Models for Nonnegative Outcomes

Continuous Outcomes and Count Data Log-Linear and Exponential Regression Models Poisson and Negative Binomial Models Panel Data Models

Models for Nonnegative Outcomes Continuous Outcomes and Count Data

- Nonnegative outcomes can be:
 - Continuous: $Y \in [0, +\infty[$
 - Examples: prices, wages,...
 - Discrete (counts): *Y* ∈ {0,1,2,3, ... }
 - Examples: patents applied for by a firm in a year, times someone is arrested in a year,...
- Linear regression models are not the most suitable option because:
 - May generate negative predictions for the dependent variable
 - At least close to the lower bound of Y, it does not make sense to assume constant partial effects

Log-linear regression model:

$$ln(Y_i) = \beta_0 + \beta_1 x_{1i} + \dots + \beta_k x_{ki} + u_i$$

- Assumption: $E(u_i|x) = 0$
- With this transformation, the dependent variable becomes unbounded: $Y \in]0, +\infty[\Rightarrow \ln(Y) \in] \infty, +\infty[$
- However, two new problems arise:
 - The log-linear model is not defined for Y = 0; adding a small constant value to Y or dropping zeros are not in general good solutions
 - Prediction is more interesting in the original scale, \widehat{Y}_i , and not in the logarithmic scale, $\widehat{ln(Y_i)}$; the log-linear model gives the latter directly but retransforming it to the original scale requires additional assumptions and calculations and/or the application of relatively complex methods

Models for Nonnegative Outcomes Log-Linear and Exponential Regression Models

Exponential regression model:

$$Y = exp(x'\beta + u)$$
$$E(Y|X) = exp(x'\beta)$$

- Assumption: $E(e^u|x) = 1$
- Advantages:
 - \widehat{Y}_i is always nonnegative
 - Predictions are obtained directly in the original scale, without requiring any retransformations
- Partial effects:

$$\Delta X_j = 1 \Longrightarrow \Delta E(Y|X) = \beta_j exp(x'\beta)$$

- The sign of the effect is given by the sign of β_j
- β_j can be interpreted as a semi-elasticity, since: $100\beta_j = 100 \frac{\Delta E(Y|X)}{E(Y|X)}$, i.e. $\Delta X_j = 1 \Longrightarrow \% \Delta E(Y|X) = 100\beta_j\%$

Models for Nonnegative Outcomes Poisson and Negative Binomial Models

- Assumptions and estimation methods according to the type of nonnegative outcome:
 - Continuous response:
 - Assumption: only E(Y|X); estimation: QML
 - Count data two alternatives:
 - Assumption: only E(Y|X); estimation: QML
 - Assumption: E(Y|X) and Pr(Y = j|X); estimation: ML
- Three main distribution functions are used as basis for QML and/or ML estimation:
 - Poisson
 - Negative Binomial 1
 - Negative Binomial 2

Models for Nonnegative Outcomes Poisson and Negative Binomial Models

Poisson regression model:

$$Y_i \sim Poisson(\lambda_i) \Longrightarrow Pr(Y_i = y | x_i) = \frac{e^{-\lambda_i \lambda_i^y}}{y!}$$

where $\lambda_i = E(Y|X) = exp(x'\beta)$

- Estimation methods: ML (only count data) or QML, since the Poisson distribution belongs to the linear exponential family
- By definition, E(Y|X) = Var(Y|X) (equidispersion), which may be a strong assumption is some empirical applications

Negative binomial regression models:

- Two variants, both allowing for overdispersion ($\delta > 0$):
 - NEGBIN1: $Var(Y|X) = (1 + \delta)E(Y|X)$ ML estimation
 - NEGBIN2: $Var(Y|X) = [1 + \delta E(Y|X)]E(Y|X)$ it belongs to the linear exponential family, enabling estimation by both ML (only count data) and QML

StataNEGBIN1: nbreg $YX_1 \dots X_k$, dispersion(constant)NEGBIN2 (ML): nbreg $YX_1 \dots X_k$, dispersion(mean)NEGBIN2 (QML): nbreg $YX_1 \dots X_k$, dispersion(mean) robust

• Overdispersion test:

 $H_0: \delta = 0$ (Poisson model)

 $H_1: \delta \neq 0$ (Negative Binomial 1 or 2 model)

Base model:

• Continuous / count data:

$$E(Y_{it}|x_{it},\alpha_i) = exp(\gamma_i + x'_{it}\beta) = \alpha_i exp(x'_{it}\beta)$$

Count data:

$$Pr(Y_{it} = y | x_{it}, \alpha_i) = \frac{e^{-\lambda_{it}} \lambda_{it}^{y}}{y!}$$
$$\lambda_i = E(Y_{it} | x_{it}, \alpha_i) = \alpha_i exp(x'_{it}\beta)$$

Pooled estimator:

- Based on the cross-sectional assumption $E(Y_{it}|x_{it}) = exp(x'_{it}\beta)$
- Produces consistent estimators only if $E(\alpha_i | x_{it}) = 1$
- Does not require the Poisson distributional assumption
- Using a robust vce controls for both overdispersion and time dependence

Random Effects Poisson Estimator:

- Assumptions:
 - $Y_{it} \sim Poisson(\lambda_{it})$
 - $\lambda_i = E(Y_{it}|x_{it}, \alpha_i) = \alpha_i exp(x'_{it}\beta)$
 - $log(\alpha_i) = \gamma_i \sim Gamma(1, \eta)$
- Resulting model:
 - NEGBIN2-type model
 - Estimation method: ML

- $E(Y_{it}|x_{it}) = exp(x'_{it}\beta)$, which implies that the Pooled estimator is consistent under random effects of this type
- Alternative model: assumes $log(\alpha_i) = \gamma_i \sim N(0, \sigma^2)$ and produces $(Y_{it}|x_{it}) = exp(x'_{it}\beta)$ but has no close form solution

Fixed Effects Estimators:

- Fixed effects Poisson estimator (three equivalent versions):
 - Pooled estimator with individual effects
 - Estimator conditional on $\sum_{t=1}^{T} Y_{it}$, with $\sum_{t=1}^{T} Y_{it} \neq 0$
 - Quasi mean-differenced GMM estimator (Hausman, Hall and Griliches, 1984)
- Quasi-differences GMM estimator:
 - Chamberlain (1992)
 - Wooldridge (1997)

Do not require the Poisson distributional assumption

Fixed effects Poisson estimator:

- May be derived using the three equivalent versions
- Pooled estimator with individual effects:
 - Adds individual dummies, associated to the γ'_i s
 - As in linear models, β is consistently estimated even in short panels (no incidental parameters problem)
- The quasi mean-differenced GMM estimator is based on the following moment condition:

$$E\left(Y_{it}-\frac{\lambda_{it}}{\bar{\lambda}_i}\bar{Y}_i\right|x_{it}\right)=0,$$

where $\lambda_{it} = exp(x'_{it}\beta)$ and $\overline{\lambda}_i = \frac{1}{T}\sum_{t=1}^T \lambda_{it}$

Requires strictly exogenous explanatory variables

 $\frac{\text{Stata}}{\text{xtpoisson } YX_1 \dots X_k, \text{ fe}}$

Quasi-differences GMM estimator :

• Chamberlain (1992):

$$E\left(\frac{\lambda_{i,t-1}}{\lambda_{i,t}}Y_{it} - Y_{i,t-1}\right|x_{it}\right) = 0$$

• Wooldridge (1997):

$$E\left(\frac{Y_{it}}{\lambda_{it}} - \frac{Y_{i,t-1}}{\lambda_{i,t-1}}\right| x_{it}\right) = 0$$

 In both cases the explanatory variables do not need to be strictly exogenous, so these estimators are particularly useful in dynamic models