(XjB) (2.7)

6. Given two �-algebras C � B then

E(E (XjB) jC) = E(E (XjC) jB) = E(XjC) (2.8)

7. Consider that Z is B-measurable and X is independent of B. Let h(x; z)
be a measurable function such that h(X;Z) is an integrable random
variable. Then

E (h (X;Z) jB) = E (h (X; z)) jz=Z :
Note: First we compute E (h (X; z)) for a z �xed value of Z and then
we replace z by Z.

Given several random variables Y1; Y2; : : : ; Yn, we can consider the condi-
tional expectation

E [XjY1; Y2; : : : ; Yn] = E [Xj�] ;
where � is the �-algebra generated by Y1; Y2; : : : ; Yn. The �-algebra generated
by a random variable X is given by sets of the form

� (X) :=
�
X�1(B) : B 2 BR

	
:

Let Y= (Y1; Y2; : : : ; Yn) (notation). Then

E [E [XjY ]] = E [X] :

A very important property (it is the reason why conditional expectation is
so important) is that E [XjY ] is the optimal estimator of X based on Y in
the sense that for every function h, we have:

E
�
(X � E [XjY ])2	 � E

�
(X � h (Y ))2

	
: (2.9)
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De�nition 2.9 Let (
;F ; P ) be a probability space and fFn; n � 0g be a
sequence of �-algebras such that

F0 � F1 � F2 � � � � � Fn � � � � � F (2.10)

The sequence fFn; n � 0g is called a �ltration

A �ltration can be considered as an "information ow".

De�nition 2.10 The process M = fMn;n � 0g (in discrete time) is a mar-
tingale with respect to the �ltration fFn; n � 0g if:

1. For each n, Mn is a Fn-measurable random variable (i.e., M is a s-
tochastic process adapted to the �ltration fFn; n � 0g).

2. For each n, E [jMnj] <1.

3. For each n, we have:

E [Mn+1jFn] =Mn: (2.11)

If we consider the �ltration Fn = � (M0;M1; : : : ;Mn) , then we say that
M = fMn;n � 0g is a martingale (with respect to this �ltration) if

1. For each n, E [jMnj] <1.

2. For each n, we have:
E [Mn+1jFn] =Mn: (2.12)

Proposition 2.11 It is easy to show that if M = fMn;n � 0g is a martin-
gale then

1. E [Mn] = E [M0] for all n � 1:

2. E [MnjFk] =Mk for all n � k:

Exercise 2.12 Prove properties 1. and 2. above.

The "current value" Mk of a martingale is the "optimal estimator" of its
"future value" Mn.

The martingale concept allows us to de�ne a risk neutral probability
measure in the �nancial context. If the discounted price of a �nancial asset is
a martingale when calculated using a particular probability distribution, then
this probability distribution is called a "risk-neutral" probability measure
(meaning that the asset price has no "drift").
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Example 2.13 Assume that a share has a price process St and a discounted
price process eSt = e�rtSt; (2.13)

where r is the risk-free interest rate. If we assume that for a probability
measure Q, the process eSt is a martingale then, under Q, we have that

EQ

heSn+1jeS0; eS1; : : : ; eSni = eSn:
Since eSn is known (it is measurable) with respect to �

�eS0; eS1; : : : ; eSn�, then
by property (2.6), we have that

EQ

�
e�r(n+1)Sn+1

e�rnSn
jeS0; eS1; : : : ; eSn� = 1

() EQ

�
Sn+1

Sn
jS0; S1; : : : ; Sn

�
= er:

Therefore, the expected return in period from time n to time n + 1 is the
risk-free rate: that is why the distribution Q is called risk-neutral measure.

De�nition 2.14 Consider the probability space (
;F ; P ) and the family of
�-algebras in continuous time fFt; t � 0g ; such that

Fs � Ft; 0 � s � t: (2.14)

The family fFt; t � 0g is called a �ltration in continuous time.

Let FX
t be the �-algebra generated by process X on the interval [0; t],

i.e. FX
t = � (Xs; 0 � s � t). Then FX

t is the "information generated by X
on interval [0; t]" or the "history of the process X up until time t". A 2 FX

t

means that is possible to decide if event A occurred or not, based on the
observation of the paths of the process X on [0; t].

Example 2.15 If A = f! : X (5) > 1g then A 2 FX
5 but A =2 FX

4 .

A stochastic process Y is said to be adapted to the �ltration fFt; t � 0g
if Yt is Ft measurable for all t. If FX

t = � (Xs; 0 � s � t) is the �ltration
generated by X, then any continuous function of Xt is adapted to FX

t .
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1. E [XjFt] is the optimal estimator of X among all Ft-measurable ran-
dom variables with �nite expectation, or equivalently

E f(X � E [XjFt])Y g = 0 (2.15)

for all Ft-measurable bounded random variables Y .

2. E fE [XjFt]g = E [X].

3. If X is Ft-measurable then E [XjFt] = X:

4. If Y is Ft-measurable and bounded then E [XY jFt] = Y E [XjFt] :

5. If X is independent of Ft then E [XjFt] = E [X] :

We can now de�ne what is a martingale in continuous time.

De�nition 2.16 A stochastic process M = fMt; t � 0g is a martingale with
respect to the �ltration fFt; t � 0g if

1. For each t � 0, Mt is a Ft-measurable random variable (i.e., M is
adapted to fFt; t � 0g).

2. For each t � 0, E [jMtj] <1.

3. For each s � t;
E [MtjFs] =Ms: (2.16)

The condition (3) is equivalent to E [Mt �MsjFs] = 0. If t 2 [0; T ] then
Mt = E [MT jFt]. Moreover, condition (3) implies that E [Mt] = E [M0] for
all t.

Consider a standard Brownian motionB = fBt; t � 0g de�ned on (
;F ; P )
and

FB
t = � fBs; s � tg : (2.17)

Proposition 2.17 The following processes are FB
t -martingales:

1. Bt:

2. B2
t � t:

3. exp
�
aBt � a2t

2

�
:
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Proof. 1. Bt is FB
t -measurable and therefore it is adapted. E [jBtj] < 1.

Moreover Bt �Bs is independent of FB
s . Hence

E
�
Bt �BsjFB

s

�
= E [Bt �Bs] = 0:

2. Clearly, B2
t �t is FB

t -measurable and adapted. Moreover E [jB2
t � tj] <

1. By the properties of the conditional expectation, we have

E
�
B2
t � tjFB

s

�
= E

�
(Bt �Bs +Bs)

2 jFB
s

�� t

= E
�
(Bt �Bs)

2�+ 2BsE
�
Bt �BsjFB

s

�
+B2

s � t

= t� s+B2
s � t = B2

s � s:

Exercise 2.18 Prove that the process Xt = exp
�
aBt � a2t

2

�
is a

�FB
t ; t � 0

	
-

martingale.



Chapter 3

The Itô integral

3.1 Motivation

A stochastic di�erential equation (SDE) is a di�erential equation with "noise"
of the type:

dX

dt
= b(t;Xt) + � (t;Xt) "

dBt

dt
".

The term "dBt

dt
" is a stochastic "noise". Does not exist in a classical sense

since B is not di�erentiable. The stochastic di�erential equation (SDE) in
integral form can be written as

Xt = X0 +

Z t

0

b(s;Xs)ds+ "

Z t

0

� (s;Xs) dBs" (3.1)

How to de�ne the integral Z T

0

usdBs, (3.2)

where B is a Brownian motion and u is an appropriate adapted process?
The SDE's that we deal with are the continuous time versions of the

equations used to de�ne time series (processes in discrete time).

Example 3.1 A zero-mean random walk can be de�ned by:

Xt = Xt�1 + �Zt;

where Zt is a standard normal random variable (the Zi variables are called
"white noise"). This equation is a stochastic di�erence equation and is e-
quivalent to �Xt = �Zt. Its solution is

Xt = X0 + �
tX

s=1

Zs:

16
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0
tn

i tn
i+1

sn
i

T

Figure 3.1: The partition

In continuous time, the analog of a zero-mean random walk is a zero-mean
Brownian motion Wt:

In order to de�ne the stochastic integral
R T
0
usdBs, one could try to apply

the following strategy:

� Consider a sequence of partitions of [0; T ] and a sequence of points:

�n: 0 = tn0 < tn1 < tn2 < � � � < tnk(n) = T

sn: tni � sni � tni+1, i = 0; : : : ; k (n)� 1,

such that lim
n!1

sup
i

�
tni+1 � tni

�
= 0:

� Consider Riemann-Stieltjes (R-S) integral, de�ned as the limit of Rie-
mann sums: Z T

0

fdg := lim
n!1

n�1X
i=0

f (sni )�gi;

where �gi := g(tni+1) � g(tni ), if the limit exists and is independent of
the sequences �n and sn.

� If g is a di�erentiable function and f is continuous, the (R-S) integral

is well de�ned and
R T
0
f (t) dg (t) =

R T
0
f (t) g0 (t) dt.

� The (R-S) integral
R T
0
fdg exists if f is continuous and g has bounded

total variation, i.e.,

sup
�n

X
i

j�gij <1:

� In the Brownian motion case B, it is clear that B0(t) does not exist, so
we cannot de�ne the path integral:Z T

0

ut (!) dBt (!)
�
6=
Z T

0

ut (!)B
0
t (!) dt
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� Moreover, we can prove that the Brownian motion total variation is not
bounded and therefore we cannot de�ne the (R-S) integral

R T
0
ut (!) dBt (!)

in general.

If u has sample paths of class C1, then integrating by parts, the (R-S)
integral exists and we can compute:Z T

0

ut (!) dBt (!) = uT (!)BT (!)�
Z T

0

u0t (!)Bt (!) dt:

However, we have a big problem: for instance, the integral
R T
0
Bt (!) dBt (!)

does not exist as a R-S integral. We need to consider processes u with sample
paths more irregular than C1 trajectories. How to de�ne the integral (3.2)
for these processes? We need to consider a new strategy. We will construct
the stochastic integral

R T
0
utdBt using a probabilistic approach.

3.2 The Itô integral for simple processes

De�nition 3.2 Consider processes u of class L2
a;T , which is de�ned as the

class of processes u = fut, t 2 [0; T ]g, such that:

1. u is adapted and measurable (measurable in the sense that the mapping
(t; !) ! ut (!) is measurable on the product space [0; T ] � 
, with
respect to the �-algebra � ([0; T ])�F).

2. E
hR T

0
u2tdt

i
<1.

The condition 2. allows us to show that u as a map of two variables t
and ! belongs to the space L2 ([0; T ]� 
) and that:

E

�Z T

0

u2tdt

�
=

Z T

0

E
�
u2t
�
dt =

Z
[0;T ]�


u2t (!) dtP (d!) :

In order to de�ne
R T
0
utdBt for u 2 L2

a;T ; we will consider the limit in
mean-square (i.e., a limit in L2 (
)) of integrals of simple processes.

De�nition 3.3 The process u 2 S (set of simple processes in [0; T ]) is called
a simple process if

ut =
nX
j=1

�j1(tj�1;tj ] (t) ; (3.3)

where 0 = t0 < t1 < � � � < tn = T , the random variables �j are square-
integrable (E

�
�2j
�
<1) and Ftj�1-measurable
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De�nition 3.4 If u is a simple process of form (3.3) (u 2 S), then the
stochastic Itô integral of u with respect to Brownian motion B isZ T

0

utdBt :=
nX
j=1

�j
�
Btj �Btj�1

�
:

Example 3.5 Consider the simple process

ut =
nX
j=1

Btj�11(tj�1;tj ] (t) :

Then Z T

0

utdBt =
nX
j=1

Btj�1

�
Btj �Btj�1

�
:

Therefore

E

�Z T

0

utdBt

�
=

nX
j=1

E
�
Btj�1

�
Btj �Btj�1

��
=

nX
j=1

E
�
Btj�1

�
E
�
Btj �Btj�1

�
= 0:

Proposition: (Isometry property or norm preservation property). Let
u 2 S. Then:

E

"�Z T

0

utdBt

�2
#
= E

�Z T

0

u2tdt

�
=

Z T

0

E
�
u2t
�
dt: (3.4)

Proof. With �Bj := Btj �Btj�1 , we have

E

"�Z T

0

utdBt

�2
#
= E

24 nX
j=1

�j�Bj

!2
35

=
nX
j=1

E
�
�2j (�Bj)

2�+ 2
nX
i<j

E [�i�j�Bi�Bj] :

Note that since �i�j�Bi is Fj�1-measurable and �Bj is independent of Fj�1;
then

nX
i<j

E [�i�j�Bi�Bj] =
nX
i<j

E [�i�j�Bi]E [�Bj] = 0:
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On the other hand, since �2j is Fj�1-measurable and �Bj is independent of
Fj�1;

nX
j=1

E
�
�2j (�Bj)

2� = nX
j=1

E
�
�2j
�
E
�
(�Bj)

2�
=

nX
j=1

E
�
�2j
�
(tj � tj�1) =

= E

�Z T

0

u2tdt

�
:

Proposition 3.6 Consider that u and v are simple processes. We have the
following properties.

1. Linearity: If a; b 2 R;Z T

0

(aut + bvt) dBt = a

Z T

0

utdBt + b

Z T

0

vtdBt: (3.5)

2. Zero mean:

E

�Z T

0

utdBt

�
= 0: (3.6)

Exercise 3.7 Prove the property 2.

Exercise 3.8 Compute
R 5

0
f (s) dBs with f(s) = 1 if 0 � s � 2 and f(s) = 4

if 2 < s � 5. What is the distribution of the resulting random variable?

3.3 The Itô integral for adapted processes

A process u 2 L2
a;T can be approximated by a sequence of simple processes,

in the sense of the following lemma.

Lemma 3.9 If u 2 L2
a;T then exists a sequence of simple processes

�
u(n)
	

such that

lim
n!1

E

�Z T

0

���ut � u
(n)
t

���2 dt� = 0: (3.7)

For a proof of this important Lemma, we refer to [9] or [10].
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De�nition 3.10 The Itô stochastic integral of u 2 L2
a;T is de�ned as the

limit (in the L2 (
) sense)Z T

0

utdBt = lim
n!1

(L2)

Z T

0

u
(n)
t dBt; (3.8)

where
�
u(n)
	
is a sequence of simple processes satisfying (3.7).

Proposition 3.11 Properties of the Itô integral
R T
0
utdBt for u 2 L2

a;T .

1. Isometry (or norm preservation):

E

"�Z T

0

utdBt

�2
#
= E

�Z T

0

u2tdt

�
=

Z T

0

E
�
u2t
�
dt: (3.9)

2. Zero mean:

E

�Z T

0

utdBt

�
= 0 (3.10)

3. Linearity:Z T

0

(aut + bvt) dBt = a

Z T

0

utdBt + b

Z T

0

vtdBt: (3.11)

4. The process
nR t

0
usdBs; t � 0

o
is a martingale.

5. The sample paths of
nR t

0
usdBs; t � 0

o
are continuous.

Example 3.12 Let us show thatZ T

0

BtdBt =
1

2
B2
T �

1

2
T .

Since ut = Bt, let us consider the sequence of simple processes

unt =
nX
j=1

Btnj�1
1(tnj�1;tnj ]

(t) ;
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with tnj :=
j
n
T .Z T

0

BtdBt = lim
n!1

(L2)

Z T

0

u
(n)
t dBt =

= lim
n!1

(L2)
nX
j=1

Btnj�1

�
Btnj

�Btnj�1

�
= lim

n!1
(L2)

1

2

nX
j=1

��
B2
tnj
�B2

tnj�1

�
�
�
Btnj

�Btnj�1

�2�
=

1

2

�
B2
T � T

�
;

where we used: E

"�Pn
j=1

�
�Btnj

�2
� T

�2
#
= 0 and 1

2

Pn
j=1

�
B2
tnj
�B2

tnj�1

�
=

1
2
B2
T .

Let us prove that E

"�Pn
j=1

�
�Btnj

�2
� T

�2
#
= 0. Using the indepen-

dence of increments and E

��
�Btnj

�2�
= �tnj , then

E

24 nX
j=1

�
�Btnj

�2
� T

!2
35 = E

24 nX
j=1

��
�Btnj

�2
��tnj

�!2
35

=
nX
j=1

E

��
�Btnj

�2
��tnj

�2
:

Using the fact that E
h
(Bt �Bs)

2k
i
= (2k)!

2k�k! (t� s)k, then

E

24 nX
j=1

�
�Btnj

�2
� T

!2
35 =

nX
j=1

h
3�tnj � 2

�
�tnj

�2
+
�
�tnj

�2i

= 2
nX
j=1

�
�tnj

�2
= 2T sup

j

���tnj �� !
n!1

0.

Let us note that, by using the formula E
h
(Bt �Bs)

2k
i
= (2k)!

2k�k! (t� s)k ;

we have that

V ar
�
(�B)2

�
= E

�
(�B)4

�� �E �(�B)2��2
= 3 (�t)2 � (�t)2 = 2 (�t)2 :
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We also know that
E
�
(�B)2

�
= �t:

Therefore, if �t is small, the variance of (�B)2 is very small when compared
with its expected value. Therefore, when �t! 0 or "�t = dt", we have

(dBt)
2 � dt: (3.12)

For an elementary introduction to stochastic integrals, see [1] and [7]. For
detailed presentations of stochastic integration, please see [5], [9], [10] and
[11].



Chapter 4

Itô's Formula

4.1 The One dimensional Itô formula

The Itô formula or Itô's lemma is simply a stochastic version of the classical
chain rule. Suppose we have a function of a function f (bt) and we

consider that f is a C2 class function. In order to �nd d
dt
f (bt), by Taylor's

formula (second order expansion), we obtain

�f (bt) = f 0 (bt) �bt +
1

2
f 00 (bt) (�bt)

2 + � � �

Dividing by �t and letting �t! 0, we obtain the classical chain rule

d

dt
f (bt) = f 0 (bt)

dbt
dt

+
1

2
f 00 (bt)

dbt
dt

lim
�t!0

(�bt) = f 0 (bt)
dbt
dt
;

or
df (bt) = f 0 (bt) dbt:

What if we replace the deterministic function bt by the standard Brownian
motion Bt? Then, the second order term 1

2
f 00 (Bt) (�Bt)

2 cannot be ignored

because (�Bt)
2 � (dBt)

2 � dt is not of the order (dt)2, that is, we obtain the
Itô formula

df (Bt) = f 0 (Bt) dBt +
1

2
f 00 (Bt) dt: (4.1)

Example 4.1 Consider the stochastic di�erential of B2
t . In order to repre-

sent this process using a stochastic integral, let B2
t = f (Bt) with f (x) = x2.

Therefore, by (4.1), we obtain

d
�
B2
t

�
= 2BtdBt +

1

2
2 (dBt)

2

= 2BtdBt + dt;

24
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which is the Taylor expansion of B2
t as a function of Bt, assuming that

(dBt)
2 = dt. Note that in integral form, the result is equivalent toZ t

0

BsdBs =
1

2

�
B2
t � t

�
:

If f is a C2 function, then we can write

f (Bt) = stochastic integral+process with di�erentiable paths

= Itô process.

We can replace condition 2) E
hR T

0
u2tdt

i
<1 in the de�nition of L2

a;T by

the weaker condition

20) P
�Z T

0

u2tdt <1
�
= 1:

De�nition 4.2 Let La;T be the space of processes that satisfy condition 1 of
the de�nition of L2

a;T and condition 2').

The Itô integral can be de�ned for u 2 La;T but, in this case, the stochastic
integral may fail to have zero expected value and the Itô isometry may fail
to be veri�ed.

De�nition 4.3 De�ne L1
a;T as the space of processes v such that:

1. v is an adapted and measurable process (vt is fFtg-adapted, and the
map (t; !)! ut (!), de�ned on [0; T ]�
 is measurable with respect to
the �-algebra B ([0; T ])�F).

2. P
hR T

0
jvtj dt <1

i
= 1.

De�nition 4.4 An adapted and continuous process X = fXt; 0 � t � Tg is
called an Itô process if it satis�es the decomposition:

Xt = X0 +

Z t

0

usdBs +

Z t

0

vsds; (4.2)

where u 2 La;T and v 2 L1
a;T :
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Theorem 4.5 (One-dimensional Itô's formula or Itô's lemma): Let X =
fXt; 0 � t � Tg be a Itô process of type (4.2). Let f(t; x) be a C1;2 function.
Then Yt = f(t;Xt) is an Itô process and we have

f(t;Xt) = f(0; X0) +

Z t

0

@f

@t
(s;Xs) ds+

Z t

0

@f

@x
(s;Xs)usdBs

+

Z t

0

@f

@x
(s;Xs) vsds+

1

2

Z t

0

@2f

@x2
(s;Xs)u

2
sds:

In di�erential form, the Itô formula is given by

df(t;Xt) =
@f

@t
(t;Xt) dt+

@f

@x
(t;Xt) dXt

+
1

2

@2f

@x2
(t;Xt) (dXt)

2 :

where (dXt)
2 can be computed using (4.2) and the table of products

� dBt dt
dBt dt 0
dt 0 0

The Itô formula for f(t; x) and Xt = Bt, or Yt = f(t; Bt) is given by

f(t; Bt) = f(0; 0) +

Z t

0

@f

@t
(s; Bs) ds+

Z t

0

@f

@x
(s; Bs) dBs

+
1

2

Z t

0

@2f

@x2
(s; Bs) ds:

or (in di�erential form)

df(t; Bt) =
@f

@t
(t; Bt) dt+

@f

@x
(t; Bt) dBt

+
1

2

@2f

@x2
(t; Bt) dt:

The Itô formula for f(x) and Xt = Bt, or Yt = f(Bt) is given by

df(Bt) =
@f

@x
(Bt) dBt +

1

2

@2f

@x2
(Bt) dt:



CHAPTER 4. ITÔ'S FORMULA 27

4.2 The multidimensional Itô formula

Suposse that Bt := (B1
t ; B

2
t ; : : : ; B

m
t ) is anm-dimensional standard Brownian

motion, that is, components Bk
t , k = 1; :::;m are one-dimensional indepen-

dent standard Brownian motion. Consider a Itô process of dimension n,
de�ned by

X1
t = X1

0 +

Z t

0

u11s dB
1
s + � � �+

Z t

0

u1ms dBm
s +

Z t

0

v1sds;

X2
t = X2

0 +

Z t

0

u21s dB
1
s + � � �+

Z t

0

u2ms dBm
s +

Z t

0

v2sds;

...

Xn
t = Xn

0 +

Z t

0

un1s dB1
s + � � �+

Z t

0

unms dBm
s +

Z t

0

vns ds:

In di�erential form, we can write

dX i
t =

mX
j=1

uijt dB
j
t + vitdt;

with i = 1; 2; : : : ; n. Or, in compact form:

dXt = utdBt + vtdt;

where vt is n-dimensional and ut is a n�m matrix of processes. We assume
that the components of u belong to La;T and the components of v belong to
L1
a;T :

Theorem 4.6 (Multidimensional Itô formula or Itô's lemma): If f : [0; T ]�
R
n ! R

p is a C1;2 function, then Yt = f(t;Xt) is a Itô process and we have
the Itô formula:

dY k
t =

@fk
@t

(t;Xt) dt+
nX
i=1

@fk
@xi

(t;Xt) dX
i
t

+
1

2

nX
i;j=1

@2fk
@xi@xj

(t;Xt) dX
i
tdX

j
t :

The product of the di�erentials dX i
tdX

j
t is computed following the prod-

uct rules

dBi
tdB

j
t =

�
0 se i 6= j
dt se i = j

;

dBi
tdt = 0;

(dt)2 = 0:
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If Bt is a n-dimensional standard Brownian motion and f : Rn ! R is a
C2 function with Yt = f(Bt); then

f(Bt) = f(B0) +
nX
i=1

Z t

0

@f

@xi
(Bt) dB

i
s +

1

2

Z t

0

 
nX
i=1

@2f

@x2i
(Bt)

!
ds:

Example 4.7 (Integration by parts formula) If X1
t and X2

t are Itô processes
and Yt = X1

tX
2
t , then by Itô's formula applied to f(x) = f(x1; x2) = x1x2,

we get
d
�
X1

tX
2
t

�
= X2

t dX
1
t +X1

t dX
2
t + dX1

t dX
2
t :

That is:

X1
tX

2
t = X1

0X
2
0 +

Z t

0

X2
sdX

1
s +

Z t

0

X1
sdX

2
s +

Z t

0

dX1
sdX

2
s :

Example 4.8 Consider the process

Yt =
�
B1
t

�2
+
�
B2
t

�2
+ � � �+ (Bn

t )
2 :

Represent this process in terms of Itô stochastic integrals with respect to n-
dimensional standard Brownian motion. By the multidimensional Itô formu-
la applied to f(x) = f(x1; x2; : : : ; xn) = x21 + � � �+ x2n, we obtain

dYt = 2B1
t dB

1
t + � � �+ 2Bn

t dB
n
t

+ ndt:

That is:

Yt = 2

Z t

0

B1
sdB

1
s + � � �+ 2

Z t

0

Bn
s dB

n
s + nt:

Exercise 4.9 Let Bt := (B1
t ; B

2
t ) be a two dimensional Brownian motion.

Represent the process

Yt =
�
B1
t t;
�
B2
t

�2 �B1
tB

2
t

�
as an Itô process.

Solution 4.10 By the multidimensional Itô's formula applied to f(t; x) =
f(t; x1; x2) = (x1t; x

2
2 � x1x2) ; we obtain

dY 1
t = B1

t dt+ tdB1
t ;

dY 2
t = �B2

t dB
1
t +

�
2B2

t �B1
t

�
dB2

t + dt
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that is

Y 1
t =

Z t

0

B1
sds+

Z t

0

sdB1
s ;

Y 2
t = �

Z t

0

B2
sdB

1
s +

Z t

0

�
2B2

s �B1
s

�
dB2

s + t:

Exercise 4.11 Assume that a process Xt satis�es the SDE

dXt = � (Xt) dBt + � (Xt) dt:

Compute the stochastic di�erential of the process Yt = X3
t and represent this

process as an Itô process.

We now present a sketch of the proof of the Itô formula. Consider the
process

Yt = f(0; X0) +

Z t

0

@f

@t
(s;Xs) ds+

Z t

0

@f

@x
(s;Xs)usdBs

+

Z t

0

@f

@x
(s;Xs) vsds+

1

2

Z t

0

@2f

@x2
(s;Xs)u

2
sds:

This is an Itô process. We assume that f and its partial derivatives are
bounded (the general case can be proved approximating f by bounded func-
tions with bounded derivatives). The Itô stochastic integral can be approx-
imated by a sequence of stochastic integrals of simple processes and so we
can assume that u and v are simple processes.

Consider a partition of [0; t] into n equal sub-intervals:

f (t;Xt) = f (0; X0) +
n�1X
k=0

�
f
�
tk+1; Xtk+1

�� f (tk; Xtk)
�
:

By Taylor formula,

f
�
tk+1; Xtk+1

�� f (tk; Xtk) =
@f

@t
(tk; Xtk)�t+

@f

@x
(tk; Xtk)�Xk

+
1

2

@2f

@x2
(tk; Xtk) (�Xk)

2 +Qk;

where Qk is the remainder or error. We also have that

�Xk = Xtk+1
�Xtk =

Z tk+1

tk

vsds+

Z tk+1

tk

usdBs

= v (tk)�t+ u (tk)�Bk + Sk;
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where Sk is the remainder or error. Therefore:

(�Xk)
2 = (v (tk))

2 (�t)2 + (u (tk))
2 (�Bk)

2

+ 2v (tk)u (tk)�t�Bk + Pk;

where Pk is the remainder or error term. If we replace all this terms, we
obtain

f (t;Xt)� f (0; X0) = I1 + I2 + I3 +
1

2
I4 +

1

2
K1 +K2 +R;

where

I1 =
X
k

@f

@t
(tk; Xtk)�t;

I2 =
X
k

@f

@t
(tk; Xtk) v (tk)�t;

I3 =
X
k

@f

@x
(tk; Xtk)u (tk)�Bk;

I4 =
X
k

@2f

@x2
(tk; Xtk) (u (tk))

2 (�Bk)
2 :

K1 =
X
k

@2f

@x2
(tk; Xtk) (v (tk))

2 (�t)2 ;

K2 =
X
k

@2f

@x2
(tk; Xtk) v (tk)u (tk)�t�Bk;

R =
X
k

(Qk + Sk + Pk) :

When n!1, it is easy to show that

I1 !
Z t

0

@f

@t
(s;Xs) ds;

I2 !
Z t

0

@f

@x
(s;Xs) vsds;

I3 !
Z t

0

@f

@x
(s;Xs)usdBs:

As we have seeen before (quadratic variation of standard Brownian motion),
we have that X

k

(�Bk)
2 ! t;
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hence

I4 !
Z t

0

@2f

@x2
(s;Xs)u

2
sds:

On the other hand, we also have

K1 ! 0;

K2 ! 0:

It is also possible to show (but more technical and hard) that

R! 0:

Therefore, in the limit, when n ! 1, we obtain the one-dimensional Itô's
formula.

4.3 The martingale representation theorem

Let u 2 L2
a;T (u adapted, measurable and squared integrable) and let

Mt = E [M0] +

Z t

0

usdBs: (4.3)

The process M is a Ft-martingale. We can also that any squared inte-
grable martingale has the form (4.3).

Theorem 4.12 (Itô integral representation): Let F 2 L2 (
;FT ; P ). Then,
exists a unique process u 2 L2

a;T such that

F = E [F ] +

Z t

0

usdBs: (4.4)

Proof.

1. Assume that

F = exp

�Z T

0

h (s) dBs � 1

2

Z T

0

h (s)2 ds

�
; (4.5)

with h a deterministic function and
R T
0
h (s)2 ds < 1. Applying the

Itô formula with f (x) = ex, Xt =
R t
0
h (s) dBs � 1

2

R t
0
h (s)2 ds and

Yt = f (Xt), we obtain

dYt = Yt

�
h (t) dBt � 1

2
h (t)2 dt

�
+

1

2
Yt (h (t) dBt)

2

= Yth (t) dBt:
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Hence,

Yt = 1 +

Z t

0

Ysh (s) dBs:

and

F = YT = 1 +

Z T

0

Ysh (s) dBs

= E [F ] +

Z T

0

Ysh (s) dBs

Note that

E

�Z T

0

(Ysh (s))
2 ds

�
<1;

since E [Y 2
t ] = exp

�R t
0
h (u)2 du

�
<1. Therefore

E

�Z T

0

(Ysh (s))
2 ds

�
�
Z T

0

exp

�Z s

0

h (u)2 du

�
h (s)2 ds

� exp

�Z T

0

h (u)2 du

�Z T

0

h (s)2 ds:

2. The representation (4.4) also holds (by the linear property) for linear
combinations of random variables of the form (4.5). In general, F 2
L2 (
;FT ; P ) can be approximates (in the mean square sense) by a
sequence fFng of linear combinations of random variables of the type
(4.5). Therefore

Fn = E [Fn] +

Z t

0

u(n)s dBs:

By the Itô isometry, we have that

E
�
(Fn � Fm)

2� = (E [Fn � Fm])
2 + E

�Z t

0

�
u(n)s � u(m)

s

�2
ds

�
� E

�Z t

0

�
u(n)s � u(m)

s

�2
ds

�
:

fFng is a Cauchy sequence in L2 (
;FT ; P ). Hence

E
�
(Fn � Fm)

2� �! 0 when. n;m!1:

Therefore

E

�Z t

0

�
u(n)s � u(m)

s

�2
ds

�
�! 0 when n;m!1:
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and
�
u(n)
	
is a Cauchy sequence in L2 ([0; T ]� 
). Since this is a com-

plete space, u(n) ! u in L2 ([0; T ]� 
). The process u is adapted be-
cause u(n) 2 L2

a;T and exists a subsequence
�
u(n) (t; !)

	
that converges

to u (t; !) for a.a. (t; !) 2 [0; T ]�
. Therefore, u (t; �) is Ft-measurable
for a.a. t. Modifying this process u in a set of zero measure in the t
variable, we obtain an adapted process u.

We have that

lim
n!1

E
�
(Fn � F )2

�
= lim

n!1
E

�
E [Fn] +

Z T

0

u(n)s dBs � F

�2

= 0:

On the other hand, by Itô isometry, we obtain

lim
n!1

E (E [Fn]� E [F ])2 = 0

lim
n!1

E

�Z T

0

�
u(n)s � us

�
dBs

�2

= lim
n!1

E

Z T

0

�
u(n)s � us

�2
ds = 0:

Therefore, F = E [F ] +
R T
0
usdBs:

3. Uniqueness: suppose that u(1),u(2) 2 L2
a;T and

F = E [F ] +

Z T

0

u(1)s dBs = E [F ] +

Z T

0

u(2)s dBs:

By Itô isometry,

E

"�Z T

0

�
u(1)s � u(2)s

�
dBs

�2
#
= E

�Z T

0

�
u(1)s � u(2)s

�2
ds

�
= 0:

Hence
u(1) (t; !) = u (t; !)(2) a.a. (t; !) 2 [0; T ]� 
:

Theorem 4.13 (Martingale representation theorem): Let fMt; t 2 [0; T ]g be
a fFtg-martingale and E [M2

T ] < 1. Then exists a unique process u 2 L2
a;T

such that

Mt = E [M0] +

Z t

0

usdBs 8t 2 [0; T ] :
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Proof. By the Itô integral representation theorem applied to F = MT ,
91u 2 L2

a;T such that

MT = E [MT ] +

Z T

0

usdBs:

Since fMt; t 2 [0; T ]g is a martingale, E [MT ] = E [M0] and

Mt = E [MT jFt] = E [E [MT ] jFt] + E

�Z T

0

usdBsjFt

�
= E [M0] +

Z t

0

usdBs:

where we have used the martingale property for the stochastic integral.

Example 4.14 Let F = B3
T . What is the Itô integral representation of this

random variable? By the Itô formula with f (x) = x3 and B3
T = f (Bt), we

obtain

B3
T =

Z T

0

3B2
t dBt + 3

Z T

0

Btdt:

Integrating by parts,Z T

0

Btdt = TBT �
Z T

0

tdBt =

Z T

0

(T � t) dBt:

Therefore,

F = B3
T =

Z T

0

3
�
B2
t + (T � t)

�
dBt: (4.6)

Clearly E [B3
T ] = 0 (since BT � N (0; T )). Therefore, the integral represen-

tation is (4.6).

Exercise 4.15 What is the process u such that
R T
0
tB2

t dt � T 2

2
B2
T = �T 3

6
+R T

0
utdBt ?

Solution 4.16 Applying the Itô formula to Xt = f(t; Bt) = t2B2
t , with

f(t; x) = t2x2, we obtain

T 2B2
T =

Z T

0

2tB2
t dt+

Z T

0

2t2BtdBt +

Z T

0

t2dt:

Hence Z T

0

tB2
t dt�

T 2

2
B2
T = �T

3

6
�
Z T

0

t2BtdBt
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and therefore
ut = �t2Bt:

Note that E
hR T

0
tB2

t dt� T 2

2
B2
T

i
= �T 3

6
:

In general, the integration by parts formula is the one stated in the fol-
lowing exercise.

Exercise 4.17 (Integration by parts): Assume that f (s) is a deterministic
function of class C1. Prove thatZ t

0

f (s) dBs = f (t)Bt �
Z t

0

f 0 (s)Bsds:

Solution 4.18 This formula can be deduced by the Itô formula applied to
g (t; x) = f (t)x, which results in

f (t)Bt =

Z t

0

f 0 (s)Bsds+

Z t

0

f (s) dBs:



Chapter 5

Stochastic Di�erential

Equations

5.1 Itô processes and di�usions

Consider a deterministic ordinary di�erential equation (ODE)

f (t; x (t) ; x0 (t) ; x00 (t) ; : : :) = 0, 0 � t � T .

The �rst order ODE can be represented by

dx (t)

dt
= � (t; x (t)) ;

or
dx (t) = � (t; x (t)) dt:

A discrete version of this equation is

�x (t) = x (t+�t)� x (t) � � (t; x (t))�t:

Example 5.1 The �rst order linear homogeneous ODE is

dx (t)

dt
= cx (t)

and has solution
x (t) = x (0) ect:

A stochastic di�erential equation (SDE) has the general form

dXt = � (t;Xt) dt+ � (t;Xt) dBt; (5.1)

X0 = X0;

36
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where � (t;Xt) is the drift coe�cient and � (t;Xt) is the di�usion coe�cient.
The SDE can also be written in the integral form

Xt = X0 +

Z t

0

� (s;Xs) ds+

Z t

0

� (s;Xs) dBs: (5.2)

A "naif" interpretation of SDE is that the increment �Xt � � (t;Xt)�t +
� (t;Xt)�Bt. and the distribution of this increment can be approximated
by �Xt � N

�
� (t;Xt)�t; (� (t;Xt))

2�t
�
, when �t is very small.

De�nition 5.2 A solution of the SDE (5.1) or (5.2) is a stochastic process
fXtg which satis�es:

1. fXtg is an adapted process (to the standard Brownian motion) and has
continuous sample paths.

2. E
hR T

0
(� (s;Xs))

2 ds
i
<1:

3. fXtg satis�es the SDE (5.1) or (5.2)

The solutions of stochastic di�erential equations are called di�usions or
"di�usion processes".

De�nition 5.3 The process fXt; t � 0g is said to be a time-homogeneous
di�usion process if

� 1. it is a Markov process.

2. it has continuous sample paths.

3. there exist functions � (x) and �2 (x) > 0 such that, as h! 0+,

E [Xt+h �XtjXt = x] = h�(x) + o (h) ;

E
�
(Xt+h �Xt)

2 jXt = x
�
= h�2(x) + o (h) ;

E
�
(Xt+h �Xt)

3 jXt = x
�
= o (h) :

A di�usion is "locally" like a Brownian motion with drift, but with a vari-
able drift coe�cient �(x) and di�usion coe�cient � (x) : Fitting a di�usion
model involves estimating the drift function �(x) and the di�usion function
� (x) : Estimating arbitrary drift and di�usion coe�cients is virtually impos-
sible unless a very large quantity of data is to hand. Usually, a parametric
form is speci�ed for the mean and the variance and the parameters are esti-
mated from data.
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5.2 The existence and uniqueness theorem

The following theorem gives su�cient conditions to ensure that a unique so-
lution exists for a stochastic di�erential equation. For a proof of this theorem,
we refer to [10].

Theorem 5.4 Let T > 0, �(�; �) : [0; T ]�R! R and �(�; �) : [0; T ]�R! R

be measurable functions such that

1. E
�jX0j2

�
< 1. and X0 is independent of the standard Brownian mo-

tion B:

2. (linear growth condition)

j� (t; x)j+ j� (t; x)j � C (1 + jxj) ; x 2 R; t 2 [0; T ] :

3. (Lipschitz condition)

j� (t; x)� � (t; y)j+j� (t; x)� � (t; y)j � D jx� yj ; x; y 2 R; t 2 [0; T ] :

Then the SDE

Xt = X0 +

Z t

0

� (s;Xs) ds+

Z t

0

� (s;Xs) dBs (5.3)

has a unique solution. That is, exists a unique stochastic process X =
fXt; 0 � t � Tg continuous and adapted, which satis�es (5.3) and

E

�Z T

0

jXsj2 ds
�
<1:

5.3 The geometric Brownian motion and the

OU process

Example 5.5 The standard model for a risky asset price is the SDE

dSt = �Stdt+ �StdBt (5.4)

or

St = S0 + �

Z t

0

Ssds+ �

Z t

0

SsdBs (5.5)



CHAPTER 5. STOCHASTIC DIFFERENTIAL EQUATIONS 39

How to solve this SDE?
Assume that St = f (t; Bt) with f 2 C1;2. By Itô formula:

St = f (t; Bt) = S0 +

Z t

0

�
@f

@t
(s; Bs) +

1

2

@2f

@x2
(s; Bs)

�
ds+ (5.6)

+

Z t

0

@f

@x
(s; Bs) dBs:

Comparing (5.5) with (5.6) then, by the uniqueness of representation as an
itô process, we have

@f

@s
(s; Bs) +

1

2

@2f

@x2
(s; Bs) = �f (s; Bs) ; (5.7)

@f

@x
(s; Bs) = �f (s; Bs) : (5.8)

Di�erentiating (5.8), we get

@2f

@x2
(s; x) = �

@f

@x
(s; x) = �2f (s; x)

and replacing in (5.7) we obtain that�
�� 1

2
�2

�
f (s; x) =

@f

@s
(s; x)

Separating the variables: f (s; x) = g (s)h (x), we get

@f

@s
(s; x) = g0 (s)h (x)

and

g0 (s) =
�
�� 1

2
�2

�
g (s)

which is a linear ODE, with solution:

g (s) = g (0) exp

��
�� 1

2
�2

�
s

�
Using (5.8), h0 (x) = �h (x) and

f (s; x) = f (0; 0) exp

��
�� 1

2
�2

�
s+ �x

�
:

Hence

St = f (t; Bt) = S0 exp

��
�� 1

2
�2

�
t+ �Bt

�
(5.9)
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which is the geometric Brownian motion. Therefore, St
S0

has lognormal dis-

tribution with parameters
�
�� 1

2
�2
�
t and �2t. Moreover

E

�
St
S0

�
= e�t, var

�
St
S0

�
= e2�t

�
e�

2t � 1
�
:

Note that the solution of the SDE was obtained by solving a deterministic
PDE (partial di�erential equation).

Let us verify that (5.9) satis�es SDE (5.4) or (5.5). Apllying the Itô
formula to St = f (t; Bt) with

f (t; x) = S0 exp

��
�� 1

2
�2

�
t+ �x

�
;

we obtain

St = S0 +

Z t

0

��
�� 1

2
�2

�
Ss +

1

2
�2Ss

�
ds+

Z t

0

�SsdBs

= S0 + �

Z t

0

Ssds+ �

Z t

0

SsdBs

or:
dSt = �Stdt+ �StdBt:

Example 5.6 The Ornstein-Uhlenbeck process (or Langevin equation) is the
solution of the SDE

dXt = �Xtdt+ �dBt

or

Xt = X0 + �

Z t

0

Xsds+ �

Z t

0

dBs:

In discrete time, this SDE transforms into

Xt+1 = (1 + �)Xt + � (Bt+1 �Bt)

or
Xt+1 = �Xt + Zt;

with � = 1+� and Zt � N (0; �2). This is the equation for an autoregressive
time series of order 1.

Let
Yt = e��tXt
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or Yt = f (t;Xt) with f (t; x) = e��tx. By Itô formula,

Yt = Y0 +

Z t

0

�
��e��sXs + �e��sXs +

1

2
�2 � 0

�
ds

+

Z t

0

�e��sdBs:

Therefore,

Xt = e�tX0 + e�t
Z t

0

�e��sdBs:

If X0 is constant, this process is called the Ornstein-Uhlenbeck process.

Example 5.7 Consider the SDE for the geometric Brownian motion again:

dSt = �Stdt+ �StdBt (5.10)

or

St = S0 + �

Z t

0

Ssds+ �

Z t

0

SsdBs: (5.11)

Assume that
St = eZt :

or
Zt = ln (St) :

By the Itô formula, with f(x) = ln (x), we have

dZt =
1

St
dSt +

1

2

��1
S2
t

�
(dSt)

2

=

�
�� 1

2
�2

�
dt+ �dBt:

That is Zt = Z0 +
�
�� 1

2
�2
�
t+ �Bt and

St = S0 exp

��
�� 1

2
�2

�
t+ �Bt

�
:

In general, the solution of the homogeneous linear SDE

dXt = � (t)Xtdt+ � (t)XtdBt

is

Xt = X0 exp

�Z t

0

�
� (s)� 1

2
� (s)2

�
ds+

Z t

0

� (s) dBs

�
:
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5.4 Mean reverting processes

Example 5.8 The Ornstein-Uhlenbeck process with mean reversion is the
solution of the SDE

dXt = a (m�Xt) dt+ �dBt;

X0 = x:

where a; � > 0 and m 2 R. The solution of the associated ODE dxt = �axtdt
is xt = xe�at. Consider the variable change Xt = Yte

�at or Yt = Xte
at. By

the Itô formula applied to f (t; x) = xeat, we have

Yt = x+m
�
eat � 1

�
+ �

Z t

0

easdBs:

Therefore

Xt = m+ (x�m) e�at + �e�at
Z t

0

easdBs:

This is a Gaussian process, since the random part is
R t
0
f (s) dBs, where f is

deterministic. The expected value is

E [Xt] = m+ (x�m) e�at

and the covariance is (by Itô isometry)

Cov [Xt; Xs] = �2e�a(t+s)E
�Z t

0

eardBr

��Z s

0

eardBr

�
= �2e�a(t+s)

Z t^s

0

e2ardr

=
�2

2a

�
e�ajt�sj � e�a(t+s)

�
:

Note that

Xt � N

�
m+ (x�m) e�at;

�2

2a

�
1� e�2at

��
:

When t!1, the distribution of Xt converges to

� := N

�
m;

�2

2a

�
;

which is the invariant or stationary distribution. If X0 has distribution �
then the distribution of Xt will be � for all t.
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Remark 5.9 Some �nancial applications of the Ornstein-Uhlenbeck process
with mean reversion are:

� The Vasicek model for the interest rate rt:

drt = a (b� rt) dt+ �dBt;

with a; b; � real constants. The solution of the SDE is

rt = b+ (r0 � b) e�at + �e�at
Z t

0

easdBs.

� The Black-Scholes model with stochastic volatility: assume that the
volatility � (t) = f (Yt) is a function of an Ornstein-Uhlenbeck process
with mean reversion

dYt = a (m� Yt) dt+ �dWt;

where fWt; 0 � t � Tg is a standard Brownian motion. The SDE which
models the asset price evolution is

dSt = �Stdt+ f (Yt)StdBt

where fBt; 0 � t � Tg is a standard Brownian motion and the processes
Wt and Bt may be correlated, i.e.,

E [BtWs] = � (s ^ t) :

An important and useful theoretical result is the following one.

Proposition 5.10 Let f : [0;+1)! R be a deterministic function. Then

1. Mt = exp
�R t

0
f(s)dBs � 1

2

R t
0
(f(s))2 ds

�
is a martingale.

2.
R t
0
f(s)dBs has a normal distribution with mean 0 and variance

R t
0
(f(s))2 ds:

The property 1 is a simple generalization of the fact that exp
�
�Bt � 1

2
�2t
�

is a martingale. The property 2 follows from 1, because martingales have con-

stant mean, E [M0] = 1 and E
h
exp

�
�
R t
0
f(s)dBs

�i
= exp

�
1
2
�2
R t
0
(f(s))2 ds

�
;

which is the moment generating function of the N
�
0;
R t
0
(f(s))2 ds

�
distri-

bution.
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Remark 5.11 The AR(1) process is related with the mean reverting OU
process. Consider the AR(1) process

Xt = �Xt�1 + Zt;

with Zt � N (0; �2
e) and where t is the discrete time. Then

E [Xt] = �tX0;

V ar [Xt] = �2
e

(1� �2t)

1� �2
:

These coincide with the mean and variance values of the mean-reverting

Ornstein-Uhlenbeck with m = 0; if we put � = e�a and �2e
1��2 =

�2

2a
: Therefore,

the mean-reverting Ornstein-Uhlenbeck process is the continuous time equiv-
alent of a AR(1) process such as standard Brownian motion is the continuous
time equivalent of a random walk.

Exercise 5.12 (Exam style problem): A derivatives trader is modelling the
volatility of an equity index using the following time-discrete model (model
1):

�t = 0:12 + 0:4�t�1 + 0:05"t; t = 1; 2; 3; : : :

where �t is the volatility at time t years and "1; "2; : : :are a sequence of i.i.d.
random variables with standard normal distribution. The initial volatility is
�0 = 0:15 (that is, 15%). The trader is developing a related continuous-time
model for use in derivative pricing. The model is de�ned by the following
SDE (model 2):

d�t = �� (�t � �) dt+ �dBt;

where �t is the volatility at time t years, Bt is the standard Brownian motion
and the parameters �; � and � all take positive values.

(a) Determine the long-term distribution of �t for model 1.

(b) Show that for model 2 (solve the SDE), we have that

�t = �0e
��t + �

�
1� e��t

�
+

Z t

0

�e��(t�s)dBs.

(c) Determine the numerical value of � and a relationship between param-
eters � and � if it is required that �t has the same long-term mean and
variance under each model (models 1 and 2)
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(d) State another consistency property between the two models that could
be used to determine precise numerical values for � and �.

(e) The derivative pricing formula used by the trader involves the squared
volatility Vt = �2

t , which represents the variance of the returns on the
index. Determine the SDE for Vt in terms of the parameters �; � and
�.

For more details on the theory of stochastic di�erential equations, see [5],
[10] or [11]. For numerical methods, see [6].



Chapter 6

The Girsanov Theorem

6.1 Basic idea

The Girsanov Theorem, in its simplest version, says that a Brownian motion
with drift eBt = Bt + �t

can be transformed into a standard Brownian motion if we transform the
probability measure P; of our probability space (
;F ; P ) into a new proba-
bility measure Q. In �nancial appliations, this new probability measure, is
the so-called risk neutral measure or the equivalent martingale measure.

In more general terms, the Girsanov Theorem says that we can transform
the drift coe�cient of an Itô process in such a way that the law of the
process does not change "too much". The law of the new Itô process will
be absolutely continuous with respect to the law of the original process and
we can calculate explicitly the Radon-Nikodym derivative associated to the
measure change

6.2 Change of probability measures

Consider the space La;T , which is the space of adapted and measurable s-

tochastic processes u such that P
hR T

0
u2tdt <1

i
= 1. Let us de�ne de-

�ne L1
a;T as the space of adapted and measurable processes v such that

P
hR T

0
jvtj dt <1

i
= 1.

De�nition 6.1 A continuous and adapted process X = fXt; 0 � t � Tg is

46
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said to be an Itô process if it has the form

Xt = X0 +

Z t

0

usdBs +

Z t

0

vsds; (6.1)

where u 2 La;T and v 2 L1
a;T :

The drift of an Itô process is the integral term
R t
0
vsds.

Let L � 0 be a random variable de�ned on the probability space (
;F ; P ) :
Then, we can de�ne a new probability measure Q, by

Q(A) = E [1AL] ; for any A 2 F :
It is clear that we must have

Q(
) = E [L] = 1;

and that Q(A) = E [1AL] is equivalent toZ



1AdQ =

Z



1ALdP:

We say that L is the density of Q with respect to P and we write

dQ

dP
= L:

L is also the Radon-Nikodym derivative of Q with respect to P .
The expected value of a random variable X; de�ned on the probability

space (
;F ; P ), with respect to Q, is given by the formula

EQ [X] = E [XL] :

The probabilty measure Q is absolutely continuous with respect to P . This
means that

P (A) = 0 =) Q(A) = 0:

When are the measures P e Q equivalent? In order to answer this question,
we recall the de�nition of equivalent probability measures.

De�nition 6.2 Two probability measures P and Q which apply to the same
sigma-algebra F are said to be equivalent if for any event A 2 F : P (A) = 0
if and only if Q(A) > 0, where P (A) and Q(A) are the probabilities of A
under P and Q respectively.

If the random variable L is strictly positive (L > 0), then the probabilty
measures P and Q are equivalent (or mutually absolutely continuous), which
is equivalent to say that

P (A) = 0() Q(A) = 0:
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6.3 Girsanov Theorem

We now discuss the simplest version of the Girsanov Theorem, which applies
to a a random variable X with normal distribution N (m;�2). The basic
question that leads to the Girsanov Theorem is: exists a probability measure
Q, such that X has a normal distribution with mean zero, i.e. N (0; �2), with
respect to Q? In order to answer this question, consider the random variable

L = exp

�
�m

�2
X +

m2

2�2

�
:

It is easy to show that E [L] = 1. Indeed, using the probability density
function of the normal distribution N (m;�2), we have that

E [L] =

Z +1

�1
exp

�
�m

�2
x+

m2

2�2

�
1

�
p
2�

exp

 
�(x�m)2

2�2

!
dx

=
1

�
p
2�

Z +1

�1
exp

�
� x2

2�2

�
dx = 1:

Assume that the new measure Q has density L with respect to P . Then, in
the probability space (
;F ; Q), the random variable X has a characteristic
function given by

EQ

�
eitX

�
= E

�
eitXL

�
=

1

�
p
2�

Z +1

�1
exp

�
itx� m

�2
x+

m2

2�2

�
exp

 
�(x�m)2

2�2

!
dx

=
1

�
p
2�

Z +1

�1
exp

�
itx� x2

2�2

�
dx = e�

�2t2

2 :

Therefore, X has distribution N (0; �2).
The next version of the Girsanov Theorem is for the Brownian motion.

Let fBt; t 2 [0; T ]g be a Brownian motion in the probability space (
;FT ; P ).
Fix a real number � and consider the martingale

Lt = exp

�
��Bt � �2

2
t

�
: (6.2)

Exercise 6.3 Prove that the stochastic process fLt; t 2 [0; T ]g, given by (6.2),
is a positive martingale with expected value 1 and satis�es the stochastic dif-
ferential equation

dLt = ��LtdBt;

L0 = 1:
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The random variable

LT = exp

�
��BT � �2

2
T

�
is a density in the probability space (
;FT ; P ), and we can de�ne the new
probability measure

Q (A) = E [1ALT ] ;

for each A 2 FT . Since fLt; t 2 [0; T ]g is a martingale then the random

variable Lt = exp
�
��Bt � �2

2
t
�
is also a density in the probabilty space

(
;Ft; P ). In this probability space, the measure Q has precisely the density
Lt with respect to P: Indeed, if A 2 Ft, then

Q(A) = E [1ALT ] = E [E [1ALT jFt]]

= E [1AE [LT jFt]] = E [1ALt] ;

where we have applied the properties of conditional expectation and the
martingale property of fLt; t 2 [0; T ]g.

Theorem 6.4 (Girsanov Theorem I): In the probability space (
;FT ; Q),
where Q is de�ned by Q (A) = E [1ALT ], the stochastic process

eBt = Bt + �t

is a standard Brownian motion.

In order to prove the theorem, we need a technical lemma.

Lemma 6.5 Assume that X is a random variable and that G is a �-algebra
such that:

E
�
eiuX jG� = e�

u2�2

2 :

Then, X is independent of the �-algebra G and has normal distribution
N (0; �2).

For a proof of this lemma, we refer to [9] (pages 63-64).
Proof. (of the Girsanov Theorem) We only need to show that in the space

(
;FT ; Q), the increment eBt� eBs, with s < t � T , is independent of Fs and
has normal distribution N (0; t� s). By Lemma 6.5, this is a consequence of

EQ

h
1Ae

iu( eBt� eBs)
i
= Q (A) e�

u2

2
(t�s); (6.3)
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for all s < t, A 2 Fs and u 2 R. Indeed, if (6.3) is satis�ed then, by the con-

ditional expectation de�nition and by Lemma 6.5, we have that
� eBt � eBs

�
is independent of Fs and has normal distribution N (0; t� s).

We now show that (6.3) is satisifed.

EQ

h
1Ae

iu( eBt� eBs)
i
= E

h
1Ae

iu( eBt� eBs)Lt

i
= E

h
1Ae

iu(Bt�Bs)+iu�(t�s)��(Bt�Bs)��2

2
(t�s)Ls

i
= E [1ALs]E

�
e(iu��)(Bt�Bs)

�
eiu�(t�s)�

�2

2
(t�s)

= Q(A)e
(iu��)2

2
(t�s)+iu�(t�s)��2

2
(t�s)

= Q(A)e�
u2

2
(t�s);

where we have used the de�nitions of EQ and Lt, the independence of (Bt �Bs)
from Ls and A and the de�nition of Q.

Finally, we present a more general version of the Girsanov Theorem.

Theorem 6.6 (Teorema de Girsanov II): Let f�t; t 2 [0; T ]g be an adapted
stochastic process that satis�es the Novikov condition:

E

�
exp

�
1

2

Z T

0

�2t dt

��
<1: (6.4)

Then, the stochastic process

eBt = Bt +

Z t

0

�sds

is a Brownian motion with respect to the measure Q; de�ned by Q (A) =
E [1ALT ], where

Lt = exp

�
�
Z t

0

�sdBs � 1

2

Z t

0

�2sds

�
: (6.5)

Note that the process Lt in (6.5) satis�es the linear stochastic di�erential
equation

Lt = 1�
Z t

0

�sLsdBs:

In order to ensure that the process Lt is a density, we need to have E [Lt] = 1
and the Novikov condition (6.4) is su�cient to ensure that E [Lt] = 1.

The second version of the Girsanov Theorem generalizes the �rst version.
Indeed, with �t � � we obtain the �rst version.

A detailed discussion of the Girsanov Theorem is presented in [10].
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