Probability Theory and Stochastic Processes LIST 1^1 Measure and probability

- (1) Decide if \mathcal{F} is σ -algebra of Ω , where:
 - (a) $\mathcal{F} = \mathcal{P}(\Omega), \ \Omega = \mathbb{R}^n$.
 - (b) $\mathcal{F} = \{\emptyset, \{1, 2\}, \{3, 4, 5, 6\}, \Omega\}, \Omega = \{1, 2, 3, 4, 5, 6\}.$
 - (c) $\mathcal{F} = \{\emptyset, \{0\}, \mathbb{R}^-, \mathbb{R}_0^-, \mathbb{R}^+, \mathbb{R}_0^+, \mathbb{R} \setminus \{0\}, \mathbb{R}\}, \Omega = \mathbb{R}.$
- (2) Let (Ω, F) be a measurable space and A₁, A₂, ··· ∈ F. Prove:
 (a) ∩^{+∞}_{i=1} A_i ∈ F
 (b) A₁ \ A₂ ∈ F
- (3) Let Ω be a finite set with $\#\Omega = n$. Compute $\#\mathcal{P}(\Omega)$. *Hint*: Find a bijection between $\mathcal{P}(\Omega)$ and the space $\{v \in \mathbb{R}^n : v_i \in \{0,1\}\}$.
- (4) Let $\Omega = [-1, 1] \subset \mathbb{R}$. Determine if the following collection of sets is a σ -algebra:

$$\mathcal{F} = \{ A \in \mathcal{B}(\Omega) \colon x \in A \Rightarrow -x \in A \} \,.$$

- (5) Determine if the intersection and the union of σ -algebras are still σ -algebras.
- (6) Show that
 - (a) if $\mathcal{I}_1 \subset \mathcal{I}_2 \subset \mathcal{P}$, then $\sigma(\mathcal{I}_1) \subset \sigma(\mathcal{I}_2)$.
 - (b) $\sigma(\sigma(\mathcal{I})) = \sigma(\mathcal{I})$ for any $\mathcal{I} \subset \mathcal{P}$.
 - (c) $\mathcal{I} = \{[a, +\infty[: a \in \mathbb{R}\} \text{ generates the Borel } \sigma\text{-algebra of } \mathbb{R}.$
- (7) Let (Ω, F) be a measurable space and A, B ∈ F \ {Ø, Ω} such that A ≠ B. Compute #σ({A, B}) if
 (a) A ∩ B ≠ Ø and A ∪ B ≠ Ω.
 - (a) $A \cap B = \emptyset$ and $A \cup B \neq \Omega$.
 - $(b) H + D = 0 \text{ and } H \in D \neq \Omega.$
 - (c) $A \cap B \neq \emptyset$ and $A \cup B = \Omega$.
 - (d) $A \cap B = \emptyset$ and $A \cup B = \Omega$.

¹Send comments and/or corrections to jldias@iseg.ulisboa.pt. Harder questions are marked with *. Collaboration among colleagues is encouraged, but each student should write his/her own solutions, understand them and give credit to the collaborators.

- (8) Let $\mu: \mathcal{P}(\mathbb{R}) \to [0, +\infty]$ be given by $\mu(\emptyset) = 0$, $\mu(\mathbb{R}) = 2$ and $\mu(X) = 1$ if $X \in \mathcal{P}(\mathbb{R}) \setminus \{\emptyset, \mathbb{R}\}$. Determine if μ is σ -subadditive and σ -additive.
- (9) Let μ_n be a measure and $a_n \ge 0$ for all $n \in \mathbb{N}$. Prove that

$$\mu = \sum_{n=1}^{+\infty} a_n \mu_n,$$

is also a measure. Furthermore, show that if μ_n is a probability measure for all n and $\sum_n a_n = 1$, then μ is also a probability measure.

- (10) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $A_1, A_2, \dots \in \mathcal{F}$. Prove that:
 - (a) In the definition of measure, the condition μ(Ø) = 0 can be replaced by the existence of a set E ∈ F with finite measure, μ(E) < +∞.</p>
 - (b) If $A_i \subset A_{i+1}$, then $\mu(\bigcup_i A_i) = \lim_{i \to +\infty} \mu(A_i)$.
 - (c) If $A_{i+1} \subset A_i$ and $\mu(A_1) < +\infty$, then $\mu(\bigcap_i A_i) = \lim_{i \to +\infty} \mu(A_i)$.
- (11) Let (Ω, \mathcal{F}, P) probability space, $A_1, A_2, \dots \in \mathcal{F}$ and B is the set of points in Ω that belong to an infinite number of A_n 's:

$$B = \bigcap_{n=1}^{+\infty} \bigcup_{k=n}^{+\infty} A_k$$

Show that:

(a) (First Borel-Cantelli lemma) If

$$\sum_{n=1}^{+\infty} P(A_n) < +\infty,$$

then P(B) = 0.

(b) *(Second Borel-Cantelli lemma) If

$$\sum_{n=1}^{+\infty} P(A_n) = +\infty$$

and

$$P\left(\bigcap_{i=1}^{n} A_i\right) = \prod_{i=1}^{n} P(A_i),$$

for every $n \in \mathbb{N}$ (i.e. the events are mutually independent), then P(B) = 1.

 $\mathbf{2}$