Capítulo 3. Sucessões reais e séries.

1. Calcule o limite de cada uma das seguintes sucessões (ou conclua que não existe)

a)
$$3 + \frac{1}{2n} + 2n[1 - (-1)^n]$$

- b) $\frac{\sin n}{n^2}$
- c) $\frac{n^2}{n^4+1}$
- d) $\frac{n^2+2}{3n+1}$
- e) $\frac{3n}{4n^3+1}$
- $f) \quad \frac{-n^3}{4n^3 7}$
- g) $\frac{2^{n}+1}{2^{n+1}-1}$
- h) $\left(1 + \frac{1}{n^2}\right)^{n^3}$
- $i) \quad \sqrt{n} \sqrt{n+1} + \frac{8^n}{11^n}$
- $\mathsf{j)} \quad \left(\frac{n+3}{n+1}\right)^{2n}$
- $k) \quad \left(1 \frac{3}{n^2}\right)^n$
- $\left(\frac{n+5}{2n+1}\right)^n$
- m) $\frac{(-1)^n n^3 + 1}{n^2 + 2}$
- n) $\cos^2 n \cdot \sin \frac{1}{n}$
- o) $\frac{n(n-1)(n-2)}{(n+1)(n+2)}$
- p) $\frac{n^2+3n}{n+2} \frac{n^2-1}{n}$
- q) $\left(\frac{2n^2+1}{2n^2+4}\right)^{2n+1}$
- $r) \quad \left(\frac{2n}{2n-1}\right)^{n+3}$
- s) $(2n+3)(\sqrt{n^2+3}-\sqrt{n^2+1})$
- t) $\sqrt{n^2 + 2n 1} \sqrt{n^2 2}$
- u) $\left(\frac{n^2+1}{n^2-2}\right)^{n^2}$

2. Considere as sucessões de termo geral

$$a_n = \frac{9}{n}$$
 $b_n = \frac{(-1)^n}{n}$ $c_n = \left(\frac{n}{n+1}\right)^4$ $d_n = 5^n.3$ $\begin{cases} e_n = -3 + e_{n-1} \\ e_1 = 4 \end{cases}$ $f_n = \frac{2^{n+2}}{(-5)^n}$

- a) Estude a monotonia de cada uma;
- b) Averigue quais são limitadas;
- c) Sem calcular o limite, o que pode concluir sobre a convergência das sucessões de termo geral a_n e c_n ?
- d) Calcule o limite de cada uma das sucessões ou conclua que não existe;
- e) Escreva uma expressão algébrica que represente cada uma das seguintes somas:
 - (i) $\sum_{n=3}^{272} d_n$
- (ii) $\sum_{n=5}^{104} f_n$
- 3. Utilize o símbolo \sum para escrever

a)
$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5}$$

b)
$$-1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4}$$

c) $-\frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5}$

c)
$$-\frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5}$$

d)
$$1+3+5+7$$

e)
$$2+4+6+8+10+12$$

4. a) Averigue se alguma das sucessões é uma progressão geométrica e, nos casos afirmativos, deduza uma expressão algébrica (sem o símbolo Σ) que represente a soma dos 100 primeiros termos

i) 8, 1,
$$\frac{1}{8}$$
, $\frac{1}{64}$, $\frac{1}{512}$, ...

ii)
$$-2$$
, 6, -18 , 54, ...

iii)
$$2^{1/3}$$
, 1, $2^{-1/3}$, $2^{-2/3}$, 2^{-1} , ...

b) Para cada sucessão, escreva com o símbolo Σ uma expressão que represente a soma dos termos apresentados (por exemplo, para i), use o símbolo \sum representar $8 + 1 + \frac{1}{8} + \frac{1}{64} + \frac{1}{512}$).

5. Mostre que as seguintes séries são divergentes

a)
$$\sum_{n\geq 0} \frac{n}{n+1}$$

b)
$$\sum_{n=1}^{\infty} \left(\frac{101}{100}\right)^n$$

c)
$$\sum_{n=1}^{\infty} \frac{1}{\left(1 + \frac{1}{n}\right)^n}$$

6. Justifique quais das séries são geométricas e calcule a soma das geométricas que são convergentes

a)
$$8 + 1 + \frac{1}{8} + \frac{1}{64} + \cdots$$

b) $-2 + 6 - 18 + 54 - \cdots$

b)
$$-2+6-18+54-\cdots$$

c)
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \cdots$$

d)
$$\sum_{n=1}^{\infty} \left(\frac{1}{x}\right)^n$$

e)
$$\sum_{n=1}^{\infty} (x)^{2n}$$

d)
$$\sum_{n=1}^{\infty} \left(\frac{1}{x}\right)^n$$

e) $\sum_{n=1}^{\infty} (x)^{2n}$
f) $\sum_{n=0}^{\infty} \left(\frac{1}{1+x}\right)^n$

7. Averigue se as seguintes séries são convergentes e, em caso afirmativo, determine a sua soma

a)
$$\sum_{n\geq 0} \left(\frac{1}{2}\right)^n$$

b)
$$\sum_{n\geq 1} 3^n$$

c)
$$\sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^{n+2}$$

d)
$$\sum_{n\geq 3} \left(\frac{1}{4}\right)^{2n}$$

e)
$$\sum_{n\geq 2} 5^{-n}$$

f)
$$\sum_{n\geq 0} (-2)^n$$

8. Estude a convergência das seguintes séries e calcule a soma das que forem convergentes

a)
$$\sum_{n=1}^{+\infty} \left(\frac{x}{x+1}\right)^n$$

- b) $\sum_{n=1}^{+\infty} (1-|x|)^{n-1}$
- 9. Determine a soma da série $\sum_{n=0}^{\infty} a \left(1 + \frac{b}{100}\right)^{-n}$, com b > 0.
- 10. Indique para que valores de $x \in \mathbb{R}$ as séries convergem e calcule a sua soma

a)
$$\sum_{n\geq 0} (3x-4)^n$$

b)
$$\sum_{n\geq 0} \left(\frac{x-1}{x+1}\right)^n$$

c)
$$\sum_{n=0}^{\infty} \left(\frac{x-3}{2} \right)^n$$

d)
$$\sum_{n=0}^{\infty} \frac{8^n}{(x+1)^{3n}}$$

e)
$$\sum_{n=1}^{\infty} \frac{x^{2n}}{9^{n-1}}$$

$$f) \quad \sum_{n=3}^{\infty} \frac{x^{2n}}{9}$$

11. Utilizando a teoria das séries geométricas, escreva as seguintes dízimas sob a forma de frações irredutíveis

b)
$$0, (25)$$

- 12. Considere a série $\sum_{n=2}^{\infty} \frac{an^2+n}{n^2-1}$, com $a \in \mathbb{R}$. Indique a resposta correta
 - a) Se $a \neq 0$ então a série é divergente
 - b) Se $a \neq 0$ então a série é convergente
 - c) A série é convergente $\forall a \in \mathbb{R}$
 - d) A série é convergente, se a = 1.

- 13. A soma da série $\sum_{n=1}^{\infty}(1-x^2)^n$ é igual a
 - a) $\frac{1}{x^2} 1$, se $x \in]-\sqrt{2}, \sqrt{2}[$
 - b) $\frac{1}{x^2} 1$, se $x \in]-\sqrt{2}, \sqrt{2}[\setminus \{0\}]$
 - c) $\frac{1}{x^2}$, se $x \in]-\sqrt{2}, \sqrt{2}[\setminus \{0\}]$
 - d) $\frac{1}{x^2}$, se $x \in]-\sqrt{2}, \sqrt{2}[$.
- 14. Considere a série

$$4x^2 + 16x^4 + 64x^6 + \cdots$$

com soma S, se convergente.

Qual das seguintes afirmações está correta?

- a) $S = (1 4x^2)^2 1$, se $|x| < \frac{1}{2}$
- b) $S = (1 4x^2)^{-1} 1$, se $|x| < \frac{1}{2}$
- c) $S = (1 4x^2)^{-1}$, se $|x| < \frac{1}{2}$ d) $S = (1 4x^2)^{-2}$, se |x| < 1.