Models in Finance - Lecture 2 Master in Actuarial Science

João Guerra

ISEG

- Idea: a martingale is a stochastic process for which its "current value" is the "optimal estimator" of its expected "future value". Or:
- Given the stochastic process $\{M_j, j \in \mathbb{N}\}\$ and the information \mathcal{F}_n at instant n, then M_n is the best estimator for M_{n+1} .
- A martingale has "no drift" and its expected value remains constant in time.
- Martingale theory is fundamental in modern financial theory: the modern theory of pricing and hedging of financial derivatives is based on martingale theory.

• Let (Ω, \mathcal{F}, P) be a probability space and $\mathcal{B} \subset \mathcal{F}$ be a σ -algebra.

Definition

The conditional expectation of the integrable r.v. X given \mathcal{B} (or $E(X|\mathcal{B})$) is an integral random variable Z such that

- Z is \mathcal{B} -measurable
- **2** For each $A \in \mathcal{B}$, we have

$$E\left(Z\mathbf{1}_{A}\right)=E\left(X\mathbf{1}_{A}\right)$$

• If $E[|X|] < \infty$ then Z = E(X|B) exists and is unique

• Properties: 1. E(aX + bY|B) = aE(X|B) + bE(Y|B).(2) 2. E(E(X|B)) = E(X).(3)

3. If X and the σ -algebra \mathcal{B} are independent then:

$$E(X|\mathcal{B}) = E(X) \tag{4}$$

4. If X is \mathcal{B} -measurable (or if $\sigma(X) \subset \mathcal{B}$) then:

$$E(X|\mathcal{B}) = X. \tag{5}$$

5. If Y is \mathcal{B} -measurable (or if $\sigma(X) \subset \mathcal{B}$) then

$$E(YX|\mathcal{B}) = YE(X|\mathcal{B})$$
(6)

6. Given two σ -algebras $\mathcal{C} \subset \mathcal{B}$ then

$$E(E(X|\mathcal{B})|\mathcal{C}) = E(E(X|\mathcal{C})|\mathcal{B}) = E(X|\mathcal{C})$$
(7)

• Given several r.v. Y_1, Y_2, \ldots, Y_n , we can consider the conditional expectation

$$E[X|Y_1, Y_2, \ldots, Y_n] = E[X|\beta]$$
,

where β is the σ -algebra generated by Y_1, Y_2, \ldots, Y_n .

Martingales

Let (Ω, F, P) be a probability space and {F_n, n ≥ 0} be a sequence of σ-algebras such that

$$\mathcal{F}_0 \subset \mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots \subset \mathcal{F}_n \subset \cdots \subset \mathcal{F} \tag{8}$$

The sequence $\{\mathcal{F}_n, n \geq 0\}$ is called a filtration

• Filtration \approx "information flow".

Definition

 $M = \{M_n; n \ge 0\}$ (in discrete time) is a martingale with respect to filtration $\{\mathcal{F}_n, n \ge 0\}$ if:

● For each n, M_n is a F_n-measurable r.v. (i.e., M is a stochastic process adapted to the filtration {F_n, n ≥ 0}).

② For each
$$n$$
, $E[|M_n|] < ∞$.

Sor each *n*, we have:

$$E\left[M_{n+1}|\mathcal{F}_n\right]=M_n.$$

(9

Martingales

- If we consider the filtration $\mathcal{F}_n = \sigma(M_0, M_1, \dots, M_n)$, then we say that $M = \{M_n; n \ge 0\}$ is a martingale (with respect to this filtration) if
- For each n, $E[|M_n|] < \infty$.
- Por each n, we have:

$$E\left[M_{n+1}|\mathcal{F}_n\right] = M_n. \tag{10}$$

- Properties: It is easy to show that if M = {M_n; n ≥ 0} is a martingale then
- $E[M_n] = E[M_0]$ for all $n \ge 1$.
- $e [M_n | \mathcal{F}_k] = M_k \text{ for all } n \ge k.$
 - Exercise: Prove properties 1. and 2. above.

- idea: the "current value" M_k of a martingale is the "optimal estimator" of its "future value" M_n .
- martingale and risk neutral probability measure: If the discounted price of a financial asset is a martingale when calculated using a particular probability measure, then this probability measure is called a "risk-neutral" probability (meaning that the price has no "drift").

• Example: Assume that share S has a price process S_n and a discounted price process

$$\widetilde{S}_n = e^{-rn} S_n, \tag{11}$$

where r is the risk-free interest rate. If we assume that for a probability measure Q, the process \tilde{S}_n is a martingale, then under Q, we have that

$$\mathsf{E}_Q\left[\widetilde{S}_{n+1}|\widetilde{S}_0,\widetilde{S}_1,\ldots,\widetilde{S}_n\right]=\widetilde{S}_n.$$

Since \widetilde{S}_n is known (it is measurable) with respect to $\sigma\left(\widetilde{S}_0, \widetilde{S}_1, \ldots, \widetilde{S}_n\right)$, then by property (5), we have:

$$E_Q\left[\frac{e^{-r(n+1)}S_{n+1}}{e^{-rn}S_n}|\widetilde{S}_0,\widetilde{S}_1,\ldots,\widetilde{S}_n\right] = 1$$
$$\iff E_Q\left[\frac{S_{n+1}}{S_n}|S_0,S_1,\ldots,S_n\right] = e^r.$$

Therefore, the expected return in period from time n to time n+1 is the risk-free rate: that is why Q is called a risk-neutral measure.

João Guerra (ISEG)

Martingales in continuous time

• Probability space (Ω, \mathcal{F}, P) and family of σ -algebras $\{\mathcal{F}_t, t \ge 0\}$ such that

$$\mathcal{F}_s \subset \mathcal{F}_t, \quad 0 \le s \le t.$$
 (12)

The family $\{\mathcal{F}_t, t \geq 0\}$ is called a filtration

- Let *F*^X_t be the σ-algebra generated by process X on the interval [0, t], i.e. *F*^X_t = σ (X_s, 0 ≤ s ≤ t). Then *F*^X_t is the "information generated by X on interval [0, t]" or "history of the process X up until time t".
- A ∈ F^X_t means that is possible to decide if event A occurred or not, based on the observation of the paths of the process X on [0, t].
- Example: If $A = \{ \omega : X(5) > 1 \}$ then $A \in \mathcal{F}_5^X$ but $A \notin \mathcal{F}_4^X$.
- A stochastic process Y is said to be adapted to the filtration $\{\mathcal{F}_t, t \ge 0\}$ if Y_t is \mathcal{F}_t -measurable for all t.
- If *F*^X_t = σ (X_s, 0 ≤ s ≤ t) is the filtration generated by X, then any continuous function of X_t is adapted to *F*^X_t.

- Key properties:
 - $E \{ E[X|\mathcal{F}_t] \} = E[X].$
 - 2 If X is \mathcal{F}_t -measurable then $E[X|\mathcal{F}_t] = X$.
 - **3** If Y is \mathcal{F}_t -measurable and bounded then $E[XY|\mathcal{F}_t] = YE[X|\mathcal{F}_t]$.
 - If X is independent of \mathcal{F}_t then $E[X|\mathcal{F}_t] = E[X]$.

Definition

A stochastic process $M = \{M_t; t \ge 0\}$ is a martingale with respect to the filtration $\{\mathcal{F}_t, t \ge 0\}$ if:

- For each $t \ge 0$, M_t is a \mathcal{F}_t -measurable r.v. (i.e., M is adapted to $\{\mathcal{F}_t, t \ge 0\}$).
- ② For each $t \ge 0$, $E[|M_t|] < \infty$.

Solution For each $s \leq t$,

$$E\left[M_t|\mathcal{F}_s\right] = M_s. \tag{13}$$

Martingales in continuous time

• cond. (3)
$$\iff E[M_t - M_s | \mathcal{F}_s] = 0.$$

• If
$$t \in [0, T]$$
 then $M_t = E[M_T | \mathcal{F}_t]$.

- cond. (3) $\Longrightarrow E[M_t] = E[M_0]$ for all t.
- If cond. (3) is replaced by

$$E\left[M_t|\mathcal{F}_s\right] \le M_s. \tag{14}$$

then the process is called a supermartingale.

• If cond. (3) is replaced by

$$E\left[M_t|\mathcal{F}_s\right] \ge M_s. \tag{15}$$

then the process is called a submartingale.

• Consider a Bm $B = \{B_t; t \ge 0\}$ defined on (Ω, \mathcal{F}, P) and

$$\mathcal{F}_t^B = \sigma \left\{ B_s, s \le t \right\}. \tag{16}$$

Proposition: The following processes are \mathcal{F}_t^B -martingales:

Martingales in continuous time

Proof.

1. B_t is \mathcal{F}_t^B -measurable and therefore it is adapted. $E[|B_t|] < \infty$ (why?)Moreover $B_t - B_s$ is independent of \mathcal{F}_s^B (why?).Hence (why?)

$$E\left[B_t-B_s|\mathcal{F}_s^B\right]=E\left[B_t-B_s\right]=0.$$

2. Clearly, $B_t^2 - t$ is \mathcal{F}_t^B -measurable and adapted (why?) and $E\left[\left|B_t^2 - t\right|\right] < \infty$. By the properties of the conditional expectation

$$E\left[B_t^2 - t|\mathcal{F}_s^B\right] = E\left[\left(B_t - B_s + B_s\right)^2 |\mathcal{F}_s^B\right] - t$$
$$= E\left[\left(B_t - B_s\right)^2\right] + 2B_s E\left[B_t - B_s|\mathcal{F}_s^B\right] + B_s^2 - t$$
$$= t - s + B_s^2 - t = B_s^2 - s.$$

• Exercise: Prove that $\exp\left(aB_t - \frac{a^2t}{2}\right)$ is a $\{\mathcal{F}^B_t, t \ge 0\}$ -martingale.