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Chapter 1

Introduction

The main objective of these notes is to introduce the main concepts of
stochastic calculus to the master, post-graduation, or doctorate students in
Mathematical Finance. In particular, this is the main text resource to the
Stochastic Calculus course of the Mathematical Finance Master degree at
the Lisbon School of Economics & Management, University of Lisbon, for
the year of 2015/2016.

In these lecture notes, we explore the main techniques and methods of
stochastic calculus and stochastic di�erential equations, we discuss some re-
lationships between stochastic di�erential equations and partial di�erential
equations, and we apply some of these methods and techniques to prob-
lems of mathematical �nance, such as the valuation and hedging of �nancial
derivatives and options.

In order to make the most of these notes, the reader should already have
knowledge (up to an undergraduate level) of integral and di�erential calcu-
lus, ordinary di�erential equations, probability and some basic knowledge of
measure theory and stochastic processes theory. Previous knowledge of the
theory of partial di�erential equations is useful, although it is not necessary.

In some parts of this text, we follow the references [9] and [10].
Thanks to Gonçalo Horta Matos for the translation of these notes from

the portuguese language to english.

1.1 What is Stochastic Calculus?

In a summary way, stochastic calculus is a type of integral and di�erential
calculus that involves continuous-time stochastic processes, like the Brownian
motion. It allows us to de�ne integrals of stochastic processes, where the
�integrating function� is also a stochastic process. We may also de�ne and
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CHAPTER 1. INTRODUCTION 2

solve stochastic di�erential equations, that are basically ordinary di�erential
equations with an extra random term.

The most important stochastic process when treating with �nancial ap-
plications, paradigmatic in the development of stochastic calculus, is the
Brownian motion. Therefore, we will focus on the study of integration the-
ory with respect to the Brownian motion. The fundamental topics presented
in these notes are the construction of the stochastic integral, Itô's formula,
stochastic di�erential equations, the Girsanov Theorem, the basic relation-
ship between stochastic and partial di�erential equations and applications
to the Black-Scholes pricing model for �nancial derivatives and options. Be-
fore we proceed with these topics, we will cover some fundamental results
on stochastic processes, conditional expectation, martingales and Brownian
motion.

There are other important �nancial applications of stochastic calculus be-
sides the valuation and hedging the risk of �nancial derivatives, as modeling
interest rate term-structures and credit risk.

The theory on Brownian motion and stochastic calculus was developed
by some of the most important mathematicians and physicists of the 20th
century. With strong contributions to the area, we may highlight Louis
Bachelier, Albert Einstein, Norbert Wiener, Andrey Kolmogorov, Vincent
Doeblin, Kiyosi Itô, Joseph Doob and Paul-André Meyer. A brief history of
stochastic calculus and its �nancial applications is presented by Jarrow and
Protter in their highly recommended article [4].
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Figure 1.1: Kiyosi Itô Figure 1.2: Andrey Kolmogorov



Chapter 2

Probability Theory and

Stochastic Processes

2.1 Stochastic Processes

We start by the classic de�nition of a stochastic process.

De�nition 2.1 A stochastic process is a family of random variables {Xt, t ∈ T}
de�ned in a probability state (Ω,F , P ), where T is the set on which the pa-
rameter t is de�ned. The process is said to be discrete-time if T = N, and
continuous-time if T = [a, b] ⊂ R or T = R.

A stochastic process may be considered as a map of two variables: t ∈ T
and ω ∈ Ω:

{Xt, t ∈ T} = {Xt (ω) , ω ∈ Ω, t ∈ T} ,

where Xt represents the state or position of the process at time t. The state
space (space where the random variables take values)is usually R (process
with a continuous state space) or N (discrete state space).

For each �xed ω ∈ Ω, the map t → Xt (ω) ou X· (ω) is called a tra-
jectory of the process. Some examples of trajectories are presented next
(one-dimension and two-dimension Brownian motion).

Example 2.2 Consider a sequence of independent random variables {Zt, t ∈ N}.
Then

Xt = Z1 + Z2 + · · ·Zt = Xt−1 + Zt

is a discrete-time stochastic process. This process is known as random walk.
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CHAPTER 2. PROBABILITY THEORYAND STOCHASTIC PROCESSES5

Figure 2.1: Trajectory of a one-
dimension Brownian motion

Figure 2.2: Trajectory of a two-
dimension Brownian motion

A fundamental concept in the theory of stochastic processes is the concept
of Markov process - where, �given the present, the future is independent from
the past�. In this sense, a Markov process is a process where the probability
of obtaining a state in a future time t depends only on the last observed state
tk, that is, if t1 < t2 < · · · < tk < t, then

P [a < Xt < b|Xt1 = x1, Xt2 = x2, . . . , Xtk = xk] = P [a < Xt < b|Xtk = xk] .

A Markov process with a discrete state space is called a Markov chain. If
the process is a continuous-time process with a continuous state space, it is
called a di�usion.

In order to characterize probabilistically a process X, the concept of �nite
dimension distribution is used.

De�nition 2.3 Let {Xt, t ∈ T} be a stochastic process. The �nite dimension
distributions (fdd) of X are all the distributions of the vectors

(Xt1 , Xt2 , . . . , Xtn) ,

where n = 1, 2, 3, . . . ; t1, t2, . . . , tn ∈ T .

The law of probability or distribution of a stochastic process is identi�ed
with the family of the �nite dimension distributions of that process.

De�nition 2.4 (Gaussian process) A process is called Gaussian when all the
fdd are Gaussian.
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Figure 2.3: A trajectory of the white noise process

Knowing the parameters µ (expected value) and Σ (covariance) is enough
to characterize a Gaussian distribution. Hence, to characterize a Gaussian
process, one just needs to know µ and Σ for all vectors of type (Xt1 , Xt2 , . . . , Xtn).

Example 2.5 (white noise) Let {Xt, t ≥ 0} be a stochastic process where
Xt ∼ N(0, σ2) and suppose all the random variables of the process are inde-
pendent. Then the process is Gaussian and its fdd may be described by the
distribution fuctions

F (x1, x2, . . . , xn) = P (Xt1 ≤ x1, Xt2 ≤ x2, . . . , Xtn ≤ xn)

= P (Xt1 ≤ x1)P (Xt2 ≤ x2) . . . P (Xtn ≤ xn)

= Φ(x1)Φ (x2) . . .Φ (xn) .

The expected value and covariance functions of X are:

µX (t) = E [Xt] = 0,

cX (s, t) =

{
σ2 se s = t
0 se s 6= t

.

In general, given a process X, we may de�ne the expected value and
covariance functions as

µX (t) = E [Xt] ,

cX (s, t) = cov(Xt, Xs) = E [(Xt − µX (t)) (Xs − µX (s))] .
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An important concept is the stationarity or invariance of a distribution.
We'll now de�ne what is meant by stationary process and process of station-
ary increments.

De�nition 2.6 A stochastic process X is said to be strictly (or strongly)
stationary if

(Xt1 , Xt2 , . . . , Xtn)
d
= (Xt1+h, Xt2+h, . . . , Xtn+h) ,

for all possible choices of n; t1, t2, . . . , tn ∈ T and h.

De�nition 2.7 A stochastic process X is said to have stationary increments
if

Xt −Xs
d
= Xt+h −Xs+h,

for all possible values of s, t and h.

Exercise 2.8 Show that if a process X is Gaussian and strongly stationary,
then µX (t) = µX (0), ∀t ∈ T and cX (s, t) = f (|s− t|) depends only on the
distance |s− t|.

The independence of increments of a process is a fundamental property
and will be vastly used when we discuss the stochastic integral. We now
present the de�nition of this concept.

De�nition 2.9 A stochastic process is said to have independent increments
if the random variables

Xt2 −Xt1 , Xt3 −Xt2 , . . . , Xtn −Xtn−1

are independent when t1 < t2 < · · · < tn, n = 1, 2, . . .

All the processes that have independent increments are Markov processes.
Let's see an important example of one of these processes: the Poisson process.

Example 2.10 (Poisson process) A stochastic process {Xt, t ≥ 0} is called
a Poisson process with intensity λ se

1. X0 = 0,

2. X has independent and stationary increments,

3. Xt ∼ Poi(λt).
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Figure 2.4: A trajectory of a Poisson process

A random variable Y has the (discrete) Poisson distribution of parameter
λ, or Poi(λ), if

P (Y = k) = e−λ
λk

k!
.

Exercise 2.11 Show that if X is a Poisson process, then Xt−Xs ∼ Poi(λ (t− s))
if t > s.

How may we de�ne an equivalence relationship between processes? The
next de�nition o�ers an answer to this question.

De�nition 2.12 A stochastic process {Xt, t ∈ T} is said to be equivalent to
another stochastic process {Yt, t ∈ T} if, for each t ∈ T we have

P {Xt = Yt} = 1.

In this case we say that a process is a version of the other.

Note that two equivalent processes may have much di�erent trajectories,
as illustrated in the next example.

Example 2.13 Let ϕ be a non-negative random variable with continuous
distribution, and consider the stochastic processes

Xt = 0,

Yt =

{
0 se ϕ 6= t
1 se ϕ = t

.
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These processes are equivalent but their trajectories are di�erent. The tra-
jectories of Y always have a discontinuity point.

De�nition 2.14 Two stochastic processes {Xt, t ∈ T} and {Yt, t ∈ T} are
said to be indistinguishable if

X· (ω) = Y· (ω) ∀ω ∈ Ω\N,

where N has null probability (P (N) = 0).

Two stochastic processes with continuous from the right (left, or simply
continuous) trajectories that are equivalent are also indistinguishable. We
may de�ne other concepts of probability for stochastic processes, other than
trajectory continuity.

De�nition 2.15 A continuous-time stochastic process {Xt; t ∈ T} that takes
values in R is said to be continuous in probability if, for any ε > 0 and for
any t ∈ T , we have

lim
s→t

P [|Xs −Xt| > ε] = 0.

De�nition 2.16 Let p ≥ 1. A continuous-time stochastic process {Xt; t ∈ T}
that takes values in R, and such that E [|Xt|p] <∞, is said to be continuous
in mean of order p, if for any t ∈ T , we have

lim
s→t

E [|Xs −Xt|p] = 0.

Continuity in mean of order p implies continuity in probability. How-
ever, the reverse implication does not hold. Also, none of these continuity
de�nitions imply the continuity of trajectories.

Example 2.17 A Poisson process N = {Nt, t ≥ 0} with intensity λ is a
process with discontinuous trajectories. However, it is continuous in mean of
order 2 (mean square) (recall that Nt −Ns ∼ Poi(λ (t− s))), because

lim
s→t

E
[
|Nt −Ns|2

]
= lim

s→t

[
λ (t− s) + (λ (t− s))2] = 0.

The Continuity Criterion of Kolmogorov is a useful theoretical tool that
allows us to prove a given stochastic process has continuous trajectories. This
result is presented below.
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Theorem 2.18 (Continuity Criterion of Kolmogorov): Let X = {Xt; t ∈ T}
be a stochastic process, where T is a bounded interval of R, and suppose there
exists p > 0, α > 0 and C > 0 such that

E [|Xt −Xs|p] ≤ C |t− s|1+α . (2.1)

Then there exists a version of X with continuous trajectories.

More precisely, equation (2.1) implies that for each ε > 0 there exists a
r.v. Gε such that

|Xt (ω)−Xs (ω)| ≤ Gε (ω) |t− s|
1+α
p
−ε a.s. (2.2)

and E [Gp
ε] < ∞. That is, X has Hölder continuous trajectories of order β,

for all β < 1+α
p
.

A proof of this theorem may be found in [5], pgs. 53-54.

2.2 Conditional Expectation

Consider a probability space (Ω,F , P ) and let A and B be two events where
A,B ∈ F and P (B) > 0. The conditional expectation of A given B may be
de�ned as

P (A|B) =
P (A ∩B)

P (B)
(2.3)

The map A → P (A|B) de�nes a probability measure in the σ-algebra F .
The expected value or conditional expectation of the integrable r.v. X given
B may be computed using the formula

E(X|B) =
E [X1B]

P (B)
. (2.4)

Example 2.19 Let X be a uniform r.v. taking values in (0, 1]. Let A =(
0, 1

4

]
. Let us compute E [X] and E [X|A].

E [X] =

∫ 1

0

xf (x) dx =

∫ 1

0

xdx =
1

2
.

E [X|A] =
E(X1A)

P (A)
=

∫ 1/4

0
xdx

1/4
=

1

8
.

Let (Ω,F , P ) be a probability space, B ⊂ F a σ-algebra.
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De�nition 2.20 The conditional expectation of the integrable random vari-
able X given B (or E(X|B)) is an integrable random variable Z sucha that

1. Z is B-measurable.

2. for all A ∈ B we have

E (Z1A) = E (X1A) . (2.5)

IfX is integrable then Z = E(X|B) exists and it is unique (almost surely).

De�nition 2.21 (generated σ-algebra): Let C be a family of subsets of Ω.
Then, the smaller σ-algebra that contains C is represented by σ (C)) and it is
called the σ-algebra generated by C.

De�nition 2.22 (σ-algebra generated by X): Let X be a random variable.
The σ-algebra generated by X is de�ned as {X−1(B) : B ∈ BR}.

We will now see some essential properties of the conditional expectation.

Proposition 2.23 Let X, Y and Z be integrable random variables, B a σ-
algebra and a, b ∈ R. Then,

1.
E(aX + bY |B) = aE(X|B) + bE(Y |B). (2.6)

2.
E (E(X|B)) = E (X) . (2.7)

3. If X and the σ-algebra B are independent, then:

E(X|B) = E (X) (2.8)

4. If X is B-measurable (or if σ (X) ⊂ B) then:

E(X|B) = X. (2.9)

5. If Y is B-measurable (or if σ (X) ⊂ B) then:

E(Y X|B) = Y E(X|B) (2.10)

6. Given two σ-algebras C ⊂ B, then:

E(E (X|B) |C) = E(E (X|C) |B) = E(X|C) (2.11)
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7. Consider two r.v.'s X and Z such that Z is B-measurable and X is
independent from B. Let h(x, z) be a measurable function such that
h(X,Z) is an integrable random variable. Then,

E (h (X,Z) |B) = E (h (X, z)) |z=Z . (2.12)

Remark: at �rst one computes E (h (X, z)) for an arbitrarily �xed value
z, and then z is substituted by the r.v. Z.

Proposition 2.24 (Jensen's inequality): Let X be an integrable random
variable and B a σ-algebra. If ϕ is a convex function such that E [|ϕ (X)|] <
∞, then

ϕ (E(X|B)) ≤ E(ϕ (X) |B). (2.13)

A particular case of the Jensen's inequality is obtained by considering
ϕ (x) = |x|p. If E(|X|p) <∞, p ≥ 1, then

|E(X|B)|p ≤ E(|X|p |B).

Hence, if p ≥ 1,

E [|E(X|B)|p] ≤ E(|X|p). (2.14)

The set of all random variables that are square integrable - L2 (Ω,F , P )
- is an Hilbert space with the inner product

〈X, Y 〉 = E [XY ] .

The space L2 (Ω,B, P ) is a subspace of L2 (Ω,F , P ). Given a random
variable X ∈ L2 (Ω,F , P ), E(X|B) is the orthogonal projection of X in
the subspace L2 (Ω,B, P ) and minimizes the mean-squared distance of X to
L2 (Ω,B, P ) in the sense that

E
[
(X − E(X|B))2] = min

Y ∈L2(Ω,B,P )
E
[
(X − Y )2] (2.15)

Exercise 2.25 Show that if X and the σ-algebra B are independent, then
E(X|B) = E (X)

Solution 2.26 If X and 1A are independent then if A ∈ B,

E [X1A] = E [X]E [1A] = E [E [X]1A]

and, by the de�nition of conditional expectation,E(X|B) = E (X) .
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Exercise 2.27 Show that if Y is a B-measurable random variable, then

E(Y X|B) = Y E(X|B).

Solution 2.28 If Y = 1A and A,B ∈ B, then, by the de�nition of condi-
tional expectation,

E [1AE(X|B)1B] = E [1A∩BE(X|B)]

= E [X1A∩B] = E [1B1AX] .

Therefore, 1AE(X|B) = E [1AX|B]. In the same way we'll obtain the result if
Y =

∑m
j=1 aj1Aj (i.e., Y is a B-measurable stair function). The general result

is proven by aproximating Y by a sequence of B-measurable stair functions.

Example 2.29 Given the random variable X ∈ L2 (Ω,F , P ), we shall show
that E(X|B) is the orthogonal projection of X in the subspace L2 (Ω,B, P ),
and

E
[
(X − E(X|B))2] = min

Y ∈L2(Ω,B,P )
E
[
(X − Y )2]

(1) E(X|B) ∈ L2 (Ω,B, P ) , because X is B-measurable. By (2.14),

E
[
|E(X|B)|2

]
≤ E(|X|2) <∞.

(2) If Z ∈ L2 (Ω,B, P ) then, by the properties 2 and 5 of the conditional
expectation,

E [(X − E(X|B))Z] = E [XZ]− E [E(X|B)Z]

= E [XZ]− E [E(XZ|B)]

= 0

hence (X − E(X|B)) is orthogonal to L2 (Ω,B, P ) .
(3) As

E
[
(X − Y )2] = E

[
(X − E(X|B))2]+ E

[
(E(X|B)− Y )2]

we have that E
[
(X − Y )2] ≥ E

[
(X − E(X|B))2] and therefore

E
[
(X − E(X|B))2] = min

Y ∈L2(Ω,B,P )
E
[
(X − Y )2] .

Exercise 2.30 Prove properties 1,2,4 and 6 of the conditional expectation
(Proposition 2.23)
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2.3 Discrete-time Martingales

The concept of martingale is one of the most fruitful in stochastic analysis.
To de�ne a martingale, one should previously de�ne the concept of �ltration.
Consider the probability space (Ω,F , P ) .

De�nition 2.31 A sequence of σ-algebras {Fn, n ≥ 0} such that

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ · · · ⊂ F

is called a �ltration.

A �ltration may be interpreted as representing the �ow of information
generated by a random experiment or by a stochastic process.

De�nition 2.32 A discrete-time stochastic process M = {Mn;n ≥ 0} is
said to be a martingale with respect to the �ltration {Fn, n ≥ 0} if:

1. For each n, Mn is a Fn-measurable r.v. (i.e., M is a stochastic process
adapted to the �ltration {Fn, n ≥ 0}).

2. For all n, E [|Mn|] <∞.

3. For all n, we have
E [Mn+1|Fn] = Mn. (2.16)

The stochastic process M = {Mn;n ≥ 0} is called a supermartingale
(resp. submartingale) if it veri�es conditions 1 and 2 of the previous de�nition
and if condition 3 is substituted by (3') E [Mn+1|Fn] ≤ Mn (resp. (3�)
E [Mn+1|Fn] ≥Mn).

From condition (3) (or eq. (2.16)) it is easy to show that

E [Mn] = E [M0]

for all n ≥ 1. That is, the expected value of a martingale is constant with
time.

Condition (3) - eq. (2.16) - is equivalent to

E [∆Mn|Fn−1] = 0.

for all n ≥ 1, where ∆Mn := Mn −Mn−1.
The martingale condition - eq. (2.16) - may be interpreted as: given the

information Fn, Mn is the best estimation for Mn+1.
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Exercise 2.33 Show that, if M = {Mn;n ≥ 0} is a martingale, then

E [Mn] = E [M0] , ∀n ≥ 1.

Example 2.34 (random walk): Let {Zn;n ≥ 0} be a sequence of integrable
and independent random variables with 0 expected value. LetM = {Mn;n ≥ 0}
be de�ned as

Mn = Z0 + Z1 + · · ·+ Zn.

The process M is a random walk. Consider the natural �ltration generated
by {Zn;n ≥ 0}, i.e.,

Fn := σ {Z0, Z1, . . . , Zn} .

As M0,M1, . . . ,Mn and Z0, Z1, . . . , Zn contain the same information, then
both should generate the same σ-algebra Fn. Let us show that M is a mar-
tingale.

1. M is adapted to the �ltration {Fn, n ≥ 0} , becauseMn is Fn-measurable,
as Fn is also generated by Mn.

2. E [|Mn|] <∞, because all r.v. Zn are integrable (i.e. E [|Zn|] <∞ for
all n).

Example 2.35 Pelas propriedades básicas da esperança condicionada:

E [Mn+1|Fn] = E [Mn + Zn+1|Fn]

= Mn + E [Zn+1|Fn]

= Mn + E [Zn+1]

= Mn.

Note that a σ-algebra σ (X1, X2, . . . , Xn) generated by the r.v. (X1, X2, . . . , Xn)
contains all the essensial information on the structure of the random vector
(X1, X2, . . . , Xn) (as a function of ω ∈ Ω). Any martingale with respect to
a �ltration G is also a martingale with respect to the �ltration generated by
the process itself (smaller �ltration).

Lema 2.36 LetM = {Mn;n ≥ 0} be a martingale with respect to {Gn, n ≥ 0}
and Fn = σ {M0,M1, . . . ,Mn} ⊂ Gn the �ltration generated by the process
M . Then M is a martingale with respect to {Fn, n ≥ 0} .
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Proof. By property 6 of the conditional expectation and by the martingale
property,

E [Mn+1|Fn] = E [E [Mn+1|Gn] |Fn]

= E [Mn|Fn]

= Mn.

Proposition 2.37 1. SejaM = {Mn;n ≥ 0} uma {Fn}-martingala. En-
tão, para m ≥ n, temos

E [Mm|Fn] = Mn.

2. {Mn;n ≥ 0} é submartingala se e só se {−Mn;n ≥ 0} é supermartin-
gala.

3. Se {Mn;n ≥ 0} é martingala e ϕ é função convexa tal que E [|ϕ (Mn)|] <
∞ ∀n ≥ 0, então {ϕ (Mn) , n ≥ 0} é uma submartingala.

Property 3 is a consequence of the Jensen inequality and has as corol-
lary: if {Mn;n ≥ 0} and E [|Mn|p] < ∞ ∀n ≥ 0 and some p ≥ 1, then
{|Mn|p , n ≥ 0} is a submartingale.

Exercise 2.38 Let M = {Mn;n ≥ 0} be a {Fn}-martingale. Show that if
m ≥ n then E [Mm|Fn] = Mn.

2.4 The Martingale Transform

Let {Fn, n ≥ 0} be a �ltration on the probability space (Ω,F , P ).

De�nition 2.39 A stochastic process {Hn, n ≥ 1} is said to be predictable
if Hn is Fn−1-measurable (i.e., if Hn is �known� at time n− 1).

De�nition 2.40 Given a {Fn}-martingale M = {Mn;n ≥ 0} and a pre-
dictable process {Hn, n ≥ 1}, the process {(H ·M)n , n ≥ 1} de�ned as

(H ·M)n = M0 +
n∑
j=1

Hj∆Mj

is called the martingale transform of M by {Hn, n ≥ 1}.
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The martingale transform of a predictable sequence is the discrete version
of the stochastic integral, that is:

(H ·M)n −M0 =
n∑
j=1

Hj∆Mj ≈
∫ n

0

HsdMs.

Proposition 2.41 If M = {Mn;n ≥ 0} is a martingale and {Hn, n ≥ 0}
is a predictable process with bounded random variables, then the martingale
transform {(H ·M)n , n ≥ 1} is a martingale.

Proof. 1. (H ·M)n is {Fn}-measurable because
∑n

j=1 Hj∆Mj is Fn- mea-
surable.

2. (H ·M)n is integrable, as the r.v. Mn are integrable and the r.v. Hn

are bounded.
3. By the properties of conditional expectation,

E
[
(H ·M)n+1 − (H ·M)n |Fn

]
= E [Hn+1 (Mn+1 −Mn) |Fn]

= Hn+1E [Mn+1 −Mn|Fn]

= 0.

Consider now the following gambling system Hn:

� The amount bet by player at move n is Hn;

� ∆Mn = Mn −Mn−1 represents the gains at move n;

� Mn represents the accumulated fortune at instant n;

� (H ·M)n represents the accumulated fortune of the player if he uses
the betting system {Hn, n ≥ 1}.

If {Mn;n ≥ 0} is a martingale the game is said to be fair, and then
(H ·M)n is also a martingale, that is, the game remains fair no matter the
betting system used, as long as {Hn, n ≥ 0} satis�es the conditions of propo-
sition 2.41.

Example 2.42 (double-betting): Suppose that

Mn = M0 + Z1 + · · ·+ Zn,

where {Zn;n ≥ 1} are independent r.v. that represent the heads (+1) or tails
(−1) of a coin. Then, P (Zi = 1) = P (Zi = −1) = 1

2
. Suppose a player starts
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by betting a single Euro and doubles its bet every time he loses (if the coin
comes up tails (−1)) ending the game otherwise (if the coin comes up heads
(+1)). So the betting system is given by

H1 = 1,

Hn = 2Hn−1 if Zn−1 = −1,

Hn = 0 if Zn−1 = +1.

If the player loses k moves and wins at move k + 1, he gets

(H ·M)k = −1− 2− 4− · · · − 2k−1 + 2k = 1.

This may seem like an always-win strategy, but pay attention to the fact that,
for this to be true (with probability 1), unlimited funds and time are required
(unbounded betting strategy). In fact, in this case proposition 2.41 does not
apply because the variables Hn (of the gambling system) are not bounded.

Example 2.43 (�nancial application) Let Sn := {S0
n, S

1
n, n ≥ 1} be adapted

processes that represent the prices of two �nancial assets. Let

S0
n = (1 + r)n

be the price of a risk-free asset (bond), where r is the interest rate (the process
S0
n é is deterministic). A portfolio is φn := {φ0

n, φ
1
n, n ≥ 1}, that represents

the number of units of each asset. The value of the portfolio at period n is
given by

Vn = φ0
nS

0
n + φ1

nS
1
n = φn · Sn

The porfolio is said to be self-�nanced if, for any n,

Vn = V0 +
n∑
j=1

φj∆Sj.

This condition is equivalent to have, for any n,

φn · Sn = φn+1 · Sn
De�ne the discounted prices as

S̃n = (1 + r)−n Sn =
(
1, (1 + r)−n S1

n

)
.

Thus,

Ṽn = (1 + r)−n Vn = φn · S̃n,
φn · S̃n = φn+1 · S̃n,

Ṽn = V0 +
n∑
j=1

φj∆S̃j
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The process Ṽn =
(
φ1
n · S̃1

)
n
is the martingale transform of

{
S̃1
n

}
by the

predictable process {φ1
n}. If

{
S̃1
n

}
is a martingale and if {φ1

n} is a bounded

sequence, then, by Proposition 2.41, the process
{
Ṽn

}
is also a martingale.

Example 2.44 (binomial model) A probability measure Q equivalent to P is
called a risk-neutral probability measure if, in the probability space (Ω,F , Q),

the process
{
S̃1
n

}
is a {Fn}-martingale. On that case, if {φ1

n} is bounded,{
Ṽn

}
will also be a martingale, as seen in the previous example.

In the binomial model, assume the r.v.

Tn =
Sn
Sn−1

are independent and take the values 1 + a and 1 + b with probabilities p and
1−p, respectively, with a < r < b. Let us determine p (that is, the probability

measure Q) in such way that
{
S̃1
n

}
is a martingale.

E
[
S̃n+1|Fn

]
= (1 + r)−n−1E [SnTn+1|Fn]

= S̃n (1 + r)−1E [Tn+1|Fn]

= S̃n (1 + r)−1E [Tn+1]

Hence,
{
S̃1
n

}
is a martingale if E [Tn+1] = (1 + r), that is, if

E [Tn+1] = p (1 + a) + (1− p) (1 + b) = 1 + r

thus

p =
b− r
b− a

.

Consider now a {FN}-measurable r.v. H that represents the payo� of a
derivative on asset 1 that matures at time N . As an example, an Euro-
pean call option with exercise price K has a payo� H = (SN −K)+. The
derivative is said to be replicable if there exists a self-�nancing portfolio such
that

VN = H.

The price of the derivative will be the value of this portfolio. As
{
Ṽn

}
is a

martingale on the probability space,

Vn = (1 + r)n Ṽn = (1 + r)nEQ

[
ṼN |Fn

]
= (1 + r)−(N−n) EQ [H|Fn]
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If n = 0, then F0 = {Ω,∅} and

V0 = (1 + r)−N EQ [H] .

2.5 Continuous-time Martingales

Continuous-time martingales are de�ned in a similar way as we de�ned
discrete-time martingales, and the majority of properties still hold in this
case.

De�nition 2.45 Consider the probability space (Ω,F , P ). A family of σ-
algebras {Ft, t ≥ 0} such that

Fs ⊂ Ft, 0 ≤ s ≤ t.

is called a �ltration.

Let FXt be the σ-algebra generated by the process X on the interval
[0, t], i.e. FXt = σ (Xs, 0 ≤ s ≤ t). Then FXt may be interpreted as the
information generated by the process X on the interval [0, t]. Claiming that
A ∈ FXt means that it is possible to decide wether the event A has happened
or not, by observing the trajectories of X in [0, t].

Example 2.46 If A = {ω : X (5) > 1} then A ∈ FX5 but A /∈ FX4 .

De�nition 2.47 A stochastic process M = {Mt; t ≥ 0} is said to be a mar-
tingale with respect to the �ltration {Ft, t ≥ 0} if:

1. For all t ≥ 0, Mt is a Ft-measurable r.v. (i.e., M is a stochastic process
adapted to the �ltration {Ft, t ≥ 0}).

2. For all t ≥ 0, E [|Mt|] <∞.

3. For all s ≤ t, we have
E [Mt|Fs] = Ms.

Condition (3) is equivalent to E [Mt −Ms|Fs] = 0. If t ∈ [0, T ] then,
by the martingale property, Mt = E [MT |Ft]. Like in the discrete-time case,
condition (3) implies E [Mt] = E [M0] for all t.

The de�nitions of supermartingale and submartingale are analogous to
their respective discrete-time de�nitions.

We also have the following generalization of the Chebyshev inequality
(analogous to the discrete-time version).
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Theorem 2.48 (Doob's maximal (or martingale) inequality): IfM = {Mt; t ≥ 0}
is a martingale with continuous trajectories, then, for all p ≥ 1, T ≥ 0 and
λ > 0,

P

[
sup

0≤t≤T
|Mt| ≥ λ

]
≤ 1

λp
[E |MT |p]

To a proof of the discrete version of this theorem (based on the optional
stopping theorem), see [9] . To a more detailed analysis of martingales and
its properties, it is recommended the reading of [2] and [5].



Chapter 3

Brownian motion

3.1 De�nition

The name �Brownian motion� is given in honor of the botanist Robert Brown
who was, in 1827, the �rst to observe, using a microscope, the erratic physical
movement of pollen grains suspended in water droplets. This movement is
provoked by molecular shocks and it is a physical example of what was later
known as Brownian motion. In 1900, Louis Bachelier, in his thesis �Théorie
de la spéculation� used the Brownian motion as a model for the evolution of
�nancial asset prices. Five years later, Albert Einstein used this motion in
one of it's famous articles to con�rm the existence and �nd the size and mass
of atoms and molecules. The proof that the Brownian motion, as a stochastic
process, exists and is soundly de�ned was done in 1923 by Norbert Wiener -
which is why it is also called a Wiener process.

De�nition 3.1 A s.p. B = {Bt; t ≥ 0} is called a Brownian motion if it
satis�es the following conditions:

1. B0 = 0.

2. B has independent increments.

3. Se s < t, Bt −Bs é is a r.v. with distribution N(0, t− s).

4. The process B has continuous trajectories.

The Brownian motion is a Gaussian process. In fact, the �nite dimension
distributions of B, i.e. the distribution of the vectors (Bt1 , Bt2 , . . . , Btn) is

22
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Gaussian. From condition 3 of the de�nition, we may conclude that Bt ∼
N(0, t) and

E [Bt] = 0, ∀t ≥ 0, (3.1)

E
[
B2
t

]
= t, ∀t ≥ 0 (3.2)

Proposition 3.2 Let B = {Bt; t ≥ 0} be a Brownian motion. Then the
covariance function of B is

cB (s, t) = E [BsBt] = min (s, t) . (3.3)

Proof. If s ≤ t, using the independence of increments of the Brownian
motion and eq.(3.1),

E [BsBt] = E
[
Bs (Bt −Bs) +B2

s

]
= E [Bs (Bt −Bs)] + E

[
B2
s

]
= E [Bs]E [Bt −Bs] + s = s,

3.2 Main properties

Proposition 3.3 A stochastic process that satis�es conditions 1,2 and 3. of
the de�nition 3.1 has a version with continuous trajectories.

Proof. As (Bt −Bs) ∼ N(0, t− s), it is possible to show that

E
[
(Bt −Bs)

2k
]

=
(2k)!

2k · k!
(t− s)k . (3.4)

To prove this result one may use integration by parts and the mathematical
induction method in k (see [10]). For k = 2, we get

E
[
(Bt −Bs)

4] = 3 (t− s)2 .

Therefore, by the Continuity Criterion of Kolmogorov (Theorem 2.18, there
exists a version of B with continuous trajectories.

In order to de�ne the Brownian motion we could just demand the �rst
three conditions of De�nition 3.1, and by the previous proposition, there
would exist a version with continuous trajectories.

It may be shown that there exists a s.p. that satis�es conditions 1,2,3.
To do so, one may use the Kolmogorov Existence Theorem (see [10]). Then,
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by the previous proposition, there exists a stochastic process that satis�es
the 4 conditions given in the de�nition. Hence, the Brownian motion exists
as a soundly de�ned mathematical object.

In the de�nition of Brownian motion, the probability space is arbitrary.
However, it is possible to describe the structure of this space by considering
the map:

Ω→ C ([0,∞) ,R)

ω → B· (ω)

that, for each element ω corresponds a continuous function that takes values
in R (the trajectory). The probability space is the space of continuous func-
tions C ([0,∞) ,R) equipped with the Borel σ-algebra BC and the probability
measure induced by the above map: P ◦ B−1. This probability is called the
Wiener measure.

A corollary may be obtained from the Kolmogorov Continuity Criterion
and the the formula

E
[
(Bt −Bs)

2k
]

=
(2k)!

2k · k!
(t− s)k , (3.5)

We get

|Bt (ω)−Bs (ω)| ≤ Gε (ω) |t− s|
1+α
p
−ε ≤ Gε (ω) |t− s|

1
2
−ε ,

for all ε > 0 whereGε (ω) is a r.v.. Therefore we conclude that the trajectories
of the Brownian motion are Hölder continuous of order δ = 1

2
−ε. Informally,

for ∆t > 0,

|Bt+∆t −Bt| ≈ (∆t)
1
2 .

On the other hand, we already know that

E
[
(Bt+∆t −Bt)

2] = ∆t.

Considering the interval [0, t] and partitions of it such that 0 = t0 < t1 <
· · · < tn = t, where tj = tj

n
, we may then heuristically deduce that:

� B has in�nite total variation:
∑n

k=1 |∆Bk| ≈ n
(
t
n

)1/2 →∞ as n→∞.

� B has �nite quadratic variation:
∑n

k=1 |∆Bk|2 = n
(
t
n

)
= t.

We now present an important result on the irregularity of the trajectories
of the Brownian motion.
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Proposition 3.4 The trajectories of the Brownian motion are not di�eren-
tiable in any point (almost surely).

We only need to show that, fora given point t, the derivative of the
trajectory does not exist on that point. We have that

Bt+∆t −Bt

∆t
≈
√

∆tZ

∆t
=

Z√
∆t
,

where Z ∼ N (0, 1). Then, this ratio tends to ∞ as ∆t → 0 in probability,

because P
(

Z√
∆t
> K

)
→ 1 for any K, when ∆t→ 0. Hence, the derivative

does not exist in point t.

Proposition 3.5 (self-similarity) If B = {Bt; t ≥ 0} is a Brownian motion
then, for all a > 0, the process

{
a−1/2Bat; t ≥ 0

}
is also a Brownian motion.

Exercise 3.6 Prove proposition 3.5.

3.3 Processes related to the Brownian motion

We now show some processes that are de�ned from the Brownian motion
B = {Bt; t ≥ 0}.

� Brownian motion with drift:

Yt = µt+ σBt,

where σ > 0 and µ are constant. Clearly, this is a Gaussian process
with E [Yt] = µt and cov(s, t) = σ2 min (s, t) .

� Geometric Brownian motion (model proposed by Samuelson, and later
by Black, Scholes and Merton to describe prices of �nancial assets):

Xt = eµt+σBt ,

where σ > 0 and µ are constant. The distribution of X is lognormal,
that is, ln (Xt) has a normal distribution.

� Brownian bridge:

Zt = Bt − tB1, t ∈ [0, 1] .

Note that Z1 = Z0 = 0. This process is Gaussian with E [Zt] = 0 and
cov(s, t) = E [ZsZt] = min (s, t)− st.
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De�ne the �ltration generated by B

FBt = σ {Bs, s ≤ t} .

It is considered that FBt also contains the sets with null probability (N ∈
F0 if P (N) = 0). Some consequences of the inclusion of null probability sets
in the �ltration are given below:

1. Any version of an adapted process is still an adapted process.

2. The �ltration is continuous from the right, i.e.⋂
s>t

FBs = FBt .

Example 3.7 If B is a Brownian motion then the process Xt = sup
0≤s≤t

Bs is

adapted to the �ltration generated by B but the process Yt = sup
0≤s≤t+1

Bs is not.

Proposition 3.8 If B = {Bt; t ≥ 0} is a Brownian motion and
{
FBt , t ≥ 0

}
is the �ltration generated by B, then the following processes are

{
FBt , t ≥ 0

}
-

martingales:

1. Bt.

2. B2
t − t.

3. exp
(
aBt − a2t

2

)
.

Proof. 1. Clearly Bt is FBt -measurable and integrable. Also, as Bt − Bs is
independent from FBs (by the independence of the increments of B), we get

E
[
Bt −Bs|FBs

]
= E [Bt −Bs] = 0.

2. The process B2
t −t is FBt -measurable and integrable. By the properties

of B and the conditional expectation,

E
[
B2
t − t|FBs

]
= E

[
(Bt −Bs +Bs)

2 |FBs
]
− t

= E
[
(Bt −Bs)

2]+ 2BsE
[
Bt −Bs|FBs

]
+B2

s − t
= t− s+B2

s − t = B2
s − s.

Exercise 3.9 Let B = {Bt; t ≥ 0} be a Brownian motion and
{
FBt , t ≥ 0

}
the �ltration generated by B. Show that the process Xt = exp

(
aBt − a2t

2

)
is

a martingale.
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3.4 The quadratic variation of the Brownian

Motion

The results on the total and quadratic variation of the Brownian motion
were deduced heuristically. We dedicate this section to prove rigorously these
results.
Let us �x an interval [0, t] and a partition π of this interval, with

0 = t0 < t1 < · · · < tn = t.

The norm of the partition is de�ned as

|π| = max
k

∆tk,

where ∆tk = tk − tk−1 and let ∆Bk = Btk −Btk−1
.

Proposition 3.10 The Brownian motion B has �nite quadratic variation
in the interval [0, t] (and equal to t), in the sense that

E

( n∑
k=1

(∆Bk)
2 − t

)2
 −→ 0,

when |π| → 0.

Proof. Using the independence of the increments, the fact thatE
[
(∆Bk)

2] =

∆tk and the formula E
[
(Bt −Bs)

2j
]

= (2j)!
2j ·j! (t− s)j, we have

E

( n∑
k=1

(∆Bk)
2 − t

)2
 = E

[
n∑
k=1

[
(∆Bk)

2 −∆tk
]2]

n∑
j=1

[
3 (∆tk)

2 − 2 (∆tk)
2 + (∆tk)

2]
= 2

n∑
j=1

(∆tk)
2 ≤ 2t |π| →

|π|→0
0.

Proposition 3.11 The Brownian motion B has in�nite total variation in
the interval [0, t] , in the sense that V = sup

π

∑n
k=1 |∆Bk| =∞ with probability

1.
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Proof. Using the continuity of the trajectories of the Brownian motion, we
have that

n∑
k=1

(∆Bk)
2 ≤ sup

k
|∆Bk|

n∑
k=1

|∆Bk| ≤ V sup
k
|∆Bk| →

|π|→0
0,

if V <∞. But this contradicts the fact that
∑n

k=1 (∆Bk)
2 converges in mean

squared to t. Therefore V =∞.
For a more detailed analysis on the Brownian motion, it is recommended

the reading of [5].



Chapter 4

Itô integral

4.1 Motivation

Let B = {Bt; t ≥ 0} be a Brownian motion and consider a �stochastic� dif-
ferential equation of the type

dX

dt
= b(t,Xt) + σ (t,Xt) �

dBt

dt
�,

where � dBt
dt
� is stochastic noise. This process does not exist in the classic

sense, because B is not di�erentiable. We may express the equation above
in the integral form

Xt = X0 +

∫ t

0

b(s,Xs)ds+ “

∫ t

0

σ (s,Xs) dB
′′
s

The problem now is how to de�ne
∫ t

0
σ (s,Xs) dBs , or, in a broader way, to

de�ne stochastic integrals of the form∫ T

0

usdBs,

where B is a Brownian motion and u is an adequate stochastic process.
A strategy that could be followed to de�ne this type of integrals would

be to consider them as Riemann-Stieltjes integrals. Let us see how to de�ne
an integral of this type. Consider a sequence of partitions of [0, T ] and a
sequence of interior points in those partitions:

τn: 0 = tn0 < tn1 < tn2 < · · · < tnk(n) = T

sn: t
n
i ≤ sni ≤ tni+1, i = 0, . . . , k (n)− 1,

29
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0
tn

i tn
i+1

sn
i

T

Figure 4.1: Partition of [0, T ]

such that lim
n→∞

sup
i

(
tni+1 − tni

)
= 0.

The Riemann-Stieltjes (R-S) integral is de�ned as the limit of the Rie-
mann sums: ∫ T

0

fdg := lim
n→∞

n−1∑
i=0

f (sni ) ∆gi,

where ∆gi := g(tni+1)− g(tni ), if the limit exists and is independent from the
sequences τn and sn.

� The Riemann-Stieltjes (R-S) integral
∫ T

0
fdg exists if f is continuous

and g has limited total variation, i.e.

sup
τn

∑
i

|∆gi| <∞.

� If f is continuous g is of class C1 then the (R-S) integral
∫ T

0
fdg exists

and ∫ T

0

fdg :=

∫ T

0

f (t) g′(t)dt,

� In the case of the Brownian motion B, clearly the derivative B′(t) does
not exist, so we cannot de�ne the trajectory integral∫ T

0

ut (ω) dBt (ω)
×
6=
∫ T

0

ut (ω)B′t (ω) dt.

In general, we know that the Brownian motion does not have bounded
total variation, so we may not de�ne the (R-S) integral

∫ T
0
ut (ω) dBt (ω).

However, if u has C1 trajectories, using integration by parts, the trajectory
(R-S) integral exists and∫ T

0

ut (ω) dBt (ω) = uT (ω)BT (ω)−
∫ T

0

u′t (ω)Bt (ω) dt.
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Still, a problem withstands. For example, the integral
∫ T

0
Bt (ω) dBt (ω) does

not exist as an R-S integral. It is useful to consider processes that are more
irregular than those with class C1 trajectories, so how may we de�ne the
stochastic integral for these processes? We should abandon the R-S strategy
and follow a new reasoning: de�ne the stochastic integral

∫ T
0
utdBt through

a probabilistic approach.
Consider a Brownian motionB = {Bt; t ≥ 0} and the �ltration {Ft, t ≥ 0}

generated by it.

De�nition 4.1 Consideraremos processos u da classe L2
a,T , que se de�ne

como a classe de processos estocásticos u = {ut, t ∈ [0, T ]}, tais que:

1. u is measurable and adapted, i.e: ut is Ft-measurable for all t ∈ [0, T ],
and the map (t, ω) → ut (ω), de�ned in [0, T ] × Ω is measurable with
respect to the σ-algebra B[0,T ] ×FT .

2. E
[∫ T

0
u2
tdt
]
<∞.

� Condition 2. allows one to show that u as a function of the variables
t and ω belongs to the space L2 ([0, T ]× Ω) and that (using Fubini's
theorem)

E

[∫ T

0

u2
tdt

]
=

∫ T

0

E
[
u2
t

]
dt =

∫
[0,T ]×Ω

u2
t (ω) dtP (dω) .

4.2 The stochastic integral of simple processes

The strategy to de�ne the stochastic integral consists in de�ning
∫ T

0
utdBt

for u ∈ L2
a,T as the mean-squared limit (limit in L2 (Ω)) of integrals of simple

process.

De�nition 4.2 A stochastic process u is said to be a simple process if

ut =
n∑
j=1

φj1(tj−1,tj ] (t) , (4.1)

where 0 = t0 < t1 < · · · < tn = T , and the r.v. φj are square-integrable
(E
[
φ2
j

]
<∞) and Ftj−1

-measurable.

From now on, we shall denote the class of all simple processes by S.
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De�nition 4.3 If u is a simple process of the form(4.1) (u ∈ S) then we
de�ne the stochastic integral of u with respect to the Brownian motion B as∫ T

0

utdBt :=
n∑
j=1

φj
(
Btj −Btj−1

)
.

Example 4.4 Consider the simple process

ut =
n∑
j=1

Btj−1
1(tj−1,tj ] (t) .

Then ∫ T

0

utdBt =
n∑
j=1

Btj−1

(
Btj −Btj−1

)
.

It is clear that, from the independent increments of B, we have

E

[∫ T

0

utdBt

]
=

n∑
j=1

E
[
Btj−1

(
Btj −Btj−1

)]
=

n∑
j=1

E
[
Btj−1

]
E
[
Btj −Btj−1

]
= 0.

Proposition 4.5 (Proprerty of isometry). Let u ∈ S be a simple process.
Then the following isometry property holds:

E

[(∫ T

0

utdBt

)2
]

= E

[∫ T

0

u2
tdt

]
. (4.2)

Proof. Taking ∆Bj := Btj −Btj−1
,

E

[(∫ T

0

utdBt

)2
]

= E

( n∑
j=1

φj∆Bj

)2


=
n∑
j=1

E
[
φ2
j (∆Bj)

2]+ 2
n∑
i<j

E [φiφj∆Bi∆Bj] .

Note that as φiφj∆Bi is Fj−1-measurable and ∆Bj is independent from Fj−1,
we have

n∑
i<j

E [φiφj∆Bi∆Bj] =
n∑
i<j

E [φiφj∆Bi]E [∆Bj] = 0.
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On the other hand, as φ2
j is Fj−1-measurable and ∆Bj is independent from

Fj−1,

n∑
j=1

E
[
φ2
j (∆Bj)

2] =
n∑
j=1

E
[
φ2
j

]
E
[
(∆Bj)

2]
=

n∑
j=1

E
[
φ2
j

]
(tj − tj−1) =

= E

[∫ T

0

u2
tdt

]
.

Proposition 4.6 Let u ∈ S.

� 1. Linearity: If u,v ∈ S:∫ T

0

(aut + bvt) dBt = a

∫ T

0

utdBt + b

∫ T

0

vtdBt. (4.3)

2. Null expected value:

E

[∫ T

0

utdBt

]
= 0. (4.4)

Exercise 4.7 Prove properties 1. and 2. from the previous proposition.

4.3 Itô integral for adapted processes

The following lemma is fundamental to de�ne stochastic integral of adapted
processes.

Lema 4.8 If u ∈ L2
a,T then there exists a sequence of simple processes

{
u(n)
}
∈

S such that

lim
n→∞

E

[∫ T

0

∣∣∣ut − u(n)
t

∣∣∣2 dt] = 0. (4.5)

Proof. 1. Suppose u is a mean-squared continuous process, that is:

lim
s→t

E
[
|ut − us|2

]
= 0.
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De�ne tnj := j
n
T and

unt =
n∑
j=1

utnj−1
1(tnj−1,t

n
j ]

(t) . (4.6)

By applying Fubini's theorem, we get

E

[∫ T

0

∣∣∣ut − u(n)
t

∣∣∣2 dt] =

[∫ T

0

E

[∣∣∣ut − u(n)
t

∣∣∣2] dt]
=

n∑
j=1

∫ tnj

tnj−1

E

[∣∣∣utnj−1
− ut

∣∣∣2 dt]
≤ T sup

|t−s|≤T
n

E
[
|us − ut|2

]
→
n→∞

0.

Step 2. Suppose now that u ∈ L2
a,T and consider the sequence of processes{

v(n)
}
de�ned by

vnt = n

∫ t

t− 1
n

usds.

These processes are mean-squared continuous (they even have continuous
trajectories) and belong to the class L2

a,T . On the other hand,

lim
n→∞

E

[∫ T

0

∣∣∣ut − v(n)
t

∣∣∣2 dt] = 0,

because

lim
n→∞

∫ T

0

∣∣∣ut (ω)− v(n)
t (ω)

∣∣∣2 dt = 0.

and we may apply the Dominated Convergence Theorem in the space [0, T ]×
Ω, since we get, using Cauchy-Schwarz inequality and by changing the inte-
gration order,

E

[∫ T

0

∣∣∣v(n)
t

∣∣∣2 dt] = E

n2

∫ T

0

∣∣∣∣∣
∫ t

t− 1
n

usds

∣∣∣∣∣
2

dt


≤ nE

[∫ T

0

(∫ t

t− 1
n

u2
sds

)
dt

]

= nE

[∫ T

0

u2
s

(∫ s+1/n

s

dt

)
ds

]

= E

[∫ T

0

u2
sds

]
.
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De�nition 4.9 The stochastic integral (or Itô integral) of the process u ∈
L2
a,T is de�ned as the limit (in L2 (Ω))∫ T

0

utdBt = lim
n→∞

(L2)

∫ T

0

u
(n)
t dBt, (4.7)

where
{
u(n)
}
is a sequence of simple processes that veri�es (4.5).

Note that the limit (4.7) exists since, due to the isometry property for

simple processes, the sequence
{∫ T

0
u

(n)
t dBt

}
is a Cauchy sequence in L2 (Ω)

and therefore is convergent.
Proof.

E

[(∫ T

0

u
(n)
t dBt −

∫ T

0

u
(m)
t dBt

)2
]

= E

[∫ T

0

(
u

(n)
t − u

(m)
t

)2

dt

]
≤ 2E

[∫ T

0

(
u

(n)
t − ut

)2

dt

]
+ 2E

[∫ T

0

(
ut − u(m)

t

)2

dt

]
n,m→∞→ 0.

Proposition 4.10 Let u ∈ L2
a,T . Then, the following properties hold

� 1. Isometry:

E

[(∫ T

0

utdBt

)2
]

= E

[∫ T

0

u2
tdt

]
. (4.8)

2. Null expected value:

E

[∫ T

0

utdBt

]
= 0 (4.9)

3. Linearity:∫ T

0

(aut + bvt) dBt = a

∫ T

0

utdBt + b

∫ T

0

vtdBt. (4.10)

Proof. These properties are easily shown for simple processes u ∈ S. After
doing so, the broader case where u ∈ L2

a,T is proven by considering the process
as a limit of a sequence simple processes.
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Example 4.11 Let us see that∫ T

0

BtdBt =
1

2
B2
T −

1

2
T .

As the process ut = Bt is mean-squared continuous, we consider the sequence
of approaching simple processes (4.6), i.e.

unt =
n∑
j=1

Btnj−1
1(tnj−1,t

n
j ]

(t) ,

where tnj := j
n
T .∫ T

0

BtdBt = lim
n→∞

(L2)

∫ T

0

u
(n)
t dBt =

= lim
n→∞

(L2)
n∑
j=1

Btnj−1

(
Btnj
−Btnj−1

)
= lim

n→∞
(L2)

1

2

n∑
j=1

[(
B2
tnj
−B2

tnj−1

)
−
(
Btnj
−Btnj−1

)2
]

=
1

2

(
B2
T − T

)
,

we use the fact that E

[(∑n
j=1

(
∆Btnj

)2

− T
)2
]
→ 0 and 1

2

∑n
j=1

(
B2
tnj
−B2

tnj−1

)
=

1
2
B2
T .

4.4 Unde�ned stochastic integrals

Consider a stochastic process u ∈ L2
a,T . Then, for any t ∈ [0, T ], the process

u1[0,t] is also in L2
a,T , hence we may de�ne the unde�ned stochastic integral:∫ t

0

usdBs :=

∫ T

0

us1[0,t] (s) dBs.

The stochastic process
{∫ t

0
usdBs, 0 ≤ t ≤ T

}
is the unde�ned stochastic in-

tegral of u with respect to B.

Proposition 4.12 Main properties of the unde�ned stochastic integral:
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1. Additivity: For a ≤ b ≤ c, we have:∫ b

a

usdBs +

∫ c

b

usdBs =

∫ c

a

usdBs.

2. Factorization: If a < b and A ∈ Fa, then:∫ b

a

1AusdBs = 1A

∫ b

a

usdBs.

This property still holds when 1A is substituted by any bounded and
Fa-measurable random variable.

3. Martingale property: If u ∈ L2
a,T Then the process Mt =

∫ t
0
usdBs is a

martingale with respect to the �ltration Ft.

4. Continuity: If u ∈ L2
a,T then the process Mt =

∫ t
0
usdBs has a version

with continuous trajectories.

5. Maximal inequality for the unde�ned stochastic integral: If u ∈ L2
a,T e

Mt =
∫ t

0
usdBs, them, for any λ > 0,

P

[
sup

0≤t≤T
|Mt| > λ

]
≤ 1

λ2
E

[∫ T

0

u2
tdt

]
.

Proof. 3: Let u(n) be a sequence of simple processes such that

lim
n→∞

E

[∫ T

0

∣∣∣ut − u(n)
t

∣∣∣2 dt] = 0.

LetMn (t) =
∫ t

0
u

(n)
s dBs and let φj be the value of u

(n) on the interval (tj−1, tj],
where j = 1, . . . , n. If s ≤ tk ≤ tm−1 ≤ t, then:

E [Mn (t)−Mn (s) |Fs]

= E

[
φk (Btk −Bs) +

m−1∑
j=k+1

φj∆Bj + φm
(
Bt −Btm−1

)
|Fs

]
,

hence, by the properties of conditional expectation,

= E [φk (Btk −Bs) |Fs] +
m−1∑
j=k+1

E [E [φj∆Bj|Fj−1] |Fs] +

+ E
[
E
[
φm
(
Bt −Btm−1

)
|Ftm−1

]
|Fs
]
.
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= φkE [Btk −Bs|Fs] +
m−1∑
j=k+1

E [φjE [∆Bj|Fj−1] |Fs] +

+ E
[
φmE

[
Bt −Btm−1|Ftm−1

]
|Fs
]

using the independence of the Brownian motion increments we get:

E [Mn (t)−Mn (s) |Fs] = 0.

As mean-square convergence implies mean-square convergence of the condi-
tional expectations,

E [M (t)−M (s) |Fs] = 0

and therefore the stochastic integral is a martingale.

4: Using the same notation as in the previous proof, Mn (t) is clearly a
process with continuous trajectories, because it is the stochastic integral of
a simple process. Then, by Doob's maximal inequality applied to Mn−Mm,
with p = 2, we have:

P

[
sup

0≤t≤T
|Mn (t)−Mm (t)| > λ

]
≤ 1

λ2
E
[
|Mn (T )−Mm (T )|2

]
=

1

λ2
E

[(∫ T

0

(
u

(n)
t − u

(m)
t

)
dBt

)2
]

=
1

λ2
E

[∫ T

0

∣∣∣u(n)
t − u(m)

∣∣∣2 dt] . n,m→∞−→ 0,

where we used the Itô isometry. We may then choose a increasing sequence
of positive integers nk, k = 1, 2, . . ., such that

P

[
sup

0≤t≤T

∣∣Mnk+1
(t)−Mnk (t)

∣∣ > 2−k
]
≤ 2−k.

The events

Ak :=

{
sup

0≤t≤T

∣∣Mnk+1
(t)−Mnk (t)

∣∣ > 2−k
}

should then satisfy:
∞∑
k=1

P (Ak) <∞.

Hence, by the Borel-Cantelli lemma, P (lim supk Ak) = 0 or

P

[
sup

0≤t≤T

∣∣Mnk+1
(t)−Mnk (t)

∣∣ > 2−k for an in�nite # of k

]
= 0.
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Therefore, for almost every ω ∈ Ω, there exists k1 (ω) such that

sup
0≤t≤T

∣∣Mnk+1
(t)−Mnk (t)

∣∣ ≤ 2−k for k ≥ k1 (ω) .

Consequently, Mnk (t, ω) is uniformly convergent inside [0, T ] almost surely
and hence the limit, which we denote by Jt (ω), is a continuous function on
the variable t. Finally, as Mnk (t.·) → Mt (·) in mean-square (or in L2 (P ))
for all t, then we must have

Mt = Jt q.c. e para todo o t ∈ [0, T ] .

and so we conclude that the unde�ned stochastic integral has a continuous
version.

Exercise 4.13 Prove property 1 of the previous proposition, that is,∫ b

a

usdBs +

∫ c

b

usdBs =

∫ c

a

usdBs.

Proposition 4.14 (quadratic variation of the unde�ned stochastic integral)
Let u ∈ L2

a,T . then

n∑
j=1

 tj∫
tj−1

usdBs


2

L1(Ω)−→
t∫

0

u2
sds,

when n→∞ and with tj := jt
n
.

4.5 Extensions of the stochastic integral

When de�ning the stochastic integral, one may substitute {Ft} (�ltration
generated by the Brownian motion) by a bigger �ltration Ht such that the
Brownian motion Bt is a Ht-martingale.

One may also substitute condition 2) E
[∫ T

0
u2
tdt
]
< ∞ in the de�nition

of L2
a,T by the (weaker) condition:

2′)P

[∫ T

0

u2
tdt <∞

]
= 1. (4.11)

Let La,T be the space of processes that satisfy both the condition 1 of the
de�nition of L2

a,T (i.e., u is measurable and adapted) and the condition 2').
The stochastic integral may be de�ned for processes u ∈ La,T but, in this
case, the stochastic integral may neither have null expected value nor satisfy
the Itô isometry.
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Exercise 4.15 Prove directly, using the de�nition of stochastic integral, that∫ t

0

sdBs = tBt −
∫ t

0

Bsds. (4.12)

Suggestion: Note that∑
j

∆ (sjBj) =
∑
j

sj∆Bj +
∑
j

Bj+1∆sj. (4.13)

Exercise 4.16 Consider a deterministic function g such that
∫ T

0
g (s)2 ds <

∞. Show that the stochastic integral
∫ T

0
g (s) dBs is a Gaussian random vari-

able and determine its mean and variance.

For an elementary introduction of the stochastic integral it is recom-
mended the reading of [7]. For a more detailed discussion, reading [5], [9],
[10] and [11] are recommended.



Chapter 5

Itô formula

5.1 One-dimensional Itô formula

Let ∆B = Bt+∆t −Bt. We've seent that

E
[
(∆B)2] = ∆t,

and using the formula E
[
(Bt −Bs)

2k
]

= (2k)!
2k·k!

(t− s)k , we have that

V ar
[
(∆B)2] = E

[
(∆B)4]− (E [(∆B)2])2

= 3 (∆t)2 − (∆t)2 = 2 (∆t)2 .

Hence, if ∆t is small, the variance of (∆B)2 is insigni�cant when compared
with it's expected value. Therefore, when ∆t → 0 or �∆t = dt�, informally
we may conclude:

(dBt)
2 = dt (5.1)

The equality (5.1) is the base of the Itô formula (or Itô's Lemma) that we'll
discuss throughout this chapter. Itô's formula is, essentially, a stochastic
version of the chain rule. Consider the following (equivalent) equalities:∫ t

0

BsdBs =
1

2
B2
t −

1

2
t

B2
t = 2

∫ t

0

BsdBs + t

d
(
B2
t

)
= 2BtdBt + dt

The last expression represents the Taylor expansion of B2
t as a function

of Bt and t, with the convention (dBt)
2 = dt motivated by eq.(5.1).

41
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If f is a function of class C2, Itô's formula will show we have the following
representation of f(Bt):

f (Bt) = unde�ned stoch. integral + process with di�erentiable trajectories

= Itô's process

De�ne L1
a,T as the space of processes v such that

1) v is an adapted and measurable process;

2�) P
[∫ T

0
|vt| dt <∞

]
= 1.

De�nition 5.1 A continuous and adapted process X = {Xt, 0 ≤ t ≤ T} is
called an Itô's process if it satis�es:

Xt = X0 +

∫ t

0

usdBs +

∫ t

0

vsds, (5.2)

where u ∈ La,T and v ∈ L1
a,T .

Theorem 5.2 (one-dimensional Itô's Formula) Let X = {Xt, 0 ≤ t ≤ T} be
a Itô process of the form (5.2). Let f(t, x) be a function of class C1,2. Then
the process Yt = f(t,Xt) is an Itô process and has the representation

f(t,Xt) = f(0, X0) +

∫ t

0

∂f

∂t
(s,Xs) ds+

∫ t

0

∂f

∂x
(s,Xs)usdBs

+

∫ t

0

∂f

∂x
(s,Xs) vsds+

1

2

∫ t

0

∂2f

∂x2
(s,Xs)u

2
sds.

In the di�erential form, Itô's formula may be written as:

df(t,Xt) =
∂f

∂t
(t,Xt) dt+

∂f

∂x
(t,Xt) dXt

+
1

2

∂2f

∂x2
(t,Xt) (dXt)

2 .

where (dXt)
2 is computed using the product table:

× dBt dt
dBt dt 0
dt 0 0

Itô's formula for f(t, x) and Xt = Bt that is Yt = f(t, Bt), is
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f(t, Bt) = f(0, 0) +

∫ t

0

∂f

∂t
(s, Bs) ds+

∫ t

0

∂f

∂x
(s, Bs) dBs

+
1

2

∫ t

0

∂2f

∂x2
(s, Bs) ds.

df(t, Bt) =
∂f

∂t
(t, Bt) dt+

∂f

∂x
(t, Bt) dBt

+
1

2

∂2f

∂x2
(t, Bt) dt.

Itô's formula when f(x) and Xt = Bt, that is Yt = f(Bt), is simply

df(Bt) =
∂f

∂x
(Bt) dBt +

1

2

∂2f

∂x2
(Bt) dt.

5.2 Multidimensional Itô's formula

Suppose Bt := (B1
t , B

2
t , . . . , B

m
t ) is a Brownian motion of dimension m, that

is, the components Bk
t , k = 1, ...,m are independent one-dimensional Brow-

nian motions. Consider an Itô process of dimension n, de�ned by

X1
t = X1

0 +

∫ t

0

u11
s dB

1
s + · · ·+

∫ t

0

u1m
s dBm

s +

∫ t

0

v1
sds,

X2
t = X2

0 +

∫ t

0

u21
s dB

1
s + · · ·+

∫ t

0

u2m
s dBm

s +

∫ t

0

v2
sds,

...

Xn
t = Xn

0 +

∫ t

0

un1
s dB

1
s + · · ·+

∫ t

0

unms dBm
s +

∫ t

0

vns ds.

In di�erential notation,

dX i
t =

m∑
j=1

uijt dB
j
t + vitdt,

with i = 1, 2, . . . , n. Or, in a more compact way,

dXt = utdBt + vtdt,

where vt is a n-dimensional process, ut is a n ×m matrix of processes. We
assume the components of u belong to La,T and the components of v belong
to L1

a,T .
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Theorem 5.3 (multidimensional Itô's formula) If f : [0, T ] × Rn → Rp is
of class C1,2 then Yt = f(t,Xt) is an Itô process and we have the following
Itô formula:

dY k
t =

∂fk
∂t

(t,Xt) dt+
n∑
i=1

∂fk
∂xi

(t,Xt) dX
i
t

+
1

2

n∑
i,j=1

∂2fk
∂xi∂xj

(t,Xt) dX
i
tdX

j
t .

The product of di�erentials dX i
tdX

j
t is computed according to the rules:

dBi
tdB

j
t =

{
0 se i 6= j
dt se i = j

,

dBi
tdt = 0,

(dt)2 = 0.

In the particular case where Bt is a n-dimensional Brownian motion and
f : Rn → R is of class C2 with Yt = f(Bt) then Itô's formula is

f(Bt) = f(B0) +
n∑
i=1

∫ t

0

∂f

∂xi
(Bt) dB

i
s +

1

2

∫ t

0

(
n∑
i=1

∂2f

∂x2
i

(Bt)

)
ds

Example 5.4 (integration by parts formula) If X1
t and X2

t are Itô processes
and Yt = X1

tX
2
t , then by Itô's formula with f(x) = f(x1, x2) = x1x2, we get

d
(
X1
tX

2
t

)
= X2

t dX
1
t +X1

t dX
2
t + dX1

t dX
2
t .

That is:

X1
tX

2
t = X1

0X
2
0 +

∫ t

0

X2
sdX

1
s +

∫ t

0

X1
sdX

2
s +

∫ t

0

dX1
sdX

2
s .

Example 5.5 Consider the process

Yt =
(
B1
t

)2
+
(
B2
t

)2
+ · · ·+ (Bn

t )2 .

Represent this process in terms of stochastic integrals with respect to the n-
dimensional Brownian motion. By the multidimensional Itô's formla, with
f(x) = f(x1, x2, . . . , xn) = x2

1 + · · ·+ x2
n we get

dYt = 2B1
t dB

1
t + · · ·+ 2Bn

t dB
n
t

+ ndt,

that is,

Yt = 2

∫ t

0

B1
sdB

1
s + · · ·+ 2

∫ t

0

Bn
s dB

n
s + nt.
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Exercise 5.6 Let Bt := (B1
t , B

2
t ) be a 2-dimensional Brownian motion. Rep-

resent the process

Yt =
(
B1
t t,
(
B2
t

)2 −B1
tB

2
t

)
as an Itô process.

Solution 5.7 Using multidimensional Itô's formula, with f(t, x) = f(t, x1, x2) =
(x1t, x

2
2 − x1x2) , we have

dY 1
t = B1

t dt+ tdB1
t ,

dY 2
t = −B2

t dB
1
t +

(
2B2

t −B1
t

)
dB2

t + dt,

that is,

Y 1
t =

∫ t

0

B1
sds+

∫ t

0

sdB1
s ,

Y 1
t = −

∫ t

0

B2
sdB

1
s +

∫ t

0

(
2B2

s −B1
s

)
dB2

s + t.

We shall now describe how could one prove rigorously one-dimensional
Itô's formula. The process

Yt = f(0, X0) +

∫ t

0

∂f

∂t
(s,Xs) ds+

∫ t

0

∂f

∂x
(s,Xs)usdBs

+

∫ t

0

∂f

∂x
(s,Xs) vsds+

1

2

∫ t

0

∂2f

∂x2
(s,Xs)u

2
sds.

is an Itô process. We assume that f and it's partial derivatives are bounded
(the general case may be proven by approximating f and it's partial deriva-
tives by bounded functions). As we know, the stochastic integral may be
approximated by a sequence of stochastic integrals of simple processes, and
so we may assume u and v are simple processes.

By dividing the interval [0, t] in n equal-sized subintervals, we get

f (t,Xt) = f (0, X0) +
n−1∑
k=0

(
f
(
tk+1, Xtk+1

)
− f (tk, Xtk)

)
.

Using Taylor's expansion

f
(
tk+1, Xtk+1

)
− f (tk, Xtk) =

∂f

∂t
(tk, Xtk) ∆t+

∂f

∂x
(tk, Xtk) ∆Xk

+
1

2

∂2f

∂x2
(tk, Xtk) (∆Xk)

2 +Qk,
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where Qk is the remainder of Taylor's formula. We also have

∆Xk = Xtk+1
−Xtk =

∫ tk+1

tk

vsds+

∫ tk+1

tk

usdBs

= v (tk) ∆t+ u (tk) ∆Bk + Sk,

where Sk is the remainder. From here, we obtain

(∆Xk)
2 = (v (tk))

2 (∆t)2 + (u (tk))
2 (∆Bk)

2

+ 2v (tk)u (tk) ∆t∆Bk + Pk,

where Pk is the remainder. By substituting these terms we get

f (t,Xt)− f (0, X0) = I1 + I2 + I3 +
1

2
I4 +

1

2
K1 +K2 +R,

where

I1 =
∑
k

∂f

∂t
(tk, Xtk) ∆t,

I2 =
∑
k

∂f

∂t
(tk, Xtk) v (tk) ∆t,

I3 =
∑
k

∂f

∂x
(tk, Xtk)u (tk) ∆Bk,

I4 =
∑
k

∂2f

∂x2
(tk, Xtk) (u (tk))

2 (∆Bk)
2 .

K1 =
∑
k

∂2f

∂x2
(tk, Xtk) (v (tk))

2 (∆t)2 ,

K2 =
∑
k

∂2f

∂x2
(tk, Xtk) v (tk)u (tk) ∆t∆Bk,

R =
∑
k

(Qk + Sk + Pk) .

When n→∞, it is easily shown that

I1 →
∫ t

0

∂f

∂t
(s,Xs) ds,

I2 →
∫ t

0

∂f

∂x
(s,Xs) vsds,

I3 →
∫ t

0

∂f

∂x
(s,Xs)usdBs.
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As we've seen before (quadratic variation of the Brownian motion),∑
k

(∆Bk)
2 → t,

whereby

I4 →
∫ t

0

∂2f

∂x2
(s,Xs)u

2
sds.

On the other hand, we also have

K1 → 0,

K2 → 0.

Although harder and more technical, it may also be proved that

R→ 0.

As a conclusion, we obtain Itô's formula when taking the limit.

5.3 Itô's integral representation theorem

Let u ∈ L2
a,T (u adapted, measurable and square-integrable) and let

Mt = E [M0] +

∫ t

0

usdBs. (5.3)

We already know that Mt is a Ft-martingale. We shall now show that any
squared-integrable martingale is of the form(5.3).

Theorem 5.8 (Itô's integral representation): Let F ∈ L2 (Ω,FT , P ). Then
there exists one unique process u ∈ L2

a,T such that

F = E [F ] +

∫ t

0

usdBs. (5.4)

Proof. We shall divide the proof in 3 parts:

1. Consider a random variable F of the form

F = exp

(∫ T

0

h (s) dBs −
1

2

∫ T

0

h (s)2 ds

)
, (5.5)
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where h is a deterministic function
∫ T

0
h (s)2 ds < ∞. Let us apply

Itô's formula to f (x) = ex, with Xt =
∫ t

0
h (s) dBs − 1

2

∫ t
0
h (s)2 ds and

Yt = f (Xt). Then

dYt = Yt

(
h (t) dBt −

1

2
h (t)2 dt

)
+

1

2
Yt (h (t) dBt)

2

= Yth (t) dBt.

That is,

Yt = 1 +

∫ t

0

Ysh (s) dBs.

It is then obtained

F = YT = 1 +

∫ T

0

Ysh (s) dBs

= E [F ] +

∫ T

0

Ysh (s) dBs

Note that

E
[∫ T

0

(Ysh (s))2 ds

]
<∞,

due to E [Y 2
t ] = exp

(∫ t
0
h (u)2 du

)
<∞. Therefore

E
[∫ T

0

(Ysh (s))2 ds

]
≤
∫ T

0

exp

(∫ s

0

h (u)2 du

)
h (s)2 ds

≤ exp

(∫ T

0

h (u)2 du

)∫ T

0

h (s)2 ds.

2. The representation (5.4) is also valid (by linearity) for linear combi-
nations of the form (5.5). The general case, F ∈ L2 (Ω,FT , P ) may
then be approximated (in mean-squares sense) by the sequence {Fn}
of linear combinations of random variables of the form (5.5). A more
detailed approach of this may be found in [10]. Then:

Fn = E [Fn] +

∫ t

0

u(n)
s dBs.

By Itô's isometry, we have

E
[
(Fn − Fm)2] = (E [Fn − Fm])2 + E

[∫ t

0

(
u(n)
s − u(m)

s

)2
ds

]
≥ E

[∫ t

0

(
u(n)
s − u(m)

s

)2
ds

]
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and {Fn} is a Cauchy sequence in L2 (Ω,FT , P ). Hence,

E
[
(Fn − Fm)2] −→ 0 when n,m→∞.

Thus

E
[∫ t

0

(
u(n)
s − u(m)

s

)2
ds

]
−→ 0 qdo. n,m→∞.

So
{
u(n)
}
is a Cauchy sequence in L2 ([0, T ]× Ω). As this is a com-

plete space, u(n) → u in L2 ([0, T ]× Ω). The process u is adapted
because u(n) ∈ L2

a,T and exists a subsequence of
{
u(n) (t, ω)

}
converg-

ing to u (t, ω) a.s. in (t, ω) ∈ [0, T ]×Ω. Then, u (t, ·) is Ft-measurable
for almost every t. Modifying the process u in a null measure set on
the variable t, we obtain a process u that is adapted to {Ft}. Therefore

lim
n→∞

E
[
(Fn − F )2] = lim

n→∞
E
(
E [Fn] +

∫ T

0

u(n)
s dBs − F

)2

= 0.

On the other hand, by Itô's isometry,

lim
n→∞

E (E [Fn]− E [F ])2 = 0

lim
n→∞

E
(∫ T

0

(
u(n)
s − us

)
dBs

)2

= lim
n→∞

E
∫ T

0

(
u(n)
s − us

)2
ds = 0.

and thus F = E [F ] +
∫ T

0
usdBs.

3. Uniqueness: Suppose u(1) and u(2) ∈ L2
a,T and

F = E [F ] +

∫ T

0

u(1)
s dBs = E [F ] +

∫ T

0

u(2)
s dBs.

By Itô's isometry,

E

[(∫ T

0

(
u(1)
s − u(2)

s

)
dBs

)2
]

= E
[∫ T

0

(
u(1)
s − u(2)

s

)2
ds

]
= 0

hence
u(1) (t, ω) = u (t, ω)(2) p.q.t. (t, ω) ∈ [0, T ]× Ω.
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5.4 Martingale representation theorem

Theorem 5.9 (Martingale representation theorem) Suppose {Mt, t ∈ [0, T ]}
is a {Ft}-martingale and E [M2

T ] < ∞. Then there exists a unique process
u ∈ L2

a,T such that

Mt = E [M0] +

∫ t

0

usdBs ∀t ∈ [0, T ] .

Proof. Itô's representation theorem may be applied to F = MT . So ∃1u ∈
L2
a,T such that

MT = E [MT ] +

∫ T

0

usdBs.

As {Mt, t ∈ [0, T ]} is a martingale, E [MT ] = E [M0] and

Mt = E [MT |Ft] = E [E [MT ] |Ft] + E
[∫ T

0

usdBs|Ft
]

= E [M0] +

∫ t

0

usdBs.

where it was used the martingale property of the unde�ned stochastic inte-
gral.

Example 5.10 Let F = B3
T . What is the Itô integral representation of this

r.v.? By Itô's formula (applied to f (x) = x3 and B3
T = f (Bt)), we have:

B3
T =

∫ T

0

3B2
t dBt + 3

∫ T

0

Btdt.

Integrating by parts,∫ T

0

Btdt = TBT −
∫ T

0

tdBt =

∫ T

0

(T − t) dBt.

Hence

F = B3
T =

∫ T

0

3
[
B2
t + (T − t)

]
dBt. (5.6)

And as E [B3
T ] = 0 (because BT ∼ N (0, T )), Itô's integral representation is

given by (5.6).
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Example 5.11 Which process u satis�es
∫ T

0
tB2

t dt− T 2

2
B2
T = −T 3

6
+
∫ T

0
utdBt

? Applying Itô's formula to Xt = f(t, Bt) = t2B2
t , with f(t, x) = t2x2, we

get:

T 2B2
T =

∫ T

0

2tB2
t dt+

∫ T

0

2t2BtdBt +

∫ T

0

t2dt.

From here we obtain∫ T

0

tB2
t dt−

T 2

2
B2
T = −T

3

6
−
∫ T

0

t2BtdBt

and so
ut = −t2Bt.

Note that E
[∫ T

0
tB2

t dt− T 2

2
B2
T

]
= −T 3

6
.

The integration by parts formula for a general case is given next.

Theorem 5.12 (integration by parts) Suppose f (s) is a deterministic func-
tion of class C1. Then,∫ t

0

f (s) dBs = f (t)Bt −
∫ t

0

f ′ (s)Bsds.

Proof. To prove this formula, one just has to apply Itô's formula to g (t, x) =
f (t)x, obtaining

f (t)Bt =

∫ t

0

f ′ (s)Bsds+

∫ t

0

f (s) dBs.



Chapter 6

Stochastic Di�erential Equations

6.1 Motivation and Examples

A deterministic ordinary di�erential equation (ODE) of order n has the gen-
eral form

f
(
t, x (t) , x′ (t) , x′′ (t) , . . . , x(n)(t)

)
= 0, 0 ≤ t ≤ T ,

where f : [0, T ]×Rn → R is a function and x(t) is the unknown function. A
di�erential equation of order 1 may be represented by

dx (t)

dt
= b (t, x (t))

or
dx (t) = b (t, x (t)) dt

The discrete version is the di�erence equation

∆x (t) = x (t+ ∆t)− x (t) ≈ b (t, x (t)) ∆t

Example 6.1 The �rst order linear ODE:

dx (t)

dt
= cx (t) ,

where c is constant, has the solution:

x (t) = x (0) ect.

A stochastic di�erential equation (SDE) may be generally written in dif-
ferential form as

dXt = b (t,Xt) dt+ σ (t,Xt) dBt, (6.1)

X0 = X0,

52
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where b (t,Xt) is the drift coe�cient and σ (t,Xt) is the di�usion coe�-
cient. The same SDE may be expressed in integral form as

Xt = X0 +

∫ t

0

b (s,Xs) ds+

∫ t

0

σ (s,Xs) dBs. (6.2)

A �naïve� interpretation of the SDE may be done by considering the discrete
version ∆Xt ≈ b (t,Xt) ∆t + σ (t,Xt) ∆Bt and so the random variable ∆Xt

has a distribution �close� to a normal distributionN
(
b (t,Xt) ∆t, (σ (t,Xt))

2 ∆t
)
.

A more rigorous de�nition of the solution of a stochastic di�erential equa-
tion is presented next.

De�nition 6.2 A solution of the SDE (6.1) or (6.2) is a stochastic process
{Xt} that satis�es:

1. {Xt} is adapted to the Brownian motion with continuous trajectories.

2. E
[∫ T

0
(σ (s,Xs))

2 ds
]
<∞.

3. {Xt} satis�es the SDE (6.1) or (6.2)

The solutions of a stochastic di�erential equation are also known as �dif-
fusions� or �di�usion processes�.

6.2 The SDE of the geometric Brownian mo-

tion and the Langevin equation

Consider the SDE:
dXt = µXtdt+ σXtdBt, (6.3)

where both µ and σ are constant, or

Xt = X0 + µ

∫ t

0

Xsds+ σ

∫ t

0

XsdBs. (6.4)

How may this equation be solved? Suppose Xt = f (t, Bt), where f is a C1,2

function. By Itô's formula,

Xt = f (t, Bt) = X0 +

∫ t

0

(
∂f

∂t
(s, Bs) +

1

2

∂2f

∂x2
(s, Bs)

)
ds+ (6.5)

+

∫ t

0

∂f

∂x
(s, Bs) dBs.
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Comparing (6.4) with (6.5) we have (because the representation as an Itô
process is unique)

∂f

∂s
(s, Bs) +

1

2

∂2f

∂x2
(s, Bs) = µf (s, Bs) , (6.6)

∂f

∂x
(s, Bs) = σf (s, Bs) . (6.7)

Deriving eq. (6.7), we obtain

∂2f

∂x2
(s, x) = σ

∂f

∂x
(s, x) = σ2f (s, x)

and substituting in (6.6), we have(
µ− 1

2
σ2

)
f (s, x) =

∂f

∂s
(s, x) .

By separation of variables f (s, x) = g (s)h (x), we obtain

∂f

∂s
(s, x) = g′ (s)h (x)

and

g′ (s) =

(
µ− 1

2
σ2

)
g (s)

that is a linear ODE with solution given by

g (s) = g (0) exp

[(
µ− 1

2
σ2

)
s

]
Using eq. (6.7), we get h′ (x) = σh (x) and therefore

f (s, x) = f (0, 0) exp

[(
µ− 1

2
σ2

)
s+ σx

]
.

We hence conclude the solution of the SDE (6.3) is the process

Xt = f (t, Bt) = X0 exp

[(
µ− 1

2
σ2

)
t+ σBt

]
, (6.8)

that is precisely the geometric Brownian motion. Note that this solution was
obtained by solving a deterministic partial di�erential (PDE).

In order to verify that (6.8) satis�es the SDE (6.3) or (6.4), it is su�cient
to apply Itô's formula to Xt = f (t, Bt), with

f (t, x) = X0 exp

[(
µ− 1

2
σ2

)
t+ σx

]
.
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We get

Xt = X0 +

∫ t

0

[(
µ− 1

2
σ2

)
Xs +

1

2
σ2Xs

]
ds+

∫ t

0

σXsdBs

= X0 + µ

∫ t

0

Xsds+ σ

∫ t

0

XsdBs,

or
dXt = µXtdt+ σXtdBt

and hence the SDE is satis�ed by the geometric Brownian motion.
Let us now consider the Langevin equation

dXt = µXtdt+ σdBt, (6.9)

where µ and σ are constant, or

Xt = X0 + µ

∫ t

0

Xsds+ σ

∫ t

0

dBs.

The discrete version of this SDE is

Xt+1 = (1 + µ)Xt + σ (Bt+1 −Bt) ,

or
Xt+1 = φXt + Zt,

with φ = 1 +µ and Zt ∼ N (0, σ2), that is the equation for an autoregressive
time series of order 1.

Consider the process
Yt = e−µtXt

or Yt = f (t,Xt) with f (t, x) = e−µtx. By Itô's formula,

Yt = Y0 +

∫ t

0

(
−ce−µsXs + ce−µsXs +

1

2
σ2 × 0

)
ds

+

∫ t

0

σe−µsdBs.

Therefore the solution of the equation (6.9) is the process

Xt = eµtX0 + eµt
∫ t

0

σe−µsdBs. (6.10)

If X0 is constant, the process (6.10) is called an Ornstein-Uhlenbeck process.
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Example 6.3 The geometric Brownian motion (again). Consider the SDE

dXt = µXtdt+ σXtdBt (6.11)

or

Xt = X0 + µ

∫ t

0

Xsds+ σ

∫ t

0

XsdBs. (6.12)

Let us start by supposing that the solution to this equation may be expressed
as

Xt = eZt ,

where Zt is a stochastic process. Equivalently,

Zt = ln (Xt) .

By applying Itô's formula to f(Xt) = ln (Xt), we obtain

dZt =
1

Xt

dXt +
1

2

(
−1

X2
t

)
(dXt)

2

=

(
µ− 1

2
σ2

)
dt+ σdBt.

that is,

Zt = Z0 +

(
µ− 1

2
σ2

)
t+ σBt

and

Xt = X0 exp

[(
µ− 1

2
σ2

)
t+ σBt

]
.

So we once more obtain the geometric Brownian motion as a solution of the
SDE (6.11).

The solution of the linear homogeneous SDE

dXt = b (t)Xtdt+ σ (t)XtdBt

is given by

Xt = X0 exp

[∫ t

0

(
b (s)− 1

2
σ (s)2

)
ds+

∫ t

0

σ (s) dBs

]
.

To obtain this solution, the same technique used in Example 6.3 may be
applied.
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Exercise 6.4 Determine the solution of the SDE

dXt = a (m−Xt) dt+ σdBt,

X0 = x,

where a, σ > 0 and m ∈ R. Compute the mean and variance of Xt and
determine the distribution of Xt when t → ∞ (invariant or stationary dis-
tribution).

Exercise 6.5 Consider the SDE

dXt = µXtdt+ σXtdBt,

X0 = X0.

a)Supposing Xt = f(t, Bt), where f is a C1,2 function, apply Itô's formula
and determine the partial di�erential equation (PDE) satis�ed by function f .

b) Using the method of separation of variables (f(s, x) = g(s)h(x)), and
considering the PDE obtained in a), determine the ordinary di�erential equa-
tions (ODE's) satis�ed by g and h.

c) Determine the process Xt.

6.3 Existence and Uniqueness Theorem for SDE's

Theorem 6.6 (existence and uniqueness of solutions) Let T > 0, b(·, ·) :
[0, T ]×Rn → Rn and σ(·, ·) : [0, T ]×Rn → Rn×m measurable functions such
that the following conditions are satis�ed.

1. Linear growth property:

|b (t, x)|+ |σ (t, x)| ≤ C (1 + |x|) , ∀x ∈ Rn,∀t ∈ [0, T ] .

2. Lipschitz property:

|b (t, x)− b (t, y)|+|σ (t, x)− σ (t, y)| ≤ D |x− y| , ∀x, y ∈ Rn, ∀t ∈ [0, T ] .

Also, assume Z is a random variable independent from the Brownian
motion B and E

[
|Z|2

]
<∞. Then, the SDE

Xt = Z +

∫ t

0

b (s,Xs) ds+

∫ t

0

σ (s,Xs) dBs (6.13)

has a unique solution. This means that there is an unique stochas-
tic process X = {Xt, 0 ≤ t ≤ T} that is continuous, adapted, satis�es
(6.13) and

E

[∫ T

0

|Xs|2 ds
]
<∞.
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Proof. Consider the space L2
a,T of the processes adapted to the �ltration

FZt := σ (Z) ∪ Ft such that E
[∫ T

0
|Xs|2 ds

]
< ∞. On this space, consider

the norm:

‖X‖ =

(∫ T

0

e−λsE
[
|Xs|2

]
ds

) 1
2

,

where λ > 2D2 (T + 1) .
De�ne the operator L : L2

a,T → L2
a,T by:

(LX)t = Z +

∫ t

0

b (s,Xs) ds+

∫ t

0

σ (s,Xs) dBs

The linear growth property on b and σ ensures the operator L is well de�ned.
Using Cauchy-Schwarz inequality and Itô's isometry,

E
[
|(LX)t − (LY )t|

2] ≤ 2E

[(∫ t

0

(b (s,Xs)− b (s, Ys)) ds

)2
]

+ 2E

[(∫ t

0

(σ (s,Xs)− σ (s, Ys)) dBs

)2
]

≤ 2TE

[∫ t

0

(b (s,Xs)− b (s, Ys))
2 ds

]
+

+ 2E

[∫ t

0

(σ (s,Xs)− σ (s, Ys))
2 ds

]
By the Lipschitz property,

E
[
|(LX)t − (LY )t|

2] ≤ 2D2 (T + 1)E

[∫ t

0

(Xs − Ys)2 ds

]
.

De�ne K = 2D2 (T + 1). Multiplying the above inequality by e−λt and
integrating in [0, T ], we get∫ T

0

e−λtE
[
|(LX)t − (LY )t|

2] dt
≤ K

∫ T

0

e−λtE

[∫ t

0

(Xs − Ys)2 ds

]
dt.

Changing the integration order,

= K

∫ T

0

[∫ T

s

e−λtdt

]
E
[
(Xs − Ys)2] ds

≤ K

λ

∫ T

0

e−λsE
[
(Xs − Ys)2] ds.
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Therefore:

‖(LX)− (LY )‖ ≤
√
K

λ
‖X − Y ‖ .

As λ > K, we have that
√

K
λ
< 1, hence the operator L is a contraction

on the space L2
a,T . Then, by Banach's Fixed Point Theorem, there exists a

unique �xed point for L, which is precisely the solution of the SDE:

(LX)t = Xt.

[10] provides a di�erent approach to this same proof, based on Picard
approximations and Grownwall's inequality.

6.4 Examples

Example 6.7 The geometric Brownian motion

St = S0 exp

[(
µ− σ2

2

)
t+ σBt

]
is the solution of the SDE

dSt = µStdt+ σStdBt,

S0 = S0.

This SDE describes the evolution of the price of a risky �nancial asset on
the Black-Scholes model. Consider the Black-Scholes model with coe�cients
µ (t) and σ (t) > 0 time dependent.

dSt = St (µ (t) dt+ σ (t) dBt) ,

S0 = S0.

Let St = exp (Zt) and Zt = ln (St). By Itô's formula taking f(x) = ln (x),

dZt =
1

St
(St (µ (t) dt+ σ (t) dBt))−

1

2S2
t

(
S2
t σ

2 (t) dt
)

=

(
µ (t)− 1

2
σ2 (t)

)
dt+ σ (t) dBt.

So,

Zt = Z0 +

∫ t

0

(
µ (s)− 1

2
σ2 (s)

)
ds+

∫ t

0

σ (s) dBs
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and therefore

St = S0 exp

(∫ t

0

(
µ (s)− 1

2
σ2 (s)

)
ds+

∫ t

0

σ (s) dBs

)
.

Example 6.8 (Orsntein-Uhlenbeck process with mean-reversion). Consider
the SDE with mean reversion

dXt = a (m−Xt) dt+ σdBt,

X0 = x,

where a, σ > 0 and m ∈ R.
The solution of the corresponding homogeneous ODE dxt = −axtdt is

xt = xe−at. Consider the change of variables Xt = Yte
−at or Yt = Xte

at.
Applying Itô's formula to f (t, x) = xeat,

Yt = x+m
(
eat − 1

)
+ σ

∫ t

0

easdBs.

Hence,

Xt = m+ (x−m) e−at + σe−at
∫ t

0

easdBs. (6.14)

This process is known as an Orsntein-Uhlenbeck process with mean reversion.
It is a Gaussian process, as a stochastic integral of the form

∫ t
0
f (s) dBs,

where f is a deterministic function, is a Gaussian process. It's expected
value is

E [Xt] = m+ (x−m) e−at

and the covariance function is obtained by applying Itô's isometry:

Cov [Xt, Xs] = σ2e−a(t+s)E

[(∫ t

0

eardBr

)(∫ s

0

eardBr

)]
= σ2e−a(t+s)

∫ t∧s

0

e2ardr

=
σ2

2a

(
e−a|t−s| − e−a(t+s)

)
.

Note that

Xt ∼ N

[
m+ (x−m) e−at,

σ2

2a

(
1− e−2at

)]
.

When t→∞, the distribution of Xt converges to

ν := N

[
m,

σ2

2a

]
,
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which is it's invariant or stationary distribution. If X0 has distribution ν
then the distribution of Xt will be ν for all t.

Some �nancial applications of the Ornstein-Uhlenbeck process with mean
reversion are shown below:

� Vasicek's model for interest rates:

drt = a (b− rt) dt+ σdBt,

with a, b, σ constants. The solution of the SDE is

rt = b+ (r0 − b) e−at + σe−at
∫ t

0

easdBs.

� Black-Scholes model with stochastic volatility: assume σ (t) = f (Yt) is
a function of an Ornstein-Uhlenbeck process with mean reversion

dYt = a (m− Yt) dt+ βdWt,

with a,m, β constants and where {Wt, 0 ≤ t ≤ T} is a Brownian mo-
tion. The SDE that models the evolution of the price of a risky asset
is

dSt = µStdt+ f (Yt)StdBt

where {Bt, 0 ≤ t ≤ T} is a Brownian motion. These Brownian motions
Wt e Bt may be correlated, i.e.,

E [BtWs] = ρ (s ∧ t) .

6.5 Linear SDE's

Consider the SDE

Xt = x+

∫ t

0

f (s,Xs) ds+

∫ t

0

c (s)XsdBs,

where f and c are continuous, deterministic functions. Suppose f satis�es
the Lipschitz and linear growth conditions on x. Then, by the existence and
uniqueness of solutions theorem, there is a unique solution for the SDE. In
order to obtain this solution, consider the �integrating factor�

Ft = exp

(∫ t

0

c (s) dBs −
1

2

∫ t

0

c (s)2 ds

)
.
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Clearly, Ft is a solution for the SDE if f = 0 and x = 1. Suppose Xt = FtYt
or Yt = (Ft)

−1Xt. Then, by Itô's formula,

dYt = (Ft)
−1 f (t, FtYt) dt

and Y0 = x. This equation for Y is an ODE with random coe�cients (it is a
deterministic di�erential equation parameterized by ω ∈ Ω).

Example 6.9 As an example, if we take f(t, x) = f(t)x, we get the ODE

dYt
dt

= f(t)Yt

hence

Yt = x exp

(∫ t

0

f (s) ds

)
.

and therefore,

Xt = x exp

(∫ t

0

f (s) ds+

∫ t

0

c (s) dBs −
1

2

∫ t

0

c (s)2 ds

)
.

Let us now consider a linear SDE of the form

dXt = (a (t) + b (t)Xt) dt+ (c (t) + d (t)Xt) dBt,

X0 = x,

where a, b, c, d are continuous, deterministic functions. Suppose the solution
may be expressed as

Xt = UtVt, (6.15)

where {
dUt = b(t)Utdt+ d(t)UtdBt,
dVt = α (t) dt+ β (t) dBt.

and U0 = 1, V0 = x. From the previous example, we already know that

Ut = exp

(∫ t

0

b (s) ds+

∫ t

0

d (s) dBs −
1

2

∫ t

0

d (s)2 ds

)
(6.16)

On the other hand, by computing the di�erential of (6.15) and using Itô's
formula with f (u, v) = uv, we obtain

dXt = VtdUt + UtdVt +
1

2
(dUt) (dVt) +

1

2
(dVt) (dUt)

= (b(t)Xt + α (t)Ut + β (t) d(t)Ut) dt+ (d(t)Xt + β (t)Ut) dBt.
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Comparing with the initial SDE for X, we have that

a (t) = α (t)Ut + β (t) d(t)Ut,

c(t) = β (t)Ut.

So,

β (t) = c(t)U−1
t ,

α (t) = [a (t)− c (t) d (t)]U−1
t .

Therefore:

Xt = Ut

(
x+

∫ t

0

[a (s)− c (s) d (s)]U−1
s ds+

∫ t

0

c (s)U−1
s dBs

)
,

where Ut is given by (6.16).
In the one-dimensional case (n = 1), the Lipschitz condition for the coe�-

cient σ in the existence and uniqueness of solutions theorem may be weakened
if σ (t, x) = σ (x) (coe�cient of di�usion is independent from time). Suppose
the coe�cient b satis�es the Lipschitz condition and σ satis�es

|σ (t, x)− σ (t, y)| ≤ D |x− y|α , x, y ∈ R, t ∈ [0, T ]

with α ≥ 1
2
. Then, there exists a unique solution for the SDE. Further

reading on this case may be found on [5].

Example 6.10 The SDE of the Cox-Igersoll-Ross interest rate model:

drt = a (b− rt) dt+ σ
√
rtdBt

r0 = x,

has a unique solution.

6.6 Strong and weak solutions

The problem of obtaining a solution of an SDE may be de�ned in a di�erent
way. Suppose the only given data is the coe�cients b(t, x) and σ (t, x), so
that we are to �nd a pair of stochastic processes, {Xt} and {Bt}, de�ned
on a probability space (Ω,F , P ) , and a �ltration {Ht} such that {Bt} is a
{Ht}-Brownian motion, and such that {Xt} and {Bt} satisfy the SDE

Xt = X0 +

∫ t

0

b (s,Xs) ds+

∫ t

0

σ (s,Xs) dBs (6.17)



CHAPTER 6. STOCHASTIC DIFFERENTIAL EQUATIONS 64

in that probability space.
In this case, it is said that (Ω,F , P, {Ht} , {Xt} , {Bt}) is a weak solution

of (6.17).
The proofs of the following results are of no interest for us and therefore

omitted. The interested reader may �nd them in [5].

� Every strong solution is also a weak solution.

� It is said that a SDE satis�es the weak uniqueness property if two weak
solutions have the same distribution (the same �nite dimension distri-
butions, or �dis). If the coe�cients satisfy the existence and uniqueness
theorem conditions, then the weak uniqueness property is hold for the
SDE.

� The existence of weak solutions is guaranteed if the coe�cients b(t, x)
and σ (t, x) are continuous and bounded functions.

Example 6.11 Consider the Tanaka's SDE

dXt = sign (Xt) dBt,

X0 = 0,

where

sign (x) :=

{
+1 se x ≥ 0
−1 se x < 0.

Note that sign (x) does not satisfy the Lipschitz condition (it is not continuous
0). Hence, we may not apply the existence and uniqueness theorem in this
case. It can be shown that there is no solution (in the strong sense) for this
SDE, but there is a weak (unique) solution - this example is explained in
detail in [10].

Exercise 6.12 Consider the following system of stochastic di�erential equa-
tions:

dX(t) = 4e2t dt+ t dW (t) , X(0) = 10.

dZ(t) =
(
t2 + 3 sin t

)
dt+ 4 t dW (t), Z(0) = 5.

a) Write the equation in integral form.
b) Deduce the respective solution.
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Figure 6.1: Partição

Exercise 6.13 The Cox-Ingersoll-Ross (CIR) interest rates model R(t) is

dR(t) = (α− βR (t)) dt+ σ
√
R (t) dW (t) ,

where α, β and σ are positive constants. This equation does not have a closed
form solution. However, the expectation and variance of R (t) may be deter-
mined.

a) Compute the expected value of R(t). (Hint: Let X(t) = eβtR(t). Use
the function f(t, x) = eβtx, apply Itô's formula in di�erential form, integrate
and apply the expectancy operator.)

b) Compute the variance of R(t). (Hint: Compute d (X2(t)) by applying
Itô's formula in di�erential form, integrate and apply the expectancy opera-
tor.)

c) Compute lim
t→+∞

V ar (R(t)) .

6.7 Numerical approximations

Like deterministic di�erential equations, many SDE's cannot be solved ex-
plicitly, so numerical methods are necessary to approximate these solutions.
Consider the SDE

dXt = b (Xt) dt+ σ (Xt) dBt,

with initial condition X0 = x. Let us consider a sequence of partitions of
the interval [0, T ], where each partition is de�ned by the points ti = iT

n
,

i = 0, 1, . . . , n and the length of each subinterval of the partition is δn = T
n

We'll now see, in a summary way, the Euler's �nite di�erences method.
The exact values of the solution are:

X (ti) = X (ti−1) +

∫ ti

ti−1

b (Xs) ds+

∫ ti

ti−1

σ (Xs) dBs. (6.18)
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Euler approximated is de�ned by:∫ ti

ti−1

b (Xs) ds ≈ b (X (ti−1)) δn,∫ ti

ti−1

σ (Xs) dBs ≈ σ (X (ti−1)) ∆Bi,

where ∆Bi := B (ti)−B (ti−1) . Finally, the Euler scheme is de�ned by

X(n) (ti) = X(n) (ti−1) + b
(
X(n) (ti−1)

)
δn + σ (X (ti−1)) ∆Bi, (6.19)

i = 1, 2, . . . , n. In each interval (ti−1, ti), the value of X(n) is obtained by
linear interpolation.

The approximation error is de�ned by

en :=

√
E

[(
XT −X(n)

T

)2
]
. (6.20)

It may be shown, for this scheme, that

eEuln ≤ c
√
δn,

where c is a constant.
To simulate a trajectory of the solution using this method, one just needs

to follow the procedure:

1. Simulate the values of n random variables with normal distribution
N (0, 1): ξ1, ξ2, . . . , ξn.

2. Substitute ∆Bi in (6.19) by ξi
√
δn and determine the values of X(n) (ti)

using the recurrence scheme (6.19).

3. In each interval (ti−1, ti) determineX(n) by linear interpolation between
X(n) (ti−1) and X(n) (ti).

We'll now discuss one other �nite di�erences method - the Milsein method.
In order to do so, it is necessary to apply the Itô formula to b (Xt) and σ (Xt) ,
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considering ti−1 ≤ t ≤ ti. We obtain∫ ti

ti−1

b (Xs) ds =

∫ ti

ti−1

[b (X (ti−1)) +

+

∫ s

ti−1

(
bb′ +

1

2
b′′σ2

)
(Xr) dr +

∫ s

ti−1

(σb′) (Xr) dBr

]
ds,∫ ti

ti−1

σ (Xs) dBs =

∫ ti

ti−1

[σ (X (ti−1)) +

+

∫ s

ti−1

(
bσ′ +

1

2
σ′′σ2

)
(Xr) dr +

∫ s

ti−1

(σσ′) (Xr) dBr

]
dBs.

Exercise 6.14 Prove this equality.

From eq. (6.18), we get

X(n) (ti)−X(n) (ti−1) = b (X (ti−1)) δn + σ (X (ti−1)) ∆Bi +Ri.

It can be shown that the dominant term of Ri is the double stochastic integral∫ ti

ti−1

(∫ s

ti−1

(σσ′) (Xr) dBr

)
dBs,

being all the lower order terms insigni�cant. The Milstein approximation is

Ri ≈
∫ ti

ti−1

(∫ s

ti−1

(σσ′) (Xr) dBr

)
dBs

≈ (σσ′) (X (ti−1))

∫ ti

ti−1

(∫ s

ti−1

dBr

)
dBs

and ∫ ti

ti−1

(∫ s

ti−1

dBr

)
dBs =

∫ ti

ti−1

(Bs −B (ti−1)) dBs

=

∫ ti

ti−1

BsdBs −B (ti−1) (B (ti)−B (ti−1))

=
1

2

[
B2
ti
−B2

ti−1
− δn

]
−B (ti−1) (B (ti)−B (ti−1))

=
1

2

[
(∆Bi)

2 − δn
]
,

where, to compute
∫ ti
ti−1

BsdBs, one can apply Itô's formula to f(Bt) = B2
t .
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Milstein's scheme is

X(n) (ti) = X(n) (ti−1) + b
(
X(n) (ti−1)

)
δn + σ (X (ti−1)) ∆Bi

+
1

2
(σσ′) (X (ti−1))

[
(∆Bi)

2 − δn
]
.

It can be shown that Milstein's approximation error is given by

eMil
n ≤ cδn.

6.8 The Markov property

The solutions of SDE's are called di�usion processes. Let X = {Xt, t ≥ 0}
be a (n-dimensional) di�usion process that satis�es the SDE:

dXt = b (t,Xt) dt+ σ (t,Xt) dBt, (6.21)

where B is an m-dimensional Brownian motion and both b and σ satisfy the
existence and uniqueness of solutions theorem conditions.

De�nition 6.15 A stochastic process X = {Xt, t ≥ 0} is called a Markov
process if ∀s < t,

E [f (Xt) |Xr, r ≤ s] = E [f (Xt) |Xs] .

for any bounded and measurable function f de�ned in Rn.

In particular, if C ⊂ Rn and it is measurable,

P [Xt ∈ C|Xr, r ≤ s] = P [Xt ∈ C|Xs] .

Essentially, the Markov property states that �the future values of a process
only depend from its present value and not from the past values (given that
the present value is known)�. The probability law of Markov processes is
described by the transition probabilities

P (C, t, x, s) := P (Xt ∈ C|Xs = x) , 0 ≤ s < t.

P (·, t, x, s) is the probability law of Xt conditional to Xs = x. If this
conditional probability has a density, we represent it by:

p (y, t, x, s) .
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Example 6.16 The Brownian motion is a Markov process with transition
probabilities:

p (y, t, x, s) =
1√

2π (t− s)
exp

(
−(x− y)2

2 (t− s)

)
. (6.22)

In fact, using the conditional expectation properties, Bt − Bs is independent
from Fs and the fact that Bs is Fs-measurable,

P [Bt ∈ C|Fs] = P [Bt −Bs +Bs ∈ C|Fs]
= P [Bt −Bs + x ∈ C] |x=Bs

= P [Bt ∈ C|Bs = x] ,

As Bt − Bs + x is normally distributed with mean x and variance t − s,
the transition probability density function may be expressed by (6.22).

We shall now introduce some useful notation. We will represent by
{Xs,x

t , t ≥ s} the solution of the SDE (6.21) de�ned in [s,+∞) and with
initial condition Xs,x

s = x. If s = 0, we simplify the notation to X0,x
t = Xx

t .

Proposition 6.17 The following properties hold:

� 1. There exists a continuous version (with respect to all the param-
eters s, t, x) of the process {Xs,x

t , 0 ≤ s ≤ t, x ∈ Rn}.
2. For all t ≥ s, we have

Xx
t = X

s,Xx
s

t . (6.23)

Proof. Proof of (2): Xx
t satis�es the SDE

Xx
t = Xx

s +

∫ t

s

b (u,Xx
u) du+

∫ t

s

σ (u,Xx
u) dBu.

On the other hand, Xs,y
t satis�es

Xs,y
t = y +

∫ t

s

b (u,Xs,y
u ) du+

∫ t

s

σ (u,Xs,y
u ) dBu.

Substituting y by Xx
s we obtain that Xx

t and X
s,Xx

s
t are solutions of the same

SDE in [s,+∞) with the same initial condition Xx
s . Hence, by the existence

and uniqueness theorem, Xx
t = X

s,Xx
s

t .
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Theorem 6.18 (Markov property of di�usion processes) Let f be a bounded
and measurable function in Rn. Then, for any 0 ≤ s ≤ t,

E [f (Xt) |Fs] = E [f (Xs,x
t )] |x=Xs (6.24)

Proof. By (6.23) and using the properties of the conditional expectation,

E [f (Xt) |Fs] = E [f (Xs,x
t ) |Fs] = E [f (Xs,x

t )] |x=Xs ,

because Xs,x
t is independent from Fs and Xs is known form the �information�

Fs (i.e., Xs is Fs-measurable). Property 7. of the conditional expectation is
used.

Di�usion processes are Markov process. The transition probabilities of a
di�usion process are given by

P (C, t, x, s) = P (Xs,x
t ∈ C).

If a di�usion process is homogeneous with respect to time (the coe�cients
b and σ do not depend from time) then the Markov property (6.24) may be
written as:

E [f (Xt) |Fs] = E
[
f
(
Xx
t−s
)]
|x=Xs .

Exercise 6.19 Compute the transition probabilities for the Ornstein-Uhlenbeck
process with mean reversion.

Solution 6.20 The mean-reverted Langevin equation is

dXt = a (m−Xt) dt+ σdBt.

The solution in [s,+∞), with initial condition Xs = x, is given by

Xs,x
t = m+ (x−m) e−a(t−s) + σe−at

∫ t

s

eardBr.

Thus, as
{∫ t

s
eardBr, t ≥ s

}
is a Gaussian process with mean 0 and variance

1

2a
(e2at − e2as), we have that

E [Xs,x
t ] = m+ (x−m) e−a(t−s),

Var [Xs,x
t ] =

σ2

2a

(
1− e−2a(t−s)) .

The transition probability is

P (·, t, x, s) = Distribution of Xs,x
t .

Therefore it is a normal distribution with mean and variance given above.
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6.9 Stratovonich Calculus and Stratonovich PDE's

When we de�ned the Itô integral
∫ t

0
usdBs for continuous processes using

Riemann-Stieltjes-like sums, we have always considered the values of the
process u at the point tj−1 and assumed the process is constant in [tj−1, tj).
As a consequence of this, the expected value of the Itô integral is null and it's
variance may be calculated using Itô's isometry property. Moreover, the Itô
integral is a martingale. The downside of the Itô integral is that the �chain
rule� (Itô's formula) has now a term of order 2 (which does not appear in
classic calculus).

The Stratonovich integral
∫ T

0
us ◦ dBs is de�ned as the limit (in probabil-

ity) of the sequence:
n∑
i=1

1

2

(
uti−1

+ uti
)

∆Bi,

with ti = iT
n
. We can now impose the question: what is the relationship

between the Stratonovich integral and the Itô integral?
If u is an Itô process of the form

ut = u0 +

∫ t

0

βsds+

∫ t

0

αsdBs. (6.25)

then it is possible to prove that∫ T

0

us ◦ dBs =

∫ T

0

usdBs +
1

2

∫ T

0

αsds.

The �Itô formula� for the Stratonovich stochastic integral coincides with
the classic calculus chain rule. In fact, if u is a process of the form (6.25) and

Xt = X0 +

∫ t

0

vsds+

∫ t

0

us ◦ dBs

it can be shown that
df (Xt) = f ′ (Xt) ◦ dXt

An SDE in the Itô sense may be transformed in a SDE in the Stratonovich
sense, by using the formula that relates both integrals:

� Itô form SDE:

Xt = X0 +

∫ t

0

b (s,Xs) ds+

∫ t

0

σ (s,Xs) dBs.
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� Equivalent Stratonovich form SDE:

Xt = X0 +

∫ t

0

b (s,Xs) ds−
1

2

∫ t

0

(σσ′) (s,Xs) ds+

∫ t

0

σ (s,Xs) ◦ dBs.

� This is because the Itô decomposition of σ (t,Xt) is

σ (t,Xt) = σ (0, X0)+

∫ t

0

(
σ′b− 1

2
σ′′σ2

)
(s,Xs) ds+

∫ t

0

(σσ′) (s,Xs) dBs.



Chapter 7

Relationship between PDE's and

SDE's

7.1 In�nitesimal operator of a di�usion

Consider an n-dimensional di�usion X that satis�es the SDE

dXt = b (t,Xt) dt+ σ (t,Xt) dBt,

X0 = x0

where B is an m-dimensional Brownian motion. Assume that both b and σ
satisfy the conditions of the existence and uniqueness theorem for solutions
of SDE's. Consider that b : R+ ×Rn → Rn, σ : R+ ×Rn →M (n,m), where
M (n,m) is the set of n×m matrices and x0 ∈ Rn.

De�nition 7.1 The generator or in�nitesimal operator associated to the dif-
fusion X is the second order di�erential operator A de�ned by

Ah (t, x) :=
n∑
i=1

bi (t, x)
∂h

∂xi
+

1

2

n∑
i,j=1

(
σσT

)
i,j

(t, x)
∂2h

∂xi∂xj
,

where h is a class C1,2 function de�ned in R+ × Rn.

The in�nitesimal operator is also known as Dynkin's operator, Itô's op-
erator or �Kolmogorov backward operator�. We will now see the relationship
between the di�usion X and the operator A. By Itô's formula, if f (t, x) is a
class C1,2 function, then f (t,Xt) is an Itô process with �di�erential�:

df (t,Xt) =

{
∂f

∂t
(t,Xt) + Af (t,Xt)

}
dt+ [∇xf (t,Xt)]σ (t,Xt) dBt, (7.1)

73
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where the gradient is de�ned as:

∇xf =

[
∂f

∂x1

, . . . ,
∂f

∂xn

]
.

Note that if

E

∫ t

0

(
∂f

∂xi
(t,Xt)σi,j (t,Xt)

)2

ds <∞, (7.2)

for all t > 0 and every i, j, then the stochastic integrals in (7.1) are well
de�ned and are martingales, so that

Mt = f (t,Xt)−
∫ t

0

(
∂f

∂s
(s,Xs) + Af (s,Xs)

)
ds

is a martingale. A su�cient condition for (7.2) to be satis�ed is for the partial
derivatives ∂f

∂s
(s,Xs) to show linear growth, i.e.∣∣∣∣ ∂f∂xi (t, x)

∣∣∣∣ ≤ C (1 + |x|) .

7.2 Feynman-Kac formulae

The partial di�erential equation

∂F

∂t
(t, x) + AF (t, x) = 0, (7.3)

F (T, x) = Φ(x)

is a parabolic PDE with terminal condition (in T ). The previous PDE may
also be written as (supposing n = 1, to simplify the notation)

∂F

∂t
(t, x) + b (t, x)

∂F

∂x
+

1

2
σ2 (t, x)

∂2F

∂x2
= 0, (7.4)

F (T, x) = Φ(x).

Instead of solving the PDE analitically we will try to obtain a solution
using a �stochastic representation formula�. Suppose there exists a solution
F . Fix t and x and de�ne the process Xs in [t, T ] as the solution of the SDE

dXs = b (s,Xs) ds+ σ (s,Xs) dBs,

Xt = x.
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The in�nitesimal operator associated to Xs is

A = b (t, x)
∂

∂x
+

1

2
σ2 (t, x)

∂2

∂x2
,

which is exactly the operator present in the PDE (7.3) or (7.4). By applying
Itô's formula to F , we have (see (7.1))

F (T,XT ) = F (t,Xt) +

∫ T

t

(
∂F

∂s
(s,Xs) + AF (s,Xs)

)
ds

+

∫ T

t

σ (s,Xs)
∂F

∂x
(s,Xs) dBs.

But ∂F
∂s

(s,Xs) + AF (s,Xs) = 0 and applying expectation (considering the
initial value Xt = x), we obtain

Et,x [F (T,XT )] = Et,x [F (t,Xt)] ,

supposing that the stochastic integral is well de�ned, it's expected value is
zero. The boundary values ensure that Et,x [F (T,XT )] = Et,x

[
Φ(X t,x

T )
]
and

Et,x
[
F
(
t,X t,x

t

)]
= F (t, x), so

F (t, x) = Et,x
[
Φ(X t,x

T )
]
,

being this the stochastic representation of the PDE (7.4).

Proposition 7.2 (Feynman-Kac formula) Suppose that F is a solution of
the boundary value problem (7.4). Also, suppose σ (s,Xs)

∂F
∂x

(s,Xs) is a pro-

cess in L2 (i.e. E
∫ t

0

(
∂f
∂xi

(t,Xt)σi,j (t,Xt)
)2

ds <∞). Then

F (t, x) = Et,x
[
Φ(X t,x

T )
]
,

where X t,x
s satis�es

dXs = b (s,Xs) ds+ σ (s,Xs) dBs,

Xt = x.

Proposition 7.3 (Feynman-Kac formula) Suppose that F is a solution of

the problem (7.3). Also, suppose E
∫ t

0

(
∂f
∂xi

(t,Xt)σi,j (t,Xt)
)2

ds < ∞, for
all t > 0 and every i, j. Then,

F (t, x) = Et,x
[
Φ(X t,x

T )
]
,

where X t,x
s satis�es

dXs = b (s,Xs) ds+ σ (s,Xs) dBs,

Xt = x.
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Consider now a continuous and lower bounded function q(x) and the
partial di�erential equation

∂F

∂t
(t, x) + AF (t, x)− q(x)F (t, x) = 0, (7.5)

F (T, x) = Φ(x)

with terminal condition (in T ). The previous PDE may also be written as
(supposing n = 1 to simplify notation)

∂F

∂t
(t, x) + b (t, x)

∂F

∂x
+

1

2
σ2 (t, x)

∂2F

∂x2
− q(x)F (t, x) = 0, (7.6)

F (T, x) = Φ(x).

Again, instead of solving the PDE analytically, we are going to try to solve
this problem using a stochastic representation formula. Suppose that there
exists a solution F , �x t and x, and de�ne the process X in [t, T ] as the
solution of the SDE

dXs = b (s,Xs) ds+ σ (s,Xs) dBs,

Xt = x.

The in�nitesimal operator associated to X is

A = b (t, x)
∂

∂x
+

1

2
σ2 (t, x)

∂2

∂x2
,

which is exactly the same operator present in the PDE (7.5) or (7.6). By

applying Itô's formula to g (t,Xt) = exp
(
−
∫ t

0
q (Xs) ds

)
F (t,Xt) and inte-

grating between t and T ,

exp

(
−
∫ T

0

q (Xs) ds

)
F (T,XT ) = exp

(
−
∫ t

0

q (Xs) ds

)
F (t,Xt) +

+

∫ T

t

e−
∫ s
0 q(Xr)dr

(
∂F

∂s
(s,Xs) + AF (s,Xs)− q (Xs)F (s,Xs)

)
ds

+

∫ T

t

exp

(
−
∫ s

0

q (Xr) dr

)
σ (s,Xs)

∂F

∂x
(s,Xs) dBs.

But ∂F
∂s

(s,Xs) +AF (s,Xs)− q (Xs)F (s,Xs) = 0 and applying the expected
value (conditional to the initial condition Xt = x), we obtain

Et,x

[
exp

(
−
∫ T

t

q (Xs) ds

)
F (T,XT )

]
= Et,x [F (t,Xt)] ,
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supposing that the stochastic integral is well de�ned and so it's expected
value is zero. As

Et,x

[
exp

(
−
∫ T

t

q (Xs) ds

)
F (T,XT )

]
= Et,x

[
exp

(
−
∫ T

t

q (Xs) ds

)
Φ(X t,x

T )

]
and Et,x

[
F
(
t,X t,x

t

)]
= F (t, x), we have that

F (t, x) = Et,x

[
exp

(
−
∫ T

t

q
(
X t,x
s

)
ds

)
Φ(X t,x

T )

]
,

being this the stochastic representation for the solution of the PDE (7.5) or
(7.6).

Proposition 7.4 (Feynman-Kac formula 2) Let F be a solution of the prob-
lem (7.5) or (7.6). Consider that σ (s,Xs)

∂F
∂x

(s,Xs) is a process in L2
a,T (i.e.

E
∫ T

0

[
∂F
∂x

(s,Xs)σ (s,Xs)
]2
ds <∞). Then,

F (t, x) = Et,x

[
exp

(
−
∫ T

t

q
(
X t,x
s

)
ds

)
Φ(X t,x

T )

]
,

where X t,x
s satis�es

dXs = b (s,Xs) ds+ σ (s,Xs) dBs,

Xt = x.

Remark: Considering q(x) as a lower bounded continuous function, a

su�cient condition for E
∫ T

0

[
exp

(
−
∫ s

0
q (Xr) dr

)
∂F
∂x

(s,Xs)σ (s,Xs)
]2
ds <

∞ is that the derivative ∂F
∂x

(s, x) has linear growth, i.e.∣∣∣∣∂F∂x (s, x)

∣∣∣∣ ≤ C (1 + |x|) .

7.3 Relationship between the heat equation and

the Brownian motion

Let f be a continuous function with polynomial growth. The function

u (t, x) = E [f (Bt + x)]

satis�es the heat equation

∂u

∂t
=

1

2

∂2u

∂x2
,

u (0, x) = f (x) .
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In fact, as Bt has distribution N (0, t), we have that

E [f (Bt + x)] =

∫ +∞

−∞
f (y)

1√
2πt

e−
(x−y)2

2t dy,

and the function 1√
2πt
e−

(x−y)2
2t , for each �xed y, satis�es the heat equation

∂u
∂t

= 1
2
∂2u
∂x2
.

The function x → u (t, x) represents the temperature distribution on a
bar of in�nite length, supposing that the initial temperature pro�le is given
by the function f(x).

7.4 Kolmogorov's Backward Equation

Consider a di�usion that is homogeneous in time X that satis�es the SDE

dXt = b (Xt) dt+ σ (Xt) dBt,

X0 = x.

The in�nitesimal generator associated to X does not depend on time and is
given by

Af (x) :=
n∑
i=1

bi (x)
∂f

∂xi
+

1

2

n∑
i,j=1

(
σσT

)
i,j

(x)
∂2f

∂xi∂xj
, (7.7)

Applying Itô's formula to f (Xs), we obtain

df (Xs) = Af (Xs) ds+ [∇xf (Xs)]σ (Xs) dBs.

and applying the expected value,

E [f (Xx
t )] = f (x) +

∫ t

0

E [Af (Xs)] ds. (7.8)

Consider the function

u (t, x) = E [f (Xx
t )] .

By (7.8), u is di�erentiable with respect to t and satis�es the equation:

∂u

∂t
= E [Af (Xx

t )] .

The expression E [Af (Xx
t )] may be represented as a function of u. In order

to do so, we need to introduce the domain of the in�nitesimal operator.



CHAPTER 7. RELATIONSHIP BETWEEN PDE'S AND SDE'S 79

De�nition 7.5 The domain DA of the in�nitesimal generator A is the set
of functions f : Rn → R such that the following limit exists for all x ∈ Rn:

Af (x) = lim
t↘0

E [f (Xx
t )]− f (x)

t
. (7.9)

By (7.8), we have that C2
0 (Rn) ⊂ DA and if f ∈ C2

0 (Rn), the limit (7.9)
is equal to Af given by (7.7). The function u (t, x) satis�es the PDE known
as Kolmogorov �backward� equation:

Theorem 7.6 Let f ∈ C2
0 (Rn).

a) Let u (t, x) = E [f (Xx
t )]. Then u (t, ·) ∈ DA and satis�es the PDE

(Kolmogorov �backward� PDE)

∂u

∂t
= Au, (7.10)

u (0, x) = f (x) .

b) If w ∈ C1,2 ([0,∞)× Rn) is a bounded function that satis�es the PDE
(7.10), then

w (t, x) = E [f (Xx
t )] .

Proof. a) One just needs to compute the limit

Au = lim
r↘0

E [u (t,Xx
r )]− u (t, x)

r

By the Markov property, we have that

E [u (t,Xx
r )] = E

[
E [f (Xy

t )] |y=Xx
r

]
= E

[
f
(
Xx
t+r

)]
= u (t+ r, x) .

Then, as t→ u (t, x) is di�erentiable,

lim
r↘0

E [u (t,Xx
r )]− u (t, x)

r
= lim

r↘0

u (t+ r, x)− u (t, x)

r

=
∂u

∂t
.

b) Consider the n+ 1-dimensional process:

Yt = (s− t,Xx
t ) .
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Itô's formula applied to w (Yt), yields

w (Yt) = w (s, x) +

∫ t

0

(
Aw − ∂w

∂r

)
(s− r,Xx

r ) dr

+

∫ t

0

n∑
i=1

m∑
j=1

∂w

∂xi
(s− r,Xx

r )σi,j (Xx
r ) dBj

r

As Aw = ∂w
∂t
, we obtain

w (Yt) = w (s, x) +

∫ t

0

n∑
i=1

m∑
j=1

∂w

∂xi
(s− r,Xx

r )σi,j (Xx
r ) dBj

r

We are now interested in applying the expected value. However, as no
condition on the growth of the partial derivatives of w was imposed, we are
not certain wether the expectation of the stochastic integrals is null.

To resolve this issue, we need to introduce a stopping time τR for R > 0,
given by

τR := inf {t > 0 : |Xx
t | ≥ R} .

If r ≤ τR, the process
∂w
∂xi

(s− r,Xx
r )σi,j (Xx

r ) is bounded, so the stochas-
tic integrals are well de�ned and their expectation is zero. Thus,

E [w (Yt∧τR)] = w (s, x)

and taking R→∞, we have, for all t ≥ 0:

E [w (Yt)] = w (s, x) .

Finally, with s = t and using w (0, x) = f(x), we obtain

w (s, x) = E [w (Ys)] = E [w (0, Xx
s )] = E [f (Xx

s )] .

The following theorem may be proven in a similar fashion (see [10]).

Theorem 7.7 Let f ∈ C2
0 (Rn) and q ∈ C (Rn), with q lower bounded.

a) Let

v (t, x) = E

[
exp

(
−
∫ t

0

q (Xx
s ) ds

)
f (Xx

t )

]
. Then v (t, ·) ∈ DA for every t and it satis�es the PDE

∂v

∂t
= Av − qv, (7.11)

v (0, x) = f (x) .
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b) If w ∈ C1,2 ([0,∞)× Rn) is a bounded function in [0, T ] × Rn that
satis�es the PDE (7.11), then

w (t, x) = v (t, x) .

In the proof of the previous theorem it was necessary to use te concept of
stopping time relative to a �ltration {Ft, t ≥ 0}, which is a random variable

τ : Ω→ [0,+∞]

such that, for all t ≥ 0, we have that {ω : τ (ω) ≤ t} ∈ Ft. Intuitively, this
means that we may decide if we should or shouldn't �stop� before an instant
t, from the information contained in Ft.

Example 7.8 The arrival time of a continuous and adapted process X =
{Xt, t ≥ 0} at a certain level a, i.e.

τa := inf {t > 0 : Xt = a}

is a stopping time. In fact, we have that

{τ ≤ t} =

{
sup

0≤s≤t
Xs ≥ a

}
=

{
sup

0≤s≤t,s∈Q
Xs ≥ a

}
∈ Ft

We may associate to a stopping time τ the σ-algebra Fτ formed by the
sets G such that

G ∩ {τ ≤ t} ∈ Ft
Stopping times satisfy the following properties (see [9]):

1. If {Mt, t ∈ [0, T ]} is a continuous martingale and τ is a stopping time
bounded by T , then

E [MT |Fτ ] = Mτ .

2. If u ∈ L2
a,T and τ is a stopping time bounded by T , the process u1[0,τ ]

also belongs to L2
a,T . Moreover,∫ T

0

u1[0,τ ] (t) dBt =

∫ τ

0

u (t) dBt
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7.5 Kolmogorov's Forward Equation

The Kolmogorov equations are partial di�erential equations for the transition
probabilities of the solution of a stochastic di�erential equation (di�usion).
The forward Kolmogorov equation, that we'll discuss throughout this section,
is also known as the Fokker�Planck equation, or �master equation� (in natural
sciences).

Assume that the process X is a solution of the stochastic di�erential
equation

dXt = b(t,Xt)dt+ σ (t,Xt) dBt, (7.12)

with associated in�nitesimal generator

Af (s, y) =
n∑
i=1

bi (s, y)
∂f

∂yi
(s, y) (7.13)

+
1

2

n∑
i.j=1

[
σ (s, y)σT (s, y)

]
i,j

∂2f

∂yi∂yj
(s, y) , (7.14)

or, in the one-dimensional case:

Af (s, y) = b (s, y)
∂f

∂y
(s, y) +

1

2
σ2 (s, y)

∂2f

∂y2
(s, y) (7.15)

Consider the boundary value problem :(
∂u

∂s
+ Au

)
(s, y) = 0 if (s, y) ∈ ]0, T [× Rn, (7.16)

u (T, y) = 1C (y) if y ∈ Rn.

By the Feynman-Kac formula, we know that

u (s, y) = Es,y [1C (XT )] = P [XT ∈ C|Xs = y] = P (C, T, y, s) ,

where {
dXt = b (t,Xt) dt+ σ (t,Xt) dBt

Xs = y

and P (C, T, y, s) are the transition probabilities associated to the Markov
process X from time s to time T .

Theorem 7.9 (Kolmogorov Backward Equation) Let X be a solution of (7.12).
Then, the transition probabilities P (C, t, y, s) = P [Xt ∈ C|Xs = y] are solu-
tions of { (

∂P
∂s

+ AP
)

(C, t, s, y) = 0 if (s, y) ∈ ]0, t[× Rn,
P (C, t, y, t) = 1C (y) if y ∈ Rn.

(7.17)
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If the transition measure P (dx, t, y, s) has a probability density function

f̃ (x, t, y, s) dx, then f̃ (x, t, y, s) is a solution of{ (
∂f̃
∂s

+ Af̃
)

(x, t, s, y) = 0 if (s, y) ∈ ]0, t[× Rn,

f̃ (x, t, y, s) −→ δx when s↗ t.
(7.18)

These equations are called �backward� because the di�erential operator
A applies to the �backward� variables (s, y) and not to the forward variables
(x, t).

Consider the one dimensional case in order to have a simple notation. Let
s < T and let h(t, x) ∈ C∞c (]s, T [× R) be a smooth function (test function)
of compact support in ]s, T [× R.

By the Itô formula, we have

h (T,XT ) = h(s,Xs) +

∫ T

s

(
∂h

∂t
+ Ah

)
(t,Xt) dt+

∫ T

s

∂h

∂x
(t,Xt) dBt.

Applying the conditional expectation Es,y [·] = E [·|Xs = y] , and using
the fact that h (T, x) = h(s, x) = 0 (because h(t, x) has compact support in
]s, T [× R) and the zero mean property of the stochastic integral, we obtain∫ +∞

−∞

∫ T

s

(
∂

∂t
+ b (t, x)

∂

∂x
+

1

2
σ2 (t, x)

∂2

∂x2

)
×h (t, x) f̃ (x, t, y, s) dtdx = 0.

If we integrate by parts with respect to t (for the ∂
∂t

part) and by parts

with respect to x (for the ∂
∂x

and ∂2

∂x2
parts), we obtain:∫ +∞

−∞

∫ T

s

h(t, x)

(
− ∂

∂t
f̃ (x, t, y, s)− ∂

∂x

[
b (t, x) f̃ (x, t, y, s)

]
+

1

2

∂2

∂x2

[
σ2 (t, x) f̃ (x, t, y, s)

])
dtdx = 0.

This equation must hold for all test functions h(t, x) ∈ C∞c (]s, T [× R),
and therefore:

− ∂

∂t
f̃ (x, t, y, s)− ∂

∂x

[
b (t, x) f̃ (x, t, y, s)

]
+

1

2

∂2

∂x2

[
σ2 (t, x) f̃ (x, t, y, s)

]
= 0.
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Theorem 7.10 (Kolmogorov Forward Equation): Let X be a solution of

(7.12) with transition probability density function f̃ (x, t, y, s). Then f̃ satis-
�es the equation{

∂f̃
∂t

(x, t, s, y) = A∗f̃ (x, t, y, s) if (t, x) ∈ ]s, T [× R,
f̃ (x, t, y, s) −→ δy when t↘ s,

(7.19)

where the operator A∗ is the adjoint operator of A and is de�ned by

(A∗f) (t, x) = − ∂

∂x
[b (t, x) f (t, x)] +

1

2

∂2

∂x2

[
σ2 (t, x) f (t, x)

]
. (7.20)

In the multidimensional case, the Kolmogorov forward equation is

∂f̃

∂t
(x, t, s, y) = A∗f̃ (x, t, y, s) if (t, x) ∈ ]s, T [× Rn,

where the adjoint operator A∗ is de�ned by

(A∗f) (t, x) = −
n∑
i=1

∂

∂xi
[bi (t, x) f (t, x)]

+
1

2

n∑
i,j=1

∂2

∂xi∂xi

[[[
σ (t, x)σT (t, x)

]
i,j

]
f (t, x)

]
.

Note that in the forward equation, the adjoint operator applies to the
�forward� variables (x, t).

Consider the stochastic di�erential equation

dXt = σdBt,

Xs = y,

where σ is a constant. The Fokker-Planck equation for this process is

∂f̃

∂t
(x, t, s, y) =

1

2
σ2 ∂

2

∂x2

[
f̃ (x, t, s, y)

]
,

and the solution is given by the Gaussian probability density function

f̃ (x, t, s, y) =
1

σ
√

2π (t− s)
exp

[
− (x− y)

2σ2 (t− s)

]
.

Consider the stochastic di�erential equation for the geometric Brownian
motion

dXt = αXtdt+ σXtdBt,

Xs = y.
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The Fokker-Planck equation for this process is

∂f̃

∂t
(x, t, s, y) =

1

2
σ2 ∂

2

∂x2

[
x2f̃ (x, t, s, y)

]
− α ∂

∂x

[
xf̃ (t, x)

]
,

or
∂f̃

∂t
=

1

2
σ2x2∂

2f̃

∂x2
+
(
2σ2 − α

)
x
∂f̃

∂x
+
(
σ2 − α

)
f̃ .



Chapter 8

The Girsanov Theorem

The Girsanov theorem states, in it's simpler version, that the Brownian mo-
tion with drift: B̃t = Bt + λt, may be seen as a standard Brownian motion
if we change the probability measure. In a broader way, the theorem states
that if we change the drift coe�cient of an Itô process then the law of the
process does not radically change. The law of the new Itô process will be
absolutely continuous with respect to the law of the original process, and we
may explicitly compute the Radon-Nikodym derivative.

8.1 Changing the probability measure

Suppose that L ≥ 0 is a random variable of mean 1 de�ned in the probability
space. (Ω,F , P ) . Then

Q(A) = E [1AL]

de�nes a new probability measure. Clearly, Q(Ω) = E [L] = 1. Moreover,
Q(A) = E [1AL] is equivalent to∫

Ω

1AdQ =

∫
Ω

1ALdP.

L is called the density of Q with respect to P and is written as

dQ

dP
= L.

L is also said to be the Radon-Nikodym derivative of Q with respect to P .
The expected value of a r.v. X de�ned in the probability space (Ω,F , P )

is calculated by the formula

EQ [X] = E [XL] .

86
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The probability measure Q is absolutely continuous with respect to P , which
means that

P (A) = 0 =⇒ Q(A) = 0.

If the random variable L is strictly prositive (L > 0), the probabilities P and
Q are equivalent (that is, they're mutually absolutely continuous), which
means that

P (A) = 0⇐⇒ Q(A) = 0.

8.2 Girsanov Theorem

Let X be a r.v. with distribution N (m,σ2). Is there a probability measure
Q with respect to which X has distribution N (0, σ2)?

Consider the r.v.

L = exp

(
−m
σ2
X +

m2

2σ2

)
.

It is easily veri�ed that E [L] = 1. It is enough to consider the density of the
normal distribution N (m,σ2) and it follows that

E [L] =

∫ +∞

−∞
exp

(
−m
σ2
x+

m2

2σ2

)
1

σ
√

2π
exp

(
−(x−m)2

2σ2

)
dx

=
1

σ
√

2π

∫ +∞

−∞
exp

(
− x2

2σ2

)
dx = 1.

Suppose that the probability measure Q has density L with respect to P .
Then, in the probability space (Ω,F , Q), the r.v. X has the characteristic
function:

EQ
[
eitX

]
= E

[
eitXL

]
=

1

σ
√

2π

∫ +∞

−∞
exp

(
itx− m

σ2
x+

m2

2σ2

)
exp

(
−(x−m)2

2σ2

)
dx

=
1

σ
√

2π

∫ +∞

−∞
exp

(
itx− x2

2σ2

)
dx = e−

σ2t2

2 .

Conclusion: X has distribution N (0, σ2).
The more general form for the characteristic function of a normal distri-

bution may be found in the appendix of [10] on normal distributions.
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Let {Bt, t ∈ [0, T ]} be a Brownian motion. Fix a real number λ and
consider the martingale:

Lt = exp

(
−λBt −

λ2

2
t

)
. (8.1)

Example 8.1 Prove that the stochastic process {Lt, t ∈ [0, T ]} is a positive
martingale with expected value 1 and that satis�es the SDE:

dLt = −λLtdBt,

L0 = 1.

The random variable LT = exp
(
−λBT − λ2

2
T
)
is a density in the prob-

ability space (Ω,FT , P ), for which the new probability measure is de�ned:

Q (A) = E [1ALT ] ,

for every A ∈ FT .

� As {Lt, t ∈ [0, T ]} is a martingale, then the r.v. Lt = exp
(
−λBt − λ2

2
t
)

is a density in the probability space (Ω,Ft, P ) and in this space the
probability measure Q has precisely the density Lt.

� In fact, if A ∈ Ft, we have:

Q(A) = E [1ALT ] = E [E [1ALT |Ft]]
= E [1AE [LT |Ft]] = E [1ALt] ,

where the conditional expectation properties and the martingale prop-
erty of {Lt, t ∈ [0, T ]} were applied.

Theorem 8.2 (Girsanov Theorem I): On the probability space (Ω,FT , Q),
where Q is de�ned by Q (A) = E [1ALT ], the stochastic process

B̃t = Bt + λt

is a Brownian motion

Before proving this theorem, we need the following lemma:

Lema 8.3 Suppose X is a real r.v. and that G is a σ-algebra such that:

E
[
eiuX |G

]
= e−

u2σ2

2 .

Then the random variable X is independent from the σ-algebra G and has
normal distribution N (0, σ2).
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The proof of the above lemma may be found in [9], pgs. 63-64.
Proof. (Girsanov theorem) It su�ces to show that in (Ω,FT , Q), the in-

crement B̃t − B̃s, with s < t ≤ T , is independent from Fs and has normal
distribution N (0, t− s). Taking into account the previous lemma, the result
follows from the relation:

EQ

[
1Ae

iu(B̃t−B̃s)
]

= Q (A) e−
u2

2
(t−s), (8.2)

for all s < t, A ∈ Fs and u ∈ R. In fact, if (8.2) is veri�ed, then, from the

de�nition of conditional expectation and the previous lemma,
(
B̃t − B̃s

)
is

independent from Fs and has normal distribution N (0, t− s).
Proof of the equality (8.2):

EQ

[
1Ae

iu(B̃t−B̃s)
]

= E
[
1Ae

iu(B̃t−B̃s)Lt

]
= E

[
1Ae

iu(Bt−Bs)+iuλ(t−s)−λ(Bt−Bs)−λ
2

2
(t−s)Ls

]
= E [1ALs]E

[
e(iu−λ)(Bt−Bs)

]
eiuλ(t−s)−λ

2

2
(t−s)

= Q(A)e
(iu−λ)2

2
(t−s)+iuλ(t−s)−λ

2

2
(t−s)

= Q(A)e−
u2

2
(t−s),

Where the de�nition of EQ and Lt, independence of (Bt −Bs) from Ls and
A, and the de�nition of Q were used.

8.3 Girsanov Theorem - general version

Theorem 8.4 (Girsanov Theorem II): Let {θt, t ∈ [0, T ]} be an adapted stochas-
tic process that satis�es the Novikov condition:

E

[
exp

(
1

2

∫ T

0

θ2
t dt

)]
<∞. (8.3)

Then, the stochastic process

B̃t = Bt +

∫ t

0

θsds

is a Brownian motion with respect to the measure Q de�ned by Q (A) =
E [1ALT ], where

Lt = exp

(
−
∫ t

0

θsdBs −
1

2

∫ t

0

θ2
sds

)
.
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Note that Lt satis�es the linear SDE

Lt = 1−
∫ t

0

θsLsdBs.

It is necessary, for the process Lt to be a density, that E [Lt] = 1. However,
condition (8.3) is su�cient to guarantee that it is in fact veri�ed. The second
version of the Girsanov theorem generalizes the �rst: note that, taking θt ≡ λ,
we obtain the previous version.



Chapter 9

Models for Financial Markets

9.1 The Black-Scholes model

The di�erential equations that de�ne the Black-Scholes model are

dB (t) = rB (t) dt, (9.1)

dSt = αStdt+ σStdW t, (9.2)

where r, α and σ are constant. Represent by B (t) the deterministic price
of a riskless asset (a bond or a bank deposit), and by St the (stochastic)
process of the price of a risky asset (a stock or an index). Consider W t as a
standard Brownian motion with respect to the original probability measure
P , the risk-free interest rate r, the mean appreciation rate and the volatility
of the risky asset α and σ, respectively.

We already know that the solution of (9.2) is the geometric Brownian
motion:

St = S0 exp

((
α− 1

2
σ2

)
t+ σW t

)
.

Consider a contingent claim (e.g.: a �nancial derivative), with payo�
given by

χ = Φ (S (T )) . (9.3)

Assume that this derivative may be traded in the market and that it's
price process is given by

Π (t) = F (t, St) , t ∈ [0, T ] , (9.4)

91
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where F is a di�erentiable function of class C1,2. Applying Itô's formula to
(9.17) and considering (9.2), we get

dF (t, St) =

(
∂F

∂t
(t, St) + αSt

∂F

∂x
(t, St) +

1

2
σ2S2

t

∂2F

∂x2
(t, St)

)
dt

+

(
σSt

∂F

∂x
(t, St)

)
dW t.

That is,

F (t, St) = F (0, S0) +

∫ t

0

(
∂F

∂t
(r, Sr) + AF (r, Sr)

)
dr

+

∫ t

0

(
σSr

∂F

∂x
(r, Sr)

)
dW r,

where

Af (t, x) = αx
∂f

∂x
(t, x) +

1

2
σ2x2∂

2f

∂x2
(t, x)

is the in�nitesimal operator associated to the di�usion St that has the dy-
namics (9.2). We may also write

dΠ (t) = αΠ (t) Πtdt+ σΠ (t) ΠtdW t, (9.5)

where

αΠ (t) =

(
∂F
∂t

(t, St) + αSt
∂F
∂x

(t, St) + 1
2
σ2S2

t
∂2F
∂x2

(t, St)
)

F (t, St)
, (9.6)

σΠ (t) =
σSt

∂F
∂x

(t, St)

F (t, St)
. (9.7)

Consider a portfolio (at, bt), where:

� at is the number of stocks (or units of the risky asset) in the portfolio
at instant t.

� bt is the number of bonds (or units of the riskless asset) in the portfolio
at instant t.

Both at and bt can be negative. If so, it means we are taking a short
position on the respective asset in that instant.
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The value of the portfolio at instant t is given by

V (t) = atSt + btBt.

It is supposed that the portfolio is self-�nanced, that is, any variation on
the value of the portfolio is only due to price changes of the assets, so cash
infusion or withdrawal is not allowed. Mathematically, this can be written
as

dVt = atdSt + btdBt.

We can also consider a portfolio with two other assets: the risky asset and
the derivative with the same underlying asset. Let uS (t) and uΠ (t) be the
relative quantities of each of these assets in the portfolio, so that uS (t) +
uΠ (t) = 1. The dynamics for the value of the portfolio (which is also assumed
self-�nanced) are described by

dVt = uS (t)Vt
dSt
St

+ uΠ (t)Vt
dΠt

Πt

.

Substituting (9.2) and (9.5), we obtain

dVt = Vt [uS (t)α + uΠ (t)αΠ (t)] dt

+ V [uS (t)σ + uΠ (t)σΠ (t)] dW t.

9.2 No-arbitrage principle and the Black-Scholes

equation

We shall de�ne the portfolio (uS (t) , uΠ (t)) in such a way so that the stochas-
tic part of dVt is zero. Let uS (t) , uΠ (t) be solutions of the system of linear
equations {

uS (t) + uΠ (t) = 1,
uS (t)σ + uΠ (t)σΠ (t) = 0.

This system has as solution:

uS (t) =
σΠ (t)

σΠ (t)− σ
,

uΠ (t) =
−σ

σΠ (t)− σ
.
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Substituting (9.7) on the expressions above, we get:

uS (t) =
St

∂F
∂x

(t, St)

St
∂F
∂x

(t, St)− F (t, St)
, (9.8)

uΠ (t) =
−F (t, St)

St
∂F
∂x

(t, St)− F (t, St)
. (9.9)

With this portfolio we have (value of the portfolio without a stochastic dif-
ferential):

dVt = Vt [uS (t)α + uΠ (t)αΠ (t)] dt. (9.10)

An arbitrage opportunity on a �nancial market is de�ned as a self-�nanced
portfolio h such that:

V h (0) = 0,

V h (T ) > 0 q.c.

This means that an arbitrage opportunity is the possibility of obtaining
a positive pro�t from no investment, with probability 1, i.e., with no risk
involved.

The no-arbitrage principle simply states that, given a derivative with price
Π (t), we consider that Π (t) is such that there are no arbitrage opportunities
in the market.

Proposition 9.1 If a self-�nanced portfolio h is such that the portfolio value
has the dynamics

dV h (t) = k (t)V h (t) dt,

where k (t) is an adapted process, then we must have k (t) = r for all t, or
otherwise arbitrage opportunities exist.

More details on the no-arbitrage principle may be found in [1].
By the no-arbitrage principle we have, from (9.10), that

uS (t)α + uΠ (t)αΠ (t) = r (9.11)

Substituting (9.6), (9.8) and (9.9) in the no arbitrage condition (9.11), we
get

∂F

∂t
(t, St) + rSt

∂F

∂x
(t, St) +

1

2
σ2S2

t

∂2F

∂x2
(t, St)− rF (t, St) = 0.

Furthermore, it is clear that in the maturity date of the derivative we have

Π (T ) = F (T, ST ) = Φ (S (T )) (9.12)

So we may state the following theorem.
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Theorem 9.2 (Black-Scholes eq.) Assume that the market is speci�ed by
eqs. (9.1)-(9.2) and we want to price a derivative with payo� given by (9.3).
Then, the only price function of the form (9.17) that is consistent with the
principle of no arbitrage is the solution F of the following boundary values
problem, de�ned in the domain [0, T ]× R+:

∂F

∂t
(t, x) + rx

∂F

∂x
(t, x) +

1

2
σ2x2∂

2F

∂x2
(t, x)− rF (t, x) = 0, (9.13)

F (T, x) = Φ (x) .

Note that, in order to determine the Black-Scholes equation (9.13), we
need to assume that the derivative price takes the form Π (t) = F (t, St) and
that there exists a market for the derivative to be traded. However it is not
unusual for derivatives to be traded �over the counter� (OTC), so it is not
always the case. To solve this problem, we shall se how may we obtain the
same equation (9.13) without those hypothesis.

Consider the portfolio (h0 (t) , h∗ (t)) where h0 (t) is the number of bonds
(or riskless asset units) and h∗ (t) is the number of shares at instant t. The
value of the portfolio at instant t is

V h (t) = h0 (t)Bt + h∗ (t)St.

It is supposed that the portfolio is self-�nanced, that is,

dV h
t = h0 (t) dBt + h∗ (t) dSt.

In integral form,

V h
t = V0 +

∫ t

0

h∗ (s) dSs +

∫ t

0

h0 (s) dBs

= V0 +

∫ t

0

(
αh∗ (s)Ss + rh0 (s)Bs

)
ds+ σ

∫ t

0

h∗ (s)SsdW s. (9.14)

Assume that the contingent claim (or �nancial derivative) has the payo�

χ = Φ (S (T )) . (9.15)

and it is replicated by the portfolio h = (h0 (t) , h∗ (t)), that is, assume that
V h
T = χ = Φ (S (T )) a.s. Then, the unique price process that is compatible

with the no-arbitrage principle is

Π (t) = V h
t , t ∈ [0, T ] . (9.16)
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Moreover, suppose that

Π (t) = V h
t = F (t, St) . (9.17)

where F is a di�erentiable function of class C1,2. By applying Itô's formula
to (9.17) and considering (9.2), we obtain

dF (t, St) =

(
∂F

∂t
(t, St) + αSt

∂F

∂x
(t, St) +

1

2
σ2S2

t

∂2F

∂x2
(t, St)

)
dt

+

(
σSt

∂F

∂x
(t, St)

)
dW t.

That is,

F (t, St) = F (0, S0) +

∫ t

0

(
∂F

∂t
(s, Ss) + AF (s, Ss)

)
ds

+

∫ t

0

(
σSs

∂F

∂x
(s, Ss)

)
dW s, (9.18)

where

Af (t, x) = αx
∂f

∂x
(t, x) +

1

2
σ2x2∂

2f

∂x2
(t, x)

is the in�nitesimal generator associated to the di�usion St that has the dy-
namics (9.2). Comparing (9.14) and (9.18), we have that

σh∗ (s)Ss = σSs
∂F

∂x
(s, Ss) ,

αh∗ (s)Ss + rh0 (s)Bs =
∂F

∂t
(s, Ss) + AF (s, Ss) .

Hence

∂F

∂x
(s, Ss) = h∗ (s) ,

∂F

∂t
(s, Ss) + rSs

∂F

∂x
(s, Ss) +

1

2
σ2S2

s

∂2F

∂x2
(s, Ss)− rF (s, Ss) = 0.

Therefore we have:

� A portfolio h with value V h
t = F (t, St), composed of risky assets with

price St and riskless assets of price Bt.

� Portfolio h replicates the contingent claim χ in each instant t, and

Π (t) = V h
t = F (t, St) .
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� In particular:
F (T, ST ) = Φ (S (T )) = Payo�.

The portfolio should be continuously updated by acquiring (or selling)
h∗ (t) shares of the risky asset and h0 (t) units of the riskless asset, where

h∗ (t) =
∂F

∂x
(t, St) ,

h0 (t) =
V h
t − h∗ (t)St

Bt

=
F (t, St)− h∗ (t)St

Bt

.

The derivative price function satis�es the partial di�erential equation
(Black-Scholes eq.)

∂F

∂t
(t, St) + rSt

∂F

∂x
(t, St) +

1

2
σ2S2

t

∂2F

∂x2
(t, St)− rF (t, St) = 0.

Theorem 9.3 (Black-Scholes eq.) Suppose that the market is speci�ed by
eqs. (9.1)-(9.2) and we want to price a derivative with payo� (9.3). Then,
the only pricing function that is consistent with the no-arbitrage principle is
the solution F of the following boundary value problem, de�ned in the domain
[0, T ]× R+:

∂F

∂t
(t, x) + rx

∂F

∂x
(t, x) +

1

2
σ2x2∂

2F

∂x2
(t, x)− rF (t, x) = 0, (9.19)

F (T, x) = Φ (x) .

The Black-Scholes equation may be solved analytically or with proba-
bilistic methods. By applying Feynman-Kac formula, we have the following
result.

Proposition 9.4 (Feynman-Kac formula) Let F be a solution of the bound-
ary values problem

∂F

∂t
(t, x) + µ (t, x)

∂F

∂x
(t, x) +

1

2
σ2 (t, x)

∂2F

∂x2
(t, x)− rF (t, x) = 0, (9.20)

F (T, x) = Φ (x) .

Assume that σ (s,Xs)
∂F
∂x

(s,Xs) is a process in L
2 (i.e. E

∫ t
0

(
∂F
∂x

(s,Xs)σ (s,Xs)
)2
ds <

∞). Then,
F (t, x) = e−r(T−t)Et,x [Φ(XT )] ,

where X satis�es

dXs = µ (s,Xs) ds+ σ (s,Xs) dBs,

Xt = x.
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Applying the Feynman-Kac formula from the previous proposition to the
eq. (9.19), we obtain:

F (t, x) = e−r(T−t)Et,x [Φ(XT )] , (9.21)

where X is a stochastic process with dynamics:

dXs = rXsds+ σXsdW s, (9.22)

Xt = x.

Note that the process X is not the same as the process S, as the drift of
X is rX and not αX. This means that S has an mean appreciation rate α,
while X has the appreciation rate the risk-free interest rate r. To pass from
process X to the process S, we'll apply the Girsanov theorem.

9.3 The martingale measure and risk-neutral

valuation

Denote by P the original probability measure (�objective� or �real� probabil-
ity measure). The P -dynamics of the process S is given in (9.2). Note that
(9.2) is equivalent to

dSt = rStdt+ σSt

(
α− r
σ

dt+ dW t

)
= rStdt+ σStd

(
α− r
σ

t+W t

)
︸ ︷︷ ︸

Wt

.

By the Girsanov Theorem, there exists a probability measure Q such that,
in the probability space (Ω,FT , Q), the process

Wt :=
α− r
σ

t+W t

is a Brownian motion, and S has the Q-dynamics:

dSt = rStdt+ σStdWt. (9.23)

Now consider the following notation: E denotes the expected value with
respect to the original measure P , while EQ denotes the expected value with
respect to the new probability measure Q (that comes from the application
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of the Girsanov theorem). Also, let W t denote the original Brownian mo-
tion (under the measure P ) and Wt denote the Brownian motion under the
measure Q.

Getting back to (9.21) and (9.22), and taking into account that under the
measure Q the equations (9.22) and (9.23) are the same, we may represent
the solution of the Black-Scholes equation by

F (t, s) = e−r(T−t)EQ
t,s [Φ(ST )] ,

where the dynamics of S under the measure Q is

dSt = rStdt+ σStdWt.

We may �nally state the theorem that provides us a pricing formula for
the contingent claim in terms of the new measure Q.

Theorem 9.5 The price (absent of arbitrage) of the contingent claim Φ(ST )
is given by the formula

F (t, St) = e−r(T−t)EQ
t,s [Φ(ST )] , (9.24)

where the dynamics of S under the measure Q is

dSt = rStdt+ σStdWt.

In the Black-Scholes, the di�usion coe�cient σ may depend on t and S
- be a function σ(t, St) - and in this case, the calculations needed would be
analogous to the ones we've done.

The measure Q is called equivalent martingale measure. The reason for
this nomenclature has to do with the fact that the discounted process

S̃t :=
St
Bt

is a Q-martingale (martingale under the measure Q). In fact,

S̃t =
St
Bt

= e−rtSt = e−rtS0 exp

((
α− 1

2
σ2

)
t+ σW t

)
= S0 exp

(
−1

2
σ2t+ σWt

)
is a martingale.
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9.4 The Black-Scholes formula

Computing explicitly the price of the derivative, we have

er(T−t)F (t, s) = EQ
t,s [Φ(ST )]

= EQ
t,s

[
Φ

(
s exp

((
r − 1

2
σ2

)
(T − t) + σ (WT −Wt)

))]
= EQ

[
Φ
(
seZ
)]
,

where Z =
(
r − 1

2
σ2
)

(T − t)+σ (WT −Wt) ∼ N
((
r − 1

2
σ2
)

(T − t) , σ2 (T − t)
)
.

Therefore,

F (t, s) = e−r(T−t)
∫ +∞

−∞
Φ (sey) f (y) dy, (9.25)

where f is the density of the gaussian random variable Z. The integral for-
mula (9.25), for a given function Φ, should be, in the general case, computed
using numerical methods. However, there are some particular cases where
(9.25) may be obtained analytically. For example, for a European �call�
option with payo�

Φ (x) = (x−K)+ = max (x−K, 0) ,

we have

F (t, s) = e−r(T−t)
∫ +∞

−∞
max (sey −K, 0) f (y) dy

= e−r(T−t)
∫ +∞

ln(K/s)

(sey −K) f (y) dy

= e−r(T−t)
(
s

∫ +∞

ln(K/s)

eyf (y) dy −K
∫ +∞

ln(K/s)

f (y) dy

)
(9.26)
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and the �rst integral may be computed in the following way:∫ +∞

ln(K/s)

eyf (y) dy =

=

∫ +∞

ln(K/s)

exp

(
y − (y−(r− 1

2
σ2)(T−t))

2

2σ2(T−t)

)
σ
√

2π (T − t)
dy

=

∫ +∞

ln(K/s)

exp

(
2σ2(T−t)y−(y−(r− 1

2
σ2)(T−t))

2

2σ2(T−t)

)
σ
√

2π (T − t)
dy

= er(T−t)
∫ +∞

ln(K/s)

exp

(
−(y−(r+ 1

2
σ2)(T−t))

2

2σ2(T−t)

)
σ
√

2π (T − t)
dy

But 1

σ
√

2π(T−t)
exp

(
−(y−(r+ 1

2
σ2)(T−t))

2

2σ2(T−t)

)
is the density function of a random

variable Z∗ with distribution N
((
r + 1

2
σ2
)

(T − t) , σ2 (T − t)
)
and so∫ +∞

ln(K/s)

eyf (y) dy = er(T−t)Q (Z∗ ≥ ln (K/s))

= er(T−t)Q

(
Z ≥

ln (K/s)−
(
r + 1

2
σ2
)

(T − t)
σ
√

(T − t)

)

= er(T−t)Q

(
Z ≤

ln (s/K) +
(
r + 1

2
σ2
)

(T − t)
σ
√

(T − t)

)
= er(T−t)N [d1 (t, s)] ,

whereN [x] is the cumulative distribution function of the distributionN (0, 1)
and

d1 (t, s) =
ln (s/K) +

(
r + 1

2
σ2
)

(T − t)
σ
√

(T − t)
.

The second integral may be calculated as follows.∫ +∞

ln(K/s)

f (y) dy = Q (Z ≥ ln (K/s))

= Q

(
Z ≥

ln (K/s)−
(
r − 1

2
σ2
)

(T − t)
σ
√

(T − t)

)

= Q

(
Z ≤

ln (s/K) +
(
r − 1

2
σ2
)

(T − t)
σ
√

(T − t)

)
= N [d2 (t, s)] ,
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whereN [x] is the cumulative distribution function of the distributionN (0, 1)
and

d2 (t, s) =
ln (s/K) +

(
r − 1

2
σ2
)

(T − t)
σ
√

(T − t)
Returning to eq. (9.26), we obtain

F (t, s) = e−r(T−t)
(
ser(T−t)N [d1 (t, s)]−KN [d2 (t, s)]

)
= sN [d1 (t, s)]− e−r(T−t)KN [d2 (t, s)]

and this is the well known Black-Scholes Formula:

F (t, s) = sN [d1 (t, s)]− e−r(T−t)KN [d2 (t, s)] .

Exercise 9.6 Deduce the Black-Scholes Formula form (9.24) for an Euro-
pean put option (with payo� Φ (ST ) = max (K − ST , 0)).
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