Models in Finance - Class 4

Master in Actuarial Science

João Guerra

ISEG

One-dimensional Itô's formula or Itô's lemma

- Itô's formula or Itô's lemma is a stochastic version of the chain rule.
- Suppose we have a function of a function $f\left(b_{t}\right)$ and we consider f is a C^{2} class function. We want to find $\frac{d}{d t} f\left(b_{t}\right)$. Then by Taylor's theorem (2nd order expansion):

$$
\delta f\left(b_{t}\right)=f^{\prime}\left(b_{t}\right) \delta b_{t}+\frac{1}{2} f^{\prime \prime}\left(b_{t}\right)\left(\delta b_{t}\right)^{2}+\cdots
$$

Dividing by δt and letting $\delta t \rightarrow 0$, we obtain the classical chain rule:

$$
\frac{d}{d t} f\left(b_{t}\right)=f^{\prime}\left(b_{t}\right) \frac{d b_{t}}{d t}+\frac{1}{2} f^{\prime \prime}\left(b_{t}\right) \frac{d b_{t}}{d t} \lim _{\delta t \rightarrow 0}\left(\delta b_{t}\right)=f^{\prime}\left(b_{t}\right) \frac{d b_{t}}{d t}
$$

or

$$
d f\left(b_{t}\right)=f^{\prime}\left(b_{t}\right) d b_{t}
$$

One-dimensional Itô's formula or Itô's lemma

- What if we replace b_{t} (deterministic) by the $s B m B_{t}$?Then, the 2nd order term $\frac{1}{2} f^{\prime \prime}\left(B_{t}\right)\left(\delta B_{t}\right)^{2}$ cannot be ignored because $\left(\delta B_{t}\right)^{2} \approx\left(d B_{t}\right)^{2} \approx d t$ is not of the order $(d t)^{2}$, that is (Itô formula):

$$
\begin{equation*}
d f\left(B_{t}\right)=f^{\prime}\left(B_{t}\right) d B_{t}+\frac{1}{2} f^{\prime \prime}\left(B_{t}\right) d t \tag{1}
\end{equation*}
$$

- Example: Compute the stochastic differential of B_{t}^{2} and represent this process using a stochastic integral.
- We have $B_{t}^{2}=f\left(B_{t}\right)$ with $f(x)=x^{2}$. Therefore, by (1)

$$
\begin{aligned}
d\left(B_{t}^{2}\right) & =2 B_{t} d B_{t}+\frac{1}{2} 2\left(d B_{t}\right)^{2} \\
& =2 B_{t} d B_{t}+d t .
\end{aligned}
$$

(Taylor expansion of B_{t}^{2} as a function of B_{t} and assuming that $\left.\left(d B_{t}\right)^{2}=d t\right)$. Note that in integral form the result is equivalent to $\int_{0}^{t} B_{s} d B_{s}=\frac{1}{2}\left(B_{t}^{2}-t\right)$.

One-dimensional Itô's formula or Itô's lemma

- If f is a C^{2} function then
$f\left(B_{t}\right)=$ stochastic integral+process with differentiable paths $=$ Itô process
- We can replace condition 2) $E\left[\int_{0}^{T} u_{t}^{2} d t\right]<\infty$ in the definition of $L_{a, T}^{2}$ by the (weaker condition):
2') $P\left[\int_{0}^{T} u_{t}^{2} d t<\infty\right]=1$.
- Let $L_{a, T}$ be the space of processes that satisfy condition 1 of the definition of $L_{a, T}^{2}$ and condition 2'). The Itô integral can be defined for $u \in L_{a, T}$ but, in this case, the stochastic integral may fail to have zero expected value and the Itô isometry may fail to be verified.
- Define $L_{a, T}^{1}$ as the space of processes v such that:
(1) v is an adapted and measurable process.
(2) $P\left[\int_{0}^{T}\left|v_{t}\right| d t<\infty\right]=1$.
- An adapted and continuous process $X=\left\{X_{t}, 0 \leq t \leq T\right\}$ is called an Itô process if it satisfies the decomposition:

$$
\begin{equation*}
X_{t}=X_{0}+\int_{0}^{t} u_{s} d B_{s}+\int_{0}^{t} v_{s} d s \tag{2}
\end{equation*}
$$

where $u \in L_{a, T}$ and $v \in L_{a, T}^{1}$.

One-dimensional Itô's formula or Itô's lemma

Theorem

(One-dimensional Itô's formula or Itô's lemma): Let $X=\left\{X_{t}, 0 \leq t \leq T\right\}$ a Itô process of type (2). Let $f(t, x)$ be a $C^{1,2}$ function. Then $Y_{t}=f\left(t, X_{t}\right)$ is an Itô process and we have:

$$
\begin{aligned}
f\left(t, X_{t}\right) & =f\left(0, X_{0}\right)+\int_{0}^{t} \frac{\partial f}{\partial t}\left(s, X_{s}\right) d s+\int_{0}^{t} \frac{\partial f}{\partial x}\left(s, X_{s}\right) u_{s} d B_{s} \\
& +\int_{0}^{t} \frac{\partial f}{\partial x}\left(s, X_{s}\right) v_{s} d s+\frac{1}{2} \int_{0}^{t} \frac{\partial^{2} f}{\partial x^{2}}\left(s, X_{s}\right) u_{s}^{2} d s
\end{aligned}
$$

- In the differential form, the Itô formula is:

$$
\begin{aligned}
d f\left(t, X_{t}\right) & =\frac{\partial f}{\partial t}\left(t, X_{t}\right) d t+\frac{\partial f}{\partial x}\left(t, X_{t}\right) d X_{t} \\
& +\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\left(t, X_{t}\right)\left(d X_{t}\right)^{2}
\end{aligned}
$$

where $\left(d X_{t}\right)^{2}$ can be computed using (2) and the table of products

$$
\begin{array}{ccc}
\times & d B_{t} & d t \\
d B_{t} & d t & 0 \\
d t & 0 & 0
\end{array}
$$

- Itô's formula for $f(t, x)$ and $X_{t}=B_{t}$, or $Y_{t}=f\left(t, B_{t}\right)$.

$$
\begin{aligned}
f\left(t, B_{t}\right) & =f(0,0)+\int_{0}^{t} \frac{\partial f}{\partial t}\left(s, B_{s}\right) d s+\int_{0}^{t} \frac{\partial f}{\partial x}\left(s, B_{s}\right) d B_{s} \\
+ & \frac{1}{2} \int_{0}^{t} \frac{\partial^{2} f}{\partial x^{2}}\left(s, B_{s}\right) d s . \\
d f\left(t, B_{t}\right) & =\frac{\partial f}{\partial t}\left(t, B_{t}\right) d t+\frac{\partial f}{\partial x}\left(t, B_{t}\right) d B_{t} \\
& +\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\left(t, B_{t}\right) d t .
\end{aligned}
$$

- Itô's formula for $f(x)$ and $X_{t}=B_{t}$, or $Y_{t}=f\left(B_{t}\right)$.

$$
d f\left(B_{t}\right)=\frac{\partial f}{\partial x}\left(B_{t}\right) d B_{t}+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\left(B_{t}\right) d t
$$

Multidimensional Itô's formula or Itô's lemma

- Assume that $B_{t}:=\left(B_{t}^{1}, B_{t}^{2}, \ldots, B_{t}^{m}\right)$ is an m-dimensional standard Brownian motion, that is, components $B_{t}^{k}, k=1, \ldots, m$ are one-dimensional independent sBm.
- Consider a Itô process of dimension n, defined by

$$
\begin{aligned}
X_{t}^{1} & =X_{0}^{1}+\int_{0}^{t} u_{s}^{11} d B_{s}^{1}+\cdots+\int_{0}^{t} u_{s}^{1 m} d B_{s}^{m}+\int_{0}^{t} v_{s}^{1} d s \\
X_{t}^{2} & =X_{0}^{2}+\int_{0}^{t} u_{s}^{21} d B_{s}^{1}+\cdots+\int_{0}^{t} u_{s}^{2 m} d B_{s}^{m}+\int_{0}^{t} v_{s}^{2} d s \\
\quad & \\
X_{t}^{n} & =X_{0}^{n}+\int_{0}^{t} u_{s}^{n 1} d B_{s}^{1}+\cdots+\int_{0}^{t} u_{s}^{n m} d B_{s}^{m}+\int_{0}^{t} v_{s}^{n} d s
\end{aligned}
$$

Multidimensional Itô's formula

- In differential form:

$$
d X_{t}^{i}=\sum_{j=1}^{m} u_{t}^{i j} d B_{t}^{j}+v_{t}^{i} d t
$$

with $i=1,2, \ldots, n$.

- Or, in compact form:

$$
d X_{t}=u_{t} d B_{t}+v_{t} d t
$$

where v_{t} is n-dimensional, u_{t} is a $n \times m$ matrix of processes.

- We assume that the components of u belong to $L_{a, T}$ and the components of v belong to $L_{a, T}^{1}$.

Multidimensional Itô's formula

- If $f:[0, T] \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ is a $C^{1,2}$ function, then $Y_{t}=f\left(t, X_{t}\right)$ is a Itô process and we have the Itô formula or Itô lemma:

$$
\begin{aligned}
d Y_{t}^{k} & =\frac{\partial f_{k}}{\partial t}\left(t, X_{t}\right) d t+\sum_{i=1}^{n} \frac{\partial f_{k}}{\partial x_{i}}\left(t, X_{t}\right) d X_{t}^{i} \\
& +\frac{1}{2} \sum_{i, j=1}^{n} \frac{\partial^{2} f_{k}}{\partial x_{i} \partial x_{j}}\left(t, X_{t}\right) d X_{t}^{i} d X_{t}^{j}
\end{aligned}
$$

Multidimensional Itô's formula

- The product of the differentials $d X_{t}^{i} d X_{t}^{j}$ is computed following the product rules:

$$
\begin{aligned}
d B_{t}^{i} d B_{t}^{j} & =\left\{\begin{array}{cc}
0 & \text { se } i \neq j \\
d t & \text { se } i=j
\end{array}\right. \\
d B_{t}^{i} d t & =0 \\
(d t)^{2} & =0
\end{aligned}
$$

Multidimensional Itô's formula

- If B_{t} is a n-dimensional sBm and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a C^{2} function with $Y_{t}=f\left(B_{t}\right)$ then:

$$
f\left(B_{t}\right)=f\left(B_{0}\right)+\sum_{i=1}^{n} \int_{0}^{t} \frac{\partial f}{\partial x_{i}}\left(B_{t}\right) d B_{s}^{i}+\frac{1}{2} \int_{0}^{t}\left(\sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i}^{2}}\left(B_{t}\right)\right) d s
$$

Integration by parts formula

- Integration by parts formula: If X_{t}^{1} and X_{t}^{2} are Itô processes and $Y_{t}=X_{t}^{1} X_{t}^{2}$, then by Itô's formula applied to $f(x)=f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$, we get

$$
d\left(X_{t}^{1} X_{t}^{2}\right)=X_{t}^{2} d X_{t}^{1}+X_{t}^{1} d X_{t}^{2}+d X_{t}^{1} d X_{t}^{2}
$$

That is:

$$
X_{t}^{1} X_{t}^{2}=X_{0}^{1} X_{0}^{2}+\int_{0}^{t} X_{s}^{2} d X_{s}^{1}+\int_{0}^{t} X_{s}^{1} d X_{s}^{2}+\int_{0}^{t} d X_{s}^{1} d X_{s}^{2}
$$

Example

- Consider the process

$$
Y_{t}=\left(B_{t}^{1}\right)^{2}+\left(B_{t}^{2}\right)^{2}+\cdots+\left(B_{t}^{n}\right)^{2}
$$

Represent this process in terms of Itô stochastic integrals with respect to n-dimensional sBm.

- By n-dimens. Itô formula applied to $f(x)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}^{2}+\cdots+x_{n}^{2}$, we obtain

$$
\begin{aligned}
d Y_{t} & =2 B_{t}^{1} d B_{t}^{1}+\cdots+2 B_{t}^{n} d B_{t}^{n} \\
& +n d t
\end{aligned}
$$

That is:

$$
Y_{t}=2 \int_{0}^{t} B_{s}^{1} d B_{s}^{1}+\cdots+2 \int_{0}^{t} B_{s}^{n} d B_{s}^{n}+n t
$$

Exercise

- Exercise: Let $B_{t}:=\left(B_{t}^{1}, B_{t}^{2}\right)$ be a two dimensional Bm Represent the process

$$
Y_{t}=\left(B_{t}^{1} t,\left(B_{t}^{2}\right)^{2}-B_{t}^{1} B_{t}^{2}\right)
$$

as an Itô process.

- By the multidimensional Itô's formula applied to $f(t, x)=f\left(t, x_{1}, x_{2}\right)=\left(x_{1} t, x_{2}^{2}-x_{1} x_{2}\right)$, we obtain: (Details: homework)

$$
\begin{aligned}
& d Y_{t}^{1}=B_{t}^{1} d t+t d B_{t}^{1} \\
& d Y_{t}^{2}=-B_{t}^{2} d B_{t}^{1}+\left(2 B_{t}^{2}-B_{t}^{1}\right) d B_{t}^{2}+d t
\end{aligned}
$$

that is

$$
\begin{aligned}
& Y_{t}^{1}=\int_{0}^{t} B_{s}^{1} d s+\int_{0}^{t} s d B_{s}^{1} \\
& Y_{t}^{2}=-\int_{0}^{t} B_{s}^{2} d B_{s}^{1}+\int_{0}^{t}\left(2 B_{s}^{2}-B_{s}^{1}\right) d B_{s}^{2}+t
\end{aligned}
$$

- Exercise: Assume that a process X_{t} satisfies the SDE

$$
d X_{t}=\sigma\left(X_{t}\right) d B_{t}+\mu\left(X_{t}\right) d t
$$

Compute the stochastic differential of the process $Y_{t}=X_{t}^{3}$ and represent this process as an Itô process.

Basic Ideas of the proof of Itô's formula

- The process

$$
\begin{aligned}
Y_{t} & =f\left(0, X_{0}\right)+\int_{0}^{t} \frac{\partial f}{\partial t}\left(s, X_{s}\right) d s+\int_{0}^{t} \frac{\partial f}{\partial x}\left(s, X_{s}\right) u_{s} d B_{s} \\
& +\int_{0}^{t} \frac{\partial f}{\partial x}\left(s, X_{s}\right) v_{s} d s+\frac{1}{2} \int_{0}^{t} \frac{\partial^{2} f}{\partial x^{2}}\left(s, X_{s}\right) u_{s}^{2} d s .
\end{aligned}
$$

is an Itô process.

- We assume that f and its partial derivatives are bounded (the general case can be proved approximating f by bounded functions with bounded derivatives).
- The Itô stoch. integral can be approximated by a sequence of stochastic integrals of simple processes and so we can assume that u and v are simple processes.
- Consider a partition of $[0, t]$ into n equal sub-intervals:

$$
f\left(t, X_{t}\right)=f\left(0, X_{0}\right)+\sum_{k=0}^{n-1}\left(f\left(t_{k+1}, X_{t_{k+1}}\right)-f\left(t_{k}, X_{t_{k}}\right)\right)
$$

- By Taylor formula:

$$
\begin{aligned}
& f\left(t_{k+1}, X_{t_{k+1}}\right)-f\left(t_{k}, X_{t_{k}}\right)=\frac{\partial f}{\partial t}\left(t_{k}, X_{t_{k}}\right) \Delta t+\frac{\partial f}{\partial x}\left(t_{k}, X_{t_{k}}\right) \Delta X_{k} \\
& +\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\left(t_{k}, X_{t_{k}}\right)\left(\Delta X_{k}\right)^{2}+Q_{k}
\end{aligned}
$$

where Q_{k} is the remainder or error of the Taylor formula.

- We also have that

$$
\begin{aligned}
\Delta X_{k} & =X_{t_{k+1}}-X_{t_{k}}=\int_{t_{k}}^{t_{k+1}} v_{s} d s+\int_{t_{k}}^{t_{k+1}} u_{s} d B_{s} \\
& =v\left(t_{k}\right) \Delta t+u\left(t_{k}\right) \Delta B_{k}+S_{k}
\end{aligned}
$$

where S_{k} is the remainder or error.

- Therefore:

$$
\begin{aligned}
\left(\Delta X_{k}\right)^{2} & =\left(v\left(t_{k}\right)\right)^{2}(\Delta t)^{2}+\left(u\left(t_{k}\right)\right)^{2}\left(\Delta B_{k}\right)^{2} \\
& +2 v\left(t_{k}\right) u\left(t_{k}\right) \Delta t \Delta B_{k}+P_{k}
\end{aligned}
$$

where P_{k} is the remainder or error term

- If we replace all this terms, we obtain:

$$
f\left(t, X_{t}\right)-f\left(0, X_{0}\right)=I_{1}+I_{2}+I_{3}+\frac{1}{2} I_{4}+\frac{1}{2} K_{1}+K_{2}+R
$$

where

$$
\begin{aligned}
& I_{1}=\sum_{k} \frac{\partial f}{\partial t}\left(t_{k}, X_{t_{k}}\right) \Delta t \\
& I_{2}=\sum_{k} \frac{\partial f}{\partial t}\left(t_{k}, X_{t_{k}}\right) v\left(t_{k}\right) \Delta t \\
& I_{3}=\sum_{k} \frac{\partial f}{\partial x}\left(t_{k}, X_{t_{k}}\right) u\left(t_{k}\right) \Delta B_{k} \\
& I_{4}=\sum_{k} \frac{\partial^{2} f}{\partial x^{2}}\left(t_{k}, X_{t_{k}}\right)\left(u\left(t_{k}\right)\right)^{2}\left(\Delta B_{k}\right)^{2} .
\end{aligned}
$$

$$
\begin{aligned}
K_{1} & =\sum_{k} \frac{\partial^{2} f}{\partial x^{2}}\left(t_{k}, X_{t_{k}}\right)\left(v\left(t_{k}\right)\right)^{2}(\Delta t)^{2}, \\
K_{2} & =\sum_{k} \frac{\partial^{2} f}{\partial x^{2}}\left(t_{k}, X_{t_{k}}\right) v\left(t_{k}\right) u\left(t_{k}\right) \Delta t \Delta B_{k}, \\
R & =\sum_{k}\left(Q_{k}+S_{k}+P_{k}\right) .
\end{aligned}
$$

- When $n \rightarrow \infty$, it is easy to show that

$$
\begin{aligned}
I_{1} & \rightarrow \int_{0}^{t} \frac{\partial f}{\partial t}\left(s, X_{s}\right) d s \\
I_{2} & \rightarrow \int_{0}^{t} \frac{\partial f}{\partial x}\left(s, X_{s}\right) v_{s} d s \\
I_{3} & \rightarrow \int_{0}^{t} \frac{\partial f}{\partial x}\left(s, X_{s}\right) u_{s} d B_{s}
\end{aligned}
$$

- As we have seeen before (quadratic variation of $s B m$), we have that

$$
\sum_{k}\left(\Delta B_{k}\right)^{2} \rightarrow t
$$

hence

$$
I_{4} \rightarrow \int_{0}^{t} \frac{\partial^{2} f}{\partial x^{2}}\left(s, X_{s}\right) u_{s}^{2} d s
$$

- On the other hand, we also have

$$
\begin{aligned}
& K_{1} \rightarrow 0 \\
& K_{2} \rightarrow 0 .
\end{aligned}
$$

- It is also possible to show (but more technical and hard) that

$$
R \rightarrow 0
$$

- Conclusion: In the limit, when $n \rightarrow \infty$, we obtain the one-dimensional Itô's formula.

