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Models for Nonnegative Outcomes

Continuous Outcomes and Count Data

. Nonnegative outcomes can be:
= Continuous: Y € [0, +oo[
— Examples: prices, wages,...
= Discrete (counts): Y €{0,1,2,3, ... }

— Examples: patents applied for by a firm in a year, times someone is arrested
in a year,...

. Linear regression models are not the most suitable option
because:
= May generate negative predictions for the dependent variable

= At |least close to the lower bound of Y, it does not make sense to
assume constant partial effects
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Models for Nonnegative Outcomes

Log-Linear and Exponential Regression Models

Log-linear regression model:

In(Y;) = Bo + Pr1x1i + - + PrXpi + u;

Assumption: E(u;|x) = 0

With this transformation, the dependent variable becomes
unbounded: Y €]0,4+oo[= In(Y) €] — o0, 400

However, two new problems arise:

* The log-linear model is not defined for Y = 0; adding a small constant
value to Y or dropping zeros are not in general good solutions

= Prediction is more interesting in the original scale, ?l-, and not in the
logarithmic scale, In(Y;); the log-linear model gives the latter directly
but retransforming it to the original scale requires additional

assumptions and calculations and/or the application of relatively
complex methods
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Models for Nonnegative Outcomes

Log-Linear and Exponential Regression Models

Exponential regression model:

Y =exp(x'f +u)
E(Y]X) = exp(x'B)
Assumption: E(e%|x) =1
Advantages:

= Y; is always nonnegative

= Predictions are obtained directly in the original scale, without requiring
any retransformations

Partial effects:
AX; = 1= AE(Y|X) = Bjexp(x'B)
" The sign of the effect is given by the sign of f5;

= [3; can be interpreted as a semi-elasticity, since:

AECVIX) o AX: = 1 = %AE(Y]X) = 10089
E(YlX) ,l.e. f 0 j70
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Models for Nonnegative Outcomes

Poisson and Negative Binomial Models

Assumptions and estimation methods according to the type of
nonnegative outcome:
= Continuous response:
— Assumption: only E (Y| X); estimation: QML
= Count data - two alternatives:
— Assumption: only E (Y| X); estimation: QML
— Assumption: E(Y|X) and Pr(Y = j|X); estimation: ML

Three main distribution functions are used as basis for QML
and/or ML estimation:

= Poisson

= Negative Binomial 1

= Negative Binomial 2
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Models for Nonnegative Outcomes

Poisson and Negative Binomial Models

Poisson regression model:
e_/lilliy

y!

Y; ~ Poisson(4;) = Pr(Y; = y|x;) =
where 1; = E(Y|X) = exp(x'f)

Estimation methods: ML (only count data) or QML, since the
Poisson distribution belongs to the linear exponential family

By definition, E(Y|X) = Var(Y|X) (equidispersion), which
may be a strong assumption is some empirical applications

Stata
ML: poisson YX; ... X}

QML: poisson Y X; ... X;, robust
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Models for Nonnegative Outcomes

Poisson and Negative Binomial Models

Negative binomial regression models:

Two variants, both allowing for overdispersion (6 > 0):
= NEGBIN1: Var(Y|X) = (1 + 6)E(Y|X) - ML estimation
= NEGBIN2:Var(Y|X) =[1+ 6E(Y|X)]E(Y|X) - it belongs to the
linear exponential family, enabling estimation by both ML (only
count data) and QML

Stata
NEGBIN1: nbreg YX; ... Xj, dispersion(constant)

NEGBIN2 (ML): nbreg Y X; ... X), dispersion(mean)
NEGBIN2Z (QML): nbreg Y'X; ... X, dispersion(mean) robust

« Overdispersion test:
Hy: 6 = 0 (Poisson model)
H;: 5 # 0 (Negative Binomial 1 or 2 model)
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Models for Nonnegative Outcomes

Panel Data Models

Base model:

Continuous / count data:
E(Yitlxie, a;) = exp(y; + x;:) = aexp(x;f5)
Count data:
e—litlity
y!
Ai = E(Yielxie, a;) = ajexp(xi )
Pooled estimator:

Based on the cross-sectional assumption E (Y;;|x;:) = exp(x;.8)

Pr(Yi = y|xie, a;) =

Produces consistent estimators only if E(a;|x;;) = 1
Does not require the Poisson distributional assumption

Using a robust vce controls for both overdispersion and time
dependence

Stata
poisson Y X; ... X, vce(cluster clustvar)



Models for Nonnegative Outcomes

Panel Data Models

Random Effects Poisson Estimator:

Assumptions:
" Y., ~ Poisson(A;;)
= A = E(Yielxi, a;) = ajexp(x;e )
» log(a;) =y; ~Gamma(1l,1n)

Resulting model:
= NEGBIN2-type model xtpoisson YX; ... X, re
= Estimation method: ML

" E(Yitlxir) = exp(xi.B), which implies that the Pooled estimator is
consistent under random effects of this type

Stata

Alternative model: assumes log(a;) = y; ~ N(0,c?) and
produces (Y;;|x;:) = exp(x;8) but has no close form solution
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Models for Nonnegative Outcomes
Panel Data Models

Fixed Effects Estimators:

Fixed effects Poisson estimator (three equivalent versions):
= Pooled estimator with individual effects
= Estimator conditionalon Y,1_, Y, with X1_, Y, # 0

= Quasi mean-differenced GMM estimator (Hausman, Hall and Griliches,
1984)

Quasi-differences GMM estimator:
= Chamberlain (1992)
= Wooldridge (1997)

Do not require the Poisson distributional assumption
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Models for Nonnegative Outcomes

Panel Data Models

Fixed effects Poisson estimator:

May be derived using the three equivalent versions
Pooled estimator with individual effects:
= Adds individual dummies, associated to the y;s

= Asin linear models, 3 is consistently estimated even in short panels (no
incidental parameters problem)

The quasi mean-differenced GMM estimator is based on the
following moment condition:
xl't) —_ 0,

Ait —
E (Yi -=7,
where 1;; = exp(x/,f) and A; = % t=1 it

i

Requires strictly exogenous explanatory variables

Stata
xtpoisson YX; ... X, fe
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Models for Nonnegative Outcomes
Panel Data Models

Quasi-differences GMM estimator :
. Chamberlain (1992):
xl't> — 0

i1
E( ‘Ai’t Yie = Yieo1

In both cases the explanatory variables do not need to be
strictly exogenous, so these estimators are particularly useful
in dynamic models

. Wooldridge (1997):

Y )
E (_lt . ,t—1
Ait  Aje—1
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