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Likelihood function and the ML principle

@ Letf(y;0) denote the probability density function/probability
function of the random variable y, given 6. Our objective to to
estimate the true parameter vector 6.

o Example: A Bernoulli Random variable:

Y — 1 with probability 0
~ | 0 with probability 1 — 6

where 6 € (0,1).Hence
F(yi0) = PY = yl6) = 07(1— 6)' %, y = 0,1

@ The joint density of n iid observations of y is

FW1o - yal6) = ﬁf(yw).

e If yis a discrete random variable, f(y1, ..., yx|0) gives the
probability of observing a particular sample, given 6.




Likelihood function and the ML principle

@ Let us now take f(y;;0) as a function of 6 given y and write

Ly, .., yn) = f{f(yi;e).

@ This is the likelihood function, which gives the likelihood that the
population parameter is 8, given the observed sample.

@ Note: L(0|y1,...,yn) is often abbreviated to L (6).
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Likelihood function and the ML principle

o The Maximum Likelihood (ML) principle suggests that estimators of
the unknown
parameters are obtained by maximizing L (6) with respect to 6.

6= L(9).
arg maxL (6)

It is often convenient to work with the natural logarithm of the
likelihood function log L (). For example, in the iid case:

log L(8ly1,---,yn) = ) logf(y;;6);
i=1

0 = argmaxL (¢) = argmaxlog L (6)
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Likelihood function and the ML principle

e Usually  can be obtained by solving the likelilood equation

dlogL (0)

o0 =0

0

e Example: In the Bernoulli case P(Y = y|8) = 6Y(1 — )Y we
have

lOgL(Q) :ZZ 1]/110g +Zl L=V log(l_ 0).

the solution is given by 8 = = Y1, y;/n.
@ Occasionally the ML estimator is not unique.

@ Also, log L (8) may have only one global maximum, but multiple
local maxima.
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Likelihood function and the ML principle

@ The main regularity conditions (now assumed to hold) are as
follows:
@ The first three derivatives of log f(y|0) with respect to 6 are
continuous and finite for almost all y and for all 6;
© For all values of §, |03 logf(y|0)/ 00;00,00, | is limited by a function
that has finite expectation;

© The domain of y does not depend on 6;
@ 0 is an interior point to the compact parameter space ©.
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Likelihood function and the ML principle

@ In order to proceed, it is interesting to look at some important
results (Bartlett identities).

@ Define the score vector S (9) and the Hessian matrix H (6) as

dlogL(6 " dlo 0 1
s(0) = g =) e gfy" oy s,
i=1 i=1
0%logL(f) & & logf (yilf)
H) = H; (
(©) aeae’ 1:21 06006’ 1:21 1

@ First Bartlett identity: E[s; (6)] = 0.

@ Hence E[S(0)] =0

@ Second Bartlett identity: Var [s; (0)] = —E[H; (0)]

@ Vars; (8)] =E [Si (0)s; (9)'} defines Fisher’s information matrix,
denoted 7 (0).

o Hence, the result Var [s; (8)] = E [s,» 0)s; (9)’} — —E[H; ()] is
also called the information matrix identity.




Properties of MLE

@ Under the assumed regularity conditions the MLE possesses the
following properties:

@ Consistency: plim@ =0;

@ Asymptotic normality: \/n (8 — ) 4, N(0,Z(6)~1);

@ Asymptotic efficiency: if  is a regular consistent asymptotically
normal estimator such that v/n (6 — ) 4N (0,Q), then
Q—[Z(0)] “lis positive semi-definite, i.e., under these RC, the
MLE asymptotically achieves the Cramer-Rao lower bound which is
given by [Z(6)] 7%

Q Invariance: If ¢ () is a continuous and continuqusly differentiable
one-to-one function, the MLE of ¢ = ¢(8) is ¢ (6).

e Example: in the Bernoulli case Z(6) ! = 6(1 — ), therefore
Vi (0—-6) % N (0,001 06));
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Proof of the asymptotic normality

@ It is enlightening to sketch the proof of the asymptotic normality.
@ Under the assumed regularity conditions, we have

ologL(f) 0
20 -

" 0logf(yil0)
L=

i=1

@ Expanding this result in a 1st order Taylor series around 6 we have

L 9logf(yilf) _ - 0logf(vil6) | - 9% logf(1ilf)
O8ilY) gy C108 WilY) O ilY) 5 _g) =0
L% L= tL e (70
1 & alogf(yil6) | 1 ¢ 0*logf (vil0) A o)
VI LT Tak ey VMO0 =0
5(0) A(0)

where@zwéJr(lfw)Gforngg1.

Author: Paulo M.D.C. Parente 9/ 21



Proof of the asymptotic normality

@ Write A .
Vi (6-0) = [~F (B)] " VS (0

Notice that, because plim (9 —6) =0, and we have
plim (f — #) = 0 and (under some conditions)

plim —H () =E[—H; (0)] = A

@ Now we can apply a Central Limit Theorem for random samples
to obtain /15 (0) 4N (0, B) where
B = Var s; (0)] = E[s;(6)s(0)’]

@ Recall that if x~\ (0,C) then Dx~N (0,DCD').

@ Hence

Vi (0—0) 5N (0,47BAT)
A=E[-H;(0)]  B=E][s(0)si(6)']
e For correctly specified models, B = E[—H; (0)] = A = Z(6) and
Vi (0-0) SN (0z(0)7);
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Estimators of the information matrix

@ There are three commonly used estimators of Z(6)

@ Expected Information: If the form of the expected values of the
second derivatives of the log-likelihood function is known, then
we can evaluate Z(6) at f.

© Observed Information: Simply use —H (@)

© Outer Product of the Gradient (OPG): Because of the information
matrix identity, we can also use n ' Y7 5; (8) s; (é)l .

@ The OPG is notorious for its poor finite sample performance.




Regressors

@ The previous results are easy to extend to accommodate the
presence of covariates.

@ Suppose the joint distribution of y and x depends on «, giving
fy,x[o) = fylx, a)g(x[w).

@ Next, suppose that a can be divided into 6 and 4, so that
(exogeneity of x) f(y, x[w) = f(yi|xi, 0)g(xi|9)-

e For an iid sample {(y;, x;) }!"_; then

log L(6, 8ly;, x;) = )_logf (i, xila) = ) logf(yilxi,0) + ) _ logg(x;l6).
= i= =

and the term ), log g(x;|). can be ignored
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Regressors

o 0 can then be obtained by maximizing just Y, log f (y;|x;, 6)
with respect to 6. Therefore, frequently we will work directly
with the conditional log-likelihood

log L(6ly;, x;) = Y _logf(vilx;,0),
=

and this (under appropriate regularity conditions) will behave to
a large extent like a standard log-likelihood.

e However, now E[—H; ()] = E [7782 10(37,};%)%-,9)] =7(0)=
E [alogfa(9y|x,-,9) Blog/;(gy/\x,-,f)) } _and so on.




Robust covariance matrix estimation

If the likelihood function is misspecified, the MLE is generally
inconsistent for the parameters of interest.

However, under very general conditions, plim@ = 0", where the
pseudo-true value 6 minimizes the Kullback-Leibler divergence,
that is

o =i o iy ) oot =i [ (7655 ) |

where fy(y) is the true distribution of the data.

The Kullback—Leibler divergence (also called relative entropy) is a
measure of how one probability distribution is different from a
second, reference probability distribution

That is, the MLE leads to the best approximation, in the
Kullback-Leibler sense, to fy(y), the true density.

However, because the IM identity does not hold, the asymptotic
covariance matrix is given by:

AT'BAT, A=E[-H;(6")] B=E[g(6")(6")].
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Hypothesis testing

@ Consider a general set of restrictions to be tested
Hy:h(6) =0

where:

6: vector of parameters in model
h(0): d x 1 vector of restrictions
L(0): hkehhood function for model
S(0) = s;(0) the efficient score

>

0 and 0: unrestrlcted and restricted MLE, respectively (that is
0 =0,,andd =0,,).

0 is the value of § that maximizes log L(6)

>

0 is the value of 0 that maximizes log L(6) and satisfy h(0) =
L(A) and L(8): value of L(#) evaluated at # and 8, respectively.




The 3 classical test principles

Likelihood Ratio Tests:

o Compare L(f) and L(f) (if h(8) = 0 then L(8) should be close to
L(0)

Wald Tests:

o Compare 1(8) with 0 (since h(8) = 0).
Lagrange Multiplier or Score Tests:

e Compare S(f) with 0 (since S(8) = 0).




The 3 classical test principles

Intuition:
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The Wald Test

e How close is /() to zero (since h(8) = 0)?

@ Test statistic:

where

—

and Z(0) is an estimator of Z(6).
@ Under the null hypothesis:

D
W = x3(d).




The Wald Test

Shortcoming: Wald test not invariant to how restrictions are
formulated. E.g.: B /(1 — «) =1 (nonlinear restriction) and

B+« — 1 = 0 (linear restriction) are equivalent restrictions, but may
lead to different values of W.

Note:If 7(6) = RO — g, and G(0) = R.




The Likelihood Ratio Test

e How “close” are £() and £(8)?
@ Test is based on the likelihood ratio:

L@
L(0)

@ Test statistic
LR = -2log(A)

2{log L£(8) —log L£(8)}

@ Under the null hypothesis:

LR L ()




The Lagrange Multiplier (LM) or Score Test

@ How close is S(f) to zero (since S(8) = 0)?
o Test statistic .
LM = S(B) [1(9)] S(8)/n

@ Under the null hypothesis:

LM B ).
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