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Likelihood function and the ML principle

Let f (y; θ) denote the probability density function/probability
function of the random variable y, given θ. Our objective to to
estimate the true parameter vector θ.
Example: A Bernoulli Random variable:

Y =
�

1 with probability θ
0 with probability 1� θ

where θ 2 (0, 1).Hence

f (y; θ) = P(Y = yjθ) = θy(1� θ)1�y, y = 0, 1

The joint density of n iid observations of y is

f (y1, . . . , ynjθ) =
n

∏
i=1

f (yi; θ).

If y is a discrete random variable, f (y1, . . . , ynjθ) gives the
probability of observing a particular sample, given θ.
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Likelihood function and the ML principle

Let us now take f (yi; θ) as a function of θ given y and write

L(θjy1, . . . , yn) =
n

∏
i=1

f (yi; θ).

This is the likelihood function, which gives the likelihood that the
population parameter is θ, given the observed sample.
Note: L(θjy1, . . . , yn) is often abbreviated to L (θ).
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Likelihood function and the ML principle

The Maximum Likelihood (ML) principle suggests that estimators of
the unknown
parameters are obtained by maximizing L (θ) with respect to θ.

θ̂ = arg max
θ2Θ

L (θ) .

It is often convenient to work with the natural logarithm of the
likelihood function log L (θ). For example, in the iid case:

log L(θjy1, . . . , yn) =
n

∑
i=1

log f (yi; θ);

θ̂ = arg max
θ2Θ

L (θ) = arg max
θ2Θ

log L (θ)
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Likelihood function and the ML principle

Usually θ̂ can be obtained by solving the likelihood equation

∂ log L (θ)
∂θ

����
θ̂

= 0

Example: In the Bernoulli case P(Y = yjθ) = θy(1� θ)1�y we
have

log L (θ) = ∑n
i=1 yi log(θ) +∑n

i=1(1� yi) log(1� θ).

the solution is given by θ̂ = ȳ = ∑n
i=1 yi/n.

Occasionally the ML estimator is not unique.
Also, log L (θ) may have only one global maximum, but multiple
local maxima.
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Likelihood function and the ML principle

The main regularity conditions (now assumed to hold) are as
follows:

1 The first three derivatives of log f (yjθ) with respect to θ are
continuous and finite for almost all y and for all θ;

2 For all values of θ,
���∂3 log f (yjθ)/∂θj∂θk∂θl

��� is limited by a function
that has finite expectation;

3 The domain of y does not depend on θ;
4 θ is an interior point to the compact parameter space Θ.
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Likelihood function and the ML principle

In order to proceed, it is interesting to look at some important
results (Bartlett identities).

Define the score vector S (θ) and the Hessian matrix H (θ) as

S(θ) =
∂ logL(θ)

∂θ
=

n

∑
i=1

∂ logf (yijθ)
∂θ

=
n

∑
i=1

si (θ) ,

H(θ) =
∂2 logL(θ)

∂θ∂θ0
=

n

∑
i=1

∂2 logf (yijθ)
∂θ∂θ0

=
n

∑
i=1

Hi (θ) .

First Bartlett identity: E [si (θ)] = 0.
Hence E [S(θ)] = 0
Second Bartlett identity: Var [si (θ)] = �E [Hi (θ)]

Var [si (θ)] = E
h
si (θ) si (θ)

0
i

defines Fisher’s information matrix,
denoted I (θ).
Hence, the result Var [si (θ)] = E

h
si (θ) si (θ)

0
i
= �E [Hi (θ)] is

also called the information matrix identity.

Author: Paulo M.D.C. Parente 7 / 21



Properties of MLE

Under the assumed regularity conditions the MLE possesses the
following properties:

1 Consistency: plim θ̂ = θ;
2 Asymptotic normality:

p
n
�
θ̂ � θ

� d! N (0, I(θ)�1);
3 Asymptotic efficiency: if θ̃ is a regular consistent asymptotically

normal estimator such that
p

n
�
θ̃ � θ

� d! N (0, Ω), then
Ω� [I(θ)]�1 is positive semi-definite, i.e., under these RC, the
MLE asymptotically achieves the Cramer-Rao lower bound which is
given by [I(θ)]�1;

4 Invariance: If c (θ) is a continuous and continuously differentiable
one-to-one function, the MLE of γ = c(θ) is c

�
θ̂
�
.

Example: in the Bernoulli case I(θ)�1 = θ(1� θ), therefore
p

n
�
θ̂ � θ

� d! N (0, θ(1� θ));
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Proof of the asymptotic normality

It is enlightening to sketch the proof of the asymptotic normality.
Under the assumed regularity conditions, we have

∂ logL
�
θ̂
�

∂θ
= 0,

n

∑
i=1

∂ logf (yijθ̂)
∂θ

= 0

Expanding this result in a 1st order Taylor series around θ we have

n

∑
i=1

∂ logf (yijθ̂)
∂θ

=
n

∑
i=1

∂ logf (yijθ)
∂θ

+
n

∑
i=1

∂2 logf (yijθ̄)
∂θ∂θ0

�
θ̂ � θ

�
= 0

p
n

1
n

n

∑
i=1

∂ logf (yijθ)
∂θ| {z }

Ŝ(θ)

+
1
n

n

∑
i=1

∂2 logf (yijθ̄)
∂θ∂θ0| {z }

Ĥ(θ̄)

p
n
�
θ̂ � θ

�
= 0

where θ̄ = wθ̂ + (1�w) θ for 0 � w � 1.
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Proof of the asymptotic normality

Write p
n
�
θ̂ � θ

�
=
�
�Ĥ

�
θ̄
���1pnŜ (θ)

Notice that, because plim
�
θ̂ � θ

�
= 0, and we have

plim
�
θ̄ � θ

�
= 0 and (under some conditions)

plim�Ĥ
�
θ̄
�
= E [�Hi (θ)] = A

Now we can apply a Central Limit Theorem for random samples

to obtain
p

nŜ (θ) d! N (0, B) where
B = Var [si (θ)] = E [si(θ)si(θ)

0]
Recall that if x�N (0, C) then Dx�N (0, DCD0) .
Hence

p
n
�
θ̂ � θ

� d! N
�

0, A�1BA�1
�

A = E [�Hi (θ)] B = E
�
si(θ)si(θ)

0�
For correctly specified models, B = E [�Hi (θ)] = A = I(θ) and

p
n
�
θ̂ � θ

� d! N
�

0, I(θ)�1
�

;
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Estimators of the information matrix

There are three commonly used estimators of I(θ)
1 Expected Information: If the form of the expected values of the

second derivatives of the log-likelihood function is known, then
we can evaluate I(θ) at θ̂.

2 Observed Information: Simply use �Ĥ
�
θ̂
�
.

3 Outer Product of the Gradient (OPG): Because of the information
matrix identity, we can also use n�1 ∑n

i=1 si
�
θ̂
�

si
�
θ̂
�0 .

The OPG is notorious for its poor finite sample performance.
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Regressors

The previous results are easy to extend to accommodate the
presence of covariates.
Suppose the joint distribution of y and x depends on α, giving
f (y, xjα) = f (yjx, α)g(xjα).
Next, suppose that α can be divided into θ and δ, so that
(exogeneity of x) f (y, xjα) = f (yijxi, θ)g(xijδ).
For an iid sample f(yi, xi)gn

i=1 then

log L(θ, δjyi, xi) =
n

∑
i=1

log f (yi, xijα) =
n

∑
i=1

log f (yijxi, θ)+
n

∑
i=1

log g(xijδ).

and the term ∑n
i=1 log g(xijδ). can be ignored
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Regressors

θ̂ can then be obtained by maximizing just ∑n
i=1 log f (yijxi, θ)

with respect to θ. Therefore, frequently we will work directly
with the conditional log-likelihood

log L(θjyi, xi) =
n

∑
i=1

log f (yijxi, θ),

and this (under appropriate regularity conditions) will behave to
a large extent like a standard log-likelihood.

However, now E[�Hi (θ)] = E
h
� ∂2 logf (yijxi,θ)

∂θ∂θ0

i
= I (θ) =

E
h

∂ log f (yjxi,θ)
∂θ

∂ log f (yjxi,θ)
∂θ0

i
, and so on.
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Robust covariance matrix estimation

If the likelihood function is misspecified, the MLE is generally
inconsistent for the parameters of interest.
However, under very general conditions, plim θ̂ = θ�, where the
pseudo-true value θ� minimizes the Kullback-Leibler divergence,
that is

θ� = arg min
c

Z +∞

�∞

�
log

�
f0(y)
f (yjc)

��
f0(y)dy = arg min

c
E
�

log
�

f0(y)
f (yjc)

��
.

where f0(y) is the true distribution of the data.
The Kullback–Leibler divergence (also called relative entropy) is a
measure of how one probability distribution is different from a
second, reference probability distribution
That is, the MLE leads to the best approximation, in the
Kullback-Leibler sense, to f0(y), the true density.
However, because the IM identity does not hold, the asymptotic
covariance matrix is given by:

A�1BA�1, A = E [�Hi (θ
�)] B = E

�
gi(θ

�)gi(θ
�)0
�

.

In some special cases (to be discussed in a future lecture) the
MLE is robust to some forms of misspecification (i.e., it is still
consistent for the parameters of interest).
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Hypothesis testing

Consider a general set of restrictions to be tested

H0 : h(θ) = 0

where:
θ: vector of parameters in model
h(θ): d� 1 vector of restrictions
L(θ): likelihood function for model
S(θ) = ∑n

i=1 si(θ) the efficient score

θ̂ and θ̃: unrestricted and restricted MLE, respectively (that is
θ̂ = θ̂ml and θ̃ = θ̃ml).
θ̂ is the value of θ that maximizes log L(θ)
θ̃ is the value of θ that maximizes log L(θ) and satisfy h(θ) = 0.
L(θ̂) and L(θ̃): value of L(θ) evaluated at θ̂ and θ̃, respectively.
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The 3 classical test principles

Likelihood Ratio Tests:

Compare L(θ̂) and L(θ̃) (if h(θ) = 0 then L(θ̂) should be close to
L(θ̃)

Wald Tests:

Compare h(θ̂) with 0 (since h(θ̃) = 0).

Lagrange Multiplier or Score Tests:

Compare S(θ̃) with 0 (since S(θ̂) = 0).
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The 3 classical test principles
Intuition:
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The Wald Test

How close is h(θ̂) to zero (since h(θ̃) = 0)?
Test statistic:

W = n� h(θ̂)0
�

G(θ̂)0
h
[I(θ)

i�1
G(θ̂)

��1
h(θ̂).

where

G(θ) =
∂h(θ)

∂θ
.

and [I(θ) is an estimator of I(θ).
Under the null hypothesis:

W D! χ2(d).
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The Wald Test

Shortcoming: Wald test not invariant to how restrictions are
formulated. E.g.: β

�
(1� α) = 1 (nonlinear restriction) and

β+ α� 1 = 0 (linear restriction) are equivalent restrictions, but may
lead to different values of W .
Note:If h(θ) = Rθ � q, and G(θ) = R.
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The Likelihood Ratio Test

How “close” are L(θ̂) and L(θ̃)?
Test is based on the likelihood ratio:

λ =
L(θ̃)
L(θ̂)

.

Test statistic

LR = �2 log (λ)
= 2flog L(θ̂)� log L(θ̃)g

Under the null hypothesis:

LR D! χ2(d)
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The Lagrange Multiplier (LM) or Score Test

How close is S(eθ) to zero (since S(θ̂) = 0)?
Test statistic

LM = S(eθ)0 h[I(θ)i�1
S(eθ)/n

Under the null hypothesis:

LM D! χ2(d).
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