Capítulo 3. Sucessões reais e séries.

1. Calcule o limite de cada uma das seguintes sucessões (ou conclua que não existe)
a) $3+\frac{1}{2 n}+2 n\left[1-(-1)^{n}\right]$
b) $\frac{\sin n}{n^{2}}$
C) $\frac{n^{2}}{n^{4}+1}$
d) $\frac{n^{2}+2}{3 n+1}$
e) $\frac{3 n}{4 n^{3}+1}$
f) $\frac{-n^{3}}{4 n^{3}-7}$
g) $\frac{2^{n}+1}{2^{n+1}-1}$
h) $\left(1+\frac{1}{n^{2}}\right)^{n^{3}}$
i) $\sqrt{n}-\sqrt{n+1}+\frac{8^{n}}{11^{n}}$
j) $\left(\frac{n+3}{n+1}\right)^{2 n}$
k) $\left(1-\frac{3}{n^{2}}\right)^{n}$
I) $\left(\frac{n+5}{2 n+1}\right)^{n}$
m) $\frac{(-1)^{n} n^{3}+1}{n^{2}+2}$
n) $\cos ^{2} n \cdot \sin \frac{1}{n}$
o) $\frac{n(n-1)(n-2)}{(n+1)(n+2)}$
p) $\frac{n^{2}+3 n}{n+2}-\frac{n^{2}-1}{n}$
q) $\left(\frac{2 n^{2}+1}{2 n^{2}+4}\right)^{2 n+1}$
r) $\left(\frac{2 n}{2 n-1}\right)^{n+3}$
s) $(2 n+3)\left(\sqrt{n^{2}+3}-\sqrt{n^{2}+1}\right)$
t) $\sqrt{n^{2}+2 n-1}-\sqrt{n^{2}-2}$
u) $\left(\frac{n^{2}+1}{n^{2}-2}\right)^{n^{2}}$
2. Considere as sucessões de termo geral
$a_{n}=\frac{9}{n} \quad b_{n}=\frac{(-1)^{n}}{n}$
$c_{n}=\left(\frac{n}{n+1}\right)^{4}$
$d_{n}=5^{n} .3 \quad\left\{\begin{array}{l}e_{n}=-3+e_{n-1} \\ e_{1}=4\end{array}\right.$
$f_{n}=\frac{2^{n+2}}{(-5)^{n}}$
a) Estude a monotonia de cada uma;
b) Averigue quais são limitadas;
c) Sem calcular o limite, o que pode concluir sobre a convergência das sucessões de termo geral a_{n} e c_{n} ?
d) Calcule o limite de cada uma das sucessões ou conclua que não existe;
e) Escreva uma expressão algébrica que represente cada uma das seguintes somas:
(i) $\sum_{n=3}^{272} d_{n}$
(ii) $\sum_{n=5}^{104} f_{n}$
3. Utilize o símbolo \sum para escrever
a) $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}$
b) $-1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}$
c) $-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}$
d) $1+3+5+7$
e) $2+4+6+8+10+12$
4. a) Averigue se alguma das sucessões é uma progressão geométrica e, nos casos afirmativos, deduza uma expressão algébrica (sem o símbolo \sum) que represente a soma dos 100 primeiros termos
i) $\quad 8,1, \frac{1}{8}, \frac{1}{64}, \frac{1}{512}, \ldots$
ii) $\quad-2,6,-18,54, \ldots$
iii) $\quad 2^{1 / 3}, 1,2^{-1 / 3}, 2^{-2 / 3}, 2^{-1}, \ldots$
b) Para cada sucessão, escreva com o símbolo \sum uma expressão que represente a soma dos termos apresentados (por exemplo, para i), use o símbolo $\quad \sum$ para representar $\left.8+1+\frac{1}{8}+\frac{1}{64}+\frac{1}{512}\right)$.
5. Mostre que as seguintes séries são divergentes
a) $\sum_{n \geq 0} \frac{n}{n+1}$
b) $\sum_{n=1}^{\infty}\left(\frac{101}{100}\right)^{n}$
c) $\sum_{n=1}^{\infty} \frac{1}{\left(1+\frac{1}{n}\right)^{n}}$
6. Justifique quais das séries são geométricas e calcule a soma das geométricas que são convergentes
a) $8+1+\frac{1}{8}+\frac{1}{64}+\cdots$
b) $-2+6-18+54-\cdots$
c) $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\cdots$
d) $\sum_{n=1}^{\infty}\left(\frac{1}{x}\right)^{n}$
e) $\sum_{n=1}^{\infty}(x)^{2 n}$
f) $\sum_{n=0}^{\infty}\left(\frac{1}{1+x}\right)^{n}$
7. Averigue se as seguintes séries são convergentes e, em caso afirmativo, determine a sua soma
a) $\sum_{n \geq 0}\left(\frac{1}{2}\right)^{n}$
b) $\sum_{n \geq 1} 3^{n}$
c) $\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n+2}$
d) $\sum_{n \geq 3}\left(\frac{1}{4}\right)^{2 n}$
e) $\sum_{n \geq 2} 5^{-n}$
f) $\quad \sum_{n \geq 0}(-2)^{n}$
8. Estude a convergência das seguintes séries e calcule a soma das que forem convergentes
a) $\sum_{n=1}^{+\infty}\left(\frac{x}{x+1}\right)^{n}$
b) $\sum_{n=1}^{+\infty}(1-|x|)^{n-1}$
9. Determine a soma da série $\sum_{n=0}^{\infty} a\left(1+\frac{b}{100}\right)^{-n}$, com $b>0$.
10. Indique para que valores de $x \in \mathbb{R}$ as séries convergem e calcule a sua soma
a) $\quad \sum_{n \geq 0}(3 x-4)^{n}$
b) $\sum_{n \geq 0}\left(\frac{x-1}{x+1}\right)^{n}$
c) $\quad \sum_{n=0}^{\infty}\left(\frac{x-3}{2}\right)^{n}$
d) $\quad \sum_{n=0}^{\infty} \frac{8^{n}}{(x+1)^{3 n}}$
e) $\quad \sum_{n=1}^{\infty} \frac{x^{2 n}}{9^{n-1}}$
f) $\quad \sum_{n=3}^{\infty} \frac{x^{2 n}}{9}$
11. Utilizando a teoria das séries geométricas, escreva as seguintes dízimas sob a forma de frações irredutíveis
a) $1,(6)$
b) $0,(25)$
12. Considere a série $\sum_{n=2}^{\infty} \frac{a n^{2}+n}{n^{2}-1}$, com $a \in \mathbb{R}$. Indique a resposta correta
a) Se $a \neq 0$ então a série é divergente
b) Se $a \neq 0$ então a série é convergente
c) A série é convergente $\forall a \in \mathbb{R}$
d) A série é convergente, se $a=1$.
13. A soma da série $\sum_{n=1}^{\infty}\left(1-x^{2}\right)^{n}$ é igual a
a) $\frac{1}{x^{2}}-1$, se $\left.x \in\right]-\sqrt{2}, \sqrt{2}[$
b) $\frac{1}{x^{2}}-1$, se $\left.x \in\right]-\sqrt{2}, \sqrt{2}[\backslash\{0\}$
c) $\frac{1}{x^{2}}$, se $\left.x \in\right]-\sqrt{2}, \sqrt{2}[\backslash\{0\}$
d) $\frac{1}{x^{2}}$, se $\left.x \in\right]-\sqrt{2}, \sqrt{2}[$.
14. Considere a série

$$
4 x^{2}+16 x^{4}+64 x^{6}+\cdots
$$

com soma S, se convergente.
Qual das seguintes afirmações está correta?
a) $S=\left(1-4 x^{2}\right)^{2}-1$, se $|x|<\frac{1}{2}$
b) $S=\left(1-4 x^{2}\right)^{-1}-1$, se $|x|<\frac{1}{2}$
c) $S=\left(1-4 x^{2}\right)^{-1}$, se $|x|<\frac{1}{2}$
d) $S=\left(1-4 x^{2}\right)^{-2}$, se $|x|<1$.

